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SUMMARY

Transseries are formal (possibly infinite) sums of monomials that are formal products of
iterated exponentials, powers and iterated logarithms, with real coefficients (see e.g. [6],
[21]). We consider here a subclass of logarithmic transseries which contain only powers
and iterated logarithms. Transseries appear in many problems in mathematics ( [3], [11])
and physics ( [1]) as asymptotic expansions of certain important maps. In dynamics, for
example, transseries are related to the famous Dulac’s problem ( [7]) of non-accumulation
of limit cycles on a hyperbolic or semi-hyperbolic polycycle of a planar analytic vector
field. The problem was solved independently by Ilyashenko ( [10], [11], [12]) and Ecalle
( [3]), but the proofs are so far not well-understood, at least in the semi-hyperbolic case.
The study of the accumulation of limit cycles on a polycycle is naturally related to the
study of fixed points of the first return map of a polycycle (see e.g. [32]). The first re-
turn map of a hyperbolic polycycle is an analytic map on interval (0,d), d > 0, which
has a transserial asymptotic expansion at zero. In particular, its asymptotic expansion
at zero is a logarithmic series involving only polynomials in logarithms attached to each
power, which is called a Dulac series (see e.g. [12], [32]). The proof of the Dulac problem
strongly relies on the existence of a logarithmic asymptotic expansion of the first return
map. Although Dulac gave the proof ( [7]) of the mentioned problem, there was an impre-
cision in his proof. In particular, at some point in the proof, the statement that every first
return map of a hyperbolic polycycle is uniquely determined by its asymptotic expansion
is used. This is not correct in general for non-analytic maps on the real line, due to the
possibility of adding exponentially small terms, as opposed to the case of analytic maps
and their Taylor expansions. Ilyashenko corrected this imprecision in [11] by proving
that every such map can be analytically extended to a sufficiently large complex domain

called a standard quadratic domain and by applying the Phragmen-Lindeldof Theorem (a
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maximum modulus principle on an unbounded complex domain, see e.g. [11], [12]). The
existence of such analytic extension makes possible to conclude that the first return map

is uniquely determined by its logarithmic asymptotic expansion.

In this dissertation, we consider the so-called Dulac germs (called almost regular
germs in [12]), i.e., analytic germs on (0,d), d > 0, that have a Dulac series as their
asymptotic expansion at zero, and that can be analytically extended to a standard quadratic
domain. On the one hand, we consider normal forms of logarithmic transseries (the for-
mal part), and, on the other hand, analytic normalizations of hyperbolic and strongly
hyperbolic Dulac germs (the analytic part). We also generalize to their complex counter-
parts, called hyperbolic and strongly hyperbolic complex Dulac germs. We prove as well
that, for hyperbolic and strongly hyperbolic Dulac germs, the formal normalizations are

asymptotic expansions of their analytic normalizations.

In proving that the formal transserial normalization is an asymptotic expansion of the
analytic normalization, in general, there is a problem of a choice of the summation rule at
the limit ordinal steps. In particular, given some map f on open interval (0,d), d > 0, we
want to assign to the map f its asymptotic expansion at zero in power-iterated logarithm
scale. Up to the first limit ordinal it can be done following the usual Poincaré algorithm,
contrary to the limit ordinal steps where we have multiple choices of intermediate sums.
Therefore, we have to determine a summation rule at limit ordinal steps, which vary from
problem to problem (see e.g. integral summation rule in [20], [22]). Luckily, for hyper-
bolic and strongly hyperbolic Dulac germs the formal normalizations are Dulac series, so
standard Poincaré algorithm suffices. On the other hand, in case of parabolic Dulac germs,
itis proved in [22] that, in general, the formal normalization is of order type strictly bigger

than .

Normal forms and normalizations of standard power series are already known (see
e.g. [4], [12], [16]). Furthermore, in previous papers ( [21], [22]), normal forms for log-
arithmic transseries were obtained only for power-logarithm transseries, i.e., logarithmic
transseries that contain only powers and the first iterate of logarithm. The techniques used

in [21] are based on a transfinite algorithm of successive changes of variables. Here, we



Summary

generalize these results to a larger class of logarithmic transseries containing also iterated
logarithms. Additionally, as a normalization process we use fixed point theorems on var-
ious complete metric spaces of logarithmic transseries. In this way, normalizations are
given as limits (in appropriate topologies) of Picard sequences. This is important for the
future work because we think that this approach is better for revealing the summation rule

at limit ordinal steps.

In proving the existence of the analytic normalization of a hyperbolic Dulac germ,
we generalize the classical Koenigs Theorem (see e.g. [4], [14], [24]) for linearization of
analytic hyperbolic diffeomorphisms at zero. Recently, there have been some improve-
ments of this result for various classes of maps not necessarily analytic at 0. One such
generalization is a result of Dewsnap and Fischer [5] for C' real maps on an open interval
around zero with power-logarithmic asymptotic bounds. In this dissertation, we prove
a linearization theorem for analytic maps with power-logarithmic asymptotic bounds on
invariant complex domains, that can be seen as a generalization of both Koenigs Theorem
and the result of Dewsnap and Fischer from [5, Theorem 2.2].

In particular, we apply the mentioned linearization theorem to obtain the analytic lin-
earization of hyperbolic (complex) Dulac germs.

Finally, we also generalize the Bottcher Theorem (see e.g. [4], [24]) for germs of
strongly hyperbolic analytic diffeomorphisms at zero to strongly hyperbolic complex Du-

lac germs on standard quadratic domains.

Key words: logarithmic transseries, order of transseries, normal forms, normaliza-
tion, linearization, formal and analytic classification, (complex) Dulac germs, Dulac se-
ries, standard quadratic domains, local fixed point theory, fixed point theorems, iteration

theory, Koenigs sequence
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SAZETAK

Transredovi su formalne (beskonacne) sume formalnih umnoZaka iteriranih eksponenci-
jalnih funkcija, op¢ih potencija i iteriranih logaritama (koje nazivamo monomi) s realnim
koeficijentima (vidjeti npr. [6], [21]). U ovoj disertaciji bavimo se podklasom takozvanih
logaritamskih transredova Ciji monomi sadrZe samo opce potencije i iterirane logaritme.
Transredovi se pojavljuju u mnogim problemima u matematici ( [3], [11]) i fizici ( [1]) kao
asimptotski razvoji nekih znacajnih preslikavanja. U dinamickim sustavima transredovi
su primjerice povezani s poznatim Dulacovim problemom ( [7]) o neakumulaciji grani¢nih
ciklusa na hiperbolicki ili semi-hiperbolicki policiklus ravninskog analitickog vektorskog
polja. lako su navedeni problem nezavisno rijesili Ilyashenko ( [10], [11], [12]) i Ecalle
( [3]), rjesenja semi-hiperbolickog slucaja i dalje nisu u potpunosti shva¢ena. Akumu-
lacija granic¢nih ciklusa na policiklus se prirodno povezuje s teorijom fiksnih toc¢aka pres-
likavanja povrata (ili Poincaréovog preslikavanja) danog policiklusa (vidjeti npr. [32]).
Preslikavanje povrata hiperboli¢kog policiklusa je analiticko preslikavanje na intervalu
(0,d), d > 0, s transredom kao asimptotskim razvojem u nuli. Preciznije, njegov asimp-
totski razvoj u nuli je logaritamski red u kojem, uz svaku opcéu potenciju, stoji polinom
u logaritmima. Takav red nazivamo Dulacov red (vidjeti npr. [12], [32]). RjeSenje Du-
lacovog problema uvelike se oslanja na postojanje logaritamskog asimptotskog razvoja
preslikavanja povrata u nuli. Iako je Dulac dao rjeSenje navedenog problema, u nje-
govom rjesenju ( [7]) je postojala nepreciznost. Naime, bez dokaza je koriStena tvrdnja
da je svako preslikavanje povrata hiperbolickog policiklusa jedinstveno odredeno svojim
asimptotskim razvojem. Navedena tvrdnja opCenito nije istinita za realna preslikavanja
koja nisu analiti¢ka u nuli zbog moguénosti dodavanja eksponencijalno malih €lanova
u razvoju, za razliku od analitickih preslikavanja u nuli i njihovih Taylorovih razvoja.

Ilyashenko je u [11] otklonio navedenu nepreciznost dokazavsi da se svako preslikavanje
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povrata moze analiti¢ki proSiriti na dovoljno veliku kompleksnu domenu koju nazivamo
standardna kvadratna domena. Phragmen-Lindeldfov teorem (varijanta principa maksi-
muma na neomedenoj kompleksnoj domeni, vidjeti npr. [11], [12]) tada daje injektivnost
asimptotskog razvoja za preslikavanja povrata. Na taj nac¢in moZemo zakljuciti da je pres-

likavanje povrata jedinstveno odredeno svojim logaritamskim asimptotskim razvojem.

U ovoj disertaciji promatramo takozvane Dulacove klice (skoro regularne klice u
[12]), tj. analiti¢ke klice na (0,d), d > 0, kojima je asimptotski razvoj u nuli Dulacov red
te koje se mogu analiticki proSiriti na neku standardnu kvadratnu domenu. S jedne strane,
promatramo normalne forme logaritamskih transredova (formalni dio). S druge strane,
promatramo analiticke normalizacije (jako) hiperbolickih Dulacovih klica (analiticki dio)
te njihovih generalizacija koje nazivamo (jako) hiperbolickim kompleksnim Dulacovim
klicama. Takoder dokazujemo da je formalna normalizacija asimptotski razvoj analiticke

normalizacije (jako) hiperbolickih Dulacovih klica.

U dokazu da je formalna normalizacija asimptotski razvoj analiticke normalizacije
opcenito se javlja problem izbora sumacijskog pravila u koracima indeksiranim grani¢nim
ordinalima. Naime, pretpostavimo da Zelimo odrediti asimptotski razvoj u nuli u skali
op¢ih potencija i iteriranih logaritama za dano preslikavanje f na otvorenom intervalu
(0,d), d > 0. Koriste¢i standardni Poincaréov algoritam to se moZe napraviti do prvog
grani¢nog ordinala. U koracima odredenim grani¢nim ordinalima postoje viSestruki izbori
takozvanih medusuma. Upravo zbog toga je potrebno odrediti pravila sumacije, koja ovise
o problemu kojeg promatramo (vidjeti integralno pravilo sumacije u [20], [22]). Kod
hiperbolickih i jako hiperbolickih Dulacovih klica, formalne normalizacije su, sreCom,
Dulacovi redovi, pa nam je dovoljan Poincaréov algoritam za asimptotski razvoj. S druge
strane, u [22] je dokazano da je formalna normalizacija parabolickih Dulacovih klica

transred indeksiran ordinalom strogo ve¢im od ®.

Normalne forme i normalizacije standardnih redova potencija su otprije poznate (vid-
jeti npr. [4], [12], [16]). Nadalje, u prijasnjim radovima ( [21], [22]) normalne forme
su odredene samo za transredove tipa potencija-logaritam, tj. za logaritamske transre-

dove koji sadrzavaju samo opCe potencije i prvu iteraciju logaritma. Tehnike koriStene
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u [21] temelje se na transfinitoj kompoziciji elementarnih zamjena varijabli. U ovoj dis-
ertaciji generaliziramo navedene rezultate na Siru klasu svih logaritamskih transredova
koji mogu sadrZavati i iterirane logaritme. Nadalje, u postupku normalizacije koristimo
teoreme fiksne tocke na potpunim metri¢kim prostorima logaritamskih transredova. Time
su normalizacije dane kao limesi (u odgovarajuéim topologijama) Picardovih iteracija.
Smatramo da je ovaj pristup problemu normalizacije bolji pri odredivanju sumacijskog

pravila na mjestima grani¢nih ordinala, $to ga Cini bitnim za na$ budu¢i rad.

U dokazu postojanja analiticke normalizacije hiperboli¢kih Dulacovih klica, gener-
aliziramo klasiéni Koenigsov teorem (vidjeti npr. [4], [14], [24]) koji daje linearizaciju
analitickih hiperbolickih difeomorfizama u nuli. Nedavno je ovaj rezultat poboljSan za
razne klase preslikavanja koja nisu nuzno analiticka u nuli. Jedno takvo poboljSanje
je Dewsnap-Fischerov rezultat [5] za realna preslikavanja klase C' na otvorenom in-
tervalu oko nule, s asimptotskim ocjenama tipa potencija-logaritam. U ovoj disertaciji
dokazujemo linearizacijski teorem za analiti¢ka preslikavanja s asimptotskim ocjenama
tipa potencija-logaritam na invariantnim kompleksnim domenama, koji moZemo smatrati
generalizacijom i Koenigsovog teorema i Dewsnap-Fischerovog rezultata iz [S, Theorem
2.2].

Nadalje, navedeni linearizacijski teorem primjenjujemo prilikom analiticke linearizacije
hiperbolic¢kih (kompleksnih) Dulacovih klica.

Naposljetku, generaliziramo Bottcherov teorem (vidjeti npr. [4], [24]) za jako hiper-
boli¢ke difeomorfizme u nuli, za klasu jako hiperbolickih kompleksnih Dulacovih klica

na standardnim kvadratnim domenama.

Kljucne rijeci: logaritamski transredovi, red logaritamskih transredova, normalne
forme, normalizacija, linearizacija, formalna i analiti¢ka klasifikacija, (kompleksne) Du-
lacove klice, Dulacovi redovi, standardne kvadratne domene, lokalna teorija fiksne tocke,

teoremi fiksne tocke, teorija iteracija, Koenigsov niz
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INTRODUCTION

Transseries are formal sums of products of powers, iterated logarithms and iterated ex-
ponentials with real coefficients and well-ordered supports (i.e., well-ordered index sets).
Through the years they have become a very useful tool for tackling a great variety of
problems in mathematics (see e.g. [3], [11]) and physics (see e.g. [1]). Transseries in the
broader sense are studied in [6]. In this dissertation, the main object of our interest are
logarithmic transseries, i.e., formal sums, with real (or complex) coefficients, of products

of powers and iterated logarithms with well-ordered supports.

The reason for that restriction comes from a particular problem in dynamics. Log-
arithmic transeries appear in the solution of the Dulac problem of non-accumulation of
limit cycles on hyperbolic or semi-hyperbolic polycycles of analytic planar vector fields
( [7]). In particular, the first return map (or Poincaré map) (see e.g. [31]) of a hyperbolic
polycycle has a logarithmic transseries as its asymptotic expansion at zero, see e.g. [32].
In the case of hyperbolic polycycles these asymptotic expansions are logarithmic series
of a particular type, and we call them Dulac series. One of the important properties of
Dulac series is that they do not involve iterated logarithms and that every power of the
variable is multiplied by a polynomial in the logarithm. However, the original Dulac’s
proof of non-accumulation theorem (see [7]) was incomplete, because he assumed (with-
out proving it) the nontrivial fact that every first return map of a hyperbolic polycycle
of an analytic planar vector field is uniquely determined by its asymptotic expansion.
Ilyashenko ( [10], [11]) and Ecalle ( [3]) independently solved the Dulac problem. In
particular, Ilyashenko, in the proof of the hyperbolic case, completed Dulac’s proof by
showing a nontrivial fact that every first return map can be analytically extended to a suffi-
ciently large complex domain. Such domains are called the standard quadratic domains,

since their boundaries are asymptotic to the graphs of quadratic real maps. Using the
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Phragmen-Lindelof Theorem (a maximum modulus principle on a particular unbounded
complex domain), Ilyashenko proved that the first return map of a hyperbolic polycycle
is uniquely determined by its asymptotic expansion, see [12]). This property is called
the quasi-analyticity. Analytic germs on standard quadratic domains with Dulac series as
their asymptotic expansions are called the almost regular germs in [10], [12]), but, in this
dissertation, we call them simply Dulac germs. By the above argument, they are uniquely

determined by their Dulac asymptotic expansion.

In this dissertation, the main objects of our interest are the logarithmic transseries and

the Dulac germs.

In the first part of the dissertation, we are interested in logarithmic transseries that
do not involve logarithms in their leading terms, i.e., that are of the form f = Az% +
“higher order terms”, for A, > 0. By definition, the Dulac series (i.e., the asymptotic
expansions of the Dulac germs) are a subclass of the logarithmic transseries. Follow-
ing [21, Definition 1.1], we distinguish three types of logarithmic transseries with real
coefficients: parabolic (ot = A = 1), hyperbolic (A # 1, a = 1) and strongly hyperbolic
(ax #1).

We consider the problem of finding the normal forms with the smallest number of
terms (or ”short” normal forms). More precisely, for a logarithmic transseries f = Az% +
h.o.t., A,a > 0, we find a logarithmic transseries g with the smallest number of terms,
such that the conjugacy equation @ o f o @ ! = g has a solution ¢ in the space of parabolic
logarithmic transseries. We call such g the normal form of f, and we call ¢ the normal-
ization of f.

For standard power series the normal forms and normalizations are well-understood
(see e.g. [4], [12], [16]). Furthermore, normal forms for power-logarithm transseries, i.e.,
transseries which do not involve iterated logarithms, were already found in [21, Theorem
A]. Here, we generalize these results to logarithmic transseries involving iterated log-
arithms, but using a different method. The method used in [21] is based on transfinite
compositions of parabolic elementary changes of variables, which are chosen step-by-
step in order to eliminate ferm-by-term in the original transseries. A generalization of this

method to logarithmic transseries involving iterated logarithms seems too complicated.
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In the case of logarithmic transseries involving iterated logarithms, there is also an
interesting phenomenon, which is new with respect to the non-iterated logarithmic case.
In [21], the ”short” normal forms of power-logarithm transseries are finite. However, this
is not the case even if we allow only two iterations of the logarithm. Normal forms for

hyperbolic and parabolic logarithmic transseries have, in general, infinitely many terms.

All this motivated us to develop a “less transfinite” method based on fixed point the-
orems. We prove in Proposition 1.2.12 an easy consequence of the Banach Fixed Point
Theorem motivated by the Krasnoselskii Fixed Point Theorem (see e.g. [36]), which plays
a crucial role in our proofs of the normalization theorems. More precisely, we trans-
form the conjugacy equation @ o fo @~ = g into a fixed point equation and prove the
existence and the uniqueness of the solution using a fixed point theorem. These fixed
point methods allow us to have better control of the support of the normalization, which
might also be useful to define the notion of transserial asymptotic expansions in future
work. More precisely, for logarithmic transseries with supports of order type @ we apply
the standard Poincaré term-by-term algorithm to get the unique logarithmic asymptotic
expansion. However, if the order type of logarithmic transseries is strictly bigger than
o, for a well-defined logarithmic asymptotic expansion, we have to specify a summation
rule, i.e., a canonical choice of germs at limit ordinal steps of the expansion. For example,

the integral summation rule from [20], [22] is an example of such summation rule.

In the case of hyperbolic and strongly hyperbolic logarithmic transseries, we gener-
alize two classical theorems from local complex dynamics: the Koenigs Theorem (see
e.g. [4], [14], [24]) and the Bottcher Theorem (see e.g. [4], [24]). These are normaliza-
tion theorems for hyperbolic and strongly hyperbolic germs of analytic diffeomorphisms
at zero. Here, for a hyperbolic logarithmic transseries f and its normal form fy, we
prove that the so-called generalized Koenigs sequence ( f(;’ (=n) oho f°”>n converges to
the normalization @ in an appropriate topology on the space of logarithmic transseries.
We prove a similar statement for strongly hyperbolic logarithmic transseries, motivated
by the Bottcher Theorem. Our results for hyperbolic logarithmic transseries are given in

preprint [29].

In the second part of the dissertation we consider the so-called complex Dulac germs,
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i.e., Dulac germs on standard quadratic domains with complex coefficients in their Dulac
asymptotic expansions. The partial results are published in [30]. We consider hyperbolic
and strongly hyperbolic complex Dulac germs and solve the analytic linearization (or nor-
malization) problem in the class of holomorphic Dulac germs. The linearization problem
for a real or complex map f in one variable, with an isolated fixed point zero, consists in
finding a number A and a change of coordinates @ that satisfy the Schrider’s equation

([33D)

?(f(2)) =2A9(2).

In the proof of the classical Koenigs Theorem, the change of coordinates ¢(z) = z+o0(z) is
obtained as the uniform limit of the so-called Koenigs sequence (4 - f °") - Throughout
the years many proofs have been given for the convergence of the Koenigs sequence
for different classes of germs, not necessarily analytic at the fixed point. For example,
Knaser ([13]) proved the convergence of the Koenigs sequence for a hyperbolic attracting
real germ of the form f(x) = Ax+ O(|x|' ™), as x — 0, where & > 0. In [35], Szekeres
proved the convergence of the Koenigs sequence for a continuous germ f which has a
strictly increasing differentiable representative on an open interval (0,d), d > 0, such that
0< f(x) <x, x€(0,d), and f'(x) =A+O0(xf), asx - 0, for 0< A <1 and € > 0.
Also, in [26], [34], Sternberg gave a proof of the convergence of the Koenigs sequence
for real germs of class C", n € N>,. For our application, the most interesting was the
result of Dewsnap and Fischer (see [5, Theorem 2.2]), which proves the convergence of
the Koenigs sequence for C! real germs admitting logarithmic asymptotic behavior at zero

of the form:

x)=f(0)-x+0 : ’
fx) =F10)-x+ (ylog(y)---log"”l(y)(log"”(y))M)

as x — 0, for € > 0 and p € N. Here, we denote y := —log(|x|). The addition of the
small shift € > 0 in the exponent above seems to be important for the convergence (i.e.,
for the linearization) for two reasons. The first reason is more an indication than a proof.
It is proved in the first part of the dissertation that a hyperbolic logarithmic transseries
f = Az+ "higher order terms” can be linearized if and only if f = Az+al;-- -K}f” +
and inductively ¢; :=

h.o.t., where £, := i=2,...,p, for a € R and

S 1
logz’ log(¢;i1)’
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n € N>1. The second reason is the counter-example given by Sternberg in [34]: Let
fix)=x (l — @), for x € (0,d], d > 0, and £(0) = 0. Its Koenigs sequence diverges
on (0,d] (see also [5], [26]).

Additionally, as an intermediate step of the proof of the linearization theorem for hy-
perbolic complex Dulac germs, in the second part of the thesis, we prove the convergence
of the Koenigs sequence for analytic maps with hyperbolic logarithmic asymptotic be-
havior on their invariant complex domains. In this sense, our linearization result can be
viewed as a generalization to complex domains of both the Koenigs Theorem and the
result of Dewsnap and Fischer from [5].

Similarly, motivated by the Bottcher Theorem, we prove that, for a strongly hyperbolic
complex Dulac germ f(z) = z% 4+ 0(z%), o > 1, there exists a unique parabolic complex
Dulac germ ¢ holomorphic on a standard quadratic domain, which normalizes f to its

first term, i.e., such that

P(f(2)) = (@)%

Finally, note that, in this thesis, we do not consider the analytic normalization of
parabolic Dulac germs using the fixed point theory. Other than difference in dynamics
that is sectorially attractive/repulsive, and the fact that the parabolic Dulac germs are far
from being globally linearizable on standard quadratic domains (by [20], their analytic
classes are given by a variant of Ecalle-Voronin moduli), the additional difference between
(strongly) hyperbolic and parabolic Dulac germs is that the formal normalization of a
(strongly) hyperbolic Dulac germ is a Dulac series, while for a parabolic Dulac germ,
in general, it is a much more complicated logarithmic transseries of order typer strictly

bigger than @. For more details, see [20] and [22].

Overview of the main results in the thesis

The main results of the thesis are in Chapter 2 and Chapter 3. The main theorems from
Chapter 2 are formal normalization theorems for hyperbolic, strongly hyperbolic and
parabolic logarithmic transseries stated in Theorems A, B and C, respectively. We state

below their ”’short” forms.
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Theorem A (short form). Every hyperbolic logarithmic transseries f = Az+0(z), 0 <
A <1, can be formally linearized by a parabolic logarithmic change of variables ¢ if and
only if f = Az+o(z£) ---é,ﬁ”), n>1.

Moreover, the parabolic linearization ¢ is unique and is given as the limit of the so-

()

called Koenigs sequence

n

in the appropriate formal topology.

In the general version of Theorem A in Section 2.1 we give the explicit ”short” normal

form and convergence of the generalized Koenigs sequence in non-linearizable case.

Theorem B (short form). Every strongly hyperbolic logarithmic transseries f = z% +
0(z%), a >0, a # 1, can be formally normalized to its first term fj := z* by the unique
parabolic logarithmic change of variables ¢.

Furthermore, if & > 1, @ is the limit of the so-called Bottcher sequence

(ZOCL” oho fo" ) .
in the appropriate formal topology, for every initial parabolic condition 4.
Theorem C (short form). Every parabolic logarithmic transseries

f=z+alep.. -£;* +higher order terms, a# 1,8 > 1,
can be formally reduced to its ’short” normal form

fei=z+alep.. L —i—czzﬁ_lf?’ﬁrl iy -K,E""H, cER,

by parabolic logarithmic change of variables ¢ that is of the same depth in logarithm as

f. Moreover, the so-called residual coefficient c is unique.

In Section 2.3 Theorem C is stated also for parabolic logarithmic transseries where

B = 1. The initial part of the ”short” normal form f, is more complicated in that case.

The main results from Chapter 3 are analytic normalization theorems for (complex)

Dulac germs stated in Theorem D and Theorem E. We state here their short forms.
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Theorem D (short form). Every hyperbolic (complex) Dulac germ f(z) = Az + o(z),
0 < |A| < 1, on a standard quadratic domain, can be analytically linearized by the unique

parabolic (complex) Dulac germ.

Theorem E (short form). Every strongly hyperbolic (complex) Dulac germ f(z) = z%+
0(z%), oo > 1, on a standard quadratic domain, can be analytically normalized to the map

z+ z% by the unique parabolic (complex) Dulac germ.

The structure of the thesis

The thesis is divided in three chapters.

Chapter 1 serves as a prerequisite for the remaining chapters. More precisely, in
Section 1.1 of Chapter 1 we define the differential algebra of logarithmic transseries,
some basic notions such as composition and blockwise notation, and prove the Taylor
Theorem in this formal setting. Section 1.2 is dedicated to proving a fixed point theorem
(stated in Proposition 1.2.12). The tools from Section 1.2 and Appendix B are the main
tools for solving the normalization equations in the next chapter.

In Chapter 2 we find normal forms of hyperbolic, strongly hyperbolic and parabolic
logarithmic transseries by solving the appropriate normalization equations. We use the
fixed point method from Chapter 1. The main normalization theorems for the three types
of the logarithmic transseries (Theorems A, B and C) are stated in Sections 2.1, 2.2 and
2.3 respectively.

The first two chapters represent the formal part of the thesis: the results are obtained
in the formal setting (in the differential algebra of logarithmic transseries). On the other
hand, Chapter 3 is the analytic counterpart to Chapter 2. In particular, in Chapter 3 we
apply the formal normalization results from Chapter 2 in order to obtain the analytic
normal forms for (strongly) hyperbolic complex Dulac germs on standard quadratic do-
mains. Chapter 3 is divided into three sections. Section 3.1 serves as a prerequisite for
the remaining two sections. In particular, in Section 3.1 we define basic notions such
as analytic germs on spiraling subdomains of the Riemann surface of the logarithm and
complex Dulac germs (series) on standard quadratic domains. In Sections 3.2 and 3.3 we

solve the normalization equations for hyperbolic (Theorem D) and strongly hyperbolic
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complex Dulac germs (Theorem E) respectively. In both sections we first solve the nor-
malization equations on appropriate invariant domains and then relate the solutions with
formal solutions obtained in Chapter 2 via asymptotic expansions.

Finally, in Appendix A and Appendix B we prove some useful technical results that
are used throughout the thesis. In Appendix A we give a list of useful formulas in differ-
ential algebras of logarithmic transseries, while in Appendix B we solve various differen-
tial equations in differential algebras of transseries. Technical results from Appendix A
are used to transform normalization equations in Chapter 2 into appropriate fixed point
equations, and to solve differential equations in Appendix B. The solutions to various dif-
ferential equations from Appendix B are used to apply fixed point theorem to appropriate

fixed point equations.



1. PRELIMINARIES

The main object of our study in this chapter are logarithmic transseries which are, roughly
speaking, formal sums of formal product of powers and iterated logarithms. They are
studied in [6] in more general form. On the other hand, in [21] and [22] they are studied
under additional restrictions and are used as tools for solving the particular dynamical
problems. In particular, we study here the logarithmic transseries without logarithms
in their leading terms. Among them we distinguish: parabolic, hyperbolic and strongly
hyperbolic logarithmic transseries. This chapter serves as a prerequisite for Chapter 2 and
Chapter 3. In Section 1.1 we introduce differential algebras of logarithmic transseries and
some basic notions. It is not necessary for a familiar reader to read this section in detail.
On the other hand, Section 1.2 is dedicated to developing the fixed point techniques that

are crucial for proving the normalization theorems in Chapter 2.

1.1. DIFFERENTIAL ALGEBRAS OF

LOGARITHMIC TRANSSERIES

We first recall in Subsection 1.1.1 the notions of well-ordered sets and of basic ordered al-
gebraic structures which are used to define the differential algebras of logarithmic transseries
£, £, and their subalgebras .%; and $k°° respectively, in Subsection 1.1.2. Furthermore,
in Subsection 1.1.3 and in preprint [29] we introduce the power-metric topology (the val-
uation topology from [6]), the product topology and the weak topology on these algebras.
The same topologies were already introduced in [21] for power-logarithmic transseries
without iterated logarithms.

We introduce the blockwise notation, where we consider a logarithmic transseries as
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a power series with blocks of logarithms as its coefficients, see also [29]. In Subsec-
tion 1.1.4, we define differential algebras of blocks. We consider blocks as elements of
£%, but in the variable —@ instead of z. Therefore, all notions in Subsection 1.1.4 are
similar to those defined in Subsection 1.1.2. Finally, in Subsection 1.1.5 and Appendix A
we define the composition of logarithmic transseries and prove the Taylor Theorem in the

formal setting.

1.1.1. Well-ordered sets and basic ordered algebraic structures

Well-ordered sets

We recall shortly the following standard definitions that can be found e.g. in [15].

Let (W, <) be an ordered set. We say that (W, <) is well-ordered if every nonempty
subset of W has a minimum.

The lexicographic order < on the product W; x --- x W, of ordered sets (W;, <;),
i =1,...,n, is the relation on Wy X --- X W, defined by: (wy,...w;,) < (vi,...,v,) if
(Wi,...wp) = (v1,...,vy) orif thereexists i € {1,...,n— 1} such that w; =vy,...,w; =v;
and w1 <jy1 Vig1.

In particular, in this thesis we consider the well-ordered subsets of Rxo x Z*, k € N,

with respect to the lexicographic order.

Example 1.1.1. Suppose that (@, ) is a strictly increasing sequence of real numbers tend-

ing to +oo. Then:

1. {(aty,—n):ne N} CR>p x Z is a well-ordered subset of R~ x Z, with respect to

the lexicographic order.

2. {(27% n) :n € N} CR>¢ x Z is not a well-ordered subset of R>( x Z, with respect

to the lexicographic order.

Ordered semigroups, monoids and groups

Recall that nonempty set S equipped with associative operation + : S X § — S is called a

semigroup.

10
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Let < be a total order on a semigroup S, that satisfies the property that a < b implies
that, for each ¢ € S, a+c¢ < b+ c. Then (S, +, <) is called ordered semigroup.

If S is additionally a monoid (a semigroup with neutral element), then we call S an
ordered monoid. 1f S is a group, we call S an ordered group.

For example, the set R x ZX, k € N, with component-wise addition, with (0,0,...,0) €
R x Zk as the neutral element, and with the lexicographic order, is an ordered Abelian
group. The set R>¢ x 7K, k € N, with the same structure as in 1, is an ordered Abelian

monoid.

Let S be an ordered semigroup and a € S. We set:

Ssq:={seS:s>a},
Ssa:={seS:s>a},
Sca:={seS:s<a},

Sca:={se€S:s<a}.

Note that, if S is an ordered monoid and a > 0, then S>, and S~ , are ordered semigroups.
Let S be a semigroup and A C S. The intersection of all sub-semigroups of S that
contain A is called the sub-semigroup of S generated by A, and is denoted by (A).
The set A is called a set of generators for (A).

Let S be an Abelian semigroup and A C S. It is easy to see that:
Ay ={ma1+---+npam :meN>,n; e N>1,q;, €A, i=1,...,m}.

Let G be an ordered group and (A) its sub-semigroup generated by A C G. It is natural
to ask the question: If A is a well-ordered subset of G, is (A) also well-ordered? The
answer to this question in the class of Abelian groups is given by the Neumann Lemma
(see e.g. [27]), which we state here without proof and use several times throughout the

thesis.

Theorem 1.1.2 (The Neumann Lemma, [27]). Let G be an ordered Abelian group and
A, B C G well-ordered subsets of G. Then:

11
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1. A+ B! is a well-ordered subset of G,

2. for each g € A+ B there exist only finitely many pairs (a,b) € A X B such that
g=a-+b,

3. if A C G+ is a well-ordered subset of G-, then (A) is also well-ordered. Moreover,
for each g € (A) there are only finitely many n € N> and finitely many n-tuples

(a1,...,an)€A” Suchthatg:a1+...+an.

1.1.2. Differential algebra of logarithmic transseries

From now on, we work in the ordered Abelian group R x Z*, for k € N, with respect to
the standard component-wise addition, and equipped with the lexicographic order.

In the sequel, we use the following notation for multi-indices:

1. n:= (ny,...ng), for n; € Z, and k € N> (it will be always clear from the context

which k € N> we consider),

2. a;:=(a,...,a); € R, for k € N>, where the subscript k means that (a,...,a); is

a k-tuple,
3. forn = (ny,...,n;) we put (n,a,,) := (ny,...,nk,4,...,a), form € N> .
m times
Furthermore, we often consider n := (ny,...,n;) as an element of R by the usual

identification n := (n,0,,), for k,m € N>;. With that identification we have the inclusion
R x ZF C R x Z¥™, for k,m € N. Similarly, for n := (ny,...,n;), k € N>, using the

identification n := (n,0,0,...) € RY>1, we consider n as an element of RN>1,

This section represents a generalization of the notions introduced in [21] for the dif-
ferential algebra .7} of power-logarithm transseries. Almost all notions from this section
are introduced in the preprint [29, Sections 2, 3]. In this chapter, z is a formal variable
and logz is a formal logarithm. Put £y := z, and inductively put

1
S ———
m—+1 log(em)7
ILet S be a semigroup, n € N>, and Si,...,S, € S. Then we define the set S; +---+S5, C S by

m € N.

S+ +Sy={s1+-+sp:85€8;,i=1,...,n}.

12
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Definition 1.1.3 (Logarithmic transseries of depth k, [29]). For every k € N we define
the logarithmic transseries of depth k as a formal sum:
f= Y agaz®--4F (1.1)
(ot,n)ER X ZK

where agn € R and

Supp (f) := {((x,n) ERXZF:agn 750}

is a well-ordered subset of R x Z* that contains only elements strictly bigger than 0 1.
We call Supp (f) the support of f. If Supp (f) = 0, we call f the zero transseries and
denote it by 0.

Remark 1.1.4.

1. Note that a transseries of depth zero is just a formal sum of powers with a well-

ordered subset of exponents with respect to the standard order on R+ .

2. Since Supp (f), for a logarithmic transseries f of depth k € N, is a well-ordered

subset of R x Z*, we can write:
o pn n,
f= Z Z Z Z agnz®l -0,
O(EAfm:Na "2:N(xﬁn1 nk:Na,nl#Mnkfl
where A is the projection of Supp (f) on the first coordinate. Hence, A is a well-
ordered subset of Supp (f). Note that some coefficients in above formal sum may

be equal to zero.

In the sequel we define important notions such as order, leading monomial, leading
term of a logarithmic transseries, etc., which are useful while working with logarithmic

transseries.

Definition 1.1.5 (Order of a logarithmic transseries, [29]). Let f be a logarithmic transseries
of depth k € N. If f = 0, we say that the order of f is infinity, and denote it by ord (f) = oo.
If f # 0, then the minimum of Supp (f) is called the order of f and denoted by ord (f).

Remark 1.1.6. To be precise, in Definition 1.1.5 above, we consider the extension of the
lexicographic order to the set (IR x Z¥) U {eo}, by posing (o, n) < oo, for every (a,n) €
R x ZF, k € N. Note that the zero transseries has the maximal order in the set of all

logarithmic transseries.

13
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Definition 1.1.7 (The coefficient of order (¢, n) in a logarithmic transseries, [29]). Let
f= Y  agat® -4}
(ot,n)ERXZK
be a logarithmic transseries of depth k € N. We call aq n the coefficient of order (o,n) in

the logarithmic transseries f, and denote it by [f], -

We call z%€}" ---£;* the monomial of order (ot,n) and agnz®€}"' -+ - £, agn # 0, the
term of order (o, m). Furthermore, we call a term of order 0| a constant. Note that the

Zero transseries 1s not a constant, since it is of order oo.

For transseries f and g of depth k € N, we use the notation

f=g+h.o.t

(which means: higher order terms) if every term in f — g is of order that is strictly bigger

than the order of every term in g.

Definition 1.1.8 (Leading monomial and leading term of a logarithmic transseries, [29]).
Let f be a nonzero logarithmic transseries of depth k € N. We call the monomial (term)

of order ord (f) in f the leading monomial (leading term) of f, and denote it by Lm(f)
(Lt (f)-

We denote by 7} the set of all logarithmic transseries of depth k € N. Adopting the
notation from the beginning of the section for the multiindices, note that .%; C %, for
k € N. Put

L= U %
keN

We call £ the set of logarithmic transseries.

By £, k € N, we denote the set of all logarithmic transseries f as in (1.1), where we
allow that the support of f contains elements in R x Z¥ that are not necessarily strictly

bigger than 0y 1. Note that £° C £,

ol for each k € N. Furthermore, let

200 = U gkoo
keN
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Note that .Z, C i’j{"", for k € N, and £ C £7. As for logarithmic transseries, we analo-
gously define the order, the leading term and the leading monomial of f € £%.

Note that %, £/, k € N, and £, £ are real linear spaces with respect to the usual
termwise addition and scalar multiplication. Furthermore, .} (£;”) is a subspace of

Livm (D%k"j’rm), m € N>, and of £ (£%).

Multiplication in £~

Let f,g € £7 be arbitrary. Suppose that f € .i”k"l" and g € jfk";, for k1,k» € N. Now, set
k := max {k;,ko}. Since Supp(f) C R x Z¥ and Supp(g) C R x Z*> are well-ordered
subsets of R x Z¥ (by the usual identification), by the Neumann Lemma (Theorem 1.1.2)
it follows that the multiplication on £7 can be defined fermwise. It is classically called
the convolution product.

If f=0o0rg=0, we define f-g :=0. Now, suppose that f,g = 0. Since ‘ch"l",.iﬂk"; C
£,°, we write f and g in the form:

f= Y agn®) -l g= ) bﬁmzﬁf'}“ el
(or,m)€Supp (f) (B,m)eSupp (g)
The product of f and g is defined by:
f-g:= Z ( Z da,nbﬁ,m> A
(rw)€RxZF ~(ot,n)+(B,m)=(y,u)

Now, it is easy to see that £ is an associative commutative R-algebra with unity, and a
field. Note that .Zf’, for k € N, are subalgebras and subfields of £. Furthermore, £ is a
subalgebra (without unity) of £%, and .Z is a subalgebra (without unity) of £, for each
k € N.

Remark 1.1.9 (£, k € N, as Hahn fields, see [6]). Let G be an ordered Abelian group

with neutral element 0. Let [F be a field and let F ((G)) be the set of all formal sums:
f = Z fg 8
geG

where f, € I, for each g € G, and Supp (f) := {g €G: fo# OF} is a well-ordered subset
of G called the support of f. Then F((G)) is a linear space with respect to the usual

addition and scalar multiplication.

15
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We define the multiplication in F ((G)) as:

fh=Y (L awhe) ),

geG "811+82=¢

foreach f,h € F((G)). By the Neumann Lemma, it follows that the multiplication defined
above is a well-defined operation. It can be shown that every nonzero element in IF ((G))
has a multiplicative inverse. Consequently, F ((G)) is an associative commutative algebra,
and a field. For F := R, we call R ((G)) the Hahn field (see e.g. [21]).

Note that fk"", k € N, is a particular Hahn field, where we set G to be the set of all
monomials in . with the multiplication as a commutative operation and with the order

induced by the lexicographic order on R x Z¥, i.e
zaﬂ'fl---fzk jzﬁﬂ'lnl -~ 0% ifand only if (o ,my,---,mg) < (B,my,...,mg).

Remark 1.1.10 (Remark 2.1, [29]). The collection £ introduced above is a subset of
the field of logarithmic-exponential series R (7)) defined in [6]. Notice that, while the
variable 7 in R ((z))"F is infinite, we prefer here to work with the infinitesimal variable
z=1t"!, which is more convenient in the framework of iteration theory. Actually, £ is
even contained in the subfield Tj,e of “purely logarithmic transseries” introduced in [2]
and studied from a model-theoretic point of view in [8]. More precisely, in £ the iterated
logarithms are raised to integer powers, whereas they are raised to arbitrary real powers

in Tlog .

Differential algebra £~

Note that £~ is a differential algebra with respect to the usual derivation d% (termwise),
and £, Z°, %, k € N, are its subalgebras.

Suppose that f € £~ has an antiderivative F. There exists ¢ € R, such that the an-
tiderivative F' — ¢ does not contain a constant term. For simpler computations in the se-
quel, we use the following convention: by | fdz we denote the antiderivative of f without
a constant term. For more about the antiderivative in £~ and .Z°, k € N, see Proposi-

tion B.2.1 in Section B.2.

The following definition is a generalization of the definition given in [21, Subsection

3.3] in the differential algebra .%].
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Definition 1.1.11 (The Lie bracket operator). Let [-,-] : £° x £° — £ be defined by

_,.af . dsg e
[f.8l:=¢ 1z fdz, f,eget”.

We call [+, -] the Lie bracket operator.

For some properties of the Lie bracket operator, see Lemma A.2.3 in Appendix A.

The blockwise notation for logarithmic transseries and its generalization

We call (1.1) the termwise notation for logarithmic transseries. It is often useful to re-write
logarithmic transseries in the so-called blockwise notation (see [29, Subsection 2.1]):

f= Z aamz“z;” ...ng
(or,n)ERXZK

-3 (L 1)

acR nezk

= Z ZOCRO(?

acR
where
. n 1y
Ra = Z aa7n£ll fk .
nezk

Note that R, can be considered as an element of .%;” ; in the formal variable £, instead of

Z.
We call %R, the a-block of f (or the block of order @ in z), for a € R. Moreover,
we call
Supp, (f) :={a € R: Ry # 0}
the support of f in z.

Since Supp, (f) is the projection of Supp (f) onto the first coordinate, Supp, (f) is a
well-ordered subset of R.

Similarly as before, for a logarithmic transseries f we define the order of f in z by
putting ord; (f) := oo, if f =0, and ord; (f) := min Supp, (f) otherwise. In this notation,

the zero transseries has the maximal order in z in the differential algebra £.

17
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If f # 0, we call the block of order ord; (f) in f the leading block of f in z, and de-

note it by Lb, (f). All these notions have an analogue in the larger differential algebra £%.

For f,g € £° we put
f=g+ho.b.(2)

(which means: higher order blocks) if every block in f — g is of order in z that is strictly

bigger than the order of every block in g.

Finally, for f € .4, we generalize the blockwise notation:

f= Z dan Zafllﬂ .. .[Zk

(or,n)ERXZK
_ apni n, Nm+1 . plk
= Z bl me( Z aa,nemH ¢ >
(OC,I’!],...,H,,,)GRXZ'” (merl,...Jlk)EZk*m
_ a gy n
= Z 2 Ry s
(0tynyyeeestiy) ERXZM
where
. Mn4-1 L%
R(x,nl,...,nm T Z aa-,ngm-i-l o 'gk :

(nm+17"'7nk)€Zk7m
We call 228" .. .&m Rop, ...y, the (0,01, . .. my)-block of f (or the block of order (o, ny, ... ,ny))
in variables z,£;,.... 4y, (a,ny,...,ny,) ERXZ™, for0 <m <k.

Since Supp (f) is a well-ordered subset of R x ZF, it can be proven that the set

Supp, 4, ..g, (f) :i={(0,n1,...;nm) ERXZ™ : Roy .., 70}

is a well-ordered subset of R x Z™ (with respect to the lexicographic order) which we
call the support of f in the variables z,¢;, ... ,L,. Note that Ry , ., can be considered
as an element of .ijjm in the formal variable £,,, instead of z. Similarly as in case
of the variable z, we define the order and the leading block of f € £ in the variables
2,81,.... 6.

The subspaces .2 C .Z°
Definition 1.1.12 (see [29]). Let W C R x 7k, for k € N. We define
L= {f e L Supp(f) CW}.

18
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Since the zero transseries has the empty support, it follows that the zero transseries is
an element of fkw, for W C R x Z*. Note that .,S,’jcw is a linear subspace of .Z;”.

The proof of the next proposition is elementary, and is, therefore, left to the reader.
Proposition 1.1.13 (Properties of spaces .i”kW, k € N).

1. If W is a sub-semigroup of R x ZX, then £Y is a subalgebra of £, for k € N.

2. If Wy CW, C R x Zk, for k € N, then .i”kW‘ is a subspace of .kaz.

3. Let (W;,i € I) be a family of subsets of R x ZX, for k € N. If (W;,i € I) are pairwise

disjoint, then .,iﬂku"el "i'is a direct sum of the family (.i”kW",i el),ie.

Z{Uielvvi _ @%Wz

icl
For every real number o > 1 and k € N, we define W := {(B,n) € Rx¢ x ZF: (B,n) > (1,04) }

and:
o . w
L& =LY,
>a . pRogxZk
L=, :

Note that £* and . are subalgebras of %, for & > 0, k € N.

Moreover, for every az®¢}' ---fzk, acR\{0}, (a,ny,...,m) € RxZK and W C

R x ZF such that (o, ny,...,n;) < w, for each w € W, we use the following notation:

az®€)' -+ LY = {az%) - L e e e LY}

Superlinear operators on £~

Definition 1.1.14 (Superlinear operators on £°). Let <7 be some subspace of £ and let

< o/ — £ be an operator such that

y(f): Z amny(zocellﬂ,..ng)’
(a,m)eSupp (f)
for each f:= Z agnz®l) - ‘EZ" € /. We call .7 a superlinear operator on <7 .

(a,n)€Supp (f)

Note that a superlinear operator is a linear operator, but the converse is not true in general.

19
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1.1.3. The three topologies on the differential algebra £

In the previous section we defined the differential algebra £~ and its differential sub-
algebras £, £, and %, for k € N. In this section (see also [29]) we introduce three
topologies on the differential algebra £°: power-metric (or valuation) topology (see [6]),
product topology and weak topology. They represent generalizations of the corresponding

topologies introduced in [21, Subsection 4.2] on the differential algebra .%}.

Power-metric topology

Letd, : £° x £° — R be a map defined by:

2o (f=8) ot
0, f=g

dz(fag) =

It is obvious that d; is a metric on £~ and (£>,d;) is a metric space. We call d; the power-
metric, and the induced topology 7 the power-metric topology on £ ( [29, Subsection
2.3]). Itis easy to see that the power-metric topology is the same as the valuation topology
defined in [6] and the formal topology defined in [21, Subsection 4.2] on .%;. Now, the
subalgebras £, .Z°, £, and the linear subspaces Z{W, for W C R x Z*, k € N, are metric
spaces with respect to the appropriate restrictions of the power-metric d..

In Example 1.1.15 and Proposition 1.1.16 we discuss the completeness of the metric

spaces (£7,d;), (£,d;) and also of subspaces .Z;°, %, for k € N,

Example 1.1.15. Consider the sequence (¢,) in £ defined by @, := Y"_,z'¢;, forn € N.

It is easy to check that (¢,) is a Cauchy sequence on (£,d;). Indeed, d.(Qn, Pnim) =

1
zordz (z”‘HCnJr 1)

space (£7,d;) to some ¢ € £°. Consequently, there exists k € N such that ¢ € £,

= 2,,%, for n € N and m € N>;. Now, suppose that (¢,) converges in the

Therefore, ord, (¢ — ¢,) < k+1, i.e., d.(Q,Q,) > ﬁ, for every n > k+ 1, which is a
contradiction with the assumption that (¢,) converges to @ in (£*,d;). By the definition
of £, it follows that (£%,d;) is not a complete metric space. Since (¢@,) is also a sequence

in £ and £ C £, it follows that (£,d.) is not a complete metric space.

In the previous example we showed that (£,d;) is not a complete metric space, by

constructing the Cauchy sequence (¢,) which does not converge. A crucial fact in the
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previous example is that there is no k € N, such that ¢, € .Z%, for all n € N. This leads us

to the next proposition.

Proposition 1.1.16 (Completeness of spaces .2, % and £, Proposition 3.6, [29]).
The spaces (£°,dz), (%, d) and (£ ,d.), for W C R x 7k, k € N, are complete.

Proof. We first prove that (i’f’,dz) is a complete space. Suppose that (g,) is a Cauchy
sequence in the space (Jk"",dz). Hence, for every a € R there exists ny € N, such that
p,q > ng implies ord; (g, —g4) > o. So, for every n > ng, every B < a and every
m ¢ 7Zk:

[8n]B.m = [8nalpm- (1.2)

We define an element g € RRxZ by setting, for every (o, m) € R x Z,

[g](x,m = [g”a]oc,m' (1.3)

It remains to prove that g is indeed an element of .#;°, and that (g,) — g in (Z:", dz). In
order to prove that g € %, it is enough to prove that Supp (g) C R x ZF is well-ordered.
Let A be a nonempty subset of Supp (g) and let (&, m) € A. It follows from the definition

of g that there exists nq € N such that [g], 1, = [8n4) o m- BY (1.2) we have

8155 = [8n5] 51 = 8ne - (1.4)

for every B < a and k € ZF. From (1.4) we deduce that

{(ﬁ7n) €A: (B?n) < (aam)} C Supp(g,,a).

Since Supp (g, ) is well-ordered, the set A admits a minimum element min A. This im-
plies that Supp (g) is a well-ordered subset of R x Z. Finally, it follows easily from (1.2)
and (1.3) that (g,) — g in (£, d;).

Now we prove that (£, d.) is a complete space. Since .2 C .4 and (£°,d;) is
a complete space, it is sufficient to prove that .i”kw is a closed subset of .Z;> with respect
to the power-metric topology. If fkw = %", then fkw is closed. Therefore, suppose
that & # £ Let f € £\ £ be arbitrary. Consequently, Supp (f) ¢ W. Since,
Supp (f) is a well-ordered set, let (a,n) := min (Supp (f) \ W). It is easy to check that the
open ball B(f, 2%) is a subset of .Z;°\ .Y . Indeed, for each g € B(f, 2%) it follows that

21
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ord; (f —g) > a. Therefore, [g]y , = [f]g.n # 0, which implies that (&, n) € Supp (g) \W.
Consequently, it follows that g € £\ .ka. Therefore, .27\ .;S,”kw is open, i.e., .,?j(w is
closed in (£, d;).

Since %, = .Zj{w, for the set W of all elements of R x Z* that are strictly bigger than

0y 1, it follows that (%%, d;) is a complete metric space, for k € N. [

Remark 1.1.17 (A sufficient condition for convergence of a sum of logarithmic transseries
in (%,d;), [29]). Let (¢,) be a sequence in %, k € N, such that (ord; (¢,)) is a strictly
increasing sequence of real numbers tending to +co. Then the series )" ¢, converges

in (%,d;). Indeed, since

n+m n
ord; (Y @i~ Y. 01) = ord (9:1),
i=0 i=0
it follows that d, (Y1) @i, X1 o @i) = m, which implies that the sequence of the

partial sums is Cauchy in (.%,d;). This implies that the series )" ¢, converges in

(. d.), since (%, d;) is complete, by Proposition 1.1.16.

The product topology

Let us consider £~ as a subspace of RRXZNEI, equipped by the product topology, where
the discrete topology is taken on each coordinate space R. We call the induced relative
topology on £ the product topology on £7, and denote it by .7,. In &}, it was already
introduced in [21, Subsection 4.2].

By the usual identification of R X 7k with a subset of R x ZN>1 we consider .Zj:",
k € N, as a subspace of the product REXZ™! We call the induced relative topology on
£ the product topology on .£;°, k € N. Since (£%,.7),) is not first countable, it follows
that (£%,.7),) is not a metrizable space. The same holds for its topological subspaces £
and £, ke N.

In the sequel we often consider the product topology on subspaces £ and %, k € N,
of space £7. It can be proven that £ and .%%, k € N, are not metrizable, since they are not
first countable (see e.g. [25]).

By the definition of product topology, it is clear that a sequence (¢,) in £ converges

to ¢ € £ if and only if, for each (a,n) € R x ZN=1 there exists nan € N such that, for



Preliminaries Differential algebras of logarithmic transseries

every n > ngnp, [(Pn]a.,n = [(p]am. The same holds for ., and %}, k € N. Therefore,
to check the convergence of a sequence in £% in the product topology, one can equiv-
alently check that the sequences of coefficients eventually become stationary and that
Upnen Supp (¢,) is a well-ordered subset of R x Z¥, for some k € N. Their limits then

represent the appropriate coefficients of the limit transseries.

The following remark will be used for the definition of a composition in Subsec-
tion 1.1.5. It relates the notion of summable families to the convergence of series in £,

with respect to the product topology.

Remark 1.1.18 (Summable families and product topology, see [6]). Motivated by [29]
where the weak topology and summable families were related, here we relate the product
topology to the notion of summable families introduced in [6].

Let G be an ordered group of logarithmic monomials and let R((G)) be the Hahn field
(see Remark 1.1.9 or [6]). A family (fi,i € I) of elements of R((G)) is called summable
if:

1. the union J;c; Supp (f;) is a well-ordered subset of G,

2. forevery g € G, there exist only finitely many elements i € I such that g € Supp (f;).

If (fu,n € N) is a summable family in £ C R((G)), it is easy to prove that the series Y. f,,

converges in the product topology on £ to the sum of the family.

The weak topology

Let us consider £7 as a subspace of RRXZ">! equipped by the product topology, where
the Euclidean topology is taken on every coordinate space R. The induced topology on
£ is called the weak topology on £%, and denoted by .7,. In £ it was introduced
in [29, Subsection 2.3]. Analogously as in the definition of the product topology, we
consider the induced topology on .Z;°, £ and .Z%, k € N, of RRXZ2! The space £7 is
not first countable (see e.g. [25]), and therefore, £ is not metrizable. The same holds for
£, L, ke N, and £.

By the definition of the product topology, it is clear that a sequence (¢,) in (£~,.%,)

converges to ¢ € £ if and only if the sequence of coefficients ([@,], ,)n converges to

Oc,n)

23
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(@] in the Euclidean topology on R, for every (a,n) € R x ZN=1. Now, suppose that the

RxZN>1

limit ¢ is an element of R . If Upen Supp (¢,) is a well-ordered subset of R x Z¥,

for some k € N, then ¢ € £ C £~.

Properties and relations between the three topologies

Note that the power-metric topology is finer than the product topology which is finer than
the weak topology. In the sequel we give examples that show that .7, S .7, S .7, on the
differental algebra £~ and its subalgebras £ and .£;°, %, for k € N. Moreover, we show
that 7; = .7, on ZOW, in the case that W C R has no accumulation points with respect

to Euclidean topology on R>.

Example 1.1.19. (1) Let (¢,) be a sequence of logarithmic transseries in ., k € N>,
such that @, := £} +z, for n € N. Now, put ¢ :=id € .%;. For an arbitrary element
(o,m) € Rsq x ZF such that (a,m) # (1,0;), there exists ngp € N such that for every
n > ng, [@n] o m = 0and [@u]; g = 1. Therefore, it follows that (¢,) converges to ¢ in the
product topology in .Z; (or in £7).

On the other hand, since d; (@, Pnrm) = 2—10 =1, for every n,m € N, m > 1, it follows

that (¢,) does not converge in the power-metric topology in £ (or in .£;°, .%5).

(2) Example (1) shows that the power-metric and the product topology are not equal on
%, if k € N> 1. Consequently, the power-metric and the product topology are not equal on
£. On the other hand, suppose that k = 0. Let us define the sequence (¢@,) in % such that

Q=2 ~#T 424 forn € N. Asin Example (1), it is easy to see that (¢,) converges in the

product topology in .%j to the transseries ¢ = z* € .%. Since d,(Qy, Qpim) = 3% > 2—13
PR
for n,m € N, m > 1, it follows that (¢,) does not converge in the power-metric topology

on .%.

(3) In Example (2) we constructed a sequence (¢, ) in -2y which converges in the product
topology and does not converge in the power-metric topology. Note that 3 is an accu-
mulation point of |J,cry Supp (¢,) in the Euclidean space R. Now, suppose that (¢,) is a

sequence in %, which converges in the product topology to some ¢ € %, and such that



Preliminaries Differential algebras of logarithmic transseries

Uen Supp (¢,) has no accumulation points in R. We prove that (¢,) converges to ¢ in
the power-metric topology on .%j.

Let a € R+ be arbitrary. Since there are no accumulation points of |J,cn Supp (@)
in R, there are only finitely many elements {o, ..., ,} of J,cnSupp (¢,) which are
smaller than or equal to a. Since (¢,) converges in the product topology, it follows that
there exists ng € N such that, for all n > no, [@a] 4, = [@],,, fori=1,...,m. It implies that
ord, (¢ — @,) > &, ie., d.(¢,¢,) < zia, for all n > ng. Since o € R+ is arbitrary, we get

that (¢@,) converges to ¢ in the power-metric topology on .%j.

(4) The product and the power-metric topology are equal on XOW if W C R>¢ has no
accumulation points with respect to the Euclidean topology on R>.

Indeed, suppose that W C R>( has no accumulation points with respect to the Eu-
clidean topology on R>o. We distinguish two cases. If W is finite, then it is clear that
£ is homeomorphic to the product Reard(W) of discrete spaces. Therefore, suppose that
W is infinite. Then there exists the strictly increasing sequence () of nonnegative real
numbers tending to oo such that W = {0, : n € N}. Let F : 4" — zR[[z]] be defined
by:

+o0 +o0
F(F o) = e
n=1 n=1

where zR[[z]] := 2 is the set of all power series f in the formal variable z, such that
f(0) =0. It is easy to see that F is a homeomorphism in both cases: if we consider the
power-metric topology on .%)" and R{[z]], or the product topology. Therefore, identify
£3" with the space of all power series R [[z]]. By Example (3), the product topology and

the power-metric topology are equal on R [[z]].

(5) Let (¢,) be the sequence of logarithmic transseries in %, k € N, such that @, :=
# .74z, for n € N. Since (ﬁ) — 0 in the Euclidean topology on R, it is easy to see

that (¢,) converges to @ := z” in the weak topology on .%. On the other hand, (¢,) does

not converge in the product topology on .Z} because the sequence ([@4]; 9,) = (ﬁ) does

not eventually become stationary.
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(6) We show here that, although £ and .Z;, k € N, are not metrizable with respect to the
weak topology, the space ZOW is metrizable for W C R>¢ with no accumulation points in
R>o.

Suppose that W C R has no accumulation points with respect to the Euclidean topol-
ogy on Rx. It was shown in Example (4) that .4)" and R [[z]] are homeomorphic, with
respect to the weak topology. The weak topology on R [[z]] is metrizable by e.g. the metric

Ry | a; —b;
d(/,8) = ;0 (zi N J‘rlyai —l|b,-]> ’

for f:=Y a7 and g := Y 15 biz'.

1.1.4. Differential algebras of blocks

In this subsection, for a fixed k € N>, we introduce and prove some basic properties
of what we call the differential algebras of blocks %,,, for 1 < m < k. This subsection
is partially taken from [29, Subsection 3.4], and used mostly in Subsections 2.1.2, 2.2.2
and 2.3.4 as a technical prerequisite for proving the steps of the normalizing algorithm,
and is not to be read independently. The definitions and statements in this subsection are

similar to those in Subsection 1.1.2.

Definition 1.1.20 (Block of level m). Letk € N>q, 1 <m < k. A logarithmic transseries
K € £ of the form
K:= ) PPN AETEY Sl
(0,71 . 1y ) ER X ZK
where ay,,, .., € R, is called the block of level m in .,ka“.

For k € N>, we denote by %,, C .£;°, 1 < m <k, the set of all blocks of level m.
Remark 1.1.21.

1. Note that the zero transseries and every constant are blocks of level m, for 1 <m <k,

and k € N> .

2. For k € N>, note that %, is a subalgebra and a subfield of .Z,”, with respect to the
standard addition and multiplication, for every 1 < m < k. Furthermore, %, is a

subfield of the field 4, for 1 <m <k—1.
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3. Note that %, C £;°, and thus depends on k € N>, but in the sequel it is always

clear which k € N> we consider.

4. Every block in %,, C .,?f’, 1 <m<k—1, ke N>, can be viewed as a Laurent
series in the variable £,,, with coefficients in the field %, 1, and every block in %,

can be viewed as a Laurent series in the variable £, with real coefficients.

Although %, is a differential algebra with respect to the derivation ﬁ, we do not
consider the derivation ﬁn because it is not a contraction on the space %4,,. The contrac-
tion property will be important for applications of fixed point theorems in Sections 2.1, 2.2
and 2.3. Therefore, in the next definition we introduce a slightly modified derivation op-

erator D,,,.

Definition 1.1.22 (Derivation operator Dy, [29]). Letk € N>j,andletm e N, 1 <m <k.
We define the operator D, : B, — %, by:

2 d

D, =0 - —.
m dfm

(1.5)

It is easy to check that Dy, is a derivation operator on %,, C .Z;°, for 1 <m < k.

The associative commutative algebra %, equipped with the derivation D,, will be

called the differential algebra of blocks of level m in Z7°.

2. d )
4z» We get:

Using convention £y := z and putting % := .Z;” and Dy := 2
Dm( nm—i—l) = emDm+l (f,rqlﬁ_l),

for every 0 < m < k— 1 and n € Z. For additional properties of derivations D,,, see Sec-

tion A.

In the sequel we generalize the results obtained in Subsection 1.1.2 for %y = £°
to B, C ,Zk”, 1 <m <k. As in Definition 1.1.11 in Section 1.1, we define the Lie
bracket operator (see [21, Subsection 3.3]) on differential algebra %,,, for 1 < m <k,
and k € N>, by

[K,G] :=G-Dy(K)—K-Dy(G), K,G¢€ By,

27
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For some properties of the Lie bracket operator on %, see Lemma A.2.5 in Appendix A.
dt
As before, by / K sz we denote the antiderivative (with respect to D,,) of K € %, C
m
.,Zj:" without a constant term.

Similarly as ord; in %, we define the order of an element of %,, C .£;” in the

variable £,,, (see [29]).

Definition 1.1.23 (Order of a block of level m in £, [29]). Let k € N> and let K €
By C Z°, 1 <m < k. If K =0, then we define the order of K in £, as infinity, and write
ordy, (K) = oo. If K # 0, we define the order of K in ¢,, as the minimal exponent of £,

and denote it by ord,, (K).

Note that ordy, (K), K € %, C .Z;”, belongs to the extended set Z U {eo}, where oo is
an element such that a < oo, for every a € Z. The zero transseries has thus the maximal

order in £,,, in space Z,,.

Definition 1.1.24 (The leading block in £,,, [29]). Letk € N>jand K € %, \ {0} C £,
1<m<k PutK:= Z;;";’%%Ki, for K; € By 1 and n,, € 7. We call £, K; the i-block of
K in ¢, for each i > n,,. Furthermore, we call £} K,, the leading block of K in ¢,,, and

denote it by Lby,, (K).
For K,G € %, C £,”, k € N>, we write
K=G+h.o.b.({,)

(which means: higher order blocks in £,,) if every block (in £,,) in K — G is of order in £,,,

that is strictly bigger than the order in £,, of every block (in £, in G.

Letk € N>y, 1 <m <k, and let W C {0}" x ZF=. Similarly as in Subsection 1.1.2

we denote by %’,‘f{ C Z” the set:
BY = {K € B, C L Supp(K) CW}.

Since the zero transseries has empty support, it follows that the zero transseries is an

element of %)) .
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Let k € N>j and 1 <m < k. The following spaces will often be used in the sequel:

B, ={K € By C L ord(K) >0}, (1.6)

By = {K € B C L ordy, (K) >0} (1.7)
For o € Rsg and W C {0} x Z¥ we denote:
2B = {z* K:Ke BY CL}-
Remark 1.1.25 (Properties of spaces of blocks).

1. For k € N>y and 1 < m < k, note that %, = BY, for W = {0} x N> x Zk-",
and B3, =AY, for V ={(o,n) € Rx ZF: (at,m) > Oy }.

2. For k € N>y and 1 < m <k, note that ‘%erm = BN L and B, C %gm Further-

more, %, = ,%’gm if and only if m = k.

3. Forke N>jand 1 <m <k—1, note that %’;mﬂ - ‘@erm’ but

By NBL, . ={0}.

4. For k € N>y and 1 <m <k, if W is a sub-semigroup of {O}erl X 7*k=™_then ,%’nvf

is a subalgebra of %,,. In particular, %’erm and 4B, are subalgebras of %,,.

5. Forke N>j,and for 1 <m <k, if W CW, CR x ZK, then %’,‘;Vl is a subspace of
BN

6. Let (W;,i € I) be a family of pairwise disjoint subsets of R x Z, for k € N>;. Then

5™ s a direct sum of the family (% ,i € 1), i.e.

a@anJiEIWi = @ﬁn‘?v

il
foreach1 <m <k.
A metric on spaces of blocks

In Subsection 1.1.3 we defined the power-metric d, on the differential algebra £7. Ob-

serve the sequence (K,) in % C .Z;°, k € N>, given by K, := £/, for n € N. Note
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that:

1 1
d(Kn, Knm) = o (66 20 1,

for each n,m € N> 1. From this example we deduce that the metric d; is useless on differ-
ential algebras %, C %, 1 <m <k, ke N>.
Therefore, in the next definition we define the m-metric on the differential algebra

By, for 1 <m <k,and k € N>.
Definition 1.1.26 (/m-metric, [29]). Let k,m € N> be such that 1 <m < k. The m-metric
dy : By X B — R on the differential algebra %, is defined as:

2 ot (K17H) K £ K,
0, K| =K.

dm(Kl ,Kz) =

The space (B, dn) is called the (metric) space of blocks of level m.

Similarly as in Proposition 1.1.16, it can be proven that metric spaces (%, d,,) and
(BY .d,), for W C R x 7k, are complete, for 1 <m <k, k € N> ;. In particular, (e%’;rm,dm)
and (%, ,d,,) are complete metric spaces.

m»

1.1.5. Composition of logarithmic transseries

In [6, Section 6] the general result on composition of transseries is proven. In our setting
of logarithmic transseries, we do not need the definition of composition in full generality.
Therefore, we define a composition only for the logarithmic transseries in the spirit of
the definition given in [21, Section 2] only for the logarithmic transseries of depth 1.
For our purpose in Sections 2.1, 2.2 and 2.3, it is important that the composition of two
logarithmic transseries in %% is again an element of .%;. This is not always the case.
Therefore, we restrict ourselves to the set Z{H of all logarithmic transseries in .%; without
logarithms in their leading term, as was done in [21] for power-logarithm transseries and
in [29, Subsection 3.2] for logarithmic transseries. More precisely, we denote by £/,

k € N, the set of all logarithmic transseries f € ., such that
f=1z%+ho.t.,

for A, a > 0. Furthermore, we put £/ := {J;cn .,Z”kH . We distinguish three types of loga-

rithmic transseries in £/ (see [21, Definition 1.1], [29, Subsection 2.1]).
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Definition 1.1.27 (Parabolic, hyperbolic and strongly hyperbolic transseries in £7). Let
f € £ such that f = Az% +h.o.t.,, o, A > 0. We say that f is:

1. parabolic,if ¢« = A =1,
2. hyperbolic,if e =1 and A >0, A # 1,
3. strongly hyperbolic, if &« >0, o # 1, and A > 0.

We denote by .Eko the set of all parabolic logarithmic transseries in ,ZkH . Furthermore,
we put £0:= ey L2

Finally, we define a composition of logarithmic transseries.

Definition 1.1.28 (Composition of logarithmic transseries). Let f € £ and g € £, for
keN. Let g = Az%+ g, for a,A > 0, and ord (g;) > (¢, 0;). Then, the composition of
f and g, denoted by f o g, is defined as:

() (A% .
fog:zf(lzo‘)Jer(i!Z)(gl)’, (1.8)

i>1

where the series on the right-hand side of (1.8) converges in the product topology.

In Proposition A.1.1 in Appendix A we prove that the series on the right-hand side of
(1.8) converges in the product topology, which implies that the composition of logarith-
mic transseries from Definition 1.1.28 is well-defined. In Appendix A we also prove the
formal Taylor Theorem (Proposition A.1.6) and the fact that we can compose logarithmic

transseries term-wise using formulas (A.1).

31



Preliminaries Fixed point theorems

32

1.2. FIXED POINT THEOREMS

In this section we state and prove a version of a fixed point theorem (Proposition 1.2.12)
(see [29, Proposition 3.2]), that we use in Sections 2.1, 2.2 and 2.3 to solve normalization
equations. In particular, we use the mentioned fixed point theorem on complete metric
spaces introduced in Subsections 1.1.3 and 1.1.4. The section is divided into three subsec-

tions: Lipschitz map and homothety, (i, 1> )-Lipschitz maps and Fixed point theorems.

1.2.1. Lipschitz map and homothety
In this subsection we recall some basic notions from [29, Subsection 3.1].

Definition 1.2.1 (Homothety, Definition 3.1, [29]). Let (X,d) and (Y, p) be metric spaces.
The map .7 : X — Y such there exists A € R~ with property that

p(y(xl),ﬂ(xz)) = ld(xl,xz),

for each xj,x; € X, is called the A-homothety. The coefficient A is called the coefficient
of homothety 7 .
If A =1, then .7 is called the isometry.

Remark 1.2.2. Note that, for the given A-homothety .7, the coefficient A is unique and
7 is injective. Therefore, there exists the compositional inverse .7 ! : .7 (X) — X which

ol
is a 7-homothety.

Definition 1.2.3 (Lipschitz map, Definition 3.1, [29]). Let (X,d) and (Y,p) be metric

spaces. The map . : X — Y such there exists it € R-¢ with the property that

p(S(x1), 7 (x2)) < pd(x1,x2), (1.9)

for all x1,xp € X, is called the u-Lipschitz map. The coefficient u is called the Lipschitz
coefficient (or the Lipschitz constant) of %

We call the smallest u € R~ (if such exists) such that (1.9) holds, the minimal Lips-
chitz coefficient of .7

In particular, if g < 1, then .% is called the u-contraction and the coefficient u is

called the coefficient of contraction of .7 .
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Example 1.2.4. Let <7 be a subspace of £° and .7 : &/ — £ a linear operator. If there

exists C € R~ such that:

1. ord, (7 (g)) = ord;(g) +C, for every g € o7, then 7 is a %—homothety, with re-

spect to the metric d,

2. ord; (7 (g)) > ord;(g) +C, for every g € o7, then 7 is a 2%—Lipschitz map, with

respect to the metric d.

Similarly, let P be a subspace of %, for 1 <m <k, k € N>y, and .7 : B — By a
linear operator which satisfies above (in)equality for ordy, instead of ord;, then .7 is a
2%—homothety (resp. Lipschitz), with respect to the metric d,,. These statements will be

used throughout the thesis.

Example 1.2.5. Letk € Nand W C R x Z*. Denote by Py : £ — &) the projection
operator to the subspace .ka C Z;°. Then the projection operator &y is a superlinear
1-Lipschitz operator, with respect to the metric d,.

Indeed, for every term M € . it follows that 2y (M) =0,if M ¢ £, and Py (M) =
M, if M € £} . Now, superlinearity follows immediately.

For every g € .Z;” it follows that
ord (Pw(g) = ord (Pw(g)) = ord(g).
By Example 1.2.4, it follows that &y is an 1-Lipschitz map.

Example 1.2.6. Let k € N> and 1 <m < k. By Example 1.2.4, note that the deriva-
tion D, : By — By, defined in (1.5) is a %—contraction on the space (%y,dy), since
ordg, (D (K)) = 1+ordy, (K), for every K € %4,, that is not a constant.

Furthermore, the restriction of D,, on the space Pofall K € %, which do not contain
constants is a %—homothety. Therefore, there exists the inverse D,,! of the restriction

Dy & which is a 2-homothety, with respect to the metric d,,,.

Now we state two examples of contractions that will be used throughout the Sec-

tions 2.1, 2.2 and 2.3 for solving normalization equations.
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Example 1.2.7. Let ¢ € Xky (see Subsection 1.1.2), fory>1and k € N. Let § > 1 and
let the operator . : fk‘s — .ij be defined as:
_ (i)  of
=) o€, (1.10)
i>2
for e € fk‘s. Then the operator .7 is %H—Lipschitz on the space (i’f, dz).

Moreover, —5--— is the minimal Lipschitz coefficient of ..

25+a—2
Proof. By the definition of the set .,2”,{5 and since 6,7 > 1, it can be shown that the series
in (1.10) converges in the product topology. Therefore, the operator .7 is well-defined.

Let €1, & € .Z2, such that € =# &. Then:

S(e) - S(e) =Y (<p(") ICEES)

i>2
i—1 1
_Z (g1 —&)- (Zelsé J) )
i>2 Jj=0

Now, ord, (L (&) — -7 (&)) > ord, (& — &) + 6 + y—2, which implies that . is a 25” 5=
Lipschitz operator.

If £ € £ such that ord,(€) = §, then ord(.(¢) — #(0)) = ord(¢ — 0) + & + a — 2.
Thus, 25%172 is the minimal Lipschitz coefficient of .. [ |

Since 7,0 > 1, note that . is a s-contraction if and only if y > 1 or 6 > 1.

25+y
Example 1.2.8. Letk € N>, 1 <m <k, and G; € %,,\ {0} C £, such that ord (G;) >
0.1, forevery i > 2. Let .7 : B} — B, be defined as:
=) Gi-0'
i>2
for Q € %} C %. The map . is a -contraction on the space (%}, dy).
Proof. Note that the series above converge in %,,, with respect to the metric d,,. Let
01,0, € B, C % such that Q1 # Q. We have:
Z(01)— () =Y, Gi- (0] — 0))

i>2

-3 (0@ (Zoier))

i>2

Using the following facts

ord (G;) > 01, ordg, (Q1),ordg, (Q2) >1
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and i > 2, we conclude that

ordy, (Z(01)—Z(02)) > ordy, (01— 0n)+ 1.

This implies that

'dm(QlaQ2)7

| —

dm('y(Ql)ﬂy(QZ)) <

that is, . is a -contraction on the space (%}, dy). [

1.2.2. (1, 4p)-Lipschitz map

In this subsection we define a (U1, itp)-Lipschitz map, which is, in some sense, a gener-
alization of the standard definition of a p-Lipschitz map on a metric space to a Cartesian
product of metric spaces. This notion is not needed in the proof of the fixed point theorem
stated in Proposition 1.2.12, but it will be needed in the sequel as a natural generalization

of Lipschitz maps.

Definition 1.2.9 ((u;, 4p)-Lipschitz map). Let Xj, X, and Y be metric spaces, and let
¢ : X; xXo — Y be amap. Let ; : X; — R be maps, for i = 1,2, such that € (x,-) :
X, — Y is a uy(xp)-Lipschitz map and € (-,x2) : X; — Y is a up(x)-Lipschitz map, for
every (x1,x2) € X1 x Xp. Then we call € a (Uy, lUp)-Lipschitz map.

If, additionally, in the above definition it holds that p;(x;),t2(x2) < 1, for every

(x1,x2) € X1 X X3, then we call € a (U, lp)-contraction.

Example 1.2.10. Letk € N>, % C 47, and € : 1 x %1 — % be a map defined by
% (K,G) := K -D;(G). By linearity of derivation D and of multiplication, it follows that

¢ isa (21 +°f:'e1 w5 +0r(1:1£1 © ) -Lipschitz map with respect to the metric d; on #.
In particular, if we restrict to %% x %7, then ¢ is a (2, Hm]jel w5 Hm]jzl ) ) -contraction.

1.2.3. Fixed point theorems
Recall the classical Banach Fixed Point Theorem.

Theorem 1.2.11 (Banach Fixed Point Theorem, see e.g. [19]). Let X be a complete

metric space and .’ : X — X a contraction. There exists a unique fixed point x € X of .7,

ie., S (x) =x.
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Furthermore, x is given as the limit of the Picard sequence:
x=1m("(xp)),
n
for any initial point xp € X.

Now we state a fixed point theorem which is an easy consequence of the Banach Fixed
Point Theorem. The idea of the proof is motivated by the Krasnoselskii’s Fixed Point

Theorem (see e.g. [36]). Proposition 1.2.12 is frequently used in proofs in Chapter 2.

Proposition 1.2.12 (Fixed point theorem, Proposition 3.2, [29]). Let X, Y be two metric
spaces and let X be complete. Let ., .7 : X — Y, such that:

1. . is a u-Lipschitz map,
2. .7 is a A-homothety,

3. u<A,

4. S (X)C T (X).

There exists a unique point x € X such that .7 (x) = .7 (x).

Furthermore, x is the limit of the Picard sequence:
x=1im((7 1 0. )"(x0)),
n
for any initial point xg € X.

Proof. Since .¥(X) C T (X), 7' 0.7 : X — X is well defined. The map .7 is a A-
homothety, so its inverse .7 “lisa %—homothety on . (X). Therefore, since % <1,
T 1o X > Xisa %—contraction on X. We conclude by the Banach Fixed Point
Theorem (Theorem 1.2.11). [



2. NORMAL FORMS OF LOGARITHMIC

TRANSSERIES

In this chapter the main object of our study is the conjugacy equation:

pofop =g, (2.1)

in the variable @ € £°, where f,g € £ are given. Equation (2.1) is solved in [21, The-
orem A] using a transfinite algorithm of elementary parabolic changes of variables, but
only for the logarithmic transseries of depth 1 (i.e., only one iteration of the logarithm).
We generalize these results for hyperbolic, strongly hyperbolic and parabolic logarithmic
transseries of an arbitrary depth. Our algorithm is less transfinite, and based on a fixed

point theorem stated in Proposition 1.2.12 in Section 1.2.

Note that equation (2.1) is equivalent to the equation:

pof=go0. 2.2)

In the next proposition we give a necessary condition on f and g for solvability of the

conjugacy equation (2.1).

Proposition 2.0.1 (Necessary condition for solvability of the conjugacy equation). Let
f,g € £H and let @ € £ be a solution to the conjugacy equation @ o fo @~! = g. Then,
Le(f) = Lt(g)-

Proof. Let @ =id+ ¢y, f =Lt(f)+ f1, and let g = Lt(g) + g1, for ¢y, f1,g1 € £. By the
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definition of the composition, it follows that:

(i)
(pof:er‘PlOf:Lt(f)+f1+(p1(Lt(f))+Z(plai“!t(f))

i>1

(fl)i7
gt i
gop=Li(e)+ai+) (o))
i>1 b
which implies that Lt(¢ o f) = Lt(f) and Lt(go ¢) = Lt(g). Since po f =gog, it
follows that Lt (f) = Lt(g). [

By Proposition 2.0.1, it follows that g in the conjugacy equation (2.1) is hyperbolic
(strongly hyperbolic, parabolic) if and only if f is hyperbolic (strongly hyperbolic, parabolic).
Moreover, we ask of g in equation (2.1) to be minimal in £H je., to have as little number
of terms as possible. We call such g the normal form of f, and denote it by fy. In that
case, the conjugacy equation @ o fo @~ ! = f is called the normalization equation, and

its solutions are called the normalizations of f.

In Sections 2.1, 2.2 and 2.3 we prove normalization theorems in all three cases: hyper-
bolic (Theorem A), strongly hyperbolic (Theorem B) and parabolic (Theorem C). These
theorems are proved by transforming a normalization equation to appropriate fixed point
equations on complete metric spaces and applying fixed point theorem stated in Proposi-
tion 1.2.12 on these spaces.

In order to use the fixed point theorem from Proposition 1.2.12, for f € £, we define
the operators .7 and . on the appropriate spaces. We use the results from Appendix B
for solving linear and various nonlinear equations to prove that 7y and ./ satisty all

assumptions of the fixed point theorem.

2.1. NORMAL FORMS OF HYPERBOLIC

LOGARITHMIC TRANSSERIES

In this section we present our results from [29]. They represent a generalization of the
results obtained in [21] for hyperbolic logarithmic transseries of depth 1, to hyperbolic

logarithmic transseries of an arbitrary depth, using fixed point theorems.
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In the sequel we assume that f € £, f = Az+h.o.t., A € Rug, A # 1, is a hyperbolic
logarithmic transseries.

In this section, we solve the conjugacy equation:

pofop =g, (2.3)

in variable ¢ € £°, for given f,g € £¥. By Proposition 2.0.1, it follows that, if the
conjugacy equation above has a solution in £°, then g = Az +h.o.t. In Proposition 2.1.1
(see [29, Subsection 4.3]) below, we generalize Proposition 2.0.1 for hyperbolic logarith-

mic transseries.

In Subsection 2.1.1 we state the complete normalization theorem (Theorem A) for
hyperbolic logarithmic transseries, which is the main theorem of this section. Further-
more, in Subsection 2.1.2 we prove statements 1 and 2, and in Subsection 2.1.4 we prove
statement 3 of the normalization theorem. The normalization theorem is constructive: in
Subsection 2.1.5, we give two algorithms for obtaining normal forms and normalizations.
Finally, in Subsection 2.1.6 we give the description of the support of the normalization
and prove that the support of the normalization depends only on the support of the initial

hyperbolic logarithmic transseries.

Proposition 2.1.1 (Necessary condition for solvability of normalization equation, [29]).
Let f € £ k € N, such that f = fy+h.o.t., for
for=2z+ Y, amdl]"---4* (2.4)
0, <m<1;
and m = (my,...,my). Let fi := f — fo and g € £ If the conjugacy equation ¢ o f o
¢~ ! = gis solvable in £, then g = fo +h.o.t.

Proof. Let k € N be minimal such that f,g € .Zj{H . Note that the conjugacy equation
pofop =g, @ e £0 is equivalent to the equation po f = go @. Let ¢ =id+ ¢y,
g = go + g1, where the order of every term in gg is smaller than or equal to 1;;, and
ord(g1) > 11 1. Now, by the Taylor Theorem (see Proposition A.1.6), we get the equiva-

lent equation:

(i) . (i)
wlsﬁﬂ(fﬂ’==&)+g1%2:(&yf§1>

i>1

fotfiteiofo+ ), (p1)"
i>1
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Since ord( (1) ) > 14 and £ (fO) (f1)! > 1441, for i € N>y, it is sufficient to con-

sider the equation:

()
fo+(P10fo—go+ZL
i>1

Now, put fo:=Az+zK, K € %’;, go:=Az+z20, 0 € %’;, and ¢; := zG+h.o.b.,

Ge Q%’JZF |- We get the equation:

Az+ 2K+ (zG)(Az) +ZM( K) =Az+ Q+ZM

i>1 i! i>1

(zG)’

Now, by Lemmas A.2.8, A.3.1, A.3.3, and by the fact that ord (D;(G)),ord (D1(G)) >

1., after dividing by z, it follows that:
K+AG+G-K=0+AG+Q-G.

Therefore, K- (1+G) = Q- (14 G) and K = Q, since 1 +G # 0. This implies that
Jo = go. n

Proposition 2.1.1 suggests the normal form of a hyperbolic transseries. Indeed, we
know that the initial part of f, fy as in (2.4), remains intact in the normal form. On the
other hand, it is proved in [21, Theorem A] that the normal form of hyperbolic transseries
fe L, f=Az4+adi+hot, A €Rog, A#1,a#0,in L is fo = Az+azly.

This suggests putting g := fo and seeking in the following subsection for a solution
of the conjugacy equation (2.3) with g = fy in £°. If such a solution exists, then, by
Proposition 2.1.1, fy is the normal form of the hyperbolic logarithmic transseries f.

Note that logarithmic transseries f; defined in (2.4) can be infinite. That depends on

the initial part of the original transseries f. This can be seen in the next example.
Example 2.1.2. Let A € R such that A # 1.

1. f(z) =Az+3z¢+hot €4,
fo(z) = Az+ 321, ¢ € £,

2. f(z) =Az+2z +hot. € A,
fole) =2z, ¢ € £,
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3. f(2) = Azl + 05+ 026,°) + 22477 + 3 € D,
fo(Z) =Az+ 7214, @ € fo,

4. f(z) = Az + (030 +0305 %+ €18 + 016285+ £1005 +0,0303°) + 236, 0+ 2457 € 4,
fo(z) = Az+z(€30 + 02057 + 016, +£16283), @ € LY,
Foo )
5. f(z) = lz—l—z( Y 66y 40,8,° +e%e4) +Y deke s,
i=2 k>2

+°o . .
fol)) =Ae+2( L 0o +014,7), 0 € 2.
i=2

For more examples see [29, Example 2.3].

2.1.1. Normalization theorem for hyperbolic logarithmic transseries

We consider the normalization equation @ o fo @' = fy, in the variable ¢ € £°, for a

hyperbolic logarithmic transseries f, and fj its initial part as defined in (2.4).

Proposition 2.1.3. Suppose that the conjugacy equation @ o fo @' = f; is solvable in
£9 for every hyperbolic logarithmic transseries f = Az+h.o.t., 0 < A < 1, and fp as
defined in (2.4). Then the same holds for all hyperbolic logarithmic transseries with the

leading term uz, for u > 1.

Proof. Let f = pz+h.o.t., for > 1. Then f~! = fz+h.o.t. and it = z+h.o.t. Now,
put A := ﬁ and (f~!)o be as defined in (2.4) with f~! instead of f. It can be shown that
(fo) ' = (f")o+h.o.t.. Since 0 < A < 1, by assumption, there exist @1, @, € £° such
that @10 f~ oot = (f71)o and @a0 (fo) Lo @y = (f71)o. Now, for y:= ¢, ' o g
we get yo f~loy ™! = (fy)~!. Taking compositional inverses on both sides of the above

equation, it follows that wo foy ! = f. [ |

By Proposition 2.1.3, it follows that it is sufficient to consider hyperbolic logarithmic

transseries f = Az+h.o.t., for0 <A < 1.

Theorem A (Normalization theorem for hyperbolic logarithmic transseries, Main The-
orem, [29]). Let f = Az+h.ot. € %, ke N, with A € Rop, A # 1, be a hyperbolic

logarithmic transseries. Write

f=Az+ Z amzl}" L +hot., m=(m,...,my),

0, <m<1y
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and

for=2z+ Y, amzl]'---4% (2.5)

0,<m<1;

Then:

1. There exists a unique parabolic logarithmic transseries ¢ = z+h.o.t. € £°, called

the normalizing transformation, such that:

Qofop ! =fp. (2.6)
Moreover, ¢ € ,,Sfjco.

2. The logarithmic transseries fy is minimal with respect to the inclusion of the sup-
ports, and the coefficients of fy are invariant, within the conjugacy class of f by

parabolic transformations in £°. Therefore, f; is a normal form of f.

In particular, f can be linearized in £° if and only if ord (f — A -id) > 1.

3. Let 0 < A < 1. For a parabolic initial condition & € £°, the generalized Koenigs

sequence

( £ ono fo”) 2.7)
n
converges to @ in the weak topology if and only if Lb, (h) = Lb, (¢).

In statement 3 of Theorem A, the generalized Koenigs sequence converges in the
weak topology which is the weakest of all topologies defined in Subsection 1.1.3. Indeed,
in the following example we give an example of a hyperbolic logarithmic transseries f
whose Koenigs sequence does not converge neither in the product nor in the power-metric

topology, which are finer than the weak topology.

Example 2.1.4 (Remark 2.2, [29]). Consider the logarithmic transseries f := Az + z°
with 0 < A < 1. Note that f € DS,”OH is a formal power series in the variable z with real
coefficients, and fy = A -id. Consequently, if we choose the initial condition % := id, the

generalized Koenigs sequence is, in fact, the standard Koenigs sequence

1 ony _ 1 2, L an2)\2
ﬁ'(hOf)—Z—F(;L—I—l—f—?L—Fle +2 )z +h.o.t.
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Since the coefficients of z> do not eventually become stationary, the generalized Koenigs
sequence does not converge in the product topology. Obviously, the sequence does not
converge in the power-metric topology. On the other hand, note that the sequence (% +

1+2A+A%+---+A"2), converges to % + ﬁ in the Euclidean topology.
Remark 2.1.5 (Remark 2.2, [29]).

1. The normalization ¢ for hyperbolic logarithmic transseries f € £ will be obtained
in Subsection 2.1.2 using the fixed point theorem stated in Proposition 1.2.12 on
suitable subspaces of %, for the minimal k € N such that f € .Z;. We show that
the normalization ¢ belongs to such % and, additionally, satisfies ord, (¢ —id) >
ord, (f — A -id).

2. In Subsection 2.1.6 we prove that the support of the normalization depends only on
the support of the original hyperbolic logarithmic transseries f € £, which means
that the support of the normalization does not depend on the chosen initial condition

he 0.

3. The proof of the existence of the normalization relies on a fixed point theorem
stated in Proposition 1.2.12. The normalization is given explicitely as the limit (in
the power-metric topology) of the Picard sequence related to the certain contraction
operator. However, this Picard sequence is not the generalized Koenigs sequence
given in (2.7). Nevertheless, in Subsection 2.1.4 we prove the convergence of the
generalized Koenigs sequence towards the normalization, for the appropriate initial
conditions. In Subsection 2.1.5 we explain in detail these two different algorithms

for obtaining the normalization.

Remark 2.1.6 (Remark 2.2, [29]). Let f = Az+hot.€ £, ke N, for0 <A <1, be
such that ord (f — A -id) > 1y, i.e., fo = A -id. By Theorem A, there exists the unique

normalization ¢ € £0. such that
pofop l=21-id.

By Theorem A, 1, it follows that ¢ € .iﬂko. In this case, we call ¢ the linearization of the

hyperbolic logarithmic transseries f and we say that f is linearizable.
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In the linearizable case, the generalized Koenigs sequence (2.7) becomes the standard

Koenigs sequence

(55 (o) |
where h € £0 is the initial condition. By Theorem A, 3, the Koenigs sequence (% .
(hofom) >n converges in the weak topology to the linearization ¢ if and only if Lb, (k) =
Lb, ().
In particular, if f satisfies that ord, (f — A -id) > 1, then by Theorem A, 3, and Re-
mark 2.1.5, 1, the Koenigs sequence ( % - (ho f°m) )n converges in the weak topology to
the linearization ¢ for any initial condition 2 € £° such that ord, (2 —id) > 1. In particular,

the sequence (% f O”) ) converges to the normalization ¢ in the weak topology.

2.1.2. Existence and uniqueness of the normalization

Transforming the normalization equation to fixed point equations

The idea of transforming the normalization equation to a fixed point equation came from
the classical Koenigs Theorem for complex hyperbolic germs of diffeomorphisms at zero.
Therefore, we first state the Koenigs Theorem (without the proof) and then proceed to the

transformation of our normalization equation.

Theorem 2.1.7 (Koenigs Theorem, see e.g. [4], [14], [24]). Let f € Diff(C,0) be a
hyperbolic analytic germ of diffeomorphism at zero such that f(z) = Az+o0(z), for A € C,
0 < |A| < 1. Then there exists an open neighbourhood U of 0 and a parabolic change of
variables ¢ € Diff (C,0), ¢(z) = z+0(z) such that (¢ o f)(z) = A¢(z) on U. Moreover,

the Koenigs sequence (% fO”)n converges uniformly to ¢ on U.

Since the parabolic change of variables ¢ in the Koenigs Theorem satisfies the con-
jugacy equation %(p o f = @, it is natural to consider the operator Zf(h) := % oho f, for
h € Diff (C,0) tangent to the identity, which we call the Koenigs operator, and to trans-
form the equation to the fixed point equation &;(¢) = ¢. By the Koenigs Theorem, it

follows that the sequence of iterations (£7;"(id)) converges uniformly to ¢.
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Our goal here is to generalize the Koenigs Theorem to hyperbolic logarithmic transseries.

From Proposition 2.1.1, it follows that the normal form for a hyperbolic logarithmic
transseries f is of the form g = fo +h.o.t., where fj is given in (2.5). Since we want
this normal form to be minimal, we try to solve the conjugacy equation o foo~! =g,
for g := fy. Therefore, we have to adapt the Koenigs operator for fy. Note that in the
Koenigs Theorem, the normal form is fo = A -id. Since f; I = % -id, the Koenigs opera-

tor is, in fact, Zr(h) = fo_1 ohof.

Definition 2.1.8 (Generalized Koenigs operator and sequence, [29]). Let f € £H, f =
Az+h.ot., 0 <A <1, be a hyperbolic logarithmic transseries and fj as in (2.5). Let
Pr £9 — £9 be the operator defined by:

Pr(h):=fylohof, he g (2.8)

We call &, the generalized Koenigs operator. In particular, if fy = A -id, then we call
P the Koenigs operator.
Moreover, we call (@;”(h)) the (generalized) Koenigs sequence with the initial
n

condition h € £9.

In the next example we show that &7 is not a contraction even on 9, with respect

to some standard metrics.

Example 2.1.9 (Noncontractibility of operator 2y in standard metrics). For simplicity,
we consider the space of formal power series zR [[z]] € .24 in the formal variable z. By
Example 1.1.19, (4), on zR[[z]] the product topology is the same as the power-metric
topology, so they are both metrizable by the power-metric ¢, defined in Subsection 1.1.3.
By Example 1.1.19, (6), the weak topology on zRR [[z]] is also metrizable by e.g. the weak

metric:

oo

|la; — bl
o (h o)
1) Zzt (1+|ai—bi])’

i=1

where hy,hy € ZR[[2]], by = L @iz’ hy := Y1 bz, for a;,b; € R and i € N.
We give below some examples that show that the operator &, f € zR[[z]], f = Az+
h.o.t, 0 < A < 1, is not necessarily a contraction with respect to the power-metric d;, nor

with respect to the weak metric d,, on z+2*R|[z]] C ..
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(i) Takee.g. f:=Az+z%and g :=id. We get:

1

4.(0,8) = (0,24 (g)) = 5.

(ii) For f and g as above,

1

dy(0,8) = TiA

<=+

dw (0, 24(g))-

B
B
B

Since Zf is not a contraction in any of previously introduced metrics, not even on
.ZOO, we adapt the idea from [26, Chapter 3]. For a hyperbolic f € £, we define the

operator 7 : £iq — £+iq such that
H;(h) == Pr(id+h) —id,
where -4 := Uen -2, for Wy := {(at,n) € R x Z¥: (at,n) > (1,04)}, k € N,

Example 2.1.10 (Noncontractibility of the operator 77 in standard metrics). Let d; be
the power-metric and d,, the weak metric defined in Example 2.1.9 on zR [[z]]. We show
below that the operator 77, f € zR[[z]], for f = Az+h.o.t, 0 <A < 1, is not a contraction

with respect to the power-metric d, nor with respect to the weak metric d,, on z>R [[z]].

(i) Takee.g. f:=Az+z2+ho.t,0 <A <1, g:=2z% Since ord, (J;(0) — H#(g)) =
ord, (g) =2, we get:
1
d.(0,g) = dz(%‘(o)w%?‘(g)) = 4

(ii) In the weak metric d,,, for f and g as in (i), we get:

1
dw(O,g)Zg,
1 A 1 2 1 1
dw(jfjr(O),,%’}(g))ZZ 22 8 T2 e AT (2.9)
If we put A = 1, we get:
23 1
d(H7(0), 75 (8)) = 5o > g = dw (0:8).

Therefore, by continuity of (2.9) in the variable A, it follows that there exists 0 <
A <1 sufficiently close to 1, such that d,, (75 (0) , %5 (g) ) > % which implies that

7 is not a contraction in general.
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Since the operators & and .7/} are not contractions in any of our usual metrics, in
order to apply a fixed point theorem stated in Proposition 1.2.12, in the next proposition
we transform the equation J#7(¢) = ¢ to another fixed point equation .7;(¢) = .7#(¢)
for suitable operators .7y and .s. Such transformation of the equation is motivated by

the Krasnoselskii Fixed Point Theorem (see e.g. [36]).

Proposition 2.1.11 (Proposition 3.4, [29]). Letk € Nand f € %, f = Az+h.o.t., with
0<A<1. Let fi := f — fo, for fy as in (2.5). For ¢ € £2 and h:= ¢ —id € £-;q, the

following equations are equivalent:
L gofop~" = f,
2. Tp(h) = Z5(h),
where the operators .f, 771 £.iq — £-iq are given by:
Fr(h) == i(fl +(hof—ho fo) — (g0 (id+h) —go—go-h) >,
Tr(h) = i((l ch—h(A-id)) — (ho fo—h(A -id)) +g6~h>. (2.10)
Here, go := fo — A -id.

Proof. Note that the fixed point equation J¢(h) = .#¢(h) is equivalent to the equation
fi+hof—go(id+h)+ go = Ah. From the last equation, since f =id+ go + f; and
@ = id+ h, we get the equivalent equation o f —goo @ =A@, ie,pofop ' =f). N

By superlinearity of derivation, left multiplication and right composition (Proposi-

tion A.1.4), note that .7} is a superlinear operator.

Remark 2.1.12 (Expansions of the operators .7y and J%). Let f, fo, fi and go be as
in Proposition 2.1.11. By the Taylor Theorem (Proposition A.1.6) we have the following

expansions:

(i)

= (g gy zw),
=8 iz b
1 7L d -1
Tr(h) = h=h(A-id) _72 ! (80)' + 786+, @2.11)
z>l

for h € £<i4.
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By (2.11) and Example 1.2.7, if ord (fi) > 1, then ./ increases the order (in z) by
at least ord; (f;) — 1 on the space (.Zkordz f 1),dz). On the other hand, .7} is a superlinear
isometry on space (.Zkordz () ,d;). In that case, we can apply fixed point theorem stated in
Proposition 1.2.12 to the existence and the uniqueness of the solution of the fixed point
equation .7y (h) = .#f(h) on the space (.,iﬂkordz Y 1),dz).

However, if ord, (fi) = 1, then ord, (Jy(h)) = ord, (.#s(h)) = ord.(h). Since the
coefficient of the homothety .7+ and the minimal coefficient of the Lipschitz map . are
equal, we cannot apply the fixed point theorem from Proposition 1.2.12 directly. However,
Z increases the order by at least (0,1;_1,2) and, since ord (o) < (0,1x), I increases
the order of /4 by at most (0,1;). Therefore, the idea is to use a metric which captures
the increase in order, no matter how small (in which variable), even though there is no

increase in ord;. This motivates the definition of the so-called r-preserving metric.

Definition 2.1.13 (r-preserving metric). Letr: % — R”, for 1 < p <k+ 1. We say that
a metric d on the space %, k € N, is r-preserving if, for every M > 0, lexicographically,
there exists a constant 0 < s < 1, such that, for every g;, g such that r(g) +M < r(g2),
it holds that d(0, g2) < tpr-d(0,g1).

Proposition 2.1.14.
1. The power-metric d, on %%, for k € N, is ord,-preserving.
2. There are no ord-preserving metrics on %%, k € N> .
Proof. 1. LetM >0, and let g1,8> € % such that ord; (g1) + M < ord; (g2). Then
d(0,g) =270 (82) < p=Mp—ord: (81) — p=M g (0 g).

Put p1ys := 2~ < 1. Thus, we proved statement 1.
2. Suppose that d is an r-preserving metric on %%, k > 1, with respect to the r := ord :

% — R¥1 Take the sequence (g,) in % defined by g, := z£", for n € N. Evidently,
Ord(gn) :Ord(g0)+<07n70k—l)7 (212)

for n € N. Since d is ord-preserving, for M = (0,1,0;_1) there exists 0 < py < 1 such
that d(0, gn+1) < tam -d(0,8,), for n € N. Then, d(0,g,) < uy;d(0, go), for n € N. Taking
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the limit as n — 40, we get that

ngrfwd(o,gn) =0. (2.13)
However, by the definition of g,
5 1
ord (2) > ord (g,) + (5’0">’ (2.14)

for n € N. Since d is ord-preserving, there exists m > 0 such that d(z2,0) < ! d(gn,0),
for n € N. Passing to the limit as n — o0 and using (2.13), we get d(z?,0) = 0. This is
a contradiction with the definition of a metric. Therefore, an ord-preserving metric does

not exist. [ |

By Proposition 2.1.14, it seems useless to try to come up with a metric in which .
is a contraction and .77 is an isometry. Therefore, we split the proof of Theorem A in two

cases:
(a) ord; (f—fo) > 1,
(b) ord; (f—fo) =1.

In case (a) we proceed directly by the fixed point theorem from Proposition 1.2.12 to
prove the existence and the uniqueness of the solution 4 of the fixed point equation
Tr(h) = F¢(h), for h € £-iq. Then, by Proposition 2.1.11 ¢ = id + & is the unique
normalization satisfying equation @ o fo @~ = f;. In case (b), we first prenormalize the

hyperbolic logarithmic transseries f and then apply case (a) to the prenormalized f.

Proof of case (a): ord, (f — fo) > 1

In the following lemma we verify that the operators .77 and .7 satisfy the assumptions

of the fixed point theorem from Proposition 1.2.12.

Lemma 2.1.15 (Properties of the operators ff and ., Lemma 4.1, [29]). Let k€ N
and f = Az+h.o.t. € £, with0 < A < 1. Let f; be as defined in (2.5) and f; := f — fo.
Let B :=ord;(f1) > I and let .77 and .”f be the operators defined in (2.10). Then:

1. Xkﬁ is invariant under .7y and .,
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2. Syisa 2ﬁ¥7l—cont1raction on the space (.fkﬁ ,dz),
3. Jr is an isometry and a surjection on the space (fkﬁ ,dz).
The same holds for the spaces .Z,E , in place of P , forall m > k.

Proof. 1. Note that f] € .,Z”,E , for every m > k. The invariance of .%},, m > k, and of the
subspaces ,,5,”,5 under 77 and .%s follows easily from Remark 2.1.12.

2. In order to prove statement 2, we consider the expansion of the operator .%¢
from Remark 2.1.12. Let hy,hy € ,Z,E, m > k. Then ord; (h;),ord; (h;) > B. Since
B = ord, (f1), we obtain

oy, i whof, (1) fy, i
Ordz(Z —(f1) —Z.(f1)> _Ordz<, -.(fl)> @.15)

! !
=1 s

:Ol'dz(hl —hz)—l—ﬁ -1,

for the linear part of the operator .. For the non-linear part of .#¢, as in Example 1.2.7,
we get:
Ty o (S
i
ord; | Y %0-hy — Y 50h | = ord. Y 50 (y — o) ( Y iy )
J:

> b i>2 i>2

(2.16)
>ord; (h —h)+B—1.

The equations (2.15) and (2.16) imply that ¢ is a ﬁ—contraction on the space (%, d-),
as well as on the spaces (.Zg,dz), m>k.

3. We first prove that Zc is an isometry on (.Z,ﬁ ,dz), m > k. We use the expansion
of the operator .77 from Remark 2.1.12. Let h = z*Hy +h.0.b.(2) € .i”,ff, m > k, where
Hy € %), a > . Analyzing the orders of the terms of J(h) in the expansion from
Remark 2.1.12, expanding & (Az) by Lemma A.3.1, and using the fact that ord (go) >
(1,0,...,0);m+1 and A # 1, @ > 1, we conclude that

ord (J(h)) = ord (z*Hg).

Hence,

ord; (J¢(h)) = ord, (z2*Hy) = ord; (h). (2.17)

Therefore, .7 is a superlinear isometry on the spaces (02”,5 ,d2), m> k.
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It remains to prove that 7 : ‘Zf — .i”kﬁ is a surjection, and that this also holds if we
replace Xkﬁ by ,5,”,5 , m > k. Due to the superlinearity of .7%, it is sufficient to prove that,
for every block 7'M, € .i”kﬁ , My € %, there exists a block z%Hy, € .Zj(ﬁ , Hy € %, such
that

jf(zaHa) =7'M,. (2.18)
The idea there is to prove the existence of a solution to (2.18) by reformulating this equa-
tion as a fixed point equation for a suitable contraction on the complete space (#,d).

First, as % is an isometry, o = . Write gg = zQ, with Q € %’; 1- Using Lemma A.3.1,
Lemma A.2.7 and Lemma A.3.3, we regroup the elements of the left-hand side .77 (ZVHV)
of (2.18) as

AZ'Hy— (2"Hy) (Az) = (A — A7) 2"Hy — A7 (log A - Dy (Hy) 4+ 6, (Hy))
(20)" 7Hy = (0 + D1 (Q)) Hy,

ZVHy ()(/12) (20) = Z/AH. Z( ) (7QL>i+Zyc75/Q(H7),

i>1

Lo

where ¢ from Lemma A.3.1 is a superlinear %—contraction on (#1,d) and Fp :=

H (-,Q) from Lemma A.3.3 is a superlinear m—contraction on (%,d):

ordy, (6p(Hy)) > ordg, (Hy) + 1.

Finally, the operators D, ¢} and %y do not decrease the powers of the variables £,,,
for 1 < m < k. Hence, after dividing by z7, these identities allow to rewrite (2.18) as the
following fixed point equation:
Hy = 51 (Hy),
where .7 : A1 — 9 is the operator defined by
_ AT(log -Dy(H) + ), (H)) — H -D1(Q) + Hp(H)
A=AT+0-218 () (§)

Note that y > B > 1, so A — AY # 0. Hence, thanks to Example 1.2.6, .#] is an affine

M
S (H W Hem. 219

%—contraction on the space (%’hd 1), which is complete by Proposition 1.1.16. It follows

from the Banach Fixed Point Theorem (Theorem 1.2.11) that .%] has a unique fixed point
in A, so that the block z"My has a unique preimage z'Hy € P by J7.

Finally, thanks to the superlinearity of .7, we conclude that .7} is surjective on .ZE .

[
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Finally, we prove the case (a) of Theorem A.

Proof of case (a) of Theorem A. Let B := ord; (f — fo). By Proposition 1.1.16, the space
.,?j{ﬁ is complete. By Lemma 2.1.15 and the fixed point theorem from Proposition 1.2.12,
the equation .J7(h) = .#¢(h) has a unique solution & € .Zkﬁ . Since B > 1, it follows that
he L.

We now prove the uniqueness of the solution of
Ty (h) = S5 (h) (2.20)

in the larger space £-iq5. Suppose that there exists another solution 4, € £<q of (2.20),
such that iy # h. There exists the minimal m > k such that h; € .%,,.

We prove that ord; (2;) > B. To this end we introduce the operators

—~ 1
g (h):= > (fi+(hof—ho fo))
and
1
A
obtained by moving the last term of . (h) to .7 (h) (in (2.10)). So we have

Ty (h) := = (Ah =1 (A2)) = (ho fo —h(A2)) + g h+ (g0 (id+ ) — g0 — gy 1))

Tr () = Ty (hy). 2.21)
Since B = ord; (f1) and ord; (h;) > 1 for h; € £-4, by the Taylor Theorem (Proposi-
tion A.1.6) it follows that

ord, (%(hl)) > min {B,ord; (h1)+B -1} =B.

On the other hand, it can be seen as in (2.17) in the proof of Lemma 2.1.15 that we have
the identity
ord, (Fy(h1)) = ord; (k).

Comparing the orders of the left and the right-hand sides of (2.21), we obtain
ord; (hy) > B.

That is, hy € .Z,E . Recall that the space .i”,,lf ,m € N, is complete by Proposition 1.1.16.
Hence Lemma 2.1.15 and the fixed point theorem from Proposition 1.2.12 give the unique-
ness of the solution of (2.20) in anf . Now, since .i”kﬁ C .anf , both & and A belong to .ZE ,

which contradicts the uniqueness of the solution in .,2”,,[3 .
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Finally, by Proposition 1.2.12, the uniqueness of the solution / of the equation ./ (h) =
Jr(h) in £;q implies the uniqueness of the normalizing change of variables ¢ =id +h

in the space £0. This proves the case (a). |

Proof of case (b): ord, (f — fo) =1

Let f € £/ be a hyperbolic logarithmic transseries and f; be the initial part of f as defined
in (2.5). Suppose that ord; (f — fo) = 1. Since in this case .77 is an isometry and % is
a 1-Lipschitz map (where 1 is its minimal Lipschitz coefficient), we cannot apply the
fixed point theorem stated in Proposition 1.2.12 directly. Therefore, we proceed in the

following steps:

Step 1. We prenormalize the hyperbolic logarithmic transseries f, i.e., we solve a conju-

gacy equation:
@oofop, = fo+h.0b.(z), (2.22)

in the variable @y € £°. The solution is not unique in the space £°, since it obvi-
ously depends on higher order blocks of the right-hand side of (2.22). On the other
hand, in the proof of case (b) below, we show that, if we impose the canonical form

of ¢, i.e., oo =id+zH, for H € 93;1 C %, then ¢ is unique.

We call such ¢y the prenormalization (or prenormalizing transformation) of f and
equation (2.22) the prenormalization equation. The prenormalization ¢ is obtained
by transforming the prenormalization equation to the fixed point equation and using

the fixed point theorem stated in Proposition 1.2.12.
Step 2. We apply the procedure from case (a) to solve the conjugacy equation:
pro(@ofopy ') opr! = fo,
in the variable @, € £°. By case (a), it follows that such ¢; € £° is unique.

In the next lemma we first define the operators 7 and .#; on the complete space
(%;,dl) that transform a prenormalization equation (2.22) to the fixed point equation

(2.23).
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Lemma 2.1.16 (Transforming a prenormalization equation to the fixed point equation,
Lemma 4.2, [29]). Let k € N> and f(z) = Az +h.o.t. € £, with 0 < A < 1. Write
f = fo+ f1, where fy is defined as in (2.5), and ord; (f;) = 1.

A transseries @g = z+zH +h.0.b.(z), with H € %, satisfies a prenormalization

equation (2.22) if and only if H satisfies the equation
To(H) = S (H), (2.23)

where the operators %, . : A3, — B C %L, are defined by:

To(H) = (—llogk —(1+1ogA)Ry— A Z 1(1_—1)11) (io)l) Dy (H)+
+Dy(Ro)- (H+I>Z§l )—H-R,
Fo(H) = A, (H) + G, (H) — Hiy (H) + Hr(H) +R. (2.24)

Here, R € %’T C % is defined by f; = zR+h.0.b.(z), and Ry € %;1 C % is defined
by fo = Az+zRo. The operators ), Cry, Hr,, Hr : B — By C A7, are suitable

%-contraotions with respect to the metric d;.

The above %—contractions are obtained from the appropriate contractions from Lemma A.2.8,

Lemma A.3.1 and Lemma A.3.3. The precise definition of these contraction operators is

visible in the proof.

Proof. Setting ¢y = z+ zH +h.0.b.(z), where H € 93;, fo=Az+zRo and f = fy+
zR 4+ h.0.b.(z), we rewrite prenormalization equation (2.22) as an equation satisfied by
H, R and Ry. To this end, we use the Taylor Theorem (Proposition A.1.6) to expand the
compositions in (2.22) and compare the leading blocks (namely the blocks with ord, equal
to 1) of both sides of the equation. We obtain:
) Az),
AzH —AzH(Az) — Z‘,f (ZRO)

i>1

(zH)'+zR. (2.25)

\\/M
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By Lemma A.3.1 and Lemma A.3.3 we have:

AzH —AzH(Az) = —AlogA -zD1(H) — 126, (H),

(i) .
Z M(ZRO)I

|
i>1 L

=zH -Ry+zD(H ) ((1+log7L Ro—f—)tz( 1)1i> <I;f))i>+2(€RO(H)a
i>2 !

(2.26)

where € and €%, := € (-, Ro) are superlinear §-contractions on the space (#5,,d1) from
Lemma A.3.1 and Lemma A.3.3. Moreover, since ord (R) > (0,1;), by Lemma A.2.8,

Lemma A.3.1 and Lemma A.3.3, it follows that:

()
y (ZR;) (zH)' = 2Ro- H + 2D (Ro) - ") +odr(H), (227
i>1 : 1>2

) ®) .
Z M+ZRO) (zR)' = (zH)'(Az+zRo) - 2R+ ) (=H) (%ZjLZRO) (zR)' =

|
i>2 A

=zH -R+z#gr(H),

where the operator #g, := € (Ro,-) is a i—contraction on the space (%i l,dl) from
Lemma A 2.8, and ¥z is a superlinear J-contraction on the space (%<,,d;).

Now, eliminating z and using (2.26) and (2.27) in (2.25), we obtain:

(~AlogA — (1-+logA)Ry—2 Z El__l )1i) (T)) Dy(H)+ (2.28)

+Di(Ro)- <H+Z o

) H-R=
= A6y (H) +Cry(H) — g, (H) + Ar(H) +R

It follows that (2.28) is equivalent to % (H) = y(H), where .%, and % are defined in
(2.24). m

In the next lemma we prove that operators %) and .# defined in (2.24) satisfy all the

assumptions of the fixed point theorem stated in Proposition 1.2.12.

Lemma 2.1.17 (Properties of the operators .7 and .#), Lemma 4.3, [29]). Letk € N>
and f(z) = Az+hot. € LH, with0 <A < 1. Let f = fy+ g, where f; is defined as in
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(2.5),and ord (g) > 141, ord; (g) = 1. Let the operators %, .79 : ,%’; — B, ,%’; C %,
be defined as in (2.24). Then:

1. Qisa %—homothety on A7, with respect to the metric di,
2. SHisa %—contraction on ,@i | with respect to the metric d,
3. 5’0(%’;1) - %(%;).

Proof. 1. From the definition of .7 in (2.24), by Example 1.2.8 and Lemma A.2.11, we

deduce that
ord (Jo(Hy) — Jo(H,)) = ord (D\(H —Hy)), Hi,H, € #%,, Hy # H,.
In particular,
ordy, (Jo(H — T (H,)) = ordy, (D1 (Hy — H»)) = ordy, (Hy — H») + 1,

for H),H; € %’; | such that Hy # H,. Therefore, 7 is a %—homothety.

2. Part 2 follows directly from the definition of the operator .# in (2.24).

3. Let us prove that Yo(e%’;) C %(%’;). Let M € Yo(e%;). By (2.24), since
ord (zR) > 1;41, it follows that ord (zM) > 14, ;. We prove that M € %(%;1). Indeed,
dividing both sides of

J(H) =M (2.29)
by —AlogA — (1+1ogA)Rg—A Y>> % (%)l and applying Proposition B.5.1, we ob-
tain that there exists a H € %’; | such that (2.29) holds. [

Finally, we use Lemma 2.1.16 and Lemma 2.1.17 to prove the case (b) of Theorem A

(see [29, Subsection 4.2.3]).

Proof of case (b) of Theorem A. Note that the logarithmic transseries @y € £° satisfying

(2.22) is necessarily of the form
®0(z) =z+zH +hob.(z), HeHL C.%L,

for some m € N> .
By Lemma 2.1.16, to prove the existence of a solution ¢g of equation (2.22), it is

enough to prove the existence of a solution H € ,%’JZF | € &, of fixed point equation (2.23).



Normal forms of logarithmic transseries Normal forms of hyperbolic transseries

By Lemma 2.1.17, equation (2.23) satisfies all the assumptions of the fixed point theorem
from Proposition 1.2.12 on spaces %; 1 € %, for every m > k. Therefore, there ex-
ists a unique solution H € %’;1 C %, m >k, of equation (2.23). By Lemma 2.1.16,
@o(z) = id+ zH +h.0.b.(z) is a solution of equation (2.22), which is unique in £° up to
h.0.b.(z). Therefore, we set @y := id +zH as the canonical form. With this convention,
the prenormalization ¢ in the canonical form is unique. Moreover, ¢ belongs to .%;, for
the smallest k € N> such that f € .Z.

Now we have that
Qyo fo (p(;1 = fo+ f2, for some f, € % such that ord, (f>) > 1.

Hence, we can apply case (a) to reduce fy+ f> to the normal form fy. By the proof of

case (a), we know that there exists a unique @; € £0, such that

gro(gnofopy oo = fo.

Moreover, @; € %, such that ord; (¢;) > ord; (f2).

Now, ¢ := @ 0 ¢y € & is the normalization in case (b), i.e.

Qofop~' = fo. (2.30)

It remains to prove the uniqueness of the whole normalization ¢ € £°. Suppose that
there exists another parabolic logarithmic transseries ¥ # ¢, y € £, satisfying (2.30).
Then y € ,Z,g, for some m > k. Let us decompose Y as ¥ = y o Yy, where Y is of the
form yp =id+zV +h.0.b.(z), V € %’; C %y, and ord, (y; —id) > 1. It is easy to see

that such V is unique. Now,

llfoofollf(f1 :‘I/flofoollfl = fo+21,
Pofop, =@ ofyopr = fotg,

where ord; (g1), ord; (g2) > 1, are both prenormalization equations for f. By the proof of
case (b), it follows that V = H.
Now put ¥ := wo(id+zV)~ ! € £2and @; := @o (id+2zV)~! € £°, where (id+2zV)~!

is the compositional inverse of the logarithmic transseries id +zV. Set f] := (id+zV)o
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fo(id+zV)~! = fo+h, ord, (h) > 1. Then:

viofiow ' = fo,
¢1Of10¢f1 = fo.

By the uniqueness in the proof of case (a), y; = @;. Therefore, ¥ = @. [

2.1.3. Proof of the minimality of the normal form f

Let f € £ be a hyperbolic logarithmic transseries and let f; be its initial part as defined
in (2.5). By Proposition 2.1.1 it follows that, for every g € £/ such that there exists a
solution of conjugacy equation @o fo@~' =g, ¢ € £°, we have that g = fy +h.o.t. On the
other hand, in Subsection 2.1.2 we have proved the existence of a parabolic ¢ € £° such
that @ o fo@~! = f. This implies that f; is indeed the minimal logarithmic transseries

to which f can be conjugated via parabolic change of variables ¢ € £°.

2.1.4. Proof of the convergence of the generalized Koenigs sequence

In the previous subsections, for every hyperbolic logarithmic transseries f € £, we
have constructed its normalization ¢ € #, which reduces f to its normal form f, given
in (2.5). Moreover, ¢ was obtained by a two-step algorithm: 1. the prenormalization, and
2. the normalization of the prenormalized hyperbolic logarithmic transseries.

Each of these steps can be realized as the limit of a Picard sequence of an appropriate
contraction on the appropriate complete metric space. In the prenormalization step, the se-
quence consists of the forward iterations of the contraction 90’1 0.7, and, in the normal-
ization step, the sequence consists of the forward iterations of the contraction 9[1 o.% fs
see [29]. Here we pose the following question: Although &7 is not a contraction in any
previously introduced metric on %%, do the forward iterations of &7y converge in some
natural topology on .£;? If the answer is positive, is their limit the unique normalization
o?

In what follows, we give sufficient and necessary conditions for the convergence of the
forward iterations of Z; in the weak topology. The proof relies on a transfinite induction

and is given in Proposition 2.1.25 at the end of the subsection. First we give the definition
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of the sequential continuity which is a special case of the transfinite sequential continuity

defined in [21, Subsection 4.2]).

Definition 2.1.18 (Sequential continuity, see e.g. [21]). Let¥ : o — %, k € N, be an
operator and let <7 be a differential subalgebra of .Z}. We say that ¢ is the sequen-
tially continuous operator on % if for every sequence (g,) in 7, with property that
Supp (g,) € W, for each n € N, where W is a common well-ordered subset of R x Z*
such that minW > 0,1, and such that (g,) converges in the weak topology to g € <7, it

follows that (¢(g,)) converges to ¢(g) (in the weak topology).

Remark 2.1.19. Suppose that ¢ : o/ — %, for a differential subalgebra <7 of %, is a
sequentially continuous bijection, such that its inverse ¢4~ is a sequentially continuous.
Then every sequence (g,) in .7, with property that Supp (g,) C W, for each n € N, where
W is a common well-ordered subset of R x Z* such that minW > 0, ;, converges in the
weak topology to g € <7 if and only if the sequence (¢(g,)) converges to ¥(g) (in the
weak topology).

Definition 2.1.20 (Right composition operator). Let ¢ € £ and let Ry : £ — £ be the
operator defined by Zy(g) = go ¢, for each g € £. We call %, the right composition

operator with respect to ¢.

Remark 2.1.21. Let ¢ € £, The right composition operator ¢ is a bijection and its

compositional inverse is equal to %(P_l ,1.e., (%(p)_1 = %(p_l.

The following proposition is needed for the proof of Proposition 2.1.25.

Proposition 2.1.22 (Sequential continuity of the right composition operator, Lemma 4.10,
[29]). Let @ € £/ and suppose that k € N is minimal such that ¢ € .i”kH . The right

composition operator %, is sequentially continuous on .Z,, for each r > k.

Proof. Let r > k be arbitrary. Since .Z; C %, we have ¢ € .%,. Therefore, our ambient
space in this proof is .Z,. Let (g,) be a sequence in ., and W a well-ordered subset
of R x Z" such that minW > 0,1, and Supp (g,) C W, for every n € N. Suppose that
g&n — 80, as n — oo, with respect to the weak topology. Put ¢ :=id + ¢;, where ¢, € .Z,,

ord (¢;) > (1,0,). By the definition of a composition, we have:
- g
8&no @ :gn(ld+<P1) Zgn+zi—!(pi, forn e N.

i>1
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By Proposition A.3.5, it follows that, for n € N, the supports of g, o ¢ are contained in the

semigroup G generated by W and
{((X— lam)7(07 1707'"50)r+17""(0707”'7071)r+1})

for (a,m) € Supp(¢;). Let w € G. By the Neumann Lemma (Theorem 1.1.2), there
exists ky € N and a linear real polynomial Py in ky variables (the coefficients of which

depend on ¢ but not on n € N), such that

(220 @]y = Py ([8nly, - [8nly,, ) - forn €N, 2.31)

Here, wy,...,wy, are finitely many elements of G, independent of n € N. By continuity

of polynomial functions, we have:

P ([8alw, ++- -+ [8alwg, ) = P ([80]w, +--- [80)w, ) - (2.32)

Thus, using (2.31) and (2.32), we obtain, for every w € G:

[8n o @)y —2 8000l
n

Remark 2.1.23. Let ¢ € .,%H , for k € N. By Proposition 2.1.22, Remark 2.1.19 and
Remark 2.1.21, it follows that:

Every sequence (g,) in .%,, r € N, with property that Supp (g,) C W, for each n € N,
where W is a common well-ordered subset of R x Z" such that minW > 0, |, converges
in the weak topology to g € .Z, if and only if the sequence (g, o @) converges to go @ (in

the weak topology).

The next lemma is an auxiliary technical lemma for the proof of Proposition 2.1.25.
We suggest the reader to skip it and read its proof only when it is required in the proof of

Proposition 2.1.25.

Lemma 2.1.24 (Lemma 4.11, [29]). Letm € N and f € £ be hyperbolic logarithmic
transseries. Let fy be its normal form given in (2.5) and let ¢ € ,Zn(z be its normalization.
Let 1 € £ be such that Lb,(h) = Lb, (¢) and let € be as in (2.40). Let Pg > Tor
(B,m) € 5 and n € N, be as in (2.42). Then

Py =Agm({Ppn: (v,m) € S, (yn) < (B,m)}) +AP~1PE  forneN.
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Here, for (f,m) € A, the Ap m are linear polynomials in the variables {P}, : (¥,n) €

H, (y,m) < (B,m)}, whose coefficients are independent of n. The coefficients depend

only on f, h and ¢.
Proof. Let Py, (V,r) € €, n €N, be as in (2.42). We define, for (y,r) € A, neN,
7 o(—n+1 . on
Ry, = [f0< n+ )o(1d+h1)of0 ]%r. (2.33)
First, we prove that

Ry =Bgm({Pfn: (Bm) €A, n<m})+AP-Py . (Bm)e, neN, (234)

where Bg . (B,m) € % are linear real polynomials in the variables {Pg n € Hin<
m}, whose coefficients are independent of n. Indeed, for any (8, m) € S, m = (my,...,my) €

7" andn € N,
(ngmzﬁeTl ) o fy = Pg,mgﬁzﬁwu -l (1+hoo.t.(%)).

Here, the notation h.o.t.(%)) means higher order terms lying in 9;. The statement (2.34)
then follows simply by fy "o (id+h1)o fit! = (fo "o(id+hi)o ffl) o fo and the Neumann

n-+

Lemma (Theorem 1.1.2). Indeed, it can be seen that the coefficient Rﬁ ! in step n+

m
1 can be expressed as a linear real polynomial, with coefficients independent of n, of
finitely many coefficients P”,n, n < m, from previous step and of Plrim' Here, A is as in
Proposition 2.1.25, defined by id+ /4, = ho @~ 1.

Let us prove that:

—~ 1
Pim =Com({Ryn'  (vm) €2, (v,m) < (B.m)}) +2RGG. (239)

Then, by (2.34), it follows that, for (8,m) € J# and n € N,

—

Pt =Cpm({Ryh (v;m) € A, (v,m) < (B,m)})

1 /1 7 — 143
+X'Bﬁ,m({Pﬁ,n3 (B,n) € 7, n<m}) +AB-1p m

=Apm({Pfn: (rm) €A, (v.m) < (B.m)}) +47~ 175

where Cg 1, and Ag p, are linear real polynomials in the variables { Py, : (¥,n) € A, (7,n) <

(B,m)}, whose coefficients are independent of n. This proves the lemma.
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In order to prove (2.35), let ko := f, - %id. It is easy to see that ko contains only

monomials which are of order 1 (in z). Let &, as before, be defined as id+ hy = ho (p*I,
and r by:

(55 o (id+h) o f5" ) = fo+r.

Then ord, (r) > 1 since ord; (h;) > 1. By the Taylor Theorem (Proposition A.1.6) we
obtain:

—1\O)
o(—n o(n . f ! f .
£ o (£ o (id+ Ry ) o 5T :ld+2(())(())r

i
!
1 1

>
()

. 1 ’ ko (fO) i
ld+<l+k0<f0)>r+i>zz T r
(@)

) 1 ky'(fo) ;
:1d+zr—|—z 0 22 H,

Clearly, by definition (2.33) of R,

1 } 1
—r = —R*L
|:l ﬁ,m l ﬁ7m

(2.36)
- K () : .
and (8,m) in };~; ="' can be realized as follows:
(Bam) = (Ylanl)+"'+(%7ni)+(1 —i,V),
= (’yl?nl) + (YZ_ 1,1’12) +oeet (%_ lani) +(07V)7 (237)

where (1—i,v) € Supp(k(()i)(fo)) and (y1,m1),...,(%,n;) € Supp(r). Note that y; > 1, j=

1,...,i,and v > 0,,. Note that, in (2.37), we can subtract -1 from any (i — 1) elements %,
k=1,...,i. Therefore, it follows from (2.37) that

(r1,m1),-., (%,m;) < (B,m).

Now (2.35) follows from the Neumann Lemma (Theorem 1.1.2), (2.36) and (2.37). N
In the next proposition we prove the statement 3 of Theorem A.

Proposition 2.1.25 (Convergence of the generalized Koenigs sequence, Lemma 4.9, [29]).
LetkeNand f € .ka be hyperbolic, and let f; be its formal normal form from (2.5).

For a parabolic initial condition / € £°, the generalized Koenigs sequence

Z7 ()= (5" oho f)

(2.38)
n
62



Normal forms of logarithmic transseries Normal forms of hyperbolic transseries

converges to the normalization ¢ € £° in the weak topology, as n — o, if and only if

Lb, (7) = Lb. (¢).

Proof. Let m € N be minimal such that f,h € £,,. We first prove the following: for
h, @ € £9, Lb, (h) = Lb, (¢) if and only if ord, (ho o — id) > 1.

(<) Leth e £° and let (NS fko be the normalization of f. Let m € N be the smallest
integer such that h € %) and m > k. Let ord, (ho @~! —id) > 1.

Since @o fo o~ ! = fo" for every n € N, it is easy to show that
P (h)o o ! = fg(fn) o(hogp Yo fs", foreveryneN.

Note that #"(h) o ¢! € £V, Therefore, by Remark 2.1.23 applied to g, := P (h) o
@' (which have support in the common well-ordered set HU {(1,0,,)}, for A given
below by (2.40)), in order to prove the convergence of (2.38) to the normalization @, it is

sufficient to prove the equivalent statement
o(—n) —1 on :
o(ho o —id
foo To(ho@ T )ofg" —

in the weak topology in .Z2.
Let iy be defined by ho @~! =id + h;. Then, by assumption, ord; (7;) > 1. By the
Taylor Theorem (Proposition A.1.6), it follows that
o(=n)\ (@) ¢ ron
fg(fn) o(ho (p_l) of = fg(fn) o(id+hy)o fy" =id+ Z —(f() i)‘ ")

i>1

)

(2.39)
By (2.39), for n € N, the leading block of fg(fn) o(ho@~')o f5mis equal to z. Let us
define the set %7 C Ry xZ" by

A= Supp(f5 ™ o (ho 9o f5" —id). (2.40)
neN

It can be shown, using (2.39) and the fact that fy contains only block of order 1 in z, that

J is well-ordered. It remains to prove that

5" o (ho@ )0 f5"] 4y =20

ok n—yoo
for every (a,k) € . We prove this by transfinite induction on .
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The induction basis. Let (0, ko) := mini?/, ko € Z™. By (2.39), since fo = A -id+
h.o.t.,
Le(f5 " o (id+hy) o fg" —id) = A" VLt (hy), forn €N, (2.41)

where « := ord, (h;). Therefore, by definition of A, ord (h1) = (0, ko). Now, by (2.41),
[f(;’(—n) o (hO (pfl) Of(sm} oo ko — l”l(aO*l) [hl] oo ko — 0, as n — oo,

since op—1>0and 0 < A < 1.

The induction step. For simplicity, let us denote, for (y,r) € A and n e N,
Proi= (15" o (id+ ) o £ - (2.42)
Suppose that (f,m) € A and (B,m) > (o, ko) and that
Py —0,asn— oo, forevery (y,r) € A, such that (7,r) < (B,m).

We prove that PEJH — 0, as n — oo,

Using inductively Lemma 2.1.24, we obtain:

P = Agm({Pn (v,m) €52, (v,m) < (B,m)})+
+ AP A m({P2RY: (vm) € A, (v,n) < (B,m)}) +...+
+ "B DAg W ({P2y s (im) € A, (v,m) < (B,m)}) +A DB p0

B,m
= Zz DAg m({Pia’: (y.m) € A, (y.n) < (B,m)}) + A DD 15

(2.43)

Note that, for (§,m) > (1,0,,), Pg m = [1]g.m- Let ayn € R be the nonzero coefficient of
Py, (it does not depend on n € N) in the polynomial Ag p, (1,0,,) < (7,n) < (B,m). We
prove that the sum

aynzw (B=1) pri (244)

converges to 0, as n — o. Then, since the first sum in the last row of (2.43) is a sum of
finitely many sums of type (2.44), it converges to 0, as n — co. Moreover, since 0 < |A| <
1, AB=D+1) s 0 asn — oo, Therefore, by (2.43), ngn] — 0, as n — oo. This proves the

induction step.
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It remains to prove the convergence of (2.44) to 0 as n — o. We observe that (2.44) is,

up to the factor ay p, the general term of the discrete convolution product of the sequence

(aiB-1)

]

and the sequence (P}",’n)ieN. The series ¥;en AP~ is absolutely conver-

gent and Yy ’/l"(ﬁfl) ) = . Hence, up to the multiplication by 1 — |4 |B ~! this

(A
convolution can be expressed as the product of the infinite vector (Pf,n) N by an infinite
) 1

Toeplitz matrix. It is well known (see for example [9, Section 2.16, Theorem 1]) that
such a product is a regular method of summability, which respects the limits of conver-

gent sequences. Since, by hypothesis, Pj",n — 0, it follows that (2.44) tends to 0 as n — oo.
7 oo

(=) Conversely, let 7 € £° and let m € N be the minimal integer such that &, f € .%,.

Suppose that
o(—n) —1 on :
foo TolhoeT)ofp" —id,
in the weak topology in £, and that ord, (ho @' —id) = 1. Setting ho ™' =z+zR+
h.o.b.(z), where R € %’; 1» R # 0, by the Taylor Theorem (Proposition A.1.6) we get:

o|—n on . On.R on
f()( )o(z—l—ZR—l—h.O.b.(z))of :ld—i_odi(o];o)
?zfo

Now, since f5" = A"z+h.o.t. and since Lt (R (f5")) = Lt(R), by (2.45) we get that

4o (2.45)

f0° o (z+zR+h.0.b.(z)) o fg" —id = zLt (R) +h.o.t. (2.46)

The first term does not change with n, and therefore the right-hand side of (2.46) does not

converge to 0 in the weak topology. |

2.1.5. Two normalizing sequences

In this subsection we explain two different algorithms for obtaining the normalization of
a hyperbolic logarithmic transseries f € £ to its normal form f; given in (2.5). In each
algorithm, the normalization is obtained as the limit of an appropriate sequence in appro-

priate spaces. Both algorithms begin with the same first step which is a prenormalization.

Step 1. - Prenormalization. By the proof of case (b) of Theorem A, the unique

prenormalization ¢y is given in the canonical form by @o = id+ zH, where H € 93’; isa
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unique solution of the fixed point equation 7 (H) = .y (H). Here, Jo, S : BL, — %%,
are the operators given in (2.24). By the fixed point theorem from Proposition 1.2.12, H

is the limit of the Picard sequence

((F5 "0 2)°"(Q)),» (2.47)

with respect to the metric d; on the space %<, and for any initial condition Q € %% .

Step 2. - Normalization

» Algorithm 1

Let f1:=@yofoq, !be the prenormalized logarithmic transseries from Step 1. By
the proof of case (a) of Theorem A, there exists the unique solution ¢; :=id+¢€
of the conjugacy equation @ o fi o @ = fo in the space £0, where € € £.q is the
unique solution of the fixed point equation .7, (¢) = 7, (€) in the space £-q, for
operators 7,7, + £-iq — £~iq given in (2.10). By the fixed point theorem from

Proposition 1.2.12, it follows that € is the limit of the Picard sequence

((‘qj{l Oyfl)on(h))na

with respect to the metric d_, for any initial condition & € £-q such that ord; (k) >
ord; (f1 — fo)-

Finally, we put @ := @1 o ¢, to get the normalization ¢ which reduces f to the

normal form fj.

* Algorithm 2

Let fi :=¢@go fo (po’l be as above. Since ¢y =id+zH, for H € %’;1, is the prenor-
malization, it follows that @y is the leading block (in z) of the whole normalization
¢. By statement 3 of Theorem A, it follows that the generalized Koenigs sequence
(23(h)),,, where Py, is defined as in (2.8), converges in the weak topology to the

normalization ¢, for any initial condition h € £° such that Lb, (k) = ¢y.

Remark 2.1.26 (The difference between the two algorithms). Note that the Picard se-

quence from the Step 2. of the first algorithm, in general, differs from the generalized
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Koenigs sequence from the Step 2. of the second algorithm. In particular, the first se-
quence converges in the power-metric topology and the second sequence converges in the
weak topology.

As opposed to the Picard sequence from the first algorithm which is deduced by the
Banach Fixed Point Theorem, the generalized Koenigs operator &y, as defined in (2.8),
is not a contraction in any of the introduced metrics (see Example 2.1.9). Furthermore, in
Subsection 2.1.4 we proved the convergence of the generalized Koenigs sequence in the
weak topology. It is proved using a transfinite induction and not as a direct consequence

of a fixed point theorem.

2.1.6. Control of the support of the normalization

In Theorem 2.1.28 at the end of the subsection, for a hyperbolic logarithmic transseries
f € £H, we determine the support of its normalizing change of variables ¢ € £°. More-
over, we prove that the support of ¢ depends only on f.

Let f € .%, for minimal k € N. The idea of the proof is to find a restricted space .2},
for a well-ordered W C R x ZK, min W > 0;. 1, which depends only on f, and such that
the proofs of case (a) and case (b) of Theorem A remain valid if we replace the space .Z;

by its subspace .%}" C %

In order to estimate the support of normalization ¢, we introduce a well-ordered set

Wg C R0 X 7K. Let W be the semigroup generated by

Supp(f)u{<a_17m) : ((X,m) € Supp(f_)‘ld)}u{(oﬂla70)k+17 "'9(07"'7071)k+]}’
(2.48)

Inductively, we define the sequence W,,, n € N> of semigroups, such that W, is gener-

ated by

WﬂU{(ﬁ17m1> +"'+(Bn+1>mn+1) - (I’l,()k) : (ﬂbmi) Wy, Bi > 1}' (2.49)

By the Neumann Lemma (Theorem 1.1.2), it follows that W,, is well-ordered, for each

n € N>j. Put:

W::UWn

n=1
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and
Wg:=Wn (Rsp x ZF). (2.50)
In the next proposition we prove that the set Wy is well-ordered.

Proposition 2.1.27 (Proposition 5.2, [29]). Let € R and suppose that Wg is as in
(2.50). Then Wp is a well-ordered set with the property that

(B17m1)++(ﬁm7mm)_(m_la0k)ewﬁ7 (251)
forall (By,my),...,(Bn,m,) € Wg, m > 2.

Proof. Property (2.51) follows directly from (2.49) and the fact that W is the increasing
union of the sets W,, n € N>.

Hence, we only need to prove that Wg is well-ordered. Since Wg = (R x 7w,
it is sufficient to prove that W is well-ordered. In general, an increasing union of well-
ordered sets may not be well-ordered. So, we give a proof based on the specific properties
of the sets W,. Let A be a nonempty subset of W, and let us prove that A admits a minimal
element.

Set Wy := 0 and let I be the set of all n € N such that AN (W, \W,_;) # 0. Let
W, := min (A N (W, \Wn,l)), n € 1. Such a minimum exists because the sets W, for
n € I, are well-ordered. We have now constructed a sequence (W, ), of minimal elements
of the sets AN (W, \ W,_1), n € I. Clearly, min A = min{w,, : n € I}. Therefore, it is
enough to prove that the family {w, : n € I} has the smallest element. Note that, by
(2.49), min(W,, N (R x Z*)) = min(W, 1 N (R x Z*)),n € N, and, therefore, min(W N
(R=1 x Z%)) = min(W; N (R+1 x ZF)). Now let

w :=min (W, N (R x Z¥)). (2.52)

Take mq € 1. By Archimedes’ Axiom and since the first coordinate of w is strictly greater
than 1, there exists ng > my, such that n-w— (n—1,0;) > Wy, for all n > ny. By (2.52),

w, >n-w—(n—1,0;) > w,,, for every n € I, n > ny. This implies that
minA = min{w, :n €I} =min ({w;:i € 1,i <no} U{Wpy,}).

The latter set is finite, therefore, the minimum exists. [ |
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Theorem 2.1.28 (Control of the support of the normalization, Proposition 5.4, [29]). Let
f(z)=Az+hot. € £, keN,0<A <1,andlet ¢ € 9%0 be the normalization of f to

its normal form f; from Theorem A.! Then

. W()UW\E
p—ide 2, ,

where B := ord; (1 — fo), B > 1, Wo := Supp (z~ ' (9o —id)),
W = (WoUWp ) 1 (Rop x 21, (2.53)

and

Wo := (1,04) + Wp. (2.54)

Here, in case (a) of Theorem A, we simply put Wy := 0.
In particular, the support of the normalizing change of variables ¢ depends only on

the support of the initial logarithmic transseries f.

Proof. Case (a). Here, we put Wy := 0, and therefore, Wy = 0 and Wﬁ = Wp. Itis enough
to check that the proof of Lemma 2.1.15 works the same if, in Lemma 2.1.15, we replace
.Zj{ﬁ by ng/s , where 3 := ord; (f — fp). First, we easily check, by Proposition 2.1.27 and
by the Taylor Theorem (Proposition A.1.6) of the operators .#y and .7 given in (2.10),
that they leave the spaces DZCWB invariant. Then we have to prove that .7% is a surjection
on .,Sﬂkwﬁ . That is, for a given block z'M,, € .fkwﬁ , we need to prove that its preimage by
T belongs to ngﬁ as well.

To this end, define, for a well-ordered subset V of {0} x 7k the set

H(V):= <VUSupp <z_1go> U{(O,l,O,...,O)kH,...,(0,0,...,1)k+1}>.

H (V) is also well-ordered, by the Neumann Lemma (Theorem 1.1.2). It is easy to see

that

%?(SUPP(MV)) C B,

is invariant under the action of .#], where .7} is as defined in (2.19). Note that z !g

is nothing but Q in the proof of Lemma 2.1.15. As the space (,%’fl(supp(MY)),dl) is

'In case (a) of Theorem A, let f; := f. In case (b), let f; € .% be the prenormalized transseries.
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complete, it follows from the proof of Lemma 2.1.15 that .} has a unique fixed point in
S

%7 ( upP(MV)). Hence, the preimage z"Hy of zYMy by .7 belongs to .Zj(WB .

Therefore, we can apply Lemma 2.1.15 to restricted spaces .,Z”kwﬁ instead of .Zfﬁ to

conclude that ¢ —id € kaﬁ .

Case (b). Let @y be the prenormalizing transformation of transseries f = fy -+ h.o.t.
(where f and fj are as defined in the Theorem A), which contains only the leading block.
It is easy to see that Wy = Supp (zil (o — id)) depends only on the leading block of the
initial transseries f. Indeed, it is obtained as the limit of a Picard sequence (2.47) with
contraction operator depending only on the leading block of f, where the initial condition
Hy € %’; | can be chosen arbitrarily.

Let now 8 :=ord; (@oo fo @, '~ f5). Obviously, B > 1. Let Wg be as defined in
(2.50), where the initial f (before prenormalization) is used in definition (2.48) of Wy. It

can be checked by the Taylor Theorem (Proposition A.1.6) that
Supp (' (¢ ' —id)) € <W0U{(O,1,...,0)k+1,...,(O,...,O,l)k+1}>.

Then, for fi ::(pOOfO%_l,
\17
fi—foe L P,

It can be checked that the set WB satisfies property (2.51) from Proposition 2.1.27 and, by
the same reasoning as in case (a), that %W,; is invariant under .7, and ch. Therefore,

the normalization ¢ reducing f1 = @po fo @, !'to the normal form f belongs to ¢ —id €

W,

B
2" o
W()UWB

Finally, by (2.54), it holds that ¢ —id € .%, ]



Normal forms of logarithmic transseries  Normal forms of strongly hyperbolic transseries

2.2. NORMAL FORMS OF STRONGLY

HYPERBOLIC LOGARITHMIC TRANSSERIES

This section represents a generalization of the results obtained in [21, Theorem A] for
strongly hyperbolic logarithmic transseries of depth 1 to strongly hyperbolic logarith-
mic transseries of an arbitrary depth. Instead of transfinite compositions of elementary
changes of variables used in [21], we use the fixed point techniques to obtain normal
forms.

We consider a strongly hyperbolic logarithmic transseries f € £, ie., f = Az% +
h.o.t, A, € R\ {1}. Note that yo foy~! =z%4h.o.t.,, where y := A@T-idis a
homothety. Therefore, without the loss of generality, we assume that f = z% +h.o.t. We

consider the conjugacy equation
pofopl=g ¢ef (2.55)

for g minimal in £ in the sense that g has as little number of terms as possible. By
Proposition 2.0.1, if conjugacy equation (2.55) has a solution, it follows that g = z* +

h.o.t. We set g := z% and, in the sequel, we consider the conjugacy equation:

o

pofop'=z% o¢ecg

Every solution ¢ of the above equation will, as before, be called a normalization of the
strongly hyperbolic logarithmic transseries f. Furthermore, logarithmic transseries z%

will be called the normal form of f.

In Subsection 2.2.1 we state the normalization theorem for strongly hyperbolic loga-
rithmic transseries. Subsections 2.2.2, 2.2.3 and 2.2.4 are dedicated to proving all three

statements of the normalization theorem, respectively.

2.2.1. Normalization theorem for strongly hyperbolic logarithmic transseries

In this subsection we state the normalization theorem for strongly hyperbolic logarithmic

transseries.
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Theorem B (Normalization theorem for strongly hyperbolic logarithmic transseries). Let

f € £ be such that f = z% +h.o.t., for & € R, & # 1. Then:

1. There exists a unique solution ¢ € £° of the normalization equation:

pofop !l =2z% (2.56)

Moreover, ord; (¢ —id) > ord; (f —z%) —a + 1.

Additionally, if f € £, then ¢ € £.

. If o > 1, then, for every initial condition & € £0 the Bottcher sequence

(2@ oho f), (2.57)

converges to the normalization ¢ in the weak topology on £° as n tends to +oo.
Moreover, the sequence (2.57) converges in the power-metric topology on £° if and

only if the initial condition 4 is such that Lb, (k) = Lb, (¢).

. Let f € %, k € N. The support Supp (¢) is contained in the semigroup generated

by (aP,Ok), peEN, (0,1,0,...,0)k+1, cee, (0,0,...,0,1)k+1, and ((Xm(’}/—OC),l’l),
for (y,n) € Supp (f —z%),m e N.

Remark 2.2.1.

1. Let fe ¥, f =z%+h.o.t., @ € Rug, o # 1, be a strongly hyperbolic logarithmic

transseries such that ord, (f —z%) > «, by statement 1 of Theorem B, it follows that
there exists a unique normalization @ € £0. It satisfies ord, (¢ —id) > ord, (f —
z%)—a+1 > 1. Therefore, ord; (¢ —id) > 1 and, consequently, Lb, (¢) = id. By
statement 2 of Theorem B, it follows that the Bottcher sequence (z% oho fo"),
converges to the normalization ¢ in the power-metric topology on £°, for each & €
£9 such that ord, (& —id) > 1. In particular, putting /4 := id, (zﬁ o f°"),, converges

to ¢ in the power-metric topology on £°.

. Notice that, by statement 3 of Theorem B, the support Supp (¢) depends only on

Supp (f). In particular, Supp (@) is independent of Supp (%), for the initial condition
he £l
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2.2.2. Proof of statement 1 of Theorem B

We first explain that, without the loss of generality, we can consider only the case when
ord, (f) > 1, for f € £H.
Suppose that f = z% 4 h.o.t., for 0 < & < 1. Note that f~! = zé +hot. If o € £0is

a solution of the conjugacy equation @ o fo @~! = z%* then
poflog = (pofop )= (z) " =zu.

. 1 S
Furthermore, it can be proven that ord, (f —z%) — ot = ord. (f - za) — é, which is im-

portant for statement 1 of Theorem B.

The structure of the proof is similar to the proof of the normalization theorem for hy-
perbolic logarithmic transseries stated in Theorem A in Section 2.1. We first transform
normalization equation (2.56) to the equivalent fixed point equation using the so-called
Bottcher operator in Lemma 2.2.4. Then, in Lemma 2.2.6, we give a sufficient and neces-
sary conditions for the contractibility of the Bottcher operator, with respect to the metric
d.. This forces us, as in Section 2.1, to distinguish two cases: ord; (f —z%) > 1 and
ord; (f —z%) = 1. In the first case, the Bottcher operator is a contraction and therefore,
the corresponding Picard sequence converges towards the normalization in the power-
metric topology. However, in the second case, as in Section 2.1, we first prenormalize the
initial strongly hyperbolic logarithmic transseries f, i.e., eliminate every term of order 1
(in z) except z*. After the prenormalization, we normalize the prenormalized transseries

f, as in the first case, using a variant of the Bottcher operator on the space of blocks.

Transforming the conjugacy equation to the fixed point equation

In this subsection, for a strongly hyperbolic logarithimc transseries f = z* +h.o.t., a €
R~ 1, we transform the conjugacy equation (2.56) to the fixed point equation, using the

so-called Bottcher operator which is motivated by the Bottcher Theorem.

Theorem 2.2.2 (Béttcher Theorem, see e.g. Theorem 4.1, [4], Theorem 9.1, [24]). Let
f € Diff(C,0) be a strongly hyperbolic complex analytic germ of diffeomorphism at zero,
i.e., f(z) = 7"+ o0(Z"), for n > 2. There exists a parabolic analytic change of variables

¢ € Diff(C,0), 9(z) = z+0(z), such that 9(f(2)) = (¢(2))".
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Motivated by the Béttcher Theorem, and the Koenigs Theorem stated in Theorem 2.1.7,
we define an analogue of the generalized Koenigs operator from (2.8) for strongly hyper-

bolic logarithmic transseries, which we call the Bottcher operator.

Definition 2.2.3 (Bottcher operator and Bottcher sequence). Let f = z%* +h.o.t., a €
R-1, and let 2 : £0 5 29 pe defined by:

P(h) i=zaohof, he gl (2.58)

The operator & is called the Bottcher operator.
We call (£77"(h)), the Bottcher sequence of the strongly hyperbolic logarithmic

transseries f with the initial condition h € £°.

Lemma 2.2.4 (Transformation of the conjugacy equation to a fixed point equation). Let
feth f=z%+ho.t, acR.q,and let 2/ be the Béticher operator defined in (2.58).
Then, ¢ € £° is a solution of the normalization equation (2.56) if and only if ¢ is a fixed

point of the operator .
Proof. Directly from (2.58) and normalization equation (2.56). |

Lemma 2.2.5. Let f € £/ be such that f = z* +h.o.t., & € R.1, and let 8 := ord, (f —
7%) —a+1. Let ¢ € £° be a solution of the normalization equation (2.56). Then ord, (¢ —
id) > B.

Proof. If B = 1, then obviously ord; (¢ —id) > B. Suppose that B > 1. Let ¢ be a
solution of the normalization equation (2.56). Put ¢@; := ¢ —id and f} := f —z%*. Note

that ord, (f;) = o+ B — 1. From the normalization equation (2.56) we get:

20 (%+ fi+@rof) =id+ @1,

() (o 1
fi | o1(z%) ®;’(z%) .1\« .
(1 G+ +,§1 L f)  =idran (2.59)

Suppose that ord; (¢ —id) < B, i.e., ord; (¢;) < B. Note that ord (z‘){ll) = B. Since

ord; (¢ —id) < B, by (2.59) and the first formula in (A.1), it follows that

¢1(2%)
aza—l

id+Lt( >+h.o.t.:id+(p1.
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Therefore, the order (in z) of (g'z fi) is equal to the order (in z) of ¢, which implies

that a-ord; (¢;) —a+ 1 = ord;(¢y), i.e., ord;(¢;) = 1. Since ord(¢;) > (1,04), by

70— 1

Lemma A.3.2 and by multiplication by =, we get Lt( ks )> = aan Lt(¢;), for some

n € N, which is a contradiction. Therefore, ord; (¢ —id) > B. [ |

In the next proposition we give a sufficient and necessary condition for contractibility

of the Bottcher operator defined in (2.58).

Lemma 2.2.6 (Contractibility of the Bottcher operator 7). Let f € ZLH meN, be
such that f =z%+h.o.t., &« € R-y, and let &/ be the Bottcher operator defined by (2.58).
Then:

1. The space id—l—.i”kﬁ is Z-invariant, for every > 1 and k > m.

2. For every k > m, the operator #; is a contraction on the space (id +.Z P ,d) if and

only if 8 > 1. In that case, the operator &y is a m—contraction on the space

(id+.2P.d.), k>m.
Proof. 1. Let fi:=f—z%andleth € id+$kﬁ. Put i := h—id. Now we get:

e@f(h) :Z!?ohof

1

zeo(z%+ fi+hof)

:z(1+f1+hl(za) +¥

f{) “ (2.60)

Let

h
N (h) == )
(h) Z+ +,>1 Zl,

By the first formula in (A.1), we get:

Pp(h)=id+z Y ( ) ). (2.61)

Jj>1

It is obvious that Z(h) € £ and since ord, (h;) > B and ord,(fi) = a+ B —1, it

follows that:
i
Ordz (F) = ﬁ, (262)
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a
ord, (flzl()(tzl)) =a-ord; (h;))—a+1

=ord; (h1) + (a—1)-ord; (h) — (a —1)

> ord, () + (e —1)(B —1) (2.63)

and

() (o
ordz(z}wf{) > - (ord, (1) — 1) — (et — 1) +ord, (f1)
i>1 :
> o -ord; (hy)
=ord; (h)+(a—1)-ord; (h)

>ord; (h))+ (e —1)(B—1). (2.64)

Note that, if ord; (h;) = B, equality holds in (2.63). From (2.62), (2.63) and (2.64), we
get that ord, (z.#"(h)) > B, and, therefore, by (2.61),

ord; (Z¢(h) —id) > B.

This implies that 2 (id +.27) Cid+.2F.

2. Letid+hy,id+hy € id—l—i’j{ﬁ. Using (2.61), (2.63), (2.64), we get:

ord, (e@f(idJrhl) — ng(id+h2)) = ord, (;ZJV(hl) — OtZJV(hz))
>ord; (hy —hy)+(a—1)(B—1). (2.65)

From (2.65), we conclude that ¢ is a W—Lipschitz map. Suppose that ord; (A —
hy) = B. Then, the equality holds in (2.63). Hence, the equality holds also in (2.65).
Therefore, W is the minimal Lipschitz coefficient of &7¢. Consequently, it follows
that & is a contraction on the space id + .i”kﬁ if and only if B > 1. In that case, Zris a

m—contraction on the space id + ,fkﬁ . [ |

Let f € £, k€N, be such that f =z%* +h.o.t., « € Roy, and let f := f —z%. If
ord; (f1) > o, then > 1. By Lemma 2.2.6 and the Banach Fixed Point Theorem (The-
orem 1.2.11), it follows that there exists a unique fixed point ¢ of the Bottcher operator
in every space id + .ZE , m > k. Since, by Lemma 2.2.5, every solution of the normal-

ization equation (2.56) belongs to some id + ,Zmﬁ , m > k, by contractivity of the Bottcher
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operator, it follows that ¢ is unique in £°. Moreover, ¢ is obtained as the limit of the
corresponding Picard sequence, with respect to the power-metric topology, for any initial
condition.

However, if ord; (fi) = «, then B = 1. By Lemma 2.2.6, the operator ¢ is not

a contraction on the space .2},

m > k, and we cannot apply the Banach Fixed Point

Theorem. Thus, we proceed in two steps:

Step 1. We prenormalize f, i.e., we solve a prenormalization equation:
@ofog, ' =z%+hob.(z), ¢ €L (2.66)

We call a solution ¢y a prenormalization of f. We prove that ¢p is unique up
to blocks of higher order. Thus, if we impose the canonical form ¢y = id + zH,

He %’;1 C %, then @y is unique in £0,

Step 2. We solve the normalization equation in the variable ¢:

o

pro(goofogy opr! =z
in the space £° using the discussion above.

Finally, ¢ := @ o @y is the desired normalization in £°.

Proof of step 1 (prenormalization)

In order to apply Lemma 2.2.6, we first prenormalize logarithmic transseries f € £7,

f=z%+h.o.t., a € R.y. That is, we solve prenormalization equation (2.66).

Definition 2.2.7 (Béttcher operator on the space id +z%>1). Let f € £H, k€ N>y, be
such that f =z%+z%Ry +h.0.b.(z), x € R~ j,and Ry € %;1 C % LetZy: id—l—z%’;1 —
id+ ze%’;, be the operator defined by:

Ry(d+H) =270 (id+zH) o (% + 2%Rq), HeE B, C %. (2.67)
The operator %y is called the Bottcher operator on the space id + ze@;r 1-

In the next lemma we transform prenormalization equation (2.66) (where we consider

only canonical solutions) to the fixed point equation on the space id + z %< 1

77



Normal forms of logarithmic transseries  Normal forms of strongly hyperbolic transseries

78

Lemma 2.2.8. Let f € .2, k € N>y, be such that f = z% 4+ z%Rq +h.0.b.(z), @ € Roq,
Ry € %;1 \ {0} C %, and let Z be the Béttcher operator on the space id +Z%§ A
defined in (2.67). Parabolic logarithmic transseries ¢y = id+ zH, H € %; | € L is
a solution of prenormalization equation (2.66), if and only if ¢y is a fixed point of the

operator Z .

Proof. Let 99 =id+zH, H € 95’; | € % be a solution of prenormalization equation
(2.66). Put g := @po fo@, Vand fi := f — (z* 4+ z%Ry). By the Taylor Theorem (Propo-

sition A.1.6), it follows that:

(2% +2%Ry) Lo f = (2% +2%Ry) ' o (2% 4+ 2%Re + f1)

o o —I\(@) (0 o
:id+z“((Z +2%Rq) i‘) (2 +2%Ra)

i,

i>1
so ord; ((z* +2%Rg) o f—id) > 1. Put f5 := (z* +2%Rg) "' o f. Note that ord; (f> —
id) > 1 and f = (z*+2z%R¢q) o f». Since g = @po fo @, |, we get gpo f = go ¢y, i.e.

zéo(poo(zoq—zo‘Ra):zéogo(poofz_l. (2.68)

Note that the left-hand side of equation (2.68) consists only of a 1-block, so zé ogo@yo
fr I also consists only of a 1-block. Furthermore, since g = z% 4+ h.0.b.(z), it follows that
7@ og=id+h.o.b.(z). Since ord, (f» —id) > 1, we conclude that ord, (f, ' —id) > 1, and
therefore, Qg ofz_1 = @p+h.0.b.(z). Now, from (2.68) we conclude that Z@o @oo (2% +
2*Ra) = @0, i.e., Z5(0) = Po.

To prove the converse, suppose that ¢y = id+zH, H € %’;1 C %, is such that
(o) = @o,i.e., Poo(z2*+2%Rq) =z% 0 @y. Since @po f = @po (z* +2%Ry)+h.0.b.(2),
it follows that gy o f = z%* o @y +h.0.b.(z), i.e., po fo (P(;1 =z%+h.0.b.(2). [

Unfortunately, the following examples show that the Bottcher operator on the space
id —I—z%;, defined in (2.67), is not a contraction, in general, in any of the metrics intro-

duced in Section 2.1.

Example 2.2.9 (Non-contractibility of the Bottcher operator % on the space id + zﬂg -
1. Let k € N> be arbitrary. Take metric d on the space id +Z%; | €2, defined by:
ooy (R=5) gy
0, R=S.

d(id+zR,id +zS) :=



Normal forms of logarithmic transseries  Normal forms of strongly hyperbolic transseries

Now, consider id and id + z¢; in id—i—z,%’;r |- Itis easy to see that d(id + z€1,id) = % Take
f=72%4+z%Ry+h.0b(z), x € Ry, and Ry € %’i C %, ordg, (Rg) > 2. Notice that:

R ( 1d—|—ZZ< )Rix,

i>1

and
Ry(id+ ) = zwo (id+z£1) o (2% +7z%Ry)
1
=id+ *Zzl +h.o.t.

a

Therefore, Z(id 4 2£1) — % (id) = éz[l + h.o.t., which implies that
. . 1 . .
d(Z;(id+z281),%5(id)) = 5= d(id+z£y,id).

Thus, % is not a contraction on the space id + A8 1 € £0, with respect to the metric d.

2. Let d be the metric on the space id + z%>l , defined by:

. _ =1 |ani—ag
d(id+zT,id+20) = Y - =
(id+27y,id +273) ;21 1+ |a1,;—az,

where T ;=Y Va1 £, T, := Y ar €. Let f:=z%+az%, a € Roq, a € Ry Itis

easy to see that d(id,id +z£;) = 1. Notice that:

1
1
R d a A+ 20,4+ — (=1 £ +ho.t. 2.
1+Zl;(’> =id+ 11—1—2 <a )az +h.o (2.69)

and

Ry(id+281) = 22 o (id + 21) 0 (z% +az%€y)

1 1 1 /1 1\2
=id+—(at— ety + ( (==1)(a+) +az> 2} +hot.
(04 o 20 \ o o o

By (2.69) and (2.70), it follows that:

1_ 20 , 1 a
()87 380) > 55 +1 Lt i +<(1 )1<)(2+ +?)++ |
o o

As a tends to 1 and a tends to +oo, d(%(id), Zf(id+z£1)) tends to 3 - 5+ -1 = 1. Since

d(id,id+z¢;) = %, there exists sufficiently small & € R~ and sufficiently big a € R,

such that Z; is not a contraction on the space (id+z%%,,d).
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Now, similarly as in Section 2.1 for hyperbolic logarithmic transseries, we transform
prenormalization equation (2.66) to a fixed point equation, in order to use the fixed point
theorem stated in Proposition 1.2.12 to prove the existence and the uniqueness of the

solution.

Lemma 2.2.10 (A fixed point equation for the canonical prenormalization). Let f €
.,ZCH, k € N>, be such that f = z%* +z%Rq +h.0.b(z), a € Ro, and Ry € 93; C % A
logarithmic transseries ¢y =id+zH, H € %; | € %, is a solution of prenormalization

equation (2.66) if and only if H is a solution of the fixed point equation
Ty(H) = S¢(H), 2.71)

where T, S : %; | %; | are the operators defined by:

Ty(H):=Hoz%+(Hoz%)-Ry— Y (?) H', He BL C 4, (2.72)

i>1

and

Fy(H) == —Rq— (D1 (H)) 02%) - (

' ) —r,(H), HeBL C%,

1>2

(2.73)
where €, 1= (-,Rq) is a superlinear }-contraction on the space (@;r 1»d1) from Lemma A.3.4.

Proof. Let f =z%+z%Ry +h.0b.(z), ¢ € Roy, Ry € %;1 C %. By Lemma 2.2.8, it
follows that @9 =id+zH, H € %’; 1 € %4, is a solution of prenormalization equation

(2.66) if and only if ¢y is a fixed point of the operator % defined by (2.67), i.e.

Zt(P0) = Po,
(id—l-zH)O(z —l—zo‘Ra) (id+zH)%,
*+2%Rg+2%-H +Z O‘Ra)i =% +2%) (?)H (2.74)
i>1 i>1

From the last line of (2.74) and Lemma A.3.4, we conclude that:

) =5 (7)o

(2.75)

2

Ry +H(z*)+H(z") Ry + ((D1(H))02%) - (Ra+z

i>2
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for a superlinear %—contraction CRy - %;1 — A such that 6, := €(-,Ry), where € is

the operator from Lemma A.3.4. By (2.75), it follows that:

Hoz®+(Hoz®) Ry~ Y (‘J_‘)Hf — Ry~ ((D1(H))02%)- (Ra+z (_?iljkg) —r, (H),

i>1 \ ! i>2 i(i

that is,
%(H):yf(l‘l), fOl‘HEgg;l C%.
[ |

Proposition 2.2.11 (Properties of the operators 75 and .s). Let f € .Z " ke N>, be
such that f =z%+z%*Rg +h.0.b.(z), x € R~ |, and Ry € %;1 C L. Let 77, ,%’; —
,%’; | be the operators defined by (2.72) and (2.73) respectively. Then:

1. J is an isometry and a surjection on the space (%3 ,,d)).
2. s is a -contraction on the space (#3,,d)).

Here we state and prove a technical lemma that is needed in the proof of Proposi-

tion 2.2.11.

Lemma 2.2.12. LetR,M < %gz C %, keNsy, andleth: =Y ;> (Ol.‘)xi be formal power

series in the variable x, for o € R~ . Then, there exists H € 93’;2, such that:
(Hoz®)-(1+R)—oaH—h(H)=M. (2.76)
Proof. Let My,R; € 95’; and M3,R3 € %23 be such that:

M = M, + M3,

R:R2+R3.

Put H .= H, + H;, H, € g%’zr, H; € %’;3. By the Taylor Theorem, note that h(H) =

(i) .
h(H3) 4 Y1 h (H3)H5. Now, equation (2.76) is equivalent to the equation:

WO (H) .
((F-+ H3) 052) - (14 Ry -+ Ro) et + ) —h(11y) — Y ")y — a4
i>1 :

2.77)

81



Normal forms of logarithmic transseries  Normal forms of strongly hyperbolic transseries

82

By Remark B.5.6 there exists Hz € 95’;3 such that:
(1—o+R3)-H3—h(H3) = M;. (2.78)

By Lemma A.3.2, it follows that Toz* =T +.#(T), T € %’;2, where 7 : %’;2 — %’;2
is a superlinear operator and a %—contraction on the space (%gz,dz). Now, from (2.77)
and (2.78) we get the equation:

K0 (H3)
il

Hy-(1—o+R—H(H3))+ (A (Hy)+ . (H3)) - (1+R)— )

i>2

H) =M, —R, - Hs,

(2.79)

in the variable H, € %’; .Let 9,9 %; — %; be the operators defined by:

KO (H) .
#T’Jer—Rz'H&
l

S(T) = —(1+R)- (A (T)+ 7 (H3)) + ¥,
i>2

H(T):=(1—o+R—N(H3))-T, TeB.
Now equation (2.79) is equivalent to the fixed point equation 7 (T) = S (T), T € %’; .
By Example 1.2.8, it is easy to see that .% is a %—contraction and, since o¢ > 1, 9 is
an isometry and a surjection on the space (%5 ,d>). By the fixed point theorem stated
in Proposition 1.2.12, there exists H, € %’JZFZ, such that % (H,) = .%3(H,). Now, H :=

H, + Hj is a solution of equation (2.76). |

Proof of Proposition 2.2.11. Statement 2 follows directly from (2.73).

1. Let us prove that J; is an isometry on the space (%’;,dl). Let Hi,H, € %’;1,
H, # Hp. By Lemma A.3.2, it follows that (H; — Hp) 0z% = %Lt (Hy — Hy) +h.o.t., for
n:=ordy, (Hy — Hy) > 0. Thus,

1
Ty(Hy) — Tp(Hy) = (oT - a>Lt (H, — H>) +h.o.t.
Since n > 0, it follows that % — o # 0, and, therefore, ordy (77(Hy) — T7(H2)) =

ordy, (H; — Hy), which implies that .7 is an isometry on the space (%g 1»dh).

Let us prove that 7 is a surjection. Let M € %<, and let M1,R| € %] and My, R; €

%iz be such that M = M|+ M, and Ry, = R; +Ry. Put h := Z (
= i

i>2

a\ )
)x’, where x is a

formal variable. We prove that the equation Jy(H) =M, i.e.

Hoz*+(Hoz%)-Rqy—aH —h(H) =M, (2.80)
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has a solution H € %’;1. Let us decompose H as H = Hy + H,, where H, € %, and

H, e %’;2. By the Taylor Theorem (Proposition A.1.6), it follows that (2.80) is equivalent

to:
Hyoz% (14 Ry) — aH; + (Hyo2%) - (1+Ry) — aHy — h(Hy) - Y h(i)f‘HZ)H{
i>1 :
=M, +M,— (Hyoz%)-Ry. (2.81)
By Lemma 2.2.12, there exists Hp € %’;2, such that:
(Hy0z%) - (1+Ry) — aHy — h(Ha) = M. (2.82)
Now, by putting (2.82) in (2.81), we get the equation:
Hioz% (1+Rq)—aH — ) Ho (Hz)Hf =M, — (Hyoz%)-Ry. (2.83)

i
> b

in the variable H| € %’T Let A, 9 - %T — %’T be the operators defined by:

WO (H,) .
A(T):=—(Toz%) R +Z;2)T'+M1 — (Hy02%) Ry,

i>2

T(T):=(Toz%)-(1+Ry)—aT —h (Hy)-T, T €% . (2.84)

By Example 1.2.8 and since ordy, (Ry) > 1, it is easy to see that .7 is a %—contraction on
the space (ggf,dl ). Furthermore, it is easy to see that 7] is a superlinear isometry on the
space (%, ,d;). By similar analysis as in Lemma 2.2.12, applied on each term of .7 (T),
we deduce that .7] is a surjection. By the fixed point theorem stated in Proposition 1.2.12,
there exists H; € %;", such that .#,(H;) = .7;(H;). To conclude, H € ,%’; |» given by

H := H| + H, is a solution of equation (2.80). This proves that .7} is a surjection. |

Proposition 2.2.13 (The unique canonical solution of the prenormalization equation).
Let f € £, k € N>y, be such that f =z%+z%Re +h.0.b.(z), ¢ > 1 and Ry € %; C
Z%. There exists the unique logarithmic transseries @y € .iﬂko of the form ¢y = id + zH,
H e %’;1 C %, such that ggo fo (po_1 =z%+h.0.b.(2).

Proof. Directly from Lemma 2.2.10, Proposition 2.2.11 and the fixed point theorem from

Proposition 1.2.12. |
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Proof of statement 1 of Theorem B (normalization)

Proof. Existence. Let f € L1, k € N, be such that f = z* +z*Ry +h.0.b.(2), & € R+
and Ry € B3, C %

By Proposition 2.2.13, there exists the unique @y =id+zH, H € 93; C %, such
that @po fo (po_l =z%+h.0.b.(z). Notice that g9 = id and pgo fo @~ ! = f,if z%Ry = 0.

By Lemma 2.2.6, the operator & 1 is a contraction on the space (id + fkﬁ ,d;),

QoofoPy
where 8 := ord; (@0 fo @, I —z%) — o+ 1. By the Banach Fixed Point Theorem and

Lemma 2.2.4, there exists the unique ¢; € id +.Z, B , such that:

(04

@ro(gofopy Nog ' =2% (2.85)

Now, by putting ¢ := ¢ 0 @y, we get ¢ € .,iﬂko and @o fo (p*1 = 7%,

Uniqueness. Suppose that @, v € £0 such that ¢ # v, wo foy ! =z% and @o
foe~! =z% Then there exists kg € N, such that f, @,y € .Zj(% Let T € %; C Zy
be such that y = id+ zT +h.0.b.(z). Put yp :=id+z7T and y; := yo lllal. Note that
ord; (y; —id) > 1 and yj0yy = y. Let us decompose ¢ := id + zH +h.o.b.(z), for
He 93; C % Similarly, let @y :=id+zH and @; := ¢ o (po’l. Since

ZO‘:l[/OfOlllf1 :l,lflol,l/()ofol,llalolllfl
and ord; (y; —id) > 1, it follows that:
voofoy, ! =y loz% oy =z%+h.o.b.(z).

Similarly, for ¢ = @; o @y we get:

1

(pOOfO(pO_1 =@, ozao(pl :za—l—h.o.b.(z).

By Proposition 2.2.13 (the uniqueness of the prenormalization in the canonical form)
we get that yp = @y. Put B :=ord;(@po fo ‘P61 —id). By Lemma 2.2.5, it follows

that ord, (y; —id) > B, so y; € id—l—fkg and & 1(y1) = yp. Similarly, we get

Poofopy
. B _ . : .
@1 €id+.Z and QZ%O fopy ! (1) = ;. Since @%O fog, ! 18 & contraction on the space
id+$kﬁo we conclude that y; = ¢;. Hence, y = ¢. |
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2.2.3. Proof of convergence of the Bottcher sequence

In this subsection we prove statement 2 of Theorem B. That is, we prove that, for a
strongly hyperbolic transseries f € £, f = z* +h.o.t., for o > 1, the Bottcher sequence
(Z7"(h))n defined in (2.58) converges in the weak topology on £9 to the normalization
@ obtained in the previous subsection, for any initial condition # € £°. Moreover, the
convergence is in the finer power-metric topology on £° if and only if Lb, (k) = Lb, (¢).
This is proved at the end of the subsection using Proposition 2.2.15 and Lemma 2.2.17

below.

The next proposition is a generalization of Proposition 2.1.22 and is needed in the

proof of Proposition 2.2.15.

Proposition 2.2.14. Let (), (¢,) be sequences in .Z, k € N, which converge in the
weak topology to v, ¢ € .,%ko respectively, as n — +oo. Suppose that there exists a well-
ordered subset W C R x Z*, such that Supp (y,),Supp (¢,) € W, n € N. Then the
sequence (Y, o ¢,) converges to Yo @ in the weak topology on .Zj?. In particular, the

sequences, (W, 0 @) and (Yo ¢,) converge to W o @.

Proof. Before the proof, we give a general estimate of the support of a composition of
two logarithmic transseries whose supports belong to a well-ordered set W. Let S C
R x Z be the semigroup generated with (0,1,0,...,0)x,1...,(0,0,...,0,1);, and let
W C R+ x Z* be a well-ordered subset. Let g, € .Zko be such that Supp(g), Supp (k) C
W and let g1 := g —1id, h; := h—id. By the definition of the composition, it follows that:

(i)
— 81 i
goh=h+g +; Thl'
Hence, every element of Supp(goh) is an element of Supp (i) U Supp(g1) or can be

written in the form:
(ﬁ’n)+ (O’m) + (ﬁl - lanl) ++ (Bl_ 17ni)7

where (,n) € Supp(g1), (0,m) €S, (B1,n;),...,(Bi,n;) € Supp (k) and i € N> ;.
Let W) be the semigroup generated by (8 — 1,n), for (8,n) € W such that (8,n) >
(1,0;), and let W be the semigroup generated by W UW; US. By the Neumann Lemma
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(Theorem 1.1.2), it follows that W; and W are well-ordered sets. By the above analysis, it
follows that Supp (goh) CW.

Now, for every f € .% such that Supp(f) C W and every w € W we define [f],
to be: the coefficient of f if w € Supp (f), and O otherwise. By the Neumann Lemma
(Theorem 1.1.2), for every w € W there exist finitely many tuples with elements in W U
W; US whose sum eguals to w. Hence, there exist m,r € N and wy, ..., wy,11,...,t, €W,
such that [goh],, depends only on [gl,,- .., [&lw., Ay, -, [h];,. That is, there exists a

polynomial P, in m+ r variables, with real coefficients, which does not depend on g or 4,

such that

[goh]w = PW([g]Wl LA [g]wm’ [h]ll IR [h]tr)'

Now we prove the proposition. Recall that Supp (), Supp (¢,) C W, forevery n € N.
Since (y,) — v and (¢,) — ¢ in the weak topology, it follows that Supp (y), Supp (¢) C
W. From the consideration above, we conclude that Supp (v o @) C W and Supp (¥, o
©,) CW, for every n € N. Since the polynomial P,,, w € W, defined above, depends only

on wi,...,Wm,t,...,t, € W above, we get:

(W0 @n]yw =Py ([V/n]m seeos (Wl [ @l s -+ [(Pn]t,)

and

[l[/o (P]w = PW({W]WU"'?[W]WWH {(P]tw"'v[(P]tr)'

Hence, by the continuity of the polynomial map P, it follows that:

lim [y, 0 @u)ye = Hm Po([Wlw,s - [Walws [@aleys- -5 [@nlr,)

n—oo n—reo
= PRo([Whoi - [Whws (@15 [@]1)

=[yool,, wew.

This proves the convergence of the sequence (Y, 0 ¢,), to o @ in the weak topology on

the space D?j?. |

Let f € %, k € N, be a strongly hyperbolic logarithmic transseries. Although the

Bottcher operator %f- on id+z%’§1, defined in (2.67), is not a contraction in any of
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introduced metrics (Example 2.2.9), we prove in the next proposition that the Bottcher
sequence (#;"(id +h)), on id + 283 | converges to the canonical prenormalization @
of strongly hyperbolic logarithmic transseries f in the weak topology, for any initial con-
dition id 4 h € id + z%; |- Proposition 2.2.15 is needed in the proof of statement 2 of

Theorem B.

Proposition 2.2.15 (Convergence of the Béttcher sequence on id + z %42 I LetfeZ q
keN, f=z2%+7z%Ry +h.0b.(z), a € R-1, Ry € %21 C %.,andleth=id+zH, H €
%’; | © Zk. Then the sequence (%;"(id + zH)), converges to the canonical prenormal-
ization ¢y =id+2zS, S € %’* C %, in the weak topology on the space id+z%’;r S0,
where % is the Bottcher operator on id + z%’>1, defined in (2.67).

Proof. Note that:

on — L _1\on
%f (h)o(l’o1 o (ho(Po )o (‘POO(Za+ZaRa)O(P01)
—zao (ho% )oz

for n € N. By Proposition 2.2.14, it follows that (£%}"(id + zH)), converges to @y if
(Zﬁ o(hogy 1) ) converges to id in the weak topology on the space 1d+z%’Jr cZ. 0
Now suppose that o (po_ =id+zK,K € ‘%21 C %. We prove that (ZW o(id42zK)oz*"),

converges to id in the weak topology on id + z%’; |- Note that:

1

ga o (id+2K) 02%" = (2% + 2 K(:""))an
1 .
—id+z (“,”)(K(z"‘ ). (2.86)
i>1 \ !
Note that:
B\ D)
I i!
1 -1 H—(-1)
- . 2.87
io" 1 i—1 7 (2.87)
1
fori € N>j and n € N. Since, 0< e <, J€{l1,...,i— 1}, it follows that:
5 1
ot )< 2.88
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for i € N>; and n € N. By Lemma A.3.2, it follows that every coefficient of Em(zo‘"),
m € {1,...,k}, is a polynomial in the variables % and nloga, forn € N. Let n € Z be
such that n > 0. Thus, for n € N, it follows that [(K(z*"))'] (1n) | € N>1, is a polynomial
Pi(ﬁ, nlog &) in the variables % and nlog o that does not depend on . By the Neumann

Lemma (Theorem 1.1.2) and (2.86), there exist m € N and iy, ...,i,, € N>y, such that:

[(Ga+z6)a], | = <1>P (g mloger) - (‘?:")Hm(o;’”“’g“)’

3 Im

(2.89)
for every n € N. From (2.88) and (2.89), it follows that:

(%)

[(Ga+z) )], | <

1 1
Py (L mtoga) 4+ | (@
it g nlog '4— + (im)

P, (01 nlog (x) ’ ) , (2.90)

1
P, ((ﬂ,nloga)‘

for n € N. Now, passing to the limit as n goes to infinity, we get:

lim [ ((id+zK)(*"))@ ]ln

n—-—+too )y

m P (2 nloga)’
=1 ny
< lim — e —0. 2.91)

T n—r+oo or

:"“

From (2.91) and [((id +zK) (z“"))a*l"} 1o, = L foreachn € N, it follows that the sequence
sk

(Zﬁ o (id 4 zK) 0 z*"), converges to id in the weak topology on the space id + Z@; 1 €

£0. [

Remark 2.2.16. By the proof of Proposition 2.2.15, it follows that the sequence (zﬁ o
(id + zH) 0 z*"),, converges to id in the weak topology on the space id + z%’; > for each

He %7,
The following lemma is an auxiliary lemma in the proof of statement 2 of Theorem B.
Lemma 2.2.17.

1. Forevery f € £0 there exist f € id+z%’; and f> € £° such that ord, (f>) > 1 and
f=fiof

2. Let g,h € £°. Then Lb, (goh~') =id, if and only if Lb, (g) = Lb, (k).

88
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3. Let f € £° be a parabolic logarithmic transseries. If a sequence (¢,) converges to
@ in the space (-%%,d.), k € N, then the sequence (¢, o f) converges to ¢ o f in the

space (%, d;), where m € N is minimal such that m > k and f € Z0.

Proof. 1. Letk € N be minimal such f € .%; and let f = id+zK + g, where K € 43, C %
and g € % such that ord;(g) > 1. Put f; :=id+zK and f, := f]_1 of. Then f] €
id+ z%’il and, by the Taylor Theorem (Proposition A.1.6), it follows that:

1\
() ()

il

fL=fltof=fo(fi+g) =id+Y

i>1
Consequently, it follows that f> € .Zj(o such that ord; (f2 —id) > 1.

2. Let k € N be minimal such that g, € .,kao. Suppose that Lb, (goh~!) =id. Asin
statement 1, let g =gy o0gy and h = hyohy, for g1,h; € id+z%’§1 - ,Zko and g1,8, € ,iﬂko
such that ord, (g —id),ord, (hy —id) > 1. Now, Lb, (h) = k1, Lb,(g) = g1 and goh~! =
g10g0hy ohy!. Since ord, (g2),0rd; (hy) > 1, it follows that ord, (g2 0k, ' —id) > 1.
This implies that gyohy ok ! = A7 ! 4+-h.0.b.(z) and, consequently, g1 0 (g20h; ' oh ) =
g1oh; ' +h.0.b.(z). Since Lb, (goh~") =id, it follows that g| = hy, i.e., Lb; (g) = Lb. (h).

Suppose the contrary, that is, Lb, (g) = Lb; (k) and let g1, g2, h1,h, be as above. Then

g1 = hy, and therefore,
gohfl =g ngohgl Ohfl — gl(hfl +h.0.b.(z)) =id +h.o.b.(z).

Hence, Lb, (goh™!) =id.
3. Since the sequence (¢,) converges to ¢ in (%, d.), it follows that the same holds
in the larger space (.%;,,d). Now, for every € > 0, there exists ny € N such that, for every

n €N, n > ng, we have

[(pn]am = [(p]am? (292)

for (a,n) € Ry x Z™ such that 2% < &. Let f:=1id+ fi, where f] € ., such that

ord (f1) > (1,0,,). By the definition of the composition, it follows that:

W
oof=0+Y T(n),
i>1 I
o
(Pnof:(Pn+Z i (f)"
[
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Let @, := Z zBPn’ﬁ, for B, g € %1 C £, and n € N. Since
BESupp, (¢n)

()
P, :
ord, (Za s <f1>l> = ord; (Py) +i- (ord: (f1) — 1) = ord: (Pra),

for o € Supp, (¢,), it follows that the ct-block of ¢, o f depends only on the blocks of ¢,
of the order lower than or equal to a, for a € Supp, (¢,), n € N. Similarly, we get that
a-block of @ o f depends only on the blocks of ¢ of the order lower than or equal to &,

for oo € Supp, (¢). Now, the statement follows by (2.92). [

Proof of statement 2 of Theorem B. Let ¢ = @1 o @y be the unique solution of the normal-
ization equation (2.56), where @y is the solution of the prenormalization equation (2.66),

and ¢ is the fixed point of the Bottcher operator &2 1. Let h € £° be arbitrary.

Poofopy
Suppose that m € N is minimal such that f,h € .Z,. For n € N, it follows that:

1 on 1 -1 —1\on
zamoho f" =za" o(ho@y " )o (oo foq, )" o@. (2.93)

Put ho (po_1 =id+zK + g, where g € .%, such that ord; (g) > 1,and K € %; C %, Put
hy :=1d+zK and hy := hfl oho(p(;l. Note that ho (,00*1 = hyohy, ord; (h, —id) > 1, and
ord; (h; —id) = 1. By (2.93), it follows that:

Zﬁ ohofo": (Z# ohlozan)o(zﬁ ohzo((poofo(p(;l)on)oqo()

L n °
= (Z(x” Oh] OZa ) Oy(pgofoq)o_l (hz)o(po (2_94)

1 n
It is easy to see that the supports of za” ohj 0z* and @;{’)’O p (hy), for n € N, are subsets

o
of a common well-ordered set (see the proof in the next sug(;ection). By Remark 2.2.16,
Lemma 2.2.6 and Proposition 2.2.14, it follows that the Bottcher sequence (zﬁ oho f°"),
converges to @ = @; o ¢ in the weak topology on £°.

Now, suppose that Lb, (h) = Lb,(¢@). Let ¢ = @; o ¢y, where @ is the canonical
prenormalization, if ord, (f —z%) = «, or @y :=id, if ord; (f —z%) > a, and @, is the
normalization of @yo fo ¢y . Now, since ord, (¢;) > 1, it follows that Lb, (¢) = ¢y.
Thus, Lb; (h) = ¢@y. Therefore, ord; (ho (po_1 —id) > 1. By (2.93), it follows that

1
@ oho f" =P oa(ho@; )0 .
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The Bottcher operator &2 Poofop;” is a contraction on the space (.,2”,5 ,d;), for each > 1.
Since ord; (ho ¢, - id) > 1, by the Banach Fixed Point Theorem, the sequence of the

Picard iterations (,@;”O (ho@y ! ))n converges to @; in the power-metric topology on
)

oo
the space id + .Z,E . B; Eoemma 2.2.17, 3, it follows that (zﬁ oho fo), converges to
¢ = @1 o @p in the power-metric topology.

Conversely, suppose that (zalT oho fo), converges to the normalization ¢ := ¢ o
@o in the power-metric topology and that Lb, (¢) # Lb, (h), where ¢y is the canonical
prenormalization and ¢ is the normalization of the prenormalized transseries @po fo @y L
By Lemma 2.2.17, 2, it follows that Lb, (ho qoo_l) #1id. Let Lb; (ho (po_l) = 1id +zK, for
K e %;1 C %y, K#0. Put hy :=id+zK and hy := h]’1 oho ¢6]' Consequently, it
follows that ord, (h, —id) > 1 and ho (po_1 = hj o hy. Now, by (2.94) and Lemma 2.2.17,
3, it follows that ((zﬁ ohioz%)o P 1(hz)>n converges to ¢; = @ o @, ' in the

Poofopy
power-metric topology. Note that

(za" ohyoz™")o yzgofo%l (h2) = 2@ oy 02 +h.0.b.(2),

for every n € N. Since ord; (¢;) > 1, by the Taylor Theorem (Proposition A.1.6) and the
convergence in the power-metric topology, it follows that there exists ng € N such that

zo%" ohyoz% =1id, for every n > ng. By (2.86) and Lemma A.3.2, it follows that

1 L-+ordy, (K)
> Lt(zK),

1 n .
Lt(zW ohjoz® —ld) = (O{”
for each n € N. Therefore, ord, (zﬁ ohyoz® —id) = 1, for each n € N. Since zan ohjo

z%" =d, for each n > ny, it follows that K = 0, i.e., Lb, (p) =Lb, (h). [ |

2.2.4. Control of the support of the normalization

Proof of statement 3 of Theorem B. Let f € M k € N, be such that f = z* +h.o.t., for
o € R . Let W be the set of elements (a”,0;), p €N, (0,1,0,...,0)541,...,(0,0,...,0, 1)1,
and

(am(y_ (X),l’l), (295)

for (y,m) € Supp (f —z%), m € N. Since Supp (f —z%) is a well-ordered set and o > 1,
it is easy to see that W is a well-ordered set. Now, the semigroup (W) generated by W is

well-ordered by the Neumann Lemma (Theorem 1.1.2).
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Notice that Supp (f) C (W) and
(ad,n) € (W), (2.96)

for each (6,n) € (W).

Since, by statement 2 of Theorem B (taking % := id), the sequence (zﬁ o f"), con-
verges to ¢ in the weak topology, it is sufficient to prove that Supp (zﬁ o for) C (W), for
eachn € N> ;.

We prove that Supp (f") C (W), forn € N> . First, let g € % be such that Supp (g) C
(W). By Lemma A.3.5, the support Supp (g o f) is contained in the sub-semigroup of

R>¢ x ZF generated by the elements:

(0,1,0,+,0)gs 15+, (0,0,...,0,1)is1,
(ad,m), for each (8,m) € Supp(g),
(B — a,n), for each (B,n) € Supp (f —z%). (2.97)

Since Supp (g), Supp (f) € (W), by (2.95), (2.96) and (2.97), it follows that Supp (go f) C
(W). Since Supp (f) C (W), it follows inductively that Supp (") C (W), for n € N> ;.
Now we prove that Supp (zﬁ o fo) C (W), for n € N> ;. By (A.1) it follows that:

1 | LN o

zat Ofon:1d+ZZ al (T) s nENzl (298)
i>1

Therefore, in order to prove that

Supp (z@ o f°") C (W), (2.99)

for n € N>, it is sufficient to prove that (y— a,n) € (W), for every (y,n) € Supp (f°" —
ZO‘"), n € N>1. By the proof of Lemma A.3.5 every element of the support of f°"" =

o=V o f, n e Nxy, is of the form:
(S(X,V) + (O,U),
or

(SOC,V)—F(O,U)—F([}I —Ol,nl)—F""i‘(Bi—OC,l‘li),
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for i € N>y, (8,v) € Supp (f°"~1)), (0,u) is a linear combination (with coefficients in
NZI) of (07 1707"'70)k+17' "7(0707"'707 1)k+1’ and (Bj?nj) € Supp(f—za), 1 S .] S .
From this fact, (2.96) and Supp (f°"*~1)) C (W) statement (2.99) follows immediately.

|
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2.3. NORMAL FORMS OF PARABOLIC

LOGARITHMIC TRANSSERIES

In this section we generalize the results obtained in [21, Theorem A] for parabolic log-
arithmic transseries of depth 1 to parabolic logarithmic transseries of an arbitrary depth,
using fixed point theorems.

We consider the conjugation equation:

pofop =g o@eg (2.100)

for f € £° and g € £. If the conjugation equation is solvable in £°, by Proposition 2.0.1,
since f € £, it follows that g € £°.

Suppose that f € Z0, k € N. As opposed to the hyperbolic or strongly hyperbolic
case, where it is equivalent to solve the equation in .,%ko for g € Z?, or in the larger group
£9 for g € £9, in the parabolic case a solution depends on chosen k € N such that f € ,,2”,(0.
In Theorem C we solve the equation (2.100) in the group .L’jco for arbitrary k € N such
that f € .fko. Furthermore, in Corollary 2.3.7 we solve the equation (2.100) in the larger
group £°.

The results in this section represent the results from the preprint in preparation [28].

2.3.1. Normalization theorem for parabolic logarithmic transseries

Before stating the normalization theorem for parabolic logarithmic transseries, we first
define the shift by D; of the tuple of exponents n = (ny,...,n;) € Z¥, k € N>i, and a

residual term (monomial, coefficient).

Definition 2.3.1 (Shift by D). Letn:= (ny,...,n;) € Zk, k € N>1. We define the shift

by Dy of nasn’ € Z such that:
(0,n) :=ord (D (€}" ---£,*)). (2.101)

Remark 2.3.2. Letn:= (ny,...,n;) € ZF k € N>j. By Lemma A.2.11 and the previous
definition, it follows that n' = (1,,—1,n, + 1,1 41,...,m) if By = ... = ny_1 =0 and

ny, # 0, for 1 <m<k.
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Definition 2.3.3 (Residual term (resp. monomial, coefficient) of a parabolic logarithmic
transseries). Let f € £° be a parabolic logarithmic transseries and k € N minimal such
that f € .i”ko. Let (a,ny,...,n;) :=ord (f —id). The term (resp. monomial) in f of order
(2o —1,2n; +1,...,2n, + 1) will be called the residual term (resp. monomial) in f and
denoted by Res; (f) (Res(f)).

We call [flpg 100,41, 20,41 the residual coefficient of f.

Example 2.3.4. Note that the residual term is defined with respect to the ambient space

%
1. Letn:=(1,2,3) € Z3. Thenn’ = (2,2,3).
Letn:= (0,0,—3,3,6) € Z°. Thenn’ = (1,1,-2,3,6).
2. Let fi :=id+222€5 + 2261 + 520165 + 22€,° and f> :=id + 22263+ 226, + 536,65 +
z5£3_ > be parabolic transseries in £0. Note that fi1 € .,2”20. Therefore, Res; (f1) =

573€1£5, where Res (f1) = z3£1£g is the residual monomial and 5 is the residual

coefficient of f] in the ambient space 5.

If we choose .73 for the ambient space, we get that Res(f) = z3£1£g€3 and residual

coefficient equals to 0.

Note that f> € ,;2”30. It follows that Res;(f>) = 0, where Res (f2) = z3€1£g€3 is the

residual monomial and O is the residual coefficient of f in the ambient space .%3.

Theorem C (Normalization theorem for parabolic logarithmic transseries). Let f € .Z2,
k € N, be a parabolic logarithmic transseries. Let (8,n) := ord(f —id) > (1,0;) and let
n’ be the shift by D; of n as in (2.101). For

f=id+ Y amPe"- £ +hot,

n<m<n’

where m = (my,...,my), put:
anl}' - 4%, it >1,

Y amf]"--g%, =1,

n<m<n’
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and let
fo=id+PL+ cRes(f), (2.102)
for each c € R.

1. There exists ¢ € R, such that the conjugacy equation:

pofop ' =f. (2.103)

has a solution ¢ € .i”ko.

2. The real number c is unique such that (2.103) has a solution in .Zj(o. Moreover, the

residual coefficient c is explicitely given by:

2 M2 d 2
c:[ n ] — |4 - {aﬁ/ < } — 4 2109
f=id] oy LR g, f-idlg 1 [2L)
if =1, and
i 2
(Al
c— | — la _ , (2.105)
_f—ld]_uk NS —iddg
if B> 1.

3. The normal form f. is minimal® in .cho.

Remark 2.3.5. Let f and ¢ be as in Theorem C. Put:

U J
anZP O}l Lk

1B (PO i

d .
e+ gz lfﬁ>17
k

Xe:= log(1+4L)
zlog d : —
2L do iff=1.
1— cRes (f) 1de)
Zlog(1+L) T+L

Then there exists a parabolic logarithmic transseries ¥ € .,S,’j{o that reduces f to a normal
form given as the time-one map of the vector field X... That is, such that yo foy ! =
exp(X,).id. This represents a generalization of [21, Theorem A] for parabolic logarithmic

transseries of depth 1.

’In the sense it cannot be further reduced by changes of variables from fko. Moreover, the coefficients

of f,. cannot be changed by changes of variables from Zko.

96



Normal forms of logarithmic transseries Normal forms of parabolic transseries

The proof of Remark 2.3.5 is in Subsection 2.3.8.
Remark 2.3.6.

1. Note that in Theorem C we do not claim the uniqueness of a normalization. The
non-uniqueness of normalization follows from the fact that y from Remark 2.3.5 is
unique only up to the precomposition with a time-t map of the vector field X, (for

more details see [21]).

2. The quadruple (f3,n,ay, c) determines the conjugacy class of the logarithmic transseries

finthe case B > 1.

On the other hand, in the case = 1, the conjugacy class of f is determined by the

(possibly infinite) sequence (1,1, (dm)n<m<n’sC)-

3. Note that (2.104) is a generalization of the residual formula obtained in [23, Propo-

sition 9.3] for the class 2.

4. Note that we find normal form in Theorem C for parabolic logarithmic transseries f
in every space .Z; such that f € 7. In Corollary 2.3.7 we prove that there are only
two different normal forms. One is obtained for minimal k¥ € N such that f € .,
and the other for every m > k+ 1. The last one coincides with the normal form in

the larger space £.

Corollary 2.3.7 (The normal form in the larger differential algebra £). Let f € £° and
let k € N be minimal such that f € .i’j(o. By a parabolic change of variables ¢ in the larger
differential algebra £°, a parabolic logarithmic transseries f € %0, k € N, can be further

reduced to
fo:=1d+zL,

for L as defined in Theorem C.

Moreover, normalization ¢ belongs to ,iﬂkOH and fy is minimal® in £°.
The proof of Corollary 2.3.7 is in Subsection 2.3.8.

Example 2.3.8.

3In the sense that it cannot be further reduced in £°, nor can the coefficients be changed.
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1. Let f = z+ a2y + a7l + a3zl; + hoo.t. € 4, for aj,az,a3 € R\ {0}. Note that
L=al;+ azﬁ% and Res (f) = zﬁ?. By (2.104), it follows that

2 2 2 2
a a a a
C:_[ 1 ‘| —[1‘| :—a3—|——2——2:_a3.
—-1,1 1,1

f—id

Therefore, by Theorem C, it follows that

2 2
fe=1d+a 1z, +azz£% + (—a3 + o (az> > Ze?

ai ai

is the normal form in % of the logarithmic transseries f and the normalization ¢

belongs to £).

Furthermore, by Corollary 2.3.7, fo = id +a12€; + a»z€3 is the normal form of f in

the larger space £.

2. Let f=z +a1z2€2 +a2z2€1 +a3z3€1£% —I—Z4 +h.o.t. € %, for ay,ay,a3 € R\ {0}
2
Note that L = a1 £, and Res () = 23€,63. By (2.105), it follows that ¢ = [ t d} =
—L12
0. Therefore, by Theorem C, it follows that f. = id + a1z%£, is the normal form in

% of the logarithmic transseries f and the normalization ¢ belongs to .,2”20.

Furthermore, by Corollary 2.3.7, fo = id 4 a;z°£5 is the normal form of f in the
larger space £. Note that f. = fp, since ¢ = 0. In this case normal forms of f in %

and £ coincide.

2.3.2. Transforming the conjugacy equation to a fixed point equation

The main strategy of the proof of Theorem C is to transform the conjugacy equation
(2.100) to a fixed point equation using operators ., 75 : £y — 2, k € N, in order to

apply the fixed point theorem stated in Proposition 1.2.12.

Lemma 2.3.9 (Transformation of the conjugacy equation to the fixed point equation).
Let f,g € £2, k€N, f=id+zPRg +h.0.b.(z) and g = id+2%Sg +h.0.b.(2), for &, B > 1,
and So,Rg € #1 C £°. A logarithmic transseries ¢ € Z£9, such that ¢ =id + & and

ord (€) > (1,0), satisfies the conjugacy equation

pofop =g (2.106)
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if and only if the logarithmic transseries € € .Z; satisfies the fixed point equation:
Zr(e) = Tr(e), (2.107)

where the operators ., 7 : £ — £ are defined as:

el (i
F(e)i=y—p—€ p+yie- Y ou+ Y e (2.108)
i>2 ! i>2
and
Ti(e) =€ - PRg — (:%Sa) -, (2.109)
for € € .%,. Here,
pe=f—id, p:=f—id—zPRp,
vi=g—id, yj:=g—id—z%S,. (2.110)

Proof. By composing the conjugacy equation (2.106) from the right with ¢, we get the

equivalent equation:
pof—gop=0. (2.111)
Recall the notation from (2.110). From equation (2.111), using the Taylor Theorem
(Proposition A.1.6), we get that:
0=pof—gop

=(z+¢€)o(z4+uU)—(z+y)o(z+€)

el
—z+u+e+2—u (z+€)—y— Z

i>1 ! i>1
(i)
—Z iy Zw
i>1 ! i>1 !
llf()
=& -u- V/8+Z u+u V=) o
i>2 ! i>2 !

e (@)
=& PRy —(2%So) e tu—y+e w—yl- e+2—u Zl” g, (2.112)

i>2 ! i>2

Equation (2.112) is equivalent to the following equation:

(@) (i)
£
8/'ZﬁRﬁ—(ZaSa)/-8:I//—/.L—8/~[.Ll+l}/{-S—Z [J—I—Zw . (2.113)

i>2 i! i>2

ie., Jr(e) = Ss(e). [
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Remark 2.3.10. In Lemma 2.3.9 we transformed the conjugacy equation (2.100) to the
fixed point equation .7¢(€) = /#(€). Note that J(€) is a superlinear operator which is

an analogue to the Lie bracket operator from Definition 1.1.11.

In the next proposition, among other properties of the operator ., for f € % O keN,
we prove that s is Lipschitz on the space .ij, where the Lipschitz coefficient of .%¢
depends on 6 > 1.

Proposition 2.3.11 (Properties of the operator .#¢). Suppose that f,g € £, keN,
f= id+zﬁRB +h.0.b.(z) and g =id +z%S¢ +h.0.b.(z), for &, B > 1, S¢,Rg € %) C Z;”,
and (2.110). Let 6 > 1 and put:

Y := min {ordZ (f—id—zBRB),ordZ (g—id—zaSa)} ,
p(8):=min{y—1,2(B—1),6 +a—2}. 2.114)

Let S : ‘Zf — .Zkl be the operator defined as in (2.108).

1. The operator . is -Lipschitz* on the space .Z, 5 for every 6 > 1.

zp(S
2. 1t 2%Sq =zPRg and § = y— 41, then .74(£2) C & and p(§) =min{y— 1,2(B — 1)}

Proof. 1.Leté6>1ande € ,‘2’7{5. By (2.110) and (2.114), it follows that ord, (i ) ,ord; (y;) >
y. For the linear parts of .%, from (2.110) and (2.114), we have the following bounds:

ord; (—€'w1 + yi€) = ord: (&) + 7 1,
el
ordz<—ZTy’> — ord, () +2(B — 1). (2.115)
=1
For the nonlinear part of ., we use Example 1.2.8.
Now, by (2. 108) Example 1.2.8, (2.114), and (2.115) we conclude that .7 is 2p<5
Lipschitz and 7 is the minimal Lipschitz coefficient.
2. From z"‘Sa = ZBRI; and 6 =y— (B — 1), we conclude that 6 + ¢ —2 = y— 1 and

that, consequently,

p(8) =min{y—1,2(f —1)}.

Note that p(6) + 6 > y This and ord, (y — i) > v implies that yf(,,iﬂé) cgl. [

“In the sense that i IS 2567 57-Lipschitz and there is no strictly smaller Lipschitz coefficient of .%.

100



Normal forms of logarithmic transseries Normal forms of parabolic transseries

2.3.3. A necessary condition for solvability of the conjugacy equation

In the next proposition we give a necessary condition on g € £° such that conjugacy
equation (2.100) is solvable in £°. It can be seen as a generalization of Proposition 2.0.1

for parabolic logarithmic transseries.

Proposition 2.3.12 (Necessary condition for solvability of the conjugacy equation). Let
f.ee L0 keN, f= id—l—zﬁRﬁ +h.0.b.(z), g =id+z%Sq +h.0.b.(z), where a, 3 > 1
and S¢, Rg € #1 € Z;°. Let (B,n) ;= ord (f —id) and let n’ be as in (2.101). Let ¢ € £9,
such that o fo ¢! = g. Then:

1. Lt(f —id) = Lt (g —id).
2. Additionally, if B = 1, then [f]1 m = [¢]i,m, foreveryn <m <n’.
Proof. 1. Suppose that Lt(f —id) # Lt(g —id). The conjugacy equation (2.106) is equiv-
alent to the fixed point equation (2.107). From (2.108) and (2.109) we conclude that
ord (#(€)) = min{ord (f —id),ord (g —id)} (2.116)
and
ord (J%(€)) > min{ord (f —id),ord (g —id)}. (2.117)
Now, (2.116) and (2.117) are in contradiction with ord (77 (¢)) = ord (#¢(&)). This im-
plies that Lt(f —id) = Lt(g —id).
2.Let B =1and (1,n) :=ord(f —id). By L., it follows that Lt(f —id) = Lt(g —id),
which implies that & = 8 = 1 and [f]1 n = [g]1.n- Suppose that there exists m € Z such

thatn < m < n’ and

[f11m # [8]1m- (2.118)

Since Supp(f) and Supp(g) are well-ordered subsets of R~ x Z¥, we can suppose that
such an m is minimal such that (2.118) holds. Now, suppose that there exists a solution
Q< .Zko of the conjugacy equation (2.100). By Lemma 2.3.9, the conjugacy equation is
equivalent to the fixed point equation J5(€) = #¢(¢€), for € := ¢ —id, where .y and 7
are given in (2.108) and (2.109). From (2.108), it follows that ord (.#¢(&)) = (1,m). So,

ord (7(g)) = (1,m), (2.119)
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which implies that ord, (¢) = 1. Let Lb,(€) :=zT'. Since oo = 8 = 1, let us use the notation

R:=Rg and S := Sy. From (2.109), it follows that:

Tr(e)=¢€-zR—(z5) - €
= (zT)" - zR— (2S) - zT +h.0.b.(z)
= (T +D1(T))-zR— (S+D1(S))-zT +h.0.b.(z)

=zT-(R—S)+ (zR-D1(T) —zT - D1(S)) +h.0.b.(z). (2.120)

Since Lt(f —id) = Lt(g —id), it follows that ord (zR) = ord (zS) = (1,n). Hence,
ord(zR-Dy(T) — zT - D1(S)) > (1,n'). (2.121)

Now, from the minimality of m and the fact that ord(z7) > (1,0;), it follows that
ord(zT - (R—S)) > (1,m). (2.122)

Now, by (2.120), (2.121) and (2.122), it follows that ord(.7¢(€)) > (1,m), which is a

contradiction with (2.119). |

2.3.4. Sketch of the proof of statement 1 of Theorem C

Let f € £, k € N, such that f =id+zPRg +h.0.b.(z), for B > 1 and Rg € %, C L.
We proved in Lemma 2.3.9 that the conjugacy equation (2.106) is equivalent to the fixed
point equation (2.107), by introducing the operators .#s and 7%, given in (2.108) and
(2.109) respectively. In order to apply Proposition 1.2.12 on appropriate spaces, the oper-
ators s and .7 have to satisfy the assumptions of Proposition 1.2.12. Based on that, we

distinguish two cases: B > 1and f = 1.

Case B > 1. Since @o fo ! =g, by Proposition 2.3.12, it follows that ord, (f —

id) = ord; (¢ —id). Note that the operator 7 is a 2ﬁ#_l—homothety on the set of all loga-

rithmic transseries in .% which do not contain the term of order ord (f —id). On the other

hand, the operator .y is a ﬁ-Lipschitz on space £8 . for§ > 1, by Proposition 2.3.11.
In order to apply the fixed point theorem stated in Proposition 1.2.12, the minimal Lip-

schitz coefficient of .7 and the coefficient of the homothety of .7 have to satisfy the
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inequality ﬁ < zﬁl—,l, which is satisfied if and only if 6 > 1. Therefore, we are obliged
to work on the space .Z, 5, for 6 > 1, which is impossible if we have other terms in the
leading block (in z) except the leading term of f —id. Therefore, we first prenormalize
the logarithmic transseries f, i.e., eliminate each term in the leading block (in z) of f —id

except the leading term of f —id, and then apply Proposition 1.2.12.

Case 3 = 1. Note that the operator ./ is a 1-Lipschitz map on the space (.Zf,dz)
and 77 is a 1-homothety on a subset of ., 5 for every 6 > 1. Since 1 is the minimal Lips-
chitz coefficient of Yf, which is not strictly smaller than the coefficient of homothety ﬂf,
we conclude that we cannot apply the fixed point theorem stated in Proposition 1.2.12

directly. Therefore, in this case, we change the operators .77 and .%.

Since cases B > 1 and B = 1 are significantly different, we split the proof of Theo-

rem C in two different cases (see Figure 2.1):
(a) B=ord,(f—id) > 1,

(b) B=ord,(f—id) = 1.

Proof of statement 1

T

case (a) case (b)
step (a.1) step (a.2) step (b.1) step (b.2)  step (b.3)
step (a.2.1) step (a.2.2)

Figure 2.1: Diagram of the proof of statement 1 of Theorem C, [28]
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2.3.5. Case ord, (f —id) > 1 of the proof of statement 1

Sketch of the proof

Let f € £, k € N, such that f = id—i—ZﬁRﬁ +h.o.b.(z), for Rg € #) C £, and B > 1.

Proposition 2.3.12 gives a necessary condition for solvability of the conjugacy equation
pofop =g @eZ, (2.123)
where g € %
g=1id+Lt(f —id)+h.o.t.

Consequently, it follows that g = id + A Mg +h.0.b.(z), for Mg € % C £, such that
Lt (ZBMB) =Lt (ZBRB). By Proposition 2.3.9, we transformed the conjugacy equation

(2.123) to the fixed point equation
Tr(e) = Ty(e), (2.124)

where S, T 1 £y — £ are operators given in (2.108) and (2.109) respectively, and
e:=¢—id.
If 2P Mg # 2P Rg, by (2.108) and (2.109), it follows that:

ord: (Fj(£)) > ord; (€) + — 1,
ord, (.Z4(€)) = B. (2.125)

Since Jy(€) = 7 (€), by (2.125) it follows that ord; (¢) + B — 1 =, i.e., ord; (&) = 1.

Note that . is 2;—71—Lipschitz (zﬂl—f1 is the minimal Lipschitz coefficient of .7) on the
space .%,', by Proposition 2.3.11. Since the minimal Lipschitz coefficient of S is equal
to the coefficient of .7, we cannot apply Proposition 1.2.12 directly. Therefore, if the
leading block of f —id in z contains more terms than just the leading term, we first prenor-
malize the logarithmic transseries f, i.e., eliminate each term in the leading block (in z)

of f —id except the leading term. That is, we proceed in two steps:

(a.1) We prove the existence of a parabolic conjugacy ¢; =id +z7 € L0, T € 95’; -

%, that solves the prenormalization equation:

@rofop; ! =id+Lt(f —id)+h.0.b.(z). (2.126)
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That is, we eliminate every term in the leading block (in z) of f —id except its

leading term. We prove that such a T € %%, C % is unique in %7 .

(a.2) We prove the existence of a parabolic conjugacy ¢, € Eko satisfying ord; (¢; —id) >

1, which solves the normalization equation:

pro(@rofop; o, ! =id+Lt(f —id) + cRes(f), (2.127)

for the unique choice of the residual coefficient ¢ € R. That is, we eliminate every

termin @ o fo @, ' —id — Lt(f — id) except for the residual term.

After the prenormalization of f, we apply Proposition 1.2.12 twice: firstly to elim-
inate all terms between the leading and the residual term, and secondly to eliminate
all terms after the residual term. Therefore, we split the proof of the step (a.2) in

two steps.

Finally, ¢ := ¢, 0 @1, where ¢ is from step (a.1), and ¢, from step (a.2), is a solution
of the normalization equation (2.123), with g := f, = id+Lt(f —id) + cRes (f).

Proof of (a.1) (prenormalization)

In the next lemma we transform a prenormalization equation (2.126) into a fixed point

equation, and then apply Propositions 2.3.14 and 1.2.12 to solve the fixed point equation.

Lemma 2.3.13 (Fixed point equation for the prenormalization). Let f € %}, k € N, such
that f = id—l—ZﬁRﬁ +h.0.b.(z), for B > 1and Rg € # C L. Let azﬁf'l“ - £;* be the
leading term of f —id and let 7;,.%] : %’; | %’; | be the operators defined by:

L% L P

Rpg Rg i>2 '
H (T al’l .. O
#i(r) = ZHI (g b
B B

1, (2.129)

for T € 93;1 C %, where 7 - %’;1 — 9 is a suitable 21%nl—Lipschitz map on the
space (,%’;l,dl). Then ¢ =id+zT, T € 95’; , € % is a solution of a prenormalization

equation (2.126) if and only if
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Proof. The conjugacy equation (2.126) with g := z+ azﬁérl” ---£* +h.0.b.(z) can be

equivalently written as:
pof—gop=0. (2.130)
This implies that
Lb(pof—gog)=0. (2.131)

Let L:=af}'---£*. From (2.113) we get that (2.131) is equivalent to the equation:

Bry@) .
T) PR Y (ZiL,)(zT)’ +2P - (Rg—L)=0. (2.132)

i>1

Dividing by z# in equation (2.132), and by Lemma A.2.7 and Lemma A.2.8, we get that:

(T+DI(T)).Rﬁ—LZ(lj)Ti—JifL(T)+Rﬁ—L:0, (2.133)

i>1

where 77, := ¥ (L,-) : %’; — H is a %—Lipschitz map from Lemma A.2.8, 2. We

21+n

divide the equation by Rz and we get the following equation:

B-L L B\ i A(T) _ L _
(1_%>.T_RB.22<1_)T_RB Dl(T)+@ 1, (2.134)
ie, Z(T)=A(T). u

In the next proposition we prove that the operators .7; and .7 defined in (2.128) and

(2.129) satisfy assumptions of Proposition 1.2.12.

Proposition 2.3.14 (Properties of the operators .} and .77). Let f € %, k € N, such
that f =id+zPRg +h.0.b.(z), for B > 1 and Rg € %, \ {0} C £. Let azPe}'--- £} be
the leading term of f —id and let 71, : %, — %<, be the operators defined in (2.128)
and (2.129). Then:

. 1 .
1. .7} is a 5-contraction on the space (%’; di).
2. 7 is an isometry on the space (% ,d).

3. 7] is a surjection.
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Proof. 1. Recall that .7 in (2.129)is a - --Lipschitz map. Since ord (Rg) = (0,n1,...,m),

21+n

it follows that

ordy, (%;;T)) > ordy, (T)+1. (2.135)

Since D is a %—contraction, from (2.129) it follows that .7 is a %—contraction on the space
(AL),d1).
2. From (2.128), since B > 1, we see that

ordy, (Z1(T)) = ordy, (T),

which implies that .7] is an isometry.
3. Recall that B = ord, (f —id). Take /& € x> R [[x]] such that
—v (B\.
=Y " )« (2.136)
i>2 \ !

Rewrite (2.128) as:

Bat"" ...gzk) .T_ag'lﬂ A

7T = (1_ Rp Rp

WT), Te®t C%. (2137

Since azﬁfrl” . -EZ" is the leading term of P Rg, and B > 1, it follows that

Bt ot (ot
Rg /7 Rp
which is the order of a constant term. Surjectivity of .7; now follows from Lemma B.5.4.

ord (1 )zokH,

Proof of step (a.1) of statement 1 of Theorem C. By Lemma 2.3.13, we transform the prenor-

malization equation
¢; o foe =id+Lt(f—id)+h.o.b.(z), (2.138)

for ¢; = id + T, into the equivalent fixed point equation 7 (T) = .#1(T). By Propo-
sition 2.3.14 and Proposition 1.2.12, there exists a unique 7 € %;1 C %, such that
(T)=A(T). So, ¢ :=id+zT is the unique solution of the prenormalization equa-
tion (2.138), after we impose that the solution consists only of the block of order 1 in

Z. [ |
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Remark 2.3.15 (Minimality of the prenormalization). Proposition 2.3.12 implies that
Lt(f —id) = Lt(@1 0 fo @ ' _id). Consequently, it follows that the prenormalization
profoe ! =id+ azﬁﬁ'l“ +--£;*4+h.0.b.(z) is minimal in the sense that the leading term
of profoq, ' _id cannot be eliminated, nor its coefficients changed, while all other

terms of the first block can be eliminated.

Proof of (a.2) (normalization)

In the previous subsection we proved that every parabolic transseries f € £° such that
ord; (f —id) > 1, can be prenormalized. In this subsection we suppose that f € %}, k € N

such that
f= id—}—azﬁf'f1 - 4*+hob.(z), B>1,a#0,

is a prenormalized parabolic logarithmic transseries, which means that the leading block
(in z) of f —id contains only the leading term azBK'I” ---Ezk. In Proposition 2.3.11 we
proved several properties of the operator .#+. In Remark 2.3.16 and Proposition 2.3.17
we prove some properties of the superlinear operator .7r. We use these results to apply

Proposition 1.2.12 to appropriate complete metric spaces.

Remark 2.3.16 (Injectivity of the operator .77). Let f € %, k € N, such that f =id +
azPll' £ +h.ob.(z), for B > 1 and a # 0. Let g :=id+azPe]' .- -£}*. Put 2954 =
P Rg = azﬁf'fl . -EZ" in (2.109). It follows that .7 is the Lie bracket operator defined in
(1.1.11). By Remark B.3.2 it follows that the kernel of .7 equals to

ker(J%) = {Czﬁf'i” ki Ce R} .

The operator .7 is not injective, and therefore, also not a homothety on any subspace of

&} that contains any of the terms belonging to ker(.77) \ {0}.

Let f € %, k € N, such that f = id—i—azﬁé’l“ ---KZ" +h.o.t., for B > 1. We define
the spaces .Zf’l = .Zj(wl, for Wy := ([8,4e0) x ZK)\ {(B,n)}, and .Eks’z = fsz, for
W := ([8,+o0) x Z¥)\ {(2B — 1,2n+1;)}, for § > 1. By Proposition 1.1.16, it follows
that ,,?ka’l and Z{S’Z are complete subspaces of ., for § > 1.

Since .me, 0 > 1, does not contain any term in ker(.7%) \ {0}, by Remark 2.3.16, the

restriction J| 5.1 : fk‘s’l — $k5’1 is injective.
k
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Proposition 2.3.17 (Properties of the operator 7| $5,1)- Let f € %, k € N, such that
k

f=id+aPl]' - - +h.ob.(z), for > 1 anda 0. Let g € £ be such that Lb, (g —

id) :azﬁe’l“ ---£;*. Let & > 1 and let the operator Zc]fkg,l :.,2”,(6’1 —>.Zj<5’1 be asin (2.109).

Then:

1. 9f| P is a superlinear ﬁ—homothety in the space .,Zf’l, foro > 1,
2. the image of ﬂf|$5,1 equals to .,?erﬁ_l’z, for 6 > 1.
k

Proof. 1.Let8>1,e€ 22", € #0. Put e := z2%Ty +h.0.b.(2), for & > §. From (2.109)

we get:
Tyl 431(8) = Tyl 4o (*Ta) +h.0.b.(2). (2.139)

From (2.139) and the fact that z*T does not contain a term of order (f,n), it follows

that:
ord, (yf\f&. (s)) — ord, (z%Ty) + B — 1 = ord, (€) + B — 1. (2.140)
k
This implies that:

1
d (0, @@,l(e)) = S5d:(0.9). (2.141)

By linearity of 7| P and (2.141), we conclude that .7 | 5 isa 2[31—71—h0m0thety.
2. Let 6 > 1. First, we prove that .,?fﬂs ~1.2 s a subset of the image of 7% Prar Let
k

g€ %{6+ﬁ71,2 be arbitrary. Consider the equation chgkg,l () =g, ie.,

(azﬁgflll ...ng)/ g

!/
€= .
a0 T Pl

(2.142)

This is a linear ordinary differential equation of order one. By Proposition B.3.1, its

solutions are given by:

(aPe -y | e [lte by
_ de) (ot [ —8— exp(— [EL ) )y
fc=exp </ abe e T apen e P abey gl )"
—aBem g /#d 2.143
IR (C+ (azPel - £7)? R ( )

for C € R. Now we choose C € R, such that & does not contain a term of order (3,n) and

gk8+[3—1,2

put € := €c. Since g € , then g does not contain a term of order (23 — 1,2n+
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1;). Therefore, the transseries does not contain a term of order (—1,1;). By

g
(Zﬁ[lll ,_[Zk)z
Lemma B.2.3, we conclude that

JE——
(aPe]'-- )2
belongs to .%;”. By formal integration we get that:
8
Ordz (/(azﬁenlenk)ZdZ> = ordz (g) — 2[)) + 1,
1 k

which implies, by (2.143), that:

ord;(¢) =ord, (g)—B+1. (2.144)

$k6+ﬁ—1,2

Since g € , it follows that € € .,S,’jf. Recall that € does not contain a term of

order (3,n), which implies that € € iﬂk‘s’l.

,Zk6+ﬁ ~12 Foran arbitrary

It is left to prove that the image of .7%| ol is a subset of
k
term bz%¢}" - £ € .,iﬂké’], b # 0, by Lemma A.2.3, we get that

Trl Py (bz*€}"" ---£;"*) does not contain the residual term. In particular,
k
zqgksv. (b2 ) € Lo HP-12)

for any term bz%€]" - £ € 02”,{6’1, b #0. Since Jy| s is superlinear, the image of
’ k

%|$k5,1 is a subset of $k6+ﬁ7172. [ |

Let f € £, k € N, such that f =id+azP€]"---£}* + h.0.b.(z), for B > 1 and a # 0.
Since the logarithmic transseries in Yf(fkg’l), 0 > 1, in general contain residual terms
(i.e., terms of order (28 — 1,2n+ 1;)), by Proposition 2.3.17, 2, and Remark 2.3.16, we
cannot directly apply Proposition 1.2.12. Therefore, we split the proof of step (a.2) in

two substeps:

(a.2.1). We obtain ¢, | € i’j{o and ¢ € R such that
@r10fop; | =id+aP - £+ cRes(f) +h.0.b.(2), (2.145)

which means that we eliminate all blocks of f between the first and the residual
block (i.e., the 23 — 1-block) and all terms in the residual block except the residual

term. In that process, the residual coefficient in general changes.
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(a.2.2). We obtain ¢, € ,Zko such that
G220 (@r10f0¢y1)ogy) =id+aPl] - £ +cRes(f), (2.146)
which means that we eliminate all terms in @10 fo @, 11 after the residual term.
Finally, @ := @220 @ 1 is a solution of the normalization equation @ o fo o' =7,

where f. :=id+azP€]" - -£}* + cRes (f).

The general strategy of the proofs of steps (a.2.1) and (a.2.2) is also to transform
equations (2.145) and (2.146) to appropriate fixed point equations and then use the fixed

point theorem stated in Proposition 1.2.12 to solve them.

Proof of step (a.2.1). Let f € 4, k€N, f=id+azPe]'---£* +h.ob.(z), B > 1,a #0,

be prenormalized. We prove that there exists c € R and ¢, | € .Z, 0, such that:
Qri0fop; | =id+azP et £+ cRes(f) +h.0.b.(2). (2.147)
Put
g:=id+aPe) -4

Suppose for a moment that we want to solve the conjugacy equation @ o fo ! = g,
which is, by Proposition 2.3.11, equivalent to the fixed point equation (&) = .7¢(¢€),
where € := ¢ —id, € € £ and ord (€) > (1,0). The operators .%s and .7 here are as in
(2.108) and (2.109). Put

yi=ord, (f —id—aZP e .. £).

Notice that y > 8 > 1.

Note that ord; (.#(&)) = 7. If the fixed point equation .77(€) = .7(€) is solvable,
it necessarily follows that ord, (.77(€)) = y. By Proposition 2.3.17, the operator .77 is a
superlinear ﬁﬁ—homothety on the space OZ{I’I. To conclude, if € is a solution of the fixed

point equation, it necessarily follows that ord, (¢) = y— (B — 1) > 1. Therefore, set:
§:=y—(B-1).
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By Proposition 2.3.17 and Proposition 2.3.11, the operator .7 is a superlinear 2;—71—
homothety on the space .fks’l and the operator .7 is a 2ip—contraction on the space .L”ks’l,

where

p:=min{y—1,2(f—1)}.

By Proposition 2.3.11, it follows that ff(.fka’l) C iﬂky, and, by Proposition 2.3.17,
@(%{571) = .L”ky’Z. Notice that, in general, Yf(fkg’l) ¢ .Zj{y’z. So, in order to apply
Proposition 1.2.12, we compose the operator .#s with the projection operator |-] : .Zky —
,,?j{y’z, defined as follows: [A] is the logarithmic transseries obtained from /4 by removing
its term of order (28 —1,2n+1). So, instead of the fixed point equation 7;(€) = 7%(€),
we solve the modified fixed point equation Fy(g) = [#f(g)], for € € fka’l. Notice that

[-]is a 1-Lipschitz linear operator on .%}, i.e.

d ([g1],[g2]) <d:-(31,82), 81.82€.%. (2.148)

We define the operator [.%] : 92”,(5’1 — P, as a composition [#¢] =[]0 . Using
(2.148) and Proposition 2.3.11, we conclude that the operator [5@] is a zip—contraction
on .,S,”ka’l. Furthermore, [.%%] (%{671) C .,?f/’z, which is, by Proposition 2.3.17, equal to

Zc(.fk&] ). By definition, p > 8 — 1, which implies that zip < ﬁ By Proposition 1.2.12,

there exists a unique € € ,,iﬂka’l, such that J5 (&) = [.7%] (€) (see Figure 2.2).

%8,1 T gkyﬂ [-] %{’y S %5,1

W

Figure 2.2: Relation between the operators [.%] and .77, [28]

Note that [.77(€)] = F¢(€), because ﬂf(.,i”k‘s’l) = .i”ky’z. Therefore, solving the equa-

tion F5(e) =[] (€) in fk‘s’l is equivalent to solving the equation
[7r(e)] = [7(e)] -
The operator [-] is linear, so the above equation is equivalent to

[75(e) = 74(e)] =0,
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which is equivalent to the existence of ¢ € R, such that
Tr(e) = F¢(€) = cRes (f). (2.149)
Finally, put ¢, :=1id + €. Asin (2.112), we get
Ty(€) = Fy(€) = griof —go 1. (2.150)
From (2.149) and (2.150), it follows that there exists ¢ € R such that
@ 10f—go@y; =cRes(f). (2.151)

Now, by transforming (2.151), since ord;(€) > 1, by Taylor Theorem (Proposition A.1.6),

we get that

(PZ,lofo‘Pﬁ :g+cRes(f)o(p2f1l
= id+azPe]' - €F + cRes (f) +h.o.b.(2).

Thus, we have eliminated all blocks in f of order (in z) between 8 and 28 — 1, and all

terms in the residual block, except the residual term. |

Proof of step (a.2.2). Let f, ¢ 1 and a,c € R be as in step (a.2.1) above. We prove that

there exists @, € .2 0 such that:
@20(@ri0fo (p{}) o(p{é = id—l—azﬁf’i” - F + cRes (f).

Put:

hi=@i0fo;],
g ::id—i—azﬁfrl” - LF + cRes (f),

y:=ord; (h—g),
§:=y—(B—1).
The conjugacy equation
Pr20ho @) =g, (2.152)

is, by Lemma 2.3.9, equivalent to the fixed point equation .”f(€) = J¢(€), where € :=
@22 —id. As in the proof of step (a.2.1), if £ is a solution of the equation /¢ (&) = F5(¢),
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we conclude that ord;(.7;(&)) = y. Therefore, if € is a solution, necessarily ord (&) =
0. Since y > 2B —1 and 6 > B, it follows that .fks = .Zka’l and .,2’7(7 = .,S,”ky’z. By
Proposition 2.3.17, the operator .77 : .,‘Efk‘s — .ifky is a Zﬂ—{l—homothety and ﬂf(.ﬂk‘s) =
D?j{y. By Proposition 2.3.11, the operator ./ : Zk‘s — éfky is a Zip-contraction, with
p:=min{y—1,2(f —1)}. Since Yf(.i”k&) cgl= ﬂf(.,i’jf) and 55 < zﬁ%l’ by Proposi-
tion 1.2.12, it follows that there exists a unique € € %2, such that Tr(€) = Sf(€). Now,

¢ > :=id + € is a solution of the conjugacy equation (2.152). |

2.3.6. Case ord, (f —id) = 1 of the proof of statement 1

Let f € iﬂko, k € N>, such that f =id 4 zL+h.o.t., where L is as defined in Theorem C.
Put n := ord (%) Suppose that n = (01,7, ...,n;), where n, > 1, for some 1 <
m < k. As opposed to the case ord, (f —id) > 1, here we have three steps. The reason for
that is that the residual term of f is in the leading block (in z) of f.

For that purpose we define the following:

1. Let .i”,f(a’"""""'”) (resp. ,2”,?(0"""“""”1)) be the space of all transseries in %, k €
N>1, of order strictly smaller (resp. bigger) than (o, ny,...,n,) € R x Z™ in vari-

ables z,€1,...,4,, for 1 <m <k

2. Let Z{S(a’""""”’”) (resp. sz(a’n"“"”"’)) be the space of all transseries in %, k €
N>1, of order smaller (resp. bigger) than or equal to (o,ny,...,n,) in variables

z2,01,... 4y, forl <m<k.

3. Let £ (anynm) Lk — iﬂlj(a’""“””’") be the projection operator on the space

$k<(a’n1""’n’"). Similarly we define the projection operators:

. S(a7n]7"’7n )
yg(aanlw-vnm) : Ds/ﬂk - Dg/ﬂk " ’
. >(a7nl)"'7n )
gz>(a,n1,...,nm) . D%c — fk ",
. 2(&,”1,...71’1 )
‘@Z(aﬁhnwnm) : gk - c%k " :

Let f € %, k € N>y, such that f =id+azf]' ---£,* +h.o.t. Suppose that nj = --- =

ny—1 = 0and n, € N>q, for 1 <m <k. Let L be defined as in Theorem C. In the sequel,
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we use the notation r := ord (Res (f)) for the order of the residual monomial in the space
4.

We proceed in three steps:
(b.1) We eliminate all the terms in the leading block (in z) of f —id, which are not in zL

and are of order less than or equal to (1,1,,_1,n,, + 1) in the first m + 1 variables

z,41,...,4,. Thatis, we find a solution ¢ € Z{O, of the equation

P, i) (@0 fop ) =id+zL. (2.153)

A solution ¢ is not unique in .Z2, but, if we impose the so-called canonical form of
o, i.e., @ =id+ 28,41, Sm+1 € %’imﬂ C %, then ¢ is unique. This uniqueness
is proven in Remark 2.3.21. Note that we can skip this step if m = k, since then

P (111 1) (f) =id + 2L,
(b.2) We eliminate all the terms in the leading block (in z) of f —id, which are not in zL,
up to the residual term. That is, we find a solution ¢, € .,kao of the equation
Pr(@ro(profop; oy ) =id+zL. (2.154)
This implies that there exists ¢ € R such that:
pro(@rofop; o, ! =id+zL+ cRes(f) +h.o.t.

The solution ¢, is not unique in ., but, if we impose the canonical form of ¢@,,
ie., ¢ =1id+zS, for S € ;%, where Z is the set of all logarithmic transseries in
B, C & that contain only terms of order strictly smaller than (0,7, ...,n;),

then ¢, is unique. This uniqueness is proven in Remark 2.3.25.

(b.3) Let ¢ € R be the residual coefficient in @0 @10 fo @, o 0, ! We eliminate all the
terms after the residual term. In that process ¢ remains unchanged. That is, we find

a solution @3 € .,‘Zj(o of the equation

@30(@o(profop;ops Yops ! =id+zL+cRes(f). (2.155)

Put f1 := @ o(@iofoq, Do 0 !, The solution s is not unique in .Zko. However, if
we impose the cononical form of @s, that is @3 = id+zS+ &, where S € #L, C %
such that ord (zS) > r, and € € % such that ord; (¢) > ord. (f; —Lb. (1)), then @3

is unique.
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The general strategy in all three steps is to transform the appropriate conjugacy equa-
tion into the fixed point equation and apply the fixed point theorem stated in Proposi-
tion 1.2.12. In order to apply Proposition 1.2.12, we define suitable operators .7 and .7,
and use the results from Subsection B.5 to prove requested properties of the mentioned

operators.

We illustrate steps (b.1) — (b.3) on the following example.

Example 2.3.18. Let f € .43 be given by:

zL

T .
f:z+zfz< Yy 3’3) + 2l + 2165457
=2

+ 3 1508 + 2063057 1767 thot.
N——
elimination of this part in step (b.1)  residual term
Note that n = (0,1,—2) and m = 2. Therefore, by (2.101), it follows that n’ = (1,2,—2)
and
g .
L=0 Y &5+ +0,6565°.
i=—2
Furthermore, Res(f) = z0163¢5 3. Instep (b.1) we find a solution @; € £ of the equation
(2.153).
Now,

—4
o ofo (pl_l =z4+zL+ Z a1’1737u3Z£1£geg3 +bRes(f) +h.o.t.,

uz=vs

elimination of this part in step (5.2)

for some v3 < —4. Some of these coefficients a; ; 3 ,, and b can be equal to zero.
Note that r = ord(Res(f)) = (1,1,3,—3). Now, we apply step (b.2) and obtain ¢, € .}
and ¢ € R such that (2.154) holds, i.e.

pro(@rofop; Yoo, ' =z+zL+cRes(f)+ ho.t,

elimination (5.3)

Finally, we apply step (b.3) to eliminate h.o.t by @3 € Y, not changing any terms in
id +zL+ cRes(f).
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Proof of step (b.1)

In Lemma 2.3.19 below we transform the conjugation equation (2.153) into a fixed point
equation. Then we use Proposition 2.3.20 and Proposition 1.2.12 to prove step (b.1). As
explained above, if m = k we can skip this step. Therefore, we assume that 1 <m < k— 1

and k > 2.

Lemma 2.3.19 (Transforming equation (2.153) to a differential equation). Let f € .22,
k € N>y, such that f =id+zR+h.0o.b.(z), R€ AL, C Z. Let R#0 and (1,n) :=
ord(f —id), where n = (0,—1, 7, ..., 1), iy € N>1, 1 <m < k—1. Let L be defined as

in Theorem C and suppose that L,y 1, Ty 1 € %y \ {0}° are such that:
L=¢"L, 1 +ho.t.,
R—L=4£y- Ly £ 'T, | +hot
The logarithmic transseries ¢ € .%; is a solution of the equation
Py (@O fo@ ) =id+2L (2.156)
if and only if S, satisfies the differential equation

Lyi1 Dy (Sm+l) —log(l +Smr1) - (M- L1 + Dy (Lm+1)) : (1 +Smi1)

+ Tnt1 - Sm1 = —Tint1. (2.157)

Here, we write ¢ =id+zS+¢,S € %’;1, € € Z such thatord; (¢) > 1, and we decompose

S=8Sut1+Sn+---+8;, forS; € L%’;r, 1<i<m,and S, € ’%)ermﬂ'
Proof. The conjugacy equation (2.156) with ¢ € .,Z”ko is equivalent to the equation

D <1y i1) (@) = Petymnin) ((id+2L) 0 @), @€ L. (2.158)

Put p := f— (id+zR). Then ord; (1) > 1. Put ¢ =id+zS+¢, for S € %’;1 C %, and
€ € % such that ord; (¢) > 1. By the Taylor Theorem we get
S +€)D(id + zR) (z8) . gl

(P0f=zS+8+Z( S pid+ R+ p+ Y = —(R) + ) —(zR)’
= il 5 5
LY (id +zS) . ALY .
(id—l—zL)o(p:id+zS+8+zL+ZM8’+Z(Z) (zS)', (2.159)

7!

; 4 i!
i>1 : i>1 :

SNote that L, # 0 since n,, # 0. Without the loss of generality, we may assume that 7,1 # O.

Otherwise step (b.1) is omitted.
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for S € %’; | € %, € € £, ord;(€) > 1. Analyzing orders and applying the operator

P <(1ymt1) 00 (2.159), we get that equation (2.158) is equivalent to the equation

S (@) . 7)) .
9§(1m7n,n+1)(2 (Zi,) (R~} (Zﬂ) (zS)’+z(R—L)> =0. (2.160)

i>1 : i>1

By Lemma A.2.8, it follows that

¥ B i (54 D10 (143) - Tog(1 +5)+ G(5).

i>1
) (Z”j,)(l) (zR) =z(S-R+Dy(S)- (1+R) -log(1+R) +#(S)), (2.161)
i>1 :

for suitable m—contractions G, H (B dy) = (PB2,,d1). Note that
2o = =

P <Ny 1) (H1(S)) = P< (1, ns1) (€1(S)) = 0, (2.162)
foreach S € %, C %. Applying P<(1,nnm+1) t0 €quation (2.160) and using (2.161) and
(2.162) , after cIiViding by z, we get the following equivalent equation
P 0y 1) (S (R=L)+ (R—L) + (14R)-log(1+R)- Dy (S) — (1+5) log(1+5)- Dy (L) ) =0.

(2.163)
Since we eliminated z from the equation (2.160), we use the projection operator £« (o 1,, | n,+1)
instead of &y, ,,.+1) in the equation (2.163).
Let us decompose S as S = Sy, 1 + S + - - +.51. Note that:

Di(Sm+1) =41 Ly_1Dp(Sp+1),

Dy, (Sm—i-l) = emDm+1 (Sm+1)-

Furthermore, Lby, (R) = Lby,, (L) = £ Ly, 41 and Lby, ( fl'l‘e'znf—l ) =€ T, 1. Using this

and analyzing the orders of the terms in (2.163), we get
D011 it 1) ((1 +R)-log(1+R)-Di(S)— (1+S)-log(1+S)-Di(L)+S-(R—L)+ (R—L))
=11 (8 L1 - Don(Spr) = (14 1) - 10g(1 4 Spi) - Do L))
0yl (Smﬂezn“ Tt +£g;n“TmH). (2.164)
Dividing by £; - --£,,_1 and using (2.164), equation (2.163) is equivalent to the following
equation:

€ Lyt - Do (Sms1) — (14 1) 10g(1 4 Sins1) - Do (B Linr) + St - € T

=T (2.165)
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Using Lemma A.2.10, we get that equation (2.165) is equivalent to the equation

Lint1 Dy 1(Smy1) — (1 4+ Spp1) -log(1 4+ Spv1) - (L1 + D1 (Lt 1))
+Sm+l “Tin1 = —Tnt1-
[ |

Proposition 2.3.20 (A solution of a differential equation in %’; ma1) LetN,T € Ry C
£, k € N>y, such that N # 0 and ord(T') > ord(N). Let n € N> and let h € x*R[[x]] be
a power series in the variable x, with real coefficients, such that 2(0) = /#/(0) = 0. Then

there exists a unique solution § € %< C % of the equation

>m+1
N'Dm+1(S) - (I’l'N—i—Derl(N)) ’ (S+h(S)) +T-S=T. (2.166)

Proof. Dividing by N # 0 both sides of equation (2.166), we get the equivalent equation:

D N T
L()—DM](S)—F—.

(Z_n>.s_n.h(s):(5+h(5))' N

N
Let Tnt1, S mtt %’>m s 95’> my1 b€ the operators defined by

Im+1(8) = (S+h(S))- Dmngl(N) — Dy 1(S) + %a
Tt (8) 1= (% —n> S—n-h(S), Se#BL,, C%.

Let 1,5, € %;mﬂ C % be arbitrary such that S; # S,. Since ord(T) > ord(N), it
follows that ord (%) > 0. Note that
T
Tn+1(51) = T1(S2) = (N—”> (S1—82) —n-(S1—S2)- ), < 2511 / Sj)
i>2 " j=

= —nLt(Sl — Sz) +h.o.t.

Therefore, ordy, ,, (Z+1(S1—S2)) =ordy, ,, (S1—S2). This implies that .7, 1 is an isom-

etry on the space (%<

N ,dm+1). By Remark B.5.6, it follows that .7, is a surjection.

Since

D N
Ord£m+1 <”H]>\1]()> Z 17

ordy, ., (Dm+1(S)) > ordy,, ., (S) +1,

itfollows that .7, 1 isa %—contraction on the space (%<

2m+1=dm+l)- By Proposition 1.2.12,

it follows that there exists a unique solution S € %’> mi1 © Zi of the equation 7,11(S) =

Im+1(8), i.e., equation (2.166). [ |
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Proof of step (b.1). Suppose that f € ,,iﬁko, k € N>, such that f =id+zR +h.0.b.(z), for
R e %’; | € Z,. We assume here that R # 0, since otherwise, it follows that ord (f —
id) > 1 and we apply case (a) instead. Let ord (f —id) = (1,0,y—1,1m, ..., ng), Ny > 1,
1 <m < k—1. Let L be as defined in Theorem C. In this step we eliminate all terms
in f —id except the terms in zL, up to order (1,,,n, + 1) in the first m + 1 variables
z,41,...,€,. Note that, if m = k, all such terms are in zL. In this case we have nothing to
eliminate and we skip case (b.1).

Suppose that m < k. By Lemma 2.3.19 we transform equation (2.153) into the differ-
ential equation (2.157). Let us decompose L and R — L as in Lemma 2.3.19. If 7,1 =0,
then we have nothing to eliminate and we skip case (b.1). Suppose that 7, # 0. Now,
put T := Tp41, N := Ly and h:= (1 +x)log(1 +x) —x. Since N # 0 and ord(T') >
ord(N), by Proposition 2.3.20, there exists a unique solution S, € %’;m 1 © & of
equation (2.157). Now, we put @; := id + zS5,,4+1 and, by Lemma 2.3.19, ¢; € .,Zj? is a

solution of the conjugacy equation (2.153). |

Remark 2.3.21 (Non-uniqueness of the conjugacy ¢;). Let ¢ :=id+zS5+¢€, € € %,
ord;(€) > 1,and S € %’;1 C %, be a solution of the conjugacy equation (2.153) for a
logarithmic transseries f € fko, k € N> . Now, put ord (f —id) := (1,0,—1,7m, ..., ng),
forn, >1and 1 <m <k—1. We decompose S as S =S;+ -+ Sy, + Sp+1, for S; €
%’f C%,1<i<m, and S, € %’;mH C Z. By Lemma 2.3.19, ¢ is a solution
of the conjugacy equation (2.153) if and only if S,,+; is a solution of equation (2.157).
Therefore, we can choose arbitrary S; € ,%’;r C %, 1<i<m,and € € %, ord;(g) > 1,
such that ¢ is still a solution of the conjugacy equation (2.153). Although ¢; is obviously
not the unique solution of the conjugacy equation (2.153), if we request the canonical
form of @1, i.e., ¢ :=id + zS,,+1, where S;,+1 € %;mﬂ C %, then, by Lemma 2.3.19

and Proposition 2.3.20, it follows that S, € ,@gm +1 € % is the unique solution of
equation (2.157). Consequently, ¢ = id + zS,,1 is the unique canonical solution of the

conjugacy equation (2.153).

Proof of step (b.2)

Here we suppose that we have already applied step (b.1) on f € i’j{o, k € N>1, such that
ord (f —id) = (1,0m—1,mm, .., nk), ny > 1. Thatis, Py, . 11)(f) = id+zL, for L as
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defined in Theorem C.

The general strategy is to transform the conjugacy equation
P (pofop )=id+zL, ¢ L, (2.167)

into the differential equation stated in the following Lemma 2.3.22. Then we use Propo-

sition 2.3.23 below and Proposition 1.2.12 to solve it.

Lemma 2.3.22 (Transforming equation (2.167) into a differential equation). Let f € .Z, 0
k € N>, such that f =id+zR+h.0.b.(z), forR € %’; C %. Put (1,n) :=ord(f —id)
andn:= (01,7, ..., ng), iy > 1, for 1 <m < k. Let L be as defined in Theorem C. Sup-

pose that z(R — L) contains at least one term of order strictly smaller than ord (Res (f))°.

Put’

L=Ly+ - +Li,

R—L=0-lyTp+Ly -y Ty 1+ +0Ti, (2.168)
where L;, T; € B C %, fori=1,...,m. Put r:= ord(Res(f)) = (1,2n+1;) and rp :=
(0,20, + 1,... 2+ 1).

Here, we put ¢ :=id+zS + ¢, for € € % such that ord; () > 1, S € %’;1 C % and
decompose S as S =S, +---+ S, for S; € ﬂf C%.1<i<m-—1,and S, € ,%’gm C%.
The logarithmic transseries ¢ € .i”ko is a solution of the equation
Po(Qofop ) =id+zL

if and only if S,, belongs to %,/ \ {0} C .%; and S,,, satisfies the equation

P <y (1 L) 1081+ L) - D (S) = Din(L) - (14 Sp) 108 (14 ) + TS — T

= Dy (€(Sm)), (2.169)
where € : %; | 93; | isa Zlew—contraction on the space (%; 1di).

Proof. We first apply a procedure similar to the one in the proof of Lemma 2.3.19. By
comparing orders and applying the projection operator &, it is easy to see that the

conjugacy equation Z_,.(@o fo¢@~!) =id+zL is equivalent to the equation

P(@of) =P ((id+zL)09),

Qtherwise we skip case (5.2).
"Note that ord(R — L) > (L, 2t + 1, i1, - - 1),
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where ¢ :=id+z5+¢,forS € %’;1 C Zande € %, ord, (€) > 1. Put u:= f—(id+2zR).

By the Taylor Theorem we get the equivalent equation

(zS+¢ D (id+zR $)(®) . € :
9<r(zs+e+z b ).,(1 = )u +1d+zR+u+Z ) zR)’—i-Z,—'(zR)’)
i>1 L = i>1 b
)@ (id + z5)
f¢@<,(1d+zS+8+zL+Z%+Z ) (2.170)
i>1 i>1

Subtracting and applying the operator &, to (2.170) and analyzing the orders of terms,

we get that the equation Z2_,(¢ o fo@~!) =id +zL is equivalent to the equation

7.(¥%

i>1

(z8)

i!

S) +z(R— L)) —0. (2.171)

By Lemma A.2.8, it follows that

Z(ZL)()(ZS) Z(L-S+Di(L)-(14S)-log(1+58) +%L(S)),

=1 i!

y (ZS_’)(I) (zR)' =2z(S-R+Dy(S)- (1+4R)-log(1+R) + #z(S)), (2.172)
=

-contraction

for suitable 2++£<m-con‘[1raction 6L (BL,,d1) — (%>1 ,dp) and HT%()
27 =

R (%};pdl) - (‘%jgladl)'

Since
ordy, (HR(S)) > 2+2-ordy, (R),

it follows that &~ .(#z(S)) = 0. Consequently, by (2.171) and (2.172), we get that the
equation Z_,(@o fo@~') =id+zL is equivalent to the equation

3”<r(z<S~ (R—L)+(R—L)+(1+R)-log(1+R)-Dy(S)— (1+S)-log(1+5) -Dl(L)))

= P (26L(S)). (2.173)

Now decompose S = S, +---+ Sy, for §; € ,%’;r C%, 1<i<m-1,85,¢ 93;," C %
and R — L as in (2.168). It follows from (2.173) that S,, € %4, \ {0} C .%,. Suppose for a
C %.

Suppose first that m = 1. Then S = ;. Note that ordy, (S-(R—L)) > 2+ ordy, (R) and
ordg, (67.(S)) > 2+ ordy, (R). Since S € 93;2 C % and R € B C %4, it follows that

contradiction that S,, = 0 or ordy, (S,,) =0, i.e., S, € <%’>m S

ordg, ((1+R)-log(14+R)-D;(S) — (145)-log(1+S)-D(L)) = ordg, (R) + 1.
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Now we get that the order of the left-hand side of equation (2.173) is strictly smaller than
the order of the right-hand side of the same equation, which is a contradiction.

Now suppose that m > 1. It can be seen that ord(z%%(S)) > r, and therefore, the
right-hand side of equation (2.173) is equal to zero. Note that ord (S- (R—L)) > ord (R) +
ord (S) + (0,1,,0¢_y,). Since S, € B3, | C % and L, € B C 4, it follows that

ord ((1+R)-log(1+R)-D1(S)— (1+S)-log(1+S)-Di(L))

=ord(R) 4+ ord (S) + (0,1,,,0¢_,,)-

Now, the order of the left-hand side of equation (2.173) is strictly smaller than the order
of the right-hand side of the same equation, which is a contradiction. Thus, we proved

that S, € %5\ {0} C %.

We finish the proof considering separately the cases m = 1 and m > 1. Suppose that
m = 1. Then we have S =S|, R— L =¢,Ty and L = L,,. Therefore, equation (2.169)
follows after dividing equation (2.173) by z.

Now, suppose that m > 1. Note that D1 (S;) =£;---£;_1D;(S;), for2 <i<m, (1+R)-

log(1+R) = R+ ¥y L= R and R = Ly + L1 ++++ L1 +h.o.t. Note that 5,, # 0 by

the above discussion, and L,, # 0. Analyzing the orders of the terms, it follows that

P (z(1+R)-log(1+R)-Dy(S))
= P (z(1+Ly) -log(14+Ly)-Di(Sn))

=P (&1 Lp-1(1+Ly) -log(1+Ly) - Diu(Sm)). (2.174)
From (2.168), it follows that
P (2(R=L)) = P (2l LnTy). (2.175)

Since ordy, (67.(S)) > 2+ordy, (R) > 1, it follows that &2,(z6.(S)) =0, S € ,@; C%.
Therefore,

P<r(2(1+S) log(1+S) - D1 (R) +CL(S))

= @<r(z(l +8Sm) -log(14Sy) -Dl(Lm))

=P (- Ly—1(14+Sy) -log(1+S,) - Dm(Ly))- (2.176)
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After dividing by z€; - - -£,,_1 and using (2.174), (2.175) and (2.176), we get that equation
(2.173) is equivalent to equation (2.169). Therefore, the equation (2.169) is equivalent to

the equation Z_.(po foe~ 1) =id+zL. [ |

Proposition 2.3.23 (Solution of a differential equation). LetL € %} \{0} C %, ord(L) =
(Omy iy« -y 1), iy > 1, and ro := (04,20, + 1,...,2n + 1), 1 <m <k, k € N>j. Let
Ve Bl C %, ordy, (V) > ny+2, ord(V) < rg. Furthermore, let & € x*R[[x]] be a
power series in the variable x, with real coefficients, such that 2(0) = #’(0) = 0, and let
Cm: B — B bea 22+#,,m—contraction, with respect to the metric d,,. Then there exists a

solution § € B, C %, ord(S) < ord(L), of the equation
P, ((L+h(L)) Dy(S) = D(L) - (S+h(S)) +V - S) = Py (V+Cu(S)). (2.177)
In the proof of Proposition 2.3.23, we need the following technical lemma.

Lemma 2.3.24. LetK,Pc %, C 4>, P#0,1<i<k, ke N5, and let n; := ordy,(P).
If the order in £; of each term in K is strictly smaller than 2n; + 1, then there exists S €

P; C £ such that
P (0, 2n41) (P-Di(S) = S-Di(P)) = K. (2.178)

Moreover, if we impose the condition that the order in £; of each term in S is strictly

smaller than #n;, then such an § is unique.

Proof. Let
P:e:l’ i+1+})iv

where P € By C L, and P, € B; C £ such that ordy,(P) > n;+1. Let .“°,.7 :
HB; — H; be the operators defined by:

S (8) := P _(0;2m41) (K —P-Di(S) +S-Di(F,)),
T(8) = L0, 2041) (&' Pix1-Di(S) = S -Di(€] Py 1)).

1

1

Note that . is an affine 5-contraction on the space (%i,d;) and 7 is linear. Further-

more,

ordy, (€' Piy1 - Di(S) — S+ Di(€]'Pi1)) = ordg,(S) +ni+ 1, (2.179)
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if and only if £'P | - D;(S) — S Di(€}'P+1) # 0. Now, by solving the linear differential
equation, we get that £/'Pj - D;(S) — S - D;(£;'P,y1) = 0 if and only if S = C-£}'Py,
C € R. Therefore, (2.179) holds if and only if S # C-£;"P; 1, for each C € R.

Let ,/%7 be the space of all S € %; C ,Z,:" such that either S = 0, or every term in
S has order in ¢; strictly smaller than n;. By (2.179), the order in ¢; of each term in
L' P 1D;i(S) — SD,-(K?iH+1), S e 9?, is strictly smaller than 2n; + 1. Consequently, it

follows that

5(8) =€'Pyy -Di(S)— S Di(€]'Priy), SER. (2.180)

Let $1,5, € % such that S1 # S,. Suppose that 9@/(51 —82) = 0. Solving the linear
differential equation as above, we get that §; — S, =C -E?" > +1, for some C € R. Since,
Sl,Szej%j,WG get S; =57, ,@(SI_SZ) 750. By

(2.179) and (2.180), it follows that

ordy, (7| 7(S1 — S2)) = ordg, (S1 — S2) +ni + 1.

Now we get that 7| 7" B — KB is a linear 2,ll_lﬁ—homothety, with respect to the metric d;.

Now, equation (2.178) is equivalent to the fixed point equation
T 78)=Z15(S), SeB.

We now prove that . (537) cT (,@5) Then we conclude by Proposition 1.2.12.
Suppose that M € . (537) Then, by definition of ., each term in M is of order in ¢;

strictly smaller than 2n; + 1. We solve the equation 7| Z(S) = M, i.e.
0P Di(S) — SDi(€Piy ) =M, S€ B.

This is a linear ordinary differential equation whose solutions are given by:

0P ) de; M P ) de;  de;
S=exp( / en'P+1 f2)<c+/<f"’ Py “exp / L/Pyy flz)312>)

N M i e,
= exp (log(£]'Pi41)) C+/m~(exp(log(€i’1’i+1))) IKT)
y M de;
— 0Py, C+/ e £2> CeR. (2.181)

By Lemma B.2.6, it follows that S € %; C .£,~, for each C € R. Moreover, taking C = 0,
wegetSeég%gzg". [ |
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Proof of Proposition 2.3.23. Note that:
L=0"Py i+ Py 1> 1,

where By 1 € By € % and By, € B, C %, ordy, (Py) > ny + 1. Put:

Inl(S) 1= Py (V+%(S) ~ h(L) - Dn(S) +(S) - Dyu(L) =V ),

T(S) 1= Py, (L-Dm(S) —S-Dm(L)). (2.182)
Note that (2.177), for S € #,} C %4, is equivalent to

Tn(S) = Fm(S). (2.183)

Let S1,5 € B} C %, S1 # S,. Note that:
Cm(S1) —Cm(S2)) > ordg, (S1—S2) +nm+2,

ord, h(L) -Dm(Sl —Sz)) > Ol‘dgm (Sl —Sz) +2n,,+ 1,

m

(

ordg, ((S1 —$2)-V) > ordy, (S1 — S2) + 1w +2,
(
(

(2.184)
The last inequality in (2.184) is obtained using the identity
h(S1) = h(S2) = (S1 = 52)- Zhi(i Sy 5%)
i>2  j=0
where (x) := Y~ hix', h; € R, i > 2. By (2.184) and since n,, > 1 and ordy, (S1),ordy, (S1) >
1, it follows that .7, is a ﬁ-contraction on the space (%,,dy).
Let % C B} C % be the space that contains 0 and all logarithmic transseries in
B,; C % that contain only terms of order strictly smaller than (0,,,7n,,, . ..,n;) = ord(L).
Note that the restriction 7| : B — %, is a linear operator. For S € B \ {0} we obtain

that
ordg, (T(S)) = ordy,, (S) +npu +1, (2.185)

if 7,,(S) # 0. Suppose that 7,(S) = 0. Then there exists N € B,; C %, ord(N) > r,
such that L-D,,(S) — S - D,,(L) = N. Dividing by L and solving the linear differential

equation, we get
N dt
S—1L. (c /fim)
Tlre
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for C € R. Since S € @, we get that N = 0 and C = 0, which implies that § = 0. Con-

sequently, if S € B \ {0}, then .7,(S) # 0, and therefore, (2.185) holds. Since .7,

_1
2nm+1

‘L’%jis

linear, it follows that 7| & isa -homothety, with respect to the metric d,,.

Let us prove that .%,(B) C I (%B). Let K € S(B) C B, C % be arbitrary. By
(2.182) and (2.184), we get ordy, (K) > n,,+2 and ord(K) < ro. We find S € 2, such that
In(S) =K, ie.

D ey (L-Dy(S)— S Dp(L)) =K. (2.186)
We have the following decomposition:
K= I<m +‘e%1nm+]Km+l _|_£3nnm+le2nm+1+1Km+2 4. +£}%1”rn+1 . "eirik{l+1Kk,

m—+1

where K, € B, C Ly, nm+2 <ordy, (Kp) <2np,+1,and Ky i € Bnyi C 27, 01dy,, (Kinyi) <

2np+i+ 1,1 <i<k—m.

Now we proceed to solving (2.186) inductively in k —m + 1 steps.

Step 1. We first solve the equation &Z_ g, 2, +1)(Ti(S)) = K, i.€.
f@<(0m,2nm+l)(L'Dm(S) *S'Dm(L)) = K.

By Lemma 2.3.24, there exists a solution S, € %,, C ,Zf’ of the previous equation, such
that the order (in £,,) of every term in S, is strictly smaller than n,,. Since ord,, (K;,) >

1 + 2, it follows, by (2.181), that S,, € %;; C %. Now, put
G = Py (Tn(Sm) — Kn), (2.187)

where Gy i1 € Byp1 C £ is such that ord(€27 G, 11) < 9.

Step 2. Now, with S,, € %4, C .Zf’ from the previous step, we solve in the variable

S € Buy1 € £ the equation

D (00012041 2011 +1) <L “Di(Sm+€,1'S) — (Sm+£,'S) - D (L)>

= K+ 2K, (2.188)
Let us decompose L as

L=Ly +£ZmLm+17

127



Normal forms of logarithmic transseries Normal forms of parabolic transseries

128

where L, € B,5 C %, nm+1 <ordg, (Ly), and Ly 41 € Buy1 € L. By (2.187) from

the previous step, we get:

@<(0m72nm+172nm+1+1)(L'Dm(Sm) —Sm- Dm(L))
= Km + <@<(0m’2n/rr‘l‘l,2nm+l"l‘l) (‘egnnm+1 Gm+1)

=Kn+L" NP0, any 1) (Gt (2.189)

By (2.189), it follows that equation (2.188) is equivalent to the equation:

‘@<(0m+1,2”m+1+1) (Lerl "Dy (S) =S8 Dyt (Lerl ))
= Bm+1 c@<(0m+l72rlm+l+l)(GWl—"_l)'
By Lemma 2.3.24, there exists a solution S := S,,, 11 € %41 C £~ of the previous equa-

tion, such that each term in S, is of order in £, strictly smaller than n,,;. Now,

put:

2 m l
e’%ln,n+lem”+l+l+ G2 = e@<r0 (y(Sm +Sm+1) — K _einm+1Km+l)7

where G,y 2 € Bi2 C £ such that ord(ﬂ,%,,”mHZi”f]“HGmH) < rp.

Inductively, in k —m+ 1 steps, we find S, ..., S;. Now, put:
S =S+ St ...+grr;lm,,,ezlrl1sk.

Note that S € ,@/’, and, by the induction, S is a solution of the equation .7,| 95(3) =K.

Therefore, .7, (#) C T (B).

Now we conclude by Proposition 1.2.12. |

Proof of step (b.2). For simplicity of notation we denote again by f the logarithmic transseries

profoo L with @ € P obtained in step (b.1). Now, put
f=id+zR+hob.(z), Re B, C.%.

Let ord (f —1id) := (1,0,—1,npm,...,ng), for n, > 1, 1 <m <k, and let L be as defined
in Theorem C. Suppose additionally that R # L and that ord (z(R— L)) < ord (Res(f)).
Otherwise, we skip step (b.2) and proceed directly to step (b.3).
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Now, f satisfies the assumptions of Lemma 2.3.22. Therefore, we transform the con-
jugacy equation Z_ (@0 fo @, ') =id+zL to equation (2.169).

Now, put V :=¢, T, € B, C %, where T,, is from the decomposition (2.168) in
Lemma 2.3.22. Since step (b.1) has been applied on f, note that Z(y, ,, +1)(f) = id+
zL, and therefore, ordy, (V) > ordy, (L) +2. Let h:= (1+x)log(1 +x) —x € ¥*R[[x]]. If
m=1, wetake €| :=% : ,@f — ,@f, for —sL—-contraction %, with respect to the metric

22+n1
dy, from equation (2.169). If m > 1, take ¢, : B, — %,;, such that €, (S) := 0, for

m»

each S € B} C %. Evidently, form > 1, 6, : B, — B, is a -contraction, with

respect to the metric dj,,. Therefore, we can apply Proposition 2.3.23, so there exists a
unique solution § € éf?j - %’nt C % (for 9? as defined in the proof of Proposition 2.3.23)
of equation (2.169). Now, by Lemma 2.3.22, it follows that ¢, :=id + zS (here, we take

the solution with the simplest choice € := 0 in Lemma 2.3.22) is a solution of the equation
P(profopy!) =id+zL.
Therefore, there exists ¢ € R such that:
@r0fop, ' =id+zL+cRes(f) +h.o.t.
This completes step (5.2). [

Remark 2.3.25 (Non-uniqueness of a conjugacy ¢, in step (5.2)). Let ¢ :=id+zS+¢,
for S € %’; | € % and € € %, ord, (€) > 1, be a parabolic solution of the conjugacy
equation (2.154). We do not claim the uniqueness of the solution ¢,. Let us decompose S
asS=S8,+S,-1+---+9, for §; E%ﬁ C%, 1<i<m-—1,and S, E,%’;m C %. By
Lemma 2.3.22 it follows that ¢, is a solution of equation (2.154) if and only if S, € B,} C
% and if S,, is a solution of the differential equation given in (2.169). Therefore, we can
choose arbitrarily S; € ,%’:r C %, 1<i<m-—1,and € € %, ord.(g) > 1, such that ¢,
is still a solution of (2.154). Although ¢, is not unique, if we request the canonical form
of @, that is, ¢y :=id +zS,, for S, € 7 C B, C %4 (for % as defined in the proof of
Proposition 2.3.23), then, by Lemma 2.3.22, S, satisfies the differential equation (2.169)
and, by Proposition 2.3.23, such an S, is unique in 2. Therefore, if @, is a canonical

solution of the conjugacy equation (2.154), then it is unique.
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Proof of step (b.3)

We first transform the conjugacy equation (2.155) into the fixed point equation given in

Lemma 2.3.26, and then use Proposition 2.3.27 and Proposition 1.2.12 to solve it.

Lemma 2.3.26 (Transforming the conjugacy equation (2.155) to a fixed point equation).
Let f € .i”ko, k € N>q, such that f:=id+zR+u,R € %’; C L€ L, ord, (1) >1,
and g:=id+z7T, T € %;1 C % The conjugacy equation

pofop ! =

where we write ¢ :=id+zS+¢€, for S € @Il C %, € €%, ord, (€) > 1, is equivalent

to the fixed point equation
Ti(zS+¢€) = S(zS+e)

on the space .,Zﬂkl, where:

y (z8+ &) (id 4 zR) W-Y (z) D (id +25)

Fr(zS+e€) = T T e +z(R—T)+u,

i>1

Tp(zS+¢€) = (cT) o(id+25)-e— Y i:)(zR)i +) (ZT,)U) DY (ZS_i)(i)(zR)". (2.190)
i>1 L.

|
i>1 !

i>2

v

Proof. The conjugacy equation @ o fo @~! = g is equivalent to the equation:

pof=go0,
for o :=id+z5+¢,5¢€ %;1 C %4, € € %, ord,(€) > 1. By the Taylor Theorem (Propo-
sition A.1.6) we get that:

(z8+¢€)D(id+zR)
i!

=

o)

(i
u +1d+zR+u+Z )

= i>1 L

zS+6+Z

i>1

() d+2z5) ;
1d+zs+s+zT+Z# +Z (2.191)

i>1 i>1
Let us define the operators ., 7 : ciﬂkl — gkl as in (2.190). By (2.191), it follows
that the conjugacy equation is equivalent to the equation ./¢(zS+€) = J¢(zS + ¢€), for
Se #L, C L, € L, ord(e) > 1. [ |

Proposition 2.3.27 (Properties of .y and 7). Let f € £0, k € Ny, such that f :=
id+zR+u, for R € ,@; \ {0} C %, and let o :=ord () > 1. Let g:=id+ 27T, T €
%;1 C %, andlet s, Ty : Z%; eZL* — Z%; © £ be operators defined in (2.190).
If ord(z(R—T)) > ord(Res(f)), then:
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1. the operator ./ is a 2O}—,l-contraction on the space (z,%’;r1 ®.£%,d;),

2. the restriction of the operator .7y to the space
L ={hepl o L% ord(h) > ord (f —id)}
is an isometry, with respect to the metric d_,
3. SH(L) € THL).

The following Proposition 2.3.28 is needed in the proof of statement 3 in Proposi-

tion 2.3.27.

Proposition 2.3.28. LetM,R,V € 93’;1 C %, ke N>, suchthat R # 0and ord (V),ord (M) >
2-ord(R) 4+ (0,1). Let

B = {K € %’; cord(K) > ord(R)} ,
and let .7 ,.7 : B — %’; be the operators defined by
T (S):=—(1+R) -log(1+R) -Di(S)+ (1+S) -log(1+S)-Di(R)+S-V,
F(S) =M+ (S) =€ (S)— (1+8)-log(1+5)-Dy(V), S€B,  (2.192)
where 61,1 : %’; L= 95’; are W—contractions on the space (93; 1»d1). Then:
1. the operator .7 is a ﬁ contraction, with respect to the metric dj,
2 4
2. the operator .7 is a m—homothety, with respect to the metric dy,
2 1

3. S(B)C T(B).

Proof. 1. Let S1,5, € 8, S 75 S», be arbitrary. Since ord (V) > 2-ord(R) + (0,1;) and
(I+x)log(1+x) = x—l—):,>2 ))x it follows that

ordy, ((1 +51)-log(1+81)-Di (V) — (1+S3) - log(1+S) -Dl(V)>

> ordy, (S1 —S2) +2-ordy, (R) +2.

Since ¢, and %] are m—contractions, by (2.192), it follows that . is a m—
2 1 2 1

contraction on the space (4,d).
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2. Let 1,5, € &, Si # S5, be arbitrary. Since ord(V) > 2-ord(R) + (0,1;) and
(I+x)log(14+x) =x+Y;>> %xi by (2.192), it follows that:
T(S1)— T(S2)=—(14+R)-log(1+R)-Di(S1 —S2)+(S1 = 82)-V

+ ((14581) -log(1+81) — (1+82) -log(1+S$2)) - D1 (R)

=Lt((S1 —S2)-Di(R)—R-D;(S; —$2)) +h.o.t, (2.193)
if (Sl — Sz)Dl (R) —RD; (Sl —Sz) 7& 0. Suppose that (S1 —Sz)Dl(R) —RD, (Sl — Sz) =0.
By solving the linear differential equation, we get

S1—=8=C-R, CeR.

Since S; — 5, € @,’ we get that C =0, i.e., S = S», which is a contradiction. Therefore,
(S1—S52)D1(R)—R-D;i(S1 —S2) #0, and (2.193) holds. By (2.193), we get that:

OI‘dg1 (g(Sl) — y(SZ)) = OI‘dg1 (S] — SQ) —l—OI‘dgl (R) +1.

Therefore, 7 is a m—homothety on the space (9:?7, dy).
2 1

3. Let W € Y(@) Since ord (M),ord (V) > 2-ord(R) + (0,1;) and 1,7 : %’; —

B are m—contracﬁons on (%%,,dy), it follows that W belongs to A<, C % and
> : > >

satisfies ord(W) > 2-ord(R) + (0,1;). We solve the equation .7 (S) = W in the space A.

Using (2.192), this equation becomes
—(1+R)-log(1+R)-Di(S)+ (1+S)-log(1+S)-Di(R)+S-V=W.

Since R # 0, after dividing by — (1 + R)log(1 + R), we get the equivalent equation:
Di(S)—S- (DIR)+V) — ((1+S)-log(1+S5)—S) Di(R) w
: (1+R)-log(1+R) (1+R)-log(1+R) (14+R)-log(1+R)

(2.194)

For the purpose of applying Proposition B.5.7, put:

h:=(14+x)log(l+x)—x,

N :=1log(1+R),
_ 1%
~ (1+R)-log(1+R)’
B Di(R) _ D)
(1+R)-log(1+R) N '
w

(1+R)-log(1+R)’
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Since ord (V) > 2-ord (R) + (0,1;), it follows that ord (K) > (0,1;). Since ord(W) >
2-ord(R) + (0,1;) and ord(N) = ord(R), it follows that ord(M) — ord(N) > (0,1;). By
Proposition B.5.7, there exists the unique solution S € éj, of the differential equation
(2.194). Therefore, S € 4 is the unique solution of .7 (§) = W on the space 2. This

implies that . (%) C .7 (A). [

Proof of Proposition 2.3.28. 1. First, note that yf(z,%’; L), ff(z,%’; ®©ZL¥) C
L, @ LE. Indeed, let S € 7, and € € L&, Since (7)1 (id +28) = Lt((zT)V) +
h.o.t,, (z8+¢)@(id+zR) = Lt((z5)V) +h.o.t., it follows that:

@) ( .
Ordz( (zS+¢€) . (1d+ZR)u’) > ord.(1) = o,
i>1 1!
(@) (i .
ordz( Wg) >2-ord;(e)— 1> a. (2.195)
= i!

Therefore, 77 (zS +¢€) € z%’;l @ £, and, consequently, Vf(ze%’; © LY C z%i , ®
Similarly, since (zT) o (id+zS)-€ =Lt(T-€)+h.o.t.and ¥;> # (zR)' =Lt(¢'-zR) +

h.o.t., it follows that:

Ordz((ZT)/O (id+2z9) -8) =ord,(¢) > a,
el

ordZ<Z T (zR)i) =ord;(g) > a.

i>1

Therefore, J7(zS+¢€) € zg%“g | ® L%, and, consequently, Zc(z%’; ®.ZL%) C z,%’; 25
7

Now we prove that . is a contraction. Let 2§14+ €1,25 + & € Z:%’; ©L%, 81,5 €
%’; | € % €1,8 € L&, such that 28 + €1 # 25 + &. We distinguish two cases.
(a) Case & # &. Since (7)) (id +zS,) = Lt((zT)(i)) +h.o.t. and g1, & € L7, we get:

1) (id+z81) 27 (id+25,)
(mxz()(w Oq_z()(w ﬁ%>
1. i>2 1.
> Ordz(Sl — 82) + (OC — 1)

> ordz((le +e)— (ZSz-I-Ez)) +(a—1).
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(b) Case € = &. Then S| # S, and:
0 (; . 0 (i .
y (zT) (ld+ZSI)8i -y (zT) (1d+zSz)8,

i i !

i>2

1
- —Lt(iﬂpl(r) (S1—$) -e%> +ho.t.

i>2

That is:

1) (id+z281) 1) (id+25,)
ont, (3 G000 g ()44 25) )
) 1! = 1!
>2a—1
> ord; ((z81+€1) — (282 +&1)) + (a—1).

Therefore, in both cases, it follows that:

ld+zS) gy @)V(d+285)
ord, <,>Z§ ! 1_,'>Z§ a 2 82>

ZOI‘dZ((ZSl —|—81) —(ZSz—f—SQ))—i—(OZ—l). (2.196)

Note that:

() , (1) (3 .
ordz<2 (ZSl +£1) (1d—|—ZR)“l B Z (252 + 82) (1d+ZR) ,LLZ)

! !
i> L i>1 1!

[

( 2) + (g1 — &))@ (id+zR)”i)

= ord, ;
7!
i>1

> ord, (z(S1—S2) + (&1 — &)) +ord; (1) — 1
> ord. ((z8) +81) —(zS2+8))+a—1. (2.197)

Finally, statement 1 follows from (2.196) and (2.197).

3. Lethe yf(.,27), where . C z%’; | ® L% is as defined in Proposition 2.3.27. Since
yf(,ﬁ?) C Z%);l ®.Z% and ord(z(R—T')) > ord(Res(f)), by formula (2.190) for ., h
can be written in the form:
h=mM+ Y Pmp,
B>a
where M € ,@; C %, ord(zM) > ord(Res(f)), Mg € %1, B > . We prove that there
exists 2§ + € € . such that:

Tr(S+e)=h=M+ Y Pumg. (2.198)

B>a
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Therefore, we search for solution of (2.198) in the form:

S+ Z ZBS[;, Se ,%’; C %, ord(S) >ord(R),Sg € #1 C £,

pza

(2.199)

From (2.190) and by comparing the blocks with the same order in z, it follows that equa-

tion (2.198) is equivalent to the following system of equations:

' (zﬁS )(i) ;
(zT)/O(ld—i-zS)-zBSﬁ—Ziif(zR) — Mg, B>a,

i>1
@ (@) _
ED sy -y O ry = o
= =
By Lemma A.2.8 it follows that:
(Psp)D i
Z%(ZR) :ZB<S/3'Z [j R —i—cglg(Sﬁ)),
i>1 . i>1
DD
Y S (@8) =2(T-8+Dy(T) - (1+5) log(1+8) +%1(S)).
i>1 b
EI.
- (zR)' =z(S-R+D;(S)- (1+R) -log(1+R)+ #(S)),
i>1 b

for linear m—contractions Cp: (%1,d1) — (%$1,d1), B> o, and m—contractions
2 1 2 1

(2.200)

(2.201)

(2.202)

€, A (%gl,dl) — (%’; 1»d1). By (2.202), after eliminating the variable z, we get that

solving (2.200) and (2.201) is equivalent to solving:

S(Sg) =S, Spe B CL7,B>a,

and
A(8)=(8), Se %’;1 C %, ord(S) > ord (R),
where:
yﬁ(Sﬁ) . Mﬁ —SB -DI(T) e] (1d+ZS) +Cgﬁ(5ﬁ),
TO(1d+ZS) —2121 (lf)Rl
and

A(S) =M+ (S) —61(S) — (1+S)-log(1+S)-D{(T —R),

(2.203)

(2.204)

(2.205)

F1(S) := —(14R) -log(1+R) - D1(S) + (1+5) -log(1+S) - D1 (R) +S- (T —R).

(2.206)
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Since fixed point equations .#5(Sg) = Sg, B > @, depend on the solutions S € %’; 1 €4,
ord (S) > ord(R), of the fixed point equation .7;(S) = .71(S), we first determine the

unique solution § of equation (2.204).

Solving equation (2.204). Let
R = {K € B, C L rord(K) > ord(R)} :

Now, for the purpose of applying Proposition 2.3.28 to the operators .77,.7] : B — @; |
defined by (2.206), put V := T —R. Since ord (z(R—T)),ord (zM) > ord(Res (f)), we
getord (V),ord (M) > 2-ord (R) + (0,1).

By Proposition 2.3.28, the operators 7] and .¥ satisfy the assumptions of Proposi-
tion 1.2.12 on the complete space (,@/, dy). Therefore, by Proposition 1.2.12, there exists
a unique S € % such that 1(S) = A(9).

Solving equation (2.203). For the unique solution § € 2% of the fixed point equation
T1(S) = 1(S) we prove that operators Sp B — B, B > «, defined by (2.205), are
%—contractions on the space (#,d)).

Since ord(z(R—T)) > ord(Res(f)), it follows that Lt(T') = Lt(R). Using #=p>

o> 1and To(id+zS) =T +h.o.t., we get:

Sﬁ -Dl(T)O(id—I—ZS)—FCgﬁ(Sﬁ) Sﬁ -Dl(T)O(id—I—ZS)—i-(gﬁ(Sﬁ)

To(id+zS)— Y ()R (1-B)LyR)+hot. ’

for Sg € %1 C £ and each B > or. From this, using the facts that %B is alinear W-

contraction on (#),d;) and that ordy, (D1 (T) o (id +zS)) = ord, (R) + 1, we get:

Sg-D(T id+zS) +65(S
iy (3D 515

. > ordy, (Sg)+1,
TO(1d+ZS) _ZiZI (?)Rl > 1 ﬁ

for Sg € #1 C £ and each B > a. Since B> B > «, are affine operators, it follows
that .7, B > a,are %—contractions on the space (%4,d).

By the Banach Fixed Point Theorem, there exists the unique solution § B € B C D?f’ of
equation (2.200), for each B > a.
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Finally, by putting £ :=} 5> 4 Bs 5, where Sg € %) C Z;” are the unique solutions of
(2.200), for B > a, and taking the unique solution S € B of (2.204), the system of equa-
tions (2.200), (2.201) is satisfied, and therefore, we get 77(zS+¢€) = h, for h € yf(.,’;”/)
chosen in (2.198). Since ord (S) > ord (R), it follows that zS+ € € Z. Consequently, it

follows that /(%) C F5(Z).

2. LetzS;+¢€ € .:?7, for i = 1,2, be distinct, and written in form (2.199), i.e.

zSi+& =25+ Z ZBSﬁ’i,

pza

where S; € @7’, and Sg; € #1 C £, B > «, fori = 1,2. By putting such decompositions
in (2.190) and using (2.202), we get:

Tr(zSi+ &)

=z((T—R)-Si+Dy(T)- (1+3S;)-log(1+S;) —D1(S;) - (1+R) -log(1 4+ R) 4+ 61 (S;) — H#1(S:))

+ Z P (Sﬁ#” <TO (id+zS;) — Z (E)Ri—i-D](T) o (id-i—ZS,')) —6p (Sﬁ_’,-)), (2.207)
B>a i>1 \ !

for i = 1,2. Now, we consider two cases: S # S, and S| = S3, and prove that the restric-
tion J| -is an isometry.

If Sy # Sy, since Lt(T) = Lt(R), we get that:

Tr(zS1+€1) — T5(zS2+ &) = zLt((S1 — $2) - D1 (R) —R-D1(S1 — S2)) +h.o.t.,
(2.208)
assuming that (S; —S2)-D1(R) —R-Di(S; —S2) # 0. Now, suppose that (S; —S5») -
D{(R) —R-D;(S1 —S2) = 0. Solving the linear differential equation, we get S} — S, =
C R, for C € R. Since ord(S;) > ord(R), i = 1,2, we conclude that C =0, i.e., S| = 5>,

which is a contradiction. This implies that:
ord (Ty(z81+€1) — Tp(zS2 + €)) =1 = ord_((z81 + &) — (z52+ &)).

If S| = S5, then €] # &. Put By := ord,(&; — &). By (2.207), and since ©p is a linear

m—contraction (with respect to the metric d), we get that:

Tr(zS1+€)— Tp(2S1+ &) = ZBO(l — [)’())L'[(R)L’[(Sﬁml - Sﬁ072) +h.o.t.
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Since Sg, 1 # Spy 2, R # 0, and Bo > o > 1, we have:
ordz(ﬁf(le + 81) — c?f(ZSl -l-Sz)) =By = ordz((le -I—Sl) — (ZSl -|-82)).
Therefore, the restriction 7| 7 Is an isometry, with respect to the metric .. |

Proof of step (b.3). In steps (b.1) and (b.2) we obtained logarithmic transseries @;, ¢, €
D?j?, such that:

pro@iofo log, ! =id+zL+cRes(f)+hot.,

where L is as defined in Theorem C and the unique c is given by (2.104). For a simpler
notation denote by f the whole composition @, 0 @0 fo @ Lo 0, !, Note that now f=
id+zL+ cRes (f) +h.o.t. Put zR := zL+ cRes (f) + h.o.t. and z7 := zL+ cRes(f). Let
g:=1id+zL+ cRes(f). By Lemma 2.3.26, we define the operators 77,.%f : £} — &£

and transform the conjugacy equation
psofop; =g (2.209)

to the equivalent fixed point equation
Tr(zS+¢€) =S (S +¢), (2.210)

where @3 :=id+zS+¢€ € .i”ko. Put o := ord, (f —id — zR) and consider the restrictions
of the operators .75 and .%f on the subspace z %<, & £ C £/ Since ord (z(R—T)) >
ord (Res (f)), by Proposition 2.3.27 and Proposition 1.2.12, there exists the unique solu-
tion @3 € z%; ® LY, o3 :=id+ 25+ ¢, of (2.210), satisfying ord (S) > ord(R). As a
consequence, by Lemma 2.3.26, there exists a solution ¢3 € .Zj? of the conjugacy equation
(2.209). This completes step (b.3).

Note that ¢3 is the unique solution of the conjugacy equation (2.209), if we addition-
ally impose the condition that ord (@3 —id) > ord (f —id) and ord, (&) > ord, (f —id —
ZR). [ ]

2.3.7. Proof of statements 2 and 3 of Theorem C

Let f € %, ke N, such that f =id+zPL+h.o.t., for f > 1. Let L = anf]' ---£* + h.o.t.,
a#0,n:= (ny,...,n;), be as in Theorem C. Let f, = id+ zPL + cRes(f) be the formal

normal form of f from statement 1 of Theorem C.



Normal forms of logarithmic transseries Normal forms of parabolic transseries

Proof of statement 2: The formula for the residual coefficient. The proof is adapted from
[23, Proposition 9.3].

Note that:

1 1

= 2.211
fe—id L+ cRes(f) (21
1 1
- TL ’ cRes(f)
¢ 1+ PL
1 ( cRes(f) i>
-5 (H5(50)
AL l; AL
1 C —1
=——+(—z £1---¢;+h.o.t.).
7L + (alzlz 14 +ho.t)
From (2.211) we get:
2 2
an an
c= . — | == . (2.212)
[fc ld] 1L LBL] 11
For every f € .0, by Proposition B.2.3, it follows that:
S Ui
- = - (2.213)
{f—ld 11 f—idly,, 1
and, in particular, for its normal form f,
Sl
- = - . (2.214)
|:fC_1d —1,1; fC_ld 0k+1771
We prove that, for every f € .,2”,? and its normal form f, given by (2.102),
dz } { dz }
- = : . (2.215)
{/ Je—id 01 1,—1 f—id 0 1,—1

Put g := f —id. Let us use the following notation

(P7]
/ h(s)ds = /h(s)ds . he L pe LD

s=p~1

From @ o fo@~! = f, it follows that ¢ o f = f.o @. Then, by the change of variable of
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the integration z = @(s) and the Taylor Theorem (Proposition A.1.6), it follows that:

= =l W( ><<§)> o) (2210
C @ls)ds
_/ > 9(s)
o /@
_/ Yoot ’_)‘(S) g(s))i

_/‘P qo'(s)ds
1+Z,>2,u S (s(s) )

' ds
_ /g@' _t(
[ G (_;u(g,gg)ﬂ.o.t.)ds.

Put € := ¢ —id. Note that:

g(s)) +h.o.t )

¢(s) _ d :
o) a5 B TEE)): (2.217)

Since ord(g) > (1,0;), it follows that ord(log(1 + €'(s))) > 0. Therefore,

ord(js(log(l —|—8’(s)))> > (—1,1).

By Proposition B.2.3, it follows that

/<p (— ;Lt(q;/((;))) +h.o.t.)ds

is an element of .Z%. Thus, we proved:

1 -1

I VA | R VA=

Put a(s) :=

f(fff% Note that h = h(z) = [* 7 ‘fé ff -7~ Now, we get:
-1

9 ds Z ds B h(l) B .
/ (f—id)(s)_/ T o) =L e -l 219

i>1

Note that [h(")}

follows that:

=0and (¢! —id) € %, for i > 1. Therefore, by (2.219), it

0k+1>71

—1

[/(p (f—difl)(s)LHh_l a {/Z (f—dlfl)(sJ 7 =0,
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which implies that:

[/(p_ (f—cifi)(s)hk%] - [/Z (f—cifi)(s)}

Now, (2.215) follows from (2.218) and (2.220). By (2.213), (2.214) and (2.215), it follows

[ / fizid} . (2.220)

0py1,—1 0 1,—1

that

{f—lid} i {fciid}u ‘

k
Therefore, (2.104) follows from (2.212). If B > 1, note that the second term in (2.212)
vanishes, which implies (2.105).

Since c is explicitely given by formula (2.104), it is unique. |

Proof of statement 3: The minimality of f.. The minimality of the normal form f. in .,E,ﬂko

follows from the uniqueness of ¢ € R and by Proposition 2.3.12. |

2.3.8. Proofs of Remark 2.3.5 and Corollary 2.3.7

Proof of Remark 2.3.5. By a simple calculation it can be shown that the time-one map of
the vector field X is an element of éfko that has the initial part equal to f,. Therefore, by
Theorem C, the time-one map of the vector field X, can be reduced to f. by a change of
variables form ,Zj?. Since .fko is a group, it follows that f can be reduced to the time-one

map of the vector field X, by a change of variables from .,iﬂko. |

Proof of Corollary 2.3.7. Let k € N be minimal such that f € ﬁko. Let f:=1id+ BL+
h.o.t., for B > 1, where L is as defined in Theorem C. By Theorem C, for m > k+ 1,
there exists the unique ¢ € R such that f can be reduced to f. =id+zL+ cRes(f), where
Res(f) is the residual monomial of f in the differential algebra .%,. By statement 2 of

Theorem C, it follows that:

2 2
an al'l
c—| % _|% , (2.221)
lf_ldl 1.1, LL] ~1.1,
if B =1,and
2
an
c= : : (2.222)
[f_ld] 11
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a2

if B> 1. Since f € .,iﬂko C £ and £;” is an algebra and a field, it follows that J%‘z‘id -t
if B =1, and fafg‘id if B > 1, are elements of .Z;”. Since m > k+1, by (2.221) and (2.222),
it follows that ¢ = 0 in both cases. Therefore, f. = id + zL, for every m > k+ 1. Now,
we put fo :=id + zL. It therefore suffices to take a normalization in .if,gr] to eliminate the
residual term.

The minimality of fy in £ now follows directly by Proposition 2.3.12. |



3. NORMAL FORMS FOR DULAC GERMS

In [10] the almost regular germs (or Dulac germs) are introduced (see also [11] and [12,
Definition 24.27]), related to Dulac’s problem of non-accumulation of limit cycles to ele-
mentary polycycles in the plane (see e.g. [3], [11]). The Dulac germs are analytic germs
on an open interval (0,d) C R, d > 0, with a particular logarithmic asymptotic expansion
at zero. Furthermore, switching from the standard chart to the logarithmic chart (which
is a global chart for the Riemann surface of the logarithm), Dulac germs can be analyti-
cally extended to particular spiraling domains around the origin of the Riemann surface
of the logarithm called the standard quadratic domains (see e.g. [12, Definition 24.25]).
In addition, their asymptotic expansions are uniform on standard quadratic domains. This
extension property allows us to consider Dulac germs as analytic germs on spiraling sub-
domains of the Riemann surface of the logarithm with transserial asymptotic expansions

around the origin.

Moreover, we allow complex coefficients in the asymptotic expansions of Dulac germs.

We call such germs the complex Dulac germs (see [30, Subsection 2.1]).

The main goal of this chapter is to solve analytic normalization equations for hyper-
bolic and strongly hyperbolic complex Dulac germs on standard quadratic domains, and
to prove that the normalization lies again inside the class of parabolic complex Dulac
germs. The main strategy is to prove analytic normalization theorems (Theorem 3.2.11
and Theorem 3.3.5) for analytic maps with hyperbolic and strongly hyperbolic asymptotic
bounds on their invariant complex domains called admissible domains. Furthermore, we
use the formal normalization theorems (Theorem A and Theorem B) proved in the pre-
vious chapter, and prove in Theorems D and E that formal normalizations for hyperbolic

and strongly hyperbolic Dulac germs are asymptotic expansions of their analytic normal-
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izations, thereby ensuring that their analytic normalizations remain of the Dulac type.
The connection between the formal and the analytic normalization is established through
a certain homological equation, which we solve adapting the procedure from [17].

The analytic normalization theorem (Theorem 3.2.11) for analytic germs with hyper-
bolic asymptotic bounds is motivated by the linearization result of Dewsnap and Fischer
(see [5, Theorem 2.2]), and the techiques used in the proof are motivated by the proof
of the classical Koenigs Theorem (see e.g. [4, Theorem 2.1], [14], [24, Theorem 8.2]).
Similarly, Theorem 3.3.5 for analytic maps with strongly hyperbolic asymptotic bounds
is motivated by the classical Béttcher Theorem (see e.g. [4, Theorem 4.1], [24, Theorem

9.1).

This chapter is divided into three sections. First, in Section 3.1 we define spiraling
domains, analytic germs on the Riemann surface of the logarithm, and complex Dulac
germs on standard quadratic domains. Then we solve the analytic normalization equation
in Theorem D, in Section 3.2, for hyperbolic complex Dulac germs, and in Theorem E, in

Section 3.3, for strongly hyperbolic complex Dulac germs.

3.1. DULAC GERMS AND DULAC SERIES

The main goal of this section is to introduce complex Dulac germs on standard quadratic
subdomains (see e.g. [12, Definition 24.25]) of the Riemann surface of the logarithm. In
Subsection 3.1.1 we introduce the general notion of analytic germs on the spiraling do-
mains around the origin of the Riemann surface of the logarithm. In Subsection 3.1.2 we
introduce complex Dulac germs as particular analytic germs on spiraling domains called
the standard quadratic domains and with particular logarithmic asymptotic expansions in

the form of complex Dulac series (see [30, Subsection 2.1]).

3.1.1. Analytic germs on the Riemann surface of the logarithm

In this subsection the domains of interest are spiraling neighbourhoods around the origin
of the Riemann surface of the logarithm C. This allows us to introduce the notion of

analytic germ on C. Moreover, particular spiraling neighborhoods are natural domains
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of the holomorphic extension from the real line of the first return maps of hyperbolic
polycycles. Such extensions belong to the class of the so-called Dulac germs, and contain
logarithms in their asymptotic expansions. We recall some basic notions introduced in

[30, Subsection 2.1].

Definition 3.1.1 (Riemann surface of the logarithm, [30]). We denote by C the set

C:={(r,0):reR-p,0 € R},

endowed with a structure of one-dimensional analytic Riemann manifold whose atlas

consists of a single chart, called the logarithmic chart, given by:
—log: C—C,
7:=(r,0) — § :=—logz= —logr—i6.
We call C the Riemann surface of the logarithm.

Remark 3.1.2 ([30]). In the sequel, by an abuse of notation we often identify (r, 0) with
the formal product z := r-e®, where we do not identify e? with e(®+24%)1 k € 7. In this
notation we have z = exp(—{), { € C, forexp: C — C, where exp(—¢) depends on the

determination of the logarithm of (.

Definition 3.1.3 (Spiraling neighborhood around the origin of C, [30]). We say that
#CCisa spiraling neighborhood (or domain) around the origin of C if there exists a

continuous map 1 : R — (0, +e0) such that:
{r.ee'i:O <r<mn(#),6 ER} C.

Remark 3.1.4. Let #; and %, be two spiraling neighborhoods around the origin of C.
Then Z| N, is a spiraling neighborhood around the origin of C. Indeed, let n; be a

continuous map such that
{r-e®:0<r<n;6),0 eR} C 2
for each j = 1,2. Then

{r-e®:0<r<min{n;(6),m(6)},0 €R} C % N%.
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Definition 3.1.5 (Germs on the Riemann surface of the logarithm). Let Dy,D; C C be
two spiraling neighborhoods around the origin of C and fi:Di— C,i= 1,2. We say that
f1 and f, are equivalent if there exists a spiraling neighborhood D3 around the origin of
C such that D3 C D1ND; and fi|p, = f2|p,- The equivalence classes by this relation are
called germs on the Riemann surface of the logarithm. By a standard abuse of notation

and terminology we denote the class of f again by f and call it the germ f.

A germ on the Riemann surface of the logarithm is said to be analytic if it admits a

representative which is analytic in the logaritmic {-chart, given in Definition 3.1.1.

Let f,g,h be some germs on C in the {-chart. We write:

L f(¢) = g(S) +o(h(5)) as || = +eeif

O -]
A T ro I

2. f(&) =g(&)+0(h(Q)) if there exist M,R € R~ such that

IF (&) —g(@)l <M[n(E),
forevery £ € C, |{| > R.

Remark 3.1.6. Let f,g,h be some germs on C in the {-chart. If £() = g() +o(h({)),
then

dm L o

The converse is not true in general. However, if we consider the subdomain D C C* such
that 7;(R(§)) < 3(&) < hy(R(E)), & € D, where hy,hy, : [R,+o0) are continuous maps,
for some R € R, then the converse holds. The same holds for f({) = g(£)+ O(h({)).

We use this frequently in the sequel.

Let o € R+, B € C, and let f be an analytic germ f({) = af + B +o(1), as || —
+oo, on C, given in the {-chart. Note that f(z) = e P - 2%+ 0(z%) as |z| — 0, in the z-
chart. This motivates us to give the following definitions which are generalizations of the
standard parabolic, hyperbolic and strongly hyperbolic analytic complex diffeomorphisms
at zero (see e.g. [4], [24]).
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Definition 3.1.7 (Parabolic, hyperbolic and strongly hyperbolic analytic germs, [30]).

Consider an analytic germ f on C in the {-chart. We say that f is:
1. parabolic if f({) = +o(1) as || — +oo, and if f°7 #id, for all ¢ € N>,

2. hyperbolic if f(§) =+ B +o(1), as || — +oo, for some B € C (we can always
suppose that B € C up to replacing f by f~1),

3. strongly hyperbolicif f({) =al+B+o(1), as |{| — +oo, for some o € R\ {1},

B € C (we can always suppose that o > 1 up to replacing f by f~1).

3.1.2. Dulac germs and Dulac series

In this subsection we consider complex and real Dulac germs which are analytic germs
on the Riemann surface of the logarithm with representatives defined on the so-called
standard quadratic domains, and which have complex (resp. real) Dulac series as their
asymptotic expansions. For convenience, we work here usually in the logarithmic chart .
As in [30, Subsection 2.1], we first define standard quadratic domains in the logarithmic
chart, exponential transseries, complex Dulac series as particular exponential transseries,

and, finally, complex Dulac germs.

Standard quadratic domains

Definition 3.1.8 (Standard quadratic domains, see Definition 24.25, [12], Subsection
2.1, [30]). A standard quadratic domain %c C (E, C € Ry, is the set defined in the

logarithmic {-chart as
K(CT), where k(¢) = {+C({+1)? 3.1)
(see Figure 3.1).

A standard quadratic domain Z¢, C € R+, is a spiraling neighborhood of the origin
of C, which can be seen e.g. from the parametrization of its border in Example 3.2.5.
For our needs, we germify a standard quadratic domain at infinity, by intersecting it

with half-planes [R,+o0) x R, as R tends to +-co.
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Definition 3.1.9 (Representative of a standard quadratic domain %, Definition 2.1, [30]).
For C € R+, let Z¢ C C be the standard quadratic domain given by (3.1) in the {-chart.

We call the elements of the collection of sets
{(Zc)r :=Z%cN([R,+) xR) : R > 0},

the representatives of the standard quadratic domain Z.

+
C © Ze

Figure 3.1: A standard quadratic domain %, for C > 0, in the {-chart (see [30, Figure
1]).

In the following remark we emphasize some property of standard quadratic domains

which will be important later for proving analytic normalization theorems.

Remark 3.1.10 (Remark 2.2, [30]). Let C > 0. For each representative (%Z¢)g of the
standard quadratic domain %, there exists sufficiently big Cy > R, C such that for every
C' > (Cy, the standard quadratic domain Z is entirely contained in (%¢)g. Indeed, for
C' > Cy, where () is sufficiently big, it can be seen that Z- C Zc. Also, for every
§ € Zc, itholds that R(§) > C' > Cy > R.

Exponential transseries

In order to define a complex Dulac series we first introduce the notion of exponential

transseries. For a notion of a more general exponential-logarithmic series, see [6].
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Definition 3.1.11 (Exponential transseries). Let { be a formal variable at infinity. The

exponential transseries is defined as a formal sum of the form

Q)= Y aga (e, (3.2)
((X,H)GRzoXZ
where aq , € C, foreach (a,n) € R>g x Z, and Supp(f(£)) :={(at,n) € Rsg X Z: agn# 0}

o~

is a well-ordered subset of R>( x Z such that min Supp(f({)) > (0,0) (with respect to

~ ~

the lexicographic order). We standardly call Supp(f(&)) the support of f(§).

Note that exponential transseries are defined in analogy with the logarithmic transseries
(see Definition 1.1.3), when seen in the {-chart (see [30, Remark 2.3]).

Analogously as before for logarithmic transseries f({) can be written in the block-

wise form

fQ) =Y Ra(§)-e*,
a€R>

where Ry (£ !) is a Laurent series in the variable { ~! with complex coefficients, for each
o € R>o, and {& € R>9: R({ ") #0} is a well-ordered subset of R>o. We call it the
support of f({) in e~ and denote it by Supp, ¢ (F(O)).

The minimum of Supp, ¢ (F(£)) is called the order of the exponential transseries f({)
in e~%, and denoted by ord, 1 (F(O).

Moreover, if Ry ({~!) is a polynomial in ¢, for each & € R, then we say that (O
satisfies the polynomial property (see [30, Subsection 4.1]).

Using the identification z = e~ one can see that fA(z) is a logarithmic transseries with

complex coefficients, such that Supp, (f(z)) and Supp.-1 (f({)) coincide. Moreover, the

-~

orders ord, (f(z)) and ord, (F(£)) coincide.

Complex Dulac series and complex Dulac germs

In analogy with [11] and [12, Definition 24.26], we define complex and real Dulac series
(see [30, Subsection 2.1]). Note that the real Dulac series is already defined in [11], [12],
see e.g. [12, Definition 24.26].
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Definition 3.1.12 (Complex and real Dulac series). A complex Dulac series is a complex

exponential transseries of the form
f&)=al+B+Y P({)-e %, aecR.y BeC, PeC[], (3.3)
i=1

where (0;);>1 is a strictly increasing sequence of positive real numbers belonging to a
finitely generated sub-semigroup of (R-q,+), such that (¢); — +oo.
If B € Rand P, € R[], for each i > 1, as in the case in [11], [12, Definition 24.26],

then we call fa real Dulac series.

Following the notation from the beginning of the section, the complex (real) Dulac

series f = al + B +o(1), & € Rog and B € C, is called:
1. parabolic if @ =1 and B =0,
2. hyperbolic if a =1 and R(B) # 0,

3. strongly hyperbolic if @ € R+, o # 1.

In analogy with [11] and [12, Definition 24.27], we define complex and real Dulac
germs (see [30, Subsection 2.1]). In [11], [12, Definition 24.27] the real Dulac germs are

called the almost regular germs.

Definition 3.1.13 (Complex and real Dulac germ). A complex Dulac germ is a holo-
morphic germ f on a standard quadratic domain %Z¢, C > 0, which admits on Z¢ an
asymptotic expansion given by a complex Dulac series (3.3), uniformly on % in the

following sense: for every v > 0, there exists Ny € N, such that
Ny
fQ)—al—B=Y P({)-e % | =0(c"¢), (3.4)
i=1

uniformly on Z¢ as R({) — +o0 in Z¢. In this case, we write f ~ f and say that £ is the
(unique) Dulac asymptotic expansion of f.
If additionally the set {{ € Z¢ : 3({) =0} is f-invariant, we say that f is a real Dulac

germ. It implies that its Dulac asymptotic expansion is a real Dulac series.

Note that a complex (real) Dulac germ f is parabolic (hyperbolic, strongly hyperbolic)
if and only if its asymptotic expansion fis a parabolic (hyperbolic, strongly hyperbolic)

complex (real) Dulac series.
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Remark 3.1.14. In the z-chart, a complex Dulac germ f is represented by the germ f
which admits as |z| — 0 an asymptotic expansion which is a logarithmic complex Dulac

series, that 1s, a series of the form:

~ ~ +w ~
f(z) :=exp(—f(—logz)) = Az% + ZZBiQi(—logz), a>0,1eC, Q;C[X], (3.5
i=1

where (f3;);>1 is a strictly increasing sequence of real numbers strictly bigger than a,
belonging to a finitely generated sub-semigroup of (R-¢,+), and which tends to oo
(see [30, Remark 2.3]). Therefore, in the z-chart, a complex Dulac series is a logarithmic
transseries of depth 1 with complex coefficients, i.e., an element of the space #/(C),
which additionally, satisfies the polynomial property (see the previous subsection). Here,
Z(C) denotes the space of all logarithmic transseries of depth 1 as defined in Subsec-

tion 1.1.2, but with complex coefficients.

In the sequel we conform to the following convention: for a complex (real) Dulac
series f we denote by f(z) its form in the standard z-chart, and by f({) its form in the

{-chart. Note that f(z) is a complex (real) logarithmic transseries of depth 1, and f({) is

a complex (real) exponential transseries.

Without proof we state the next theorem which is an easy analogue of the same real-
case theorem for real Dulac germs from [11] or [12, Theorem 24.29]. It is a consequence
of the Phragmen-Lindeldf Theorem (a version of a maximum modulus principle on an

unbounded complex domain), see e.g. [12, Theorem 24.36] (see also [11]).

Theorem 3.1.15 (Quasi-analyticity of complex Dulac germs). Let f be a complex Dulac

germ such that f: 0 is its asymptotic expansion. Then f = 0.

The above theorem easily implies that every complex Dulac germ is uniquely deter-
mined by its asymptotic expansion. This property is called the quasi-analyticity property

of complex Dulac germs.
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3.2. NORMAL FORMS FOR HYPERBOLIC DULAC

GERMS

In this section we present our results from [30]. For a given hyperbolic complex Dulac

germ f({) =C+ B +o(1), B € CT, we solve the following linearization equation:

(o)) =0(8)+B, @(&)=C+o(1), (3.6)

on some standard quadratic domain (Definition 3.1.8), given in the {-chart. We prove the
existence and the uniqueness of the parabolic complex Dulac germ ¢ that satisfies (3.6).

Equation (3.6) in the standard z-chart becomes the equation

(pof)x)=eP-9(2), 3.7)

where @(z) := exp(—¢@(—logz)) and f(z) := exp(—f(—logz)). Therefore, we call both
(3.6) and (3.7) the linearization equations. In particular, we call (3.6) a Schroder-type
linearization equation (see e.g. [33]), and (3.7) an Abel-type linearization equation (see

e.g. [18], [24]).

The existence and the uniqueness of the solution ¢ of linearization equation (3.6) is
proven in Theorem D in Subsection 3.2.3. We split the mentioned proof into two separate

problems:

1. Finding a solution of linearization equation (3.6) in the class of analytic maps on an

f-invariant complex domain:

(o f)(E) =o(5)+B,

where f is an analytic map with a certain hyperbolic logarithmic asymptotic bound,
but not necessarily having the full logarithmic asymptotic expansion (as is case
with the complex Dulac germs). This is proven in Theorem 3.2.11, on the so-called

admissible domains introduced in Subsection 3.2.1.

2. Finding a solution of the linearization equation (3.6) for hyperbolic complex (real)

Dulac germs f, in the class of parabolic complex (real) Dulac germs. Here, we
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use the analytic solution of the general linearization equation obtained in 1 and the
formal linearization result for hyperbolic Dulac series ffrom Theorem A which we

prove to be an asymptotic expansion of f.

Remark 3.2.1. Note that, in the z-chart, a complex Dulac series is an element of the
space .1 (C) of all logarithmic transseries of depth 1 with complex coefficients, which
additionally, satisfies the polynomial property. Since the proof of the formal normaliza-
tion theorem (Theorem A) only uses algebraic properties of the field of real numbers R
which hold also in the field of complex numbers C, it can be proven that Theorem A holds
in the space .Z] (C). Therefore, in the z-chart, a hyperbolic complex Dulac series f(z) has
a unique parabolic linearization ¢(z) € .2 (C). We ask the following question: Is ¢(z) a

complex Dulac series in the z-chart? This is answered in Subsection 3.2.2.

3.2.1. Linearization theorem on complex domains

This subsection is dedicated to solving the linearization equation (3.6) in the class of
analytic maps on particular domains around the origin of the Riemann surface of the
logarithm C (not necessary spiraling domains), for a map f satisfying certain asymptotics
in the exponential-logarithmic scale.

Note that equation (3.6) can be satisfied only on some f-invariant subdomain of C.
In order to find f-invariant domains, we introduce the so-called admissible subdomains
of C and prove that the admissible domains contain f-invariant subdomains (Proposi-
tion 3.2.10). Finally we prove the linearization theorem (Theorem 3.2.11).

In the sequel we work in the {-chart, since it is a global chart for C, which makes our

calculations easier.

Admissible complex domains

In this subsection we recall the notion of admissible domains from [30, Subsection 3.1].
Let B C',e>0and k € N. Let
Mes(x) 1
x) = ,
ek xlogx--- (log®x)!+e

Ppex) = R(B) = Me(x), forxe (exp™ (0),+).

(3.8)
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The map M,  is a positive, strictly decreasing, tending to 0, as x — +oo. Consequently, it
follows that p[; ¢ 18 a strictly increasing map and pE ¢ 18 a strictly decreasing map, both
tending to R(B) at infinity. Note that the series Y,y Mg r(x + ny) converges for every

x,y > 0 (see e.g. [5, Section 2]).

As in [30, Subsection 3.1], we first define two functions #; and &,, whose graphs are
used to define admissible domain of type (3, €, k). In particular, these graphs are, roughly
speaking, used to control the domain from below and from above. We distinguish three

cases: 3(B) >0,3(B)=0and 3(B) <O:

(i) Case 3(B) > 0. Let ¢ > exp°*(0) such that Ppes(x) >0 and S(B) — Mex(x) >

0, x € [t,+o0). Let hy, hy, : [t,+o0) — R be any two functions satisfying:

(@) hy(x) < hy(x), x € [t,+);

(b) Ay is a decreasing map on [t,4o0), or /; is an increasing map with property:
hi(x+Pg ¢ 4 (X)) = i(x) < S(B) — Me k() x € [1,+e0);

(c) hy is an increasing map with property:
hu(x+Pg o 1 (X)) = hu(x) = 3(B) + Me x(x), x € [1, +o0).

(ii) Case 3(B) =0. Let ¢t > exp°*(0) such that Ppes(¥) >0, x € [f,4o0). Let iy, hy:

[t,+o) — R be any two functions satisfying:

(@) hy(x) < hy(x), x € [t,+o);

(b) Ay is a decreasing map with property:

hl(x—l—pﬁi&k(x)) —hy(x) < —Mgx(x), x € [t,+o0);
(c) hy is an increasing map with property:

B+ Py g (1)) — hu(x) = Meg(x), x € [1, +o0).

(iii) Case 3(B) < 0. Let t > exp°*(0) such that pE,e,k(x) > 0and —3(B) — Mg x(x) >

0, x € [t,+o0). Let hy, hy, : [t,+o0) — R be any two functions satisfying:
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@) fy(x) < hu(x), x € [t,400);

(b) hy is a decreasing map on [£,+o0):
hi(x+pg ¢ (X)) = hi(x) SI(B) = Me (x), x € [1,40);
(¢) hy is an increasing map, or a decreasing map with property:

B+ g (1)) = hul) 2 S(B) + Mo (x), x € [1,+oe).

A map hy : [t,+o0) — R with property (2) is called a lower map of type (B,€,k).
A map hy, : [t,+e) — R with property (3) is called an upper map of type (B,€,k). A
pair (h;,hy) of maps hy, h, : [t,+e) — R, satisfying conditions (1) — (3) above, is called
a lower-upper pair of type (B,€,k). Notice that the opposite of an upper map of type
(B,€,k) is a lower map of type (B, €,k).

Finally, let

Dy, = {8 €CTR(E) =1, M(R(E)) < 3(E) < hu(R(E))}- (3.9)

The importance of the conditions above for lower-upper pairs will be apparent in

Proposition 3.2.10. Following [30], we define admissible domains.

Definition 3.2.2 (Admissible domain, Definition 3.1, [30]). Letf € C*, e >0and k €
N. A domain of type (B,¢€,k) (or (B,€,k)-domain) is defined as a union of an arbitrary
nonempty collection of subsets of the form Dy, ,, € C defined above. Similarly, a subset
D C C which contains a (B, €,k)-domain is called an admissible domain of type (B, ¢€,k)
(or (B, €,k)-admissible domain).

Remark 3.2.3.

1. It follows from Definition 3.2.2 that an arbitrary union of domains of type (B, €,k)

is again a domain of type (B, €,k) (see [30, Remark 3.2]).

2. Note that the domain Dy, ;,, for a lower-upper pair (h;,h,) is a spiraling subdomain
of the Riemann surface of the logarithm if /; and &, are continuous injective maps

with continuous inverses, the union of the images of which equals R.
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Examples of admissible complex domains

Following [30, Subsection 3.2], in this subsection we give several examples of upper and
lower maps of type (3, €,k) and prove in Example 3.2.5 that a standard quadratic domain,
given in Definition 3.1.8, is a (B, €, k)-domain (see [30, Example (3)]), for every § € C™,
€ >0 and k € N. We first provide some general sufficient conditions on C"-maps to be

upper (lower) maps.

Proposition 3.2.4 (Sufficient condition for C'-maps, Example (1), [30]). Leth: [t,4o0) —

R, € R+, be an increasing map of class C'.

1. Let B € C* suchthat 3(B) > 0. If /' : [f,+) — Rtendsto A" > %, as x — oo,
then for each € € R-¢ and k € N, there exists ¢’ > ¢ such that the restriction h| [t 4-o0)

is an upper map of type (B3, €,k).

2. If i : [t,+o0) — R tends to +oo, as x — oo, then for each § € C*, 3(B) > 0,

€ € R.¢ and k € N, there exists ¢’ > ¢ such that the restriction h|[,/’ o) 18 an upper
map of type (B, €,k).

Proof. 1. Since Mg ;(x) — 0 and Ppes™ R(B) as x — oo, there exists ' > ¢ sufficiently

large such that
3(B) +Mek(t')
pB_7£7k(t/)

for every x > . Since M  is decreasing and p[; ek is increasing, for every v € (0,1) and

H(x) > , (3.10)

x>t
h/(erVPE,s,k(x)) Ppe(X) = 3(B) +Me (x).

Hence, by the Mean Value Theorem, the restriction h|[,/7 o) 18 an upper map of type

(B,€,k).
2. We choose ¢’ > ¢ sufficiently large such that (3.10) holds. The restriction h|[,/7 o)

is, therefore, an upper map of type (B, €, k). |

Analogously, a similar sufficient condition as in the previous proposition can be de-

duced for lower maps of type (B, €,k).

Example 3.2.5 (Standard quadratic domains, Example (3), [30]). Let§ € C*, & > 0and

k€ N. For C >0, let Z¢ C C be the standard quadratic domain defined in Definition 3.1.8.
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The upper half of the boundary of % is described by a smooth function which satisfies
assumptions of statement 2 of Proposition 3.2.4 (and the lower half satisfies the symmetric
statement). Hence, such a domain is admissible.

Indeed, a direct computation shows that the boundary
d(Zcn{CeC:3(¢) =0})

can be parameterized by:

rsx(r)+i-y(r) = CV/r2 Icos( arctgr>+
(r+C\/ lsm( arctgr)), r e [0,4o0).

Note that y : [0, +o0) — R is strictly increasing. Let # > 0 be such that x (¢) > exp°* (0)

1

and x is strictly increasing on [f,+o0). Therefore, &, := yox™" is strictly increasing on

[x(¢),+o0). By direct computation, if can be shown that:

dy(r) _ 2P+ 1)F it
H,(r) = = 3.11
ulr) dx(r)  C(rsy—s1) * rsy—si’ -11)

where 51 := sin( %arctg r) and s, := cos( %arctg r), for each r € [0,+o0). Consequently,
the derivative of &, on [x(t),+e0) tends to 4o, as x — +oo. Therefore, by statement 2 of
Proposition 3.2.4, there exists x’ > 0 such that the restriction /| ¥/, 4o0) 18 an upper map of
type (B,¢€,k). A similar argument can be repeated to show that an appropriate restriction
of the lower boundary of % is the graph of a lower map of type (3, €,k).

Therefore, for (B, €,k) € CT x R x N, there exists R > 0 such that the representative

(Zc)r of a standard quadratic domain Z¢, C > 0, is a domain of type (B, €,k).

In the next example we state some examples of lower-upper maps with power asymp-

totic bounds.

Example 3.2.6 (Maps of type h(x) ~ x", r > 0, Example (2), [30]). Let B €Ct,e>0
and k € N.

1. Case r > 1. Let h: [t,+o0) — R, ¢ > 0, be an increasing map of class C' such that!

h(x) ~ax", W' (x) ~arx™ ', a>0, r>1, x = 4oo. (3.12)

"We write f ~ g, x — oo, if Tim, o 2 = 1.
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By Proposition 3.2.4, there exists ¢ > 0 big enough such that £ is an upper map of type

(B,€,k).

Let h: [t,+o) — R, 7 > 0, be a decreasing C _map , such that
h(x) ~ —ax", W' (x) ~ —arx ', a>0,r>1, x — oo. (3.13)

By a similar argument, there exists # > 0 big enough such that £ is a lower map of type

(B,€,k).

2. Caser=1. Leth: [t,+o) — R, > 0, be an increasing C'-map such that
h(x) ~ ax, h'(x) ~a, a>0, x — +oo.

Then, by statement 1 of Proposition 3.2.4, if 3(B) < 0, orif 3() > 0 and % < a, there
exists 7 > 0 big enough such that 4 is an upper map of type (f,€,k). Let h: [t,4o0) —
R, ¢t > 0, be a decreasing C'-map satisfying h(x) ~ —ax, I'(x) ~ —a, a > 0, x — +oo.
Similarly, if 3(B) > 0, orif 3() <0 and % > —a, there exists big enough ¢ > 0 such
that 4 is a lower map of type (B, €,k).

3. Case 0 < r < 1. The assumptions of Proposition 3.2.4 are not satisfied for 0 < r <
1. Therefore, we give the second necessary condition in the next proposition (see [30,

Subsection 3.2]). Using that new condition we finish this part in Example 3.2.8.

Proposition 3.2.7 (Sufficient condition for C"-maps, [30]). Let f € C*, £ € R+, and
ke N.

1. Upper map condition in case 3(B) > 0. Let 3(B) > 0, ¢ > exp°(0) such that
Pp e (t) >0, and let h € C" ([t,+o0)), for some n € N>y, be an increasing map.
Suppose that there exists a positive number 0 < p < pE ek (t) such that

R (x)

g p' > 3(B) + Mg i (x), forall x > ¢, (3.14)

i=1
and that 1(") : [t,+e0) — R is increasing. Then / is an upper map of type (B, &, k).
2. Upper map condition in case 3() < 0. Let 3(B) < 0 and ¢ > exp°*(0). Suppose

that & : [t,4+00) — R is either an increasing map, or a decreasing map belonging

to C"([t,+o0)), for some n € N, which satisfies, for some positive number p >
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pl—{gJ((t)'

p' > 3(B) + Mg i (x), forall x > ¢, (3.15)

and that 4(") : [t, +00) — R is increasing. Then £ is an upper map of type (B, &, k).

3. Lower map condition in case 3(f8) > 0. Let 3(8 > 0) and 7 > exp°*(0) such that
3(B) — Mg x(r) > 0. Suppose that & is either decreasing on [¢,+e0), or increasing

belonging to C"([t,+<2)), for some n € N1, and satisfying the property

n - pi) .
Z " l.,(x)Pl <3(B) —Mei(x), forall x > 1,
-1 v

for some p > pg ¢ «(2), and with h™) decreasing on [t, o). Then  is a lower map

of type (B,¢€,k).

4. Lower map condition in case 3(8) < 0. Let 3(B) < 0 and ¢t > exp°*(0) such that
Pp e .(t) > 0. Suppose that / is decreasing map belonging to C"([¢, +o)), for some
n € N>, and satisfies the property

(i)(x) i
P < 3(B) — Mg i(x), forallx>1, (3.16)

n
=~

=

for some 0 < p < pﬁ_ e k(t), and h(") is decreasing. Then 4 is a lower map of type

(B,€,k).

Proof. 1. Note that pj ., (1) < Pp e . (%), for x € [t,+0). Since h and A" are increasing,

it follows from the Taylor Theorem and then (3.14) that

hx+ Py e () = () > h(x+p) —h(x) > Y
> 3(B) +Mek(x), x € [, 4o0).
Statements 2-4 can be proven similarly. |

Example 3.2.8 (Maps of type h(x) ~ x", 0 < r < 1, Example (2), [30]). Let § € C™,
€>0and k € Nandlet h: [t,+o0) — R, t > 0, be an increasing map of class C! such
that (3.12) (resp. (3.13)) holds. The assumptions of Proposition 3.2.4 are not satisfied for
0 < r < 1. We use Proposition 3.2.7 to finish Example 3.2.6.
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Suppose that  is increasing (resp. decreasing) of class C2, satisfying (3.12) (resp.
(3.13)) with r < 1, with the additional property that h” (x) ~ ar(r —1)x"=2 (resp. k" (x) ~
—ar(r— l)x’*2) and A" is increasing (resp. decreasing). It follows from conditions (3.14)
and (3.16), in a similar way as in Example 3.2.9 below, that if 3(f) = 0, then A is an
upper (resp. lower) map of type (f,€,k), € >0,k € N.

Example 3.2.9 (Logarithmic upper/lower maps, Example (4), [30]). Let B € C™, e >0
and k € N.

Logarithmic upper maps. Let 3(B) =0 and let & : [t,400) — R, h(x) := (logx)?,
0 € Ry, € R . Note that:

5 (logx)?
W (x) = 08
(x) xlogx
5(logx)® ,/86—1 1
12
- . - >t
H () xlogx <x10gx x)’ x=t

For every 0 < p < p[; ¢ > there exists 7 > exp°*(0) big enough such that

p(6—1) p)

1
h/ 7h// 2 _ _
(x)p+ 3 (x)p 2xlogx  2x

~ xlogx
1 1
~ xlogx log®%x---(log®* x)!+e

-p600g@6-<1+

= Me,k(x)a

for x > ¢. It can be proven that we can take ¢ > exp°*(0) large enough such that 4" (x) >
0, for each x > ¢. This implies that restriction of A’ on [f,+o0) is an increasing map.
Therefore, since £ is increasing, it follows from sufficient upper map condition (3.14) that
there exists ¢ > exp®*(0) such that the restriction /| 1,4+ is an upper map of type (3, €, k).

Logarithmic lower maps. Let 3(B) = 0 and let /& be as defined above. It follows that

g:[t,+o0) = R, defined by g(x) := —h(x), x € [t,+o0), is a lower map of type (B3, €,k).

Linearization of hyperbolic maps on admissible domains

Let £({) =+ B +o(1), B € C*, be a hyperbolic analytic map on domain D C C, given

in the {-chart. As in [30, Subsection 3.3], we consider the linearization equation:

pof=0¢+p, (3.17)

and ask about the existence and the uniqueness of the analytic parabolic change of vari-

ables ¢ defined on some f-invariant subdomain of D that satisfies (3.17). The main result



Normal forms for Dulac germs Normal forms for hyperbolic Dulac germs

of this subsection is given in Theorem 3.2.11 below. The idea of the proof is the fol-
lowing. Recall the Koenigs sequence used in the proof of the classical Koenigs Theorem
for hyperbolic analytic diffeomorphisms, stated in Theorem 2.1.7 (see e.g. [4, Theorem
2.1], [14], [24, Theorem 8.2]). In the {-chart, the Koenigs sequence becomes the se-

quence:

(f*" =nB)n

We obtain a solution ¢ of linearization equation (3.17) as the uniform limit of the Koenigs

sequence.

First, in Proposition 3.2.10, we find a maximal f-invariant subdomain of the domain
D. Let us denote by D/ the union of all f-invariant subdomains of the domain D. We call
D/ the maximal f-invariant subdomain od the domain D.

If we assume that D is an admissible domain, Proposition 3.2.10 below guarantees that
D/ = 0. This is the main reason why we introduce the notion of an admissible domain.

Let D C C and R € R-(. We denote by Dy the subdomain
Dr:=DN{{ € C:R({) >R},

in the {-chart. Let € C*, e € R and k € N.

Let D be an admissible domain of type (,€,k). We denote by D the union of all
subdomains of D of type (B3, €,k). Note that D; C D for every subdomain D; C D of type
(B, €,k). Therefore, we call D the maximal subdomain of type (B,€,k) of the admissible

domain D. For every R € R- we put:
ZjR:ZZ(Ij)R,

D/ = (D/)g.

Proposition 3.2.10 (Proposition 3.4, [30]). Let B € Ct,e >0andk e N. Let DC C*
be an admissible domain of type (B3, €,k). Let f : Dc — C, C > exp°(0), be an analytic

map, such that

FO) =C+B+0o(C 'Ly L"), as R(E) — +oo uniformly on De.  (3.18)
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Here,
Ly:=1log({),...,.Ly:=log(L;_),

where log represents the principal branch of the logarithm?. Then, for every R > C suffi-

ciently large, the domain Dg is f-invariant. In particular, Dg C D£ and D{; £ 0.

Proof. By asymptotics (3.18),

im &) -EC+B) (3.19)

Rt L1071 -L,j(”e)

uniformly on D.
Let pﬁiﬁ’k and Mg be as defined in (3.8). By (3.19), there exists R > C such that
Pp e (R) >0, Pp e  is increasing on [R,+e0) and, for all { € Dg,

1

—. (3.20)
‘CLI .. .Li+8

IF(E) = (E+B)| <

Since R > exp°¥(0) and |log &| > log|&| >log (IR (£)|) =1og (R (£)), we inductively get:
L] >10g”" (R (£)), for 1 <m <k, { € Dg. (3.21)

Now, by (3.20) and (3.21), we get, for { € Dg:

1
O D S e @) oy
Therefore, for { € Dg:
1
R -R R(PB) —
=) = S g e (@) (e @)
= Ppes (D). (3.23)
1
R -R R
=) = S ) o (@) (e @)
= Pgex (R(D)), (3.24)
and
ZNote here that, for C > exp®(0), the iterated logarithms Ly, ..., Ly are well-defined on D¢ (using only

the principal branch of the logarithm), since R({) > exp°*(0).

162



Normal forms for Dulac germs Normal forms for hyperbolic Dulac germs

1

3 -3 3(B)— i

)=S0 =3P G e @)ty O
—S(B)— Mex(R(E)).

S(/()~3() <S(B)+ : (3:26)

R (&) 1og(R(E))--- (log?*(R({)))1+¢
— S(B) + Mex(R(0)).

Since pg . is an increasing function, it follows that pg . (R(D) = Ppe «(R) >0, for
every { € Dg. Let, for { € Dg,

Tpea(§) = [RE) 4P e o (R(E)), R(E) + g o (R(D))]
X [S(8)+3(B) — Me (R(£)), () +S(B) + Mek(R(L))]

By (3.23)-(3.26), we get that, for { € Dg,

f(8) € Zpex(8)-

Figure 3.2: For R sufficiently large, /g . «({) € D, & € Dg ( [30, Figure 2]).

Now take § € Dg. Itis left to prove that then f({) € Dg, that is, that Dg is f-invariant.

By the definition of Dg, there exists a (B,¢€,k)-domain (Dy, »,)r € D, such that § €
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(Dp; 1, )R- Now, by properties (2) and (3) in the definition of lower-upper pair of type
(B, €,k), it follows that .3 ¢ +({) € Dy, p,» see Figure 3.2. Therefore, f({) € Dy, 5,  D.
Since ¢ € Dg and pg ., (R(E)) > 0 for § € Dg, by (3.23) it follows that R(f(5)) >
R(&{) > R. Therefore, f({) € Dg. [ ]

Finally, we state and prove the linearization theorem for analytic maps with hyperbolic

(logarithmic) asymptotic bounds on admissible domains.

Theorem 3.2.11 (Linearization theorem for analytic maps on admissible domains, Theo-
rem A, [30]). Let B € C", €>0,kcN. Let D C C' be an admissible domain of type
(B,&,k). For C > exp°*(0), let f : Dc — C be an analytic map such that

£ =C+B+0(C 'Ly L"), as R(E) — +oo uniformly on De.  (3.27)
Here, the iterated logarithms Ly, ... Ly are defined as in Proposition 3.2.10. Then:

1. (Existence) For a sufficiently large R > C there exists an analytic linearizing map ¢

on the f-invariant subdomain D}; C D. That is, @ satisfies

(9o f)(8)=o(C)+B, forall { € D, (3.28)

Moreover, @ is the uniform limit on D{; of the Koenigs sequence
(f" =npB)n.

2. If D{; N{{ eC*:3({) =0} is f-invariant, so is @-invariant.

3. (Asymptotics) The linearization ¢ is tangent to identity, i.e., 9({) = { +o(1), uni-
formly on D{; CCt,as R(E) — +oo.

In particular, ({) = { +o(L,"), for every v € (0,€), uniformly as R(&) — +oo,
on every subdomain Dj, ,, C Df; such that /;(x) = O(x) and h,(x) = O(x).

4. (Uniqueness) Let v : D1 — C, be a linearization of f on an f-invariant subset
Dy C D, such that y(&) = { +0(1) uniformly on Dy, as R({) — +oo. Then y = @

on (Dj)g, for R from statement 1.
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Proof. 1. By Proposition 3.2.10, there exists R > C sufficiently large, such that Dg C Df;,
where D/ is the maximal f-invariant subdomain of D C C*. Therefore, lee' = (), for all
R >R. Let{ € D£ and let pf{ ek be the increasing (decreasing) maps defined in (3.8).
From (3.23), for { € D, with R sufficiently large, since Pp e is increasing on [R,+e0),

it follows that:

R((£)) > R(E) +npp o (R(E)) > Rt npy o (R), n € Nay. (3.29)

By (3.22), for { € DY, it holds that:

< L
R(C)-Tog(R (C)) - (log™ (R (0)) 1 *

From (3.29) and (3.30) and since Mg 4 is decreasing on [R, +c0), we inductively obtain,

forne N> and § € DIJ;:

If (&)= (E+B) =M (R(5)).  (3.30)

P ~ (4 1) = () = nB)| = 1 (7)) = (F(€) +B)]
< Mea(R(£(£))
< Me s (R(E) +npy . ((R(0))
< Mgy (R+npl;7£,k(R)). (3.31)

As stated in Subsection 3.2.1, the series },,~o Mg x (R —I—npﬁi g’k(R)) converges. Therefore,
the Koenigs sequence (f°" —nf}), is uniformly Cauchy, hence, converges uniformly on
lee- Denote by ¢ its uniform limit on the domain DIJ;. By the Weierstrass Theorem, it
follows that ¢ is analytic on D{;.

Finally, we compute:

(@of)(&) =lim (f*(f(£)) —np)
=lim (") — (n+1)B) +B

n

=o({)+B, ¢eDp

Therefore, ¢ is an analytic linearization of f on Df , obtained as a uniform limit of the

Koenigs sequence.
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2. Suppose that D,f;ﬁ { € C:3({) =0} is invariant under f({) =+ B +o(1).

Then obviously 3 () = 0. Now consider the pointwise limit

¢({) == lim (f*(§) —nP), { € DRN{{ € C: (L) =0}, (3.32)

n—oo

Since D‘I’;ﬂ { e C*:3(&) =0} is invariant for (all iterates of) f, {{ € C: 3({) =0}
closed in C, and since 3(B) = 0, (3.32) implies that {D}; N{{ €C:3(f) =0} is in-

variant for @.

3.ForO<v<e,§e Df; and m € N>, taking the sum of the terms

UG = (1) B = (£"() = nP)

in (3.31) for n ranging from O to m — 1 it follows that

m—1
£(8) —mB — | < go Me i (R($)+npg ¢ (R (D))

el My (R(E)+npg (R(0)))
10 (log™ (R (&) +npg (R (£))))

< ! +mM R g0 (R
= ot migy) " A )

< K
(g @)

where the last sum converges to K > 0. Taking the pointwise limit for m — +oo in (3.33),

E—V

K>0, (3.33)

it follows that

K
9(5)— ¢l < —, K>0, €D} (3.34)

 (log* (R(2)))

Therefore, () = { +o(1), uniformly on D'I’; as R(§) — +oo.

To get a more rigorous estimate, using the elementary properties of the logarithm, we
easily see that, for every domain Dy, 5, C C such that /;(x) = O(x) and h,(x) = O(x), as

X — oo, there exists N > 0, such that

ILi| < N-1og™ (R ($)), for & € (Dp,p,)r; (3.35)
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for sufficiently large R > exp®* (0), k € N>;. Indeed, the conditions /;(x) = O(x) and
hu(x) = O(x) imply that there exists d > 0 such that |3({)| < d-R({), { € (Dp, p,)r, for
a sufficiently large R > 0.

Using (3.35) in (3.34), it now follows that, for any 0 < v < v/ < &g, there exists E > 0

such that:
E I
[p(8)— ¢l < h o LY ¢, & € (Diy i)k (3.36)
(log™ (% (£)))
This implies that, for every 0 < v/ < €, on (Dy, 5, )& it holds that:
im 2E) =6
R(E)—+ 7

0

Therefore, forany 0 < v <&, ¢(§) = {+o0(L; "), as R(E) = +ooin (D, o, )r-

4. Suppose that y is an analytic linearizing germ, i.e., o f = w+ f3, on f-invariant
subset D; C D, such that (&) = { + o(1) uniformly on Dy as R({) — +eo. Since D
is f-invariant and D/ is a maximal f-invariant subdomain of D, obviously (D1)g C D};.
Clearly, (D;)g is also f-invariant, and by (3.29), non-empty. Recall from statement 1
that ¢ is the analytic linearization constructed on whole Df; as the limit of the Koenigs
sequence, for sufficiently large R > exp°*(0). It satisfies ¢(¢) = & +o(1), uniformly as
R(§) — 4o 0n D'II;. We now show that y = ¢ on (D).

Put
E(C):=o(8) —w(&), § € (D1)k.

Then E is analytic on (D )g and E({) = o(1), as R({) — +oo uniformly on (D1 )g. More-
over, (Eo f)(§) =E({), ¢ € (D1)g. Inductively, since (Dj)g is f-invariant, we obtain

E(f"(§))=E(L), L €(Di)r, nEN. (3.37)
By (3.29), R (f"({)) > R+npﬁi£7k(R), forneNand § € (D) C le;. It follows that
imR (£(§)) = +ee, £ € (D1)r. (3.38)

Passing to limit, as n — o, in (3.37), and using (3.38) and the fact that E({) = o(1), as
R(L) — +oo, we get that E(L) =0, for every § € (Dy)g. Thatis, o =won (D;)g. N
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3.2.2. Formal linearization of hyperbolic Dulac germs

In this subsection we prove that the formal linearization of a hyperbolic complex Dulac

series is again a Dulac series (see [30, Subsection 4.1]).

~

Let f(z) = Az+h.o.t., A € R.g, be a hyperbolic complex (real) Dulac series given
in the standard z-chart. Since ord (f —id) > (1,1), by Theorem A and Remark 3.2.1, it

follows that there exists a unique solution ¢ € glo(C) to the conjugacy equation:

(Pofod N(z)=Az (3.39)

Moreover, @ — id is the limit of the Picard sequence ((9}{1 o Yf)on(ﬁ))n, for any initial
condition & € Z(C), ord (h) > (1,0), with respect to the power-metric topology given in
Section 1.1.3 of Chapter 1.

Note that conjugacy equation (3.39) in the {-chart becomes the equation:

(@ 'ofo9)(£) = —logh.

In the next proposition we prove that the linearization @ is a parabolic complex (real)

Dulac series.

o~

Proposition 3.2.12 (Formal linearization, Lemma 4.2, [30]). Let f({) = {+ B +h.o.t.,
B € C*, be a hyperbolic complex Dulac series given in the {-chart. Then there exists a
unique parabolic complex exponential transseries @ such that @ Of: ¢ + . Moreover,

@ is a complex Dulac series. Finally, if the coefficients of fare real, then so are those of

~

0.

Proof. Existence. Let f(§):=C+B+Y2, exp(—ViC)R; (), for B € CT,R; € C[X], and
(v;) a finitely generated sequence of strictly positive real numbers tending to +eo. Let A :=

exp(—f) € C, where exp is the complex exponential function and not the compositional
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inverse of the logarithmic chart. Now, we get:

fi(2) :==exp(—f(~log2))
= exp (— <—10gz+ﬁ + iexp(vﬂogz)R,{—logz))) ,Ri e C[X],v;>0,
i=1

= Azexp (Z 72"R; (— logz))
i=1

=Az+Y %P(—logz), & >1,PeC[X],

i=1
so that f € . (C) is a complex logarithmic Dulac series in the formal variable z. Notice
that here A is a complex number, and is not seen as the element of C parameterized by 3
in the logarithmic chart. It is indeed important that all the coefficients of ]?1 are complex
numbers and not elements of C, in order to apply to them all the algebraic computations
involved in the proof of the Theorem 2.1.1.

The latter implies that ]?1 admits a unique parabolic linearization ¢; € % (C). Let
g1 :=f1—A-id and y:=ord;(g1). As f1 is a Dulac series, we have Y > 1. Moreover,
recall that the exponents of z in f] form a finitely generated strictly positive sequence
which tends to +oo. Hence, we deduce from the description of the support of @ given
in Theorem 2.1.28, in Subsection 2.1.6, that the exponents of z in @; also form a finitely
generated strictly positive sequence which tends to +oo.

We now prove the polynomial property (see Subsection 3.1.2) for blocks of the lin-
earization @: that each monomial z% in @; is multiplied by a complex polynomial in

fl_l = —logz. By the proof of Theorem A, the linearization @ is given by
¢ :=1id +h,
where 1 € 4 (C), ord, (El) > 1, is the limit of the Picard sequence (), defined by
Wy = (%fl °0.772)"(0). (3.40)

Here, the limit is taken in the sense of the power-metric topology: ord; (W, — @;) tends to
~+oo, as n — oo, The operators fﬁ and ffl (case B > 1) are expanded in Remark 2.1.12

as
y}?l(h)zxgl—f—x E l(' )gl, and 7>

- o~ 1~
= (h) = h——h(Az2), (3.41)
i>1 ’

A
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since fo = A -id, i.e., g = 0. In (3.41), logarithmic transseries are applied to Az. This

means, using the following compositional rules, that
log(Az) =log(A) +log(z) = —f +1log(z)
and, for @ > 0,
(A2)* = 1%z* = exp(alog(A))z* = exp(—af)z”.

In particular, we see that, in this proof, A4 is the only complex number for which we have
to impose a determination of the logarithm. We chose log(A1) = —f in view of the final
step of the proof, in which we deduce the linearization of ffrom the linearization of fl

Now, due to the convergence of (3.40) to the linearization @; in the power-metric
topology, it suffices to prove the following: if 7 € %4 (C) with ordz(ﬁ) > 1 satisfies the
polynomial property, the same holds for ﬂfl_l (E) and for Yfl (ﬁ)

Notice that the polynomial property is preserved under differentiation, under multipli-
cation by a complex Dulac series, as well as under precomposition with Az. Therefore, if
T has the polynomial property, then so does 5’];1 (ﬁ), thanks to (3.41), the previous remark
and the fact that, as y > 1, yfl is an infinite sum of operators which strictly increase ord..

Let us now check the polynomial property for %1_1 (ﬁ) Suppose the contrary, that is,
that there exists & € % (C), ord;(h) > 1, which satisfies the polynomial property, while
ﬂf:l (h) does not. Then ﬂf{] (h) admits a block Ry (¢;) € C((€,)) . for some v > 1, which
is not a polynomial in El_l. Hence, we can write

Ry () =0(¢") +a(ty), witha (€)= Y ant}, a, €C,
n>ngy
where Q € C [El_l} is a polynomial and a € C[[{;]] is a nonzero power series such that
an, 7 0, ng € N>1. Now apply 57?1 from (3.41) to such ﬂfjl (2), to obtain 7. However,

using (3.41) and the relations proved in Lemma A.3.1
e (Az) =€, —logh =€, + B,

L1 (Az)=¢€,-(1+€(£y)), for some € € C[[¢]], €(0) =0,
£l (Az) =42} (1+¢€,(£)), for some €, € C[[¢1]], €,(0) =0 (n € N>y),
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it is easy to see that the block of index v in h = '7?1 (9{1 (Z)) is
J1
O(e") +a) -2 (e +B) +a()), (3.42)
where a € C[[/;]] is a power series such that a (0) = 0 and with a,,£|° as leading term.
The power series a — AY~'a € C|[[¢;]] does not have a constant term, but is nonzero be-
cause its smallest coefficient is equal to (1 — l"_l) apn, 7 0. This contradicts the fact that

the block of index v of h is a polynomial in Zfl. Therefore, @) is a logarithmic Dulac

series.

Finally, let ¢ (§) := —log (¢; (exp(—{))). Since we chose log(1) = —f, we have

~

that f(§) = ~log (fi (exp(~())) and —log (A1 (exp(~C))) = § () + B. Hence, we
deduce from @; o f; = A @, that Po f = ¢+ f8.

Notice that in this proof, if the coefficients of fare real, so are the coefficients of fl,
@1, and Q.

The uniqueness follows directly by Theorem 2.1.1. |

3.2.3. Analytic linearization of hyperbolic Dulac germs

In this subsection we prove the analytic linearization theorem for hyperbolic complex
(real) Dulac germs on standard quadratic domains, see [30, Subsections 4.2 and 4.3].

Let f be a hyperbolic complex (real) Dulac germ and let f({ )=C+B+hot, B e
C™, be its asymptotic expansion in the {-chart. We prove its linearization by a parabolic
complex (real) Dulac germ using the results from Subsection 3.2.1 and Subsection 3.2.2.
In Subsection 3.2.1 we proved that the formal linearization of hyperbolic complex (real)
Dulac series fis a parabolic complex (real) Dulac series. On the other hand, since the
standard quadratic domain Z¢, C € R, is an admissible domain of type (8, ¢€,k) (see
Example 3.2.5), foreach f € C*, € € R+, k € N, by Theorem 3.2.11 in Subsection 3.2.1,
it follows that there exists R € R~ and a unique parabolic analytic germ @ () = § +o(1)

on the domain (%’é )&, such that:

(o f)(E)=0(8)+B.

Since (Zc)r is a domain of type (B3, €,k) (Example 3.2.5), for sufficiently large R > 0,
then, by Proposition 3.2.10, (Z¢)r is f-invariant which implies that (Z¢)g = (%g) R-
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Therefore, on the one hand, we obtain the formal linearization (ﬁ, and, on the other
hand, the analytic linearization @ on (Z¢)g. In the next theorem we prove that @ is a
parabolic complex (real) Dulac germ, by proving that ¢ is the asymptotic expansion of ¢

uniformly on the domain (Z%c¢)g, for some R € R~.

Theorem D (Linearization of hyperbolic complex (real) Dulac germs, Theorem B, [30]).
Let f(§) =&+ B +o(1), B € CT, be a hyperbolic complex Dulac germ on a standard

quadratic domain Z¢. Then there exists a unique parabolic germ ¢ satisfying

pof=0+p, (3.43)

on f-invariant germs of %Z¢. Moreover, @ is a complex parabolic Dulac germ (possibly
on a smaller standard quadratic subdomain Z¢ C Zc). Furthermore, if f is a real Dulac

germ, then @ is also a real Dulac germ.

The proof is given at the end of the section. For the sake of the proof, we first introduce

some definitions and lemmas.

Definition 3.2.13. (Formal and analytic partial linearizations, see [30, Subsection 4.2])

~

Let f(&) be a hyperbolic complex (real) Dulac series and let
P(L):=¢+Y e PE0i())
i=1

be its formal linearization given in Proposition 3.2.12, in the {-chart. The sequence ()

given by:

S

)

e PC0i(¢), ne Ny, (3.44)

(ngE

g,
n C+.

1

is called the sequence of formal partial linearizations of f
Since each @, is a finite formal sum, we denote by ¢, the canonically associated map
defined on whole C* in the {-chart, for each n € N. Note that every @,, n € N, is analytic

on C" in the {-chart. We call (@,) the sequence of analytic partial linearizations of f.

Let f be a hyperbolic complex (real) Dulac germ. The conjugacy equation @ o f =
¢ + B, for analytic germ ¢ in the {-chart, is equivalent to the equation o f — @ — 3 =0.
In Lemma 3.2.14 below, we determine the asymptotics of @, o0 f — ¢, — B, foreachn € N,

where (¢, ) is the sequence of analytic partial linearizations of f.
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Lemma 3.2.14 (Lemma 4.3, [30]). Let f({) =+ B +o(1), B € CT, be a nontrivial
hyperbolic complex Dulac germ defined on a standard quadratic domain %¢, C > 0, and

let @ be its formal linearization from Proposition 3.2.12, given in the {-chart as:
P(L)=C+ Yy ePoi0), (3.45)
i=1

where Q; € C[{] and (J;); is a strictly increasing sequence of positive real numbers tend-
ing to +oo. Here, if ¢ is a finite sum, that is, if there exists iy € N such that Q; = 0 for
i > ip, we take any strictly increasing sequence (f3;);>;, such that §; > B;, and ff; — +oo.
Let ($,) be the sequence of partial linearizations of f defined in (3.44), and (¢,) be the
related sequence of analytic partial linearizations. Then, for every n € N, there exists

v, > 0, such that
(@a0f)(§) = @al(§) = B+o (e Prtwne), (3.46)

uniformly on Z¢ as R({) — +oo. Here, fp = 0.
Note that, if @ is a finite sum, the sequence (¢, ) eventually stabilizes.

Proof. Let
FO=CtB+Y e R (E), PeC], ieNay,
i=1

where (@;); is a strictly increasing sequence of strictly positive real numbers tending to
+o0, be the complex Dulac asymptotic expansion of f. Recall that this expansion of f is

uniform on the standard quadratic domain Z¢, as R({) — +eo. For n € N, let

fo:=C+B,
fr=C+B+ Y e %PR((), neNsy,

iENzll(xiSﬁn

be the partial sums of f Furthermore, let g, := f— fn, for n € N. The composition ¢ o f

can be computed as

FP P o~ oWof, .
<pof=<p(fn+gn)=<pofn+2(p l., I (3.47)
i>1 :
as the series in (3.47) converges for the power-metric topology. Obviously,
$ofu=Guofut(@—Bu)ofa, neN. (3.48)
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Now, using (3.47) and (3.48) and the fact that @ is the formal linearization of f, we get:

0=¢of—¢—P

I
)

o~ (l')o/;/\i
nofn_‘Pn+(‘P_(Pn)ofn_((P_q)n)+Z(p fgn_ﬂ, (3.49)

i>1

)

for n € N. For every n € N, it can easily be seen that there exists t,, > 0, such that:

I P 0ot
ord, ¢ (((p—fpn)ofn—<<p—<pn)+2(p . ff%) > Bu+ Hn- (3.50)

i>1

From (3.49) and (3.50), we obtain that
orde¢ (@20 fo—Pu—P) > Bu+ b, nEN. 3.51)

As the sums in ¢, and f; are finite, they define analytic germs @, and f, on C*, in the

{-chart. This implies that
Q. ofu—0—PB=o0 (e*(ﬁ”“‘")g) , R(E) — +ooon CT, (3.52)

for n € N. Moreover, due to the fact that f,, and ¢,, n € N, are finite sums of power-
exponential monomials, the convergence is uniform if we restrict to the standard quadratic
domain Z¢ (since the imaginary part is bounded by a power of the real part along this
domain).

Now put g,(8) := f(&) — fu(§), for { € Zc and n € N. It is obvious that g, ~ g,
uniformly on Z¢ as R({) — +eo. By Taylor’s Theorem, (3.52), and since @, is a finite
sum of monomials with uniform asymptotics on Z, it follows that for every n € N there

exists some V,, > 0 such that

Onof—0n—B=@u(fut8n)—0—B
(Plsi)(fn) '

l
il "

oo
:¢nofn_¢n_ﬁ+z
i=1

= o(e” Brtvn&)

)

uniformly on the standard quadratic domain Zc, as R({) — 0. [

Let & be some analytic germ on a standard quadratic domain Z¢, C € R~¢, and f a

hyperbolic complex Dulac germ on Z¢. The equation

(o f)(6)—w(&) =h(&), (3.53)



Normal forms for Dulac germs Normal forms for hyperbolic Dulac germs

is called the Abel-type homological equation for f. This is a generalization of the standard
notion of the Abel equation where 4 =1 (see e.g. [18], [24]). Our goal in the next lemma,
whose proof is motivated by a solution of certain equation in [18], is to find an analytic

solution ¥ on some f-invariant subdomain of Zc.

Lemma 3.2.15 (Explicit analytic solutions to Abel-type homological equations, Lemma
4.4, [30]). Let f be a hyperbolic complex Dulac germ defined on a standard quadratic
domain Z¢ C C*. Let h be an analytic map on %, such that A({) = o (e_‘xg) for some

o > 0, uniformly on %Z¢ as R({) — +oo. Then:

1. (Existence of an analytic solution to a homological equation) There exist R > 0 such
that D := (Z%¢)g is an f-invariant subdomain D C %, and an analytic solution y

of the Abel-type homological equation (3.53) on the subdomain D.

2. (Estimate of the solution) The following estimate holds:

y(§) =0(e ), (3:54)
uniformly on D as R({) — H-oo.

3. (Uniqueness of the solution) If y is an analytic solution of Abel-type homological
equation (3.53) on an f-invariant subdomain D; C %, such that y;({) = o(1)

uniformly on D as R(&) — oo, then

Y1 =yon (DI)R =DND;.

Proof. 1. Existence of a solution. We prove that the following series:

v() ==Y h(r"()) (3.55)

converges uniformly on D (in the {-chart) to an analytic map y which satisfies equation
(3.53).
Since h(§) =o (e“xg) uniformly on Z¢ as R(§) — +oo, there exists R > 0 such that

1 < 1
e0R(E) — ek’

H(E)l < e = (3-56)
for § € %c, R(E) > R.
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Let € > 0 and k € N be arbitrary. By the discussion at the beginning of Subsec-
tion 3.2.3, we take R > O sufficiently large such that (Z¢)r = (%c)ljg, that is, such that the

whole of (Z¢)g is f-invariant. Now, put D := (% )g. From (3.29) it follows that
R(F(0)) 2 R(E) +npy o (R) 2 Renpy o (R). for €D, (3.57)
for n € N. Now, from (3.56) and (3.57), it follows that, forn € Nand { € D

on 1 ! 1 '
mu<onswwwmsém(gwww)-

This implies that sum (3.55) converges uniformly on D. By the Weierstrass Theorem, it

follows that y defined by (3.55) is analytic on D. Now (3.53) follows easily:
+oo0
EEDWITI(9)
n=0
+oo0
=—) h(f"())
n=1
=—(=w(§)—h(0))
=y(§)+h(C), for { €D.
2. Estimate of the solution y. From (3.55), (3.56) and (3.57) it follows that
- 1

W) < Y (F(0))| < e @@

n=0 1—

for £ € D. This implies that y({) = O (e_“§> uniformly on D as R({) — +-eo.

3. Uniqueness of the solution. Suppose that there exists an analytic solution y; to
homological equation (3.53), defined on an f-invariant subdomain D; C %, such that
y1(&) = o(1) uniformly on Dy as R({) — +eo. By (3.57), note that (D;)g =D;NDisa

nonempty f-invariant subdomain of D. Let

w2 (8) == w(8) —wi(8), € € (Di)r

Since both y and y; satisfy equation (3.53) on (Dj)g and y(&) = o(1), y1(&) = o(1),

we have that v, (f(8)) = ya (&), for § € (Dy)g, and y2(&) = o(1) uniformly on (D;)g as
R(&) — +oo. Therefore,

va(f*(6)) = v2(8), § € (D1)r, n€N. (3.58)
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Note that y»({) = o(1), as R({) — +oo uniformly on (D )g. From (3.57) it follows that
R(f"()) — +oo as n — +oo, for every § € (D;)g. Therefore, passing to the limit as

n — o0 in (3.58), we obtain that y» = 0 on (D )g. Therefore, ¥ = y; on (D )g. [ |

Finally, we use Theorem 3.2.11, Proposition 3.2.12, Lemma 3.2.14 and Lemma 3.2.15

to prove Theorem D.

Proof of Theorem D. Let f({) =+ B +o(1), for B € C, be a hyperbolic complex
Dulac germ on a standard quadratic domain %, C > 0, given in the {-chart, and let fbe
its complex Dulac expansion.

If (¢ ) = € + B, then, by the quasi-analyticity stated in Theorem 3.1.15, it follows
that f(§) = {4 B for § € Zc, so that f is already linearized.

Now, suppose that both f and fare nontrivial. By Proposition 3.2.12, there exists
a unique formal linearization ¢ of f which is a parabolic complex Dulac series. By
Theorem 3.2.11, since fis nontrivial, there exist sufficiently large R > 0 and a parabolic
analytic linearization ¢ of f on the f-invariant subdomain (5?@)};, given as the uniform
limit on (%c),f; of the Koenigs sequence for f. By the discussion at the beginning of
Subsection 3.2.3, it follows that (%d{é = (%c)g. Now, we put D := (Z¢)g.

To prove that @ is a complex Dulac germ, we prove that it admits ¢ as its asymptotic
expansion, uniformly on some standard quadratic subdomain Z¢ of D, as R({) — +-oo.

Let (¢,) be the sequence of analytic partial linearizations of f defined by (3.44), and

let

V(€)== (&) —9a(8), L €D, neN. (3.59)

Note that, by Theorem 3.2.11, 3, and (3.44), for every 6 > 0 such that §; — & > 0 it holds
that

Ya(8) =S +o(1) = —o(e” P98y = (1), (3.60)

uniformly on D as R({) — +oe. Since ¢ is an analytic linearization of f on D, by (3.59)

the following holds:

V(£ (€)= WalC) = —@ulf(§)) + @al§) + B, for § € Dand n € N. (3.61)
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By Lemma 3.2.14, for every n € N there exists v,, > 0 such that (¢, 0 f)({) —¢,({) =B+
0 (e*(ﬁ"“’")g), uniformly on Z¢ as R({) — +oo. Here, B, > 0 (n € N) are the exponents
in the complex Dulac series @, as in (3.45). Now applying Lemma 3.2.15 to (3.61),
for every n € N, the Abel-type homological equation (3.61) admits a unique solution 7,
analytic on D, such that 1,,({) = O(e~B++V2)$) uniformly on D, as R({) — +-oo.

Since y,, = o(1) by (3.60), it follows from Lemma 3.2.15, 3, that y, =1, on D,n € N.

Therefore,
Vi(§) = O™ %), nen.

This implies, by (3.59), that @ is the asymptotic expansion of the linearization ¢ on D.
Recall that D is a representative of the standard quadratic domain %, by Definition 3.1.9.

By Remark 3.1.10, there exists a standard quadratic subdomain %, where C' > R, C,
that is contained in D. Therefore, @ is the Dulac asymptotic expansion of ¢ also on
the standard quadratic subdomain Z¢. Thus, @ is a parabolic complex Dulac germ (its
domain of definition contains a standard quadratic domain).

Finally, the uniqueness of the linearization ¢ follows from Theorem 3.2.11, 4. The
statement about real Dulac linearizations of real Dulac germs follows from Theorem 3.2.11,

2. |
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3.3. NORMAL FORMS FOR STRONGLY

HYPERBOLIC DULAC GERMS

This section is dedicated to the analytic normalization of strongly hyperbolic complex
Dulac germs. The idea and the strategy of the proofs in this section are similar to those
in Section 3.2. The main results of this section are Theorem 3.3.5, which can be viewed
as a generalization of the Bottcher Theorem (see e.g. [4, Theorem 4.1], [24, Theorem
9.1]) on complex subdomains of the Riemann surface of the logarithm, and its particular
case, Theorem E, which is a normalization theorem for strongly hyperbolic complex Du-
lac germs. Note that Theorem E completes the analytic normalization results for Dulac
germs, since parabolic real Dulac germs on the real line are treated in [20] and [22] and
hyperbolic Dulac germs are treated in Theorem D.

In Section 3.3.1 we define admissible domains and prove a general result for analytic
normalization of analytic maps with strongly hyperbolic (logarithmic) asymptotic bounds
on their invariant domains (Theorem 3.3.5). In Subsection 3.3.3 we apply this result to the
class of complex Dulac germs, and prove in Theorem E that the analytic normalization is

again a complex Dulac germ.

3.3.1. Analytic normalizations of strongly hyperbolic analytic maps on ad-

missible domains

This section is dedicated to the normalization of analytic maps

f() = af+o(1),

as R(L) — +oo, for o > 1, with certain strongly hyperbolic logarithmic asymptotics on
the so-called admissible domains. We call such a map f a strongly hyperbolic analytic
map on an admissible domain. Being adapted for strongly hyperbolic analytic maps,
admissible domains in this section differ from the similar notion of admissible domains
defined in Definition 3.2.2, corresponding to analytic maps with hyperbolic asymptotic
bounds. For simplicity of notation, we use the same name, since it is clear from the con-

text which type of admissible domain we refer to. In Proposition 3.3.4, we prove their
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invariance under strongly hyperbolic maps. At the end of the subsection we prove the nor-
malization theorem for analytic maps with strongly hyperbolic (logarithmic) asymptotic

bounds (Theorem 3.3.5).

Admissible complex domains

Similarly as in Subsection 3.2.1, we define admissible domains which are adapted to
analytic maps with strongly hyperbolic asymptotic bounds. Let o« € R~ 1, € € Ry, k €N,
and let

1

Mg (x) := M7

(3.62)
pa,s,k(x) = (a—1)x _Mak(x)v

for x € (expOk 0), +<>o). The map M, is positive, strictly decreasing, tending to 0, as
X — oo, and Py ¢  1s a strictly increasing map for sufficiently large x € (expOk(O), +oo).

Furthermore, pg ¢ x(x) tends to +oo, as x — oo

As before in Subsection 3.2.1, we define the lower and the upper map h; resp. hy,
whose graphs are used to define admissible domains of type (o, €,k), for & € Ry, € €
R and k € N. In particular, we use them to control an admissible domain from below
and from above, so that it remains invariant under the corresponding strongly hyperbolic
analytic maps.

Let ¢ > exp°*(0) be such that pg e x(x) > 0, for x € [t,+o0). Let hy, hy : [t,+o0) — R

be two maps satisfying:
1. hy(x) < hy(x), x € [t,4o0);
2. hy is a decreasing map on [f,+o0) with the property:

hy(x+ Poe () = hi(x) < (@ —1) - hy(x) — Mg 1 (x), x € [t,+0o0);

3. h, is an increasing map with the property:

e+ Poge(x)) — () > (00— 1) - (3) + Mg (x), x € [, 0).



Normal forms for Dulac germs Normal forms for strongly hyperbolic Dulac germs

A map h; : [t,+o0) — R satisfying property 2. is called a lower map of type (o, €,k),
and a map hy, : [t,4o0) — R satisfying property 3. is called an upper map of type (o, €,k).
A pair (hy,h,) of maps hy, hy, : [t,+o0) — R, satisfying properties 1.-3. is called a lower-
upper pair of type (@, €,k).

The definitions of Dy, ., (o, &,k)-domain and (c,€,k)-admissible domain are the

u’

direct analogues of Definition 3.2.2, so we omit them.

Remark 3.3.1. Note that an arbitrary union of domains of type («, €,k) is again a do-

main of type (@, €, k).

In the next proposition we give a sufficient condition for upper maps, which we use
later in Example 3.3.3 to prove that the standard quadratic domains are admissible. It is
an analogue of Proposition 3.2.4 in Subsection 3.2.1, and is proven similary. Therefore,

we omit the proof.

Proposition 3.3.2 (Sufficient condition for the upper maps). Leth: [t,+o) — R, 7 >0,

be a C'-map such that x — @ is an increasing map on [t,+). Let d > 0 be such that
h
W(x)>d+ (xx), (3.63)

for x > t. Then, for every (a, €,k) € R~j X R+ x N, there exists ' > 7 large enough such

that, the restriction Ay ;.. is an upper map of type (&, €,k).

Similarly, let & : [t,+o0) — R, t > 0, be a C!-map such that x — 2 is a decreasing

X

map on [f,40). Let d > 0 be such that

H(x) < hix) —d,

for x > t. Then, for (o, €,k) € Ro; x Ry x N, there exists ' > ¢ large enough such that

the restriction /[y .. is a lower map of type (&, €,k).

In the next example, using Proposition 3.3.2, we prove that standard quadratic do-
mains, defined in Definition 3.1.8, are (o, €,k)-admissible, for every (o, €,k) € Rop X
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Example 3.3.3 (Standard quadratic domains). Let Z¢ C C, C > 0, be a standard quadratic
domain defined in Definition 3.1.8 and let o € R+, € € Ry and k € N. As in Exam-

ple 3.2.5 it can be shown that the upper half of the boundary of % is parametrized by:
. 1
rx(r)+i-y(r) = Cv/r2+1cos (2arctgr)+
(r—l—C\/ rr+1 sm( arctgr)) , € [0,400).

Furthermore, as in Example 3.2.5, it can be shown that r — y(r) and r +— x(r) are strictly

increasing maps. Now, there exists € R~ such that x(¢) > exp°*(0), h, := yox~ ! is

strictly increasing C!-map on [x(z), +o0), and

3
dyr) AP+ DL it —\f+ (3.64)

W(r) = =
u(7) dx(r) C(rsp—s1) rsy—s;  Csy

where 51 := sin(%arctg r) and s; 1= cos(%arctg r), for each r € [0, +°°).

Note that:
ha(x(r))  y(r)  r+CsiVrr+1 - w1
W) A VRl Coadil s Cs G + (3.65)

for each r € [0, 4-o0) such that x(r) > ¢. Since r — x(r) is strictly increasing, from (3.65),
we see that x — h”(x) is an increasing map on [x(¢),+o0). Furthermore, from (3.64) and
(3.65), it follows that (3.63) holds for d := ﬁ(t)\ﬂ > 0 and the restriction A, (1), +e0)- BY
Proposition 3.3.2, there exists ¢ > 7 large enough such that the restriction A, [x(),4-o0) 1S AN
upper map of type («, €,k).

Since the lower half of the boundary of Z¢ is symmetric to the upper half, using
the argumentation below Proposition 3.3.2, similarly we can show that an appropriate
restriction of the lower half of the boundary of % represents the graph of a lower map of
type (o, €,k).

Therefore, Z¢ is an admissible domain of type (o, ¢€,k). Furthermore, there exists

R > 0 such that (Zc)g := Zc N ([R,+o0) x R) is a domain of type (o, €, k).

Analytic normalization of strongly hyperbolic analytic germs

In analogy with Subsection 3.2.1, in this subsection we find a unique analytic solution of

the normalization equation

(Pof:a'(P7
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where f is an analytic map satisfying certain logarithmic asymptotics of strongly hyper-
bolic type, on some f-invariant complex domain D C C* in the {-chart.

The main idea is to prove the convergence of the Béttcher sequence’ (% -f O”)n, as
n — +oo, Therefore, we first find the maximal f-invariant subdomain D' of the domain
D. In general D and D , R > 0 (see Subsection 3.2.1 for their definitions), can be empty,
but this is not the case if D is an admissible domain, as stated in the following proposition

which is the strongly hyperbolic variant of Proposition 3.2.10.

Proposition 3.3.4. Let o« € Ry, € € Ryg and k € N. Let D C C' be an admissible
domain of type (a,&,k) and let f : Dc — C, C > exp°*(0), be an analytic map with the

following asymptotic behaviour:
f(§)=al+o(L,*), as R({) — +oo uniformly on De. (3.66)

Here, L; is a logarithmic term defined as in Proposition 3.2.10. Then, for every R > C

sufficiently large, the domain Dg is f-invariant. In particular, Dg C D£ and D£ # 0.

Note that (3.66) gives the so-called strongly hyperbolic asymptotic bound since, in the
z-chart, condition (3.66) becomes f(z) = z% <l +0((lyy1)" )), where the leading mono-

mial is of strongly hyperbolic type.
Proof. By (3.66), it follows that
0, (3.67)

uniformly on D¢.
Now, there exists R > C large enough such that py ¢ (R) > 0, pg ¢  is increasing on
[R,+o0) and

1
1f(&)—al| < 5 (3.68)
k

for { € Dg. As in the proof of Proposition 3.2.10 we inductively get:

ILn| = 10g™ (R (S)), (3.69)

3We call it here the Béttcher sequence because in the z-chart it coincides with the standard form of the

Bottcher sequence as defined in Definition 2.2.3.
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for 1 <m <kand { € Dg. From (3.68) and (3.69), it follows that:

1
If(§)—al| < my (3.70)
for § € Dg. Now, we get that:
1
R -R 1R ————
() =) = (o= DRE) (s
:Pa,e,k(g((C))a (3.71)
1
R -R - 1R _—
() =) < (= DR+ o
= (= 1)R(E) +Me x(R(E)), (3.72)
and
1
3 -3 -3¢)—————
() -3(0) 2 (@ D3E) - (s
= (¢ —=1)S() = Me k(R (L)), (3.73)
1
3 -3 -3 —_
() -3(0) < (@~ D3O+ o
= (a—1)3() + M k(R (D)), (3.74)

for { € Dg. Note that py ¢ k(R (8)) > pa.eix(R) > 0, for every € Dg, since pg.¢ x is an

increasing map on [R, +c<). Now, put

Foek(8) = [R(E) +Paek(R(E)), 00 R(E) +Me k(R(E))]
x [0+ 3(8) = Me k (R(E)), - (L) + Me e (R(0))]

for each { € Dg. By (3.71)-(3.74), we get that

f(8) € Luex(§),foreach § € Dg.

Now we prove that Dg is f-invariant. Let { € Dy be arbitrary. Now, there exists an
(o, €,k)-domain (Dp, ,,)r C Dg, such that { € (Dp,;,)r- By properties 2. and 3. in
the definition of lower-upper pair of type (a,¢€,k) it is easy to see that Sy ¢ x({) C
Dy, - Consequently, it follows that f({) € Dy, 5, € D. By (3.71), since { € Dg and
Paex(R(E)) >0, for { € Dg, it follows that R(f(&)) > R(L) > R. Since f({) € Dy, 4, <
D, we get that f € Dg. [
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Figure 3.3: Application of Proposition 3.3.4 for D := %, C > 0.

For visualisation of the application of Proposition 3.3.4 to a standard quadratic do-

main, see Figure 3.3.

In the next theorem we give the normalization result for analytic maps with strongly
hyperbolic (logarithmic) asymptotic bounds on admissible domains. It is the strongly

hyperbolic analogue of Theorem 3.2.11.

Theorem 3.3.5 (Normalization theorem for strongly hyperbolic analytic maps on admis-
sible domains). Let @ € R-q, € € Rugand k € N. Let D C C" be an admissible domain

of type (o, €,k). For C > exp°*(0), let f : Dc — C be an analytic map such that
f(§)=al+o(L,*), as R({) — +eo uniformly on De. (3.75)
Here, the iterated logarithm Ly is defined as in Proposition 3.2.10. Then:

1. (Existence) For a sufficiently large R > C there exists an analytic normalizing map

¢ on the f-invariant subdomain D£ C D. That is, @ satisfies

(pof)(&) =a-(E), forall { € DY, (3.76)

Moreover, ¢ is the uniform limit on D{; of the Bottcher sequence

(&)

n

in the {-chart.
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2. If D}; N{{ e C*:3({) =0} is f-invariant, then it is also @-invariant.

3. (Asymptotics) The linearization ¢ is tangent to identity, i.e., 9({) = { +o(1), uni-
formly on D£ CCT,as R(E) — +oo.

In particular, for every 0 < v < €, it follows that ¢({) = { +o(L, "), uniformly as
R(C) — oo, on every subdomain Dy, 5, C D£ such that /;(x) = O(x) and h,(x) =
O(x).

4. (Uniqueness) Let v : D; — C, be a normalization of f on an f-invariant subset
D) C D, such that y(§) = { +o(1) uniformly on Dy, as R({) — +oo. Then y = @

on (Dj)g, where R is from statement 1.

Proof. 1. By Proposition 3.3.4, there exists R > C such that Dg C D'I';, Pa.ex(R) >0 and
Pae i 1s strictly increasing. Consequently, it follows that D£, # 0, for all R > R. Let

e D};. By (3.71), since pg ¢ x is increasing on [R, +oo), it follows that:

R(F(E)) = R(E) +1Paek(R(E)) = R+npgex(R), n € Nxy. 3.77)

By (3.70), it follows that

1f (&) —al| < =Me 1 (R(Z)), (3.78)

1
(log* (R (£)))*

for every § € Dﬁ;. From (3.77) and (3.78), since Mg x is decreasing on [R,+oo), for every

neNsjand € € DI’; we get that:

1

oln 1 1
0 -

L= L) - ar©)
< e Me(R(FE))

1

< ariMex (R+npaei(R)). (3.79)

Consequently, the Bottcher sequence (% f On)n is uniformly Cauchy, and therefore, con-
verges uniformly on D{;. Let ¢ be its uniform limit on D{;. By the Weierstrass Theorem,

¢ is analytic on Dﬁ.
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In the end, we check that ¢ is a solution of the normalization equation:

(9o)(@) =tim L (£(0)))
1

= a-lim <oc”+‘ fo("H)(C))

—a-9(¢), (eD}

2. Let D{; N{{ e C:3({) =0} be f-invariant. Recall that

0(&) = lim (7"(©)) (3:80)

n—oo \ (4"

for every { € le;ﬂ{é' € C:3(8) =0}. Since {{ € C:3(f) =0} is closed in C, by
(3.80), it follows that D}; N{{ € C:3({) =0} is p-invariant.

3. Foreveryme N>y, § € D};, since My ;. is decreasing, it follows that:

1 Om mil 1 o(n 1 on
FMGEHE NPT R TRl
m—1 1
< Z WMs,k (m(C)"’”Pa,s,k(%(C)))
n=0
m—1 1
<Meg (R(E)- Y ot
n=0
1
<Mer(R(E) - (3381)
Now, as m — +oo, by (3.81), it follows that
1 1
(&) =] < : =) (3.82)

1=2 (log*(R(2)))

for each § € D£. From (3.82) we conclude that @ () = { + o(1), uniformly on D}; as
R(E) — oo
Now, the remainder of the proof of statement 3 follows as in the proof of statement 3

of Theorem 3.2.11.

4. Let y be an analytic germ such that yo f = o - ¥, on f-invariant subset D; C D,
and y(&) = £ +o(1) uniformly on Dy, as R({) — +oo. Since D/ is a maximal f-invariant

subdomain of D, it follows that D; C D/, and, consequently, (D1)r C D};. Since D is
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f-invariant, by (3.71), it follows that (D;)g is f-invariant, and by (3.77), nonempty. By
statement 1, ¢ is the analytic linearization on D{; obtained as the limit of the Béttcher se-
quence (% f O”)n, for sufficiently large R > C, which satisfies ¢({) = { +o(1), uniformly

as R({) — 4o on D};. Now, put

for every { € (D;)g. Note that E is analytic on (Dj)g, and E(&) = o(1), uniformly on
(D1)R, as R(E) — +oo. It satisfies
1
5 (E°N(E)=E(),
for every { € (Dj)g. Inductively, we get:

L () =E(0), (3.83)

o

for § € (D1)g,n € N. By (3.77), R (f°"({)) > R+npge k(R),forn e N,and { € (D) C
D{;, it follows that

im R (f*(S)) = 4o, & € (D1)r- (3.84)

Passing to the limit, as n — oo, in (3.83), using (3.84) and the fact that E£({) = o(1), as
R(E) — +oo, we get that E({) = 0, for each § € (D;)g. Thatis, ¢ = y on (D) )g. [

3.3.2. Formal normalization of strongly hyperbolic Dulac germs

In the next proposition which can be seen as the strongly hyperbolic variant of Propo-
sition 3.2.12, we prove that the formal normalization of a strongly hyperbolic real or
complex Dulac series is a parabolic real or complex Dulac series.

The strongly hyperbolic complex Dulac series are a particular type of strongly hyper-
bolic logarithmic transseries of depth 1, with complex coefficients, satisfying additional
properties from Definition 3.1.12. Therefore, in Proposition 3.3.6 below, we apply The-
orem B and prove additional properties from Definition 3.1.12. Note that Theorem B is
originally stated for the spaces of real transseries, .Z, k € N. Since the proof of Theo-
rem B uses only algebraic properties of R that also hold in C, the analogue of Theorem B

holds for the spaces of complex logarithmic transseries .%;(C), k € N.
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Proposition 3.3.6 (Formal normalization of strongly hyperbolic complex Dulac series).
Let fz z%+h.o.t., a > 1, be a strongly hyperbolic complex (real) Dulac series and let @
be its parabolic normalization obtained as in Theorem B. Then @ is a parabolic complex

(real) Dulac series.

Proof. Let ﬁf be the Bottcher operator defined in (2.58), in Section 2.2. Recall from
Theorem B that ,@J‘%” (id) = zan o f", neN. Since fis a complex Dulac series and the
set of all complex Dulac series is a subgroup of -##(C), we deduce that e@%” (id) is a
complex Dulac series, for every n € N. Since f is a complex Dulac series, note that
ord(f —z%) > o.. By statement 2 of Theorem B, it follows that (#7(id))n converges to
the parabolic normalization @ in the power-metric topology on the space ,,S,”IH (C). Let
¢p=id+ Y PR, (3.85)
BeSupp, (9)
and let y > 1. Then there exists n € N, such that ordz(@%"(id) — @) > 7. Since 9’]‘%" (id)
is a complex Dulac series, it follows that Rg is a polynomial in variable éfl = —logz, for
1 < <7, and there are only finitely many 1 < 8 <, such that Rg # 0. Furthermore,
from the description of the support of the normalization ¢ in Theorem B, we deduce that
the support of ¢ is contained in a finitely generated sub-semigroup of R~ x Z. Thus, @
is a parabolic complex Dulac series.

Moreover, if f is a real Dulac series, then ¢ is also a real Dulac series. [ |

3.3.3. Analytic normalization of strongly hyperbolic Dulac germs
Here, we state and prove the main theorem of this section.

Theorem E (Analytic normalization of strongly hyperbolic complex Dulac germs). Let

o~

f be a strongly hyperbolic complex Dulac germ and let f({) = af +o0(1), @ € R+, be

its asymptotic expansion in the -chart. Then:

1. There exists a unique parabolic complex Dulac germ ¢ (given in the {-chart) which

is a solution of the analytic normalization equation:

Qpof=w-0. (3.86)

Furthermore, if f is a real Dulac germ, so is ¢.
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2. @ ~ @, uniformly on a standard quadratic domain, as R({) — +oo, where @ is the
unique solution of the formal normalization equation (2.56) in Proposition 3.3.6

given in the {-chart.

Before proving Theorem E, we first state Lemma 3.3.7 and Lemma 3.3.8 that will be
used in the proof.

Let f be a hyperbolic complex (real) Dulac germ. The analytic normalization equation
@of=o-@, for an analytic germ ¢, is equivalent to the equation o f —a - @ = 0. In
Lemma 3.3.7 below, we determine the asymptotics of ¢, o f — a - ¢,, where, for n € N,

¢, s the partial analytic normalization as defined in Definition 3.2.13.

Lemma 3.3.7. Let f be a strongly hyperbolic complex Dulac germ defined on a standard
quadratic domain Zc, C > 0, and let f({) = al +o(1), & € Rs1, be its complex Dulac
asymptotic expansion in the {-chart. Let ¢({) = ¢ + Ynen,, On(C )ePr¢ be the formal
normalization of f from Proposition 3.3.6 given in the {-chart. Let (¢,) be the related
sequence of analytic partial normalizations of f, as defined in Definition 3.2.13. Then,

for every n € N, there exists &, > 0 such that

(@no f— @) () = o(e”PrHen)t), (3.87)
uniformly on Zc, as R({) — +oo. Here, Py := 0.

Proof. Let f = a C+Y>1Ri(C Je~%¢, where a > 1, (R,,) is a sequence of polynomials
in the variable { and (@) a strictly increasing sequence of positive real numbers tending

to 4oo. Put:

fn = OCC + Z R,‘(C)eia"c, ne NZI-

ieN, a,-gﬁ,,
Since fn, n € N, are finite sums of terms, we denote the related sequence of maps as (f;,).

Put -, := ¢ — @y and fop := f — fo. n € N. Since o f = o - , it follows that:

(¢n+¢>n)o<ﬁz+f>n) =0- <¢n+¢>n>a
(’ﬁno(ﬁl +]/;>n)+(/ﬁ>no(fn +J/C\>n) = a'¢n+a'¢>n7 neN. (3.88)
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This implies that, for every n € N, there exists , > 0 such that:

Orde*C ((/ﬁn oﬁl - a(/ﬁn) = Bn + Wy

Therefore, for every n € N, it follows that:

Ou(£u()) — a@a(§) = o™ Prm)e), (3.89)

Put

Fon(8):=(f=fu)(E), L E€c,neN.

It is easy to see that f<, ~ f>n, and therefore, for every n € N, there exists 1, > 0 such

that:

Fon(C) = o(ef(ﬁﬁnn)C)’

uniformly on Z¢, as R({) — +eo. Since @, is analytic on Z¢, by the Taylor Theorem,

we get:

(Pn(f(C)) = q’ﬂ((fn +f>n)(C))
o (£u(0))

= oul£(0)+ X PR (0

i>1
= 0u(fu(8)) +0(ei(ﬁn+nn)§)7

uniformly on Zc, as R({) — +oo, for each n € N. This, together with (3.89), implies
that, for every n € N, and &, := min {,,n,}, (3.87) holds. [ |

Lemma 3.3.8 (A solution of a Schroder’s type homological equation). Let f be a strongly

hyperbolic complex Dulac germ defined on a standard quadratic domain Z¢, C > 0,

~

and let f({) = al +o(1), o € R, be its asymptotic expansion in the {-chart. Let
g(8) = o(e™v%), uniformly on Z¢ as R({) — +oo, for v € Rog, be an analytic germ
defined on Z¢, in the {-chart. Then:

1. (Existence) There exist R > 0 such that D := (%) is an f-invariant, and an ana-

lytic solution

95(8) == ). (e /() (3.90)

of the Schroder’s type homological equation:

0g(f(8)) —af(8) =¢(¢), CeD. (3.91)
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2. (Asymptotics) @,({) = O(e~"%), uniformly on D, as R(§) — oo

3. (Uniqueness) If y, = o(1) is a solution of homological equation (3.91) on an f-
invariant subdomain D; C Zc then Y, = @, on (D)g = DN D;, for R from state-

ment 1.
The proof of Lemma 3.3.8 is motivated by a solution to the similar equation in [17].

Proof. Let € > 0 and k € N be arbitrary. Since g(§) = o(e~"%), v > 0, uniformly as

1

R({) — oo, it follows that there exists R > 0 large enough, such that [¢({)| < S5,

{ € D. By a similar discussion as the one at the beginning of Subsection 3.2.3, we take
R > 0 sufficiently large such that (Z¢)r = (ﬂc)ﬁ, that is, such that (%Z¢)g is f-invariant.
Now, put D := (Z¢)r. By (3.71), it follows that:

n 1 o n—1 1 . 1 1
i;oaH_I (gof )(C)_ l;() o1 (gOf )(C) < o+l : ev,g((fon(g))
1 1
S il ok {eD,neN. (392

This implies that ) ﬁ( go f°") converges uniformly on D. Put

060 =- Y —irlgor™NE), LeD, (399

By the Weierstrass Theorem, @, is analytic on D. Now, it is easy to see that @, is a
solution of homological equation (3.91).

Statement 2. follows similarly as the proof of statement 2 of Lemma 3.2.15.

3. Suppose that Y, (&) = o(1), uniformly as R({) — oo, is a solution of homological
equation (3.91) on Dy. Put E({) := @({) — v, ($), { € DiND. Now, Eo f = aE and
E(&) =o0(1), uniformly on Dy N D as R() — +oo. Similarly as the proof of statement 4
of Theorem 3.3.5, it follows that £ =0, i.e., @, = Y. |

Proof of Theorem E. Let f({) = af +o(1), o € R+, be a strongly hyperbolic complex
Dulac germ on a standard quadratic domain %, C > 0, given in the {-chart, and let fAbe
its complex Dulac asymptotic expansion. We distinguish two cases.

If f = af, by quasi-analyticity (Theorem 3.1.15), it follows that f({) = al. In
this case f is already normalized, so we put @ := id. Since the formal normalization @

obviously equals to id, it follows @ ~ @.
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Now suppose that fis nontrivial. This implies that f satisfies the assumptions of The-
orem 3.3.5, since the standard quadratic domain % is an admissible domain of any type
(Example 3.3.3). Therefore, by Theorem 3.3.5, for f we obtain an analytic normalization
¢ on the maximal f-invariant subdomain (%C)}; of the standard quadratic domain Zc.
By a similar discussion as the one at the beginning of Subsection 3.2.3, it follows that we
can take R > 0 sufficiently large such that (Z¢)r = (.%’c){;, that is, such that (%Z¢)g is
f-invariant.

On the other hand, by Proposition 3.3.6, in Subsection 3.3.2, the normalization of
strongly hyperbolic complex Dulac series fis a parabolic complex Dulac series @.

By Remark 3.1.10, there exists C; > 0 large enough such that Z¢, C (%¢)g. There-
fore, it is left to prove that @ is the asymptotic expansion of @ on the standard quadratic
domain Zc,. Hence, @ is a parabolic complex Dulac germ. Furthermore, since ¢ ~ @ and
@ is a complex Dulac series, by Theorem 3.3.5, 4., it follows that ¢ is the unique analytic
solution of the analytic normalization equation (3.86) which is a parabolic complex Dulac
germ.

Let us prove that @ is the asymptotic expansion of ¢ (in the {-chart). Let

¢:=C+ ) Oull)e P
neN

and let (¢,) be the sequence of partial analytic normalizations defined in Definition 3.2.13.

Furthermore, let

8n(6) := —(@u(f(S)) —a@a(§)), & €ZcyneN. (3.94)

Since @ is a normalization of f, we have:

o(f(8))—ap(l)=0, Ce€%,. (3.95)

Note that, by (3.94) and (3.95),

(@ —@a)(f(8)) — (@ — o) (§) =gn(C), neN. (3.96)

By Lemma 3.3.7, it follows that g,(&) = o(e~(B*&)), for some &, > 0, uniformly on
Hc,, as R({) — oo, for every n € N. From statement 3 of Theorem 3.3.5, it follows that

(@—,)()=0(1), foreach n € N. Since ¢ — ¢, is a solution of the homological equation
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(3.96), by Lemma 3.3.8, 3., it follows that (¢ — ¢,)({) = O(e~(F+&)%)  uniformly on
He,» as R(L) — +oo, for &, > 0, n € N. Therefore, (¢ — ¢,)(§) = o(e ), uniformly
on Zc,, as R({) — oo, for every n € N. This proves that @ is the asymptotic expansion
of ¢ on the standard quadratic domain Zc,. Therefore, ¢ is a parabolic complex Dulac
germ.

Furthermore, by statement 2 of Theorem 3.3.5, it follows that ¢ is a real Dulac germ

if fis a real Dulac germ. |



A. COMPOSITION AND THE LIST OF

IMPORTANT IDENTITIES

In Section 1.1 we have defined differential algebra £ and its subalgebras £, and .Z°,
%4, for k € N. In Subsection 1.1.4 we have defined differential algebras of blocks %,,,
1 <m <k, for k € N>;. Here, in Appendix A, we precisely define the composition of log-
arithmic transseries and state and prove the Taylor Theorem in this formal setting (see [29,
Proposition 3.3]). Furthermore, we state and prove some important computational iden-
tities in the mentioned differential algebras, which are also introduced in [29, Subsection
3.6], and which we use throughout the thesis. In particular, they are mainly used in Chap-
ter 2 to transform normalization equations into fixed point equations and in Appendix B
to solve various differential equations in differential algebras £ and %,,. Appendix A is
divided into three sections: Composition of logarithmic transseries, Derivation identities

and Composition identities.

A.1. COMPOSITION OF LOGARITHMIC

TRANSSERIES AND TAYLOR THEOREM

In this section we prove that the composition of logarithmic transseries defined in Defi-
nition 1.1.28 in Section 1.1.5 is again a logarithmic transseries. First we define f(Az%),

for or,A > 0, and f € £. Using the standard Taylor formula for powers and logarithms
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(see [21, Section 2]), we put:

Boo—Bo(d®. Bl \y._2B.aB. B (g1>i
Fog=z"o(Az% (1 ;\Za))' Z 1221(1) A7)’
( l)ifl

_ @ 148y .= LR
(logz)og—(logz)O(lz (1+7LZ06))' IOgl—i—alOgZ—Fg i (lza>’

(A1)

where g € £, k € N, such that g = Az% + g1, g1 € %, ord(g1) > (a,0;). Using the
Neumann Lemma (Theorem 1.1.2) it can be seen that both series on the right-hand side
of (A.1) form summable families. By Remark 1.1.18, it follows that both series converge
in the product topology on £%.

Now, f(Az%) is defined rermwise using (A.1). For exact calculations of (zP£; ---£;) o
(Az%) see Lemma A.3.1 and Lemma A.3.2.

In the next proposition, which is a special case of the more general statement [29,
Proposition 3.3], we prove that the series in the formal Taylor formula for logarithmic
transseries converges in appropriate topologies. This allows us to define the composition

of logarithmic transseries in Definition 1.1.28.

Proposition A.1.1 (see [29]). Let f € .%,and g € .,Zj(H, form,ke N. Let g = Az% + g1,
for a,A >0 and ord(g1) > (a,0). Then the series

Az
Y () (A2)
= i!
converges in the product topology on .4}, for r > max {m,k}.

If moreover ord; (g;) > a, then the convergence holds also in the finer power-metric

topology on .%,, for r > max {m,k}.

Proof. 1t follows from the properties of the composition of transseries proved in [6], as a

consequence of the Neumann Lemma (Theorem 1.1.2), that the family

(1) a .
(f o )<g1>')
: ieN

is summable in the sense recalled in Remark 1.1.18. Hence, as it was already noticed in

the same remark, the series in (A.2) converges in the product topology.
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For the second part of the statement, set i := ord, (f) and r :=ord; (g;) — a, r > 0.

It is easy to see that

(i) o .
m%(fMZ)@D)—%#—DW+W+*ﬁ—ua+ﬂ

i!
tends to +oo when i — +oo. We conclude by Remark 1.1.17. |

Remark A.1.2. Note that
fA)+Y — (), (A3)
is just the formal Taylor expansion of f(Az* +g1) at Az%.

Note that, in Definition 1.1.28, only g is requested to be in ZLH k€ N. The reason
behind this is a closedness of .,Z’j(H , k € N, under the composition. Without proof we state

the following proposition (for more details see e.g. [6], [21]).
Proposition A.1.3 (Groups £ and £0),

1. £ is a group and .i”kH are its subgroups under the composition.

2. £0is a normal subgroup of £, ciﬂko is a subgroup of £° and a normal subgroup of

ZkH , for k € N, under the composition.

Proposition A.1.4 (Superlinearity of the composition). Let g € £ and Ky L — L be
the operator defined by Z,(f) := fog, for each f € £. Then %, is a superlinear operator.

Proof. Since g € £, there exists k € N such that g € .Z,f’ . By the definition of the

composition, it follows that:

TUCEIT
Ro(f) = f0)+ Y T gy,
Bt i!
where g :=Az%+ g1, a,A >0, g € %, ord(g1) > (¢, 0). Since derivation, multiplica-
tion by (g1)’ and composition by Az* are superlinear operators, we conclude that Hq is a

superlinear operator. |

Remark A.1.5. Note that (fi-f>)og=(fiog)-(fr0g),foreach fi,f> € Land g € £,
In particular, the operator of the composition %g, forge & H | cN, defined in Propo-
sition A.1.4 is an automorphism of algebra £ and its restriction on .Z} is an automorphism

of subalgebra .Z}, C £.
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By Proposition A.1.4 and Remark A.1.5, it follows that formula (1.8) in Defini-
tion 1.1.28 can be evaluated composing term-by-term using the standard Taylor formula

for powers and logarithms stated in (A.1).

In the next proposition we prove the formal Taylor Theorem (see [29, Proposition

3.3D.

Proposition A.1.6 (The Taylor Theorem). Let f € £ and g € £, k € N, such that
g:=go+h.o.t,forgo € L. Let gy := g— go. Then:

fog=r(go)+ Y, ! g (1), (A.4)

i>1

where the right-hand side converges in the product topology in £. Furthermore, if ord; (g;) >

1, then the right-hand side of (A.4) converges in the power-metric topology.

We call identity (A.4) the Taylor formula or the Taylor expansion of f at gg.

Proof. By the same arguments as in Proposition A.1.1, we prove that sum on the right-

hand side of (A.4) converges in the product topology (resp. the power-metric topology).
Since go € £, there exists o, A > 0 such that gg = Az% +h, h € %, ord (h) > (&, 0).
Now, by (1.8), we have:

0 s |
Flan) + 5, 780 (i — gz 7 A g S0

i>1 : = Jo! i>1

Note that for each i € N>, by (1.8), we have:

FYD(Az)
j;< 06,

f(H_j) (A'Za) W

F 9 g0) = fP(Az) +

= fO(Az%) +

1
j>1 J:
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Now, from the last two identities, we have:

z+j AZ) ;
ZZ il 81
i>1 ! i>0;>0
f .
= f(Az%) + PJ
=/ pz;‘uzbj P ]
P (Az%) P\, p-i
)+ —_— gt
L <,;(]> )
+Zf +g1)?
p>1
=fog
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A.2. DERIVATION IDENTITIES

In the lemma below we prove the usual formula for the derivation of a composition.

Lemma A.2.1 (Derivation of a composition). Let f € £ and g € .i”kH such that g =
Az%+ gy, for a,A >0, g1 € %, ord(g1) > (¢, 0;). Then:

o0 = (G) o

Proof. 1t can be proven using the Neumann Lemma (Theorem 1.1.2) that the derivation
d% : £7° — £% is continuous with respect to the product topology. Since the series (A.2)
in the definition of the composition f o g converges in the product topology on £~ and the

derivation is continuous, we have the following:

d d f( ) )
a’z(fog):dz< +Z >

i>1
Aoz i) () ) D (A% .
—Aaz‘“f’(lz“)Jri;( s fl.! (2 )(gl)’+f(i(f)!)(g1)’l(g1)’)
o—1 £(i+1) t+1
=20z 1 (A2%) + f(Az%) (1) + ) Ao fl., (A5) +Z (AZ) g1)'(g1)
i>1 : i>1
(i+1) z 1)
a0 (£ + E I ) ey (2 + 1 ) )
i>1 i>1
/ Az% )
¢ (f’(kzmz(”if”(gl)')
i>1 :
(df) dg
dz o8 dz’
[ |

Lemma A.2.2 (Properties of the derivation d%). LetkeNand (a,ny,...n;) € (]R X Zk) \

{0k+1}- Then
d n n, -1 n n, n1+1 pn n, ni+1 pny+1 ny+1
;Z(Zaéll .. .[kk) =z (aell ...ekk +n1£11 ezz .. .fkk +-.- +nke11 [22 ekk )
k
= (al g+ Yl g ), (A.5)
i=1

Proof. Note that 4 (z%) = az* ! and &£ (€}") = dz((— @)"j =z ¢, Induc-
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tively, we get:

d . d
zz(e%”) =l ]diz(eloszl)

() ol (0 1)

dz
1
:nme%n—l.7.33!.2—1&...@%23’2”_1
emfl
=Ny Z_lel e 'sz lez{ﬂ—i_la (A.6)

for every 2 < m < k. Consequently, identity (A.S5) follows from the Newton-Leibnitz

rule. [ |

Lemma A.2.3 (Properties of the Lie bracket operator). Let k € N and let

(Oc,nl,...nk),(B,ml,...mk) S (R X Zk) \{Ok—i-l}- Then:
1.

[Zag’{l ...gzk’zﬁg'fl ...gzﬂc}

d d
= 7% ...ng : Zz(zﬁng ...gmk) _Zﬁg'fl ...gzﬂc . CTZ(ZO%? ...ng)
— Z06+ﬁ*1 ((a _ ﬁ)e71+ml enk-&-mk + Z enl—&-ml—&-l en i+m; +1e;1r11+m,+1 gzk+mk) )

(A7)

2. Let z“f’f' ---ZZ" € £ suchthat a #0if k=0, and ny # 0if k > 1. Then

[z“ﬁ’l’l “-Ezk,zﬁf'lnl -"ZZ"] does not contain a monomial ZZ“_IE%"IH o I,%""JFI, for any
P e 4.

3. Let %' - -£;* € £, Then, for every c € R\ {0}:

ey g e 2o g2mtl . gntl

k+1}

4. Let %' ---£F € L. Forevery cz'€)' ---£* € £, c € R\ {0}, such that
(Vv i) # (200 — 1,201+ 1,...,2m; + 1), there exists bzP€]" e L2 b eRN\
{0}, such that [z“f’fl Ak b - -Kkmk} contains the term cz7¢" - - £}*.

The proof of Lemma A.2.3 is motivated by similar properties of the Lie bracket oper-

ator on the differential algebra .#}, proved in [21, Section 3].
Proof. Statement 1 follows directly from Lemma A.2.2.

201



Composition and the list of important identities Derivation identities

2. On the contrary, suppose that such zﬁérl'” 4% € L7 exists. By (A7), it follows
that o+ B —1=20—1,ie., a=p. Now, n;+m;+1=2n;+1,ie., n =m. Induc-
tively, we get n; = m;, for each 1 <i < k, but then [zo‘ﬁ'l“ Y bzﬁf'f“ B -f’;"} =0, which
is a contradiction. Therefore, such zﬁlrl'” . ~£Zk € £, does not exist.

Statement 3 follows directly by (A.7).

4. If y#2a—1,thenput p:=y—a+1, b:= and m; := v; — n;, for each

1 <i<k. By (A.7),iteasy to check that statement 4 holds. Now, suppose that y=2a — 1,
and there exists r € N> such that 1 <r <k, v;=2n;+1, foreach 1 <i<r—1, and
vy #2n,+ 1. Put B := a, m; := n;, foreach 1 <i<r—1, and m, := v, —n, — 1. Finally,
putmj:=v;—n;j, foreachr+1< j <k, and b := ﬁ By (A.7), it easy to check
that statement 4 holds. |

The following Lemmas A.2.4 and A.2.5 are analogues of Lemmas A.2.2 and A.2.3 in

differential algebras %,, C £, for 1 <m <k, k € N>1.

Lemma A.2.4 (Properties of derivations D,,). Let k,m € N> such that 1 <m <k, and

(M, ..nx) € ZF-"+1 Then

_ A1 glm1 7y A1 gt 1+1 ghun 2 1y, 1 phm1+1 ny+1
= g N B By B el

k
=Y iy g (A.8)
=m

Proof. Directly by the definition of the derivation D,, (see (1.5)) and the Newton-Leibnitz
rule. |

Lemma A.2.5 (Properties of the Lie bracket operator on %,,). Let k,m € N> such that
1 <m <k, and let (ny,...ny), Vm,...v¢) € ZF""+1 Then:

1.

e gk g 0]

. .KZk Dy (£ ...ezk) —0n.. .g;{’k Dy (L - -eZk)

m

(rj— vi) oot L | grtvitlgris vy gty (A9)

I
agls

m
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2. Let £ ---£,* € %, such that ny # 0. Then [€im---£*% £y ---£*] does not contain a
monomial €21 .. £2%F for any @£ € B,,.

3. Let &y --- £ € B, Then, for every ¢ € R\ {0}:
|:Ae:17;" .. -ezk’ _Ce%n .. ezk‘e]:il} — Cefnﬂm"‘l . eiﬂk+1

4. Let £ ---£* € B, Forevery cr---£,* € By, c € R\ {0}, such that
Vi - v) # (2 + 1, 2m + 1), there exists blir - --£* € %, b € R\ {0}, such that

[ - &% bl - - £}%] contains the term c€)r - - £}
Proof. Similarly as the proof of Lemma A.2.3. |

In the following lemmas we prove the identities relating derivations d% and D,,, for

lgmgk,andkENzl.

Lemma A.2.6 (Derivation of a-block, for & € R). Let k € N>j, ¢ € R, and let K €
P C L. Let]: By — 9B be the identity operator. Then:

(%K) =z*"" - (al +D1)(K),
(%K) = 2. (((a—i+1)I+D1) o-o((ot—1)I+Dy) o((xI—I—D1)>(K)
= ((a—it 1) (0= oK +G(K) ), (A.10)
for every i € N>y, where 6 : % — 2 is a superlinear %—contraction on the space
(AB1,d,).
Proof. By £,, =€, o€ and (A.6), it follows that:

d ..
TR

d
:ﬁ- (diz(err;il)) ol

=07 (2 'Lyl ol

Di(ty) =61

=yl -y L (A.11)

for every 1 < m < k and n,;, € Z. Now, by the Newton-Leibnitz rule and Lemma A.2.2,

it follows that d%(f’f‘ <) = 7Dy (€] - 4%). Since Dy is superlinear, we get that
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d%(K ) =z 'D(K), for every K € 4. Consequently, it follows that:

d o _ a—1 oci
d—z(z K)=0z"""'K+z dZ(K) (A.12)
=%V (al+Dy)(K), (A.13)

for every K € #; and o € R. Note that:

(K) %) = L o+ Di(K))

=72 (((a—1)I+Dy)o(al+D1))(K)
=% (a(a— 1)K +G(K)),
where 65(K) := (2a — 1)D1(K) + D3(K), for every K € %, and a € R. Since D is a
1

superlinear 5-contraction on the space (A1,d,), it follows that 6, : B, — 2 is a super-

linear %—contraction on the space (#41,d;). Now, the general identity follows inductively

fori > 3:
(22K) = ((z*K)VY
= (=D (o~ i+D1 4 Di)o--o (el +D1))(K))
=@ (@ =i+ DI+Dy) oo (al +D1) ) (K)
_ i, ((a—i+1)---(a— 1)05K+<€,-(K)),
where 6; : 81 — 9 is a superlinear %—contraction on the space (#,d,). [ |

By Lemma A 2.6 it follows that (zK)!) = z- €;(K), for every K € %) C £, ke N>y,
andi > 2, where €, : ) — B isa %—contraction. In the next lemma we investigate more

precisely the structure of the %—contraction G, 1> 2.

Lemma A.2.7 (Derivation of a 1-block). Letk€ N>jand K € % C £, k € N>1. Let
1 : #, — % be the identity operator. Then:

(zK)' = (I+D1)(K),
(eK)" =271 (D1 +D})(K) =2~' - (D1(K) +€2(K)),
(zK) = (1. ((—(i—2)1+D1) o-+-0(~I+Di)o (D +D%)>(K),

=z (=, ((—1)"—2(1‘—2)101(1@+<5,~(K)), (A.14)
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for every i € N>3, where 6 : ) — %, i € N>y, is a superlinear %—contraction on the

space (#1,d,).

Proof. The first identity follows directly from the first identity in (A.10). Now, we get
that:
(cK)" = L (K+ Dy (K))
dz
=z~ (Di(K) +Di(K)),
and, by (A.10):
d
()™ = (= (D1(K) + D (K)))
=2 2(~Di(K) +D{(K)),

for every K € %;. Put ¢3(K) := D} (K), for every K € %;. Since D; is a superlin-

ear %—contraction, it follows that 63 : %, — ) is a superlinear i—contraction (even

%—contraction) on the space (#),d;). Now, the rest of identity (A.14) follows induc-

tively. |

LemmaA.2.8. LetkeN>j,a€R o, a# 1,andletK € % C £ " and G € %’;1 C%.
Then:

1.
K)() _ —1)i-2 .
Y (Z .,) (zG)' = zKG+zDy(K) - (G+ y (=1) ,G’) +2¢(K,G)
5 i = (i—1)i
=zKG+z(1+G)log(1+G)D1(K)+z¢(K,G), (A.15)
where € : %) x ﬁ; |~ Prisa (22 +20r1d£1 @5 +0f‘1iel ) > -Lipschitz map (in the sense
of Definition 1.2.9), with respect to the metric dj,
2.
9.4 (i) . o .
) & .,) (zG) =<K - Y ( .)G’Jrzo‘,/”i/(K,G)
i1 b i>1 \'!
=z%((1+G)* - G)+* ¥ (K,G), (A.16)

where 1 By x BL, — By is a ( : +0r(11£ @ +0r§£ (K))—Lipschitz map, with re-
- 2 1 2 1

spect to the metric dj.
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Proof. 1. By (A.14) it follows that {;(zK)" - zG = zKG + zGD1(K), 5;(zK)" - 2G* =
%sz(Dl(K) + % (K)), and:

(K)O gy CD2=2)

. o 1
; , z EUHGD (K) +
L L

7!

. Z—(i—l)—f—i Gl%pl(K)

‘ 1 .
-zG‘Dl(K)Jrl;ZG‘%”i(K),

for every i € N>3. Put ¢(K,G) : Z,>

' for every (K,G) € % x %i |- The first

line of (A.15) follows directly. By analyzmg the order in £, and by Example 1.2.8, we get

) + . 1 1 : . .
that 6" : By x B — Py is a (22 oty (@) oty K] )-Lipschitz map, with respect to the
metric d.

Note that:

8
\

(1+G)log(1+G) =

= i i—1
- (_ )liz i

G+ e
i:z; i(i—1)

Now, the last line of (A.15) follows directly.

Statement 2 follows similarly by (A.10) and the fact that:

(1+G)*-G= l;( )

Remark A.2.9. Note that ¥ and ¢ in Lemma A.2.8 are superlinear in the first variable

and nonlinear in the second variable.

Lemma A.2.10 (Relations between derivations D,,). Letk,n,m € N> suchthat 1 <n <

k—land 1 <m<k-—n.
1. IfK € Bipyn € £, then:
Di(K) =L Ly 1Dpyn(K). (A.17)
2. If G € B, C &>, then:
(D(G)) 08y = Dy in(Goly). (A.18)
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Proof. 1. By (A.6), it follows that:

u d u
Dm(em+n) = £’2n ' ﬁ(em+n)

(@) ot

=0 (uz 'y, 184 0k,

=/

I

+1
- I/Lem v 'em+n71€?n+n

= em o '£m+n71Dm+n (ezl—i-n)’

for every u € Z. Now, statement 1 follows from superlinearity and the Newton-Leibnitz
rule.

Statement 2 follows from the fact that #M(Gofn) = (%(G)) of, and from (1.5).

[

Lemma A.2.11 (Properties of the derivation D). Let k,m € N> such that 1 <m <k,
and let K € % C £ If ord (K) = (0, s M1 - - -, 1k ), Where n,, 7 0, then

ord(D1(K)) = (0,1—1,1m + 1,11, .. .1g) = ord (K) + (0,1, 04 —)- (A.19)

Proof. Since ord (K) = (0,0,,—1, 7, Npt1,- .., 0g), Where n,, # 0, it follows that there

exists a € R\ {0} such that a€)'r - - -£* is the leading term of K. By (A.11), it follows that:

Dy(alyr - 6F) = nyaly Ly L LF 4 ho.t.

Now, the claim follows from:

ord (D (K)) = ord (D (alpy---£,*)) = ord (nal; -- 'Km,lf’;;"“fz’fll ).
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A.3. COMPOSITION IDENTITIES

Lemma A.3.1 (Composition with A -id, [29]). Letk € N>|, @ € R>09, A € Rog, A # 1,
and let K € %, C .Z;” such that ord (%K) > 0y1. Then:

1.
(2%K)(Az) = A%%(I+1log A - D1 (K) + %, (K)), (A.20)

where ¢, : 1 — ) is a superlinear %—contraction and [ : ) — % an identity

operator on the space (%,d).

2. The support Supp ((z*K)(Az)) is contained in the sub-semigroup of R X 7K gener-
ated by elements of Supp (z*K) and (0,1,0,...,0)541,---,(0,0,...,0,1)541.

3. Every coefficient of z%K(1z), K € %, is equal to the value of some polynomial

with real coefficients in the variable log A.

Proof. 1. We follow the proof from [29, Subsection 3.6]. Using (A.1), it follows that:

1
logA +logz
1

logz(1+ 1R
1

'1—10g7L‘€1

oo

:fl . (Z(logl -Zl)i)

i=0

=Y (logA)i¢;"!
i=0

él (AZ) =

and
' (Az) = (6 + Z(log/l)’l’frl)"1
i=1
=" (1+) (loga)'€))"
i=1
oy (M) v igi\J
=Y | ) (Y (logn)'e))
—o\J/ =i
="+ log £ £ hoob.(6))

=" +logA-D;(¢]') +hob.(¢;), nj€Z. (A.21)
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Similarly, we get that:

1

" log (£ (1+X7, (logA -£1)))
1

_log(ﬁl) +log (1+ X7, (logA - £;))

1
= O ey
=1 i i=1 10 A -£1
T+ =
1
~ 2 1= ((logA); +h.o.b.(€1))e
=Y ((logA)€; +h.ob.(6)) 65!
i=0

(A7) =

= £y +logA -£165+h.0.b.(¢))
and

02(Az) = €2 +mylog A -£,£2 1! +hob.(£))

= egz +logA -Dlggz +h.0.b.(€1), ny € 7.
Inductively, it follows that:

0 (Az) = £ 4y log A £y -y £ 4 hoob. ()

=0 +logA-Di(€im)+hob.(8y), nueZ,1 <m<k.
Therefore, by the Newton-Leibnitz rule, it follows that:

(az?€! L) (Az) = aA % (€7 (Az) £ (Az))
— A O (0 L% +1ogA Dy (£ %) +hob(£y)),  (A22)

for (ny,...,n;) € Z¥. By the superlinearity of the composition by A -z, we get that
7%K(Az) = A%Z% - (I+1ogA -D1)(K) + €3 (K), where 6, (K) := K(Az) — A% - (I +1logA -
D1)(K), for every K € 4. Since the composition by A -id and the operator I +1log A - D,
are superlinear, it follows that %, is a superlinear operator on %;. From (A.22) and lin-
earity, it follows that 6} : %8| — 4 is a superlinear %—contraction on the space (#,d,).

Statements 2 and 3 follow directly by induction using (A.21) and the Neumann Lemma

(Theorem 1.1.2). |
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Lemma A.3.2 (Composition with zﬁ). Letk € Nsj, a € Rog, B €Roo, B # 1,01 €Z,
and let K € %, C £ such that ord (z*¢]'K) > 0. Then:

1
B
1

where Ji/ﬁ : By — P is a superlinear z-contraction and [ : %, — %, an identity

(%€M K) () = %P ! ((1—1og(/3) Dy + Hp) (K)), (A.23)

operator on the space (%,,d,).

2. The support Supp ((z*¢}'K) ozP ) is contained in the sub-semigroup of R x Z* gen-
erated by elements of Supp (z*¢}'K) and (0,1,0,...,0)x11,...,(0,0,...,0,1)k11.

3. Every coefficient of (z*¢'K) o B is equal to the value of some polynomial with
1

real coefficients in variables B and log 8.

Proof. 1. Note that £]'(#) = (—Bkl)gz)”1 = 5}113'1”, for B € Roo\ {1} and n; € Z. Let

(na,...,ng) € ZF-1, Recall from Lemma A.3.1 that

(632 4%)(Az) = €32 - -£* +1ogA - Dy (€32 - - £*) + 65, (€3> - - £1),
1_

for A >0, A # 1, and a superlinear z-contraction &) : %1 — % on the space (%,d).

Note that % > 0 and % = 1. Furthermore, note that:

gt = () ot

(Dl(Z’l12 i -Z’,:"_l)) ol =Dy (€32 £").
The last identity follows directly by Lemma A.2.10. Now we have:

(egz ...ng)(ZB) =070 oel(zﬁ)
T
:£12---£k’<_lo(Eel)
— O o () oty
B
= (£ —1og(B) - Dy (€248 ) + 6 (€2 ) oty

=072 £ —log(B)-Dr(€3?---£4;*) + (%% (074 ) oty
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Put 73(G) == (‘51 (Goexp(—1)) o, G € %,. Note that exp(— 1) is the formal
inverse of £; and G oexp ( - E) € #) C 2L, for G € %,. Note that 7 is a superlinear

%—contraction on the space (%,,d,). Now, we get the identity:

(f’flfgz...ﬁzk)(zﬁ) Biﬂenl (Enz EZ"—log(ﬁ)'Dz(fgz~~EZ")+<%/ﬁ(1f’;2m£Zk)>,

The statement follows directly from the last identity and superlinearity of 1, D, and %j.

Statements 2 and 3 follow directly from Lemma A.3.2. |

Lemma A.3.3. Let k€ N>, a € Rg,  # 1, A € Ry, and let K € #; C £ and
Ge %’; C % Then:

1.
z .
Z Z) (zG)' =zKG+1logh -zD1(K) -G
i>1
z 2 G\i
4 AzDi (K +Z ( )| +2¢(k.6)
z>2
=zKG+logh -zDi(K)-G
G G
—l—?Lz(l—l—I)log(1+I)D1(K)+zC€(K,G), (A24)
where € : ) x L, — By isa (22 +20r1de @5 +°rie ) -Lipschitz map, with respect
- 1
to the metric dy,
2.
ap\(@ () i
y (TR 7(42) ),‘ 2 6y = axok. Z( )( ) +2%# (K,G)
i>1 L i>1
Ga G
=292 ((142)" = ) +2"H (K, G A25
Z ( + 7(,) 2 +z ( ) )7 ( )
where # : By x BL, — By is a (21+0r(11£ © ),zwgl ) -Lipschitz map, with re-
- 1
spect to the metric dj.
Proof. Directly by Lemma A.2.8 and Lemma A.3.1. |

Lemma A.34. LetkeN>,aeRp, a#1,andletK,G € %’Jr - .Zk. Then:

Z(ZK)@(ZO‘)(ZO‘G)[:Za'(KOZa)'G+Za'( ( (

|
i>1 1

)+ﬂ%mﬁ)

z>2
=% (Koz") -G+ (1 +G) log (1 +G) {(Di(K) 02%) + 2% (K.G),
(A.26)
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where ¢ : 93; X 53;1 — A is a (22 +2°r1dz1<G> ' +°rl‘f1 (K)>—Lipschitz map, with respect to

the metric d;.
Proof. Directly by Lemma A.2.8 and Lemma A.3.2. |

In the next lemma we use Lemmas A.3.1 and A.3.2 to control the support of a com-

position of logarithmic transseries.

Lemma A.3.5 (Control of the support of a composition). Let f € £ and g € £, Let
r € N be minimal such that f,g € .%,. Let g := Az* + g1, for ,A > 0, and g; € .%, such
that ord (g;) > (a,0,). Then the support Supp (f o g) is contained in the sub-semigroup

of R>o x Z" generated by the elements:

(0,1,0,...,0)41,---,(0,0,...,0,1),41,
(ad,m), for each (8,m) € Supp (f),

(B — a,n), for each (B,n) € Supp (g1).

Proof. By the definition of a composition we have:

@O(Az%) .
fong(lz“)JrZif (,, )gq. (A.27)
5
By Lemma A.3.1, 2., and Lemma A.3.2, 2., it follows that every element (p,r) of the

support of £)(Az%), i € N>y, can be obtained as:
(p,r) = ((6 —i)a,v) +(0,u), (A.28)

where (0,v) € Supp(f) and (0,u) is linear combination (with coefficients in N>) of
elements (0,1,0,...,0),41,...,(0,0,...,0,1),41.
From (A.28) we conclude that every element (', m) of the support of the sum on the

right-hand side of (A.27) can be obtained in the following way:

(v,m) = ((6 —i)a,v) + (0,u) + (Br,m) + - + (Bi,m;)
= (8o, v)+ (0,u)+ (B —ot,my) +- -+ (B — at,m;),

where i € N, (8,v) € Supp(f), (0,u) is a linear combination (with coefficients in Nx)
of (0,1,0,...,0)41,...,(0,0,...,0,1),41, and (Bj,n;) € Supp(g1), 1 < j <i. [



B. VARIOUS DIFFERENTIAL EQUATIONS

IN £ AND 4,

The main objective in this chapter is to solve linear differential equations on differential
algebras £ and %, C ,,?k"", for 1 <m <k, k € N>1, and various types of nonlinear differ-
ential equations on %,,. These results are important for solving normalization equations
in Sections 2.1, 2.2 and 2.3, using the fixed point theorem stated in Proposition 1.2.12.
In Section B.3 and Section B.4 we give explicit formulas for solutions of linear differ-
ential equations on £~ and %, respectively. They are then used to solve nonlinear differ-
ential equations in Section B.5. As a prerequisite for solving linear differential equations,
in Section B.1 we define exponential and logarithmic operators, and in Section B.2 we

consider the stability of spaces .#;” and %}, k € N, under integration.

B.1. EXPONENTIAL AND LOGARITHMIC

OPERATORS

Motivated by [29, Lemma 4.5] we define exponential and logarithmic operators on spaces

of logarithmic transseries.

Proposition B.1.1 (Composition of a power series and a logarithmic transseries). Let
h:=Y7 o hix' be a formal power series in the variable x with coefficients h; € %7, i € N,
m € N, such that ord (h;) > 0,41, for each i € N. Let f € £. Then the series h(f) :=
Y ohi- f converges in the product topology on £7. Moreover, if ord, (f) > 1, then

series (f) converges in the power-metric topology on £.
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Proof. Since f € £, there exists k € N, such that k > m and f € .%,. The statement follows
directly by the Neumann Lemma (Theorem 1.1.2) since ord (f) > 0y and ord (h;) >
04+1. Indeed, by the Neumann Lemma, every coefficient in i(f) can be obtained as a
finite sum of products of lower order coefficients. Therefore, (h; - f');cn is a summable
family. By Remark 1.1.18, the series converges in the product topology in %, and,
therefore, in £%.

Now, suppose that ord, (f) > 1. Then ord, (h; - f') > i, for every i € N. By Re-
mark 1.1.17, it follows that } ;2 y h; - f i converges in <2, and therefore, in £, with respect

to the power-metric topology. |

Definition B.1.2 (Exponential operator, [29]). Let exp : £ — £ be an operator defined
by
+o0 fi
exp(f) 1= ¥ 7.
i=0"*
for f € £. We call exp the exponential operator.
By Proposition B.1.1, it follows that the exponential operator is well defined. We often
use the following notation e/ := exp(f), for f € £. By convention, we define exp(l;l) =

L, Jl , for k € N> 1. The definition of the exponential operator can be extended from £ to a

particular subset of £ by putting:
exp(aly ' +nily ' € o+ f) i=exp(c) -z M0, exp(f),

forfGS,Ote]R,n],...,nk_lGZ,CGR,andkENzl.

Let us now define the logarithmic operator. Let

foo [ 1Yi—1
log(1+f) := Z (=1)

i=1

i (B.1)

i
for every f € £. By Proposition B.1.1, it follows that log(1+ f) is a well-defined element
of £.

Now we define log(f) for every f € £. First, by convention, for every az*¢}' ---£;* €

£, ac€ R\ {0}, and k € N, we define:

log(az?€" - 4}) :=loga+ (—a)l; ' + (—m); '+ + (—m ). (B.2)
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Note that loga is in C\ R if a < 0. Now, we extend the definition of the logarithmic

operator to whole £, by writing f = Lt (f) - (l ! ;tL(t]S)f )), where f € £ and fitL(tjg')f)

obviously does not contain a constant term. Using (B.1) and (B.2), we define:

foo [ 1Vi—1 _ i
foe() = tog(La(9)+ £ — (L7 )

=
Proposition B.1.3. For every f € £ it follows that exp(log(f)) = f.
Proof. By straightforward calculation and regrouping of terms we get that exp(log(1 +

f)) =1+ f, forevery f € £ Let f € £ and let Lt(f) := az®}' ---£;*, for a € R\ {0}
and (a,ny,...,n;) € R x Z¥, k € N. Note that:

exp(log(Lt(f))) = exp(log(a)) exp(log(z*)) ---exp(log (£}"))
— azocerlll . eZk

— Lt(f).

Consequently, it follows that:

exp(log(f)) = exp (log (Lt (f) +log (1 + f_Lt(f)))>

= exp (log(Lt(/))) -exp Tog (147 ;}(;f)ﬁ))
= Li(f)- (”W) =

Proposition B.1.4 (Properties of derivations of exponential and logarithmic operators).
I. Forfe £ ceR acR, ny,...,ni_1 €Z,and k € N>, it follows that

d _ _ _
d—z(exp(ozf1 Yrml g +c+f)>

d
:exp(aejl+n1£gl...+nk_1£,:1+c+f)-d—z(af;l+n1£51...+nk_1£,j1+c+f).

af
2. For f € £ it follows that i (log(f)) = %
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Proof. 1. Directly from the definition of exp(f), it follows that exp(f) = exp(f) - %

Note that:

d _ _ _
d—z<exp(oc£1 ! —|—I’l1£2 L +nk_1€k 1))

d

- )

k—1
_ —a—1 —ny —Ng—1 p—m+1 —ni+1p—nit1
= (ol g Y g
i=1

k—1
=g (o Y il )
i=1

—ap-n e, d N
g l-d—z<a£1 +;niei+1)
=

- _ 4, _ _
=exp(al; ' +nily ' ") 7o eyt el h).

By the extended definition of the exponential operator and by (B.3), we have:

d _ _ _
d—z<exp(a£1 ' mil; 1...+nk_1£k ! +c+f))

d
= <exp(c) ~exp(a€1_1 +n1£2_1 e +nk_1£k_1) -exp(f))

d
=exp(f) -exp(c)- dz <exp(a€1_1 +n1£2_1 s +nk71€k_1))+
d
JFeXP(c) -exp(afl_l +n1€2_1 . +nk*1£k_1) exp(f) . dﬁ

(B.3)

d
=exp(al; ' +mly ' A et f) d—z(oce;l +mly e e+ f).

2. Suppose that f € £*. By Proposition B.1.3 and statement 1, it follows that:

< (explion(r) = 5

exp(log(f)) -
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B.2. STABILITY OF CERTAIN DIFFERENTIAL

ALGEBRAS UNDER INTEGRATION

B.2.1. Differential algebras .Z;° and %}

In Section 1.1, [ fdz, f € £, is defined as the particular antiderivative of f without the
constant term. The next proposition deals with the stability i.e., closedness of differential

algebras .Z°, k € N, under integration.

Proposition B.2.1 (Stability of the differential algebra .#;” under integration, Lemma
4.4, [29)).

1. /Zﬁlfl'--fkdz:—Kkjil,forkEN.
2. For k € N and (8,my,...,m;) € R x Z such that (§,my,...,m) # (—1,1;), we

have:

/z‘sf'ln' it dze L7

Proof. We prove 1 by direct computation of the derivative of —Z,;ll.

Let us now prove 2. When 8 # —1, firstly we notice that the series
G:= Z (7) D (¢]" ---Ekm")
= 6+1
converges in the complete space (A),d; ), where D is a derivation defined in (1.5).

Indeed, Dy isa %—contraction on A (see Example 1.2.6). Secondly, using Lemma A.2.6

we prove that Z;%G is an antiderivative of z5e’{” ---£%, by computing its derivative term
by term.

Similarly, if 8 = —1, suppose that m; =mp = --- =m,_1 = 1 and m, # 1, for some
re{l,...,k}, and let K := £"7{"---£™ if r <k (and K = 1 if r = k). Since D,y

is a %-contraction on the complete space (%,+1,dr+1) (by Example 1.2.6), the series

o (=1)'Di (K . . . . .
Yilo % converges in this space. A direct computation, using Lemma A.2.4,
B

shows that the derivative of

et & (—-1)'Di (K
r ( ) r+1 l( ) (B.4)
mr_lizo (mr_l)
is 7714y ---£,_ /"™ K. Note that (B.4) remains in Z. [ |
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Remark B.2.2. Let k € N. From the proof of Proposition B.2.1 we get the following

formulas which will be used in the proof of Proposition B.2.3:

1.
[ X rsdz ¥ (2 ¥ (i k)
PRydz = (— VDI (Rs ) (B.5)
0€cA d€A 6+1i:0 o+1
where A C R\ {—1} is a well-ordered subset of R\ {—1}, and R € %, C £, for
0 €A.
2.
el = (-1)'DL (K
/(szlgl...zr,léflfn)dz: Z( r Z( ) ’“l.( ”)>, (B.6)
neA nea =15 (n—1)
where A C Z\ {1} is a well-ordered subset of Z \ {1}, and K,, € %, C £, for
necA.
3.

/z‘lél - hpdz = —e;&l.

4. To conclude, [ fdz € .i’fj’rl, for f € £, k € N. Moreover, f € £ does not
contain a term of order (—1,1;) if and only if [ fdz € £, k € N. In particular, £~

is closed (i.e., stable) under integration.

Although .7, k € N, are not closed under integration, in the next proposition we find

a subspace of .7} such that the integrals remain in .%;.

Proposition B.2.3 (Stability of the differential algebra £} under integration). Let f €
Z, k € N, such that ord (f) > (—1,1;). Then [ fdz belongs to .%;.

Proof. Let az?€]" ---£ be any term in f, for a € R\ {0} and (8,my,...,my) € R x Zt.
Since ord (f) > (—1,1), it follows that (&,my,...,my) > (—1,1;). If § > —1, then by
(B.5) and 8 +1 > 0, it follows that faz‘sﬂ'f” - 4*dz € . Now, suppose that § = —1.
Since (8,my,...,m;) > (—1,1;), there exists r € Nsuchthat 1 <r<k,m;=---=m,_| =

1, and m, > 1. By (B.6) and m, — 1 > 0, we conclude that fazsf'l"‘ --‘E;?"dz €% [ |
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Remark B.24. Let f € 4, fork € N. If ord (f) > (—1,1), then:

exp </fdz> —1e%. B.7)

The statement follows directly by Proposition B.2.3 and the definition of the exponential

operator.

B.2.2. Differential algebras %,, and @erm

Recall that, in Subsection 1.1.4, we have defined / K—,Ke%B,, 1 <m<k, as the

particular antiderivative of K without the constant term.

Proposition B.2.5 (Stability of %, C £, under integration).

de,,
1. /emeer]”-fk 32 = £k_+1,f01‘1§m§kandk€N21.

2. Fork€ N>y, 1 <m <k, and (ny,...,n;) € ZE-"+ such that (ny,. .., mg) # L1

it follows that:

/ enm e’;k £2

Proof. Note that Dm(—ﬁgjl) ={,,---£;, which implies statement 1.
Let us prove statement 2. Note that £/ - - ‘EZ" = (z””’é’f’”“ . -KZ’: ) ©€m. Now we use

the substitution ¢ := £, i.e.

/e;’zn . ZZk déez — (/tnm—2£’11m+l ([) .. ezk_m([)dt)

Since (i, . .. ,ng) # 1p_pmt1 it follows that (n,; — 2,141, ..., ) # (—1,14_,,). Now, by
Proposition B.2.1, it follows that ( / t”’”’zﬁrl”“ W)k m(t)dt) € %, Therefore,
Zz

by

([ 0) 2 o)dr) ol € B € 2 -

Proposition B.2.6 (Stability of %7, C % under integration) LetK € %%, C L. ke
N>, 1 <m <k, suchthatord (K) > (0, 14_,+1). Then /K is an element of %’im
4.

Proof. Similarly as the proof of Proposition B.2.5 using Proposition B.2.3. |
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Remark B.2.7. LetK € %, C %, for1 <m<kandk € Nx. Iford (K) > (0, 15_+1)s

then:

exp (/K‘ZZ”) ~1e %, C %, (B.8)

It follows from Proposition B.2.6 and the definition of the exponential operator.
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B.3. LINEAR DIFFERENTIAL EQUATIONS IN £

In this section we consider the existence and the uniqueness of solutions of the linear
differential equations in £*:

d 3
gl-df+gz-f=h, feem (B.9)

for given g1, g2,h € £7. Note that there exists the minimal k € N such that g1, g2,h € ;.
Therefore, we assume in the sequel that g1,g2,h € £;°, for such k € N.

If g1 =0, then we have the equation g, - f = h, and f := g% is its unique solution
(if g» # 0). Therefore, we assume that g; # 0. Then equation (B.9) is equivalent to the

equation:

h
af (& o Mo g (B.10)
dz = g g1

We state the theorem about the existence of a solution of linear differential equation (B.10)
in £, which will be used throughout Sections 2.1, 2.2 and 2.3 for applying the fixed point

theorem from Proposition 1.2.12.

Theorem B.3.1 (Solutions of linear differential equation (B.10)). Letk &€ Nand g;,g82,h €
2£7,81#0. Letord (%) > (—=1,1;) orgp = —%1. Then:

1. the space of all solutions f € £~ of linear differential equation (B.10) is given by
{f¢: c € R}, where:

foi= exp(—/ijdz) . (c+/<:l-exp(/§?dz))dz>, cEeR, (B.11)

2. f. belongs to £

1> for each c € R,

3. f. belongs to £, for each ¢ € R, if and only if gﬁl -exp([ g—fdz) does not contain a

term of order (—1,1).

Proof. We first prove that f. given by (B.11) belongs to %1, i.e., .Z if the condition
in 3. is satisfied. Suppose that ord (i—f) > (—1,1;). By Remark B.2.4, it follows that
exp([ £dz) — 1 € L and exp(— [ £dz) — 1 € . Therefore, gﬁl -exp([ £dz) € £ By

Proposition B.2.1, it follows that f. € .7 |, ¢ € R. Moreover, if ghT ~exp([ g—fdz) does
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not contain a term of order (—1, 1), then, by Remark B.2.2, 4., we deduce that f. € £,
¢ € R. On the other hand, if f. € £, ¢ € R, then [ (g% exp([ %dz))dz belongs to £,
and, consequently, by Remark B.2.2, 4., it follows that ;’—1 -exp( %dz) does not contain a
term of order (—1,1).

Now, suppose that g, = —dd%l. Then exp ( —f %dz) = exp(log(g1)) = g1, by Propo-
sition B.1.3 and Proposition B.1.4, 2. Consequently, it follows that:

fc:gl-(c—i—/:%dz)a ceR.

Since gﬂ% € ., by Proposition B.2.1, it follows that f, € ,,S,”k‘jl, ¢ € R. Moreover, by
Remark B.2.2, 4., é does not contain a term of order (—1,1;) if and only if f, € £,
¢ € R. Thus, we proved statements 2 and 3.

Now, for every ¢ € R, by Proposition B.1.4 and by a straightforward computation, it
follows that {f. : ¢ € R} is a set of solutions of equation (B.10). On the other hand, by

linearity, it follows that every solution of equation (B.10) is of the form f. = c-exp ( —

J %’dz) + fo, for ¢ € R. This proves (B.11). =

Remark B.3.2 (Application: the image and the kernel of the Lie bracket operator). For
g,h € L2, k€N, note that [f,g] = h is a linear differential equation of the form (B.9),

where g; :=g and g, := —fl—i. By Theorem B.3.1, it follows that
h
fei=g- <c+/g2dz>, ceR,

are all solutions of the equation [f,g] = & in the differential algebra £°. Moreover, f, €

goo

1o ¢ € R, and f, € £ if and only if g% does not contain a term of order (—1,1;).

Furthermore, if & := 0, then f, := cg, ¢ € R, are all solutions of the equation [f,g] = 0.

Therefore, {cg : ¢ € R} is the kernel of the Lie bracket operator, for a given g € .Z;”.
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B.4. LINEAR DIFFERENTIAL EQUATIONS IN %,

Let k € N>j and 1 <m < k. In this section we consider the existence and the uniqueness

o)

of solutions of the linear differential equations in %, C £ ;:
G- Dn(Q)+G2-Q=H, Q€ %BnC. L0, (B.12)

for given G1,G2,H € %,,N 2. If G = 0, then we have the equation G, - Q = H, whose
unique solution is Q := G% (if G, # 0). Therefore, we assume in the sequel that G| # 0.

Then, equation (B.12) is equivalent to the equation:

G H .
1 1

The following theorem is an analogue of Theorem B.3.1.

Theorem B.4.1 (Solution of the linear differential equation (B.12)). Let k € N>q, 1 <
m<k,and Gy, G, H € B2, Gi #0. I ord (2) > (01, 14 11) or Go = —Di(G1),

then:
1. the space of all solutions in %,, C .Z;7 | of the linear differential equation
G1-Dn(Q)+G2-Q=H

is given by {Q, : ¢ € R}, where:

QC::exp<— gjig?)-(c+/gl-exp< (G;?LZ;)%)’ ceR, (B.14)

2. Q. € BuN L2, for ¢ € R, if and only if Gﬂl -exp ( —f %%”’) does not contain a

term of order (0,,, 11 1)

Proof. Similarly as the proof of Theorem B.3.1. |
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B.5. VARIOUS NONLINEAR DIFFERENTIAL

EQUATIONS IN %,

Let k € N>j and 1 <m < k. As opposed to the previous section, where we considered
linear differential equations, in this section we consider particular nonlinear differential

equations in the variable Q € B3, C % of the form:
Gi-Dpn(Q)+G2-Q+Gs-h(Q) =H, (B.15)

where G1,Gy,G3,H € B, C £, and h € x* R[[x]] is a power series with real coefficients
such that #(0) = 0 and 4'(0) = 0. We consider solutions Q € 93;,” C %,y since, by
Proposition B.1.1, #(Q) is convergent for Q € %’;m, but not in general for Q € %,,.

We solve here the three types of equation (B.15) which depend on the form of G,
i=1,2,3,and H. These types are explicitly given and proven in Proposition B.5.1, Propo-
sition B.5.4 and Proposition B.5.7. The main strategy of the proof of each proposition is
to solve the equation inductively. The inductive step is proven in auxiliary lemmas, using

the fixed point theorem from Proposition 1.2.12.

B.5.1. Type I

Let us first consider the equation (B.15) for G| # 0. Then we have the equivalent equation:

_H +
Dm(Q)+aQ+ah(Q)_Gl7 QE‘%nggk' (B'16)

In Proposition B.5.1 (see [29, Proposition 4.7]) and Remark B.5.3, using the fixed point
theorem stated in Proposition 1.2.12, we prove the existence and the uniqueness (under
some additional assumptions, see Proposition B.5.1 below) of solutions of equations of
the form (B.16), for m = 1. We generalize it in Remark B.5.6 for arbitrary m such that
1<m<k.

This type of a nonlinear equation appears in Lemma 2.1.17 in Section 2.1, and is used
to apply the fixed point theorem stated in Proposition 1.2.12 for solving the normalization

equation. The following results represent a part of the results obtained in [29].
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Proposition B.5.1 (Lemma 4.7, [29]). Let G1,G,, V € ,%’f“ C Z, k € N>, such that
ord (zG), ord (zG2) > 141 and ord (zV) > 1;,1. Let h € x*R[[x]] be a formal power

series in the variable x with real coefficients, such that 2(0) = /'(0) = 0. Then the equation
Di(Q)+Gi-Q+Gy-h(Q) =V (B.17)
admits a unique solution Q € ,%’g 1 € %
The following lemma is an auxiliary lemma in the proof of Proposition B.5.1.

Lemma B.5.2 (Lemma 4.6, [29]). LetGi, Gy, He B} C L, 1 <m<k, ke N>1, such
that
ord (Zfl --‘£m71G1) > 1k+17 ord (ZK] ~~fm,1G2) > 1k+17

and ordy, (H) > 2. Let h € x> %%, | [[x]] such that /(0) = /' (0) = 0'. Then the differ-

ential equation

Du(Q)+G1-Q+Gy-h(Q) =H (B.18)

admits a unique solution Q € B, C %.

Proof. Leth:=Y,>, H,x", with H, € %’;m +1-1 > 2. Define the operators . : B, — %,
and 7 : B} — B} by
S(Q):=H—-Gy- Y H,-Q",
n>2

T(Q):=Dn(Q)+G1-0, Qc %) C. 4. (B.19)

Note that .7 is a linear operator, while . is not. Now (B.18) is equivalent to the fixed-
point equation

L(Q)=7(0), Qe%B,; <% (B.20)

By (B.19), Example 1.2.6 and Example 1.2.8 it is easy to see that .7 is a %—contraction
and .7 is a 5-homothety on the space (2,),d).

Let us now prove that (%)) C T(%B,)). Let M € S (%/}). Note that, since
ordy, (H)>2,M € . (4,)) implies that ordy, (M) > 2. We prove now that M € .7 (5;}).
That is, by (B.19), that the equation

Dm(Q)+G1'Q:M

+

U7 is a formal power series in the formal variable x with coefficients in % 1
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has a solution Q € %,/. By Theorem B 4.1, the linear differential equation above admits

a unique solution in %, C £} | given by:

G M G
0 :=exp <— K%:dfm> '/&Zn -exp< eédﬁm> dt,,. (B.21)

Since ord (£ - - £—1G1) > Liyq, it follows % -exp ( / %dﬁm) does not contain a term

of order (0,;,1x—n+1). Now, by Theorem B.4.1, it follows that Q € %,, N .Z;". For the

same reasons, analyzing (B.21), and since ordy, (%) > 0, we obtain that Q € %} .
Finally, Proposition 1.2.12 guarantees a unique solution in % to (B.20). It is then

the unique solution of (B.18). |

Proof of Proposition B.5.1. Since ordy, (V) in (B.17) is not necessarily strictly bigger
than 1 (unlike in the hypotheses of Lemma B.5.2) and since / has real coefficients, we
cannot directly apply Lemma B.5.2 to prove the existence of a solution. Therefore, we
decompose adequately both sides of (B.17), and then we successively apply Lemma B.5.2
in the subspaces %}, 1 <m <k.

Since ord (zGl) > 144, ord (sz) > 141 and ord (zV) > 141, we have the unique

decompositions
V=0 4Vi+--+4V,
G =4 -4Grp+--+4Gyy,

Gy =L 4G+ +41Gy g,

where V;,G1;,G2; € g%’f C %, i=1,...,k. We proceed inductively.

Step 1. We assume, without loss of generality, that V; # 0 (otherwise, simply consider
the lowest m, 1 < m < k, such that V,, # 0). By Lemma B.5.2 and Lemma A.2.10, the

nonlinear differential equation (in the variable Q)

Di(Qk)+41 - b1 (Gr - Qk+Gog-h(Qx)) = &1+l 1£Vi,  (B.22)
O L D (k) +1 -+ i1k (G g O+ Gog - h(Qk)) = €1+ - 1 & Vi,
D (Qk) +€kG1 k- Ok +€Go i - h(Qk) = Vi

admits a unique solution Qy € %,j
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Step 2. Let Oy € ,%’,j be the solution of (B.22) as above. In the next step, consider the

nonlinear differential equation (in the variable Q)

Dy (Qr+ Ox—1) +21 - bz (b1 liGr g+ Li—1Grx—1) - (Ox + Qr1) +

+Lli by (b1l Go g+ 1Gop—1) - (Qk+ Qk—1) =

=Ll (b b Vie+ i1 Vi) (B.23)
Dy(Qk—1 421 -+ bz (O 1l G + i1 G k1 +(lk— 1 bk G+ Li—1Gai—1) - B (Ok) )- Q-1+

AU ,
+Ly -l (18 G H—1Grp—1) - Z E,Qk)chq =

i>2

=L Lo (1 Vit —1Grp— 10k — h(Qi)l—1Gap—1) . (B.24)

Equation (B.24) is obtained from (B.23) by using (B.22) to eliminate D; (Qy), and by the
Taylor expansion of 4. Using Lemma A.2.10 and dividing (B.24) by £; ---£;_,, we get

the equivalent equation:

Di—1(Qk—1) +(lx—1lx G+ Le-1G1 -1 + (L 1£xGog + i1 Gop—1) - W (Qk)) - Or—1+
h(i)(Qk)

+ (L 1lkGo g +—1Gaj—1) - Z i Q=
iz U
=L 1Vie1 —Li—1G1 j—10k — (O )lk—1G2 k1. (B.25)

Notice that the order ordy, | of the right-hand side of (B.25) is bigger than or equal to 2.

Therefore, by Lemma B.5.2, equation (B.25) admits a unique solution Q;_; € %,j_l.

Step 3. Proceeding inductively in k steps, we prove that (B.17) admits a solution Q :=
Q1+ +Q € BL |- It is the unique solution since we can decompose every solution as

we did for Q and every Q; is unique in that decomposition. |

Remark B.5.3. Note that the initial equation (B.15) with G1,G,,G3,H € %, C Z”,
k € N>1, and i € xR [[x]], can, dividing by G # 0, be brought to the form:

G G3 H

DI(Q)+G71‘Q+G71.h(Q):G71.

If ord (%) ,ord (%) yord (Gil) > (0,1y), then, by Proposition B.5.1, there exists a unique

solution Q € 95’; , of differential equation (B.15).
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B.5.2. Type I

In Remark B.5.3 we suppose that G; # 0 in differential equation (B.15). In Proposi-
tion B.5.4 below we solve equation (B.15), but with the assumption G; = 0. As in the
proof of Proposition B.5.1, we first prove an auxiliary lemma (for the inductive step of the
algorithm) and inductively solve equation (B.15), with the assumption G; =0 and m = 1.
We generalize it in Remark B.5.6 for arbitrary m such that 1 <m <k, k € N>.

This type of a nonlinear equation appears in Proposition 2.3.14 and Proposition 2.3.20
in Section 2.3, and is used to apply the fixed point theorem stated in Proposition 1.2.12 for
solving the normalization equation. The following results represent a part of the results

obtained in the preprint in preparation [28].

Proposition B.5.4. LetV € ;%’; C %, keNsy,and let Gy, Gy € %1\ {0} C £ such
that ord (Gy),ord (G2) = 041, i.e., G; and G, have non-zero constants as leading terms.
Let i € x> R [[x]] be a formal power series in the variable x, with real coefficients, such

that 2(0) = #’(0) = 0. Then there exists a unique Q € %’; | € ., such that
Gi1-0+Gy-h(Q)=V. (B.26)
The following lemma is an auxiliary lemma in the proof of Proposition B.5.4.

LemmaB.5.5. LetH € %, C %4, k€ N>y, andlet G1,G, € %, \ {0} C £ such that
ord (G1),ord (G2) = 01, i.e., G1 and G, have non-zero constants as the leading terms.
Let h € x? %%, [[x]] be a formal power series in the variable x, with coefficients in %7, ,
such that #(0) = //(0) = 0. Then there exists a unique solution Q € %, C % of the

equation
G1-Q+Gy-h(Q)=H. B.27)

Proof. Let 7, : B, — B}, such that 7(Q) = G, -Q and .7 (Q) = H — G, - h(Q), for

every Q € A,;. Equation (B.27) is equivalent to the fixed point equation .7 (Q) = .(Q).

Leth:= ZH,- -x!, where H; € %3, i > 2. Notice that:
i>2 B

ordg (7 (Q)) = ordy, (Q) +ordy, (G1) = ordy, (Q).
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So, 7 is an isometry on the space (%,,d,). By Example 1.2.8, it follows that . is a
%—contraction on the space (%, ,dy,). Itis obvious that .7 is a surjection, since G% € %;m
(due to ord (G1) = 0x1). By the fixed point theorem stated in Proposition 1.2.12, there
exists a unique Q € %}, such that 7 (Q) = . (Q). [ ]

Proof of Proposition B.5.4. We have the following decomposition:
V=Vi+-+V,
where V; € %’f C %4, for 1 <i<k. Similarly, we have the following decompositions:
G =G+ +Gig

and

Gy =Gog+- -+ Gy,

where G1;,Gy; € %’f C L, for 1 <i<k—1, and Gi,Gorx € B C £ such that
ord (G x) = ord (G2 x) = Or1. Without loss of generality assume that Vi # 0 (if V; =0,
then replace k with the biggest m such that 1 < m < k and V,, # 0). By Lemma B.5.5,

there exists a unique solution Qy € %’Ij C % of the equation:
G Ok +Gog-h(Qk) =Vi. (B.28)
Let us now consider the equation:
(Gix+Gip—1) (Ok+ Or—1) +(Gok +Goj—1) - (O + Qk—1) = Vi + Vi1

in the variable Q;_ € ,%’,:1. By the Taylor Theorem, it follows that:

jA0; .
h(Qk+ Qk—1) = h(Q) + ) .(,Q")Qi(,l. (B.29)

5

Using (B.28) and (B.29), we get the equation:
A (Qy)

il

(Grx+Gip—1+ (Gax+Gop—1) - H(Q1)) - Qk—1+ (Gox + Gag—1) - ( Y Q;.<71>

i>2

=Vie1 = Grp—1-Qk — Goj—1 - h(Qx). (B.30)

Since G| x has a non-zero constant as the leading term, G x_1,G2 -1 € %’,j_l C %, and

Goy - (Qk) € B C 4, it follows that Gy x + Gy j—1 + (Gox + Gax—1) - h'(Qx) # 0.
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By Lemma B.5.5, there exists a unique solution Q| € %’;11 C % of equation (B.30).
Proceeding inductively, there exists a solution Q:= Q1 +---+ Q0 € %’; | € % of equation

(B.26). The uniqueness follows similarly as in the proof of Proposition B.5.1. |

Remark B.5.6. Let k € N> ;. Note that the analogues of Proposition B.5.1 and Proposi-

tion B.5.4 hold in (%gm, dp), for 1 < m < k. Those analogues can be proven similarly as

the mentioned propositions, by replacing £; by £,,, and using D,, on the space (93;"1, dm)

instead of Dy on the space (%3,,d1).

B.5.3. Type IlI

In Proposition B.5.1 we solve the nonlinear differential equation (in the variable Q)
Di(Q)+Gi1-Q+Gy-h(Q)=V, Q€L C 4,

for G1,Gy,V € B C %4, k € N>y, such that ord (zG),ord (zG2),ord (zV) > 1541 and

h € x> R [[x]]. Now we generalize this result for G; := % + P, where G,P € %’;1 C %,
ord (zP) > 1441, ord(G2) > ord (Gy) and for V € %; C Z such that ord (V) —ord (G) >

(0,1%).

This type of a nonlinear equation appears in Proposition 2.3.28 in Section 2.3 and is
used to apply the fixed point theorem stated in Proposition 1.2.12 for solving the nor-
malization equation. The following results represent a part of the results obtained in the

preprint in preparation [28].

Proposition B.5.7 (Solution of a differential equation in %; - LetK,M,N,T € 95’; 1 €
“Z, k € N>, such that N # 0, ord(T) > ord(%), ord(K) > (0,1;), and ord(M) —
ord(N) > (0,1;). Let h € x> R[[x]] be a power series in the variable x, with real coeffi-
cients, such that 2(0) = #’/(0) = 0. Then there exists a unique solution Q € %’; | €%
satisfying ord (Q) > ord (N) of the differential equation:

Di(N)
N

Dl(Q)—( +K>-Q+T~h(Q):M. (B.31)

Using the fixed point theorem stated in Proposition 1.2.12 we first prove Lemma B.5.8

and Lemma B.5.9 which are auxiliary lemmas in the proof of Proposition B.5.7. We
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prove Proposition B.5.7 inductively, and Lemmas B.5.8 and B.5.9 are used for proving

the inductive step.

Lemma B.5.8 (Solution of a differential equation in %,}). Let M,N,P,T € &, C %,
N #0, such that ord(P) > (0,131 1), for 1 <m <k, k€ N>y, and let h € x* B3, [x]] be
a power series in the variable x, with coefficients in %, C %, such that h(0) = #'(0) = 0.

Suppose that
ord (M) —ord (N) > (0, 1x—p+1)-

Then there exists a unique solution Q € &, C % satisfying ord (Q) > ord (N) of the

differential equation:

N +P> Q4T -h(Q)=M. (B.32)

Proof. Let Ty, S : B, — B, be operators defined by:

(@) =0n(@)~ (P2 1 p) 0

Im(Q):=M—T-h(Q), Q€ RBC.%4. (B.33)

Now, the equation 7, (Q) = .%,,(Q) becomes equation (B.32), for Q € B,} C %4.
We prove that the operators .7, and .#}, satisfy the assumptions of Proposition 1.2.12.
For arbitrary Q1,0 € B,) C %, note that:

ordy, (Fn(Q1) — Fm(Q2))
> ordg, (Q1 — Q2) +ordy, (T) + min {Ol‘dgm (Ql),ordgm(Qz)}
> ordy, (Q1 — Q2) +2.

Therefore, ., is a }-contraction on the space (%}, d).
Suppose that .7,,(Q) =0, i.e., D, (Q) — <D"’T(N) —|—P> -Q =0, for some Q € B, C 4.

Solving the linear differential equation, we get:

Q:C-exp<10g(N)+/P62;ﬂ>

:C-N-exp(/Pil;m), CeR.
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Since ord(P) > (0,,, 14—+ 1), using the substitution z := £,,, by Lemma B.2.6, it follows

that
de
PT,%T € A3,
This implies that
de,,
exp ( / PZT) —1+hodt (B.34)

We conclude that Q € ker(.7;,) implies that ord(Q) = ord(N). To avoid terms in the kernel

of 7, we restrict ourselves to the space
B = {ves, C%:ord(V)>ord(N)}.

Then, for every Q1,Q; € 537, Q1 # Q», it follows that Q1 — Q5 ¢ ker(.7,). Now, by (B.33),
it follows that

ordg, (Im(Q1 — Q2)) = ordy, (Q1 — 02) + 1.

By the linearity of the operator .7, it follows that the restriction .7},

ol
7 1s a 5-homothety
on the space 4, with respect to the metric d,,.

It is left to prove that %, (#) C Z,,(#). By definition (B.33) of .#},, note that .#,,,(A)

is contained in the space
B :={K e By C %L ord(K) > ord(N) + (0, 1x—pi1) } -
We prove that % C ﬁm(fjgé’/) Let K € % be arbitrary. We solve in % the equation

Im(Q) =K, ie.

Dy (N)
N

Dm(Q)—( +P)-Q:K.

Solving the linear differential equation above, we get:

N X a— S—_rS
_ (N.exp/pdénm> . (C+/(M>‘Z’1’“), CeR. (B.35)
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Since Q € % we choose the solution with C = 0. N ow, from (B.34) and (B.35) we get:

Q=(Lt(N)+h.o.t.)/(Lt(N)Km)Zf:g

Since K € %}, ord(K) > ord(N) + (0,,, 14,1 1), it follows that

(B.36)

K
d(—> > (0, 14— ,
NL(V) +hot. (O, Lin1)
and, by Lemma B.2.6,

K de,, .
K Ndén .
/(Lt(N)+h.o.t.> 2 € B, C %

By (B.36), ord(Q) > ord(N), i.e., the solution Q given by (B.36) belongs to 7
Thus, we proved that .7, (%) C % C F,(B).
Finally, by Proposition 1.2.12 applied to the operators .7,| Z: B — @;m and .7, | 7'

B — B3,,» there exists a unique Q € 2 such that Im(0) = Sm(0). [

Lemma B.5.9 (Solution of a differential equation in %,;). LetN € %%, . \{0} C %,
and M,P,T € B, C % such that ord (P) > (0, 14_n+1) and ordy, (M) >2,for 1 <m <
k, k € N>i. Let h € x? 23, [x]] be a power series in the variable x, with coefficients in
B, C L4 such that h(0) = #'(0) = 0. There exists a unique solution Q € %,, C % of
the differential equation:

Di(N)

N

Proof. Similarly as the proof of Lemma B.5.8. |

()~ ( +P)-Q+T h(Q) =M.

Proof of Proposition B.5.7. We first transform equation (B.31) to an equivalent simpler

differential equation. Let
N=N+---+ Ny, (B.37)

where N; € %;’ C %4, 1 <i<k. Letl <m<kbe the biggest m such that N, # 0. Note
that N =N,,+---+ N; and
Di(N) Di(N)

_ (iD;\g )(;)(—1)"(]\%;1 + +11\21>>
D{(N,) "=IDi(N;) i (N N
:( 1Nm +,:Zi }Vm >.<1+;(—1) ( Nm1+ +N;)> (B.38)

233



Various differential equations in £ and %,, Various nonlinear differential equations in %,

Note that:
D (N;
ord( }\(Im’)>>(o,1k),
N;
ord Ni 2(0i,1,vi+1,...,vk), (B39)
m
where (viy1,...,v) € ZK, for 1 <i<m—1. Since, in addition, ord(DlA(,Z”’)> = (0,1,,04_ 1),
we get that:
D1(Nn) (Nim—1 Ni\i
ord . —1’( +~-+—) > (0,1,). (B.40)
(Nm;()zvm o)) >0

By (B.38), (B.39) and (B.40), we get that:

Di(N) Di(Np)
d( _ ) 0,1). B.41
Y N, )~ O (B.4D)
Put P:= K+ w — %{Z’”). By (B.41) and since ord (K) > (0,1;) (by assumption), it

follows that P € %’;1 C % and ord (P) > (0,1). Note that it is also possible that P = 0.

In this notation, equation (B.31) is equivalent to the equation:

Dl (Ivm)
N

Dl(Q)—< +P> Q+T-h(Q) =M. (B.42)

Proof of the existence of a solution: Now we prove the existence of a solution Q € %;1 -
% of equation (B.42). Moreover, we prove that Q satisfies ord (Q) > ord (N).

Note that Q := 0 is a solution of (B.42) if M = 0. Moreover, Q is the unique solution
that satisfies ord (Q) > ord (N).

Suppose that M # 0. Since ord(M) — ord(N) > (0,1;) and N € %’;1 (therefore,

ord (N) > 04 1), we have the following decomposition of M:
M=£y- b My+€- Ly 1My 1+ +€ M, (B.43)

where M; € %’f C%, 1<i<m—1,and M, € %’;m C %, ord(¢,,M,,) > ord(N,,) +

(Oma 1k—m+1 )
By (B.41), and since ord(K) > (0,1;) by assumption, it follows that P € <, and
ord(P) > (0,1;). Now, decompose:

P=t,--l,Py+L- Ly \Py1+--+L1P, (B.44)
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where € B C 4, 1<i<m—1,and P, € $5,, C L. ord(Py) > (Opy1, ). If

P =0, we simply put P, :=0, foreach 1 <i <m.
By (B.38), it follows that ord(%) = ord(%). Since

ord(T) > ord<D1]EIN)) = ord(Dllgvm)) = (0,1, 0 ),

we have the following decomposition of 7'
Tzel"'ngm‘Fel"'Zm—lj;n—l‘i‘"""elTh (B.45)

where T; € ;" C %, 1 <i<m—1,and T, € B, C L, ord(Ty) > Oy If T =0, we
simply put 7; :=0, foreach 1 <i <m.
The proof of the existence of a solution of equation (B.42) is inductive. In the i-th step

(1 <i < m), instead of equation (B.42), we consider the equation:

Dl(Qm"’""*‘Qmﬂ#])

D1 (Ny,
- (# +£1 " 'ngm+ tee +£1 o 'meiJrlefiJrl) : (Qm+ T +Qm7i+l)

+ (Zl o 'eme+ o 'Zl . 'enz—i+17;n—i+l) 'h(Qm+ c +Qm—i+l)

:el"'eian+"'+el"'em—i+1Mm—i+lv (B46)

with appropriate partial sums from decompositions (B.43), (B.44), and (B.45) instead
of the whole M,P, T, where Q; is an unknown variable and Q,,,...,Q; 1 are obtained
in the previous steps. For the proof of the existence a solution Q,, € e@gm C % in
the first step, we use Lemma B.5.8, and for the proof of the existence of a solution
Om—itr1 € 93;1'_,-“ C % in steps 2 < i < m, we use Lemma B.5.9. Finally, we put
Q:=0n++01(Qe XL, C L.

Step 1. Consider the equation:

D (N,

Di(Q) — (1() e -eum> Q4+l lyTy h(Q) =Ly - -buM,y.  (B.AT)
where Q € %’;m C %. By Lemma A.2.10, it follows that %]’Zm) =4 -Zm_l%gm) and
Di(Q)=4;---£,_1D,(Q). Dividing by £; - - -£,,_1, we get the equivalent equation:

Dy (N
Dy(Q) — ( ]\(] ) +eum) Q+£, T - h(Q) = LM, (B.48)
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Now, just for the purpose of applying Lemma B.5.8, put N := N,,, P :=£€,,P,,, T := £, T,
and M := £,M,,. Since N € B, C %4, ord(P) > (0, 14_ns1), T € B C %, and
ord (M) > ord (N) + (0, 14— p,1), by Lemma B.5.8 it follows that there exists a unique
solution Q,, € ,%’gm C % of equation (B.48), i.e., equation (B.47), satisfying ord(Q,,) >
ord(Ny,).

Step 2. Let Q,, € @;m C %, be the solution of equation (B.47) obtained in Step 1. Now,
consider the equation (in the variable Q):

Di(Qn+0) — (2

m

‘f’zl o 'eum +e1 "'emfle71> : (Qm+Q)
+ (el o emj;n +el o 'emflefl) h(Qm+Q) :el o emMm +el o 'emflefl’ (B~49)
where Q € # | C 4. By the Taylor Theorem, it follows that:

Qm)

h(Qm+ Q) = h(Qm) + 1 (Om) - Q+Z 0. (B.50)

i>2
Since Q,, is the solution of equation (B.47), and by Lemma A.2.10, after dividing by
4y---£,_» equation (B.49) becomes:

Dy—1(Q) — (Dm_]\l]’iNm) 1€ P+ 1P — 1€ T + L1 Tu1) 'h/(Qm)) -0
+ 1T+ Ly 1T 1) (l;h(l)s,Qm)Q') =Lyt (M1 +Pu1-On—Tu1-h(Qm)).
i (B.51)
Now, for the purpose of applying Lemma B.5.9, put:
N := Ny,
P =L rlnnPoy + o1 Pt — (b1 T+ 1 Tou1) - 1 (Qi),
T =4, 14,1 +€, 1T, 1,
M:=£,_ 1( -1+ Pu1-Om—Tu—1-h(QOm)),
= Z Q’" X' (B.52)

i>2
Note that h € x* %85, [[x]]. Since N € B, C %%, C % and ord(' (Qn)) > ord(Qyn) >
ord(N,,), it follows that P € 35’;1'_1 C % with

ord(P) > (0y—1, Lx_mi2)-
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Note, from (B.52), that T € 93;;_1 C % and M € 95’;1'_1 C %, ordg, (M) >2. By
Lemma B.5.9 (for m — 1), it follows that there exists a unique solution Q := Q,,—| €

%nt_l C % of equation (B.51).

Inductively, we find Q,,—» € %;727 ...,0 € %’T Put Q :=Q,+---+0Q;. By con-
struction, it follows that Q € %;1 C % is a solution of equation (B.31). It satisfies the
property ord(Q) = ord(Q,,) > ord(N,,) = ord(N).

Proof of the uniqueness of the solution: Suppose that Q1,0» € ,%’JZF | € Z are distinct
solutions of equation (B.31) satisfying ord (Q;),ord (Q) > ord (N). Therefore, Q; and
0 are solutions of equation (B.42) satisfying ord (Q;) > ord (N,,), for i = 1,2, where N,
is given in the decomposition (B.37). By putting QO and Q» respectively in (B.42), then

subtracting the two equations and multiplying by N,,, we get:

Ny -D1(Q1 —Q02) — (01— Q2) - Di(Nu) =Ny - P-(Q1 — Q2) =Ny - T - ((Q1) — h(Q2))-
(B.53)

Since ord (Q — Q2) > min{ord (Q;),ord (Q2)} > ord (Ny,), by solving the differential
equation, it is easy to see that Lt(N,,) - D1 (Lt(Q1 — Q2)) —Lt(Q1 — Q2) - D1 (Lt(N,,)) # 0.
Using this fact and analyzing orders of terms in Ny, - D1(Q1 — Q2) — (Q1 — Q2) - D1 (Ny),

it can be proven that:

Lt(Ny - D1(Q1 — Q2) — (Q1 — 02) - D1(Np))
= Lt(Lt(N) - D1 (LU(Q1 — 02)) — LU(Q1 — ©) - D1 (Lt(N)) ). (B.54)

By (B.54), it follows that

ord (Ny - D1(Q1 — 02) — (Q1 — 02) - D1 (Ny)) < ord(Q1 — Q2) +ord (Ny) + (0,1%).
(B.55)

Since ord (P) > (0, 1), it follows that
ord (N - P+ (Q1 — 02)) > ord (Q1 — Q2) +ord (Ny) + (0,1). (B.56)
By (B.55) and (B.56), it follows that

ord (Nyy - D1(Q1 — Q2) — (Q1 — @2) - D1(Nyy)) <ord (N, - P-(Q1— Q). (B.57)
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On the other hand, since N,, € %} C %, ord (T) > ord (DljsN)) = ord (%Z’")), it follows

that ord (N,, - T) > ord (D1 (Ny,)). Since ord (Q;) > ord (N,), i = 1,2, it follows that:
ord (h(Q1) —h(Q2)) > ord (Q; — Q2) + min{ord (Q;),ord (Q2)} > ord (Q; — Q2) + ord (Ny,).
Now, we get:

ord (N - T - (h(Q1) —h(Q2))) > ord (Q1 — Q2) 4 ord (N,,) + ord (D1 (Ny))
> ord (Q1 — Q2) + ord (Ny,) + (0, 1) (B.58)

Now, by (B.55) and (B.58), we get:
ord (N - D1(Q1 — Q2) — (Q1 — 02) - D1 (Nw)) < ord (Ny- T - (h(Q1) —h(Q2))). (B.59)

By (B.57) and (B.59), we proved that the order of the left-hand side of equation (B.53) is
strictly less than the order of the right-hand side of equation (B.53), which is a contradic-
tion. Therefore, the solution Q of equation (B.31), satisfying ord (Q) > ord (N), obtained

in the first part of the proof, is unique. |
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CONCLUSION

The purpose of this thesis is twofold. Firstly, in Chapter 1 we obtain the formal normal
forms and normalizations for logarithmic transseries of parabolic, hyperbolic and strongly
hyperbolic type. These results represent a generalization of the results obtained in [21]
only for logarithmic transseries that do not contain iterated logarithms.

In [21] the normal forms are obtained using a transfinite algorithm: normalizations
are transfinite compositions of elementary parabolic changes of variables used for term-
by-term eliminations. On the other hand, our method is based on the fixed point theo-
rems. Therefore, the normalizations are obtained as limits of the corresponding Picard
sequences in appropriate formal topologies. This method allows us to have better con-
trol of the support of the normalization at the limit ordinal steps. It can be described as
block-wise instead of term-wise.

In the second part of the thesis, we use the formal results from Chapter 2 to obtain the
analytic normal forms and normalizations for hyperbolic and strongly hyperbolic complex
Dulac germs defined on standard quadratic domains ( [12]). In particular, we prove that
the normalization of a (strongly) hyperbolic complex Dulac germ is again a complex Du-
lac germ of parabolic type. These germs are, by quasi-analyticity ( [12]), uniquely deter-
mined by their asymptotic expansions which are logarithmic series. Therefore, the formal
normalization uniquely determines the analytic normalization. In the intermediate step
of the proof of analytic normalization of (strongly) hyperbolic complex Dulac germs we
obtain the normalization results for a more general class of (strongly) hyperbolic analytic
germs with a logarithmic asymptotic behavior (not necessarily having full logarithmic
asymptotic expansion) on their invariant complex domains. These analytic normalization
results can be seen as generalizations of Koenigs Theorem (see e.g. [4], [14], [24]) and

Bottcher Theorem (see e.g. [4], [24]), and the result of Dewsnap and Fischer ( [5, Theorem
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2.2]).

For our future work, we plan to use our formal results for normalizations of the
first return maps of semi-hyperbolic polycycles of analytic planar vector fields (see e.g.
[11]). Although treated in [11], the problem of non-accumulation of limit cycles in semi-
hyperbolic case is not fully understood. The first return maps are more complicated than
Dulac germs, since, in general, they have more complicated transasymptotic expansions
(see e.g. [3], [11]). Moreover, the complex domains of their analytic extensions are not

clear.
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