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No moon is there, no voice, no sound
of beating heart; a sigh profound
once in each age as each age dies

alone is heard. Far, far it lies...

-J. R. R. Tolkien, The Lay of Leithian, Epilogue
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Summary

The field of bioinformatics is a fast growing interdisciplinary field with a strong contribution
from mathematics and computer science. This thesis will deal with mathematical problems
and algorithmic challenges from that field. Its first focus will be the comparison of hierarchic
structures, mainly phylogenetic trees, which is used to explain various biological processes such
as the evolution of the species. We will study mathematical models and algorithmic techniques
which quantify the distance between such structures as means of determining the similarities
or dissimilarities between them. The focus will be given to formulating the problem based
on matching in the context of integer linear programming. Our goal will be to find a novel
solution which respects the ancestry relations defined by those hierarchical structures and is
often overlooked in the current research. Our main result will be given in a form of a software
tool - Trajan, which will be tested on both the real world and simulated data. The second focus
of the thesis will come from the problem of sequencing the RNA molecule. It is a combinatorial
process of reconstruction of the RNA molecule from short nucleotide sequences which is used
to analyze the transcriptome of a biological sample. Many recent studies consider a problem
of quantification and classification of unannotated splicing events which often occur due to
the mutations caused by abnormal state of the organism, e.g. cancer. We will present another
software tool, called fortuna, which brings together high accuracy and fast running times to the

analysis of the alternative splicing events unlike any of the well established competitor tools.

Keywords: phylogenetic trees, Trajan, distance, integer linear programming, branch-and-cut

method, clique constraints, RNA-Seq, fortuna, alternative splicing, alignment, quantification
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Prosireni sazetak

Bioinformatika je interdisciplinarno podrucje koje spaja matematiku, raCunalnu znanost,
biologiju, medicinu i inZenjerske discipline s ciljem razvijanja matematickih modela i algori-
tamskih tehnika koje pruzaju uvid u mnoge bioloske procese kao $to su transkripcija i sinteza
proteina unutar stanice ili evolucija, ali i genetske osnove bolesti i adaptacija, razlike i interakcija
medu jedinkama i populacijama i sl. Pocelo se razvijati ranih 50-tih godina proslog stoljeca
uvodenjem racunala u obradu podataka dobivenih sekvenciranjem proteina [28] koje su po prvi
puta prikupili [88][89]. U ovoj disertaciji, bavimo se problematikom iz tog podrucja.

Nas prvi fokus je usporedba hijerarhijskih struktura, najviSe filogenetskih stabala koja or-
ganiziraju bioloske vrste u stablastu strukturu baziranu na evoluciji. Njihovi ¢vorovi mogu
predstavljati i druge podatke kao $to su podklonovi tumora nastali prilikom evolocije tumora
[54]. Takoder, protein-protein interakcijske (PPI) mreze implicitno sadrZe hijerarhijske strukture
koje je moguce rekonstruirati koristeéi se hijerarhijskim metodama klasteriranja [37]. Usporedi-
vanje filogenetskih stabala dobivenih razli¢itim metodama rekonstrukcije moze kvantificirati
njihove sli¢nosti i pruziti uvid u simbiozu parazita i domacina [51]. Najpopularnija udaljenost
medu stablima je Robinson-Fouldsova udaljenost [85] u pozadini koje leZi sparivanje vrhova
dva stabla Cija su podstabla topoloski identi¢na. Moguce ju je efikasno izracunati u polinomnom
vremenu, no ona pruza ogranicen uvid “niske razlu€ivosti” u razlike izmedu dva stabla. Nadalje,
cesto nije u mogucénosti identificirati topoloski slicne strukture te je izrazito osjetljiva na vrlo
male promjene u ulaznim podacima [17][71]. Nase istraZivanje direktno se nadovezuje na [7] u
kojem je predstavljena generalizacija Robinson-Fouldsove udaljenosti Ciji je glavni cilj otklan-
janje njezinih loSih svojstava putem izracuna bijektivnog preslikavanja vrhova iz jednog stabla u
drugo koje postuje roditeljske odnose. Postoje i druge udaljenosti definirane medu stablima od
kojih neke [24][71][63][11][12] imaju loSa svojstva ili su u praksi teSke za izracunati [2]. Unatoc
tome S$to je u [7] dokazano da je izraCun generalizirane Robinson-Fouldsove udaljenosti NP-
teZak problem, u [45] je pokazano kako postoji efikasno rjeSenje za njezin izracun koje se bazira
na paradigmi cjelobrojnog linearnog programiranja. Na$ glavni znanstveni doprinos je definicija
uvjeta koji uvelike smanjuju poliedar u kojem rjeSavac Trajan metodom grananja-i-rezanja trazi
optimalno rjeSenje. Ideja na kojoj se temelje nasi uvjeti je pronalaZenje skupa bridova izmedu
dva stabla koji maksimalno narusavaju roditeljske odnose metodom dinamickog programiranja
¢iju dinamicku tablicu efikasno popunjavamo prolaZzenjem vrhovima stabala. Smatramo da dva

brida (x1,y1), (x2,y2) ne narusavaju roditeljske odnose ukoliko vrijedi da je x; predak od x; u
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SaZetak

prvom stablu ako i samo ako je y; predak od y; u drugom stablu. Trajan smo testirali na simuli-
ranim stablima iz uniformnog i Yuleovog modela [9], te na stvarnim filogenetskim stablima

kojima je predoCena evolucija zelenih algi [69] i biljka cvijetnjaca [92].

U drugom dijelu ove disertacije bavimo se problemima koji dolaze iz podrucja sekven-
ciranja molekule RNA (RNA-Seq). To je postupak Citanja strukture molekule RNA u ob-
liku kratkih lanaca nukleotida sastavljenih od molekula adenina, citozina, gvanina i timina
u svrhu odredivanja svojstava stanicne molekule DNA koja sadrzi genetske informacije in-
strumentalne za proces nasljedivanja. Tijekom posljednjih dvadesetak godina, tehnologija za
sekvenciranje molekule RNA se razvijala iznimno brzo. Metode koje sekvenciraju Citav ljud-
ski genom unutar jednoga dana Cesta su pojava. Podatke dobivene sekvenciranjem (u obliku
kratkih lanaca nukleotida) potrebno je poravnati s referentnim genomom, tj. odrediti mjesto u
genomu s kojega je procCitan podatak, a za Sto se koriste specijalizirani racunalni programi kao
Sto su [32][66][67][14][78][94][96][39][53]. Kvantifikacija koli¢ine podataka ovisno o njihovoj
lokaciji u genomu je vazan proces koji nam daje uvid u stanje organizma Ciji smo genetski mater-
ijal sekvencirali. Za istraZivanja bolesti poput raka [48] ili autizma [38] od iznimne su vaznosti
oni lanci nukleotida koji su sekvencirani s mutiranih podrucja. Identifikacija i kvantifikacija tih
podataka najcesce se vrsi nakon poravnjavanja na referentni genom pomocu specijaliziranog
softvera kao §to je [62], Cije je izvrSavanje dugotrajno u praksi, ili pomocu heuristickih metoda
niske preciznosti [96]. Nas doprinos u ovome podrucju je efikasan i precizan program: fortuna.
On pridruZuje kratke lance nukleotida klasama ekvivalencije konstruirane na temelju proSirene
reference koja omogucuje identifikaciju i klasifikaciju do sada nepoznatih izrezivanja (alterna-
tivnih nacina prepisivanja molekule DNA koji prethode sintezi proteina). Proces koji fortuna
izvrSava moZe se podijeliti u tri koraka: gradnja indeksa, poravnavanje i naknadna obrada. U pr-
vom koraku fortuna nadopunjuje referentni genom koristeci jedan od tri dobro definirana skupa
mogucih izrezivanja. Potom slijedi proces poravnavanja podataka dobivenih sekvenciranjem na
prosireni referentni genom. U koraku naknadne obrade vr$i se najbitniji proces dodjeljivanja
podataka klasama ekvivalencije. Rezultate na simuliranim i stvarnim podacima usporedili smo

s onima dobivenim pomocu nekoliko konkurentnih programa.

Kljucne rijeci: filogenetska stabla, Trajan, udaljenost, cjelobrojno linearno programiranje,
metoda grananja i rezanja, RNA sekvenciranje, fortuna, alternativno izrezivanje, poravnavanje,

kvantifikacija
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Throughout the thesis, we use the following notation:

AV, Y Logical conjunction, disjunction and exclusive disjunction.

(s),si Sequences and their indexed elements.

Ry As set of non-negative real numbers.

capital latin letters A, B, ... Matrices and data structures.

a,...,b] A segment of numbers ranging from a to b, or a path from vertex a to

the vertex b in a graph.

Ig Logarithm with basis 2.
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CHAPTER 1

Introduction

Bioinformatics, often referred to as computational molecular biology, is an interdisciplinary
field bridging mathematics, computer science, biology, medicine and engineering with a com-
mon goal of developing mathematical models and algorithmic techniques which give an insight
into various biological processes such as transcription and protein synthesis, evolution, genetic
basis of disease and adaptation or the differences between organisms and populations. It begun
its development in the late fifties of the last century by introducing computers into processing of

the protein sequencing data [28] first acquired by [88][89].

Deoxyribonucleic acid (DNA) molecule was not believed to be the carrier of encoded genetic
information before the result [56] published in 1952. At that time, not much was known about
the structure of DNA and proteins were considered to be responsible for hereditary traits. A
first gigantic step towards the understanding of DNA was taken in 1953 when the Nobel prize
awarded work of Watson and Crick was published [101]. Though, it wasn’t until 1968 that the
genetic code was deciphered [102]. This was the spark that ignited the field of DNA sequencing,
which was first achieved in 1977 [87] [74], albeit on a modest level.

Rapid advancement in both fields of computer science and molecular biology has made
sequencing available to an increasing number of scientists. With the dawn of next-generation se-
quencing [41] at the beginning of the 21st century, sequencing data has become broadly available
at a cost which was rapidly decreasing by orders of magnitude. Next-generation sequencing tech-
niques sequence complementary DNA synthesized from a transcribed ribonucleic acid (RNA)
molecule, instead of directly sequencing DNA. This procedure, often referred to as RNA-Seq,
yields more information than the traditional DNA sequencing. Suddenly, the amount of data at
our disposal overcame our ability to process it, thus shifting the bottleneck to the area of com-
puter science. Through the course of the last decade, we have witnessed numerous algorithmic
solutions which aim to decrease the time required for processing of the biological samples such

as [30][14], some of which are the main topic of this thesis.

The merits of using computers in processing biological data have led to their adoption in
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many biological disciplines, one of which was computational phylogenetics [46]. A problem
of comparing evolutionary paths, by computing the distance between them, was formulated as
a graph theory problem [85] and, as such, its algorithmic solution has been implemented on a
computer. Since then, better metrics with more favorable properties have been introduced, e.g.
[7], and the notion of computing a distance between various hierarchical structures has been

applied to a multitude of problems stemming from the field of biology such as [82][3].

A more detailed overview of the history of the field of bioinformatics can be be found in [49].

1.1 Motivation and high level problem formulation

Edit distance [100] was introduced as a means of quantification of the dissimilarities be-
tween two sequences of characters (string) over some alphabet. The more operations it takes to
transform one string, the greater the distance between them. Those operations allow us to insert
an element, to remove it or to substitute it with another. Sequencing information of a biological
sample, especially that procured by the means of the next-generation sequencing, often comes
in a form of a large amount of relatively short strings which are being compared against a set
of reference strings in order to obtain information on their origin and properties. That is, each
sampled string is mapped to a substring of the reference to which its distance is the least. The
configuration of the sampled strings and their distribution over the reference carry information
which is of great importance for researchers such as those involved in cancer [48] or autism
research [38]. A high rate of mutation of the genetic material, often associated to the abnormal
conditions related to various diseases, makes determining the origin of the short strings using
a reference a challenging computational task. Many software tools which process sequencing
information exist, e.g. [14][30][53][96]1[94][78]1[67]1[66][39]. Their most common downside
is that they are unable to identify novel genomic features sometimes caused by the mutations
[14]1[30][53][94][781[67]1[66]. Some of those [30][67][66] take a costly postprocessing step
done by tools such as [62] in order to identify novel features, while others, such as [96], suffer
from a high degree of inaccuracy due to their heuristic approach. The aim of this thesis is to
provide an algorithmic solution to this problem and to present an implementation of a tool which
is able to identify the aforementioned novel features in a shorter amount of time than any of the

aforementioned tools.

A generalization of the edit distance problem to the hierarchical tree structures has been
given in [97][105]. Slightly adapted edit operations have been supplemented with a constraint
which ensures the consistency with the ancestry relations implied by the tree structure. Thus,
a distance which honors the tree topology has been defined. The impracticality of its compu-

tation, due to its time complexity, has provoked the definition of more distance functions such
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as [85][24][71][63][11][12][2] all of which exhibit certain negative traits, some of which we
will cover in the following chapter. In [7], a problem formulation, equivalent to that of tree edit
distance but using integer linear programming, has been given. It was an important theoretical
result, but still impractical to use for anything other than very small problem instances. The
second goal in this thesis is to formulate a novel solution to the problem of tree edit distance and
to present its implementation which can be used to solve medium-to-large problem instances in

a reasonable amount of time.

1.2 Structure of the thesis

This thesis will be structured as follows. The next chapter, titled Basic definitions, will
give general notions of the concepts which are necessary for the understanding of the problems
introduced in this thesis. Specifically, we will briefly clarify the matter concerning asymptotic
analysis, basic data structures, hashing, graph theory, linear and integer programming, dynamic
programming, greedy algorithms and genome and phylogeny related terms stemming from the

field of biology.

In the chapter Trajan, we introduce an algorithm which solves tree alignment problem and
its implementation in a form of a software tool - Trajan. A brief section with additional defini-
tions is given first in order to introduce tree alignment problem in more detail. Afterwards, a
literature review section is given which gives an overview of the research area and the research
gaps which we enclose. Afterwards, a notion of arboreal matching is introduced and an integer
linear programming formulation which is used to solve it is given. The experiments section in
which we test various theoretical and empirical aspects of Trajan is preceded by a section in

which Trajan’s algorithms and implementation details are listed and analyzed.

The next chapter deals with fortuna, a software tool used to classify and quantify various
genomic features of a living organism. As was the case with Trajan, we give some additional
definitions and a literature review prior to explaining the methodology used by fortuna. The
requirements imposed by the downstream analysis procedures and the limitations of competitor
tools have played a large role in fortuna’s development. In the method section, we carefully
explain the concepts behind fortuna with a large focus on meeting the aforementioned require-
ments. We present the concepts from the method section in the form of algorithms and give some
implementation specific details in the implementation section. The final section of this chapter,
experiments, presents the series of tests we have performed in order to asses the accuracy and

speed of our software.

Finally, we summarize our results and contribution in the conclusion section.



CHAPTER 2

Basic definitions

In this chapter, we give definitions which are required for the understanding of the topics
covered by this thesis.

Let S be a set, D C N and s : D — S a function which assigns an element of S to each
element in D. Then, such s is called a sequence and D is called an index set. An element of
S which is mapped to by s(i),i € D is denoted as s; and is called an element of the sequence
(s) with an index i. In this thesis, we will mostly deal with the sequences which are indexed
by a finite set {1,...,n}, n € N. The length of a finite sequence s will be denoted as |(s)|. In
most programming languages, such finite sequences are often represented by a sequence of

contiguous memory locations called arrays. Next, we give a definition of a distance function.

Definition 1. Let Sbe asetand f: S xS — R, anon-negative function. If f satisfies
e VxeS, flx,x)=0,
* VxyeS, flxy) = fx),
© VX, 3,2 €8, f(x,2) < fx,y) + F(,2),

then we call f a distance function (metrics).

Let a € R” be a non-zero vector and ¢ € R a scalar. Set {x ER:alx= c} is called a
hyperplane, while the set {x ER":alx> c} is called a halfspace. A polyhedron in R” is
an intersection of a finite number of halfspaces defined as {x € R" : Ax > b} where A € R**"
is a matrix and b € R™ is a vector. Rows of A correspond to vectors a in the definition of a
hyperplane, while the components of b correspond to the scalars c. Finally, we say that a set S
is bounded in R” if there exists a point z € R" and a constant k > 0 such that for every x € S it
holds that |x —z| < k.

A very important notion for us will be that of a convex set. We say that § C R”" is a convex
set if for any x,y € S and any A € [0,1] set S contains Ax+ (1 —Ay). Let xj,...,x, € R" be
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vectors and Ay, ..., A € R, be scalars such that their sum is equal to 1. Then the vector

k
X = Z 7L,~xi
i=1

is a convex combinations of the vectors x; with scalars A;. A set of all convex combinations of
vectors x; is called a convex hull. The following theorem gives some basic results connecting

convexity and polyhedra, whose proof can be found in [8].
Theorem 2.1 The following holds.

(a) Let (S) be a sequence of convex sets in R". Then the intersection MNg¢ () is also a convex

set.
(b) Every polyhedron is a convex set.

(c) Let S C R” be a convex set and (x) a finite sequence of its elements. Then any convex

combination of elements in (x) is also in S.
(d) Let (x) be a finite sequence of vectors in R”. Then the convex hull of (x) is a convex set.

Knowing that a polyhedron P is a convex set, we may define its extreme points as vec-
tors x € P such that there do not exist vectors y,z € P, y # z and a scalar A € [0, 1] such that
x=Ay+(1-2)z

A sequence of vectors xp,...,x; € R” is said to be linearly independent if for all scalars
A1, ..., A the expression Y ; A;x; = 0 implies that all A; = 0, that is, no vector x; can be repre-

sented as a linear combination of the rest of the vectors x;.

Similarly to a convex set, a function f: D C R" — R is a convex function if

Vx,y e D,YA €[0,1], f(Ax+(1—=2A)y) <Af(x)+(1=A1)f(y).

2.1 Asymptotic analysis

Two algorithms solving the same problem may not run for the same amount of time on a
computer. Consider an example in which our goal is to calculate the n-th number of the Fibonacci
sequence given recursively as F1 = F, = 1 and F,, = F,_| + F,—. First solution would be to
directly implement the recursive formula. In order to compute F;, for some fairly large n (e.g.
n = 10000), this procedure takes a long time even on the modern processors. On the other,
hand a procedure which computes F;, using the following procedure, although seemingly more

complicated, terminates in no time.
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-

In order to determine how does the input size (n in our example) determine the running time

Fn+1 Fn
Fn anl

of an algorithm and to compare different algorithms, we will be considering their asymptotic
efficiency. Running time will be presented as a function 7' (n) which considers the worst case

scenario for the algorithm.

In order to illustrate the worst case scenario, lets consider a problem of searching an integer
a in a sequence s of random integers such that |(s)| = n. Since (s) contains random integers, we
have to traverse through its elements starting from the first index and compare them to a. In the
best case scenario, first element we inspect will be equal to a and our search will end. In the
worst case scenario where a ¢ (s), we will have to inspect all n elements of (s) to conclude that
a is not present in it. Therefore, for an input size of n, we would say that the running time of

that algorithm is 7'(n) = n in the worst case.

In many cases, for a given algorithm, we will not be able or will not need to determine its
exact running time. It is more common to consider input sizes large enough such that the running
time is dominated by its asymptotically largest terms. For example, the dominant term of the
expression n2 4 10’1+ 10° is n2. If n > 104, it is larger than other terms by, at least, an order of

magnitude.

If we wish to describe the running time of an algorithm with regards to the input size but
regardless of its properties, it is common to use the ®-notation. Let g(n) be a function. We

define a set of functions ®(g(n)) as
{f(n) : 3e1,¢2,n9>0s.1.0<c18(n) < f(n) <crg(n), Vn > np}.

If a function f(n) belongs to the set ®(g(n)), as a slight abuse of the notation, we write
f(n) =0(g(n)). Forexample, let f(n) = n?+2n+2. There exist constants c; = 1,cy = 5,19 = 1
such that

0< 1-n2§f(71)§5-n2

for all n > 1, so we say that f(n) = ®(n?). By using the ®-notation, we have asymptotically
bounded a function both from above and below. In many cases it is useful to provide only the

lower or upper bound using, respectively, Q- or O-notation.

Similar to the ®-notation, we say that f(n) = Q(g(n)) if 3c,np > 0 such that

0<c-g(n) < f(n), vn>ng
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and f(n) = O(g(n)) if Je,np > 0 such that
0<f(n) <c-g(n), Vn > ny.

Usually, using the Q-notation we express our running time in the terms of the best case scenario,
while O-notation is used to express the worst case, even thought both sets contain a broader

class of functions.

Matrix power operation in our Fibonacci sequence example can be done in O(1g n) time
because the multiplication of a constant sized matrix is considered to be O(1) (an atomary op-
eration). Thus, the total complexity of the matrix power Fibonacci algorithm would be O(lIg n).
On the other hand, a classic recursive implementation has a running time of O(2") which makes

it asymptotically inferior.

Asymptotic analysis can be generalized to functions of multiple integer (or real variables) by
considering the asymptotically fastest growing terms for each of them. More about the asymp-

totic analysis of the time complexity and its intricacies can be found in [23].

There are a few important classes of algorithms based on their running time. For example,
polynomial algorithms are those that run in O(n*) time, where k is a positive constant, and are
considered faster than the algorithms with an exponential running time O(2"). A class of algo-
rithms which can be solved in polynomial time is often abbreviated to as P. Another important
class of problems, abbreviated to as NP (non-deterministic polynomial time), is the class of
problems for which a potential solution’s correctness can be verified in polynomial time. To
this date, the relation between classes P and NP is unknown, although it is speculated that P #
NP. A problem is considered to be NP-complete if any other NP problem can be reduced to
(transformed into) it in polynomial time. An example of the reduction can be found in [77]. An
important class of problems for us is the NP-hard class ("harder than NP”). It contains problems
to which any NP problem can be reduced to in polynomial time, but their potential solutions can

not be verified in polynomial time.

2.2 Data Structures

In this section, we are going to briefly introduce several data structures which were essential

to the main algorithms used in this thesis.

An array is the most basic data structure, often implemented on a hardware level. It repre-
sents a contiguous sequence of registers in the random access memory (RAM) which may be

read or written to by providing an address of its first element and an offset using which we can
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reference its subsequent elements. Reading from or writing to an array element is a constant-

time operation (O(1)).

A stack is an abstract data structure that supports two operations - push which places an
item on its ’top” and pop which removes the top element from the stack and returns it. We are
going to need it to introduce the concepts graph traversal in Section 2.4 and to keep track of
the problems Trajan is solving presented in Section 3.4.2. The principle on which it operates
is often called LIFO (last in, first out) due to its ability to pop an item which has been pushed
last. The usual implementation of a stack uses an array (sometimes a vector or a linked list)
as an underlying data structure. A possible implementation is given in Algorithm 1. All stack

operations presented in the algorithm have O(1) complexity.

Algorithm 1 A simple stack implementation with an array A as its underlying structure. Let n
be the maximum capacity of A and k an integer pointing to the current top of the stack. Initially,
k is set to the first element of the array with an index 0. Procedure peek returns the top element
of the stack without removing it.

1: procedure PUSH(S, e)
2 if k =n—1 then
3 error overflow”
4 end if
5: Akl =e
6 k=k+1
7: end procedure
8:
9: procedure POP(S)
10: if k = 0 then
11: error “underflow”
12: end if
13: k=k—1
14: return Alk]
15: end procedure
16:

17: procedure PEEK(S)
18: if £k = 0 then

19: error “empty”’
20: end if
21: return A[k — 1]

22: end procedure

Another abstract data structure we are going to consider is a queue which will be solely
used in section 2.4 as an underlying structure of a graph traversal algorithm. It provides the
user with two operations - enqueue and dequeue which follow the FIFO (first in, first out)

principle. Queue places items to its “bottom”, while it removes them from its ”top”. Similar to
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that of a stack, queue is implemented with the same underlying data structures and a possible
implementation is given in Algorithm 2. Due to the usage of modulo operation and two pointers,
f and b, queue can maintain its maximum theoretical capacity after an arbitrary amount of

operations without increasing their complexity beyond O(1).

Algorithm 2 A simple queue implementation with an array A as its underlying structure. Let
n be the maximum capacity of A, f an integer pointing to the current front of the queue and b
to its back. Initially, f = b = 0. Procedure front returns the front element of the queue without
removing it, while the procedure back returns the last element in the queue without removing it.

1: procedure ENQUEUE(Q, e)
2 if (f = (b+1)%n) then
3 error overflow”

4 end if

5: Abl=e
6
7
8
9

b= (b+1)%n
: end procedure

: procedure DEQUEUE(Q)
10: if (f = b) then
11: error “underflow”
12 end if
13: f=(+1)%n
14: return A[(f — 1)%n]
15: end procedure
16:
17: procedure FRONT(Q)
18: if (f = b) then

19: error “empty”’
20: end if

21: return A[f]

22: end procedure

23:

24: procedure BACK(Q)
25: if (f = b) then

26: error “empty”’
27: end if

28: return A[(b — 1)%n]
29: end procedure

2.3 Hashing

Hashing is a basic technique in computer science which allows us to compare character
sequences faster than separately querying each of their consisting characters. It is widely used
throughout the Chapter 4 to assist relatively complex procedures and as an integral part of several

data structures.
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A sequence of characters is commonly known as a string. Let (a) and (b) be strings. In
order to compare two strings we would have to iterate through their characters (elements) and
compare their distinct values. That operation takes O(min(|(a)|,|(b)|)) time. Now lets consider
a set of strings S = {(s1),...,(sm)} all of length n. We want to do a pairwise comparison of all
strings in S. Basic combinatorics suggest that we have to do approximately m? comparisons with
a complexity of O(n). Total complexity of the procedure would then be O(m?n). If we were
to efficiently assign a unique integer for every different string, each comparison could be done
in constant (O(1)) time. The total complexity of the procedure then would be O(m? +m k),
where k is the complexity of ’converting” each of the m strings into integers. As long as k is
asymptotically less complex than m - n, our procedure would be better, in terms of running time,

than the original one.

A function which maps a string into an integer is called a string hash function. Technically,
a constant function would make for a valid hash function, but it wouldn’t be usable in practice.
Let us give an example of a valid hash function. We start by selecting a integer constant ¢ and p

a prime number. Then we define a hash function f which codomain is a segment [0, ¢ — 1] with

f((s)) = ‘ (s;- p') mod c.

Since string hashing using the function f can be done in O(|(s)|) time, the total time complexity

in our previous example would be O (m? +m - n).

Note that we are mapping an infinite set onto a finite one. In practice, the choice of large
enough ¢ and p reduces the probability of collisions. Coupled with an array structure, a hash
function may be used to form a data structure known as hash table which has different ways of

solving the collisions. More about hash tables may be found in [23].

2.4 Graph theory

A plethora of problems in computer science may be formulated as problems in graph theory
where graphs often represent relationships amongst the data, the stages of the computation, etc.

We are going to heavily rely on it in both of the major topics in this thesis.

A graph G is considered to be an ordered pair of sets of vertices V (nodes) and edges
E CV xV. Anedge e = (s,1) € E connects vertex s to vertex . In that case, we say that ¢ is
adjacent to s. A set of all adjacent vertices of some vertex is called a neighborhood. The num-
ber of edges that are incident to a vertex is called a degree of that vertex. If for every (s,7) € E,
(t,s) is also in E, we call graph G undirected. Otherwise, we call G a directed graph. We say

10
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that vertex 7 is reachable from s if there exists a sequence of vertices (s) = sy,...,s, such that
s1=s,5, =t and (s;,s5,+1) € E,Vi. Such (s) is called a path from s to 7 in G and is denoted as
[s,2]. If, for every two vertices s,z € V, there exists a path from s to z or from 7 to s, we say that
G is connected. A path starting and ending in the same vertex is called a cycle. Graphs which
do not contain cycles are called acyclic. A clique is a graph in which every two vertices have

an edge between them.

A graph in which any two vertices are connected by exactly one path is called a tree. If one
vertex of a tree is designated as a root, the tree is then called a rooted tree. Tree nodes which
are of a degree 1 are called leaves, while other non-root vertices are designated internal. Any
vertex of a tree induces a subtree consisting of all its ancestors, in which it has a role of a root
node. In an ordered tree all children vertices have specified ordering. An example of a rooted
tree can be seen in Figure 2.1. A tree is called a binary tree if all of its vertices have at most

two children, while all non-leaf vertices of a complete binary tree have exactly two children.

(a) DFS (b) BFS

Figure 2.1: A rooted tree with 10 vertices traversed by DFS and BFS algrithms in a, so called,
preorder fashion.

In the following few paragraphs we are going to explain two important graph search algo-
rithms - depth first search (DFS) and breadth first search (BFS). These algorithms traverse all
vertices of a graph and may perform arbitrary operations on them. The algorithmic solutions to
both problems presented in this thesis use them to some extent. They play an important role in
the design of more complex algorithms. Let G be a graph with its vertices V which are arranged

in an ordering 6 = (s1,...,s,) and edges E.

DFS algorithm, as presented in Algorithm 3, traverses the graph one path at a time. We say
that o is a depth first ordering if it was produced by the DFS algorithm. It can be characterized

11
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by:
Vi<i<j<k<n, si€N(si)\N(sj) = Ism €N(sj)s.t.i<m<j,

where N(s) is the neighborhood of s.

Algorithm 3 Iterative DFS. G is a graph and r is an arbitrary root vertex.

1: procedure DFS(G, r)
2: S = new stack

3 push r into S

4: while S # 0 do

5: pop v from S
6
7
8
9

if v not discovered then
set v as discovered
for w e N(v) in G do
: pushwto S

10: end for

11: end if

12: end while

13: end procedure

Similarly, BFS algorithm which can be seen in Algorithm 4, traverses the graph by exploring
nodes one depth level at a time. It will first explore all nodes adjacent to the arbitrary root node,
then the nodes which are two edges away from it, etc. We say that ¢ is a breadth first ordering
if it was produced by the BFS algorithm. It can be characterized by:

Vi<i<j<k<n, s;€N(si)\N(s;) = Ism € N(sj)s.t.m<i.

Both DFS and BFS algorithms have a complexity of O(|V|+ |E|) which can be easily de-
ducted from their pseudo codes. The main difference between the two algorithms is the usage
of the underlying data structure: stack for DFS and queue for BFS. Also, in BFS vertices are
set as discovered prior to them being placed in the queue, while the DFS vertices are set as
discovered after they were removed from the stack. Figure 2.1 contains one possible DFS and
BFS ordering on a rooted tree. Note that there exists a recursive variant of the DFS algorithm,
given in Algorithm 5, which is commonly used in practice. When traversing trees using DFS or
BFS, tracking vertex discovery is not needed since, due to the specific structure of a tree, each
vertex will be placed in the data structure exactly once. If a graph is not connected, searching it

from an arbitrary root will yield an ordering only for a subset of all vertices.

12
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Algorithm 4 Iterative BFS. G is a graph and r is an arbitrary root vertex.

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14: end procedure

: procedure DFS(G, r)

O = new queue
set r as discovered
enqueue 7 into Q
while O # 0 do
dequeue v from QO
for w e N(v) in G do
if w not discovered then
set w as discovered
enqueue w to Q
end if
end for
end while

Algorithm S Recursive DFS. G is a graph and r is an arbitrary root vertex.

1:
2
3
4.
5:
6
7
8:

procedure DFS(G, r)

set r as discovered
for ve N(r) in G do
if v not discovered then
DFS(G,v)
end if
end for

end procedure




Linear and integer programming CHAPTER 2. BASIC DEFINITIONS

2.5 Linear and integer programming

In this section we define linear programming (LP) and integer linear programming (ILP)
problems and give a brief overview of the underlying theory used to obtain their solutions. The
proofs of theorems and the definitions given in this section may be found in [8] and [23]. This
topic is of utmost importance for us because in Chapter 3 we are going to use it to formulate and

ultimately solve our problem.

Linear programming problems consider optimization (minimization of maximization) of a
linear function, called the objective function, with the respect to a series of linear equalities
or inequalities called constraints. They are very common in practice and have a wide variety
of applications. A problem in which we maximize the objective function subject to a finite
constraint set is called a maximization problem. Analogously, by minimizing the objective
function, one may define a minimization problem. Integer linear programming problems

further constrain the variable set to a subset of Z".

Let ¢ € R" be a constant parameter vector, called a cost vector. Objective function may be
defined as a linear function f : D C R” — R with f(x) = ¢’ x. The value of f in the point x is
called the objective value. Let m be an integer. Constraints to which we subject our problem
to are of the form aiTx = b;, aiTx <b; or aiTx > b;,wherei=1,...,m, b;is ascalar and g; is a
vector. Any x which satisfies all of the constraints is called a feasible solution, while the set of
feasible solutions defined by the constraints is called a feasible region. A feasible solution such
that either f(x') < f(x) in a minimization problem or f(x) < f(x’) in a maximization problem
for all feasible x’ is called an optimal solution, while f(x) is called an optimal value. A linear
program which optimal objective function value is not finite, but the feasible region is non-empty,
is called unbounded. If the feasible region is empty, then the linear program itself is called

infeasible.

Note that all constraints which we introduced are either hyperplanes or halfspaces and that
their intersection, feasible region, is a polyhedron. If a vector x satisfies al-Tx = b; for some i,
we say that the corresponding constraint is active at x. The constraints are said to be linearly
independent if their corresponding vectors a; are linearly independent. The following theorem
presents the results which bring us closer to identifying the solution to the problem of linear

programming.

Theorem 2.2 Let x € R" and I be a set of indices of active constraints at x. The following is then

equivalent.
(a) There exist n linearly independent vectors in the set {a; : i € I}.

(b) Every element of R” can be expressed as a linear combination of the vectors from the set

14
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{aiIiEI}.

T

(c) The system of equations a; x = b;, i € I has a unique solution.

In order to give a characterization for the optimal solution, we will require the following
definition which we will later relate to the polyhedra. Let P be a polyhedron defined by the
constraints of a linear programming problem and x € R". Vector x is a basic solution if all
equality constraints are active, and out of all active constraints, # of them are linearly independent.
A basic solution which satisfies all constraints is called a basic feasible solution. The following
theorem bridges the gap between the polyhedron defined by the constraints and the solution to

the linear programming problem.

Theorem 2.3 Let P be a polyhedron and x € R”". Then the following statements are equivalent.
(a) xis a vertex.
(a) x1is an extreme point.
(a) xis a basic feasible solution.

In [8], it is concluded that, since the definition of an extreme point of a polyhedron does not
depend on any of it’s particular representations, the property of being a basic feasible solution
should not depend on the representation of the linear programming problem. They also note
that, given a finite number of linear constraints, the amount of basic feasible solutions is finite
as well. As we will see in the later results, the existence of an optimal solution is closely tied
to the existence of the extreme points of the polyhedron corresponding to the constraints. We
say that a polyhedron P C R” contains a line if there exists a vector x € P and a non-zero vector
d € R" such that x+ Ad € P, VA. Then, it is possible to prove the following theorem.

Theorem 2.4 Let polyhedron P = {x eR": aiTx >b,i=1,... ,m} be non-empty. Following

statements are equivalent.
(a) P has at least one extreme point.
(b) P doesn’t contain a line.
(c) There exist n vectors in the sequence ay,...,a, that are linearly independent.

Finally, we will give the results which, if possible, put the optimal solution in the place of

one of the extreme points of P.

Theorem 2.5 Consider the minimization linear programming problem over a polyhedron P
which has at least one extreme point and that there exists an optimal solution. Then, there exists

an optimal solution which is an extreme point of P.

15
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The previous theorem reduces the space in which we search our optimal solution to a set of

finitely many extreme points. Finally, an even stronger result is given.

Theorem 2.6 Consider the minimization linear programming problem over a polyhedron P
which has at least one extreme point. Then, there either exists an optimal solution which is an

extreme point of P or the optimal cost is equal to —oco.

Probably the most famous algorithm for solving linear programs is the simplex algorithm
[25]. It runs in, theoretically, exponential time, while its implementations have been proven to
be efficient in the state-of-the art solvers such as CPLEX or GUROBI. A very important part of
the history of the field was the result from [61] in which a theoretical algorithm is constructed
which solves linear programs in polynomial time. Contrary to the result for linear programming,

integer linear programming problems are proven to be NP-complete [64].

2.6 Dynamic programming

Dynamic programming is a programming paradigm which solves optimization problems
by dividing the problem into overlapping subproblems and combining their solutions. In Chapter
3, we are going to use this technique in order to tighten the polyhedron in which we are looking
for a solution to our ILP problem. When developing a dynamical programming algorithm, as

suggested by [23], we consider the following four points.
(1) Characterization of the optimal solution.
(2) Recursive definition of the optimal solution.
(3) Computation of the optimal value.
(4) Reconstruction of the optimal solution by backtracking through computed information.

The problems to which this paradigm is generally applied are the ones which exhibit the
property of the optimal substructure, i.e., when the optimal solution contains optimal solutions
to its subproblems. Usually, the solution to the problem solved by dynamical programming
algorithms is the one which involves a choice in each of its steps. In each step a field in the data
structure, called the dynamic table, is altered so that its new state reflects all choices we could
have made while holding the information about all steps we have previously taken. Problems
such as [72] [29] are examples of the problems which can be efficiently solved using dynamic
programming. We will present, as an example, a simple solution to the lowest common subse-

quence problem.

Let (a) and (b) be strings representing a DNA sequence whose respective elements are

characters A, C, G or T. We want to find a maximum-length subsequence (s) of both (a) and (b)

16
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in order to quantify the similarity between the sequences. In [23], the optimal substructure of

the problem has been proven, as has been formally given as the following theorem.

Theorem 2.7 Let (a) and (b) be the sequences such that |(a)| = n,|(b)| = m and let (s) be the

longest common sequence of (a) and (b) of length k.

(a) If a, = by, then a, = b, = s} and sq,...,s,_1 is the longest common subsequence of

ai,...,ap_1and by,...,by_1.

(b) If a, # by, then z,, # s and (s) is the longest common subsequence of ay,...,a,_; and

(b).
(c) Ifay, # by, then by, # s; and () is the longest common subsequence of (a) and by, ..., by, 1.

Now we may formulate a dynamic table D of size (n+ 1) x (m+ 1) which will contain the

solution. Each element may be computed as

0, i—0V j=0
max(D[i,j—l],D[i—l,j]), ai#bj A 17]7&0

Rows of D correspond to the characters in (a), while its columns correspond to the characters
in (b). As we propagate through the table in a bottom-up manner, we are considering the
longest common sequences found until the current element. If the characters in the current
element match, we continue the subsequence. Otherwise, we extend the maximal length of the
subsequence found so far consistently with Theorem 2.7. The length of the longest common
subsequence will then be contained in the element D[n, m]. The algorithmic solution is presented

in Algorithm 6.

Algorithm 6 Dynamic programming solution to the longest common subsequence problem.

1: procedure LCS((a), (b))

2 initialize table D[|(n)| + 1, |(m)| + 1]
3 set all D[i,0] and D|0, j] to O

4 fori=1,...,|(a)| do

5: for j=1,...,|(b)| do
6

7

8

9

if a; == bj then
D[i,jl=1+DJi—1,j—1]

else
10: end if
11: end for
12: end for
13: return D

14: end procedure

17
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Table P in Algorithm 6 contains the information needed to backtrack through D and recon-

struct the optimal solution. The backtracking algorithm is presented in Algorithm 7.

Algorithm 7 Backtracking the dynamic table of the longest common subsequence problem in
order to print the solution.

1: procedure LCS-B(D, (a), i, j)

2 m=max(D[i—1,j—1],Dli—1,j],D[i,j—1])
3 if i = j =0 then

4: return ||

5: elseif m = D[i—1,j— 1] then

6

7

8

9

return append (a;) to LCS —B(D,(a),i—1,j—1)
else if m = D[i — 1, j] then
return LCS — B(D, (a),i— 1, j)
: else
10: return LCS — B(D, (a),i— 1, j)
11: end if
12: end procedure

It is easy to show, by tracking the amount of nested loops, that LCS procedure runs in O(n?)

time, while the backtracking algorithm’s complexity is O(n).

2.7 Greedy algorithms

Greedy algorithms exploit the same overlapping supbroblem structure as the dynamic pro-
gramming algorithms with one major difference. When presented with a choice, a greedy
algorithm will not consider every possible option, but it will select one which is locally optimal.
For that reason, it does not require a dynamic table as it propagates through states without any
regard to the previous ones. As a result, greedy algorithms are more efficient both in terms of
running time and memory consumption than their dynamic programming counterparts. Unfor-
tunately, optimization problems which are optimally solvable using dynamical programming
paradigm are not optimally solvable using greedy strategy. One such example is the lowest
common subsequence problem presented in the previous section. Despite the aforementioned
shortcomings, greedy algorithms will be used in Chapter 3 in order to speed up the computation
towards the optimal solution of the problem. A class of problems which can be optimally solved

using a greedy algorithm have a, so called, matroid structure and are explained in [23].

2.8 Genome related terms

The instructions for every feature of a living organism are contained within immensely

complex molecules called DNA and RNA which are composed of smaller molecules called
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nucleotides, a sugar called deoxyribose and a multitude of phosphate groups. It is one of the

four types of macromolecules which are found in all life forms.

A great number of common terms in the field of bioinformatics are related to different ge-
nomic features shared across the vast majority of living organisms. A genome represented by
a sequence of nucleotides encompassing the entirety of organism’s genetic material is split into
multiple DNA molecules called chromosomes. Common nucleotides, out of which DNA is
comprised, are adenine (A), cytosine (C), guanine (G) and thymine (T). In RNA molecules,
uracil (U) replaces thymine. On a double helix DNA, nucleotides residing on the two opposing
strands are paired into complementary pairs A-T and C-G. Complementarity is essential for
the replication of the DNA molecule (during cellular duplication) and transcription of DNA
(decoding) into RNA. For a more detailed description of the underlying matter, refer to [1].
Chromosomal sequences for different species are usually stored in FASTA files which separate
nucleotide sequences (belonging to different chromosomes) by their names. An example of a

fasta file can be seen in Listing 2.1.

Listing 2.1: FASTA file example representing two chromosomial sequences - N and M

>chrN

ACTGATTACATATAA
CATAGAATGCTCAGC
ATGCATCTAGCTAGC

ATCGATCGATCGATC
>chrM
ATGCATGCATGCAGT

Transcription of RNA is a process which happens within individual cells that copies ge-
nomic information from a segment of a DNA molecule into a RNA molecule. It is initiated by
the enzyme called RNA polymerase. In a case which is of particular interest for us, transcribed
RNA molecules, often called mRNA or "messenger RNA”, are used as templates for protein
synthesis. Therefore, RNA molecules play an integral part in every living cell. More about the

process may be found in [91].

Each chromosome is separated into regions called genes which encode all information neces-
sary for transcription. Contiguous parts of genes which are directly involved in transcription are
called exons, an acronym derived from the term “expressed region” [50]. It is considered that
exons are the coding parts of DNA. A mechanism called RNA splicing separates exons from
non-coding parts called introns or “intragenic regions” [50] and joins them together. A location

on the gene where an intron was cut out is called a splice site. By convention, one strand of
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DNA is called a forward strand, while the other is called a reverse strand. Genes starts and
ends are represented with respect to their coding strand and their direction is either left-to-right
on the forward strand or right-to-left on the reverse strand. When moving from the gene starting
point to its end, every intron defines two splice sites - donor and acceptor, in that particular

order.

Genes may contain a code for multiple mRNA molecules in the form of potentially overlap-
ping regions called transcripts as can be seen in Figure 2.2. Similar proteins coded from those
regions are called isoforms. Overlapping transcripts are a result of mechanisms that regulate
alternative splicing, which defines exons and introns in multiple ways in the same genomic
region, described in [15]. An alternative splicing event is considered to be novel if it is not a part
of any annotated transcript. The abundance of different proteins in a cell is a direct consequence
of transcript expression within it, that is, the quantity of alternatively spliced transcripts coding
mRNA for those specific proteins. Analysis of transcript expression provides an insight into the

state of the cell and organism alike.
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Figure 2.2: An example of the alternative splicing found in gene CD1E on human chromosome
1. Transcripts are arranged horizontally and thick rectangular shapes represent exons. Image
was produced by Integrated Genome Viewer.

The first step to determining the abundance of mRNA in a given sample is to employ the
technology of RNA sequencing. It uses fast RNA sequencing techniques in oder to supply the
evidence of the existence of different transcripts. Strands of RNA in the sample are sequenced
into short reads - nucleotide sequences between 50 and 400 base pair long. In a process called
alignment, short reads are then mapped to the reference genome or reference transcriptome,

which can be obtained through the process of (’de novo”) assembly.

Assembly is a procedure which reconstructs the genome or transcriptome based on the short
reads obtained from a sample as indicated by [58]. One of the challenges of this procedure is to
determine the exact genomic coordinates, relative to the chromosome reference, from which
short reads were sequenced. Afterwards, using the fact that only exonic regions are sequenced
from mRNA, the problem is to determine their boundaries and supplement the gaps with introns
in a way such that the transcript or gene boundaries are defined. A high amount of alternative
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transcripts, overlaping exonic regions (such as ones seen in Figure 2.2) and possible sequencing
errors make that step even more complicated. Some of the software tools used for assembly are
[84], [52], [90], [80], [103], [21].

Once the reference has been assembled, it can be annotated using a GTF file which format
can be found at !. An example of the GTF file, relevant for this thesis can be seen in the Listing
2.2. The annotation is used by alignment software such as [14][30] in order to rapidly map
a large amount of short reads to the annotated genomic features. Alignment information has
multiple uses in studying different stages in organism’s development, its responses to external
stimuli, detection of certain anomalies such as diseases and mutations, evolutionary paths of

species, etc.

Listing 2.2: A part of a GTF file which annotates a single transcript, tab characters were
replaced with spaces for readability. Transcript "XR_001737556.1" is located on the gene
"WASHO9P" on chromosome one, between the coordinates 184878 and 199860 on the reverse
strand. It is composed of 6 exons whose information is listed below.

chrl . transcript 184878 199860 . — . gene_id "WASH9P";
transcript_id "XR_001737556.1";
chrl . exon 184878 185350 . — . gene_id "WASH9P";

transcript_id "XR_001737556.1"; exon_number "1"; exon_id "
XR_001737556.1.1";

chrl . exon 185491 185559 . - . gene_id "WASH9P";
transcript_id "XR_001737556.1"; exon_number "2"; exon_id "
XR_001737556.1.2";

chrl . exon 186317 186469 . — . gene_id "WASH9P";
transcript_id "XR_001737556.1"; exon_number "3"; exon_id "
XR_001737556.1.3";

chrl . exon 187129 187287 . — . gene_id "WASH9P";
transcript_id "XR_001737556.1"; exon_number "4"; exon_id "
XR_001737556.1.4";

chrl . exon 187380 187577 . — . gene_id "WASH9P";
transcript_id "XR_001737556.1"; exon_number "5"; exon_id "
XR_001737556.1.5";

chrl . exon 187755 187890 . - . gene_id "WASHO9P";
transcript_id "XR_001737556.1"; exon_number "6"; exon_id "
XR_001737556.1.6";

Given a reference file and a FASTA or a FASTQ file (FASTA sequences supplemented with
quality scores) containing short read sequences, an aligner software produces an output in a
form of a SAM file which lists locations to which the reads have been mapped to. Note that

a single read can be mapped to multiple locations or multi-mapped. An alignment which is

"https://mblab.wustl.edu/GTF22. html
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considered the best by some scoring scheme is called a primary alignment, while all others
are called secondary alignments. A complete reference to SAM file format can be found
at 2. A large number of aligners may also output a binary encoded SAM file called the BAM

file which reduces the required storage space as plain text SAM files often exceed 100GB in size.

The increasing need to analyze large amounts of samples in short periods of time has pushed
the computer scientists to consider new algorithmic approaches. A most notable class of aligners
which often employ advanced data structures, hashing and other state of the art algorithms in or-
der to speed up the read processing are called pseudoaligners. The most important property of a
pseudoaligning software is that it (pseudo)aligns reads to the reference much faster than the tradi-

tional algorithms at the cost of the reduced accuracy. Such pseudoaligners are [14] [94] [96] [78].

An example of an alignment of a multimapped read can be found in the Listing 2.3. Read
”ERR2902089.252943611” has been mapped to (human) chromosome 2 with a starting coordi-
nate 227258887. Flag 16 indicates that the first alignment is considered to be primary on the
reverse strand. Alignment with a flag 272 is a secondary alignment on the reverse strand. An
interesting part of every alignment is the CIGAR string such as ”119M2I30M”. It indicates that
119 base pairs, starting from the starting coordinate were aligned to the reference, 2 base pairs
were inserted and the next 30 bases were, again, a match. Letter ”I”” preceded by an integer
n encodes insertion operation of n bases, "M” encodes match, ”N”” encodes splice junction of
length n, ”’D” deletion of n bases and S encodes soft clip operation which removes n base pairs

from either ends of the read.

Listing 2.3: A part of a SAM file with 2 alignments of a multimapped read
”ERR2902089.252943611”. Read sequences and quality strings have been removed and tabs
have been replaced with spaces for readability.

ERR2902089.252943611 16 chr2 227258887 3 119M2I30M * 0 O NH:1i:2
HI:i:1 AS:i:123 nM:i:9

ERR2902089.252943611 272 chr2 227258887 3 121M2I28M = 0 O NH:i
:2 HI:i1:2 AS:i:123 nM:i:9

2.9 Phylogeny related terms

Phylogenetics is a part of systematics with studies evolutionary relationships between species,
or broader terms such as taxa. A taxon is a group of organisms which form a unit according
to a common physical or genomic trait. The relations between taxa are often presented in a

hierarchical tree structure called a phylogenetic or an evolutionary tree. Since all life on Earth

*https://dash.harvard.edu/bitstream/handle/1/10246875/2723002. pdf ?sequence=1
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shares common ancestry, it can be represented as a single phylogenetic tree [26] [95]. The
comparison of evolutionary paths of different species, represented by clades - subtrees sharing
a common ancestor, is a common problem in biology. A common solution to this problem is the

definition of a distance function between the phylogenetic trees.

Phylogenetic trees are often encoded in a newick file format. The tree is represented in a
planar way such that every node encapsulates taxon of the species it refers to, along with all of

its subtrees. The left tree in Figure 2.1 is encoded in Listing 2.4.

Listing 2.4: An example of a tree encoded in the newick format.
(((4, )3, 52, (, (9, 10)8, )7)6)1;
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CHAPTER 3

Trajan

Trajan is a framework which, among others, implements a novel algorithm [45] which com-
putes the distance between phylogenetic trees with a strong attention to honoring hierarchical
relationships imposed by the problem structure. It is designed as a flexible framework capable
of defining a solver which may exploit the unique properties of a given class of problems based
upon the quantification of their similarities or dissimilarities. This chapter is structured so that it
follows a natural progression from a naive solution to an efficient ILP solver. First, we are going
to present a few definitions related to the problem we are trying to solve. Afterwards, the current
research on the topic will be presented and briefly discussed in the literature review section. In
the section about arboreal matching, we are going to formulate an ILP problem which Trajan
will be solving. The implementation section contains brief explanation of the routines Trajan is
using, as well as their capabilities and modularity. Finally, we present our experimental results

in the experiments section.

3.1 Additional definitions

Let 71 = (V1,E)) and T, = (Va, E») be two rooted, labeled, unordered trees with node labels
over an alphabet . Furthermore, let C; and C; be the sets of all subtrees (clades) of 71 and 75,
respectively. We define a matching M C Cy x G such thatV(X,Y) e M if 3X' € Cy,(X,Y)eM
then X =X’ and if Y’ € C,,(X,Y’) € M then Y =Y’. Given a scoring function & : C; x C; —
[0,0) that measures dissimilarity between subtrees, we can define the distance d between 7 and

T as the minimum cost of a matching M between subtrees in C; and C; as follows.

d(Ty, ) = min Y sxn+ Y sx.-)+ )Y &(-y) (3.1)
M matching (XY)eM X€C1h7 | YeCzh, ;
unmatche unmatche

The cost of leaving X unmatched is (X, —), while the cost of leaving ¥ unmatched is 6(—,Y).
By selecting different scoring functions, we are define different distance functions. Several of

such distance functions will be covered in the literature review section.
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A naive approach to solving this optimization problem, without looking into the properties
of 8, would result in a difficult computational problem. The following lemma gives an estimate

of the running time of such procedure.

Lemma 3.1 Let 71,75 be trees with n and m nodes, respectively. The number of matchings

min(n,m) n m
Z ( .> ( j ) i!.
i=0 \t/ \!

Proof. Matching between 77 and 7, may be formed by selecting i nodes in each of the trees

between 77 and 7> is

and forming valid pairs. We offer a constructive proof by iterating over i and counting valid

matchings.

i = 0: There exists a trivial matching in which none of the nodes are matched.

i =1: We select a single node from each of the trees. That can be done in (’1‘) (T) distinct ways.

i > 2: We select i nodes from both trees in (’Z) (";) distinct ways. Those nodes may be matched

in i! different ways, thus the total amount of matchings is (7) (7).
By summing all of the steps above, we prove our claim. Ll

Let x and y be nodes in a graph, such as tree, in which there exists a partial ordering of the
nodes based on the ancestor-descendant relation. If node x is an ancestor of y, we write x > y. If

nodes x and y can not be compared, we write x <> y.

3.2 Literature review

Phylogenetic trees organize biological species in a hierarchical relationship. Their nodes
can also represent other entities like tumor subclones that have formed during tumor evolution
[54]. Even more, protein-protein interaction (PPI) networks embed a hierarchical structure that
can be reconstructed by hierarchical clustering methods [37]. Comparing phylogenetic trees
can quantify their similarity under different reconstruction methods, and provide valuable in-
sights into the symbiosis between the evolution of a parasite and its host, for example [S1]. The
most popular measure of phylogenetic tree similarity is the Robinson-Foulds (RF) metric [85]
whose main idea is to match identical nodes (or clades) of one tree to another. It can be effi-
ciently computed but provides a very conservative and “low resolution” dissimilarity measure
that is unable to discern between similar structures and is not robust against minor tree changes
[17][71]. In [7] a generalization of the RF metric has been proposed that aims to alleviate some
of its shortcomings by enforcing a bijective mapping between the tree nodes which preserves

the ancestral relationships. Alternative metrics for trees either exhibit unfavorable properties
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[24][71][63][11][12] or are hard to compute in practice [2]. Even though the computation of
the generalized RF metric is NP-hard, it has been demonstrated in [7] that it can be efficiently
computed using our state-of-the-art branch-and-cut solver Trajan [45] which solves an integer
linear programming problem and makes the solving of medium to large sized instances feasible
in practice. The main contribution of Trajan is its application of novel clique constraints which

will be explained in detail during the course of this chapter.

3.2.1 The Robinson-Foulds metrics

The RF metric introduced in [85] can be defined by selecting an appropriate & in (3.1).
Specifically, let X be a clade in 7] and Y a clade in T>. We set 8(X,—) = 8(—,Y) = 1 as a cost

of leaving clades unmatched and define

0, X=Y,
¢, X#Y

0(X,Y)= { ,
where ¢ > 2 is a constant. Note that § is defined in such way so that the cost of matching
different clades is at least as expensive as leaving them unmatched. It is proven in [85] that such
function is indeed a distance function, while [27] shows that the RF distance can be computed
in linear time with regards to the number of nodes in two trees. Another favorable property of
the RF metric is that the optimal matching it computes preserves the ancestral relationships, i.e.,
descendants of some matched nodes may only be matched with each other.

Despite its favorable properties, the RF metric suffers from several shortcomings. First of
all, the distances computed using the RF metric are very discreet, meaning that solving many
problem instances coming from the same class of problems will yield a small number of distinct
values despite the inputs being highly diverse. We will present more details about this property
in the Experiment section. Secondly, two trees which are topologically similar might have very
large RF distance. An example illustrating this can be seen in Figure 3.1. The example is an

adapted version of the similar example found in [7].

3.2.2 Tree-edit distance

Tree edit distance [97][105], a distance which minimizes the number of edit operations that
transforms one tree into another, was first introduced on ordered and labeled trees. Its value
may be computed in polynomial time. The same problem, when introduced to unordered trees,
was proven to be NP-hard [106]. Let T = (V,E) be a rooted, labeled, unordered tree with node
labels over an alphabet X. Edit operations which can be done on a tree T are deletion, insertion

and substitution.
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Figure 3.1: The RF distance between the two trees is maximal possible (8) despite their
similarities.

Deletion operation deletes a non-root node u from 7' by rearranging its children and connect-
ing them to its former parent. Insertion is a complementary operation to deletion which inserts a
node v as a child of # and makes v a parent of some child of u. Finally, substitution (relabeling)
operation changes the label of a node in 7. Each edit operation is assigned a cost: y(a,—) for
deleting a node with label a, y(—,a) for inserting a node with label a and y(a,b) for substituting
a node with label a for a node with label 5. Now, the tree edit distance may be defined in a

manner similar to (3.1).

Again, let T = (V1,E}) and T, = (Va, E») be two rooted, labeled, unordered trees with node
labels over an alphabet X and let £ be a mapping which assigns to nodes their respective labels.
Formally, tree edit distance is defined as a minimum cost sequence of edit operations which

transform 77 into 7> and is computed as follows.

AT =mind Yy, () + X 8w, )+ Y S(—L0)p ()
M (u,v)eM’ uevy, VvEV,,
unmatched unmatched
M' C V| x V; is a matching which preserves the ancestral relations such that for any two
elements (u1,vy), (uz,v2) € M it either holds that u; = uy A vy =v, or u is a descendant of
up if and only if v is a descendant of v,. Note the resemblance of the above expression to that

of (3.1). Evidently, they are equivalent up to the simple substitution of cost functions.

An important final thing to mention about tree edit distance is that the general function d

does not satisfy the triangle inequality [70].
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3.2.3 Generalized Robinson-Foulds metrics

The main focus of [7] is the definition of a generalization of the RF metric function through
the selection of a specific cost function 0. It also explores several topics which are of great
interest for us. Two cost functions (dissimilarity measures) are being analyzed: one induced by
the symmetric difference and by a class of Jaccard weight functions. The main idea behind these
measures is to supplant the absolute penalization of matching clades done by the RF metric with
one that penalizes matching according to the topological dissimilarity between them. The proof

that the functions induced by these two cost functions are indeed metrics is also given.

Taking the assumptions from 3.1, a symmetric difference dissimilarity measure is defined
by setting 6(X,—) = |X| and 6(—,Y) = |Y|. Furthermore,

8(X,Y)=|XAY|=|XUY|—|XNY].

Similarly, the Jaccard weight of order k, where k£ > 0 is a constant, can be defined with

5(X,Y)—2—2<’XQY‘)k,

XUY|

and 0(X,—) = 8(—,Y) = 1. Note that for X =Y, we have §(X,Y) = 0 and that the following
holds for X #Y.

(|XﬂY\>k Ixny|<[xuy| 5

lim §(X,Y) =2 -2 lim
X UY]|

k—>o0 k—so0

We can conclude that the distance function induced by the Jaccard dissimilarity measure
converges towards the RF metric. Note that, in general, if we were to compute an optimal
non-restricted matching using any of the aforementioned dissimilarity measures, unlike with the
RF case, those matchings would not necessarily honor the ancestry relations. Thus, the notion
of arboreal matching that respects ancestry relations is introduced which we will cover in detail

in the sections to come.

3.2.4 GENO solver

Trajan uses GENO [68], a general-purpose non-linear solver, to solve its linear programming
problems. It combines a quasi-Newton optimization method with an augmented Lagrangian
approach in order to tackle constrained optimization problems. A framework is provided which
we use in order to generate a solver tailored to the arboreal matching problem (explained in detail
in the following section). In a general case, GENO doesn’t require that neither the constraint set
nor the objective function are differentiable, but it transforms such problems into differentiable

ones.
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To solve smooth, constrained problems, GENO takes the augmented Lagrangian approach
[57]1[81]. Let x € R" be a variable and f : R" — R a differentiable objective function, / : R" —
R™ and g : R" — R? differentiable constraint functions which evaluate the variable on a per

component basis. Then the general problem which GENO solves may be written as

min f (x)
s.t. h(x)=0,
g(x) <0

The augmented Lagrangian problem is then expressed as the following function.

2

A 2
Lp(x,/l,u)zf(x)Jrg’h(x)er +g’max{0, g(x)—}-‘l;} :

where L € R", u € ]Rﬁ are Lagrangian multipliers and p > 0 is a constant. An algorithm

which minimizes L, iteratively solves unconstrained optimization problems for variables x, A
and p. Note that the global minimum is guaranteed only in the case where L, is convex. In each
step, if the maximal component-wise violation of the constraints decreases by too small a factor,
p is doubled to benefit the convergence rate. Augmented Lagrangian algorithm is presented in
Algorithm 8.

Algorithm 8 This procedure minimizes L, using the Augmented Lagrangian algorithm. Its
inputs are initial approximations of variables x, A and u while its outputs are approximations of
their respective optimal values.

1: procedure AUGMENTEDLAGRANGIAN(x € R", A € R", u € RY)
22 9=0,A2=0,u=0,p=1

3: while no convergence do

4: A = argmin L, (x, A%, uk)

X
5 A1 — )Lk+ph(xk+1)
6: p*t! = max {0, pk+pg(xth)}
7: end while
8 return x*, A", u*
9

: end procedure

In the line 4 of the augmented Lagrangian algorithm, an unconstrained smooth optimization

problem is being solved (if the problem isn’t smooth, it is approximated as such using [75]).

To perform its smooth and unconstrained (barring the variables) optimization step, GENO
uses a quasi-Newton limited-memory algorithm for bound-constrained optimization presented

in [18]. Let [ and u be constant vectors such that we minimize some function f : R” — R subject
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to I < x < u (point-wise). Furthermore, let the gradient g of f be available. A second order
derivative (Hessian matrix), requirement of quasi-Newton methods, is approximated using linear
storage (O(n)).

In the k-th iteration of the algorithm, we are given x;, the current approximation of the
minimum, the current function value f*, a gradient g€ and a Hessian approximation B¥. Using

that information, the following quadratic model is constructed.

1
() = FO) (65T (= )+ 5 (= )T B (x— o)
A gradient projection method is used to find a set of active bounds and, afterwards, m* is

minimized. A point-wise linear path
x(1) = P —tgy, ),

which projects the steepest descent direction onto the feasible region is considered. Function P
is defined, point-wise, as

P(x,l,u); = max(l;, min(x;, u;)).

The first local minimizer x¢ of the point-wise quadratic function ¢g*(¢) = m*(x(¢)) is then com-
puted. The variables x{ which attain the values /; or u; are considered active and are a part of the
active set A (x¢). The following problem is solved using either direct or dual iterative methods

explained in [18].

min {m*(x) : x; = x§, Vi € A(x¢)}
st. [<xi<u, Vid A(xc)

Sometimes, when the computed point does not follow the descent direction, the best feasible

karl

point on the path between the computed point and x¢ is selected. Let be the solution of the

above defined minimization problem. The next iteration x**!

along 1 —xk,

is computed using a line search

3.3 Arboreal matching

We have already noticed that tree edit distance minimizes a similar function to that presented
in Equation 3.1. If we were to replace y with § by substituting the vertices in M’ with the
subtrees induced by those vertices in 71 and 7>, respectively, we would have concluded that
the two minimization problems are equivalent barring the additional conditions imposed on M’.
Following the ideas introduced in [7], we define arboreal matching which imposes constraints

on validity of the matchings equivalent to the ones imposed by tree edit distance.
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3.3.1 Pairwise conflicts

A matching that minimizes 3.1 doesn’t necessarily have to respect the tree structure. In
other words, depending on our choice of a dissimilarity measure, there can exist a matching
minimal with regards to 3.1 with pairs of elements which do not respect the ancestral relations.

An example can be found in the Figure 3.2.

M
<1
[ NN/

(a) crossing conflict (b) independent set conflict

Figure 3.2: Pairwise ancestry violations of a matching which minimizes 3.1.

We consider two pairs of matched nodes to be in a crossing conflict if an ancestor of a
node is matched to a descendant of its pair. Let M be a matching between trees 77 and 7, and
(x1,¥1), (x2,y2) € M. We say that those nodes are in a crossing conflict if x; < x; and y, < y; or

if x; > xp and y, > y1.

Similarly, we say that two pairs of matched nodes are in an independent set conflict if the
pairs of the nodes in a relation are not in a relation themselves. In other words, if for pairs
(x1,¥1), (x2,y2) € M it holds that x; < xp ¥ y; < y,, then they are in an independent set conflict.
Many metrics, such as ones presented in [11] and [12] do not forbid this type of conflict, even
though most pairwise conflicts are of its type. We will argument this claim in the next section
and confirm it experimentally in the Section 3.5.

Now that we have defined two types of pairwise conflicts, we can move on to the definition

of an arboreal matching.

Definition 2. Let M be a matching which minimizes (3.1) such that no pairs of its edges are in

either crossing or independent set conflict, i.e. V(x1,y1), (x2,y2) € M it holds
(x1 <x2E&y1<y2) V (x1 > x2Sy > y2).

Then we say that M is an arboreal matching
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The problem of finding an optimal arboreal matching is stated to be NP-hard by [7]. For that
reason, we have decided to take on a different approach to solving this problem - formulating it

as an integer linear programming problem.

3.3.2 Naive ILP formulation

In this section we will present an initial effort towards the formulation of an efficient ILP
solution to the problem of finding an optimal arboreal matching between the trees. Let 71 and 75
be trees with their respective subtrees X;,i = 1,...,nand Y;,j=1,...,m. We start by defining

binary variables x;; which reflect the elements of a matching M as follows.

1, (Xi,Yj) eEM
Xij = .
0, otherwise

A variable x;; is set to one if subtrees X; and Y; are matched and is otherwise set to zero. In order

to preserve the matching properties, we introduce the following set of matching constraints.

(3.3)

™=
=
IA
~
I
E

1=
&
~.
IA
_
Il
\:—‘
=

(3.4)

.
Il
—_

Inequalities (3.3) ensure that no subtree in 73 is matched more than once, while inequalities
(3.4) ensure the same thing for 77. Finding a minimal arboreal matching can be formulated as a
maximization problem. First, we take the minimization function from (3.1) and introduce the

variables x;; into it.

EX s s Lo (1-En )+ Zacn) (1-En)  as
i i I f] i
= ZZ [5(X,‘,Y,‘) — 3(Xl' —-)— 5(*,Yj):| xijJrZS(Xi, *) +25(*,Y]‘) (3.6)
A i j
Note that expressions 1 —Y ;x;; and 1 —},x;; in (3.5) are equal to one if X; and ¥; are
not matched. Last two summands in (3.6) are, effectively, constant expressions exclusively
depending on the definition of § and the topology of the trees. In an optimization problem they

can be disregarded as such. Let w;; = 6(X;, —) +6(—,Y;) — 6(X;,Y;) and C a constant. Then we

can write (3.6) as

=Y ) wixij+C. (3.7)
i
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After performing an easy computation we see that the generalized RF metric with Jaccard

dissimilarity measure of order k has its corresponding

k
XNy

Wij:2 | | s
X UY]|

while for the symmetric difference induced generalized RF it has the form

Wij =2|XNY|.

Let Z be a set of all possible pairwise conflicts between 77 and 7,. We can formulate (3.1)

as a (naive) maximization ILP problem.

max Z Zwijxij (3.8)
i=1j=1
m
S. t. xij§1 Vi=1,...,n, 3.9
j=1
n
Y xij<1 Vi=1,...,m, (3.10)
i=1
xij+x <1 v{(, ), (k,1)} €T, (3.11)
Xij € {0,1}, 3.12)

Unfortunately, as will be confirmed in the experiments section, the above described formu-
lation is, at best, suitable for computing an arboreal matching of small-to-medium sized trees.
Despite the problem being classified as NP-hard and any algorithm which finds solution to an
ILP problem having an exponential running time, we will try to offer a more practical formula-
tion than the naive one and a solver which solves it. The additional complexity of the problem
stems from a large amount of constraints in the set Z. In order to illustrate it, the following

theorem gives the number of pairwise conflicts for two complete binary trees.

Theorem 3.2 Let 71 = (V},E) and 7> = (V»,E>) be two complete binary trees such that any
root-to-leaf path in 77 has k; nodes and &, in 7>. Then the total number of pairwise conflicts can

be expressed as

222k ey — 1)((ky —2)25 +2) + 28 (2F — &y — 1) (ko —2)2% +2)

—((ky —2)25 +2)((ky —2)2° +2). (3.13)

Proof. The nodes of a complete binary tree with k long root-to-leaf paths can be separated into
k levels based on how far away are they from the root node. Then, the i-th level has 2i=1 hodes,
while the entire tree has 2€ — 1 nodes. A subtree induced by a node at the i-th level has 2= +1 — 1

nodes, while its complement has 25 — 25—i+1 nodes. We will iterate through k; and k levels of
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each tree.

For each i-th level in 77 and j-th level in 7> we select one of their nodes x € V; and y € V.
This can be done in 2/~ - 2/~ different ways. Let X be a subtree induced by x in 7}, Y a subtree
induced by y in 7> and X, Y their complements in their respective trees. Then, a pair (x,y) is in
conflict with all pairs from a set

Sy ={(u,v):(weXAveY)V weXAvey)}.

Since we have explicit formulas for sizes of X,Y,X,Y, one may simply determine |Syy|. Then,
by summing over all i-s and j-s, we get the following expression.
ki k

Z Z ai=lnj-1 [(zkl—iﬂ _ 2)(2k2 _ 2k2—j+1) 4okl 2)(2k2 _ 2k1—i+1)}
i=1j=1

With the assistance of some basic algebra, the above expression can be transformed into

222k ey — 1)((ky —2)25 +2) + 28 (2F — ke — 1)((kn —2)2% +2). (3.14)

Due to some pairs being counted twice, the number of pairwise conflicts given in (3.14) is
overestimated. For each pair of internal nodes, we have double counted each of the vertices in
its nodes subtrees. Thus, in order to acquire the real amount of conflicting pairs, we subtract the
following expression from (3.14).

k-1 ky—1
( Z i—1 (2k1*i+1 . 1)) < Z 2J—1 (2k2*j+1 _ 1))

i=2 Jj=2

The above expression can be transformed into

((k1 —2)2% +2)((ka —2)2% +2).
This leads us to the expression in the statement of the theorem and concludes the proof. [

To illustrate the claim of Theorem 3.2, for k1 = k» = 5 we would have around 150 thousand
constraints, while for k; = k» = 10 the number of conflicts would be almost 17 billlion. If each
constraint could be represented only by 8 integers (two integers for each node in a sparse format),
it would take almost 128 GB of RAM just to store the constraints. In practice, using state-of-
the-art ILP solvers such as CPLEX or GUROBI, memory requirements are significantly higher.
This has motivated us to come up with a novel ILP formulation and implement a specialized
solver - Trajan.
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Before we continue, let us show that the number of crossing edge conflicts is significantly
smaller than the total number of pairwise conflicts. In the O-notation, one might express the

number of pairwise conflicts given in Theorem 3.2 with
Ok R (ky2k 1k 2R2)).

In order to single out crossing from the conflicts of both types, it is enough to observe the

restrictions of the sets Sy, from the proof of Theorem 3.2

S;y: {(u,v): (ueXAVE][r,Y])V (uelrx]AveY)},

as the only edges in a crossing conflict with edge (x,y) are ones that start in either of the
subtrees and end on the root-to-z, z = x V y path of the other tree. Following the same procedure

as before we arrive at the O-approximation of the number of crossing conflicts:
O (kiko2k1R2),

Since the number of crossing conflicts is significantly smaller than the number of independent
set conflicts, metrics such as [11] and [12] may return a matching which, potentially, violates a

lot of constraints.

3.3.3 Branch and cut algorithm

Since the main computational bottleneck of the naive ILP formulation (3.6) are the con-
straints in Z, we have decided to implement our variant of branch-and-cut algorithm which
solves a series of relaxed LP problems. We obtain each relaxation by changing the integrallity
constraint (3.12) into x € [0, 1]. The initial iteration of our branch-and-cut approach includes all
matching constraints (3.9) and (3.10), but omits any constraints coming from Z. After comput-
ing the initial relaxed solution, we resolve it until no conflicting edges exist. Then, we select
a single variable using different heuristical approaches and generate (branch into) two distinct
subproblems by fixing the said variable to either zero or one. That way, we have generated
two subproblems which are then solved. This iterative procedure continues until all branches
of this tree-like computation scheme have reached an integral solution. One with the maximal
objective function value is then considered optimal. An example can be seen in Figure 3.3.
Various techniques which allow us to avoid computation on some branches are described in the
implementation subsection. They all exploit the fact that the solution of an ILP relaxation overes-
timates the optimal ILP solution (feasible region of an LP is a subset of that of the corresponding
ILP).
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Figure 3.3: An example of the branch-and-cut computation tree which solves subproblems in
the BFS order. Each of the points P, represents a relaxed subproblem. An integral solution is
reached in each leaf.

3.3.4 Clique violations

An important computational part of each node in the branch-and-cut tree is the violation
detection. In this subsection we show that it is possible to detect maximal sets (cliques) of edges
in a crossing and independent set violation, instead of dealing with pairwise conflicts. Stronger
bounds introduced this way enable us to contract the polyhedral search space of the relaxation,
bringing it closer to the feasible arboreal matching much faster than with the naive approach.

Let T} = (V1,E}) and T, = (V,, E>) be rooted trees with roots r; and r,, sets of leaves £ and
L,, and parent mappings 7; and 7, respectively. For any two vertices p,q € V;, we denote a
path from p to ¢ by [p, g|. Furthermore, let x* be a fractional solution to the LP relaxation in any
of the branch-and-cut tree nodes. A separation problem pertains to finding a hyperplane which
separates x* from the polytope containing all feasible solutions (arboreal matchings). We will
give two procedures which separate the relaxation based the on crossing and independent set

violations. An example of their outcomes can be found in Figure 3.4.

A maximal set of (pairwise) crossing edges between two root-to-leaf paths [r1,¢1], [r2,¢5]
can be obtained using the following iteration. In the first step, we fix an edge between r; and ¢
and push the edge between them into the set Q.. According to which of the fractional solution
components is larger, we either fix | and move to 7(¢,) or fix ¢, and move to the descendant of
r1 along the path [r],¢;]. The edge between the new node and the fixed one is pushed into Q..
This procedure continues until we have reached the edge between ¢; and r,. In a symmetric case,
we can also start from the edge (¢;,r;), move downwards along the path [r;, ¢,] and upwards

along the path [r1,/;]. Since every two edges in Q. are incompatible in the crossing sense, the

36



Arboreal matching CHAPTER 3. TRAJAN

AVAAYA =

(a) crossing clique violation (b) independent set clique violation

Figure 3.4: Clique ancestry violations.

following sum must not exceed 1.

Y x<l (3.15)
(i,J)€Qc

Using a dynamic programming approach, we have efficiently identified a crossing edge
clique which is most violated, ie., one for which the sum (3.15) is the largest. Let D[u,v] denote
a dynamic table which values represent the maximum clique weight (with regards to the sum
(3.15)) between subpaths [ry,u] and [v,£;]. Its values are assigned while moving along the

root-to-leaf paths such that
Dlu,v] = x;, +max {D[r(u),v],D[u,v']}, (3.16)

where 7(v') =v and D[ry, 5] = x; ;. The maximum x*-weight clique can then be computed
by backtracking from an entry in D corresponding to (¢1,r;). An illustration of the procedure is

shown in Figure (3.5).

Figure 3.5: An illustration of the step in the dynamic program in which we assign D|u, v] (blue)
by selecting a maximum of the green edges.

The time complexity of this procedure is obviously O(|Py|| P>

), where P = [ry,¢;] and
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P> = [r2,£2]. In order to compute all maximal pathwise violations, we have to run this procedure
a total of |£||£;| times. Since many of the nodes are shared between different paths in a tree,
we propose the following generalization of the dynamic programming scheme obtained by
considering all children nodes of v during the procedure. This algorithm, formalized in the

following theorem, is depicted in Figure 3.6.

Theorem 3.3 Given a fractional solution x* we can determine whether a crossing edge clique
inequality (3.15) is violated in time O(|V}||V]).

Proof. For u € Vi and v € V,, let D[u,v]| denote the weight of a maximum x*-weight clique

between [r,u] and [v, ¢;], for any leaf ¢; in the subtree rooted at v. Then

Dlu,v] = xi, +max {D[n(u),v], max {D[u,v’]}}

Vir(V)=v

and

D[, ;] = x;,y,,V leaves {; € T

Figure 3.6: An illustration of the step in the dynamic program in which we assign D|u, v] (blue)
by selecting a maximum of the green edges. This time we consider all children nodes of v.

As we did for the crossing edges violation, we will now present a dynamic programming
procedure which lifts multiple pairwise independent set conflicts into a maximal violation set
(clique). Such set consist of edges that are all incident to nodes on a common root-to-leaf path
in one tree, and are incident to nodes in the second tree that all lie on distinct root-to-leaf paths,

i.e., are independent. Again, edges in such clique Q; must satisfy

Y xj<1 (3.17)
(ivj)EQi
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For a root-to-leaf path [r1,¢;] in T we start by assigning weights x;- to nodes in 75 so that

xi(v) = Z Xy YV E V.

uc [I’l ,Zj]

Note that this can be done in O(|V}||V2|).

Now we define a dynamic table D} [v] which will keep track of maximum x’j—weight cliques
between [rq,/;] and an independent set in the subtree of 75 rooted in v. We will traverse the table
starting from the nodes in £, gradually moving upwards towards r;. In each visited node v we

will take a maximum of its x’j weight and a cumulative x’j weight of its direct descendants.

D}[v]:max{x'j(v), ) D}-[v’]}

v (v)=v
The procedure is illustrated in Figure 3.7. The maximum x*-weight of a clique is then given
in D} [r2] while its elements can be determined by a backtracking algorithm. Analogously, we
can define a dynamic table D?[u] between [r2,¢;] and an independent set in the subtree of T
rooted at u. Finally, the maximum weight semi-independent clique constraint can be computed

as
max { max D’ max D? .
{KIE,C] J[rZ]’ lieLy l[rl]}

Formally, the separation of the independent set clique constraints with respect to 77 and 75

is given by the following theorem.

Theorem 3.4 Given a fractional solution x* we can determine whether an independent set clique
inequality (3.17) is violated in time O(|V;||V2]).

3.4 Implementation

Trajan has been implemented in the C++ programming language. It is comprised of multiple
solvers, but the focus of this paper will be on its branch-and-cut part. In this section we will
present its most important features. Inputs to Trajan branch-and-cut solver are trees encoded in
the newick format and a dissimilarity measure of choice. It returns an optimal matching and its

score, which is consistent with the objective function (3.6).

3.4.1 Basic framework

Trajan’s branch-and-cut procedure has been implemented as a framework which provides

several basic methods used to construct an arboreal matching ILP solver. Its backbone is an
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Figure 3.7: An illustration of the step in the dynamic program in which we assign D}- [v] (blue)
by selecting either a maximum of the sum of x*-weights on blue edges and table entries for
green nodes (children of v).

arbitrary data structure Open which stores branch-and-cut tree nodes in order in which they are

to be evaluated. The basic functionality is presented in Algorithm 9.

Algorithm 9 This procedure computes an optimal arboreal matching between trees 71 and 7>
for a given vector of weights w.

1: procedure SOLVE(T], 15, w)

2: generate solution vector x and set it to O

3 generate matching constraints from 77 and 75 and store them in matrix A
4: initialize structure Open with the initial problem (w,A)

5: while Open not empty do

6 P = Evaluate(Open)

7 xp = SolveSubproblems(P)

8 if xp is integral then

9: set best solution to xp if it has higher objective function value

10: else

11: GenerateSubproblems(Open,xp)

12: end if

13: end while

14: return best solution and objective function value

15: end procedure

Depending on the selection of the structure Open, method Evaluate selects one (or several)
subproblems which will be solved by the method SolveSubproblems. A more detailed explana-
tion of the subproblem selection will be given in the section about branching and rounding. For
each subproblem, method SolveSubproblems invokes the SolveSubproblem method presented
in Algoritm 10. It iteratively solves the given subproblem by resolving the LP relaxation and

adding violated constraints. If the relaxation objective value is lower than the currently best
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known one, the whole branch will be cut and omitted from further computation. This procedure
is called pruning. Any found integral solution will be compared to the best integral solution
(upper bound) found so far and the best one will be kept. The nodes with fractional values in the
solution will use different rounding schemes presented further in the section about branching

and rounding in order to generate new problems and add them to Open.

Algorithm 10 This procedure solves a subproblem P = (w,A).

1: procedure SOLVESUBPROBLEM(P)
2 let x be a previous solution with some fixed variables

3 while True do

4 x = solve P with GENO using x as the initial solution

5: if clique violations exist in x then

6 add constraints to A

7 else if w” x less than objective value of best solution then
8

9

return NIL
end if
10: end while
11: return x

12: end procedure

3.4.2 Branching and rounding schemes

Function Evaluate in Algorithm 9 selects one or more subproblems from data structure Open
and hands them over to the solver. We have implemented three main branching strategies which

have been used in experiments - depth first, best first and hybrid strategies.

Depth first strategy uses stack as a data structure Open. When a variable is fixed, it evalu-
ates both generated subproblems. A subproblem with a lower objective value is pushed to the
stack before one with the higher objective value. As a result, this procedure traverses a single
root-to-leaf path in the branch-and-cut tree always taking branches with a higher objective value.
The advantage of this strategy is that it acquires the first integral solution (upper bound) fairly
quickly so it can start pruning branches. Best first strategy uses an array as a data structure
Open. It solves all nodes in Open and branches on the one with the highest objective value.
Even thought it finds an integral solution slower than the depth first strategy, it is often closer
to the optimal and allows better pruning. An example of the depth first and best first approach
can be seen in Figure 3.8. By combining the aforementioned strategies we get a hybrid strategy
which evaluates Open data structure in a depth first order until first integral solution is computed.

Afterwards, it evaluates the rest of the branches using best first approach.

New subproblems are generated by the function GenerateSubproblems in Algorithm 9 by

selecting and fixing a variable to both one and zero. The decision which variable should be fixed
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100

100

Figure 3.8: A comparison between depth first (top) and best first (bottom) branching strategy
on a branch-and-cut tree. The objective function values are written above, while the order of
computation is written inside the node. Pruned branches are marked with a red cross. Depth

first approach obtains its first integral solution after 6 computations and it computes 11

subproblems in total, while the best first approach finds first integral solution in the 8-th out of 9

subproblems.

can be done in several ways. We can select any x;;, which hasn’t yet been fixed, according to

any of the following criteria:
1. "least fractional” variable - argmax, ; |% —xijl,
2. ”most fractional” variable - argmin, ; |% —xijl,
3. maximal weight - argmax; ; wij,
4. maximal objective function contribution - argmax; ; w;;xij,

5. x;j is in conflict with the least amount of variables.

By selecting any combination of the branching and rounding strategies we get different
branch-and-cut solvers. It is possible to select multiple strategies and run them in parallel. The
advantage of this is that these solvers share information about the best current solution. This
way, a solver which has computed the best integral solution can share it with others in order

to prune more branches. A special form of parallelism has been implemented for the best first
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branching scheme. Trajan may use an arbitrary number of threads to compute solutions to all

subproblems in Open so the best solution among them is obtained faster.

3.4.3 Greedy strategy

A greedy algorithm is used to compute an approximate lower bound in each of the LP relax-
ations Trajan is solving. It iterates through all variables Trajan has not yet fixed and attempts to
obtain a feasible solution by fixing as many variables as possible to 1, without violating any of
the clique constraints, starting from those variables with the highest weight (w;;). This approach
is very fast, but the results it returns are often very far from optimal. Consider the example
given in Figure 3.9. Greedy strategy would include the blue edge between x, and y, in the
solution which is in conflict with all green edges while the optimal solution includes all green
edges between nodes x; and y;_| for i = 2,...,n. Thus, the gap between the greedy and optimal

solution can be made arbitrarily large by selecting n > 4.

)

..\.:_-

Figure 3.9: The edges between nodes of the paths x3,...,x, and yy,...,y, are colored green
and blue. The weight of the blue edge is 2, while the weight of green edges is 1. The weight of
the rest of the edges (not displayed) is 0.

Hence, greedy strategy is used to provide an initial (integral) solution as well as to approxi-
mate the lower bound in each iteration. A pseudocode of the greedy procedure is presented in
Algorithm 11.

If the feasible solution generated by the greedy strategy is better than the currently best
integral solution obtained by Trajan, it is used instead. This heuristic approach is particularly
useful for pruning branches where a lot of variables are fixed to zero and before the first integral
solution has been computed.

3.5 Experiments

In this section computational results will be given and discussed. We have generated datasets
which consist of 10000 trees with 50 leaves as well as 1000 trees with 75 and 100 leaves from
Yule and Uniform distributions which create biologically plausible random trees, where all phy-

logenetic trees are equally likely under the former model, and the latter one assumes a constant

43



Experiments CHAPTER 3. TRAJAN

Algorithm 11 Greedy algorithm used to approximate an integral solution of the LP relaxation.
Let x be the sequence of variables x;; and w of weights w;;.

1: procedure GREEDY (x, w)

2 v = variables from x sorted by their respective weights in w
3 fori=0,...,|V|—1do

4 if v[i] is fixed then

5: continue

6 else if v[i] not in conflict with v[0,...,i— 1] then

7 set the component of x corresponding to v[i] to 1

8

9

else
: set the component of x corresponding to v[i] to O
10: end if
11: end for
12: return x

13: end procedure

speciation rate [9]. We have also obtained 1000 real-world green algae phylogenetic trees from
[69] and a dataset with flowering plants [92]. Trees will be compared using the metrics induced

by the symmetric difference and Jaccard weight dissimilarity measures.

This section is comprised of four main parts. In the first subsection we will argue about
metrics induced by Jaccard weight being the generalization of RF metrics. The second subsec-
tion will deal with the importance of two aforementioned constraint sets. Then, we are going to
give general results regarding the distance distributions and running times for all of the datasets.
Finally, we will give a comparison between ours and the naive ILP formulation. The results may
also be found in [13].

All tests were conducted on a server computer with two 2.30 GHz Intel® Xeon® E5-2697
v4 processors with 18 cores / 36 threads each, 320GB @ 2,40GHz DDR4 memory operating on
Scientific Linux 7.5 (Nitrogen). C++ compiler used to compile Trajan was GCC 4.8.5 20150623

and all running times were captured using the GNU time command.

3.5.1 Convergence to the RF metrics

We have already mentioned that the metrics induced by Jaccard weight converge towards
the original RF metrics when their orders increase. In this subsection we will experimentally
support that claim, i.e. that the metrics induced by Jaccard weight are a generalization of the RF
metrics. To that end we have analyzed instances from 100 leaf Yule and green algae datasets
which we tested subsequently with increasing values of Jaccard order k until convergence was

reached. The convergence point was confirmed by the tool presented in [10].
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In Figure 3.10 we present the distances for green algae dataset. For each integer k we have
made a box-and-whiskers plot depicting the normalized distance distribution quantiles while
the dashed horizontal black line at y = 1 represents the RF distance. Distances of the metrics
induced by Jaccard weight indeed converge towards the ones obtained by the RF metrics. If we
were to run unconstrained matching instead of arboreal matching, it would not be clear as to
how many clique constraints do the computed matchings violate. Figure 3.11 shows that with
increasing values of k the number of conflicts decreases. Note that zero violations must occur
once the non-arboreal distance converged to the RF distance. The same figure also shows the
difference in distance distributions of the metrics induced by Jaccard weight with regards to
arboreal matching and unconstrained matching. We can see that as Jaccard converges towards

RF, unconstrained matching becomes a good approximation of arboreal matching.

0.95

(.90
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=
@
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Figure 3.10: Normalized Jaccard weight distances of the green algae dataset for increasing k.

We have run the same experiments on the random instances from both distributions. Figures
3.12 and 3.13 show the results obtained for the 100 leaf instances from Yule distribution which
follow the same pattern as the green algae instances with the convergence being reached for a

far smaller k.

3.5.2 Impact of the constraint sets

In the last subsection we have argued that for a sufficiently large k unconstrained matching
does not violate the ancestry in the context of arboreal matching. Since the RF metrics can be
computed in polynomial time and computing its generalization is NP-hard, it is important to

argue the benefits of computing the arboreal matching over the RF metrics.
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Figure 3.11: A comparison of unconstrained and arboreal matching distance distributions with
a number of produced conflicts for the green algae dataset.
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Figure 3.12: Normalized Jaccard weight distances of the 100 leaf Yule dataset for increasing k.

Figure 3.14 represents the histogram of distances computed using Jaccard weight of order
1 from 50 leaf uniform dataset while the RF distances for the same dataset fall within only 3
different values — 92, 94 and 96. Most of the instances (slightly less than 80%) produce an RF
distance of 96. It is clear that the generalized RF metrics provide a far greater “resolution”, i.e.,
a wider distance distribution. This means that the generalization of the RF metrics could be
more suitable for the procedures which rely on detecting slight differences between the trees.
The rest of the random datasets yielded comparable results where the distance distribution of the
Jaccard weight induced metrics was wide in comparison to the very discrete RF distances. The
RF distances of green algae instances are slightly more diverse as can be seen in Figure 3.15.
But, akin to the previous results, the generalized RF metrics show a wider distribution which is

presented in Figure 3.16 (blue).
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Figure 3.13: A comparison of unconstrained and arboreal matching distance distributions with
a number of produced conflicts for the 100 leaf Yule dataset.
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Figure 3.14: Distribution of the distances of the 50 leaf instances from uniform distribution
with Jaccard weighted arboreal matching.

On the other hand, as hinted in Figure 3.11 and Figure 3.13, there exist significant differences
between arboreal and unconstrained matching for Jaccard weight of order 1. Unconstrained
matching produces a lot of conflicts of which around 95% are independent set violations. In
Figure 3.16 we show the demeaned distance distributions of arboreal and unconstrained match-
ing for green algae instances. We have run a similar experiment on the green algae instances
using unconstrained matching with metrics induced by symmetric difference. The resulting
distribution is given in Figure 3.17. The summary of the distribution of conflicts for this and all
following experiments in this section is given in Table 3.1.
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Figure 3.15: Distribution of the RF distances of the green algae instances.
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Figure 3.16: Demeaned distribution of distances (arboreal matching and unconstrained
matching) induced by Jaccard weight from green algae dataset.

It has been shown in [11] that a polynomial time algorithm exists for computing matching
which does not violate crossing edge constraints when using symmetric difference dissimilarity
measure (MC distance). More precisely, in [11] it was proven that distance doesn’t change in
the presence of crossing constraints. Therefore, on the green algae dataset, we have computed
matchings which only satisfy crossing edge constraints and counted the amount of produced
independent set conflicts (see Table 3.1). It is worth noting that not a single instance ended
up having no conflicts. Also, the distances we computed agreed with the values obtained by
unconstrained matching. Following the previous experiment, we have also tested how does

the green algae dataset perform with arboreal matching and Jaccard induced metrics of order 1
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Figure 3.17: Demeaned distribution of the distances (arboreal matching and unconstrained
matching) induced by the symmetric difference from the green algae dataset.

against the same metrics without explicitly enforcing independent set constraints. The distance
distributions are shown in Figure 3.18, while the number of produced conflicts is located in Table
3.1. Like before, no matching was conflict-less, which indicates the importance of enforcing the
independent set constraints in computation of the arboreal matching.
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Figure 3.18: Demeaned distribution of the distances (arboreal matching and crossing) induced
by Jaccard weight from the green algae dataset.

3.5.3 Distribution details and running times

In Figures 3.20 and 3.14 we present the distance distributions for 10000 random trees from

uniform distribution using arboreal matching with symmetric difference and Jaccard weight,
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Table 3.1
Distribution of the conflicts for unconstrained matching and matching with crossing constraints.

Mean St. dev. Q1 Q2 Q3
Matching Symmetric | 216.32  60.86 | 176.75 205.00 252.00
Jaccard | 141.69 4891 | 103.00 142.00 174.25
Matching with Symmetric | 202.40  60.14 | 163.00 190.50 238.25
crossing constraints | Jaccard 91.05 38.31 | 63.00 85.00 113.25

Table 3.2
Summary for the random 50 leaf datasets.
Distance % data within n-th st. dev. Running time (s)
Mean  St. dev. 1 2 3 Min Mean Max

Uniform 50 | Symmetric | 589.37  72.87 | 40.06 95.66 99.02 3.85 50.46 565.53
Jaccard 84.75 277 |39.15 95.52 98.88 0.17 3.98 92.54
Yule 50 Symmetric | 425.40 28.46 | 38.06 95.27 99.46 2.10 22.59 189.23
Jaccard 83.92 1.72 | 3833 96.58 99.48 0.09 0.85 21.14

respectively. For both dissimilarity measures around 99 percent of the distances fall within 3
standard deviations around the mean, while around 95% and 40% of the distances are within
2 and 1 standard deviations, respectively. This may infer that both symmetric difference and
Jaccard weight induce comparable resolution. Figure 3.19 gives a plot of running times (Trajan)
for each of the dissimilarity measures with the values sorted by symmetric difference running
time. It is clear that the empirical running times are in favor of Jaccard weight by quite a margin.

Summary for the dataset is given in Table 3.2.
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Figure 3.19: Running times of 50 leaf instances from uniform distribution with symmetric
difference and Jaccard weight.

Trees with 50 leaves from Yule distribution yield similar results and the main results are sum-

marized in Table 3.2. We can see that the “resolution” is similar regardless of the dissimilarity
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Figure 3.20: Distribution of the distances from 50 leaf uniform distribution using the
symmetric difference.

measure used while the running times are again lower for the Jaccard weight. We have presented
the results of the remaining random datasets, namely the 1000 uniform and Yule instances with
75 and 100 leaves in Table 3.3.

Figures 3.16 and 3.17 (blue) depict the distance distributions for the green algae dataset. The
distance induced by symmetric difference has a mean of 580.05 and a standard deviation 113.80
while the Jaccard distances have a mean 52.91 and a standard deviation 7.21. Both distributions
have more than 99% of their values within 3 standard deviations while Jaccard has 96.6% within
2 and 66% within 1. On the other hand, symmetric difference places 94.99% of the distances
within 2 standard deviations and 69.34% within one. Similarly to the random trees, the compu-
tation time for the green algae instances largely favored Jaccard weight which mean time was
4.77 seconds as opposed to 459.05 seconds required for the symmetric difference. The extremes
were relatively close to mean for Jaccard with a minimum of 0,65 seconds and a maximum of
24.40 seconds. Unlike the former, the symmetric difference saw a minimum of 14.64 seconds,

which was even quite above the mean for Jaccard, and a maximum of 4210.82 seconds.

The common trend for all data is that Jaccard weight and symmetric difference offer com-
parable resolutions while the running time of the symmetric difference is larger. To summarize,
we have tested the properties of the metrics induced by symmetric difference and Jaccard weight
which did honor ancestry relations. Both have been tested on simulated and real world datasets
for the differences in “resolution”, i.e., how well can the metrics discern between various trees,
relations to other metrics such as RF and MC, and running time. We have concluded that the
“resolution” of both metrics is similar while the running time favors Jaccard weight by a large

margin.
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Table 3.3
Main results for the 75 and 100 leaf datasets.

Uniform75 Yule75 Uniform100 Yule100

Sym Jaccard Sym  Jaccard  Sym Jaccard Sym  Jaccard

Distance | Mean | 1138.46 132.32 | 753.88 129.34 1830.27 | 179.18 1124.18 174.52
Stdev | 141.42 3.30 43.76 1.89 243.41 3.53 60.56 2.00
% data 1 45.50 40.60 41.00 35.60 39.40 37.80 37.88 41.80
within 2 94.20 94.20 95.40 96.20 95.80 94.00 95.79 94.80
n-th st. dev. 3 98.80 98.40 99.20 99.00 99.20 99.80 99.40 99.60
Running Min 43.09 0.30 16.86 0.20 221.39 0.57 82.61 0.22
time (s) Mean | 379.50  23.35 163.31 1.66  2514.42 | 103.05 1000.10 4.27
Max | 5676.33 1990.04 | 3266.62 22.07 27071.3 | 5947.51 35059  75.38

3.5.4 Trajan vs naive ILP

In this section we argument the claim that the naive ILP formulation is not practical and that
Trajan may be used to efficiently solve problem instances which the naive ILP formulation is
unable to tackle. Also, we use the bad performance of the naive ILP as an demonstration of
the hardness of the problem of finding the optimal arboreal matching. The benchmark has been
conducted using the same solver, CPLEX version 12.4, for which we have implemented both
the naive ILP and Trajan’s formulation. We haven’t used Trajan’s standalone implementation
for the purpose of comparison. The dissimilarity measure used was induced by Jaccard weight
of order 1. All-against-all comparison has been conducted on the 100 phylogenetic trees from
the green algae dataset [69] and the flowering plants dataset [92]. All of the 4950 green algae
problem instances have been solved using Trajan’s formulation in slightly more than an hour,
while the implementation of the naive formulation took as much as 9415 seconds for a single
problem instance. The results are presented in Figure 3.21. We have observed similar running
times on the flowering plants dataset. While Trajan solved 4950 larger problem instances in 17
seconds on average, the naive formulation terminated due to exceeding the memory limit of 80

GB after 100 instances and roughly 49 hours of computation time.
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Figure 3.21: A comparison of the running times for a CPLEX based implementation of the
naive ILP formulation and Trajan’s formulation.

The results of our benchmarks suggest that Trajan’s formulation is both practical and superior

to the naive one.

3.6 DAG generalization

It is possible to generalize the problem of finding an optimal arboreal matching to directed
acyclic graphs (DAGs). Let G| = (V},E) and G, = (V,, E,). We can generalize our definition
of ancestry partial ordering to DAGs. Then, two edges (i, j) € E; and (k,/) € E; are considered
compatible if i < k < j < /. By redefining the set Z of pairwise conflicts in the naive ILP

formulation, a problem of maximum weight arboreal matching is defined for DAGs.

Generalized clique constraints (crossing and independent set as seen in Figure 3.4) are still
valid for DAGs, but the separation algorithms need to be re-defined. Let & be a mapping which
maps a node u in a DAG to a set of its parents. Then, we can generalize the crossing clique

constraint dynamic table to

Dlu,v] :vaerax{ max D[u,v], max {D[u,v’]}}
w'emn(u) vim(V)=v
and
Dlri,4j] =x;,, Vrootsr; € Gy, Vleaves ¢ € Gy.

The running time of this procedure is O(|E}||E>|) and, as such, it is still polynomial. Note that
this scheme is valid for a fixed path in one of the DAG-s against the entire second DAG. In
order to determine the maximal violation, we must run the procedure for all paths in the first

DAG. Unfortunately, determining the most violated independent set clique, as stated in [45],
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is NP-hard. The construction and implementation of an algorithm which solves this problem

defines one of the aims of our future research.
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CHAPTER 4

Fortuna

On a high level, fortuna quantifies abundances of the equivalence classes of short read sam-
ples and identifies novel splicing events using a refined annotation. Prior to explaining the
method, we will present the current state in the literature and explain the principles of two ad-
ditional data structures which are essential parts of fortuna. We will start the method section
by giving our definition of the equivalence classes of the reads and relating it to the existing
work. Fortuna’s workflow, which the rest of the method section will closely follow, consists
of three steps: index building, alignment and postprocessing. Given an annotation and a ge-
nomic sequence, fortuna builds an alignment index used in the alignment step. Such an index
is constructed by supplementing (refining) the annotation in a novel way which allows for the
detection of alternative splicing events. It consists of a set of transcript fragments which repre-
sent regions of the genome of a particular interest. After the construction of an index, fortuna
uses kallisto [14] to obtain the alignment information for the reads. In the postprocessing step,
the alignment information is processed in order to quantify the abundances and identify novel
splicing events using a well defined set of rules. In order to process novel splice sites, we propose
transcript refinement with the assistance of a genomic aligner. This procedure allows us to use
the information retrieved by tools such as [30] to refine our equivalence classes to, potentially,
capture additional novel splicing events. Fortuna has been extensively tested and the results
of the tests are presented in the results section. Three types of datasets have been processed
in our experiments - simulated datasets with moderately sized samples, datasets with the data
coming from autism patients with huge sample sizes and datasets with samples coming from a

subspecies of a fly.

4.1 Additional definitions and data structures

In this section we are going to explain two data structures which are used by fortuna: red-
black trees and suffix tries. They are used to represent the annotation and the alignment index,
respectively, in the memory. Before we proceed with explaining them, we give some basic

definitions. For the sake of simplicity, let the entire genome be represented as a continuous
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string of nucleic acids obtained by concatenating the chromosomes. Let T be a transcriptome
annotation such that any transcript ¢ € T is given by a sequence of exons sorted by their genomic
coordinates. Due to the fact that exons coming from different transcripts may overlap, we alter
the definition in such way that each ¢ is given by a sequence of disjoint bins called subexons
which we define as minimal exonic regions bounded by splice sites or transcription start and
end sites. Like it was the case with exons, subexons are sorted by their respective genomic
coordinates. We illustrate the procedure with the following example. Let ¢1,#, € T be transcripts
containing two exons each, as depicted on Figure 4.1. First exons of both transcripts define three
subexons s1,57,53. Last two exons in both transcripts are identical and, thus, they define a single

subexon sy4.

L
—
. L]

S1¢ 52 53 Sq

Figure 4.1: Subexon generation based on known splice sites.

4.1.1 Red-black tree

Binary search trees are ordered tree data structures such that the values in each of their ele-
ments are greater than all values in their left child subtree and smaller than the values in their
right child subtree [23]. To search for an element with a value v in such tree can be achieved by
a guided DFS search. Knowing the properties of a binary search tree, for a given node, it would
be easy to deduce which subtree may contain v and perform a DFS search only in that subtree.
In an average case scenario, to search for an element in a tree with n nodes it takes O(Ign) time.
Inserting or deleting an element from such data structure takes, on average, the same amount of
time. Unfortunately, there exist cases in which the running times of all operations are O(n). One
such case is a tree in which we insert values 1,...,n in the ascending order. Its structure would
be linear, making the insertion and search operations run in O(n) time. In order to alleviate

these shortcomings, a notion of balancing the search tree has been introduced.

One such balanced tree variant is the red-black tree [6]. It is stated in [23] that, in addition
to the constraints set on an ordinary binary search tree, red-black trees have several additional
requirements. All of their nodes are colored either red or black. All nodes which have at most
1 child are introduced the empty children nodes which comprise the entirety of the tree’s set of
leaves. The root and the newly generated leaves are colored black. Children of the each red node
must be colored black. Lastly, any path from a node to a leaf contained in its induced subtree

must contain the same amount of black nodes. By following these requirements, the resulting
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tree structure is balanced in a way that every root-leaf path contains, roughly, the same amount

of nodes, thus making the basic tree operations run in O(lgn) time in every case.

One of important applications of a red-black tree is an implementation of a hash table which
uses it to resolve its conflicts. Due to the self-balancing property of a red-black tree, hash table
lookups (searches) and insertions are resolved in logarithmic time. Another essential application

of a red-black tree will be discussed further in the chapter.

4.1.2 Suffix trie

In order to minimize the amount of redundancy during its runtime, fortuna maintains a data
structure which allows it to efficiently keep track of the strings it is processing. We will use
the relation "C." to denote contiguous subsequences, i.e., if (a) C. (b), we say that (a) is con-
tiguously contained in (b). Let S be a data structure and (s) a string. We would like S to have
an insert operation such that (s) is inserted into it only if there exists no string () € S such
that (s) C. (7). If (s) is inserted into S, we want all previously contained strings (¢) such that
() Cc (s) to be removed. These criteria can be met efficiently using a data structure called the
suffix trie [16].

Our suffix trie implementation uses a tree data structure where each node represents an
element of the sequence. Additionally, each node contains a hash table which maps elements
of the sequence (keys) to children nodes with the same values. Sequences are stored such that
all of their suffixes are potentially inserted into the data structure. Because of the hash tables,
checking whether a sequence exists in a trie or its insertion is an operation which running time
is dependent on the length of the sequence itself as well as the number of currently stored se-
quences. The procedure is given in Algorithm 12. Note that newly instanced suffix trie contains

an empty root node which does not have a value.

Procedure Exists checks whether there exists a path in S which contiguously contains the
entire (¢) as its sequence of keys. We start from the root node and check whether its hash table
contains the key for the first element ¢; € (¢). If it does, we jump to that element and continue
searching for #,. This procedure continues until an element of (¢) is not found or the entire ()
has been iterated through. Suppose that hash tables in each of the nodes contain at most k keys
and that each key lookup is done in O(logk) (using a red-black tree), then the running time of
this procedure is O(|()|-logk). In our case, the set of possible keys will be finite, thus there
exists a constant K such that £ < K.

Now we will analyze the procedure Insert. It starts by selecting the empty root node and

adding it to the array L. For each element of (¢), iterating in the ascending order, we check
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Algorithm 12 Procedures which check whether a sequence (t) =1y, ...,1, exists in a suffix trie
S and which insert (¢) into S.

1: procedure EXI1STS(S, (1))

2 n = root node in S

3 fori=0,...,length((z)) — 1 do

4 if #; € hash keys of n then

5: n = hash table value of ¢; in n
6

7

8

9

else
return False
end if
end for
10: return True
11: end procedure

13: procedure INSERT(S, (7))
14: L = [root node of S]
15: fori=0,...,length((r)) — 1 do

16: for j=0,...,length(L) — 1 do

17: if 7; € hash keys in L[j] then

18: n = hash table value of ; in L[]
19: else

20: n = new node with value ¢;

21: insert n with key #; into hash table in n
22: end if

23: if i > 0 then

24: Ljl=n

25: else

26: append n to L

27: end if

28: end for

29: end for

30: end procedure
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whether it exists as a child of all nodes currently in L. If it doesn’t exist, we add it to the hashta-
bles of nodes in L. Then we update each non-root element of L and set them to their children with
the value of the current element. Finally, we append ¢; to L. By doing so, we are making sure
that all suffixes of () are inserted into S as well. Time complexity of Insert procedure in big-O
notation is not difficult to obtain. A sequence (¢) has O(|(z)|) suffixes, thus we are iterating
over at most O(|(¢)|?) elements. Each iteration consists of several constant time operations and
hash table lookup and insertion which both run in O(logk) time. Thus, the final running time is
O(|(t)[? -logk).

4.2 Literature review

During the past 20 years, RNA sequencing techniques have vastly improved in terms of
speed and cost to the point where having multiple samples sequenced and ready for analysis in a
course of a single day is a widespread phenomenon. Along the traditional genomic reference as-
sisted alignment methods [32][66][67], new transcriptome reference pseudoalignment methods
[14][78][94] started to appear. Their main feature is significantly lower running time. Despite
the running time discrepancies, the most popular genome reference aligner STAR outperformed
the most popular pseudoaligner kallisto in terms of accuracy as reported by [31]. Another short-
coming of pseudoaligners, as pointed out by [99], is their inability to capture some of the relevant
mapping information such as the exact mapping position. This leads us to the conclusion that
both types of software have their merits and that it would be beneficial to somehow use them
so that they complement eachother. In order to understand the complementarity at hand, we
will give a small introduction to both tools in the next two subsections. Finally, we will briefly

discuss the impacts of the downstream analysis of quantification.

4.2.1 STAR

STAR is a software which implements an algorithm designed to align large RNA sequencing
datasets using an uncompressed suffix array approach [73] and a reference genome. It uses a
seeding strategy which allows it to, to some extent, align reads correctly despite the presence of

sequencing errors and genomic variations.

Given two strings 1,57, suffix arrays are data structures which enable us to query whether
51 is a subsequence of s, in O(|s;|+1g|s2|) time. They are well suited for usage cases where s,
is constant and queries are expected to be numerous, such as in the alignment problem. A suffix
array is, essentially, a list of all suffixes of s, which holds information about the longest common
prefixes of its subsequent elements. Queries can then be performed as a slightly modified binary
search and are, therefore, faster than ones performed upon commonly used suffix trees [5]. The

downside of a suffix array is, as reported by [73], the time which it takes for one to be constructed
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- 3 to 5 times more on average than for suffix trees. For that reason, STAR constructs its suffix
array once per reference genome and stores it on the disk for future use. Compared to most other
aligners which use reference genome, STAR is quite fast due to a trade-off that has been made
by not compressing the suffix array. The cost is increased memory usage. Additionally, STAR
can perform a lot of independent computation in parallel using multiple processor cores. An

example of STAR’s capabilities may be found in [30].

A STAR alignment run can be divided into two phases - seed search phase and clustering,
stitching and scoring phase. Let r be a read sequence, i its location and G reference genome
sequence. During the first phase, for each read r, STAR sequentially searches for the maximal
mappable prefix (MMP) of r which is its longest substring that matches one or more substrings
of G. Once MMP has been found, this procedure is repeated for the unmapped parts of the read.
Using this approach, arbitrarily spliced reads are handled in a single pass. MMPs found in this

phase are used in the following phase.

The second phase of the algorithm consists of clustering of the seeds according to their
distance from a set of selected anchor seeds. Anchor seeds are determined by the number of
the genomic locations they have been mapped to. Generally, an anchor seed has fewer of them
which could point to a greater confidence in the accuracy of their origins. All seeds that are
within a user defined window around the anchor are stitched together into structures similar to
transcripts. Most of the time, a single read is aligned inside a single window, but exceptions
might occur where STAR considers multiple windows in order to compute an alignment. A
scoring scheme which penalizes various unaligned parts of the read is used to determine the best

(primary) alignment.

4.2.2 Kallisto

In contrast to STAR, kallisto searches for the compatibility between the reads and the se-
quences of a reference transcriptome. For a given read, it does not provide an exact mapping
location, but assigns it to a set of transcripts based on how compatible their nucleotide sequences
are. For that reason, kallisto is considered to be one of the pseudoalignment methods. The
aforementioned sets of transcripts define equivalence classes, so every read is assigned to a
class in a unique way making its pseudoalignment procedure well defined. In addition to the
pseudoalignments, kallisto provides the transcript counts as one of its outputs. Its workflow
consists of three steps - indexing, pseudoalignment and quantification. We will briefly discuss

each of them.

Index plays a similar role for kallisto as a suffix array does for STAR. Applying the ap-

proach as seen in [22][59], using transcriptomic reference instead of the reads, kallisto’s index
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generation consists of building a colored De Bruijn graph. Each color, along the path of a graph,
represents a single transcript. Let k be an integer constant greater than zero. Nodes represent k-
mers of the reference and are possibly colored in multiple colors depending on their association
with the transcripts. Multi-sets of the vertices on the same path induce k-compatibility classes
to which the reads will be mapped. Once such graph has been constructed, contiguous stretches
(contigs) which are colored the same have hashes of their k-mers associated to them for the ease

of searching.

Given an index constructed in the previous step, alignment is a relatively simple procedure
for kallisto. It pseudoaligns reads by shredding a read into k-mers and associating them with
their k-compatibility classes. In the end, for a read, an intersection of all k-compatibility classes
is computed which constitutes an equivalence class over the set of reads. Note that k-mers of
the read belonging to the same contig carry the same information on the compatibility classes.
Using the distances to the junctions going out of the contig, kallisto determines whether certain
k-mers even need their hashes queried. In most cases, kallisto does a hash lookup for only two

k-mers which significantly accelerates the procedure.

Once the reads have been assigned to equivalence classes, kallisto quantifies transcript abun-
dances using a likelihood function which is iteratively optimized using the EM algorithm which
has been used in the field for over half a century [20]. Since fortuna generates its own and
different counts using only pseudoalignment information from kallisto, the application of this

step will not be necessary.

4.2.3 Whippet

Another pseudoaligner which will be important to us as a competitor is whippet [96] due to
its speed. It utilizes a highly heuristic approach with an idea similar to that of kallisto where
a key difference is the fact that whippet is able to identify, but not classify, some of the novel

alternative splicing events.

Whippet builds a model of the annotation into contiguous splice graphs (CSG) which are
directed graphs whose vertices represent non-overlapping exonic sequences while the edges rep-
resent splice junctions between exonic regions or their adjacency. A path in such graph would
represent an isoform. CSGs are supplemented by additional edges representing theoretically
possible isoforms whose abundances are determined, in addition to the annotated ones, using
the EM algorithm. Another limitation to the whippet’s alternative splicing event discovery is its
inability of detection of the novel splice junctions which are not derived from the annotation, ie.,

which fall within disjoint exonic and intronic regions.
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Whippet builds its index by storing k-mers flanking each splice junction in its CSGs. As
was the case with kallisto, whippet hashes its k-mers for k£ < 32 using a hashing function
h(x) = ¥,;g(x;) -2/, where x, such that |x| = k, is a k-mer and g maps i-th nucleotide x; of x
to an integer such that A is mapped to 0, C to 1, G to 2 and T to 3. Each node in CSG contains
its position and length. After the indexing, whippet computes alignments by merging all CSGs
and doing a seeding step. It chooses valid seeds in each read based on the FASTQ quality
scores which map to a small number of positions in the index (less than 5 by default) and, if
the seeding fails, it considers the reverse complement of the read. After the seeds have been
mapped, they’re contiguously extended along the CSG. The alignment is considered successful

if it contains less than a predefined amount of mismatches (25% of the read length is the default).

4.2.4 Downstream analysis

As pointed out by [93], one of the main challenges of RNA sequencing data analysis is to de-
termine a set of units, like genes or transcripts, which change their expression level (abundances)
when the conditions in which the organism is change (e.g. disease). Analyzing the differences
between samples may provide valuable insight since most human genes which consist of multi-
ple exons can be alternatively spliced [35][76] and it is known that deviations from the regular

splicing process can have a significant impact on the organism [42].

Differential transcript usage (DTU) problem pertains to determining the changes in the abun-
dances of isoforms linked to alternative splicing. In [93] authors classify methods that deal
with it into three groups. First class consists of the assembly-based methods like the pipeline
[33][83][34]. They reconstruct transcripts that best explain the sampled reads which abundances
are then quantified. Second class [43] quantifies the abundance of reads that either support or
do not support a predetermined type of an alternative splicing event. Third class of methods
determines transcript expression by differential exon usage as a proxy [4][40]. They divide the
genome into counting bins whose abundances (supported by the reads) are analyzed. This class
is of importance to us because fortuna is able provide abundances of a particular kind of dis-
joint bins defined in the following sections, motivated by the alternative splicing. Furthermore,
fortuna can provide bin abundances compatible with [4]. Apart from the already mentioned
counting bins used by [4], there are a few more of note. For example, [65] defines counting
bins as combinations of isoforms, [86] as exon paths traced by pairs of reads, and [14] as sets of

isoforms.

Alternative mRNA splicing gives important insight into splicing induced by mutations re-
lated to autism [38] or tissue specific splicing as found in [60] which will be the focus of our
experiments. An example not covered by our experiments is cancer immunotherapy [48]. Itis a

rather recent method which utilizes the ability of T cells to reject tumor cells by binding to their
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antigenic peptides. The most prominent drawback of this method lies in our lack of knowledge
of tumor-specific antigens for most cancer types [79]. Alternative splicing information, derived
from the next generation sequencing transcriptomic data, has been proven to be crucial in the
identification of tumor-specific mRNA processing events which increase the amount of suit-
able targets for immunotherapy. Mutations in splicing regulators, which may lead to abnormal
alternative splicing, were detected in numerous types of cancer, such as myelodysplastic syn-
drome, chronic lymphocytic leukemia, breast cancer, pancreatic ductal adenocarcinoma, uveal
melanoma and adenocarcinoma. In [48], it is stressed that the accurate identification of tumor-
specific mRNA splicing events is of vital importance for the efficacy of these immunotherapies.
This highlights the importance of selecting the right tool which can process short reads in order
to discover splice junctions which are not a part of the annotation. Having this in mind, we

proceed to explaining the methodology used by fortuna.

4.3 Method

In this section, we are going to give a theoretical background for the index building and post
processing steps. For the sake of simplicity, each sequence of genomic features mentioned in
this section will be considered to be sorted by the genomic coordinates of its elements in an

ascending manner.

4.3.1 Equivalence classes of reads

Fortuna counts the number of reads falling within the equivalence classes implied by the
mapping signatures of the reads. Given an annotation 7 and a read r of length /, a mapping
signature for r is a sequence of subexons which the read spans. This definition is consistent with
the ones given in [19][62]. That paves the way for a definition of equivalence between the reads

which will be instrumental for defining equivalence classes.

Definition 3. Let ry,rp be reads with their respective mapping signatures s1,s2. We say that r|

and r; are equivalent if their mapping signatures are equal, i.e. s| = 3.

Consequently, equivalent reads belong to the same equivalence class. An example can be
seen in Figure 4.2. Such definition of a mapping signature preserves the information about
the structure of a read allowing for the enumeration of the specific features supported by the
alignment. These include junctions [96] and different alternative splicing events. Reconstruction

of less granular equivalence classes proposed by [14][53] is also possible.

Kallisto considers two reads equivalent if they are compatible with the same set of transcripts,
i.e., to determine an equivalence class a read r with the signature s belongs to, one may compute

Necst(e), where #(e) denotes the set of transcripts subexon e is contained in. Following the
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Figure 4.2: Reads r; and r, belong to the same equivalence class induced by subexons s; and
s3 despite their different mapping locations. On the other hand, read r3 has a different mapping
signature which includes s;.

aforementioned procedure, it is possible to infer which kallisto’s equivalence class a signature
belongs to without additional read processing. Thus, given an annotation and signature counts,
reconstruction of kallisto’s counts is straightforward. On the other hand, a backward conversion
cannot be achieved without the additional processing of all alignments since two different reads

belonging to the same kallisto’s equivalence class may have different mapping signatures.

Yanagi [53] is a tool which divides the transcriptome into disjoint segments used by pseu-
doalignment tools in order to produce segment counts instead of the transcript counts. The
authors argue that using segments as equivalence classes provides an advantage over transcript
based equivalence classes. Yanagi’s equivalence classes are formed by merging consecutive ex-
onic sequences in which no alternative splicing happens. The main difference between Yanagi’s
and kallisto’s equivalence classes is that kallisto allows for the existence of exonic gaps within
their equivalence classes, while Yanagi’s classes are strictly connected, i.e. do not skip exonic
regions. For a parameter L (which controls the degree of, so called, L-disjointness) fixed to the
read length, the conversion from fortuna’s equivalence classes can be done by merging consecu-
tive subexons coming from the same set of transcripts. As it was the case with kallisto, backward

conversion would require additional read processing.

As a result, both yanagi and kallisto may not offer enough insight into the features supported
by the alignments without potentially costly postprocessing steps akin to the ones regularly used

along with the exact genomic aligners such as [30][66].

4.3.2 Extended annotation

A common drawback of pseudoalignment tools such as kallisto is their inability to capture
reads supporting events which are not annotated by some transcriptome annotation 7. Here we
define an extended transcriptome 7’ that extends 7 by a well-defined set of novel alternative
splicing events. Let 7, be the set of transcripts annotated for a given gene g. We extend T, by

one of the sets of transcripts 7!, i = 1,2,3, where Tg1 is defined as an empty set.

Definition 4. ng contains all transcripts ¢’ that can be generated from a transcript ¢ € T, by
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skipping exons in ¢ and by modifying the boundaries of the remaining exons consistently with
donor and acceptor sites observed in other transcripts in 7,. Any remaining exon in 7 is a

sequence of subexons (sy,s2,...,sy,) defining a continuous region along the genome such that
o there exists i € {1,...,m} with s; €1,
* for any two subexons s;, ;1 there exists a transcript #; € T, with s;,5;11 € 11,

* there exist transcripts 71, € Ty such that s defines a splice acceptor in 71, and s, defines

a splice donor in #;.
Definition 5. Tg3 contains all transcripts t = (51,52, ..,5p), such that

* for any two subexons s;,s;11 that together define a continuous region along the genome,
there exists a transcript t; € T with s;,5;1 € t1 or there exist transcripts #;,3 such that s;

defines a donor site in #, and s;; 1 defines an acceptor site in 3,

* for any two subexons s;, s;+1 that enclose a non-empty sequence gap, there exist transcripts

t1,tp € T such that s; defines a splice donor in #1, and s;;.; defines a splice acceptor in 1,

* s1 and s, are annotated transcription start and end sites, respectively.

It is trivial to verify that Tg1 C ng C Tg3. The set T’ can now be defined as the union of all

T, U Tgf for a given i, i.e.
T'= | T,UT}.
g gene

Three sets used to extend 7" represent the degrees of freedom at which new transcripts are being
constructed and reflect fortuna’s running options. Any transcriptome extended by Tg1 remains the
same, thus this option corresponds to conventional pseudoalignment. Selecting the extension by
ng results in the exon recombination strictly confined to the boundaries of the original transcripts
and their exonic regions. Finally, Tg3 removes previous restrictions and allows for recombination
within the genes unhindered by existing transcript starts and ends. A partial refinement example

can be seen on Figure 4.3.

4.3.3 Transcript fragments

In order to determine signature counts, reads must go through the alignment process. For-
tuna does so using kallisto provided with an index generated using the information from the
extended transcriptome 7’ and read length /. Such index should be able to capture common
alternative splicing events, while retaining the information about the origin of the reads, i.e., the
equivalence classes they are contained in. To that end fortuna encapsulates several signatures

into more generic subexon sequences in such a way that the alignment step is computationally
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Figure 4.3: Assume that 71,7, € T and we extend T by T2. Transcript #3 is formed by skipping
an exon in ¢, t4 by extending the donor site in #; with the subexon located in 7, #5 by shortening
the donor site in , and #¢ from #; by using the splice site found in #,.

more efficient. Before we delve deeper into the matter, let us give a few technical definitions.

Let (s) = (s1,...,5,) be a sequence of subexons. We call subexons s; and s, boundary
subexons of (s), while subexons s;,i € {2,...,n— 1} are called internal subexons of (s). We

denote the set of internal subexons of (s) as I((s)).

We define mappings startg, start;, start,, start;, start; which return the starting genomic co-
ordinate of their argument, respectively - gene, transcript, exon, intron and subexon. Similarly,
we define mappings endg, end,, end,, end; and end, which return ending genomic coordinates of
their argument. Further in the text, as a slight abuse of the notation, we will drop the indices of

the previously defined mappings whenever there exists no ambiguity.

Assuming only transcripts from 7’ can be expressed, we propose the following theorem

which will be used as a backbone for the construction of our index.

Theorem 4.1 Let [ be the sample read length and assume that all transcripts in 7’ are expressed.
For a given gene g, let S, be the sequence of all its subexons induced by 7”. A subsequence

(s) € S, has a non-zero count if and only if it satisfies the following criteria.
(f1) There must exist a transcript ¢ € T’ such that (s) C, ¢.

(f2) A read of length / can be sampled from (s):

Z |s| >1
s€(s)
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(f3) If |(s)| > 3, aread of length / must be able to cover all subexon junctions implied by (s):

Y bl<i-2,

s€l((s))

i.e., there exists an interval of length / within (s) which contains all junctions present in
(5)-

Proof. Let (s) C S, satisfy (f1)-(f3). According to (f>), intervals of length / may be sampled
from (s). If |(s)| < 2 its junctions can be trivially covered. Otherwise, as implied by (f3), there
exists an interval which covers all junctions in (s). Finally, due to (f1), (s) is contiguous in some

t, thus reads of length / can coincide with the intervals.

Now, lets assume that (s) C S, has a non-zero count, i.e. there is a read r of length / which
has a signature corresponding to (s). Trivially, » must be sampled from the transcriptome, thus
satisfy (f1). In order for mapping to be possible, (s) must satisfy (f2). Finally, since r covers
all subexon junctions present in (s), it satisfies (f3). O

Note that a subsequence (s) with a non-zero count may be a signature only for the reads
mentioned in ( f3) which span all of its junctions. For technical purposes, let B, be a sequence of
nucleotides for a given gene g. Substring of B, ranging from the coordinate i to the coordinate
J we will denote as Bg[i, j| and a sequence of nucleotides corresponding to a subexon s as
Bg[s] := By [start(s),end(s)].

Definition 6. Let (s) = (s1,...,5,) be a sequence with a non-zero count in some gene g, K > 0

and "-" a string concatenation operator. For n > 1 we define mapping

seq((s),K) := B,[max(start(s;),end(s;) —K),end(s;)]
Bg[SQ] C .t Bg[snfl]
Bg/[start(s, ), min(start(s,) + K,end(sy))]

and seq((s),K) := Bg[s1] forn = 1. If n > 1 it maps the subexonic sequence to its correspoding
sequence of nucleotides such that the first and last subexons are trimmed to at most K bases from
their, respectively, start and end. All (s) such that n = 1 are mapped to their exact nucleotide

sequence.

A naive approach to constructing an index would be generating the following set:
Fhaive = {seq <(s), I—1— Z |s|> : (s) has non-zero count} ,
s€l((s))

which includes all non-zero count sequences such that all reads mapping to them are equivalent.
Set Fphaive could have many of its elements having long common subsequences, increasing the

computational time required for the alignment step due to the large number of similar mapping
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targets as can be seen in the example in Figure 4.4. An approach to the removal of the poten-

Figure 4.4: Assuming read length / = 100 and subexons have their lengths indicated on the
figure, with the subexon lengths as stated in the figure, a naive approach would generate a total
of 9 mapping targets with a high degree of overlap.

tially high amount of redundancy in F,jye would be enforcing a kind of a maximality principle
upon the non-zero count sequences. Namely, if (s) C. (s") in Fpaive, then (s) could be safely
removed if the trimming procedure was abandoned by setting K = 0. This would address the
problem of having too many mapping targets, but would introduce some new issues. There
could exist multiple sequences of subexons which overlap significantly as depicted in Figure

4.5. As can be seen in the aforementioned example, by applying such approach, we lose the 1
; Sy 52 S3
—— B8 200 §0
- —

Figure 4.5: Assuming read length / = 100 and subexons have their lengths indicated in the
figure, any read mapping exclusively to s, would map to 3 different mapping targets.

to 1 correspondence between the equivalence classes and mapping targets. Our novel solution
to this problem includes the aforementioned maximality principle in conjuction with a specific
trimming strategy. It trims long boundary subexons according to the worst case mapping which
contains only the first or the last junction, but as a trade-off we have to retain single subexons
which are large enough. The advantage of this approach is that each valid subexon is retained

only once. It is formalized by the following definition.

Definition 7. Let (s) = (s1,...,s,) have a non-zero count and if it holds that
(fs) either |(s)| = 1 or there doesn’t exist a non-zero count sequence (s’) such that (s) C. (s),
then we define (transcript) fragment f as a string of nucleotides seq((s), I — 1). For a fragment

/> we will denote its corresponding sequence of subexons as s(f).

It is trivial to conclude that, by using transcript fragments, one would alleviate shortcomings
as introduced in Figures 4.4 and 4.5. Transcript fragments are trimmed nucleotide sequences
corresponding to non-zero count subexon sequences which are either single, large enough subex-

ons or maximal in the terms of contiguous subsequence relation. It is easy to verify that the
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maximum length of a transcript fragment is 3/ — 4 bases and that no subexon in a non-trivial

fragment contributes to its sequence with more than [ — 1 bases.

Note that a read mapped to a transcript fragment consisting of more than two subexons might
not span it entirely. Fortunately, determining an equivalence class of a read with such alignment
can be done efficiently using its starting position and a simple linear search. A vast majority
of the transcript fragments generated from the human transcriptome are less than 8 subexons
long, making the linear search run in near atomic time. An example of the transcript fragment

generation from a single transcript can be found in Figure 4.6.

. B

Figure 4.6: Transcript fragments generation. A total of 8 transcript fragments have been
generated out of which 4 represent single subexons which are large enough with regards to the
read length.

Finally, for all genes, let F be a set of all transcript fragments over 7’ with regards to
I which is going to be used for the creation of an index. Following theorems deal with the

properties of F.

Theorem 4.2 Let [ be read length and 7’ an extended annotation. The following claims hold for

a set of all transcript fragments F over T’ with regards to /.

(1) F only contains the sequences which can be derived from 7', namely Vf € F, 3t € T’
such that s(f) C. 1.

(2) Any read of length [ sampled from 7 € T’ can be sampled from some f € F, thus F is

complete.

Proof. Statement (1) follows directly from (f}). Let read r of length / cover junctions in s(f) =
(s1,...,8n) Cct € T'. Thus, f trivially satisfies (f1)-(f3). If f satisfies (f1), we are done.
Otherwise, there must exist f’ € F such that s(f) C. s(f). Then, r can be sampled from f’. [

Theorem 4.2 proves that F, as we have defined it, retains all information from 7', while

not adding any additional sequences which might compromise the outcome of the alignment step.

4.3.4 Alternative splicing events

Identification of the novel alternative splicing events is the final step of fortuna’s workflow

which uses the alignment information provided by kallisto. Mapping information of each read
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will be represented in form of segment sequences which will generalize the term of mapping
signatures with regards to introns in order to capture intron retention. Alignments to introns
are obtained in the postprocessing step using a genomic aligner. We distinguish two different
types of segments: intronic segments and exonic segments. An intronic segment is defined as a
maximal contiguous subsequence of an intronic region not intersecting with any annotated exon.
We consider exonic segment to be a synonym to a subexon. Mappings start and end can be

intuitively defined for segments and segment sequences.

The extended annotation 7’ uses known information from 7 in order to supplement it, but
sometimes even that is not enough to capture certain types of events. For example, an unanno-
tated transcript might exist which defines a splice site such that its flanks do not coincide with
any annotated subexon boundaries or fall within an intron. For that reason, we propose using
alignement information obtained by an exact genomic aligner such as [30] to further extend the

annotation.

Definition 8. (Segment refine) Let each alignment done by a genomic aligner be defined as a
sequence of genomic coordinates ((a;,b;)). For each j=1,...,n we define segment refinement

as follows. Let (s) be a sequence of segments such that for each s € (s) holds (start(s),end(s))N
(aj b J ) # 0.

* If j =1, let b; be contained within s € (s). We partition s into segments spanning intervals
(start(s),bj) and (b;+1,end(s)).

* If j =n, let a; be contained within s € (s). We partition s into segments spanning intervals
(start(s),aj—1) and (a;,end(s)).

 If 1 < j <n,leta; be contained within s; € (s) and b; within s, € (s). We partition s into
segments spanning intervals (start(s),a; — 1), (a;,b;) and (b; + 1,end(s)).

Note that some of the aforementioned intervals may be empty. In that case, we skip creating

them.

Let f be a sequence of segments sorted by their genomic coordinates. We call f a segment
sequence. For each f we define maximal consecutive subsequences f1,..., f;, of f such that
there exist no sequence gaps between their respective elements. Therefore, for each f;, it holds
that

start(fy,) —1 =end(fi,_,), YVi=2,...,|fk|-

Note that f1,..., f, partition f. We say that a segment sequence is intronic if all of its elements

are intronic segments. If a segment contains at least one exonic segment, we call it non-intronic.

Definition 9. (Novel features) Let f be a segment sequence with its partition fi,..., f,. We

classify the following two features as an intron retention.
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(ir1) If fy is intronic and n = | f3| = 1.

(iry) Let fi, be an intronic segment which is flanked by exonic segments. A novel feature,
identified by start(f,),end(fi,) exists if 1 <i < |fy|Vk=i=1Vk=n,i=|fi|

Let f; and fi1 1 be non-intronic, ¢ an annotated transcript and an intron flanked by end( f;) and
start( fy41) not contained in any annotated transcript. We classify the following features flanked
by end( fi), start(f1) with regards to 7.

(es) If there exist exonic regions e, e, e3 in ¢ such that e; N fi,e3N fir1 # 0 and ez N fi,e2 N
fr+1 = 0, the feature is an exon skipping.

(ad) 1If there exist exonic regions ej,e; in ¢ such that f; Ne; # @ and start(fi 1) = start(ey), the

feature is an alternative donor site.

(aa) If there exist exonic regions eg,e; in ¢ such that f;, 1 Ney # 0 and end(f;) = end(e;), the

feature is an alternative acceptor site.

(ap) If there exist exonic regions e, e in ¢ such that e; N fi,e2 N fry1 # 0, end(f;) # end(e;)
and start(fi1) # start(ez), the feature is an alternative splice sites pair.

(ie) If there exists an exonic region e in 7 such that e N fi,eN fi1 # 0, the feature is an intron

in exon.

Any novel feature that satisfies none of the aforementioned criteria we classify as unknown.

Let #1,1p,t3 be transcripts in T with subexons s1,...,sg as depicted in Figure 4.7. If there ex-
ists a read spanning the junction between s; and s7, it would be regarded as a novel exon skipping
(ES). Similarly, s3 and s5 span a novel alternative donor site (AD), s4 and s¢ a novel acceptor
site (AA), s5 and sg a novel alternative pair (AP), s; and s3 a novel intron in exon (IE) while

the subexons sg and s7 including the intron between them constitute a novel intron retention (IR).

v - A
4 T pad— W
- ) Al
S 52 53 Sg S5 Sg 57 Sg
ES ®IR Af ®AD ®AP ®IE
Figure 4.7: Alternative events classification. Subexons and introns have been colored
according to which novel alternative splicing event they belong to. The events are exon

skipping (ES), intron retention (IR), alternative acceptors (AA), alternative donors (AD),
alternative pairs (AP) and intron-in-exon (IE).
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4.4 Implementation

As was the case with Trajan, fortuna has been implemented in C++ programming language.
As was previously mentioned, it runs in three steps: index generation, alignment and postprocess-
ing (refinement). In order to construct an index, fortuna generates a set of transcript fragments
using a GTF file with the annotation, a FASTA file with chromosomial sequences and a few

runtime options such as the selection of a set used to extend the annoataion.

A chromosomial FASTA file is parsed and its chromosome identifiers (names) mapped to
their corresponding nucleotide sequences using a hash table. Such hash table usually has be-
tween a dozen and a hundred entries so the collisions are easily resolved with a string hashing
function provided in the standard C++ library. GTF file is parsed into a data structure that is a
little bit more complex. All subexons found in the GTF annotation file have their relevant in-
formation encapsulated - their genomic coordinate starts and ends, lists of genes and transcripts
they belong to. Afterwards, all subexons belonging to the same chromosome are arranged as
the nodes of a red-black tree using their starting coordinates as keys. Note that, due to the dis-
jointness property of the subexons, such an arrangement is feasible. Furthermore, hashtables are
being generated which map gene and transcript names to the lists of their respective subexons.
This enables fortuna to quickly retrieve the information related to any subexon or to fetch the

entire sequences.

According to the selection of the annotation refinement set (T', T? or T?) fortuna traverses
a directed graph G using a depth-first search algorithm in order to generate transcript fragments
which will constitute an index. In the case where the annotation is refined using T! or T2, a
directed graph G is constructed for every transcript such that its every node is connected to its
direct successor, genomic coordinate-wise. If the refinement is done using T3, graphs G are
constructed for every gene in a manner identical to the ones constructed using two other sets.
An example can be seen in Figure 4.8. In order to generate transcript fragments, each path
of the graphs G is traversed. Transcript fragments which satisfy (f1)-(f1) are recorded as the
series of corresponding subexons. A suffix trie data structure, using subexons identifiers as its
nodes, is used to ensure the maximality and uniqueness of every generated fragment. The formal

procedure is given in Algorithm 13.

Index generation step concludes with writing down the nucleotide sequences of every tran-
script fragment in form of a FASTA file and finalizing the index generation by running kallisto.
Then, reads (FASTQ format) are passed to kallisto along with an index so that the alignment
step can be performed. Each read aligned by kallisto, which can be done using multiple threads,
is passed to fortuna for further processing. With an alignment information of a read, fortuna can

detect which equivalence class it belongs to or if it supports any of the aforementioned alternative
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Figure 4.8: Graph G is derived from the transcript  using set T'! to extend the annotation. In
order to construct G, transcript ¢ was first refined into additional transcripts using 7.

splicing events. Furthermore, fortuna can asses the quality of the alignment by checking the
number of base pair mismatches between the read sequence and the sequence it was mapped to.
Reads which weren’t aligned or were poorly aligned by kallisto can be outputted into a FASTQ

file which can be used for realignment in the final step of this method.

First part of fortuna’s alignment processing is determining the equivalence class of the read.
It is done by subexon enumeration in a fragment with a simple linear search from the alignment
starting coordinate until the end of the read. Each junction the read spans is then tested whether
it supports an alternative splicing event. The procedure, formalized in Algorithm 14, starts by
grouping subexons the read spans into segment sequences as previously defined. Between each
of the subsequences there lies an intron. If the intron is novel, we classify which event it belongs
to. We consider an intron to be novel if it does not exist in the original annotation, that is if
its flanks are not consecutive in any annotated transcript. Note that we do not check for intron
retention events yet due to our transcript fragments not containing any intronic parts. For any
annotated transcript ¢+ which contains at least one subexon from the subsequences flanking the
intron, we check whether it supports a novel event by our definition. If the event is successfully
classified, the contribution of the read is added to a hash table. Once the junction has been
identified as novel, if we encounter it later in some other read, using the fast hash table search,
we don’t have to classify it again. In that case, it is enough to increase the count of the already

existing entry in the hash table.

Another difficulty which arises during the alignment step is the coordinate conversion be-
tween kallisto’s transcriptomic coordinates and the genomic coordinates used in the annotation.
Since kallisto is only aware of the index constructed from a set of transcript fragments, its align-
ment coordinates are reported relative to them. We devised Algorithm 15 in order to convert
transcriptomic coordinate x into the genomic coordinate originating either from the transcript

or transcript fragment on forward or reverse strand. Transcripts or transcript fragments may

73



Implementation CHAPTER 4. FORTUNA

Algorithm 13 Transcript fragment generation. Assume that S was generated as an empty suffix
trie and that graphs G are generated as already explained in the text. Let / be the sample read
length. Procedure DF'S is initialized with V = first of G.

1: procedure DFS(G, [, S,V)

2 s=lastof V

3 if fragment [s] doesn’t exist in S then
4 add [s] to S

5: end if
6

7

8

9

if |I(V)| >1—1 then

return
end if
: for successor ¢ of s in G do

10: DFS(G, 1, S, [t])
11: DFS(G, L, S, append t to V)
12: end for
13: if |I(V)| <I—2or|V|=2then
14: addVtoS
15: end if

16: end procedure

be trimmed or not. Coordinates on the reverse strand are counted from the end of the feature
and are first converted into the coordinates on the forward strand. Afterwards, forward strand
coordinate x is adjusted for trimming of the left-most subexon. Finally, starting from it, we
are counting (adjusted) x bases along the, possibly non-contiguous, subexons and returning the

relevant coordinate.

To reiterate, all reads which have remained unmapped or which mapping quality has been
insufficient can be written down in a separate FASTQ file so they can be remapped using a
genomic aligner. In our experiments, we have used STAR. Once the genomic aligner maps
previously unmapped reads, fortuna processes its outputs. This step is similar to the processing
of kallisto’s alignments with the only difference being the procedure which further refines the
segments (both introns and subexons) as stated in Definition 8. An algorithm which refines the
segments is given in Algorithm 16. Prior to its execution, intronic segments are being created
and added to red-black trees representing the annotation. Due to that, intron retention events

may only be identified and quantified during this step.

There are two main outputs fortuna returns - a count file and an alternative splicing file.
Count file lists the abundances of the equivalence classes it has encountered, while the alternative
splicing file contains all the information pertaining to the novel alternative events it has found.
Count files may be converted to different formats, possibly more suitable for the downstream
analysis, using extra tools bundled with fortuna. Fortuna may also output alignments in BAM

format.
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Algorithm 14 Alternative splicing event identification. Inputs A and B are consecutive segment
sequences of some read r.

1: procedure ALTERNATIVESPLICING(A, B, EventTable)
2 [ =lastof A
3 r = first of B
4: if (1,r) in EventTable then
5: increase count of (I,r) in EventTable by 1
6 return
7 end if
8 T = intersection of sets of transcripts of / and r
9: fort €T do
10: fori=1,...,[t|—1do
11: ift[i] =l and t[i+ 1] = r then
12: return
13: end if
14: end for
15: end for
16: T\ = union of all transcripts of subexons in A
17: T, = union of all transcripts of subexons in B

18: T=T1NT
19: if T = 0 then

20: return

21: end if

22: if all subexons of A or B are intronic then

23: add (/,r) to EventTable as unknown event

24: return

25: end if

26: for transcriptz in 7 do

27: a = left flanking subexon of region intersecting A in ¢

28: b = right flanking subexon of region intersecting B in ¢

29: ifa<1orb <1 then

30: continue

31: elseif b <aanda—b > 1 then

32: add (/,r) to EventTable as novel intron in exon event w.r.t. ¢
33: elseifa#1land b=rand b—a =1 then

34: add (I,r) to EventTable as novel alternative donor event w.r.t. ¢
35: elseifa=17and b # rand b—a =1 then

36: add (I,r) to EventTable as novel alternative acceptor event w.r.t. ¢
37: elseifa#land b # rand b—a = 1 then

38: add (/,r) to EventTable as novel alternative pair event w.r.t. ¢
39: else if b —a > 1 and start(a+1) —end(l) > 1 and start(r) —end(b—1) > 1 then
40: add (/,r) to EventTable as novel exon skipping event w.r.t. ¢
41: end if

42: end for

43: end procedure
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Algorithm 15 Conversion of transcriptomic into genomic coordinates. Let T be a transcript
fragment with its list of subexons, x a transcriptomic coordinate in 7', [ read length, rev indicating
if T is on a reverse strand and 7rim indicating if 7" should be trimmed. Procedure returns —1 if
the coordinates cannot be converted.

1: procedure TRANSCRIPTOMIC2GENOMIC(T, x, [, rev, trim)

2: trim = trim and |T| > 1

3: tl =trim and |first of T| > [

4 tr=trim and |last of T| > [

5: if rev then

6: c=0

7: fori=0,...,|T|—1do

8: c=c+|T|i]

9: end for

10: x=c—tl+tr+1)-(I-1)—x+1
11: end if

12: if tl then

13: x=x+|firstof T|—1+1

14: end if

15: fori=0,...,|T|—1do

16: if x <|T'[i]| then

17: return max(—1 start(T[i]) +x— 1)
18: else

19: x=x—|T[i]|
20: end if
21: end for
22: return -1

23: end procedure
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Algorithm 16 Segment refinement procedure. Let T represent the red-black tree used to store the
annotation for the chromosome the read was sampled from, v contain lengths of the alternating
exonic and intronic parts of the read (parsed CIGAR string) and s be the alignment starting
position. New nodes that are created as subsets of already existing nodes inherit their properties
such as their affiliation to transcripts and genes.

1: procedure REFINE(T, v, 5)
2 fori=0,...,|v|—1do
3 if i is even then
4 n = subexon in T containing coordinate s + 1
5: m = subexon in 7 containing coordinate s+ v|i|
6 if start(n) = s+ 1 and end(m) = s+ v[i] then
7 continue
8 end if
9: if n = m then
10: if i =0 and s+ v[i] < end(n) then
11: remove n from T
12: add new node with coordinates (start(n),s+ v[i]) to T
13: add new node with coordinates (s+v[i]+ 1, end(n)) to T
14: else if i = |v| — 1 and start(n) < s+ 1 then
15: remove n from T
16: add new node with coordinates (start(n),s) to T
17: add new node with coordinates (s+ 1, end(n)) to T
18: else if 0 < i < |v|— 1 then
19: remove n from T
20: if start(n) < s+ 1 then
21: add new node with coordinates (start(n),s) to T
22: end if
23: add new node with coordinates (s+ 1,5+ v[i]) to T
24: if s+ v[i] < end(n) then
25: add new node with coordinates (s+v[i]+ 1, end(n)) to T
26: end if
27: end if
28: else
29: if i > 0 and start(n) < s+ 1 then
30: remove n from T
31 add new node with coordinates (start(n),s) to T
32: add new node with coordinates (s+ 1, end(n)) to T
33: m = subexon in T containing coordinate start(im)
34: end if
35: if i <|v|—1and s+v[i]+ 1 < end(m) then
36: remove m from T
37: add new node with coordinates (start(m),s+ v[i]) to T
38: add new node with coordinates (s+v[i] + 1, end(m)) to T
39: end if
40: end if
41: end if
42: s=s+VI[i]

43: end for
44: end procedure
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4.5 Experiments

All of the experiments presented in this section have been conducted on a server computer
which we have already described in the previous chapter. The entire testing environment re-

mained the same.

4.5.1 Simulated data

In order to simulate transcript extrapolation from the incomplete annotation, we have used
Flux Simulator [44] to simulate reads from a complete annotation and proceeded to remove tran-
scripts in a way which produced novel alternative splicing events consistent with our definitions.
Six 80 million read datasets with read lengths 75, 100 and 125, with and without simulated
sequencing errors, were simulated. In order to detect possible events, we have used ASTALAV-
ISTA [47] to identify and enumerate transcripts in which they occur. ASTALAVISTA gave us
flanking exonic coordinates of several alternative event types, namely exon skipping, alternative
donors and acceptors. According to that data, we have determined which transcripts are to be
removed from the annotation. Once the events have been identified and parts of the annotation
hidden, we have checked the correctness of the mapping of the reads which were sampled from

the removed transcripts.

Let T, be a set of transcripts which contain exonic regions e}, e, e3 as described in the (es)
part of the novel features definition and 7 transcripts containing f and fi . By our definition,
any read splicing over an intron between e; and ez would not indicate a novel feature unless all
of the transcripts from 7 were removed. Thus, in order to artificially introduce a novel exon
skipping event we remove all of the transcripts in Ty from the annotation. As a result, any read
supporting the junction between any of the regions e and e3 also supports a novel exon skipping

event.

Consistently with the alternative donor (ad) part of the definition of the novel features, we
define sets of transcripts T, containing exonic regions eg,es, and Ty containing segment se-
quences f; and fi.1. Just like in the case of exon skipping, we can artificially induce a novel
event signature by removing all of the transcripts in 7 from the annotation. Following the pro-
cedure, it is clear that for every exonic region ey it holds that end(e;) # end(f;). Thus, in order
to capture aforementioned alternative donor event (without using additional segment refinement)
fortuna has to construct 7’ using either ng or Tg3 and there must exist a transcript having an
exonic region ending in the same genomic coordinate as f; while not containing the exact intron

between f; and fi1 .

Novel alternative acceptor events can be introduced under the similar conditions as novel al-
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ternative donor events following the (aa) part of the novel splicing event definition by removing
all transcripts present in 7 using 7’ constructed in the same way and having a transcript contain-
ing an exonic region starting with start(fi1) and such that it doesn’t contain an intron between
fiand fi 1. Sets Ty for both novel alternative donor and acceptor events can be constructed in a
way which either the novel donor site appears within known exonic regions (shortening of the
splice site) or continues onto an intron (prolonging the splice site). We will distinguish those

two cases in our experiments and report the results separately.

The aim of this experiment is to count the reads which mappings support the aforementioned
alternative splicing events. Since the ground truth (output of FLUX simulator) is known, we can
easily compare any mappings to it. A mapping of a single read is considered valid if it spans the
junction which supports the event according to the ground truth and if it is mapped to it by the
aligner. If the read is multimapped, we consider it valid if one of its mappings spans the junction
of focus. This means that a read is considered valid if one or more of its alignments span the
novel junction without the need for a said alignment to exactly match the ground truth. Using
these criteria, we have compared fortuna to whippet, kallisto and STAR. STAR was running in a
regular and two-pass mode in which it refines its index according to the structure of the mapped
reads. Thus, at the cost of longer running time, STAR gains more accuracy. Since kallisto is
unable to map any reads supporting novel splicing events it is omitted from the results which
are presented in the Table 4.1 and was used only as a sanity check. Along the aforementioned
criteria of validity of the mapping, we have included the number of reads which primary align-

ments exactly match the ground truth.

The results concerning datasets without errors suggest that STAR, in both modes, maps more
reads over the observed splice junctions than fortuna or whippet. But, according to the ground
truth, it may also produce a lot of incomplete alignments by partially aligning some of the reads.
Partially aligned reads are aligned without a small-to-medium amount of base pairs on either
ends of the read in a procedure called soft clipping. Fortuna does not soft clip reads by design.
Whippet soft clips between approximately 3.1% and 7.8% of the reads where larger numbers are
attained for longer reads and datasets with errors. STAR run in both single-pass and two-pass
mode soft clips between 0.6% and 0.8% of the reads coming from datasets without errors, while
it soft clips between 11.9% and 18.6% reads coming from datasets with errors, increasing with
read length. While processing samples with errors, fortuna seems to perform better than other
tools which makes it especially useful for samples with high degree of errors due to plethora
of technological or biological reasons. A case which we would like to point out are mutations

observed in autism patients which are the focus of the next chapter.

Despite being the only of the considered tools which is able to classify novel alternative

splicing events in one of its outputs, fortuna has overall lower running times as well. They may
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be found in Table 4.2. We did another running time analysis in the next section using real data.

4.5.2 Autism data

We have acquired 36 autism patient blood-derived lymhpoblast cell line samples previously
used by [38] which consist of approximately 300 million 151 base pair long reads. Authors of
[38] have implemented a deep residual neural network [55] which, using only gene sequences, is
able to predict locations of splice sites. In order to predict splice donors and acceptors, Splice Al
takes a novel approach which checks a window of ten thousand base pairs around each candidate,
as opposed to small windows used in previous research [104]. As predicted by SpliceAl, several
samples exhibit novel alternative splicing in certain genes. We have run fortuna, whippet and
STAR to record the number of reads which support verified events and have compared them to
eachother and to the results presented in [38]. Later, we have randomly subsampled the reads
from one sample (sample 29) with 10% increments in the sample size in order to capture and

compare running times between competing tools.

Samples 29, 12, 36, 26, 20, 4, 30 and 28 have been reported to contain alternative exon
skipping events which possibly happen due to a mutation of a single base pair at the splice
acceptor site. The alternative event found in sample 28 is annotated in the GRCh38 annotation
used in the experiment and has, hence, been omitted from the analysis. Using the alignment
data from the outputs of the aforementioned tools, we have created sets of reads aligned over the
novel exon skipping junctions. A read was considered to be aligned over the observed junction
if at least one of its alignments spanned it. In samples 12 and 26, SpliceAl reported a single read
supporting the novel exon skipping event which has been corroborated by other tools. In each
of the remaining samples, fortuna has found the most reads supporting novel junctions. Venn
diagrams corresponding to samples 4 and 20 are depicted in Figure 4.9. We can see that all tools
agree on a large percentage of the reads. It is interesting to point out that STAR doesn’t make
any alignments which can’t be confirmed, at least, by fortuna. Reads mapped by fortuna which
have exhibited a large number of mismatches according to the reference (> 5%) have undergone
the realignment process. Also note that a vast majority of the reads aligned by fortuna and not
by other two tools have been aligned without any mismatches. Other tools have either left them
unmapped (as is the most frequent case with whippet) or have soft clipped the novel part of the
read. An important thing to mention is that Splice Al has, compared to other tools, underreported

the number of reads supporting the junctions. Complete data can be found in Table 4.3.

SpliceAl has found evidence of novel alternative donor and acceptor events in samples 11,
27,25,34,9, 1,31, 7 and 15. As was the case with exon skipping samples, we omit sample
34 due to the reported junction not being novel in the new annotation. Once again, we have

compared the same three tools. In none of the samples has whippet mapped any reads over the

80



Experiments

CHAPTER 4. FORTUNA

75bp

aay, shortened sites have index 2.

es (242886)

Table 4.1
Number of correctly mapped reads supporting alternative splicing events for samples with 75,
100, 125 base pair long reads simulated with and without errors. Table headers contain a total
number of such reads according to the ground truth while each field contains both number of

valid reads and number of exact matches amongst the primary alignments, in that particular
order. Exon skipping events are labeled es, prolonged donor sites are labeled ad; and acceptors

aay (13418)

ady (17424)

aay (24698)

ad; (13592)

fortuna
star
star2
whippet

75bp errors

239684, 231299
241166, 222350
241872, 237262
234251, 229184

es (243287)

13359, 12896
13336, 12128
13347, 13008
12547, 11310

aay (13341)

17293, 17145
17201, 16299
17250, 17198
17117, 16901

ad, (16970)

24539, 24380
24489, 22640
24509, 24174
24243, 23672

aay (24592)

13356, 13175
13427, 12541
13462, 13366
13264, 12801

ady (13626)

fortuna
star
star2
whippet

100bp

236501, 218775
230215, 187548
233373, 203351
217566, 206239

es (348943)

13064, 12102
12633, 10099
12795, 10974
11586, 10044

aa (18895)

16573, 15884
15950, 13359
16176, 14293
15462, 14766

ady (25398)

24024, 23225
23242, 18892
23457, 20432
22648, 21145

aay (35833)

13157, 12603
12820, 10475
12975, 11347
12540, 11508

ad, (19607)

fortuna
star
star2
whippet

100bp errors

337991, 325506
345131, 324534
345709, 339205
334016, 325231

es (348611)

18653, 18014
18650, 17393
18650, 18278
17712, 15963

aay (19028)

24962, 24526
24951, 24071
24955, 24859
24828, 23924

ady (25533)

35381, 35020
35342, 33412
35346, 34823
35032, 34148

aay (35644)

19094, 18789
19226, 18318
19248, 19127
18970, 18367

ad; (19600)

fortuna
star
star2
whippet

125bp

335821, 308517
326517, 259836
329843, 274260
308886, 279673

es (451135)

18627, 17138
17855, 14086
17994, 14963
16642, 13879

aay (24527)

24929, 23338
23030, 19355
23765, 20173
23982, 20628

ady (32930)

34957, 33595
33329, 26698
33535, 28058
32653, 29245

aay (44970)

18986, 18107
18251, 14707
18381, 15426
17899, 15842

ad, (25009)

fortuna
star
star2
whippet

125bp errors

426718, 411471
441191, 421269
441691, 435071
425943, 411885

es (451370)

23637, 22828
23951, 23003
23951, 23665
22731, 20505

aay (24637)

31887, 31368
31925, 31096
31929, 31819
31774, 30764

ady (32766)

43293, 42718
43780, 41987
43797, 43160
43403, 42082

aay (44603)

23969, 23616
24257, 23642
24285, 24104
23913, 22949

ad; (24928)

fortuna
star
star2
whippet

424948, 388665
418024, 324441
421036, 338300
395424, 341640

23618, 21518
21202, 17818
22771, 18469
22905, 17010

81

31565, 29553
30028, 23800
30224, 24530
29159, 25323

42683, 40844
41076, 31883
41326, 33019
40420, 34688

23719, 22478
22915, 18132
23050, 18635
22529, 18942
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Table 4.2
Running times of alternative splicing event experiments for samples with 75, 100, 125 base pair
long reads simulated with and without errors. Exon skipping events are labeled es, prolonged
donor sites are labeled ad; and acceptors aa, shortened sites have index 2.

75bp es aa, ady aay ady

fortuna 12m17.904s 12m29.752s 12m13.111s 12m33.732s 12m30.750s
kallisto 17m48.151s  20m51.704s 20m54.900s 21m3.827s  21m25.023s
star 21m55.824s 21m58.139s 23m6.271s  22m55.509s 22m14.256s
star2 41m26.362s 41m2.229s  41m40.723s 41m11.213s 42m?29.149s
whippet 29m0.562s  28m58.884s 29m15.039s 28m54.749s  29m13.531s
75bp errors  es aa; ad aa, ads

fortuna 27m53.544s 21m10.048s 21m40.163s 20m55.247s 20m57.929s
kallisto 37m38.476s 35m34.215s 34m34.273s 34m6.870s  35m1.809s
star 42m2.961s  36m20.777s 31m38.968s 32m27.137s 31m39.605s
star2 77m0.043s  59m36.670s 57m18.302s 61m23.681s 60m1.966s
whippet 44m32.004s 32m53.693s 32m30.783s 32m21.383s 32m10.026s
100bp es aa; ady aay ady

fortuna 23m23.167s 20m20.174s 23m41.568s 17m59.024s 17m30.254s
kallisto 24m24.915s 23m37.856s 32m24.385s 23m30.950s 23m24.518s
star 29m44.741s  25m54.309s 33ml12.314s 28m23.682s 26m55.305s
star2 55m36.642s 47m48.429s 49m20.641s 48m11.642s 48m43.638s
whippet 33m42.932s  32m58.751s 34m12.169s 35m24.516s 37m47.166s
100bp erors  es aay ad, aay ady

fortuna 28m37.210s 29m50.084s 29m48.754s 33m15.476s 29m33.163s
kallisto 31m44.960s 38m33.365s 38m28.012s 37m20.552s 38m43.292s
star 38m10.621s 38m7.352s  38m0.674s  37m53.737s 36m58.683s
star2 70m54.751s  70m56.477s  72m17.699s 70m17.344s 68m19.124s
whippet 39m27.184s 39m19.787s 39m48.310s 38m42.819s 40m32.371s
125bp es aa, ady aay ady

fortuna 25m33.415s 23m4.344s  22m49.780s 22m7.908s  28m16.577s
kallisto 19m52.587s 25m14.996s 25m31.716s 24m57.598s 25m49.526s
star 28m56.754s  29m8.586s  32m17.154s 29m30.665s 37m36.706s
star2 57m48.283s 57m3.265s  58m19.000s 55m14.296s 56m7.874s
whippet 38m13.330s 38m10.261s 38m48.814s 39m15.133s 38m33.468s
125bp errors  es aa; ad aa, ad,

fortuna 40m8.152s  41m27.401s 43m46.530s 42m48.737s 41m48.747s
kallisto 36m10.403s 45m39.963s 44m34.863s 44m2.556s 44m46.588s
star 44m40.586s 45m28.693s 44m48.631s 43m4d4.401s 44m7.706s
star2 80m45.134s  83m27.190s 81m55.356s 83m59.184s 82m26.148s
whippet 47m22.823s 47m17.675s 46m59.106s 55m55.368s 47m56.444s
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Figure 4.9: Venn diagrams representing number of reads supporting novel exon skipping
events in autism patient samples as found by fortuna, STAR and whippet.

novel junctions, while STAR and fortuna (after realignment) agree on all of their findings. The

results can be found in Table 4.4.

In order to produce counts and identify novel splicing events, alignments done by STAR
have to be processed by counting tools such as SplAdder [62], which is the most common one.
Thus, the rate at which we can process samples is much lower if using STAR than fortuna or
whippet. In fact, since STAR’s implementation is quite efficient and considering the fact it can
be run using multiple threads, the main bottleneck of such analysis would be SplAdder. This
is even more evident if taking into account SplAdder’s requirement for a sorted and indexed

Table 4.3
Read sets of aligned novel exon skipping junctions by fortuna ('), STAR (S) and whippet (W)
and various sets used to depict Venn diagrams. Sets S\ (FUW) and (W NS) \ F have been
omitted due to being empty in all samples. Number of reads aligned by SpliceAl is denoted as

Al

# | A F S W F\(SUW) W\(SUF) (FOIW)\S (FNS)\W FnwnNSs
29 45 107 99 96 8 0 3 0 96
21 2 2 2 0 0 0 0 2

36 1483 763 619 620 134 26 35 10 584
26 1 1 1 1 0 0 0 0 1

20 | 536 708 622 467 47 2 196 39 426

4 | 914 1247 1084 1093 130 5 29 33 1055
30 | 120 971 812 890 72 8 17 87 795
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Table 4.4
Read sets of novel donor and acceptor junctions, aligned by fortuna and STAR. Whippet has
been omitted due to not mapping any reads supporting those junctions.

Sample ID ‘ 11 27 25 9 1 31 7 15
SpliceAl 15 9 6 12 4 12 67 3
fortunaand STAR | 14 18 9 19 4 10 110 2

STAR output which can be done by samtools [36]. On the figure 4.10 we can see that STAR
and SplAdder are much slower than fortuna and whippet. Fortuna’s advantage over whippet
becomes even more apparent if it’s run using multiple threads (4 in our experiment) since the

current implementation of whippet doesn’t support multi-threading.

L]
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Figure 4.10: Alignment and counting time for a subsampled FASTQ file containing
approximately 300 million 151 base pair long reads collected from autism patient sample.

To summarize, we have been testing how well does fortuna compare against STAR and
whippet on the real-world autism patient samples. Despite using pseudoaligner as its backbone,
fortuna has been superior to other tools both in terms of running time and the quality of the

alignment in situations where mutations are present.

4.5.3 Drosophila data

Fortuna was tested on on sequencing data generated from different Drosophila (fruit fly)
pupal tissues, including dissected brain, indirect flight muscle (IFM) and whole leg. It is an

interesting species for genetic research due to its low cost maintenance, short life cycle, large
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number of offspring and the ease of editing of its genes [60]. Additionally, alternative splicing in
Drosophila is as complex as that of the mammals [98]. That makes it suitable for testing fortuna
as well. Using the aforementioned samples, fortuna identified thousands of novel splicing events
across hundreds of genes. Only about 10% of these events were identified with the assistance
of the genomic aligner (novel splice acceptor or donor sites). The rest of the novel events were
novel junctions between annotated exons. The most common novel events were exon skippings
(over 80%) followed by alternative donor and acceptor events, as can be seen in Figure 4.11.
About 2% of novel events were supported by 150 or more reads, which will be the focus of
further analysis. Notably, over 60% of the events are supported by no more than 5 reads for

which we consider to be the noise in the data.

Types of events

el [ |
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o

% of events
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Figure 4.11: A ratio of detected novel alternative splicing events in Drosophila samples. The
events are exon skipping (ES), intron retention (IR), alternative acceptors (AA), alternative
donors (AD), alternative pairs (AP), intron-in-exon (IE) and unknown (XX).

Of all novel events supported by 150 or more reads, only 7.5% were common to all three
tissues and 13%, 15% and 48% are specific to IFM, leg and brain, respectively. Genes in which
these events occur are diverse and reflect tissue-specific functionalization. Events that are not
tissue-specific are related to common processes such as cytoskeleton organization and behavior.
Brain-specific events are related to synapse organization, neuron recognition and ion transport.
IFM and leg events are related to muscle-specific processes such as actomyosin structure or-
ganization, oxidation-reduction process, flight and mesoderm development. We have found
many novel events in genes that undergo tissue-specific alternative splicing. Some of those are
essential sarcomere proteins such as Mhc, bt, Unc-89, up, Tm1, wupA, Strn-Mlck and sls in

IFM or leg samples which all exhibit over 10 novel events. Similar case was identified with the
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brain genes kcc, slo, Atpa, CaMKII, brp, Cadps, stj and Rdl. Novel events in genes Brul and bt
have been experimentally confirmed.

This experiment adds further weight to our claim that fortuna may be useful in detecting bio-
logically relevant alternative splicing events, especially ones that are not represented in existing

transcriptome annotations.
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Conclusion

We have presented two software tools - Trajan and fortuna - which implement novel algo-
rithms for solving problems in the field of bioinformatics. Their properties have been described
in detail and performance measured by the experiments undertaken on both real-world and sim-
ulated data.

Trajan is an efficient software tool used to quantify the distance between two phylogenetic
trees by computing a maximal cost matching between them which respects the ancestral rela-
tions between their nodes. A term arboreal matching is adopted for a class of valid matchings
to separate Trajan from the algorithms which produce solutions that do not honor ancestral
relationships between the nodes of the trees. The importance of this algorithm is reflected
in numerous applications it may have, beyond the phylogenetic trees, for the comparison of
hierarchical structured which represent tumor subclones formed during tumor evolution, protein-
protein interaction networks reconstructred by hierarchical clustering methods, co-evolution and
even string matching. The underlying mechanism which powers Trajan is a natural evolution
of the widely used Robinson-Foulds metric given in an integer linear programming formulation.
First, a naive approach is presented after which we define an improved formulation with an aim
to greatly increase the computational performance. The justification for the application of an
exponential time branch-and-cut algorithm used to solve the integer linear program comes from
the NP-hardness of the problem. In the experiments we have conducted, we have presented a few
important properties of our metrics and compared the performance of our problem formulation

to the naive one.

The second software tool presented in this thesis is fortuna. Its main purpose is to classify
and quantify the abundances of different alternative splicing events by analyzing the data col-
lected by the next-generation RNA-sequencing techniques. Fortuna improves upon the existing
tools by being able to efficiently identify even the events which have not been annotated. That
feature makes it extremely useful in the fields where genetic mutations play crucial roles in
our understanding of biological processes, such as cancer research. There are three main steps

fortuna takes when processing a biological sample. In the first step, known genomic features
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are enriched by a novel set of possible events which might transpire in the sample forming an
extended annotation. This new annotation is used to build an alignment index. After the sample
has been aligned to the index by kallisto, a post processing step begins in which the bulk of
identification and classification is done. At the cost of some running time, the post processing
step may gain in accuracy with the help of a genomic aligner used to re-compute possibly am-
biguous alignments. The experiments show that fortuna is indeed superior in terms of precision
and recall on samples simulated with errors. Its all-in-one approach and the possibility of the
exploitation of multiple processor cores makes it faster and easier to use than the competition as
seen in the experiments with the real world data. Apart from the speed advantage, fortuna also

identifies the highest amount of novel events, thus corroborating our claims.

The fast and ever changing field of bioinformatics motivates us to continue our research
by opening several avenues. Both the adoption and the development of new algorithms and
hardware can, potentially, increase the efficiency of our software. An implementation of tighter
clique constraints would increase the efficiency of the branch-and-cut presently implemented
in Trajan. Also, a complete generalization of the arboreal matching to directed acyclic graphs
and the formulation of efficient separation of the independent set constraints is a direction we
would like to take. Considering fortuna, it is possible that machine learning techniques could
be used on fortuna’s output in order to draw conclusions on the state of a sample, e.g., to give a

diagnosis on certain types of illness.
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