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Abstract

The role of the network in the systemic risk propagation is investigated from two different

perspectives, one being the detection of the default propagation from available data and

the other the quantification of its effect on the value of debt. In the first part of this the-

sis, a methodology that uses causal network motifs is devised to distinguish the existence

of network propagation from the minimal required data on the process. It is extensively

tested against artificial data and the conditions when it is applicable are found. An exam-

ple with the real Croatian default data is provided. In addition to that, analytical results

on the temporal evolution of the causal motifs are obtained for a better understanding of

the methodology. In the second part, we study the valuation of debt in a credit exposure

network that is also exposed to external shocks on equity, when default propagation is

taken into account. From the default process with external shocks, which is both simu-

lated and theoretically modeled, we obtain the expected fraction of defaulted banks. We

provide the result depending on the process and network parameters and compare it to

the case where the network propagation is not taken into account. We show that the

introduction of correlation on the shocks makes diversification of risk less efficient, and

a network contribution to the probability of default exists even in the case of an infinite

fully diversified network. We draw a direct parallel with the calculation of the Credit Val-

uation Adjustment and stress the need for including the network effects into the existing

methodology.

Keywords: complex networks, systemic risk, financial contagion





Prošireni sažetak rada

Uvod

Smjerovi razmišljanja i istraživanja u fizici mogu se podijeliti na dva filozofska pravca:

redukcionizam i holizam [1]. Prvi je stoljećima vodio fizičare u pokušajima da raščlane

i objasne mnoštvo raznolikih prirodnih pojava. Raznolikost materije prvo je atomska

teorija sažela u periodni sustav elemenata, a kasnije je dobiven standardni model, koji

svodi trenutni opis prirode na konačan broj elementarnih čestica te obuhvaća tri od če-

tiri poznate sile kojima međudjeluju. Zakoni gibanja koje je otkrio Newton povezali

su gibanje na Zemlji s gibanjem nebeskh tijela, a Einstein je generalizacijom principa

relativnosti na neinercijalne sustave izveo gravitaciju kao posljedicu geometrije prostor-

vremena. Također, redukcionizam postoji i u ostalim prirodnim znanostima, tendencija

svođenja bioloških procesa na kemijske procese koji su im u pozadini nastavlja se objašn-

javanjem kemijskih procesa fizikom.

S druge strane, neki fenomeni, poput topline ili tlaka, pojavljuju se tek kad se u obzir

uzme kolektivno gibanje čestica, te se ne mogu iščitati iz pojedinih čestica koje prate

Newtonove zakone gibanja. Holistički pristup istraživanju fokusira se na prirodnim po-

javama u kojima je fenomen kao cjelina više od samog zbroja njegovih dijelova. Korelacije

u fizikalnim sustavima, koje se pojavljuju kad je sustav u kritičnom stanju, povezuju

sustav na svim skalama te zahtjevaju opis pomoću cijelog sustava umjesto uprosječi-

vanja fizikalnih veličina. Uz klasične sustave gdje su fazni prijelazi pod utjecajem van-

jskih parametara, postoje i sustavi koji spontanom evolucijom dolaze do kritičnog stanja.

Takva pojava naziva se samoorganizirana kritičnost, te je karakteriziraju rijetki, ali znača-

jni događaji koji nastaju kombinacijom jednostavnih interakcija, nelinearnosti sustava te

dugodosežnih vremenskih i prostornih korelacija [2].

Područje koje se bavi istraživanjem sustava sa kolektivnim svojstivma naziva se teorija

kompleksnih sustava. Preciznije, ako kompleksnost pojava proizlazi iz topološki netrivi-

jalnih interakcija, kao formalizam za proučavanje koristi se teorija mreža. Matematička

struktura na kojoj se temelji teorija mreža je graf, koji komponente sustava promatra kao

skup čvorova, a njihove interakcije kao parove čvorova, koji čine bridove. Bridovi na mreži

mogu biti usmjereni ili neusmjereni, binarni ili težinski, ovisno o sustavu koji opisujemo.



Najpoznatiji model stohastičkih grafova naziva se Erdős-Rényi graf [3], po matematičarima

Paulu Erdősu i Alfrédu Rényiju koji su prvi počeli koristiti stohastičke grafove za opis

realnih kompleksnih sustava. Prednost modela je u njegovoj jednostavnosti, budući da ga

određuju samo broj čvorova i srednji stupanj povezanosti čvora [4] (ili broj bridova [3]), no

zbog toga ne reproducira neka svojstva realnih mreža, poput relativno male udaljenosti

među čvorovima, nastajanja klastera te distribucije stupnja vezanja koja slijedi zakon

potencija [5]. Modeli poput Watts-Strogatz modela [6] i Barabási-Albert modela [7] koji

su predloženi kasnije, bolje reproduciraju navedena svojstva, no Erdős-Rényi zbog svoje

jednostavnosti te lako dohvatljivih teorijskih rezultata ostaje i dalje u upotrebi.

Kompleksne mreže podučje su koje povezuje razne znanstvene discipline, od fizike i spin-

skih stakala, preko mreža proteina i hranidbenih lanaca u biologiji, prometnih mreža

do interneta i tehnoloških mreža. Multidisciplinarni pristup spaja doprinose iz teorije

grafova, statističke fizike, mrežnih metrika razvijenih u psihologiji, računalnih znanosti,

statističkih metoda, itd.

U ovoj tezi bavit ćemo se proučavanjem financijskih mreža. Slom financijskog sustava

može nastati kao posljedica vanjskog šoka, no može i proizaći kao makroskopski efekt

koji je posljedica kolektivnog ponašanja komponenti u sustavu. Nakon globalne finan-

cijske krize 2008. godine, opis financijskih sustava kao kompleksnih, otvorio je mogućnost

predviđanja nestabilnosti u sustavu [8]. Razumijevanje načina na koji se šokovi šire kroz

sustav, te svojstava mreže koja doprinose pojačavanju ili gušenju šokova, od značajne je

važnosti regulatorima koji se brinu za stabilnost financijskog sustava [9, 10].

Doprinosi provedenog doktorskog istraživanja su slijedeći: i) razvijena je metodologija

koja detektira prisutnost endogenog širenja u sustavu iz dostupnih podataka, ii) napravl-

jen je teorijski izračun očekivanih vrijednosti kauzalnih motiva, iii) napravljena je analiza

mrežnog doprinosa vjerojatnosti bankrota, direktno povezana s izračunom valuacije duga,

te iv) izveden je teorijski opis širenja koreliranih šokova kroz financijski sustav.

Pregled literature

Matematički, graf je definiran kao par G = (V,E), gdje je V skup elemenata koje nazivamo

čvorovi, a E skup parova čvorova, nazvanih bridovi. Teorija mreža nastala je kad su nakon

opisa realnih mreža pomoću grafova pronađena univerzalne statističke značajke, kao što



su "mali svijet", nastajanje klastera, te specifična svojstva distribucije stupnjeva vezanja.

Terminom "mali svijet" opisano je svojstvo realnih mreža da se od nekog čvora do bilo

kojeg drugog može doći u relativno malom broju koraka, to jest da prosječni najkraći put

na mreži raste s logaritmom broja čvorova N . Visoki stupanj klasteriranja svojstven je

za realne mreže, kao i distribucija stupnjeva vezanja koja slijedi zakon potencija. Prema

tome, generativni modeli iz teorije mreža teže reproducirati ova svojstva [11]. Modeli

koje koristimo u ovoj disertaciji su Erdős-Rényi graf [3] te stohastički k-regularni graf.

Erdős-Rényi graf prvi je konstruirani model stohastičkog grafa, a parametri koji određuju

distribuciju iz koje se izvlače pojedine realizacije su broj čvorova N i srednji stupanj

vezanja čvora ⟨k⟩, ili broj čvorova N i broj bridova m. Unatoč tome što nema visok stupanj

klasteriranja niti zakon potencija u distribuciji stupnjeva vezanja, Erdős-Rényi graf se i

dalje koristi zbog svoje jednostavnosti i dostupnosti analitičkih rezultata. Stohastički

k-regularni graf definira stupanj vezanja čvorova, koji je jednak točno k za svaki čvor,

dok su bridovi među čvorovima nasumično postavljeni. Podgrafovi koji se pojavljuju u

češće nego očekivano na realnim mrežama nazivaju se mrežni motivi, te mogu pružiti

uvid u svojstva mreža i mrežnih procesa. Prvi put su upotrijebljeni u [12], u pokušaju

da se pomoću njih definiraju klase univerzalnosti kompleksnih mreža. U istraživanju

predstavljenom u ovoj disertaciji, definiramo kauzalne mrežne motive kako bismo pomoću

njih klasificirali dinamičke procese na mreži.

Proučavanje dinamičkih procesa na mreži pokušaj je da se povežu kolektivni makroskop-

ski efekti s mikroskopskom mehanikom koja ih pokreće. Određuju ih tranzicije između

mikroskopskih stanja sustava. Budući da je egzaktan pristup problemu nemoguć zbog

veličine sustava, pri računanju putanja sustava koristi se probabilistički opis [13]. Prva

dva dinamička procesa koje koristimo u ovoj disertaciji pripadaju klasi međudjelujućih

sustava čestica [14, 15, 16, 17], koja se sastoji od stohastičkih procesa na mrežama. Za

simulaciju širenja propadanja koristimo kontaktni proces, koji je u epidemiologiji poznatiji

kao SI proces. Kod kontaktnog procesa, vjerojatnost prenošenja zaraze proporcionalna je

broju zaraženih susjeda, što dobro opisuje uvjete širenja bankrota. Kod drugog procesa iz

klase međudjelujućih sustava čestica koji koristimo, nazvanog model glasovanja [18], stanje

čvora mijenja se s intenzitetom proporcionalnim udjelu susjeda u određenom stanju. Osim

stohastičkih procesa na mrežama, koristmo i deterministički proces, model praga [19], u

kojem su stanja čvorova na mreži određena pragom koji udio susjeda u drugom stanju



mora prijeći kako bi i središnji čvor promijenio stanje. Probabilistički model kojim se

opisuje putanja mikroskopskih stanja diskretnih sustava naziva se master jednadžba [20].

Zbog diskretnosti stanja na čvorovima, ovaj opis se prirodno nameće za dinamičke sustave

na kompleksnim mrežama, no egzaktno rješenje master jednadžbe u većini slučajeva nije

moguće. Aproksimacijom srednjeg polja [13], gdje pretpostavljamo da je sustav homogen

te da nema korelacijama među mikrovarijablama, moguće je pojednostavniti master jed-

nadžbu te dobiti rješenje. Međutim, pretpostavke potrebne za aproksimaciju srednjeg

polja ne vrijede u svim slučajevima, te najčešće rješenje nije jako precizno. Aproksima-

tivne master jednadžbe [21, 22] umjesto vremenskog razvoja stanja jednog uprosječenog

čvora promatraju skup srednišnjeg čvora s njegovim prvim susjedima, te dobivaju puno

preciznije rješenje. Proširenje aproksimativnih master jednadžbi na usmjerene mreže s

vremenskim uređenjem dio je teme je kojom smo se bavili u prvom dijelu doktorske dis-

ertacije.

Dinamičke procese na mreži može se klasificirati preko uzroka zbog kojih se promjena

stanja čvorova događa, a po njihovoj prirodi ti uzroci mogu se podijeliti na egzogene

i endogene. Klasifikacija dinamičkih procesa na egzogene i endogene tema je brojnih

znanstvenih radova [23, 24, 25, 26], koji iz oblika distribucije šokova te pretpostavljenih

funkcionalnih ovisnosti procijenjuju je li se dogodilo endogeno širenje. Doprinos ove teze

detekciji endogenih procesa je neparametarska metoda koja ne pretpostavlja postojanje

širenja na mreži a priori.

Sistemski rizik definira se kao rizik da veliki dio sustava propadne. Zbog isprepletenosti

kompleksnih sustava, takav događaj može biti uzrokovan i propadanjem samo jedne

jedinke u sustavu, ako to propadanje pokrene kaskadni proces. Doprinos teorije mreža

proučavanju sistemskog rizika dan je kroz radove koji: predlažu mrežnu metriku za raču-

nanje važnosti pojedinih institucija [27], proučavaju dvosmislen utjecaj diversifikacije na

smanjenje sistemskog rizika [28, 29], uvode Pigouovo oporezivanje kao odvraćanje insti-

tucija od rizičnog ponašanja [30, 31], te istražuju optimalnu topologiju sustava i nivo

asortativnosti za stabilnost sustava [32, 33, 34]. Širenje sistemskog rizika može se odvijati

direktnim širenjem bankrota na financijskoj mreži, no do povećanje rizika može doći i

zbog širenja devaluacije duga među institucijama [35]. Uslijed povećanja vjerojatnosti

propadanja neke institucije, vrijednost njenih dugova na tržištu duga se smanjuje, te je



važno za njene vjerovnike da uračunaju takve gubitke. U drugom dijelu ove disertacije

bavimo se proučavanjem mrežnog doprinosa vjerojatnosti propadanja neke institucije, s

direktnom primjenom na računanje prilagodbe kreditne valuacije (Credit Valuation Ad-

justment) [36] koja se koristi u financijskoj industriji za izračun gore spomenutih gubitaka.

Detekcija endogenih procesa

Svojstveno je za kompleksne sustave da iz jednostavne mikroskopske dinamike mogu nas-

tati makroskopska svojstva koja utječu na cjelokupno stanje sustava. Primjere takvog

ponašanja vidimo u rapidnom širenju epidemija, ili kaskadnom širenju bankrota na fi-

nancijskoj mreži. Za neometano funkcioniranje te stabilnost takvog sustava nužno je

detektirati efekte nagle propagacije u samom začetku. Sličan problem se pojavljuje pri

modeliranju nekog određenog dinamičkog procesa na mreži, budući da ne možemo nužno

pretpostaviti da postoji endogena komponenta procesa samo zato jer je podatke koje

imamo moguće predstaviti kao mrežu. Dakle, u prvom dijelu ove doktorske disertacije

zanima nas, trebamo li koristiti interaktivne čestične sustave za modeliranje procesa iz

nekih podataka samo zato jer ih je moguće predstaviti mrežom, ili je nekad dovoljno pred-

staviti proces kao utjecaj vanjskog polja. Kako bismo odgovorili na ovo pitanje, razvili smo

neparametarsku metodu koja ne pretpostavlja unaprijed postojanje endogenog procesa, te

ga detektira iz podataka. Podatke koje koristimo mora biti moguće predstaviti mrežom,

što znači da nam trebaju agenti koji su nekom trenutku doživjeli promjenu stanja, vri-

jeme te promjene te relacije među tim agentima koje mogu prenositi promjene stanja.

Iako je moguće uvrstiti više podataka na mrežu, naš cilj je prvo izgraditi metodu na min-

imalnom potrebnom skupu podataka. Metoda se temelji na opservaciji da se pojavnost

bridova s kauzalnim uređenjem vremena, u slučaju procesa vođenog vanjskim poljem, ne

bi trebala puno razlikovati od pojavnosti nakon što permutiramo vremena bankrota na

čvorovima. S druge strane, ako postoji endogena komponenta procesa koja se širi po

mreži, pretpostavljamo da bi takvi bridovi trebali biti učestaliji nego na mreži s per-

mutiranim vremenima. Definiramo testne statistike u obliku broja kauzalnih motiva na

mreži - acikličkih motiva koji se sastoje isključivo od kauzalnih bridova, te ih rangiramo

po broju bridova. Uz kauzalne motive kao testnu statistiku uzimamo i veličinu najveće

kauzalne mrežne komponente. Za generiranje nul-distribucije koristimo randomizirane

referentne modele (RRM) [37], koji čine mikrokanonski ansambl mreža koji permutira



vremena bankrota po čvorovima, a fiksira sva ostala svojstva mreže. Metodu testiramo

na simuliranim procesima, na kojima možemo kontrolirati doprinos endogene i egzogene

komponente. Proces za simulaciju definiramo pomoću Poissonovih procesa s intenzite-

tima α i β, za egzogenu i endogenu komponentu, te definiramo njihov omjer ζ := α/β.

Strukturu endogenog procesa modeliramo prema SI modelu te prema modelu glasovanja.

Nakon simulacija, kao rezultat dobijemo distribuciju frekvencija testnih statistika iz orig-

inalnog procesa te iz permutiranih RRM ansambala. Analizu podataka počnemo prim-

jenom Kolmogorov-Smirnov testa na te dvije distribucije kako bismo utvrdili razlikuju

li se međusobno. Zatim koristimo z-statistiku kako bismo ustvrdili postoji li statistički

signifikantna razlika između pojedinog procesa i njegovog RRM-modela. U slučaju kad je

testna statistika kauzalni motiv višeg reda, možemo iskoristiti činjenicu da se motivi višeg

reda sastoje od podmotiva, koji se i u slučaju potpuno egzogenog procesa pojavljuju na

mreži s različitim vjerojatnostima. Stoga koristimo općenitu verziju z-statistike, Maha-

lanobisovu udaljenost [38], koju možemo shvatiti kao korijen zbroja kvadrata pojedinih

z-statistika u slučaju kad je matrica kovarijacije dijagonalna. Kad je endogena kompo-

nenta modelirana kao SI proces, iz rezultata vidimo da je kauzalni motiv s jednim bridom

najbolji u detekciji endogenih procesa, ako se koristi z-statistika, te ako se nalazimo u sre-

dini procesa. Povećanjem broja bridova u kauzalnom motivu povećava se razmak između

broja motiva u originalnom procesu i srednje vrijednosti nul-distribucije, no usporedno

raste i varijanca nul-distribucije, što otežava detekciju. Korištenjem kauzalnih motiva s

dva brida u kombinaciji s Mahalanobisovom udaljenošću signifikantnost rezultata pomiče

se prema kraju procesa. Kod korištenja modela glasovanja za endogeni proces, rezultati su

kvalitativno slični, no detekcija endogenih procesa je slabija za sve statistike, te prestaje

biti moguća već za ζ > 1. Kako bismo bolje razumjeli ovaj rezultat, riješili smo jednadžbe

srednjeg polja za omjer broja egzogeno i endogeno propalih čvorova, za oba tipa endogenih

procesa. Iz rješenja vidimo da je za isti parametar procesa ζ, omjer čvorova uvijek veći za

proces glasovanja, što objašnjava otežanu detekciju. Također, za oba tipa procesa vidimo

da se povećavanjem mreže prostor signifikantnih rezultata širi i za z-statistiku i za Maha-

lanobisovu udaljenost. Nakon validacije na simuliranim podacima, primjenili smo metodu

na realnim podacima hrvatskih firmi koje su ušle u predstečajnu nagodbu. Selekcionirali

smo firme koje su i vjerovnici i dužnici, te 549 firmi sa 1198 dugova predstavili kao mrežu.

Rezultati analize kauzalnim motivima ukazuju na to da je endogeno širenje postojalo u



ranijim fazama procesa, te kad je proces bio na 70-85% razvoja. Korištenje naše metode

na podacima u realnom vremenu ukazalo bi na začetak kaskadnog procesa, te potaknulo

regulatore na daljnje istraživanje uzroka bankrota. Uz ekstenzivno provođenje simulacija,

te kako bismo bolje razumjeli rezultate, proširili smo aproksimativne master jednadžbe

[21, 22] na usmjerene mreže s vremenskim uređenjem, i dobili izraz za vremensku evoluciju

očekivanih vrijednosti kauzalnih motiva.

Mrežni doprinos u strukturi vjerojatnosti bankrota

Osim kaskadnog širenja bankrota po mreži, utjecaj na porast sistemskog rizika može imati

i širenje devaluacije duga. Nakon sklapanja kreditnog ugovora, moguće je dalje trgovati

njime na sekundarnom tržištu, gdje se njegova vrijednost procjenjuje preko raznih faktora,

jedan od kojih je i vjerojatnost bankrota dužnika. Dakle, samo povećanje vjerojatnosti

da će neki dužnik bankrotirati, za posljedicu ima smanjenje vrijednosti svih njegovih

dugova, što se dalje reflektira na kapitalu vjerovnika, te može pokrenuti kaskadu deval-

uacija i time povećati cjelokupni sistemski rizik. Upravo ovakva vrsta gubitaka nalazila

se iza dvije trećine gubitaka [39] vezanih za kreditne rizike druge ugovorne strane u fi-

nancijskoj krizi 2008. Stoga je u regulatornom sporazumu Basel III uvedena nova vrsta

rizika, nazvana kreditna valuacijska prilagodba (Credit Valuation Adjustment - CVA)

[40]. Kreditna valuacijska prilagodba definira se kao razlika između nominalne vrijednosti

duga i vrijednosti duga kad se uračuna mogući kreditni rizik druge ugovorne strane [36].

Od svih faktora koji čine formulu za CVA, u drugom dijelu ove disertacije fokusirat ćemo

se na izračun vjerojatnosti bankrota. Dvije uhodane vrste modela bave se izračunom

vjerojatnosti bankrota - strukturalni i intenzitetni modeli [41]. Strukturalni modeli ko-

riste kapitalnu strukturu firme kako bi procijenili vjerojatnost da će ta firma bankrotirati,

dok intenzitetni modeli kalibriraju stohastičke procese, pomoću kojih modeliraju vremena

bankrota, preko tržišnih instrumenata. Međutim, svi navedeni modeli promatraju samo

individualne institucije, ne uračunavajući pritom rizik od bankrota do kojeg može doći

kaskadnim širenjem putem mreže kreditnih izlaganja. Cilj našeg istraživanja je pokazati

da postoje slučajevi kad nije opravdano zanemariti doprinos kaskadnih procesa širenja

bankrota na mreži u izračunu CVA. Niz radova koji se bave ovom temom, [42, 43, 44]

izračunali su egzaktnu vjerojatnost bankrota, uz pretpostavke malog broja institucija,

komonotonosti šokova, te nedostupnosti svih informacija o mreži. Naš pristup problemu



ne bazira se na egzaktnom izračunu stanja svake institucije u sustavu, što za vrlo velike

sustave nosi sa sobom "kletvu dimenzionalnosti" (curse of dimensionality), već pomoću

simulacija šokova i širenja financijskih oštećenja po mreži kao rezultat dobivamo distribu-

ciju očekivanog udjela bankrotiranih institucija na mreži. Također, ovakav pristup daje

nam slobodu oko modeliranja korelacija na vanjskim šokovima, za što koristimo Gaussovu

kopulu [45]. Mehanizam širenja oštećenja po mreži uzimamo iz [46], te pretpostavljamo da

su vanjski šokovi usmjereni na kapital. Vanjskim šokovima pripisujemo moguće diskretne

vrijednosti, s pripadajućim vjerojatnostima, te uvodimo korelacije među njima, koris-

teći Gaussovu kopulu. Model mrežne topologije koji koristimo je stohastički k-regularni

graf, budući da je na njemu bilo moguće zadovoljiti uvjete koje smo zadali za kapitalnu

vrijednost i financijsku polugu svake institucije, bez većih komplikacija kod simulacija.

Također, ovaj izbor topologije odgovara empirijskim podacima za jezgre bankovnih mreža

[47]. Uz simulativni pristup, dobiveno je i popratno teorijsko rješenje, korištenjem mod-

ela praga [19]. Distribucija institucija pogođenih određenim šokom dobivena je uz pomoć

svojstava Gaussove kopule, te nakon uvrštavanja u aproksimaciju srednjeg polja za model

praga [19], možemo analitički izraziti očekivani udio bankrotiranih institucija za dane

parametre. Prednost ovakvog pristupa je u mogućnosti jednostavnog dohvaćanja limesa

beskonačne mreže. Rezultati simulacija dobiveni su u obliku distribucije udjela bankroti-

ranih institucija na svakoj simuliranoj mreži, koja ima multimodalni oblik, te za konačni

rezultat uzimamo njenu očekivanu vrijednost. U rezultatima za sustave bez korelacija na

vanjskim šokovima vidimo dvije moguće faze sustava nakon diversifikacije mreže, nadkri-

tičnu i podkritičnu, ovisno o financijskoj poluzi. Nadkritična faza podrazumijeva da će

sve institucije propasti, a podkritična da će se očekivana vjerojatnost bankrota spustiti

na vrijednost dobivenu samo od vanjskog šoka. Međutim, kad se na vanjske šokove uvedu

korelacije, ponašanje sustava se promijeni kvantitativno i kvalitativno. U slučaju kad

su korelacije prisutne, diverzifikacija više ne može ukloniti doprinos mreže vjerojatnosti

bankrota. Također, za nadkritični režim sustava bez korelacija, uvođenjem korelacije

vjerojatnost bankrota se spušta, što objašnjavamo promjenom oblika distribucije šokova,

koji uvođenjem korelacija dobiva nagib prema nižim vrijednostima, te time šokovi slabiji

od šoka dovoljnog za potpuni bankrot postaju vjerojatniji. Konačno, provjerili smo utje-

caj veličine sustava na rezultate, te zaključili da veličina sustava igra ulogu kad korelacije

nisu prisutne na šokovima, dok u slučaju s koreliranim šokovima konačni rezultat ne ovisi



o veličini mreže, što je potkrijepljeno i teorijskim izračunom za slučaj beskonačne mreže.

Zaključak

U ovoj doktorskoj disertaciji proučavali smo mrežne efekte u širenju sistemskog rizika iz

dvije različite perspektive. Jedna se odnosila na detektiranje mrežne propagacije iz po-

dataka, dok je druga imala naglasak na kvantifikaciji doprinosa mreže vrijednosti duga. U

prvom dijelu razvili smo metodologiju za detektiranje endogene propagacije iz podataka

koji se mogu prikazati kao temporalna mreža. Testirali smo metodologiju na velikom

rasponu parametara simuliranih procesa, te dobili statistički značajne rezultate do ζ ∼ 1,

za mreže od 1000 čvorova. Razliku simuliranih distribucija smo prvo testirali Kolmogorov-

Smirnov testom te potvrdili njeno postojanje. Zatim smo uspoređivali individualne pro-

cese s odgovarajućim RRM ansamblima te koristili z-statistiku i Mahalanobisovu udal-

jenost za detekciju endogene komponente procesa. U slučajevima koji su na granici pros-

tora parametara gdje je detekcija bila moguća, signifikantnost rezultata ovisi o postotku

mreže koji je bankrotirao, srednjem stupnju čvora, te veličini mreže. Povećanjem mreže,

povećava se i raspon parametra ζ za koji je moguće detektirati endogeno širenje. Kao

najbolje testne statistike, pokazali su se kauzalni motiv s jednim bridom kad se koristi

z-statistika, te kauzalni motiv s dva brida kad se koristi Mahalanobisova udaljenost. Na

prostoru parametara, ove dvije mjere pokazale su se komplemetarnima; dok motiv s jed-

nim bridom najbolje funkcionira u srednjim fazama procesa, motiv s dva brida postaje

signifikantan pri kraju procesa. Kako bismo bolje razumjeli vremensku evoluciju testnih

statistika, proširili smo aproksimativne master jednadžbe na usmjerene mreže s vremen-

skim uređenjem, te dobili ovisnost očekivane vrijednosti kauzalnih motiva o vremenu,

koja se slaže sa simulacijama. Metoda je također primjenjena na empirijskim podacima

hrvatskih firmi u predstečajnim nagodbama, te je ukazala na mogućnost mrežne propa-

gacije predstečajnih nagodbi, koju bi trebalo dalje istražiti u financijskim izvještajima

firmi.

Drugi dio disertacije sadrži istraživanje strukture vjerojatnosti bankrota, te kvantifikaciju

doprinosa toj vjerojatnosti od strane mreže kreditnih izlaganja na kojoj se institucije

nalaze. Ovo istraživanje donosi popravku na račun prilagodbe kreditne valuacije, koji

trenutno ne uzima u obzir moguću propagaciju bankrota po mreži. Simulirali smo sustav

koji se sastoji od svih informacija o mreži kreditnih izlaganja. Nakon izlaganja mreže



nekoreliranim šokovima, sustav je nakon diverzifikacije zauzeo ili nadkritično stanje, gdje

su sve institucije bankrotirale, ili podkritično stanje, u kojem se vjerojatnost bankrota

smanjila do određenog nivoa. Uvođenjem korelacija na šokove, ponašanje sustava se mi-

jenja, te više nije moguće potpuno ukloniti mrežni utjecaj diverzifikacijom. Također, za

sustave koji su prethodno bili u nadkritičnom stanju, uvođenjem korelacija vjerojatnost

bankrota se smanjuje. Provjeren je i utjecaj veličine sustava na ove efekte, te je pokazano

da nisu posljedica konačne veličine sustava. Uz simulirane rezultate, dobili smo i anali-

tičko rješenje, pomoću modela praga te distribucija vanjskih šokova koje smo izveli. Iz

analitičkih rezultata izveli smo i asimptotsko ponašanje za beskonačne mreže. Konačno,

možemo potvrditi da postoje slučajevi kad nije moguće zanemariti utjecaj mreže na vjero-

jatnost bankrota, te bi ih trebalo uvrstiti u formalizam za računanje CVA.
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it is shown that with the decrease of the initial probability, or the shock size,

the system behaviour stays the same if we increase Λb appropriately. In

the panel insets, we plot the dependence of ⟨q⟩ on the interbank leverage

Λb, for the chosen values of k that are marked on the x-axis of the plot

containing the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Probability of defaults with correlation between shocks. The de-

gree of the nodes ⟨k⟩ starts from 211 and goes up to 19998 (complete net-

work), for the number of nodes N = 10000. The plots do not show a smaller

⟨k⟩ than 211, as the transitional effects in that range are due to the choice

of the network, and not relevant to real systems. At time t = 0 the shock

values are σ⃗ = (−1.1,−0.75, 0) , with probabilities p⃗ = (0.02, 0.09, 0.89),

respectively. We vary the interbank leverage Λb = {0.2, 1, 2, 4, 5, 8, 12, 14}.

The red horizontal line represents the initial probability of default (with-

out taking into account the network of liabilities). The grey dashed line

represents double the values of the initial probability of default. Subfigures

a)-d) show different correlation coefficients ρ = {0, 0.1, 0.2, 0.3}. Values

where the introduced correlation increases the probability of default by

100% or more are shown in colour, values below that are shown in greyscale. 84



4.6 Probability of default and the system scale Probability of default is

plotted on the y-axis for maximally diversified (complete) networks with

the numbers of banks N = {300, 500, 800, 1000, 3000, 5000, 8000, 10000} on

the x-axis. At time t = 0 the shock values are σ⃗ = (−1.1,−0.75, 0) , with

probabilities p⃗ = (0.02, 0.09, 0.89), respectively. In different subplots (a)-

d)) we vary the correlation coefficient from 0 to 0.3. The subplots indicate

that the correlation-induced probability of default does not depend on the

system size, which is further supported with horizontal lines that represent

the analytical result for the limit of an infinite network. . . . . . . . . . . . 86



Chapter 1

Introduction

1.1 Physics, complexity and financial systems

The directions of thought and research in physics, and science in general, follow two

complementary philosophical principles: reductionism and holism [1]. An elegant and

tempting principle such as reductionism, that aims to reduce the myriads of natural phe-

nomena to a set of simple principles, has been followed by scientists over centuries. The

diversity of matter was simplified through the atomic theory to the periodic system of

elements, and then later even further to the standard model, that includes a finite number

of elementary particles and three fundamental forces. The laws of motion, that Newton

introduced, unified the motion on Earth with the motion of celestial objects, whereas

Einstein generalized the principle of relativity to the non-inertial systems and described

gravitation as an effect of the geometry of spacetime. Outside physics, a reductionist

tendency decomposed biological processes to chemical processes, while chemical laws re-

vealed to have physics in the background. Even for contemporary physicists, the ultimate

aim is to find the set of equations that govern all the phenomena in the nature - a theory

of everything.

A different perspective, however, was to start with some basic principles and try to build

up from them to the observed phenomena. It is well known that individual particles, each

simply obeying well known Newton’s laws of motion, give rise to new physical phenomena

of heat and pressure when observed as a collective. Collective or cooperative effects appear
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in many natural processes, showing that "the whole is more than the sum of the parts"

[2]. One of the most basic expressions of the cooperative phenomena is the central limit

theorem; it demonstrates how random variables from various distributions, in the infinite

limit, add up to a sum that forgets about the individual distributions’ properties, and

instead arises with a Gaussian shape [2].

Continuous scale invariance exhibited by physical systems stands behind the definition

of a critical state, one between order and disorder. As the correlations exist at all scales

and exclude the possibility of averageing of physical properties, this state needs to be

described by taking the entire system into account [2]. The distributions of variables in

such systems universally emerge as power laws. Renormalization group [48], the mathe-

matical formalism developed to tackle critical phase transitions, uses coarse graining of

the system to provide a map between different scales, and describe the macroscopic be-

haviour. When the continuous scale invariance is reduced to discrete scale invariance, the

power law exponent becomes a complex number, thus introducing log-periodic oscillations

[2]. Such oscillations have been found to have a predictive power in earthquakes [49, 50,

51], ruptures of engineering structures [52] and financial crashes [53, 54, 55, 56]. Percola-

tion theory [57] provides yet another view on phase transitions. A simple mathematical

model describes in the first approximation a wide generality of phenomena from various

disciplines, such as contact processes [15], branching and annihilating random walks with

odd parity [58, 59], population dynamics, transport phenomena, theory of liquid water,

of stock market price fluctuations, the human vasculature system, earthquake nucleation,

rupture in random media, etc.

In addition to the classical phase transitions driven by parameters, some dynamical sys-

tems, that are out of equilibrium or heterogeneous, have the property that the attractor

of their evolution is a critical point. Such a behaviour is termed self-organized criticality,

and is characterized by rare and large events, that appear out of a simple set of rules com-

bined with non-linear interactions and long-range spatial and temporal correlations. The

term was first introduced in Bak, Tan and Wiesenfeld’s paper [60], where they present

a simple sandpile model exhibiting spontaneous criticality and complexity. Seismicity,

river networks, propagation of forest fires and biological evolution processes [61, 62] are

some of the systems proposed to be described by self organized criticality, although the

2
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mechanisms and the universality of the phenomena are still under debate.

Quenched randomness in some media contradicts the concept that disordered systems

can be represented by effective and equivalent homogenized counterpart systems [63].

The full probability distribution of the quantities is necessary for the full description [1].

The physical systems exhibiting such behaviour are spin glasses [64], which show the

breaking of ergodicity due to the the multi-valley structure of the energy landscape.

Complex systems theory is a broad field that emerged from the latter direction of research,

in an attempt to generalize the behaviour of the various systems that exhibit emerging

phenomena. Network theory, more specifically, studies the complexity that arises from

topologically nontrivial interactions. The mathematical structure used to represent such

systems is a graph, with the constituents classified as a set of vertices, and the interac-

tions as pairs of those vertices - edges. Depending on the system being described, the

interactions can be directed or undirected, binary or weighted.

A simple stochastic graph [3] was proposed by Erdős and Rényi as an elementary tool for

studying complex networks. This marked the beginning of the use of random graphs for

modeling real-world networks. Erdős-Rényi graph is defined by fixing either the number

of vertices and the number of edges [3], or the number of vertices and the average number

of edges per vertex - the mean degree [4], while randomizing all the other properties.

Its properties enabled researchers to study the characteristics of random graphs in an

analytically tractable way, and it is an important baseline model in statistical comparisons.

Nevertheless, due to its simplicity, Erdős-Rényi stochastic graph does not reproduce some

features exhibited by the real networks, for example a relatively short path between two

nodes, cluster formation and power law degree distribution [5].

Watts-Strogatz model [6], generated by the interpolation between an ordered finite-

dimensional lattice and a random graph, was proposed to reproduce the property of

clustering on a network, as well as the short path between two nodes. These two network

properties together define a family of "small-world" network models developed subse-

quently [65], and are an important tool in the study of social networks.

Power law distribution of node degrees was attained by “scale free” models [7], which form

by following the dynamics of network assembly. The Barabási-Albert model mimics the
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dynamics of the real networks in two principles: growth and the preferential attachment.

The network obtains a new node in every time step, and the edge between the new node

and the old ones is created with the probability proportional to every node’s degree, with

the final degree distribution arising as a power law.

Systems of interest come from all kinds of different disciplines, starting from some of the

aforementioned physical systems, e.g. spin glasses [64], protein [66] and food networks

[67] from biology, social networks [68], traffic networks [69], the Internet [70], etc. The

non-triviality of the topological features places the study of complex networks outside

the scope of the graph theory, and it invites a multidisciplinary approach. Tools from

statistical mechanics such as maximum entropy principle serve for network reconstruction

and pattern validation [71, 5] and various computer algorithms are needed to perform

calculations on large networks [72]. Notable experiments such as Milgram’s small world

experiment [73] belong to psychology, and metrics such as centrality measure [74, 75] and

clustering coefficients [76] were inspired by social networks. Finally, machine learning [77],

statistical methods and hypothesis testing are absolutely necessary for the empirical part

of the discipline.

Several authors have combined networks with game theory to study under which condi-

tions human cooperation arises over defection [78]. Patterns formed in neuronal networks

have served for studying and predicting the onset of mental illnesses in individuals [79].

The neural networks have been studied under the scope of network theory, and the graph

structure of the networks with the best predictive performance is shown to have a very

similar structure with biological neural networks [80].

In this thesis we will focus our attention on financial networks in particular. A financial

crash can be a result of an extreme external shock or emerge as a macroscopic effect from

the behaviour of the multitude of participants in the financial system. If the system loses

resilience internally, i. e. enters a different “phase”, the shock that drives it into collapse

needs not be large. As it was considering only the participants as individuals, and leaving

out the system they constitute as a whole, the traditional economic theory was not able

to predict collapses of the financial system. After the 2008 crisis, the introduction of the

view of complexity into the financial systems opened the door to the possible detection of

a coming financial crash. Introducing the interactions into the picture, and representing
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the system as a complex network, enabled researchers to find properties of the system

that indicate a change in the system’s stability, and could serve as early warning signals

of a coming crisis [8]. Understanding the way that an external shock propagates through

the network, which properties of the network contribute to the amplification, and which

to the damping of the shock is an important matter regulators need to understand if they

want to keep the system stable. Due to the confidentiality of the financial data, complete

knowledge of the system cannot be obtained, however, statistical tools that reconstruct

network exist [9]. Access to larger amounts of data and the consensus of the institutions

to disclose more detailed data would enable researchers to build models that encompass

more heterogeneity and lead in the direction of a more stable and resilient financial system

[10].

1.2 Summary of contributions

We present original contributions to the field of complex networks, and in particular

financial networks. The list of contributions, in the order in which they will be presented

in the thesis is:

• the development of a methodology that helps distinguish a presence of an endoge-

nous propagation in the system in the available data

• the extension of the approximate master equations to directed time-ordered networks

and the calculation of the expected numbers of causal motifs

• the analysis of the contribution of network contagion to the probability of default

of an institution in the system, directly applicable to the calculation of the Credit

Valuation Adjustment

• a theoretical description of financial contagion with correlated exogenous shocks
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1.3 Dissertation outline

This dissertation is organized in 5 chapters. In Chapter 2 we put the research we con-

ducted into context, and write a literature review of the topics and concepts that we

used in our research. Chapter 3 presents the methodology that was devised to detect an

endogenous contribution in the propagation of defaults, using causal motifs. For a better

understanding of the methodology, an analytical description of the temporal evolution of

the motif frequency is provided. In Chapter 4 we present the research on the contribution

of the contagion on the financial network to the default probability of institutions. We

study the case with and without correlations of exogenous shocks. In addition to that, we

include an analytical description of the financial contagion when shocks on institutions

are correlated. All the results are discussed in Chapter 5, and the directions for future

research are suggested.
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Chapter 2

Complex networks and systemic risk:

Background

We introduce the main topics necessary for understanding the work done in the thesis:

graph theory, contact processes on complex networks and systemic risk. We provide a

literature review for these topics and explain how they intertwine in the description of

financial systems.

2.1 From graph theory to complex networks

2.1.1 Graph theory

Mathematically, a graph is defined as a pair G = (V,E), where V is a set of of elements

named vertices, and E ⊆ {eij = {vi, vj}|vi, vj ∈ V } is a set of pairs of vertices, which

are called edges. In the case that the pairs of vertices are unordered, the graph is called

undirected, whereas, if the pairs of vertices are ordered, the graph is said to be directed.

In this Chapter, all the formulas will refer to undirected graphs, unless stated otherwise.

Additionally, numerical values can be assigned to edges. Depending on whether they are

all equal to 1, or have positive real values, the graph is either unweighted or weighted.

In case all possible edges are present, the graph is said to be complete, and if there are

no edges it is empty. These properties are indicated as Kn and En, respectively. A loop
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on a graph is defined as an edge that has the same vertex as both elements of the pair,

ejj = (vj, vj). A multigraph is a graph that contains loops and multiple edges between

the same vertices.

A walk on a graph is a finite or an infinite sequence of vertices, joined by a sequence of

edges. If a walk has all the different edges, it is called a trail, and if all the vertices are

different, we call it a path. A trail with the first and the last vertices equal is called a

cycle. In case a graph contains no cycles, it is called acyclic. If a path exists between any

two vertices in a graph, we say that the graph is connected.

The graph of the size N (containing N vertices) is represented with an N ×N adjacency

matrix, defined as:

Aij =


1, if an edge exists between i and j

0, otherwise.
(2.1)

If the graph is directed, an edge is defined to point from vertex i to vertex j, which makes

the matrix Aij asymmetric. In case of multiple edges, their values are added up, and

for loops the convention is Aii = 2, as it makes the calculations neater. For weighted

networks, the weights are assigned to elements Aij [72, 11].

The components of a graph are defined as the connected subgraphs that are not contained

in any larger connected subgraph. An important metric of a graph is the size of the largest

component. If the graph is directed, we can define a largest strongly connected component,

which requires a directed path to exist between any two vertices, and a largest weakly

connected component, which would be the largest component of the same graph with

undirected edges.

2.1.2 Complex networks

An important step from graph theory towards network science was in the realization

that real networks universally share some statistical features, namely the small-world, the

clustering and the degree distribution properties.
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The shortest path (or a graph geodesic) between two vertices on a network is defined as

the path for which the sum of the weights of its edges is minimized. A global statistical

measure is represented by an average of all the shortest paths ⟨l⟩ on a network. It was

observed on many natural networks, that the average shortest path scales logarithimically

or slower with the size of the network, and the phenomenon was named the "small-world"

effect [11].

In many real world networks, the small-world property is observed together with the high

level of clustering. Clustering is a concept that refers to the tendency of natural networks

to form cliques. Locally, it is defined as a ratio of all the existing edges between the

neighbours of a vertex i (with ki neighbours) and all the possible edges between them. If

we define the neighbourhood of a vertex i as Ni = {vj : eij ∈ E, eji ∈ E}, we can define

the clustering coefficient for that vertex as:

Ci =
2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
. (2.2)

In order to construct the clustering coefficient globally, we employ triplets, which are

defined as three vertices that have two or three edges between them, and named an open

and closed triplet respectively. The global clustering coefficient is then:

C =
number of closed triplets

number of both open and closed triplets
. (2.3)

A high global clustering coefficient (higher than if the network ties were made randomly) is

a well known property of real networks, and it is especially pronounced in social networks

[72, 11].

The distribution of the vertex degrees P (k) provides us with an important character-

ization of the network. Depending on the functional form of the degree distribution,

we can broadly form two classes of real networks, homogeneous and heterogeneous net-

works. Homogeneous networks have degree distributions with light-tails, such as Poisson

or Gaussian distributions. The presence of the light-tail, and the mean value that overlaps

with maximum indicates that there exists a characteristic scale in the network. On the

contrary, heavy-tailed distributions, such as power-law, emerge from the heterogeneity of

the network connectivity pattern. It is specific for the power law distributions with the
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exponent γ ≤ 2 that they don’t have a well defined mean, whereas for the exponent γ ≤ 3

the variance is not well defined. Therefore, the heavy tail of a distribution, for γ less than

3, implies that there is a finite probability of finding vertices with a degree much larger

than the mean value. Since these distributions are not bell-shaped, the mean value does

not represent a characteristic scale of the system [11].

The giant component G [13] of a network is defined as a connected component that contains

a finite fraction of the network’s vertices and thus diverges in the limit N → ∞. The

problem of finding a giant component in a network is analogous to infinite-dimensional

edge percolation in the limit N → ∞. The critical point divides the regime of a fragmented

network from the regime where a giant component arises. A simple calculation can provide

the condition for a giant component on graphs with a local tree structure with no cycles.

For an undirected, uncorrelated network with the degree distribution P (k), we can write

the probability q that a randomly picked edge does not lead to the giant component. It

is stated as a sum over all possible degrees k of a product of the probability that an edge

leads to a vertex with degree k, and the probability that none of the other k− 1 edges of

that vertex are connected to the giant component in a self-consistent equation:

q =
∑

k

kP (k)

⟨k⟩
qk−1. (2.4)

Then, the probability that a given vertex belongs to the giant component is PG can be

deduced from the complementary probability that a vertex does not belong to the giant

component,
∑

k P (k)qk:

PG = 1−
∑

k
P (k)qk. (2.5)

Except for the solution PG = 0 for q = 1, which always exists, we can check for the

existence of another solution by rewriting the Equation (2.4) as q = F (q) and looking

for a point where F (q) intersects the line q. Considering the properties of the function

F (q), F (0) = P (1)/⟨k⟩, F (1) = 1, F ′(q) > 0 and F ′′(q) > 0 for 0 < q < 1, the point of

intersection can be obtained from the condition:

d

dq

(∑
k

kP (k)

⟨k⟩
qk−1

) ∣∣
q=1

> 1, (2.6)
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which can be simplified to:
⟨k2⟩
⟨k⟩

> 2. (2.7)

Therefore, the critical point separates the phase for ⟨k2⟩/⟨k⟩ < 2, in which the size of the

largest component scales as lnN , from the phase for ⟨k2⟩/⟨k⟩ > 2, which contains a giant

component. Exactly at the critical point, where ⟨k2⟩/⟨k⟩ = 2, the largest component

follows the power law N2/3.

2.1.3 Erdős-Rényi graph

Paul Erdős and Alfred Rényi [3] were the first ones to apply probabilistic methods to

the theory of graphs, which can be considered as the beginning of the random graph

theory. They defined the graph G(N,m), that was later named after them, by fixing N

vertices and m randomly placed edges. A probability space with
((N2 )

m

)
equiprobable graph

realizations is obtained that way. An equivalent, but a mathematically more tractable,

model was introduced in [4]. Instead of fixing the number of edges m, they fixed the

probability p that an edge will appear, consequently fixing the expected number of edges

E(m) = p
(
N
2

)
. The probability of a graph realization that has m edges then becomes:

P (G(N,m)) = pm(1− p)(
N
2 )−m. (2.8)

The degree distribution can be simply derived, if we notice that the probability that the

vertex is connected to k vertices, and not connected to the remaining N − k − 1 is equal

to:

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k. (2.9)

If we fix the mean degree to be constant ⟨k⟩ = pN and take the limit of an infinite network

N → ∞, the binomial distribution can be approximated by the Poisson distribution:

P (k) = e−⟨k⟩ ⟨k⟩
k

k!
. (2.10)

Since the Poisson distribution has very light tails, Erdős-Rényi graph is a typical rep-

resentation of homogeneous networks with a very well defined scale and small degree

fluctuations.
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It is possible to easily derive the expression for the clustering coefficient ⟨C⟩, since the

probability of an edge between two vertices is independent of the existence of any other

edge:

⟨C⟩ = p =
⟨k⟩
N

. (2.11)

In the limit of infinitely large networks, if ⟨k⟩ is fixed, the clustering coefficient goes to

zero, which shows that Erdős-Rényi network does not represent the real networks well in

this property.

The calculation of the average shortest path ⟨l⟩ is straightforward as well. We assume

that the cycles are negligible, and that every vertex has approximately ⟨k⟩ neighbours.

Starting from one vertex and iterating ⟨l⟩ times, we can reach the entire network, i.e.

⟨k⟩⟨l⟩ ≈ N . It follows that:

⟨l⟩ ≈ lnN

ln⟨k⟩
. (2.12)

It is clear from Eq. (2.12) that the Erdős-Rényi graph recovers the small-world property

of the real networks [11, 5, 13].

The condition for the emergence of the giant component in an Erdős-Rényi network can

be easily obtained by inserting the equality that stands for the Erdős-Rényi network,

⟨k2⟩ = ⟨k⟩ + ⟨k⟩2 into the Equation (2.7), which then provides us with the critical point

⟨k⟩c = 1. Therefore, an Erdős-Rényi network will have a giant component as soon as the

mean degree ⟨k⟩ becomes greater than 1. That corresponds to the critical probability

pc = 1/N . Since, in this thesis, we are concerned with contagion processes on networks,

we need to have the existence giant components on networks we use guaranteed, in order

for the network to support the propagation of such a process.

2.1.4 Random k-regular graph

A k-regular graph is a graph in which every vertex has degree k. Then, a random k-

regular graph is a graph G(N, k) selected from the probability space of all the k-regular

graphs with N vertices, for which the condition 3 ≤ k < N with N · k even, is satisfied.

The regularity condition affects the properties of this kind of random graphs, and the

mathematical results are less tractable compared to the Erdös-Rényi graph. Nevertheless,
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in some cases, as in Chapter 4, where we constrain the sum of the edge weights to be the

same for each vertex, they are more convenient to use for simulations than Erdős-Rényi

graphs.

2.1.5 Network motifs

A subset of a graph G(V,E), is called a subgraph, and it is defined as a graph G′ = (V ′, E ′)

all of whose vertices V ′ are contained in V , and edges E ′ are contained in E. If the

size of a subgraph is n < N , and it is complete, we call it a clique. In real networks,

the abundance of some types of connected subgraphs can serve as a tool for studying its

properties. Such small, statistically significant, connected subgraphs were named network

motifs, and they represent building blocks in network evolution [13]. A few examples are

shown in Fig. 2.1. The methodology for the detection of basic structural elements of

Figure 2.1: Examples of network motifs

networks was first developed by [12]. The authors counted the occurrences of motifs

with n vertices on the networks of interest, and then compared it to the count on an
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ensemble of randomized networks. The ensemble of randomized networks was created by

preserving the degree of each vertex and the appearances of (n − 1)-vertex motifs, and

randomizing all the other properties. The original counts were compared to the counts

from the randomized ensemble, and the subgraphs which had a significantly higher count

were recognized as structurally important network motifs. The main idea of the authors

was to define universality classes of networks using motifs.

Instead of obtaining the distribution of the motif counts by simulating the randomized

ensemble, several attempts were made at providing the analytical approximation. The

expression for the first two moments (mean and variance) was derived simply from knowing

the degree sequence of the network in [81]. This provides a way to calculate z-scores of

network motifs without computationally expensive simulations. However, as the p-value

characterization is impossible without the entire distribution, Pólya-Aeppli distribution is

proposed in [82] as the approximate distribution for the motif count. The important thing

to note, both in the calculation of motifs and in choosing the approximate distribution,

was the particularity of the network motifs that they tend to overlap. That introduces the

covariance term in the calculation of variance, and requires a distribution that accounts

for the existence of clumps.

However, if there is a dynamical process occurring on a network, the temporal evolution

of the motif appearance is intractable using the existing work. In Chapter 3, we extend

Approximate Master Equations [21, 22] to derive the temporal evolution of the first mo-

ment of motifs with causal ordering, for a binary state dynamics on a network with a

given degree distribution.

2.2 Dynamical processes on networks

The theory of dynamical processes on networks is a framework that bridges the emer-

gence of macroscopic properties with the microscopic interactions between the network’s

elements. The approach is analogous to the concept of statistical physics, from which it

borrows some methods. The dynamical description of the system attributes a variable σi

to each vertex i that corresponds to its dynamical state. In an epidemic process it can re-

fer to the individual being susceptible, infected, or recovered; in a contagion on a financial
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network it can describe an institution as defaulted or non-defaulted. The set of all possible

states of a vertex can be defined as a state space S = {1, 2, . . . , κ}, σi ∈ S. If the states

of all the vertices in a network of size N are known at time t, σ(t) = (σ1(t), . . . , σN(t)),

we say that the microscopic state of the system is known.

The dynamical process is contained in the transitions of the system from one microscopic

state to another, σa → σb. We describe the process evolution in the phase space of

the variable σ(t), consisting of all the possible configurations. However, due to the typ-

ically large size of complex systems, the evolution of all the microscopic variables σi is

intractable. We present an approach that focuses on a probabilistic description of the

system trajectory, the master equation, in the Subsection 2.2.3 [13]. In the following

subsections, we present the microscopical definition of all the dynamical processes that

will be used in this thesis.

2.2.1 Interacting particle systems

Dynamical processes on networks that are stochastic in nature can be tracked back to

a class of stochastic processes called interacting particle systems [14, 15, 16, 17]. An

interacting particle system is defined as a continuous-time Markov process (X(t))t≥0 on

some configuration space Ω. The configuration space is a Cartesian product space Ω = SG,

where G is a countable set, called a lattice, that represents the site space, and S is a local

state space. Therefore, the configuration space contains G copies of S, and the Markov

process defined on its elements represents the microstate of a dynamical process:

σ(t) → X(t) = (Xi(t))i∈G, Xi(t) ∈ S ∀ i ∈ G. (2.13)

The continuous-time Markov process is a stochastic process generated by the conditional

probabilities that satisfy the Chapman-Kolmogorov equation [83]. The best known exam-

ples of interacting particle systems are the contact process, voter model, stochastic Ising

model and stochastic Potts model. We will familiarize ourselves with the contact pro-

cess and the voter model, since they are used in Chapter 3 to simulate synthetic default

propagation processes which we use to test our method.
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Chapter 2. Complex networks and systemic risk: Background

The contact process

The contact process [16] is a stochastic process widely used in biology to model bacterial

growth, and in epidemiology to track infectious disease spreading. The local state space

of the contact process is S = {0, 1}. Markov chain states are thus Xi(t) = 1 if the site i

is infected or occupied, and Xi(t) = 0 if it is recovered, or empty. The transition rates on

the state space S, r01 and r10, at a site i are given as:

0 → 1, r01(i) = λ
∑
j:j∼i

Xj(t), (2.14)

1 → 0, r10(i) = δ, (2.15)

where the relation j ∼ i denotes that i and j are neighbours. A quantity of interest for

this process is the number of the infected sites N(t). For an infinite graph G it was shown

that, for a fixed δ, there exists a critical value λc, so that for λ > λc the process has a

positive value of N(t) for all times, and for λ < λc it gets extinct almost certainly. Such an

abrupt change in behaviour with the change in the parameter λ is recognized as a second

order phase transition. We will use the special case of the contact process, with δ = 0,

to model the default process. The increase in the probability of default is linear with

the infected neighbours, which makes it a suitable approximation for the propagation of

default.

The voter model

The voter model [18, 17, 16] was built to model the dynamics of opinion spreading, but it

is often used as well for modeling a spatial conflict, e.g. biological populations or nations

in conflict. The vertex i copies the state of a vertex j with probability p(i, j). The local

state space can be in general S = {0, . . . n}, but we describe the case when n = 1. The

rate of change between the two states is symmetrical r01 = r10 = r, and for the site i it

follows:

r(i) =
∑

j:Xi(t)̸=Xj(t)

p(i, j),
∑
j

p(i, j) = 1, (2.16)

16



2.2. Dynamical processes on networks

where p(i, j) are transition probabilities, such that the random walk with those transition

probabilities is irreducible. This definition points to the duality between the voter model

and coalescing random walks [84]. A coalescing random walk considers a set of particles

making independent random walks on a graph, with the property that, when two particles

meet on a vertex, they coalesce and proceed with the walk as a new particle . If we consider

a simple random walk, that can take one step at a time, on a lattice, S = Zd, the transition

probability is [17]:

p(i, j) =


1/2d, if i ∼ j and Xi(t) ̸= Xj(t)

0, otherwise,
(2.17)

where 2d is the number of the sites neighbouring the vertex i. In this case we can say that

the site i flips with the rate proportional to the number of neighbours with a different

opinion. As the system evolves, patches of sites with same opinions appear, and the

system ends up fixating one of the opinions. Such clustering behaviour appears only if

the lattice has the dimension less than 3. In our research, simulations are performed on

networks, and not on lattices. When applied to model a default process, the voter model

has the default rate proportional to the fraction of the defaulted neighbours, instead of

their absolute number as in the contact process, which makes the process more similar to

actual defaults in the economy.

2.2.2 The threshold model

In an attempt to model large, rare cascades in social and economic systems, Watts [19]

introduced a simple threshold rule on a random network of interacting agents. Such a

model belongs to the wider class of game-theoretic economic models, known as binary

decisions with externalities [85], used to study how individuals make choices based on the

decisions of others. Unlike the models from interacting particle systems, the threshold

model is defined deterministically. The state space is again S = {0, 1}, but instead of a

transition rate, there is a transition rule:

0 → 1, if
1

k

∑
j:j∼i

σi ≥ ϕ. (2.18)
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A site i in state σi = 0, that has k neighbours, will switch to state 1, if the fraction of its

neighbours in state 1 is larger than some threshold ϕ. The model introduces local depen-

dencies, fractional thresholds, and the heterogeneity of the thresholds and the network.

These properties are shown to be essential in recovering the two qualitative features of

global cascades; rare occurrence and large size.

2.2.3 The master equation and approximate solutions

We have now defined all the three dynamical process models that we will use in this thesis

on a microscopic level. As it was noted at the beginning of this section, tracking the

trajectory of all the microscopic variables σi is impossible in large systems. Therefore, we

will approach the problem from a different perspective; instead of looking for a mechanistic

picture the system, we will focus on a probabilistic description, and resort to tracking the

evolution of the probability distribution of the system configuration, P (σ, t). As opposed

to the Fokker-Planck equation, that describes systems whose state changes continuously,

the master equation governs the evolution of systems with discontinuous states, which

makes it a natural choice for the representation of dynamical processes on networks. For

processes that are continuous in time, it reads [13]:

∂P (σ, t)

∂t
=
∑
σ
′

[
P (σ′, t)W (σ′ → σ)− P (σ, t)W (σ → σ′)

]
. (2.19)

The sum goes over all the possible microscopic states σ′, and the terms W (σ′ → σ) are

the transition rates between the microscopic states σ′ and σ. The master equation is

written in the form that stresses the existence of the terms that represent the inflow of

the probability that any state σ′ changes to σ, and the outflow obtained by the rate

at which the σ microstate changes to any other possible state [20]. Even though the

transition rates can generally depend on the entire microscopic configuration σ, taking

the network structure into account simplifies them significantly. After noticing that the

change of the vertex i state can be influenced only by local interactions with neighbouring

vertices, j ∈ V (i) of i, the transition rates W (σ′ → σ) can be decomposed as:

W (σ′ → σ) =
∏
i

w(σ′
i → σi|σj). (2.20)
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2.2. Dynamical processes on networks

It is through this equation that the network topology enters the dynamical process de-

scription.

A solution of the master equation, P (σ, t) would, in principle, allow us to calculate the

expected value of any quantity of interest in the system. For some quantity A(σ), that

depends on the microstate σ, the temporal evolution of the expected value is simply:

⟨A(t)⟩ =
∑
σ

A(σ)P (σ, t). (2.21)

However, in most cases it is impossible to obtain a complete solution for the master

equation, even for simple dynamical processes. Approximations schemes that must be

employed, such as mean-field theory or approximate master equations, are next described.

Mean-field approximation

The evolution of the number of vertices in a specific state of the process is an intuitively

important quantity of interest. The average number of vertices in the state x ∈ S, as a

function of time, can be obtained from a projection of the master equation:

Nx(t) =
∑
σ

∑
i

δσi,x
P (σ, t). (2.22)

In order to solve this equation, a mean field approximation is used on the probability

P (σ, t). The assumptions that it introduces are the homogeneity of the system, and the

lack of all correlations between the microstate variables σi. Therefore, the probability

that a system is in some microstate σ, can be simplified to:

P (σ, t) =
∏
i

pσi
. (2.23)

The probability that vertex i is in some state σi is now independent of that vertex, as in a

homogeneous system there is no difference between the vertices. Since all the correlations

between vertices are neglected, P (σ, t) is factored as a product of independent probabilities

for each vertex.

A general form of the equations obtained after using the mean field approximation looks

19



Chapter 2. Complex networks and systemic risk: Background

like:
∂Nx

∂t
= Fx(N1, . . . Nκ), (2.24)

where N1, . . . Nκ are average numbers of vertices in all the possible states x ∈ S [13].

We will present a more specific mean-field equation, for a dynamical process with κ = 2,

which is called binary dynamics, and has a wide application in modeling fundamental

processes. The state space of the binary dynamics is S = {0, 1}. The default process,

which we focus on in this thesis, is an example of binary dynamics. We denote with k the

degree of a vertex, and with m, the number of neighbours of that vertex that are in state

1. The mean degree of the network is denoted with ⟨k⟩. The rates of transition between

the states are generally denoted as w(0 → 1|k,m) = Fk,m and w(1 → 0|k,m) = Rk,m.

The rate Fk,m is the rate of the transition from the state 0 to state 1, for a vertex with

degree k and m neighbours in state 1. The rate Rk,m denotes the rate of the opposite

transition, 1 → 0. A vertex i, with m out of k neighbours in state 1, will be in state 1 or

state 0 with the respective probabilities:

P (σi = 1; k,m) = ρkBk,m

(
k

⟨k⟩
ρk

)
, P (σi = 0; k,m) = (1− ρk)Bk,m

(
k

⟨k⟩
ρk

)
,

Bk,m(q) =

(
k

m

)
qm(1− q)k−m. (2.25)

The differential equation describing the density of the vertices with degree k in state 1,

ρk(t) then follows [21, 22]:

d

dt
ρk =

k∑
m=0

[
Fk,m(1− ρk)Bk,m

(
k

⟨k⟩
ρk

)
−Rk,mρkBk,m

(
k

⟨k⟩
ρk

)]
. (2.26)

The initial value of the density is ρk(0) = ρ(0). The fraction of the vertices in state 1 in

the whole network is easily obtained if we know the degree distribution:

ρ(t) =
∑
k

Pkρk(t). (2.27)

If we wish to use the mean field equations for the microscopic dynamical processes defined

above (the contact process, also known as SI model, when it is modeled on a network,

and with δ = 0, the voter model and the threshold model) we only need to state their
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2.2. Dynamical processes on networks

transition rates in terms of k and m (Table 2.1).

Table 2.1: Transition rates for the SI, voter model and threshold model

Process Fk,m Rk,m

SI λm 0
Voter model m

k
k−m
k

Threshold

{
0, if m < Mk

1, if m ≥ Mk

0

Approximate master equations

Although Eq. (2.26) is simple to derive, the assumptions used in its derivation are not

always valid, nor is the equation very accurate, especially on sparse networks, or near the

critical points of the dynamics. One way of improving the accuracy of the description

would be to take subsets of vertices larger than 1 (pairs, triplets) as the model units [86].

However, increasing the number of vertices in the unit causes the number of equations

needed to describe its evolution to explode. Another type of approach is to focus on one

vertex, but to keep track of all of its first neighbours. Such models are named approximate

master equations [87, 21, 22].

We embrace the notation from the SI epidemic model, and call the vertex in state 0

susceptible and the vertex in state 1 infected. At time t, the sets of susceptible or infected

vertices, that have the degree k, and the number of infected neighbours m, are denoted

with Sk,m(t) and Ik,m(t). For the calculations, it is necessary to define the densities,

sk,m(t) and ik,m(t) of the susceptible and infected vertices with degree k and m infected

neighbours. The density of all the infected vertices with degree k is then the sum of

densities over all possible m, ρk(t) =
∑k

m=0 ik,m(t) = 1−
∑k

m=0sk,m(t). The total density

ρ(t) can be obtained from Eq. (2.27).

The temporal evolution of sk,m(t) can be written as:

sk,m(t+ dt) = sk,m(t)−W (Sk,m → Ik,m)sk,mdt+W (Ik,m → Sk,m)ik,mdt

−W (Sk,m → Sk,m+1)sk,mdt+W (Sk,m−1 → Sk,m)sk,m−1dt

−W (Sk,m → Sk,m−1)sk,mdt+W (Sk,m+1 → Sk,m)sk,m+1dt, (2.28)
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Chapter 2. Complex networks and systemic risk: Background

where only transitions whose rate is linear in dt are taken into account. The transition

rates between the Sk,m and Ik,m classes are already defined:

W (Sk,m → Ik,m) = Fk,m, W (Ik,m → Sk,m) = Rk,m. (2.29)

The remaining rates concern the transitions of the neighbours, which can in turn be caused

by their own neighbours. We can factor them as the number of neighbours in the state

of interest that multiplies the probability of the their transitions:

W (Sk,m → Sk,m+1) = (k −m)βs, W (Sk,m → Sk,m−1) = mγs. (2.30)

Since we are not tracking the state of their neighbours, we introduce the mean-field

approximation at this level. We look for the probability an SI pair will arise from an SS

pair, and vice versa. We assume that there are no correlations present between pairs of

vertices and average over the entire network:

βs =

∑
kPk

∑k
m=0(k −m)Fk,msk,m∑

kPk

∑k
m=0(k −m)sk,m

, γs =

∑
kPk

∑k
m=0(k −m)Rk,mik,m∑

kPk

∑k
m=0(k −m)ik,m

. (2.31)

After inserting the obtained expressions back into Equation (2.28) and taking the limit

dt → 0, we get the approximate master equation for the evolution of sk,m(t):

d

dt
sk,m =− Fk,msk,m +Rk,mik,m − βs(k −m)sk,m + βs(k −m+ 1)sk,m−1

− γsmsk,m + γs(m+ 1)sk,m+1. (2.32)

Analogously, the equation for the evolution of ik,m(t) follows:

d

dt
ik,m =−Rk,mik,m + Fk,msk,m − βi(k −m)ik,m + βi(k −m+ 1)sk,m−1

− γimik,m + γi(m+ 1)ik,m+1, (2.33)

with the rates βi and γi defined as:

βi =

∑
kPk

∑k
m=0mFk,msk,m∑

kPk

∑k
m=0msk,m

, γi =

∑
kPk

∑k
m=0mRk,mik,m∑

kPk

∑k
m=0mik,m

. (2.34)
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2.2. Dynamical processes on networks

The initial fraction of infected vertices, ρ(0) is turned into initial conditions using the

binomial factor, sk,m(0) = [1− ρ(0)]B[ρ(0)] and ik,m(0) = ρ(0)B[ρ(0)].

We will extend this framework for the class of directed networks with temporal ordering,

that we use in Chapter 3.

2.2.4 Detection of contagion processes on networks

Dynamical processes on networks can have two types of driving: either the vertices’

states change due to some external influence over them, or some propagation mechanism

causes the state changes to spread through the network. An important line of research

in complex systems builds on the relationship between these two possible natures of a

dynamical process. Distinguishing between the social and external influences is key in

studying information spreading, epidemics, social system or economic defaults.

In [23] the authors investigate the peaks in the time series of book sales, and classify

them according to their shapes into two types, endogenous and exogenous. The spreading

of the influence between buyers is modeled on a network, using an epidemic model with

long-range memory. The functional form of the solution the expected number of sales

turns out to be different depending on whether the system received an exogenous shock,

or it was simply in a critical state which allowed small fluctuations to cause endogenous

cascades. The model shows a good fit to the peaks observed in the empirical data.

The diffusion of information on social networks is modeled in [24, 25, 26]. Authors of [24]

use a hazard function for the internal propagation of information, and an event profile

function to describe the external source of information. They derive a distribution of the

number of exposures a vertex receives over time, and a an exposure curve, that describes

the probability a vertex is infected as a function of the number of exposures. They

validate it on synthetic data, and then infer the parameters for the real data, showing

that external information reaches the Twitter users more often than expected. In [25],

the authors propose a model for the probability that a vertex was influenced through peer

influence propagation. They distinguish the externally influenced vertices as the ones that

were influenced, although their probability determined by the model was lower than the

average of the entire network. After optimizing the parameters of the function, they give
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Chapter 2. Complex networks and systemic risk: Background

an estimate of the external influence in the information propagation on Facebook. Another

functional form for the propagation of information is given in [26], and the existence of

social influence is determined by estimating the coefficient governing the diffusion and

comparing it to coefficients for randomized data.

The present research focuses on using parametric models to determine the existence of en-

dogenous and endogenous components. The exogenous component is either parametrized,

or set as a null hypothesis, while the endogenous component is always represented para-

metrically. In the Chapter 3 we propose a methodology that requires no parameters for

the process, and does not assume the existence of the endogenous process a priori.

2.3 Systemic risk

Systemic risk is the risk that a large part of the system, consisting of interacting agents,

will collapse. The interconnectedness of the system lies at the core of the systemic risk, as

a cascading event, which leads the entire system into failure, can be triggered by a single

individual failure. Systemic risk thus emerges as a macroscopic property of a system, that

can be technical, social, or financial. Considering this, it is clear that complex networks

arise as a natural framework to study systemic risk [10].

The authors in [88] provide a general framework that encompasses contagion processes

with both deterministic and stochastic failure dynamics and homogeneous and hetero-

geneous thresholds. Although there is no formal definition for the systemic risk, the

macroscopic variable they use as a proxy is the fraction of defaulted vertices [88]:

X(t) =
1

N

∑
i

Ii(t). (2.35)

They obtain a mean-field limit of this fraction of failed vertices for all the processes in

their framework, and observe how the type of microscopic dynamics affects the behaviour

of the total fraction of failures.

In financial systems, systematically important companies, whose default can have a detri-

mental effect on the entire system, are deemed "too big to fail". The problem of deter-

mining how systemically important a company in the financial system is, does not have
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an universal solution. A methodology that takes a network perspective on the problem

was introduced in [27]. The authors employ a metric similar to a centrality measure from

network science to quantify the importance of the vertices in a network. They call it

DebtRank, after the PageRank centrality metric [72] that measures the importance of

a vertex by the number of important neighbours it has, while normalizing the influence

of each neighbour with its own out-degree. However, in DebtRank, the walks in which

edges are repeated are excluded, to avoid counting the impact of a vertex more than once.

Quantitatively, it represents the total loss incurred to the system from a certain individual

defaulted institution, or a small group of institutions. They stress the importance of the

network in the amplification of a small shock, and suggest broadening the concept of "too

big to fail" into "too central to fail".

Beside researchers quantifying the systemic importance of institutions, a large body of

research is concerned with mitigating the systemic risk. There are several perspectives

on systemic risk reduction: acknowledging the ambiguous impact of diversification [28,

29] and increasing the information available to the market participants [35], introduc-

ing Pigouvian taxation [30, 31] and assessing optimal network topologies and levels of

assortativity [32, 33, 34].

The belief that diversification always leads to a reduction of systemic risk, formed before

the Great Financial Crisis is challenged in [28, 29, 35]. Two scenarios are observed, one in

which the complete information about the system is known to all the participants, thus

making the losses conservative, and the other, in which there exist levels of uncertainty

about the market participants, causing loss amplification [28]. For example, after an agent

receives an external shock, or some of its counterparties default, its fragility increases.

Consequentially, its lenders are left with an uncertainty about the agent’s state, which

can cause them either to claim their funds back and make the agent to go into fire sales,

increasing its fragility even further, or increase their external risk premium, which in turn

also causes the agent’s fragility to increase [35]. It is shown that even for conservative

losses diversification can increase systemic risk, if the financial fragility of the institutions

is heterogeneous and low on average [28]. On the other hand, in the scenario with loss

amplification, with an increase in connectivity there is an interplay between the benefits

of diversifying the losses, and increasing the amplification of shocks. For low levels of
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connectivity risk diversification is beneficial, while for connectivity that is already high,

increasing it even further increases the systemic risk [29].

Apart from the propagation of actual losses, an important part in the recent crisis was

played by the propagation of distress in the shape of mark-to-market reevaluations of

interbank claims, occurring due to an increased likelihood of default of the counterparties

[35]. This type of reevaluation of assets, called Credit Valuation Adjustment [36], is

usually calculated by taking only the creditors of the institution into account. In Chapter

4 we show the importance of considering the entire financial network when calculating

CVA, and elaborate for different scenarios, with and without correlation on the external

assets.

Pigouvian tax is a tax imposed on institutions or individuals that engage in activities

that create adverse effects on the society. In the context of systemic risk, it could be

a type of tax that would disincentivize actions that increase the systemic risk [31], or

charge institutions proportionally to their systemic importance [30]. The first type was

proposed in [31], as a tax on transactions that is proportional to their marginal increase

of the systemic risk. The authors use an agent-base model to show that the proposed

tax gives rise to network restructuring and reduces the systemic risk without reducing

the transaction volume. Another approach is given in [30], taxing the institutions in

an amount proportional to their equity, and then applying a strategy for utilizing the

rescue fund. To avoid a moral hazard, rescue funds are given to the lenders of a defaulted

institution, to stop a potential cascading effect. The authors show that the cascade risk,

a proxy they use for systemic risk, is greatly reduced with their taxation scheme.

The question of the optimal network architecture is tackled by [32]. They show that there

is no optimal network topology in general, however, when the market is illiquid (due to

fire-sales causing additional losses to agents) scale-free networks show different stability

behaviour from Erdős-Rényi and regular graphs. More particularly, their stability be-

haviour is not universal, compared to these two other topologies. Whether it will be

more stabile or more fragile, depends on the initial endowments of institutions and the

correlation between their debtors and creditors. The authors of [33] study the effects of

the network assortativity in scale-free networs on the systemic risk. They show that dis-

assortative networks reduce the systemic risk. However, although assortativity increases

26



2.3. Systemic risk

the systemic risk, it slows down the contagion process, giving the regulators more time to

react [34].
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Chapter 3

Inference of contagion processes using

causal motifs

3.1 Introduction

The mathematical description of dynamical processes in complex systems most often be-

longs either to the class of stochastic cellular automata, or their continuous time analogue,

interacting particle systems. As in this Chapter we focus on the latter, we shortly intro-

duced them in Subsection 2.2. Dynamical processes in systems that are modeled with

this type of stochastic models are epidemics [89, 90, 86], default propagation in financial

industry [27, 91], propagation of information in society [92], queueing [93], etc. We dis-

cussed in Chapter 2 how macroscopic effects often occur from the microscopic mechanics

of interactions in complex systems. Phenomena such as cascades of default or wide-spread

disease contagion can be detrimental to the system. Detecting the cascade of events in

time can be of utmost importance for the functioning of the underlying system, and it

can provide us with some new insights in the modeling of their dynamics.

However, when creating a model for a specific dynamical process from temporal data, it

is not enough to assume from the nature of the system that it is convenient to use one of

the aforementioned processes. Perhaps it could be that there is not enough contact data

available to successfully reconstruct the network on which the contagion occurred [94, 95,

96], or the multiplex network representation of the systems is lacking the very layers that
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conducted the spreading process [97, 98, 99]. Finally, it is also possible that the network

did not contribute to the events in the process at all. The dynamics in all of these cases

would be then best described as a field-effect.

This leads us naturally to a question that we are addressing in this Chapter, that is,

for some temporal data that we have, whether interacting particle systems should be

employed for the description of the dynamics, or should we simply resort to field-effect

modeling. Attempts made so far to answer this question are mentioned in the Section 2.2.

However, the distinguishing factor of our research is that we do not make any assumption

about the nature of the contagion, that is, our method is non-parametric.

In order to formalize our question, we proceed with some definitions. With respect to the

available data, an endogenous event is defined as a change of state of an agent that was

caused by a change of state of some other agent through its directed relation (represented

as a directed edge in a network) to the first agent. We loosely define a cascade as a series

of connected endogenous events.

On the other hand, an exogenous event is defined to be a change of state of an agent that

happened with no connection to the change of state of any agents that share a directed

relation to the first agent.

Although we cannot infer causal relations from the data, we can use event times from

the data to distinguish two types of binary relationships between events; those that are

for certain not related by causality, as the time t1 on the beginning point of the edge

is larger than time t2 on the ending point t1 > t2, and those whose temporal ordering

does not exclude a causal relationship, i.e. t1 < t2. Since we cannot confirm causality for

each relation individually, we check whether a global effect can be observed statistically

in the entire system. We define causal motifs containing only potentially causal edges

below in Table 3.1 and compare their frequency of occurrence in the process to their null-

distribution, which we obtain from an ensemble of networks with randomized event times.

Then, if there were events that were caused endogenously, the frequency of causal motifs

is expected to differ from its null distribution, which conserves no temporal ordering. On

the other hand, if the process is completely exogenous, there should be no statistically

significant difference.
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Leaning on this rationale, we use the statistically significant difference between the original

motif count and its null distribution as an indicator of the presence of an endogenous

component in the dynamical process recorded in the data.

This work was motivated by a phenomenon that appears in economical systems - default

cascades [28, 100]. It is manifested as a series of mutually caused defaults and its appear-

ance threatens the stability of the system. In poorly regulated financial systems cascades

of default are common, and they are believed to largely increase systemic risk even in

well regulated systems [28, 100, 30]. Therefore, it is crucial for regulators to know what

is causing the companies to go into default. They have to distinguish between exogenous

causes such as loss of market access, loss of access to finance, monetary shocks, etc. and

endogenous propagation, i.e. when different agents fail to fulfill their obligations to their

creditors, thereby increasing the risk for a larger systemic event.

In modeling financial contagion, the network is usually created using balance sheets of

nodes [91], which consists of different categories that insulate the node from default. This

approach is equivalent to the threshold model presented in Section 2.2, as demonstrated

in [101]. The interplay between the network architecture and financial contagion between

banks is studied in [102]. Credit chains are mostly used to study contagion, being firstly

outlined in [103] as a principal way to propagate financial distress. In addition, defaults

on trade credit have also been recognized as an important cause of distress, as shown on

US data [104] and Swedish data [105]. An attempt to meaningfully model links between

firms in a production network has been taken by the authors in [106, 107, 108]. A business

network has been constructed in [109] from supply chain data. Two types of bankruptcies

were distinguished in the contagion within production network in [110]; one is a random

shock to revenues or costs and the other a creditor not being paid by the debtor. However,

no method exists still that identifies these types of bankruptcies from the data. As already

mentioned, the need to be able to differ between the shocks that affect the node defaults

externally, and the shocks transmitted within the network was the motivation behind this

Chapter.

This work is the continuation of the effort taken by [111] to develop a methodology

for detection of endogenous propagation in financial networks to be used on Croatian

company defaults. There the authors first constructed a directed temporal network with
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the companies and their times of default on vertices, and their mutual debts on edges,

pointed from debtor to creditor. They used single causal edges (with the time on the tail

preceding the time on the head of the edge) and tested their frequency in the original

network against their frequency in a randomized reference model (RRM) of the same

network [37]. They refined the method by including the values of the debt as edge weights.

We extend this research by making the choice of the test statistic more general, as we

include causal motifs with two and three edges and the largest component of causal edges,

in addition to single causal edges. Unlike the authors, we omit any other data than the

data that is necessary to build a directed temporal network, and provide some theoretical

insights into the methodology. Moreover, this methodology can have a more general

application on any spreading phenomena with two states on a directed network.

The use of the RRM in the literature goes from temporal embedding [112], inference of

structures in communication networks [113] to analysing collective behaviour in social

networks [114]. In the last-mentioned work the RRM was used to benchmark the count

of network motifs as well, however the two-event motifs they employed had no causal

ordering.

We introduced the network motifs and their application in the inference in complex net-

works in Section 2.1. We can additionally mention their use in understanding metabolic

and other biological networks [12, 115, 116], the properties of ecological system through

food webs [117], in economical setting to understand corporate governance [118, 119], and

organization of knowledge in Wikipedia [120]. Their extension to temporal networks has

been made by [121].

Temporally ordered motifs [122] were introduced for food webs, but unlike our definition of

causal motifs, they allow edges to point opposite of the temporal ordering on the vertices.

Process motifs were defined in [123] as small subgraphs composed of walks on them, that

represent building blocks of dynamical process. Authors in [124] use a similar concept of

temporal motifs to ours to detect anomalies in time series on networks.

Before using our methodology on the real data of company defaults, we validate it on

artificial data where we control the exogenous and endogenous process components. From

the vast space of all possible processes and networks, we choose two specific types of

processes, that we consider to best represent financial contagion, and simulate them on
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Erdős-Rényi networks. For computational reasons we use relatively small networks. Since

we expect the results on such networks to be the least conclusive, they provide a lower

bound for the result significance. We test the significance of our results and the robustness

of test statistics using Kolmogorov-Smirnov test, z-score and Mahalanobis distance. All

the scripts used for simulations and the company default data are available in our Git-Hub

repository [125, 126].

3.2 Data

The data was gathered from the website of the Croatian Financial Agency. There, all the

documents connected to "Zakon o financijskom poslovanju i predstečajnoj nagodbi", that

involved debt renegotiation and restructuring in the Republic of Croatia, are published.

The criteria for filing for this type of bankruptcy are defined in a law that was passed

at the end of 2012. That is, a company, that has failed to attain liquidity over a period

of 60 days, can file to a pre-bankruptcy settlements if at most 21 days passed since its

insolvency onset. On the day it files for a pre-bankruptcy settlements, it is obliged by

law to deliver a list of its creditors. For brevity, from now on we will call pre-bankruptcy

settlements - defaults, which for all practical purposes of this research, they are. Due to

the format of the published data, extensive data mining and cleaning had to be done in

order to convert it into a format suitable for network formation.

The final form of the data is a table consisting of a list of debtors, a list of all of their

creditors, the amount of debt per creditor, the starting time and the duration of the

pre-bankruptcy settlement. A temporal network is created with all the creditors that are

also debtors, represented as vertices. The directed edges represent debts, pointing from

the debtors to the creditors, in the direction of the possible default propagation. The

debtors are attributed with the starting times of the pre-bankruptcy settlements, which

are regarded as times of default. We do not include the duration of the pre-bankruptcy

settlements or the values of debt, as we devise our methodology on the minimal amount

of information possible. In Fig. 3.1 we depict the scheme of the network creation. The

data consists of 25469 creditors and debtors and 52507 debts, with creditors being banks,

private and public firms, government and individuals and debtors being exclusively firms.
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Figure 3.1: The scheme of the network construction from the data. The simplified
table on the left side of the figure shows the only three columns we employ from the
original data; the identities of debtors, the start of the pre-bankruptcy settlement (default
time) and the identities of creditors. We use only the firms that are both debtors and
creditors, and rows that satisfy that requirement are marked with a purple rectangle in
the table. On the right side, the network representation of the selected rows is depicted.
The relationship of debt is represented with a directed edge, pointing from the vertex that
entered the settlement as a debtor, to the vertex that entered the settlement as a creditor,
The time of default is assigned to the vertex that represents the debtor. The direction of
the edge is opposite to the flow of the money, from debtor to creditor, as it is chosen to
correspond to the direction of the possible default propagation.

The debts amount in total to 5.97 billion euros, corresponding to 13.6 percent of Croatia’s

GDP in 2014. The dataset encompasses the period between December 19th 2012 and

February 26th 2014. It starts right after the law for pre-bankruptcy settlements was

introduced, since the largest and most interconnected debtors filed for the procedure

right away, and it ends as the number and size of firms diminishes in the following two

years. From the economical perspective, in this time frame cascades are expected to be

observed, which is the reason we choose it to apply our methodology to.

3.3 Methodology

Rationale

The main contribution of this Chapter is a methodology devised to infer the existence of

a contagion component in a dynamical process on a network. Even though our range of

application extends to any process with two state unidirectional dynamics, considering
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that our data is from the economy, we immerse entire setting in the economy-related

terminology. We call the initial state of the vertex non-defaulted and the changed state

defaulted.

The data that we employ needs to consist of institutions that are both debtors and

creditors over the time frame, in order for us to build a connected network on which

propagation can occur. In such a setting two possible scenarios can come about. The

first possibility is that the default of the vertex is exogenous, following the definition from

Section 3.1 . In practice this means that all the debts between this vertex and its already

defaulted debtors were either too small to cause significant distress to the vertex, or some

other institution intervened and repaid the debtors obligations. The second possibility is

that the vertex defaults from an endogenous cause, in the manner generally defined in

Section 3.1. Translated to the economy, it means that a default of the debtor at t1 caused

the default of its creditor at t2. It is clear that in this case the relation between the two

times will be t1 < t2, unlike the first scenario, when the relation is not determined.

With our methodology, we do not need to go into the mechanisms behind the occurrence

of the defaults, as they will not affect this signature in the timestamps. Therefore, there

is no need to assume a functional form of the mechanics of contagion on the network. Our

main observation is that the pattern of timestamps produced by the process will be very

different depending on whether that process is purely exogenous, or it has an endogenous

component as well. More precisely, as we stated that the exogenous scenario does not

determine the relation between the creditor’s and debtor’s default times, a permutation of

all the timestamps in the data should result in a realization of the process that is equally

likely to occur as the original one.

Counting causal motifs

Using this reasoning, we count the causal motifs, already mentioned in Section 3.1 and

check if their frequency corresponds to a frequency expected from a purely exogenous

process. To reiterate again, a causal edge is an edge with default times t1 and t2 at the

tail and the head vertices respectively, that obey a temporal ordering t1 < t2. A causal

motif is any motif consisting exclusively of causal edges. Unlike the motifs from the
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previous works that we referred to in Section 3.1 that classify the motifs by the number

of their vertices, we order them by the number of edges they contain. We restrict our

investigation to the order of three, and depict all the motifs in the Table 3.1. The larger

orders of motifs are skipped, since finding them in a network is computationally expensive,

and we do not expect a change in the trend with further increase. However, in addition

to causal motifs, we also include the largest causal component in our set of test statistics.

We define it as a largest weakly connected component [72] of a network from which all the

edges except causal ones are removed. The largest causal component is computationally

easy to find, and it can be thought of as a largest causal motif that can be found in given

instance of the network.

We assume that the frequency of the causal motifs and the size of the largest causal

component will be larger for a process that is composed of both endogenous and exogenous

components than for a purely exogenous process. Moreover, we expect the test statistics

from a purely exogenous process not to significantly differ from the statistics calculated

when the temporal ordering in the process is destroyed. Therefore, our null-hypothesis

suggests that the causal motif count and the size of the largest component will correspond

to the values obtained in a process that has only exogenous influence.

To obtain a null-distribution of the motif counts and the largest component sizes, we use

a randomized reference model [37]. A RRM is a microcanonical ensemble of networks

created by randomizing one property of the original network while keeping all the other

constrained. We create an ensemble with randomized timestamps on the vertices and

calculate all the test statistics for every realization, thus obtaining a null-distribution for

motif counts and largest component sizes.

Measures used to compare data and RRM

We start the analysis of the results by verifying that the entire statistic distributions of the

simulated data and their RRM ensembles differ. We do so by performing a Kolmogorov-

Smirnov test, that shows whether two distribution samples were drawn from the same

underlying probability distribution. Finding an overall difference between the two samples

then implies that we could further expect a motif frequency in an individual simulated
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process to be different from the distribution of frequencies in its RRM.

The first measure we use to compare individual processes to the RRM is a z-score. It is

a test statistic for the z-test, that requires the null-distribution to be Gaussian. We use

the right-tailed z-test in accordance with our alternative hypothesis, which states that

the presence of an endogenuos component drives the test statistic counts to values higher

than expected from a purely exogenous process.

As the distribution of motif counts resembles the normal distribution, we estimated that

it justified to use z-score to make the comparison of the motif counts. In order to verify

that, we performed a Shapiro-Wilk test on all null-distributions of the motif counts and

the largest component sizes. In case of causal motifs for almost all parameters used to

simulate processes the assumption of normality is not rejected, with the exception of

the early stages of the process, when a small percentage of the vertices are defaulted

(5%-10%). This is in accordance with the KS test results for this phase of the process.

However, the distributions of largest component sizes obtained from the RRM are often

non-normal, with the statistical significance p < 0.01.

Further on, we use the generalization of the z-score, the Mahalanobis distance [38] to

exploit the fact that every class of motifs contains a set of different "submotifs". We

notice, as it is shown in the Table 3.1, that in the motif classes with two and three edges,

the motif that is simply composed of a sequence of causal edges is the least probable

to be created by an exogenous process (by chance), compared to the other submotifs in

the same class. Therefore, we expect that individuating the submotifs will increase the

sensitivity of our methodology.

Out of each count of causal motifs in the class i, we create a vector C(i) that has individual

submotif counts as components. For the class of one-edge motifs, the dimension of the

vector is 1, for two-edge motifs it is 3, and for three-edge motifs 9. The Mahalanobis

distance D(i) between the vector C(i) and the null-distribution created by shuffling the

timestamps is given as:

D(i) =

√
(C(i) − µ(i))TΣ−1

i (C(i) − µ(i)), (3.1)

where µ(i) is vector of average submotif counts, and Σi is a covariance matrix of the
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different submotif counts obtained in temporally randomized networks. For a diagonal

covariance matrix, we can think of the Mahalanobis distance as the square root of the sum

of squares of z-scores of each vector component, i.e. submotif. From this it follows that the

Mahalanobis distance is always greater or equal to each of the individual z-scores, which

leads us to assume it will increase the robustness of our methodology. The statistical

significance for the Mahalanobis distance is presented as the p-value, which is computed

according to [127].

Simulating stochastic processes of defaults

To validate our methodology, we create artificial data by simulating defaults with pro-

cesses composed from both endogenous and exogenous components on random directed

networks. We use directed Erdős-Rényi graphs as the underlying random networks. For

N vertices and ⟨kin⟩ and ⟨kout⟩ as expected in- and out-degrees, we generate an ensemble

with Ngraph networks. Then, on each network from the ensemble, we simulate Nprocess

different realizations of a default process, determined by parameters α and β, that we

define below. For each realization of a process, a RRM ensemble with Nrandom networks

is created.

We compose the process for simulation from an exogenous and an endogenous component.

Each component is modeled with a Poisson process with respective rates α and βi = xiβ.

The endogenous rate βi for a vertex i is defined as a rate β that is common to all the

vertices, weighted by some internal vertex property xi. We start by drawing exogenous

and endogenous event times from the cumulative distribution function of the exponential

distribution:

F (t;λ) = 1− e−λt, t ≥ 0, λ = α, xiβ. (3.2)

The type of the contagion process that we employ defines the weights xi; for an SI type

of process the weights are equal for all the vertices xi = 1, whereas in a voter model type

of process the total rate depends on the in-degree of every node xi = 1/kin
i .

Finally, the default times resulting from the contagion, for an SI and voter model type of
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contagion process are:

tβj(SI) = tαi +∆tβ(i,j), or

t
β/k

in
j

j(VM) = tαi + kin
j ∆tβ(i,j), (3.3)

and we use the event-driven algorithm to perform the simulation [86].

Since only the relative difference between the rates of the two components is what matters,

we can define a ratio ζ := α/β as a parameter that controls the endogenous component

contribution to the process we simulate. Throughout the simulation, the data on test

statistics is collected after every 5 % of the new vertices default, both from the ongoing

process and the RRM of the network part that has been defaulted so far.

3.4 Analytical results

In order to provide a better understanding of the results we obtain with our methodology,

we conducted some analytical calculations. In this section we first present the frequencies

of submotifs of each class that we would expect in a network with randomly distributed

default times, along with a Table 3.1 showing all the submotifs we use. We follow up with

calculating a ratio between exogenously and endogenously defaulted vertices depending

on the total number of defaults, to get a clear picture of how the simulated process unfolds

on the network. Finally, we present an extension of the approximate master equations

[22] that encompasses directed networks with temporal ordering, which we then use to

calculate the temporal evolution of the expected frequencies of the causal motifs.

3.4.1 Expected frequency of submotifs in an exogenous process

Since our methodology relies on the expectation that the frequency of the causal motifs

changes when an endogenous contribution is included in some exogenous default process,

we find it useful to first find the frequency that is expected when only the exogenous

process is present. In general, the probability of finding a causal submotif CM in a

network is proportional to (i) the probability p(M) of finding a structural motif M
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Table 3.1: All possible acyclic causal motifs up to order 3. The probability repre-
sents the probability of occurrence for every a motif in the case when only the exogenous
influence exists.

Causal Motif Probability Causal Motif Probability

t1

t2

t1 < t2 p(M)1
2
π(T )2

t1

t2

t3
t4

t1 < t2 < t3; t4 < t3 p(M)1
8
π(T )4

t1

t2

t3

t1 < t2 < t3 p(M)1
6
π(T )3

t1

t2

t3
t4

t1 < t2 < t3; t1 < t4 p(M)1
8
π(T )4

t1

t2 t3

t1 < t2, t3 p(M)1
3
π(T )3

t1

t2

t3
t4

t1 < t2, t3, t4 p(M)1
4
π(T )4

t3

t1 t2 t1, t2 < t3 p(M)1
3
π(T )3

t1
t2

t3

t4

t1, t2, t3 < t4 p(M)1
4
π(T )4

t1

t2

t3

t4

t1 < t2 < t3 < t4 p(M) 1
24
π(T )4

t1

t3

t2

t4

t1, t2 < t3; t2 < t4 p(M) 5
24
π(T )4

t2

t3 t4

t1 t1 < t2 < t3, t4 p(M) 1
12
π(T )4

t1

t2

t3

t1 < t2 < t3 p(M)1
6
π(T )3

t3
t1 t2

t4

t1, t2 < t3 < t4 p(M) 1
12
π(T )4

on the underlying network, that could serve as the basis of the causal motif, (ii) the

probability P(T ) that all the vertices in the structural motif have defaulted by the time

T , and (iii) p(CM) the probability that the default times on its vertices obey the time

ordering necessary to make it a causal motif.

The probability p(M) depends exclusively on the network topology, and for any existing

structural motif we can choose the time T when all the vertices have already defaulted.

Therefore, the probability that is of interest in this section is the third one, p(CM). For

an exogenous process, which produces the timestamps in a completely random way, it can

be calculated simply using combinatorics.

An alternative approach that proved to be simpler in our case consists of integrating the

39



Chapter 3. Inference of contagion processes using causal motifs

exogenous rate of default. Let us denote the exogenous rate of default per unit time as

ϕ(t). Now we can take the submotif shaped like letter N as an example and write the

total probability of the appearance of a submotif in an exogenous process as:

P (CM) = p(M)

∫ T

0

∫ t3

0

(∫ t3

0

ϕ(t1)dt1

∫ T

t2

ϕ(t4)dt4

)
ϕ(t2)ϕ(t3)dt2dt3

= p(M)

∫ T

0

∫ t3

0

π(t3)[π(T )− π(t2)]ϕ(t2)dt2ϕ(t3)dt3

= p(M)
5

24
π(T )4, (3.4)

with π(τ) defined as π(τ) :=
∫ τ

0
ϕ(t)dt.

We can see from Table 3.1 that increasing the order of the motifs reduces its probability

to occur in an exogenous process, and that this probability varies within a certain order

of motifs. Therefore using the higher order motif frequency, and distinguishing between

the submotifs in the same order is a justified choice for our methodology.

3.4.2 Ratio of the exogenously and endogenously defaulted ver-

tices

In the previous section, we defined the parameter ζ to quantify the endogeneity of the

process that we simulate. However, as it is a macroscopic parameter, we also wish to

inspect the microscopical implications it has. We want to calculate the numbers of ex-

ogenously and endogenously defaulted vertices, nα and nβ, respectively, and to do so we

use the mean field approximation.

Let the process take place on an Erdős-Rényi network with N vertices, and average in-

and out-degrees ⟨ki⟩ and ⟨ko⟩. In the time increment dt, the number of exogenously

defaulted vertices, dnα, will increase proportionally to the number of the non-defaulted

vertices N − nα − nβ, rate α and that time increment dt:

dnα = (N − nα − nβ)αdt. (3.5)

For endogenously defaulted vertices in an SI process, the increase dnβ is proportional to
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the number of defaulted vertices n = nα + nβ, and their average out degree ⟨ko⟩, which

gives the number of edges through which the default can potentially propagate. The

propagation, however, depends on the vertices on the other side of those edges, which are

non-defaulted with the mean field probability 1− nα+nβ

N
. Altogether with the endogenous

rate of default β, it leads to:

dnβ = (nβ + nα)⟨ko⟩(1−
nα + nβ

N
)βdt. (3.6)

From the form of Equations (3.5) and (3.6) and the fact that both nα and nβ are

monotonously increasing functions of time, we see that we can remove the time depen-

dence, and get a "phase space" differential equation

dnα

dnβ

=
Nζ

⟨ko⟩(nα + nβ)
, (3.7)

dnβ =
⟨ko⟩
Nζ

(nαdnα + nβdnα). (3.8)

We can integrate Equation (3.8) to obtain:

n =
Nζ

⟨ko⟩

(
e

⟨ko⟩nα
Nζ − 1

)
, (3.9)

nα

nβ

=

ζ
⟨ko⟩

ln(d⟨ko⟩
ζ

+ 1)

d− ζ
⟨ko⟩

ln(d⟨ko⟩
ζ

+ 1)
, (3.10)

with n = nα + nβ as the total number of defaulted vertices in the network and d = n/N

as the total default percentage in the network with N vertices.

If we want to obtain the same expression in the case of a voter model process, we simply

substitute ζ → ζ⟨ki⟩. Considering also ⟨ki⟩ = ⟨ko⟩, we get:

n = Nζ
(
e

nα
Nζ − 1

)
, (3.11)

nα

nβ

=
ζln(d

ζ
+ 1)

d− ζln(d
ζ
+ 1)

. (3.12)

If we compare Equations (3.10) and (3.12), we see that for a given ζ and with ⟨ko⟩ > 1,

the voter model process will always have a higher ratio nα/nβ than the SI process. We

also notice that for the voter model process the ratio does not depend on the degree of the
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network. For both processes the ratio decreases with the increase of the total percentage

of defaulted vertices. This all means that, for the same parameters, we expect to be able

to detect endogeneity more easily in the simulated processes that are of SI type and in

later stages of the contagion.

3.4.3 Approximate master equations for motif frequencies

Considering the results from the first subsection, we can easily calculate the expected

frequencies for all the motif types in the case of a completely exogenous process on the

network. However, when there is a contagion process in the interplay with the exogenous

one, things get more complicated, since the vertices in the emerging causal motifs no

longer default independently from one another. At this point we resort to Approximate

Master Equations (AME), [21], already mentioned in Section 2.2 and generalize them to

directed networks with temporal ordering.

Although we are focused on our immediate application to the network of defaults in the

economy, here we resort to the epidemic spreading terminology, to build on the termi-

nology in [21]. We take the reasoning from the Section 2.2 and simply extend classifying

the vertices by their degree k and infected neighbours number m, into the in-degree ki,

out-degree ko, infected in-neighbors mi and out-neighbors mo. In addition to that, we

introduce zi and zo to be the numbers of in- and out-neighbors whose default can be in a

possibly causal relationship with the default of the central vertex. By definition, we see

that the subsetting into zi and zo makes sense only for the infected compartment.

We start by assuming that the network is completely connected in a weak sense (some

vertices can have only in or only out edges attached to them) and that it can have

correlations on vertices i.e.

P (ki, ko) ̸= P (ki)P (ko). (3.13)

Let Ski,ko,mi,mo
(respectively Iki,ko,mi,mo,zi,zo

) be the set of vertices which are susceptible

(respectively infected), have in-degree ki, out-degree ko and have mi and mo infected

neighbors on their incoming and outgoing edges, which we can further subset to zi and zo

neighbours that comprise a potentially causal edge together with the central node (zi =
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zo = 0 by definition for susceptible vertices). In economic terms, susceptible vertices are

those which are financially healthy, while infected vertices are those which have financial

problems or have already defaulted. On these sets we define measures ski,ko,mi,mo
and

iki,ko,mi,mo,zi,zo
which represent the fraction of vertices that are susceptible or infected

among the vertices that have their {ki, ko,mi,mo, zi, zo} parameters. We define izki,ko,mi,mo

and imki,ko,zi,zo as the fractions for which we stop keeping track of z and m subsets of

neighbours, respectively, by simply summing them up:

izki,ko,mi,mo
≡

ki∑
zi=0

ko∑
zo=0

iki,ko,mi,mo,zi,zo
, (3.14)

imki,ko,zi,zo ≡
ki∑

mi=0

ko∑
mo=0

iki,ko,mi,mo,zi,zo
. (3.15)

Clearly, the fractions ski,ko,mi,mo
and izki,ko,mi,mo

need to add up to the entire system:

1 = ski,ko,mi,mo
+ izki,ko,mi,mo

. (3.16)

Also the total fraction of infected (defaulted) vertices in the network, with in-degree ki

and out-degree ko, is defined as

ρkiko(t) =

ki∑
mi=0

ko∑
mo=0

izki,ko,mi,mo

= 1−
ki∑

mi=0

ko∑
mo=0

ski,ko,mi,mo
. (3.17)

Then, the total fraction of infected vertices, in a network with the degree distribution

P (ki, ko), is found by:

ρ(t) =
∑
ki,ko

P (ki, ko) ρki,ko(t). (3.18)

To be able to follow this temporal evolution, we need to examine how the sizes of the
Ski,ko,mi,mo

and Iki,ko,mi,mo,zi,zo
sets change in time. We write the general expression for
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thefractionsofsusceptibleandinfectedvertices:

ski,ko,mi,mo
(t+dt)=ski,ko,mi,mo

(t)−W(Ski,ko,mi,mo
→Iki,ko,mi,mo,zi=mi,zo=0)ski,ko,mi,mo

dt

+W(Ski,ko,mi−1,mo
→Ski,ko,mi,mo

)ski,ko,mi−1,mo
dt

+W(Ski,ko,mi,mo−1→Ski,ko,mi,mo
)ski,ko,mi,mo−1dt

−W(Ski,ko,mi,mo
→Ski,ko,mi+1,mo

)ski,ko,mi,mo
dt

−W(Ski,ko,mi,mo
→Ski,ko,mi,mo+1)ski,ko,mi,mo

dt,

iki,ko,mi,mo,zi,zo
(t+dt)=iki,ko,mi,mo,zi,zo

(t)+W(Ski,ko,mi,mo
→Iki,ko,mi,mo,zi=mi,zo=0)ski,ko,mi,mo

dt

+W(Iki,ko,mi−1,mo,zi,zo
→Iki,ko,mi,mo,zi,zo

)iki,ko,mi−1,mo,zi,zo
dt

+W(Iki,ko,mi,mo−1,zi,zo−1→Iki,ko,mi,mo,zi,zo
)iki,ko,mi,mo−1,zi,zo−1dt

−W(Iki,ko,mi,mo,zi,zo
→Iki,ko,mi+1,mo,zi,zo

)iki,ko,mi,mo,zi,zo
dt

−W(Iki,ko,mi,mo,zi,zo
→Iki,ko,mi,mo+1,zi,zo+1)iki,ko,mi,mo,zi,zo

dt, (3.19)

andrepresentitgraphicallyinFig. 3.2. Equation(3.19)accountsforthetransitions

whicharelinearindt,asalltheothertransitionsvanishinthelimitofdt→ 0. The

fundamentaltransitionprobabilitydescribesthetransitionfromthesetSki,ko,mi,mo
to

Iki,ko,mi,mo,zi,zo
andisdenotedW(Ski,ko,mi,mo

→ Iki,ko,mi,mo,zi=mi,zo=0). Weintroducethe

natureofthedynamicalprocessintotheframeworkthroughthetransitionprobability.

Fortheparticularprocessesthatweusedinoursimulations,containinganexogenous

andanendogenouscomponent(SIorthevoter model),withtheindividualratesαand

βalreadydeinedinSection3.3,thetransitionratesare:

W(Ski,ko,mi,mo
→Iki,ko,mi,mo,zi=mi,zo=0)=Fki,mi

,

FSI
ki,mi

=α+miβ,

FV M
ki,mi

=α+
mi

ki

β. (3.20)

ThetransitionprobabilityofthecentralvertexisdescribedexactlybyEq.(3.20). Aswe

havelimitedoursetstocentralverticesandtheirirstneighbours,westillneedtoobtain

theprobabilitiesoftheneighbours’transitions. Inordertodothat, weapproximate

theefecttherestofthenetworkhasonthemtobea meanield. Therefore,rates

concerningdefaultsofneighbouringverticesinEquation(3.19)arefactoredintothemean

ieldrateofchangeoftheedgetypeandthenumberofsusceptibleneighboursofthecentral
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F
ki,mi

B
s

C
s

B
i

C
i

S
ki,ko,mi,mo

S
ki,ko,mi,mo-1

S
ki,ko,mi+1,mo

I
ki,ko,mi,mo,zi,zo

I
ki,ko,mi,mo-1,zi,zo-1

I
ki,ko,mi+1,mo,zi,zo

Figure 3.2: The scheme of transitions between different sets. A set consisting of
a central vertex and its in- and out- neighbours is depicted. We show the susceptible
vertices in white and the infected in black. All the possible transitions in our process are
represented together with their respective rates.

vertex. In Fig. 3.2, the rates of change of the edge types are visualized and denoted with

Bs, Cs, Bi and Ci. We will use the following abbreviations in the further calculations:

ki, ko,mi,mo ≡ K⃗s, ki, ko,mi,mo, zi, zo ≡ K⃗i, ki, ko,mi + 1,mo, zi, zo ≡ K⃗i + e⃗mi
. For the

first equation in (3.19) we have:

W (SK⃗s
→SK⃗s+e⃗mi

) = Bs(ki −mi),

W (SK⃗s−e⃗mi

→SK⃗s
) = Bs(ki −mi + 1),

W (SK⃗s
→SK⃗s+e⃗mo

) = Cs(ko −mo),

W (SK⃗s−e⃗mo

→SK⃗s
) = Cs(ko −mo + 1). (3.21)

The term Bs represents the rate of change of edges directed from a susceptible vertex into

a susceptible vertex (S→S) into edges directed from an infected vertex into a susceptible
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vertex (I→S):

Bs dt =

∑
ki,ko

P (ki, ko)
∑ki

mi

∑ko
mo

(ko −mo)Fki,mi
sK⃗s

dt∑
ki,ko

P (ki, ko)
∑ki

mi

∑ko
mo

(ko −mo) sK⃗s

. (3.22)

The denominator counts the number of S → S edges, while the numerator counts how

many of them change to I→S in a time interval dt. Cs is defined for the transition from

S→S to S→I, and computed similarly.

Cs dt =

∑
ki,ko

P (ki, ko)
∑ki

mi

∑ko
mo

(ki −mi)Fki,mi
sK⃗s

dt∑
ki,ko

P (ki, ko)
∑ki

mi

∑ko
mo

(ki −mi) sK⃗s

. (3.23)

For the second equation in (3.19), rates of neighbour infections, Bi and Ci, are defined

analogously.

W (IK⃗i
→IK⃗i+e⃗mi

) = Bi(ki −mi),

W (IK⃗i−e⃗mi

→IK⃗i
) = Bi(ki −mi + 1),

W (IK⃗i
→IK⃗i+e⃗mo

+e⃗zo
) = Ci(ko −mo),

W (IK⃗i−e⃗mo
−e⃗zo

→IK⃗i
) = Ci(ko −mo + 1). (3.24)

After inserting the calculated rates into Eq. (3.19), dividing by dt and taking the limit

dt → 0, we get the differential equation for the evolution of the fraction of susceptible

vertices:

d

dt
sK⃗s

= Bs

(
(ki −mi + 1)sK⃗s−e⃗mi

− (ki −mi)sK⃗s

)
+Cs

(
(ko −mo + 1)sK⃗s−e⃗mo

− (ko −mo)sK⃗s

)
− Fk,msK⃗s

, (3.25)
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and of the fraction of infected vertices:

d

dt
iK⃗i

= Bi

(
(ki −mi + 1)iK⃗i−e⃗mi

− (ki −mi)iK⃗i

)
+Ci

(
(ko −mo + 1)iK⃗i−e⃗mo

−e⃗zo
− (ko −mo)iK⃗i

)
+ Fk,msK⃗s,zi=mi,zo=0. (3.26)

The solutions sK⃗i
and iK⃗i

of the Eq. (3.25) and (3.26) are obtained numerically. Using

iK⃗i
, we can easily calculate the temporal evolution of the fraction of causal motifs with

one and two edges, for the central vertex with ki and ko. We denote them c
(1)
ki,ko

(t) and

c
(2)
ki,ko

(t), respectively.

c
(1)
ki,ko

(t) =

ki∑
zi=0

ko∑
zo=0

zoi
m
ki,ko,zi,zo

(t),

c
(2)
ki,ko

(t) =

ki∑
zi=0

ko∑
zo=0

((
zi
2

)
+ zizo +

(
zo
2

))
× imki,ko,zi,zo(t). (3.27)

The temporal evolution of the fraction of causal motifs with one and two edges, for the

central vertex with ki and ko, when the time ordering of the defaulted vertices is randomly

distributed is denoted as c̃
(1)
ki,ko

(t) and c̃
(2)
ki,ko

(t) and equals :

c̃
(1)
ki,ko

(t) =
1

2

ki∑
mi=0

ko∑
mo=0

moi
z
ki,ko,mi,mo

(t),

c̃
(2)
ki,ko

(t) =

ki∑
mi=0

ko∑
mo=0

(
1

3

(
mi

2

)
+

1

6
mimo +

1

3

(
mo

2

))
× izki,ko,mi,mo

(t). (3.28)

If we want to calculate the expected frequency of causal motifs on the entire network we

only need to specify the distribution P (ki, ko). The first moments for one and two edges

are:

E[C(1,2)] = N
∑
ki,ko

P (ki, ko)c
(1,2)
ki,ko

(t), (3.29)

E[C̃(1,2)(t)] = N
∑
ki,ko

P (ki, ko).c̃
(1,2)
ki,ko

(t). (3.30)
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Calculating the second moments is a bit more complicated, as the overlaps of motifs in the

(a) One-edge, SI (b) Two-edge, SI

(c) One-edge, VM (d) Two-edge, VM

Figure 3.3: Temporal evolution of causal motifs. We plot the comparison of the
analytical results with the simulations. The figure shows one-edge and two-edge statistics
for ζ = 0.1 SI and VM process on an Erdős-Rényi graph with N = 1000, ⟨k⟩ = 4. On x-axis
the time of the process evolution is shown, while y-axis represents the relative frequency of
a test statistic. The standard deviation, shown by the error bars, is calculated in an exact
way for the one-edge statistic, while for the two-edge statistic it is only approximated.

network make the sum contain no longer independent variables, and introduce covariant

terms. One can use the approach developed in [81] to obtain the correct variances but

only for the purely exogenous case. In that case expected square of the number of one

edge causal motifs on Erdős-Rényi network can be computed as:

E[C(1)2] =E[
∑

a=ki,ko

∑
b=qi,qo

Ya(C(1)|t)Yb(C(1)|t)]

=
∑

a=ki,ko

∑
b=qi,qo

E[Ya(C(1)|t)Yb(C(1)|t)]

=N(N − 1)(N − 2)(N − 3)(p
1

2
π(t)2)2 +N

(
N − 1

2

)
p2
1

3
π(t)3

+N(N − 1)(p
1

2
π(t))2, (3.31)
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where Yα(C(1)|t) similarly to [81] represents the indicator random variable of finding the

causal motif of order one (causal edge) between two random vertices. Clearly the random

indicator variable is connected to probabilities of occurrence of one and two edge causal

motifs computed in Table 3.1, and p is just the probability of edge existing in the directed

version of Erdős-Rényi graph.

With similar equations one can compute all the motif variances in a purely exogenous

process. However, in a process with an endogenous component, we can no longer calculate

the probabilities that causal motifs appear in this way, and obtaining an estimate for the

motif variances in a dynamical process is the next step in our research.

Finally, we present some plots showing a good fit of our analytical and simulation results

in Fig. 3.3. The figures depict the temporal evolution of one-edge and two-edge motifs

for ζ = 0.1 SI and VM process on an Erdős-Rényi graph with N = 1000, ⟨k⟩ = 4.

3.5 Results

Figure 3.4: KS-test results. We show the results for SI and VM processes on a network
of N = 1000 vertices. The x-axis depicts the percentage of defaults in the network and
the y-axis depicts the average degree of the network. The significant statistic (p < 0.01)
for a given percentage of default, ζ and mean degree ⟨k⟩ is marked with the corresponding
pattern.

We get the results from Nprocess = 10 processes simulated on Ngraph = 100 different

graphs, with Nshuffle = 100 randomized reference models created for each process, in the
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Chapter 3. Inference of contagion processes using causal motifs

form of two distributions of test statistics. One is the distribution of the test statistics ob-

tained from the simulated processes, and the other is the distribution of the test statistics

recorded on the randomized reference models.

We first employ Kolmogorov-Smirnov test to check whether the two sample distributions

belong to the same probability distribution, and if not, to quantify their difference. We

follow up by using z-score to compare each instance of a simulated process with its own

randomized version. Finally, we utilize the difference between frequencies of submotifs

expected in a randomized model, as explained in the previous Section 3.4, and generalize

from the z-score to employing Mahalanobis distance.

The simulated process is composed of an exogenous and an endogenous component, quan-

tified by the parameters α and β, respectively. Parameter α represents the rate at which

a vertex defaults due to the influence of the factors external to the network, and param-

eter β is related to the rate that the default is propagated from immediate neighbours.

The precise rate depends on the type of the endogenous process. For the SI process it

is simply the product of the number of defaulted debtor vertices (in-neighbours) and the

rate β, while for the voter model this product is also weighted by the total number of

debtor vertices. Since the absolute flow of time is not relevant, we can set the ratio of

the component parameters ζ = α
β

as a control parameter that quantifies the strengths of

the endogenous component . We use ζ to present and interpret the results. If we have

a single endogenous and a single exogenous process, ζ also represents the ratio of the

increments in the numbers of exogenously and endogenously defaulted vertices. However,

on the network, the exogenous default of every vertex is a separate Poisson process with

rate α, and the endogenous default depends on the number of defaulted in-neighbours

as each neighbour propagates the default at rate β in an SI process (or β/kin in a voter

model process). The ratio ∆nα/∆nβ will then in general be different from ζ and the exact

expression is given by Equation (3.8) in the Section 3.4. In addition to ζ, it depends on the

total number of vertices, the mean degree and the percentage of vertices that defaulted.

We simulate on networks of size N = 1000 nodes, which is the typical size of financial

networks, and they are small enough to explore the parameter space with no computa-

tional limitations. Later, we also show that the significance of detection scales with the

size of the network.
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We apply the methodology to the real data of Croatian companies’ defaults and show the

results in the last section.

SI model

First, we will have a look at the results obtained from the simulations in which the

endogenous component of the process is modeled as an SI process. We employ the two

sample Kolmogorov-Smirnov test (Fig. 3.4), the z-score and Mahalanobis distance (Fig.

3.5 and 3.6) to interpret the results.

We start the analysis of the results by using the KS test to compare the distributions

obtained from the original processes with their respective randomized distributions. As

we already stated, we do this as a pre-screening of the results, since we cannot expect

an individual process realization to significantly differ from its randomized ensemble if

their respective distributions are shown to be the same by the KS test. We depict the

KS test results in the four left panels of Fig. 3.4. We can conclude that, for ζ up to

ζ = 10, the process distributions of all the test statistics are significantly different from

the null distributions, except when the process is only starting, so the defaulted portion

of the network is small, and at the very end of the default process, which is in line with

the clarification further below. For the processes with the largest values of ζ (ζ = 100),

the significant difference is observed only for larger mean degrees, and the intermediate

fraction of the defaulted vertices. However, the significant difference provided by the

causal motifs covers a larger part of the parameter space in comparison with the causal

largest component.

Since the one-tailed z-test only gives the information whether a single process is signif-

icantly different from its randomized reference model or not, and we wish to make the

conclusion more robust, we present the results in the following way; we test the z-scores

of all processes for the statistical significance p < 0.1, and we show the parts of the pa-

rameter space (⟨k⟩, ζ, n) where the percentage of different process realizations with a

statistically significant z-score is larger than 70% in a darker shade of blue (Figure 3.5).

We can conclude that any of the causal motifs are better test statistics than the largest

component, which is in line with the fact that the distribution of the size of the largest
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: SI process results. In panels a) and b) we present the one-tailed z-score
results, depending on the percentage of network that defaulted (y-axis) and average net-
work degree (x-axis), for an SI process with ζ = 1 and ζ = 4, respectively. The results
that are significant with p < 0.1 are marked in dark blue. In panels c) and d) we present
in the same form the results of the one-tailed z-score of two-edge motifs, and in panels e)
and f) we present the results of the Mahalanobis distance of two-edge motifs. For these
figures, the number of vertices equals N = 1000, on each of 100 realized networks, 10
processes are simulated and 100 random shuffles are created.
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(a) (b)

(c) (d)

Figure 3.6: SI process results - scaled. We present the dependence of the percentage
of significant (p < 0.1) results for an SI process with ⟨k⟩ = 4, fixed at 25% of the network
default, on the size of the network. In panels a) and b) we show the one-tailed z-score
and Mahalanobis distance results, respectively, for an SI process with ζ = 1. In panels c)
and d) we show the results when the parameter of the SI process is increased to ζ = 10.
Horizontal lines are drawn at the limit in which 75% of simulations exhibit significant
difference from the RRM-model.
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component is not Gaussian. However, it is surprising that the area of the parameter

space that is considered significant shrinks with the increasing order of the causal mo-

tif. Even though the distance between the first moments of the original and randomized

distribution increases with the order of the causal motifs, there is also an increase in the

variance of the distributions, which shields the successfulness of the higher order causal

motif statistics. The comparison between one-edge and two-edge statistics can be seen in

Subfigures 3.5a and 3.5c, and 3.5b and 3.5d. In these Subfigures we can also observe that

the area of significant results is shrunk with the increase of the parameter ζ. Subfigures

3.6a and 3.6c show how an increase of the system size increases the significant part of the

parameter space.

We can notice in the Figure 3.3 that for the SI process, the expected frequency of causal

motifs from both the original process and randomized reference model converges in time

to a constant fraction of the frequency of all possible motifs. For the one-edge and two-

edge motifs the fraction is 1/2 and 1/4, respectively. This value is clearly expected for

causal motifs on randomized networks, where the time ordering of the process is destroyed.

However, it is observed regardless of the endogenous strength of the process, so we present

a short calculation for the expected number of causal one-edges to elucidate the effect.

We assume that we have a completely endogenous process, that is, the defaults can only

happen by contagion, and in each time step t a defaulted vertex spreads default. The

probability that an out-edge of a defaulted vertex reaches a non-defaulted vertex equals

the total fraction of the remaining non-defaulted vertices 1 − t/N , since SI process does

not discriminate between neighbours, and the Erdős-Rényi network is homogenenous.

Considering also that the number of outgoing edges per vertex is ⟨kout⟩ on average, we

can write the expected sum of causal one-edges as:

E[C(1)] = ⟨kout⟩
N∑
t=1

N − t

N
=

⟨kout⟩
N

N2 −N

2
≈ N⟨k⟩

4
=

L

2
. (3.32)

This provides an explanation on why causal motifs start failing as test statistics when an

SI contagion process approaches its end.

We extend the analysis by addressing the contributions of the individual submotifs within

a motif order with the use of Mahalanobis distance. Mahalanobis distance is tested for
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significance using the fact that its square follows a chi-squared distribution [38], where the

degree of freedom is represented with the number of submotifs. As we already stated, it is

shown in Figure 3.5 how the increase of the causal motif order from one-edge to two-edge

shrinks the area of significant results for z-score. However, in Figures 3.5e and 3.5f, we

can see that using Mahalanobis distance on the two-edge statistics not only expands the

area, but also shifts it towards the larger percentages of default, thus making the result

complementary to one-edge z-score result. As it is clear from the expression (3.1) that

defines the Mahalanobis distance, its value is always greater or equal to the absolute value

of the z-score of a given motif. However, due to the setting of our investigation, we are

using the one-tailed z-score to test for significance, while the Mahalanobis distance is the

absolute distance of the statistic from the null distribution and disregards the direction.

Therefore, the Mahalanobis distance for one-edge statistic equals the absolute value of

the two-sided z-score, which has to attain a higher value than the one-sided version for

the same level of statistical significance. This downplays the beneficial effect that we

get from engaging all the submotifs in the analysis. Nevertheless, Mahalanobis distance

exploits the fact that, although the causal motifs converge to the same limit regardless of

the endogeneity of the process, their submotifs do not. As expected from this observation,

the Mahalanobis distance outperforms z-score in the later stages of the default process.

As well as for the z-score, we see in Figs. 3.6b and 3.6d that the with increase of the

network size, the Mahalanobis distance shows significant results for larger ζ values.

Voter model

Since the properties of the SI process, combined with properties of the Erdős-Rényi net-

work, lead motif test statistics from both the original and randomized process to converge

to the same limit, we consider another type of process to simulate the endogenous com-

ponent. In order to obtain a separation between the final fractions of the motif test

statistics, we employ the voter model process, which scales the effect of the incoming

defaulted neighbours by the total number of the incoming neighbours per vertex. Thus,

for the same number of defaulted incoming neighbours min, the voter model will ascribe

a larger probability of default to the vertex that has less incoming neighbours kin in total,

unlike the SI process, which would not differ between these two cases. Due to this inho-
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(a) (b)

(c) (d)

Figure 3.7: VM process results. In panel a) we present the one-tailed z-score results,
depending on the percentage of network that defaulted (y-axis) and average network
degree (x-axis), for a voter model process with ζ = 1. The results that are significant
with p < 0.1 are marked in dark blue. In panel b) we present in the same form the
results of the one-tailed z-score of two-edge motifs, and in panel c) we present the results
of the Mahalanobis distance of two-edge motifs. For these figures, the number of vertices
equals N = 1000, on each of 100 realized networks, 10 processes are simulated and 100
random shuffles are created. In panel d) we show the ratio of numbers of exogenously and
endogenously defaulted vertices, nα and nβ, both for the SI and the voter model variants
of the endogenous process, depending on different default percentages (with parameters
⟨k⟩ = 4 and , ζ = 1).
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(a) (b)

(c) (d)

Figure 3.8: VM process results - scaled. We present the dependence of the percentage
of significant (p < 0.1) results for a voter model process with ⟨k⟩ = 4, fixed at 25% of the
network default, on the size of the network. In panels a) and b) we show the one-tailed
z-score and Mahalanobis distance results, respectively, for a voter model process with
ζ = 1. In panels c) and d) we show the results when the parameter of the SI process is
increased to ζ = 10. Horizontal lines are drawn at the limit in which 75% of simulations
exhibit significant difference from the RRM-model.
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mogeneity, we expect that the final fractions of the motif test statistics will not coincide

and the robustness of our method will be increased at the end of the default process.

From the KS-results in Fig. 3.4, we can draw the conclusion that the test statistic with

a distribution significantly different from the randomized one in the largest area of the

parameter space is one-edge motif. We also note that, unlike for the SI process, for ζ = 100

none of the test statistics show significant results, which we address in more detail further

below. For values of ζ below 100, and for all mean degrees ⟨k⟩, one-edge motif dominates

the early stages of the default process. In the final stages, all causal motif statistics show

significant distinguishing, since the voter model does not drive both the original and the

randomized process into the same limit of convergence.

Z-score results for one-edge and two-edge test statistics are shown in Fig. 3.7a and Fig.

3.7b. The takeaway is similar to the case with the SI endogenous component, as the

significant part of the parameters space shrinks with the increase of the motif order.

However, as expected from the KS results, the voter model results lose significance at

a lower value of ζ, that is, already at ζ > 1. Although the three-edge statistic obtains

the largest z-scores on average at the low percentages of default in highly endogenous

processes, also the other causal motifs show significant results there. In the proximity of

the detectability limit, it is the one-edge motif that is the most successful test statistic.

As we already mentioned, the reason for this is the fact that the variance of the higher

order motifs grows faster than the separation between the mean values.

The results for the Mahalanobis distance (Fig. 3.7c) show that, for ζ = 1, it comple-

ments the one-edge z-score results on the ⟨k⟩ − ζ parameter space. Just like with the SI

process, one-edge z-score prevails for the intermediate stage of the default process, and

Mahalanobis distance takes over in the final stages. For larger values of ζ we do not get

significant results.

With the increase of the system, both z-score and Mahalanobis distance detect the prop-

agation closer to its onset for ζ = 1 (Fig. 3.8a and 3.8b). However, as we increase ζ to 10,

neither of the measures are able to detect the endogenous process (Fig. 3.8c and 3.8d).

In Fig.3.7d, we provide some insight into why the voter model is harder to detect than

the SI. We compare the temporal evolution of the ratio of exogenously and endogenously
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defaulted vertices nα/nβ for both types of process for the same parameters (⟨k⟩ = 4,

ζ = 1). It is clear from the plot, that for the same ζ, less vertices default endogenously for

the voter model than for the SI model, which explains the faster decline in the significance

of detection with the increase of ζ for the voter model. Furthermore, the ratio nα/nβ is

in general different to the corresponding parameter ζ, as it is only one of the parameters

it depends on, which is outlined in the Equations (3.10) and (3.12). From these equations

we also conclude that the voter model always has a higher ratio than the SI process. More

specifically, in the plot 3.7d we see that, towards the end of the process, the ratio goes to

approximately nα/nβ ≈ 2 for the SI component, and to nα/nβ ≈ 3 for the voter model

component. In conclusion, we observe that for the example of ζ = 1, the actual number

of defaults that occur by contagion is 2-3 time lower than the number of defaults with an

external cause.

Defaults of Croatian companies

From the data presented in the Section 3.2, we filter only the companies that can both

default from an endogenous cause and spread their default further into the network, since

this structure is necessary for the cascade formation. After imposing the condition that all

institutions have to be both creditors and debtors, we are left with 549 firms, connected

together with 1198 edges (debts), which gives a mean degree of 4.36 (mean out and in

degree are 2.18), and we denote that the maximal degree is 60. We proceed to apply our

method to this network and show the results in Fig. 3.9.

In Figure 3.9a, we plot the one-edge statistic at the end of the process with a red vertical

line, together with its null distribution created by RRM as a blue histogram. We show the

temporal evolution of the default process using three-edge motifs in Figure 3.9b. Z-score

and Mahalanobis distance are calculated on all causal motif statistics, and the results are

depicted in Figs 3.9c,3.9d,3.9e and 3.9f. Possible default cascades are detected with our

method in the early interval around when around 10− 15% companies defaulted, and in

the later period, when the default process was at 70− 85% of completion.

From this analysis, we can conclude that a detailed analysis of balance sheets as well

as interviews with executives of companies that defaulted could reveal that a default
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(a)
(b)

/
(c) (d) (e)

/
(f)

Figure 3.9: Results for defaults of Croatian companies. In figure a) we present with
a red line the count of one-edge motifs in a completely defaulted network, compared to a
histogram of the same statistic obtained from a RRM (1000 shuffled instances). In panel
b) we present the count of three-edge motifs (red points) compared to RRM realizations
represented with blue points (mean) and a blue line (standard deviation) for different
different stages of the default process on the Croatian companies. In panels c) (one-edge)
d) (two edge) and e) (three edge) we quantify the results with the one-tailed z-scores of
the test statistics and show the statistically significant results (p < 0.1) in dark blue.
In panel f) we use the Mahalanobis distance on the two-edge test statistic and show the
results in the same manner.

contagion occurred in the periods marked as significant by our method.
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Chapter 4

Modeling of contagion processes on

financial networks

4.1 Introduction

The propagation of default cascades is one of the ways cascading behaviour can lead to

an increase of systemic risk in a financial system. However, for the cascade to have a

systemic effect, the state being transmitted does not necessarily need to be a default of

an institution. When entering a credit contract, creditors are faced with the risk that the

counterparty will not fulfill its obligations, so they take actions such as hedging or buying

insurance to offset that risk. After being settled, these contracts can again be traded on

a market, with their value on that market being affected by, amongst other factors, the

risk of the debtor going into default. Thus, merely the increase in the probability that an

institution will default, lowers the market value of all the credit relationships it entered as

a debtor. In a network of creditors and debtors connected with debts, this re-evaluation

of the debt values can trigger a cascade of further debt devaluation, which can in turn

have a destabilizing effect on the entire system [35].

During the last financial crisis, two thirds of losses attributed to counterparty credit risk

were due to such asset devaluations and not to actual defaults [39]. This difference between

the risk-free value of a debt and the value that takes into account the counterparty credit

risk is termed Credit Valuation Adjustment (CVA). In response to the crisis, in 2010 the
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Basel II regulatory framework, a set of international banking regulations, was updated to

Basel III, and CVA risk has become the core component of counterparty credit risk [40].

Formally, the Credit Valuation Adjustment is defined as the difference between the face

value of a debt (value of the contract at the time of its conclusion) and its expected value

at the time of maturity, when risks of the counterparty default are incorporated into the

calculation. The standard formula for the calculation follows [36]:

CV A = (1−R)
m∑
i=1

DF (ti)EE(ti)PD(ti−1, ti), (4.1)

where R is the amount of the claim that can be recovered and (1− R) is then loss given

default. DF (ti) discounts the value of the future loss to its present value, EE(ti) is

the expected credit exposure at the future time ti, PD(ti−1, ti) is the probability of the

counterparty’s default between time ti−1 and ti and we assume that the credit exposure

and default probability are independent. The first two factors in the product under

summation are considered to be market risks, while the loss given default and probability

of default are credit risks.

The part of the formula (4.1), that we will be focusing our research on, is the calculation of

default probability. In practice, the frameworks used to calculate the default probability

are called structural models and intensity models [41]. Structural models are based on the

Merton’s model [128], which treats the assets of the counterparty as a stochastic process,

and considers the counterparty to be defaulted if the assets go below a certain level. The

name comes from the fact that the capital structure of the firm is used to calculate its

probability of default. A widely used structural model that is based on Merton’s model

is the KMV [129] model, that introduces the calculation of the probability of default

based on historical patterns. On the other hand, intensity models disregard the internal

mechanics of defaults and simply model default times using Poisson processes, either with

a homogeneous [130], deterministic or stochastic (Cox process) rate of default. The rates

of default are also called default intensities or hazard rates, and they can be derived

through calibration to market instruments, such as credit default swaps.

However, all the aforementioned models take only the inherent risks of the counterparty

into account, while completely neglecting the potential default contagion that can spread
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from the counterparties of the counterparties. Therefore, our aim is to address the contri-

bution of the entire network of credit exposures in the estimation of the default probability

of the counterparty. We will analyze the structure of the default probability to quantify

the contribution of the default contagion on the network, compared to the probability of

the initial shocks that trigger the contagion.

We approach the problem stated above by simulating exogenous shocks and the contagion

process that follows on interbank networks. Using the simulations, we are able to tackle

realistic sizes of interbank networks, for any value of correlation, to obtain a distribution of

default probabilities. In parallel with the simulations, we build on the results of [101, 91],

that showed that this type of financial contagion models have an analytical representation

in the form of the threshold model [19], to provide an analytical framework that includes

initial correlated shocks. We obtain the results that show under which circumstances the

contribution of the contagion phenomena to the total probability of default cannot be

neglected. Therefore, we conclude that, in such cases, the contribution of the financial

system should not be left out of the calculation of the CVA.

Our work continues on the strand of literature concerning the network valuation frame-

works. The authors of [42] build on the seminal work of [46], where an existence of a

clearing vector for a system of financial institutions constructed from balance sheets is

proven, to analyse and distinguish exogenous shocks and the contagion that follows them.

As the system of equations they use is exact, with a growing number of banks N their

computations start suffering from the curse of dimensionality. In [43], formulas for debt

and equity valuation of firms in a financial network under comonotonic endowments are

presented. The comonotonicity framework enables the authors to circumvent the curse of

dimensionality, and, with a theoretically justified constraint, obtain analytical results for

the CVA that include the contribution of the entire network. The work of [44] provides

a network valuation framework for interbank claims. Under the assumption about lim-

ited information in the system, the authors obtain an iterative solution to the valuation

problem, and show that their framework is a generalization of some widely used financial

clearing models [46, 131, 132].

In our framework, we use the clearing model of Eisenberg and Noe [46], who were one of

the first to model the financial dependencies as a directed network. In their work, the
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problem of the interdependency of payments is turned into a fixed point problem, and the

authors show that a unique clearing vector always exists. A more realistic setting with

non-zero bankruptcy costs is considered in [132]. The author of [133] deals with the effect

of cross-holdings of equities, while [134] introduce the time dynamics of the interbank

liabilities in the Eisenberg and Noe model and then study the default risk dynamically.

4.2 Methodology

4.2.1 Outline of the framework

We start by outlining the framework that we use. We first describe the way we set up

the financial system from the balance sheets, and the way external shocks are introduced

in the system. We provide detail on the models that we chose for the financial shocks.

We employ the Gaussian copula [45] to introduce correlations on the external shocks,

due to its analytical tractability. Further on, we turn the balance sheet representation

of the financial system into a network. For the network topology, we choose random k-

regular graph since it fits the constraints we have for the balance sheets, while introducing

randomness at the same time. In this system setup, we assume that we know all the

information about the banks, unlike the authors of [44]. We model the dynamics of the

shock propagation process through simulations, and obtain the results after the system

reaches an equilibrium. Since we simulate on systems of realistic sizes (N = 10000),

monitoring the state of each institution becomes unfeasible, so we represent the results

as a distribution. This way we avoid the curse of dimensionality encountered in [42],

where the authors solve the exact system of equations to obtain final states for individual

institutions. Compared to the approach of the authors of [43], where they consider a

comonotonic setting to reduce the number of all possible default scenarios for a system

with N banks, we obtain our results without having to impose restrictions on the shock

correlations. In addition to the simulations, we make use of the mapping of this type

of clearing processes to the threshold model [91, 101]. We combine the analytical form

of the shock distributions with the threshold model to obtain the expected values of the

defaulted institutions. The analytical approach enables us to study the system behaviour
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in the infinite network limit. Finally, we precisely outline how the results of our research

are reflected on the calculation of the Credit Valuation Adjustment.

4.2.2 Model of the financial system

We investigate a system of N banks with a financial network of credit contracts. In

addition to contracts among banks, we consider contracts with assets external to the

system of banks. At time t all the investments are made, and for each bank i they are

represented as a balance sheet consisting of interbank assets Ab
i =

∑
j A

b
ij, interbank

liabilities Lb
i =

∑
j L

b
ij =

∑
j A

b
ij
T , external assets Ae

i , and external liabilities Le
i . In

general, the difference between the assets and liabilities, the equity Ei(t), is defined at

time t as:

Ei(t) = Ae
i (t) + Ab

i(t)− Le
i (t)− Lb

i(t)

= Ae
i (t) + Λb

∑
j

Bijx
b
j(t)− Le

i − Lb
i . (4.2)

The decomposition of interbank assets is the following. The interbank leverage, Λb
i =

Ab
i/Ei is set to be the same for every bank: Λb

i = Λb. The matrix Bij represents the

adjacency matrix of the underlying interbank network. The elements of Bij are normalized

as fractions of the total interbank assets. At the initial time t = 0, unitary values of

investments are equal to xb
j(t = 0) = 1.

First, we explain the time dependence of the unitary values of interbank investments xb
j(t).

We define the indicator variable χi(t), that indicates the state of default from the equity

level: χj(t) = Θ(−Ej(t)), and can be either 0 or 1. The values of interbank investments

depend on the counterparty’s default state, and can, accordingly, take two possible values

xb
i(χi = 0) = 1 and xb

i(χi = 1) = Ri. In the case the counterparty has not defaulted

yet, the unitary value stays equal to 1 as initially set, and in the case of default, it gets

reduced to Ri ∈ [0, 1⟩. Ri represents the recovery rate and accounts for the possibility

that a bank that defaulted can still partially repay its debts.

For the purpose of this paper, we disregard the structure of the external asset investments,

and combine the external factors in the Equation (4.2) into the quantity we define and
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name the external equity, Ee
i (t) := Ae

i (t)−Le
i . We have then as the balance sheet equation:

Ei(t) = Ee
i (t) + Λb

∑
j

Bijx
b
j(t)− Lb

i . (4.3)

Since we set the total interbank assets and liabilities to be the same for every bank i, they

also have to be equal to each other in amount, due to the relationship Lb
ij = Ab

ij
T . We

set the total equity of each bank i to be equal to one at the initial time, Ei(t = 0) = 1,

by setting every external equity to be equal to one, Ee
i (t = 0) = 1. The default process

starts at time T > 0, when we shock the external equity Ee
i of a bank i with a shock

si < 0, Ee
i (T ) = Ee

i (0)(1 + si). After the process has started, a bank i is considered to

default when the equity value goes below zero Ei < 0. The default propagation occurs

immediately on the interbank network and produces the following fixed point equation:

Ei(T ) = Ee
i (0)(1 + si) + Λb

∑
j

Bijx
b
j(T )− Lb

i . (4.4)

The propagation follows the Eisenberg-Noe clearing process, which will be outlined in the

subsection on the process simulation.

4.2.3 Model of the shocks and shock correlations

For a set of N banks, we sample a shock vector s⃗ of dimension N whose entry si is a

value of the shock that bank i has received. We model the possible shock values in a

discrete manner, so every shock si can take one of the nσ possible values σµ, µ = 1, ..., nσ,

each with probability pµ. The value of σ1 is set to be enough to cause a default of the

institution it hits right away, that is, it has to be σ1 < −1. The values of other shocks

σµ, µ = 2, ..., nσ implement the levels of damage on the equities of institutions without

causing their default, σµ ∈ [−1, 0⟩. The last value, σnσ
= 0 is set to be zero, as it

represents the case when no damage happens to the equity. For the purpose of clearer

demonstration, in this thesis we choose nσ to be 3, since that is the minimal choice that

covers all three different types of shocks: immediate default, damage, and no damage at

all. We group the affected nodes into compartment µ, depending on the shock σµ they

received, and denote the number of nodes in compartment µ as Nµ.
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We define the random variable of the shock value as S, which realizes shock values σµ with

the previously defined respective probabilities pµ. The cumulative distribution function

of random variable S will have the form:

FS(S = σx) =
x∑

µ=1

pµ, x = σ1, σ2, . . . , σnσ
. (4.5)

The sampling of values of the shock random variable S is then performed using the inverse

of this CDF on uniform random variables, F−1
S (U).

A number of examples from the financial systems point to the existence of correlation be-

tween the external shocks. Companies that belong to the same industry, or the same geo-

graphic region will be affected by similar exogenous events. In some time periods, adverse

general economic conditions can cause a higher correlation of defaults [41]. Therefore, to

obtain a more realistic picture of the shock structure, we need to introduce correlations on

them by correlating the uniform random variables. For that purpose, we use the copula

[135, 45], a function that isolates the dependency structure of a multivariate distribution.

In particular, out of the several families of copulas, we choose the Gaussian copula for

this analysis, since it is analytically most tractable. In addition to that, for a single factor

Gaussian copula [136], i.e. a copula that has all the correlations set to the same value, the

Gaussian random variable can be decomposed into a common and an idiosyncratic ran-

dom variable, that are mutually independent, which is a property we will use in the next

Section 4.3. The Gaussian copula is represented as a cumulative distribution function of

the multivariate Gaussian distribution FZ, with marginal distributions transformed to the

uniform distribution using the uniform Gaussian quantile functions FZi
:

CGa
Σ (u1, u2, . . . , uN) = FZ(F

−1
Z1

(u1), F
−1
Z2

(u2), . . . , F
−1
ZN

(uN)). (4.6)

The sampling of the uniform variables all correlated with ρ then goes in the following way:

we take an n-variate Gaussian probability density function fZ, with the covariance matrix

Σ that has diagonal terms equal to 1 and all off diagonal terms equal to the same chosen

level of correlation, ρij = ρ. We sample an n-dimensional vector z⃗ = (z1, . . . , zN) from

the multivariate Gaussian distribution, and transform it into an n-dimensional sample
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u⃗ = (u1, . . . , uN) from the uniform distribution, using the CDF of the Gaussian univariate

distribution.

The sample of uniform random variables that we obtained is now correlated, and we can

proceed in transforming it to a sample of shock values s⃗ = (s1, . . . , sN), using the inverse

of a discrete CDF F−1
S (U).

4.2.4 Network topology

In order to model the propagation of the shocks we defined in the previous section, we

employ the random k-regular graph. This topology introduces randomness in the pairs of

vertices, while keeping the vertex degree fixed. Under our constraints for the equity and

the interbank leverage, randomness in the vertex degree would greatly extend the time

needed for the simulations. In addition to reducing the length of the simulations, a simple

network topology enables us to have more control over the parameters.

Equal interbank leverage is assigned to each bank Λb and divided over its interbank

assets. The condition that the equities and interbank leverage are uniform over all the

banks (Ei = E, Λb
i = Λb) translates into all the assets and liabilities having the same

value, Ab
i = Ab, Lb

i = Lb. Since the assets and liabilities can be represented as a network,

from Lb
ij = Ab

ij
T we recover Ab = Lb.

On a random k-regular network, where all the nodes have the same degree k, these

constraints lead to a solution where all the individual assets and liabilities are equal

in value, Ab
ij = Lb

ij = A
b

k/2
. In comparison, using an Erdős-Rényi graph would require

iteratively looking for a solution for Ab
ij and Lb

ij, which is not even guaranteed to exist for

every instance of an Erdős-Rényi graph. Therefore, our choice of the network topology is

justified.

4.2.5 Process simulation

In the first step, the external shock is applied to the external assets. If it triggers a bank to

default, the default is further propagated with the Eisenberg-Noe [46] clearing algorithm
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until the condition, that all the equity changes are less than 3% of the original equity, is

fulfilled. In case the condition cannot be fulfilled, there is a cutoff set after c steps. The

recovery rate is set to Ri = 0.

Shocks are sampled 1000 times and imposed on the external assets of the nodes in a

network. For every network degree k, 5 different instances of the random network are

generated. On every network instance, 1000 process realizations ξ are started using the

sample of shocks, resulting in a total of Nξ = 5000 process realizations. For each realiza-

tion, a vector of default indicators for banks is obtained. The fraction of defaulted vertices

within the realization ξ, q(ξ), is calculated as the expected value of the default indicator

vector. We then obtain a distribution of default fractions from entire sample with the

same network degree k, and use its expected value ⟨q⟩ = 1
Nξ

∑
ξ q(ξ) as the probability of

default.

4.2.6 Threshold model

It has been shown in [101, 91], that the financial contagion model, based on balance

sheets and with variable external assets, is equivalent to the threshold model [19] already

outlined in Chapter 2. We use the mean field approximation to obtain the solution for the

threshold model. We obtain the distribution of the banks shocked by each value of shock

σµ for both the correlated and uncorrelated case, and use it to calculate the expected

fraction of defaults ⟨q⟩, in addition to obtaining ⟨q⟩ from the simulations. The analytical

approach enables us to study the behaviour of the expected fraction of defaults in the

infinite system size limit.

4.2.7 CVA computation

We reformulate the Equation (4.1) within our framework. We state once again that the

CVA is defined as the difference between the face value of an asset Aij and its expected

value at maturity. If we set the recovery rate R to zero, the expectation is simply obtained

as:

CV A(Aij) = Aij − [(1− ⟨q⟩) · Aij + ⟨q⟩ · 0] = ⟨q⟩Aij. (4.7)
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That is, for a fixed value of Aij, the CVA depends only on the probability of default.

Therefore, to show whether the network contribution needs to be taken into account in

the CVA, we need to obtain the structure of the probability of default. We will thus

compare the probability of default obtained from the simulations of the contagion as the

expected fraction of defaulted banks ⟨q⟩ with the initial probability of default p0.

4.3 Theoretical description

In this section we provide the analytical solution of the presented problem, using the

mean-field approximation to the threshold model. We first derive the probability density

functions for the non-correlated and correlated cases, and then use these results to proceed

to the final formulas for the expected fraction of defaults.

4.3.1 Probability density functions for the distributions of shocks

Non-correlated case

For the case ρ = 0 (independent shocks), when there is no correlation on the shock levels,

we can show that the distribution of the counts of banks Nµ hit with each shock σµ equals

the multinomial probability distribution.

If we set the probabilities of the shock values σ⃗ = (σ1, σ2, σ3), that result in equity values

ϵ⃗ = 1 − σ⃗, to be p⃗ = (p1, p2, p3), the cumulative distribution function of the random

variable of the shock S will be, as in 4.5:

FS(x) =


p1 := pI , x = σ1

p1 + p2 := pII , x = σ2

1, x = σ3.

(4.8)

We use the inverse transform sampling to sample the shock random variable S, i.e. we

transform the uniform random variable U using the inverse CDF F−1
S (U) = S.
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For N banks, we write the total probability that N1 banks end up being shocked by σ1

with probability p1, N2 banks get shocked by σ2 with probability p2 and N3 banks get

shocked by σ3 with probability p3 as:

P(N⃗ ;N ; p⃗) =

=

(
N

N1, N2, N3

)
P (U1 ≤ pI , . . . , pI < Ui ≤ pII , . . . , UN > pII)

=

(
N

N1, N2, N3

)
P (U1 ≤ pI , . . . , pI < Ui ≤ pII , . . . , UN ≤ 1− pII)

=

(
N

N1, N2, N3

)[
C(pI , . . . , pII , . . . , 1− pII)− C(pI , . . . , pI , . . . , 1− pII)

]
=

(
N

N1, N2, N3

)[
pI · · · pII · · · (1− pII)− pI · · · pI · · · (1− pII)

]
=

(
N

N1, N2, N3

)
pI · · · (pII − pI) · · · (1− pII)

=

(
N

N1, N2, N3

)
p1 · · · p1︸ ︷︷ ︸

N1

· p2 · · · p2︸ ︷︷ ︸
N2

· p3 · · · p3︸ ︷︷ ︸
N3

=

(
N

N1, N2, N3

)
pN1
1 · pN2

2 · pN3
3 . (4.9)

We expressed the probability using the uniform variables that we use for sampling. The

multinomial coefficient counts the number of ways we can get the same counts, N1, N2

and N3, from a set of N banks. In the third row we utilize the definition of the copula,

and switch to the fourth row using the fact that the independence of all the variables in

the copula leads to the explicit form of the copula to be simply a product of all those

variables [45]. From there on, with a bit of algebra, and by returning to the originally

defined probabilities p1, p2, p3, we recover a multinomial probability mass function.

Correlated case

In the previous paragraph, we obtained the distribution of the numbers of banks N⃗ =

(N1, N2, N3) affected by the set of shocks σ⃗ = (σ1, σ2, σ3) that occurred with probabilities

p⃗ = (p1, p2, p3), in the case when all the shocks were independent. Now we will look

more closely into the case when correlation between the shocks is introduced. We wish
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to obtain the probability mass function P(N1, N2, N3;N ; p1, p2, p3; ρ) for the numbers of

banks N⃗ = (N1, N2, N3) in compartments µ = 1, 2, 3 when correlation ρ is present.

In the model, we introduced the correlations between shocks that reduce equity values

by employing the Gaussian copula CGa
Σ (u) to correlate our uniform variables Ui before

we used them for sampling shocks with Equation (4.5). However, the approach used

to derive the distribution in the uncorrelated case (4.9) relies on the independence of

the uniform variables, so we need to take a different perspective. Therefore, instead of

using the uniform random variables Ui as in (4.9), we base this derivation on Gaussian

random variables, Zi ∼ N (0, 1), and use the property of a single factor copula that enables

the decomposition of the correlated variables Zi into the sum of independent Gaussian

variables X ∼ N (0, ρ) and Yi ∼ N (0, 1− ρ). The random variable X is the part common

to all the sampled variables, while Yi is the idiosyncratic part, specific for each bank i.

Zi = X + Yi, Zi ∼ N (0, 1), X ∼ N (0, ρ), Yi ∼ N (0, 1− ρ). (4.10)

Next, we need to transform the subintervals for sampling with limits pI , pII , from the

[0, 1] segment, into the real line ⟨−∞,∞⟩ with limits zI , zII . Respective limits need to

divide both distributions into the same percentiles:

p1 = pI = FZ(zI), (4.11)

p2 = pII − pI = FZ(zII)− FZ(zI),

p3 = 1− pII = 1− FZ(zII).

From this we can get zI , zII easily:

zI = F−1
Z (pI), (4.12)

zII = F−1
Z (pII).

We start the derivation of the probability mass function in the same way as in (4.9), by

counting all the combinations of shocks on banks that can occur for the same counts N1,
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N2 and N3:

P(N⃗ ;N ; p⃗) = (4.13)

=

(
N

N1, N2, N3

)
P (Z1 ≤ zI , . . .︸ ︷︷ ︸

N1

, zI < Zi ≤ zII , . . . ,︸ ︷︷ ︸
N2

Zi+k+1 > zII , . . . , ZN > zII︸ ︷︷ ︸
N3

).

Then we look separately into the joint probability and utilize the decomposition of the

random variables we defined earlier, Zi = X + Yi, so that we can express probability

distribution function variables γi as a sum γi = α + βi. The corresponding probability

distribution functions for the new variables are the univariate PDF fX and the multivariate

PDF fY. We first express the probability that Gaussian variables will take the values

that correspond to bank counts N1, N2 and N3 as the multidimensional integral of the

the Gaussian multivariate PDF fZ, and use the abbreviation dγ⃗ = dγ1 · · · dγi · · · dγN :

P (Z1 ≤ zI , . . . , zI < Zi ≤ zII , . . . , ZN > zII) = (4.14)

=

∫ zI

−∞
· · ·
∫ zII

zI

· · ·
∫ ∞

zII

fZ(γ1, . . . , γi, . . . , γN) dγ⃗

=

∫ zI

−∞
· · ·
∫ zII

zI

· · ·
∫ ∞

zII

fZ(α + β1, . . . , α + βi, . . . , α + βN) dγ⃗

=

∫ zI

−∞
· · ·
∫ zII

zI

· · ·
∫ ∞

zII

(∫ ∞

−∞
fX(α)fY(γ1 − α . . . , γi − α, . . . , γN − α) dα

)
dγ⃗

=

∫ zI

−∞
· · ·
∫ zII

zI

· · ·
∫ ∞

zII

(∫ ∞

−∞
fX(α)fY (γ1 − α) · · · fY (γi − α) · · · fY (γN − α) dα

)
dγ⃗

=

∫ ∞

−∞
fX(α)

(∫ zI

−∞
fY (γ1 − α) dγ1

)
· · ·

(∫ zII

zI

fY (γi − α) dγi

)
· · ·

(∫ ∞

zII

fY (γN − α) dγN

)
dα

=

∫ ∞

−∞
fX(α)

(∫ zI

−∞
fY (γ1 − α) dγ1

)
· · ·

(∫ zII

−∞
fY (γi − α) dγi −

∫ zI

−∞
fY (γi − α) dγi

)
· · ·

· · ·

(
1−

∫ zII

−∞
fY (γN − α) dγN

)
dα

=

∫ ∞

−∞
fX(α)FY (zI − α) · · ·

(
FY (zII − α)− FY (zI − α)

)
· · ·
(
1− FY (zII − α)

)
dα

=

∫ ∞

−∞
fX(α)(FY (zI − α))N1 · (FY (zII − α)− FY (zI − α))N2 · (1− FY (zII − α))N3 dα.

In the third row, we replace the γi variables with the sum α+βi, and proceed to express fZ

as a convolution of fX and fY. In the fifth row we use the independence of the idiosyncratic
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uniform random variables Yi to separate the fY PDF into univariate fYi
= fY PDFs. After

integrating all the integrals depending on γi in the seventh row, we get a product of N

CDFs of the random variable Y that depend on the limits zI and zII according to the

class µ they belong to (Nµ of them in each class µ). The final result is an integral, going

over the real axis, of the product of a PDF of the random variable X and each CDF

raised to its respective power Nµ. To make sense of the expression, we define new shock

probabilities that depend on the variable α:

π1(α) = FY (zI − α) = FY (F
−1
Z (pI)− α), (4.15)

π2(α) = FY (zII − α)− FY (zI − α) = FY (F
−1
Z (pII)− α)− FY (F

−1
Z (pI)− α),

π3(α) = 1− FY (zII − α) = 1− FY (F
−1
Z (pII)− α).

Finally, the complete expression for the probability mass function is structured as an inte-

gral of the multinomial distribution with varying probabilities weighted by the Gaussian

distribution of the common random variable X:

P(N⃗ ;N ; p⃗) =

∫ ∞

−∞
fX(α)

(
N

N1, N2, N3

)
π1(α)

N1 · π2(α)
N2 · π3(α)

N3 dα. (4.16)

4.3.2 Threshold model - a mean field approximation

The threshold model [19] is specified in the Section 2.2 about dynamical processes. The

mapping between the financial contagion an the threshold model has been shown by [91,

101]. We will shortly explain the reasoning behind this. Since our default condition is

Ei < 0, bank i defaults either by being hit with the initial default shock p1, or by having

enough neighbours default, according to the level of equity ϵµ it has after the shock .

We can easily calculate the required number of neighbours mµ that need to default to

transmit it:

mµ =

⌈
k

2

ϵµ
Λb

⌉
≤ k

2
. (4.17)

The number of neighbours mµ then represents the threshold from the threshold model.

In our setup, the external shocks, sampled from σ⃗ = (σ1, σ2, σ3) and delivered to the

system, are then simply reflected in the initial distribution of different thresholds of equity
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values ϵ⃗ = (ϵ1, ϵ2, ϵ3). We group the nodes depending on the type of the shock they received

into compartments N⃗ = (N1, N2, N3). The underlying network is assumed to be a random

regular network, in which every node has the same degree k, which is the sum of in- and

out-degrees k = kin + kout, kin = kout.

We can write an iterative equation for the expected fraction of default qn by using the

mean field approximation. Assuming the lack of correlations between the neighbours

allows us to use the binomial distribution to calculate the probability that at least mµ

neighbours defaulted for a central node that was shocked with σµ. Summing over all

possibilities for shocks µ, we get for qn:

qn =
∑
µ

Nµ

N

k/2∑
m=mµ

(
k/2

m

)
qmn−1(1− qn−1)

k/2−m = f(qn−1). (4.18)

The solution to this equation can be obtained by looking for a fixed point for q∗ = f(q∗) =

limn→∞ f(qn).

For any possible realization of the vector of nodes N⃗ resulting from some shock, if we

know the degree of the network k, the interbank leverage Λb and the equity sizes after

the shock, ϵ⃗ = 1⃗ − σ⃗, the fixed point solution provides us with the expected fraction of

defaulted vertices:

q(N⃗) =
∑
µ

Πµ(Nµ)

[
1− FBINOM

CDF

(
mµ,

k

2
, q(N⃗)

)]
, Πµ =

Nµ

N
, mµ =

⌈
k

2

ϵµ
Λb

⌉
≤ k

2
.

(4.19)

To calculate the expected fraction of defaulted vertices ⟨q⟩ over all the possible shock

realizations, i.e. represented in this calculation with all the possible values of the vector

N⃗ , we need the probability distribution P(N⃗ ;N ; p⃗) of N⃗ , given the individual initial shock

probabilities p⃗ = (p1, p2, p3):

⟨q⟩ =
∑

N1,N2,N3

P(N⃗ ;N ; p⃗) · q(N⃗). (4.20)

In the previous subsection we derived the distribution for the non-correlated case 4.9,

75



Chapter 4. Modeling of contagion processes on financial networks

which we plug into the previous expression to get:

⟨q⟩ =
∑

N1,N2,N3

(
N

N1, N2, N3

)
pN1
1 · pN2

2 · pN3
3 · q(N⃗). (4.21)

We show the comparison of the analytical calculations with the simulation results in Fig.

4.1a.

For the correlated case, we derived the probability mass function (4.16), so the expected

fraction of defaults when correlations on shocks exist follows:

⟨q⟩ =
∫ ∞

−∞
fX(ρ)(α)

 ∑
N1,N2,N3

(
N

N1, N2, N3

)
π1(α)

N1π2(α)
N2π3(α)

N3

× q(N⃗) dα, (4.22)

with π1(α), π2(α), π3(α) as:

π1(α) := FY (zI − α) = FY (F
−1
Z (pI)− α), (4.23)

π2(α) := FY (zII − α)− FY (zI − α) = FY (F
−1
Z (pII)− α)− FY (F

−1
Z (pI)− α),

π3(α) := 1− FY (zII − α) = 1− FY (F
−1
Z (pII)− α).

(4.24)

and pI := p1 and pII := p1 + p2, zI := F−1
Z (pI), zII := F−1

Z (pII).

To shorten the time necessary for the numerical evaluation of Eq. (4.26), we approxi-

mate the varying multinomial distribution by using only the expected values, E[Nµ(α)] =

Nπµ(α) which then replace the factor Πµ = Nµ/N with E[Πµ] = E[Nµ(α)]/N = πµ(α) in

the Equation (4.19):

q(α) =
∑
µ

πµ(α)

[
1− FBINOM

CDF

(
mµ,

k

2
, q(α)

)]
,mµ =

⌈
k

2

ϵµ
Λb

⌉
≤ k

2
. (4.25)

The expected fraction of defaults then becomes:

⟨q⟩ =
∫ ∞

−∞
fX(α) · q(α) dα. (4.26)

The comparison of the result of Eqn. (4.26) and the simulation results is depicted in Fig.

4.1b.
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(a) N = 10000, ρ = 0 (b) N = 10000, ρ = 0.3

Figure 4.1: Comparison of the theoretical calculation and the simulation re-
sults. Both panels show results on the network of size N = 10000. Results obtained from
simulations are presented in a lighter shade, and the analytical results are depicted with
the darker shade of the respective color. Panel a) shows the expected fractions of default
depending on the network degree for the shock with parameters p⃗ = (0.09, 0.083, 0.827),
σ⃗ = (−1.1,−0.5, 0.0) and no correlation between shocks, ρ = 0. Panel b) shows the ex-
pected fractions of default depending on the network degree for the shock with parameters
p⃗ = (0.02, 0.09, 0.89), σ⃗ = (−1.1,−0.5, 0.0) and with correlation ρ = 0.3 between shocks.

4.3.3 Infinite network limit

We study the behaviour of the default probability in the limit of an infinitely large network

(N → ∞) that is complete (k → ∞). To start, we consider the Equation (4.19) in that

light. We wish to obtain the form of the cumulative distribution function of the binomial

distribution in the limit of k → ∞. We observe that the standard deviation grows with

the square root of the in-degree k/2, σ =
√
k/2 · q(1− q), while the sample space grows

linearly, ∼ k/2. Therefore, if we look instead at a defaulted fraction of total in-neighbours

k/2, its standard deviation behaves like
√

q(1−q)
k/2

−→
k→∞

0. As the network degree goes to

infinity, the probability distribution of the fraction of defaulted neighbours gets more

and more localized around its expected value. Thus, for a large enough k/2, we can

approximate the CDF of a binomial function with the Heaviside function Θ(x), and we

use the half maximum convention, Θ(0) = 1/2:

[
1− FBINOM

CDF

(
mµ,

k

2
, q

)]
≈ Θ

(
k

2
· q −

⌈
k

2

ϵµ
Λb

⌉)
≈ Θ

(
k

2

(
q −

ϵµ
Λb

))
. (4.27)

For the factor Πµ in the Equation (4.19), setting N → ∞ with similar arguments as above

can be shown to reflect in Πµ → E(Πµ) = E(Nµ)/N = Npµ/N = pµ. Thus, the limiting

77



Chapter 4. Modeling of contagion processes on financial networks

value of the average default probability in the case of an infinite network, is simply:

⟨qlim⟩ = p1 +
∑
µ=2

pµ ·
µ∏

ϕ=2

Θ

ϕ−1∑
ν=1

pν −
ϵϕ
Λb

 . (4.28)

In case the correlation is present, we insert the approximation (4.27) into Equation (4.26):

⟨qlim⟩ =
∫ ∞

−∞
fX(α) ·

π1(α) +
∑
µ=2

πµ(α) ·
µ∏

ϕ=2

Θ

ϕ−1∑
ν=1

πν(α)−
ϵϕ
Λb


 dα (4.29)

=

∫ ∞

−∞
fX(α)π1(α) dα +

∑
µ=2

∫ ∞

−∞
fX(α) · πµ(α) ·

µ∏
ϕ=2

Θ

ϕ−1∑
ν=1

πν(α)−
ϵϕ
Λb

 dα

=

∫ ∞

−∞
fX(α)π1(α) dα +

∑
µ=2

∫ lµ

−∞
fX(α) · πµ(α) dα.

The finite upper limits lµ in the integrals result from the theta function. For the case of

µ = 2 we get from the condition:

π1(α) >
ϵ2
Λb

,

FY (F
−1
Z (pI)− α) >

ϵ2
Λb

,

α < F−1
Z (pI)− F−1

Y

(
ϵ2
Λb

)
:= lII . (4.30)

The term for µ = 3, consists of a product of two theta functions, with the first resulting

in the limit lII and the second being the solution of π2(α) + π3(α) > ϵ3/Λb:

α < F−1
Z (pII)− F−1

Y

(
ϵ3
Λb

)
:= lIII . (4.31)

Due to the product of theta functions, the upper limit in the integral is determined by

the smaller of the two values lII and lIII . The total expected fraction of default in the

limit of an infinite network for µ = 1, 2, 3 equals:

⟨qlim⟩ =
∫ ∞

−∞
fX(α)π1(α) dα +

∫ lII

−∞
fX(α)π2(α) dα +

∫ min (lII ,lIII)

−∞
fX(α)π3(α) dα,

lII = F−1
Z (pI)− F−1

Y

(
ϵ2
Λb

)
, lIII = F−1

Z (pII)− F−1
Y

(
ϵ3
Λb

)
. (4.32)
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4.4 Results

(a) Λb = 2

(b) k = 10 (c) k = 105 (d) k = 4393

Figure 4.2: Analysis of the simulation results. We present results from a default
process with parameters p⃗ = (0.02, 0.09, 0.89), σ⃗ = (−1.1,−0.75, 0.0), Λb = 2, ρ = 0.3.
In panel a) we present the fraction N

ξ
T /Nξ of the simulation realizations that contained

network propagation with the green line and the shaded area. On top of that, we plot
in blue the one-dimensional histograms containing individual fractions of defaults in real-
izations with propagation, for each network degree k. The red line represents the median
value of those fractions of default, given propagation happened. In panel b), c) and d),
for network degrees k = 10, 105, 4393 we depict the one-dimensional histograms from the
panel a) in two dimensions, stating the total number of processes with propagation in the
titles.

We simulated the process described in the Framework section on a network of N = 10000

banks. The network size is chosen to be the largest possible, in accordance with the

computational constraints, to reduce the finite size effects. The default fraction is obtained

as a result of each of the Nξ = 5000 simulations performed for each network degree k.
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Figure 4.3: Convergence limits. We show in this figure that, for the set of parameters
(p⃗ = (0.09, 0.083, 0.827), σ⃗ = (−1.1,−0.75, 0)) and with no correlation, the system con-
verges to three possible limits after diversification, depending on the interbank leverage
Λb. On y-axis we plot the expected fraction of default, and on the x-axis the network
degree, ranging from k = 252 to the complete network k = 19998.

The final result for each k is a distribution of the default fractions.

We first present the result for p⃗ = (0.02, 0.09, 0.89), σ⃗ = (−1.1,−0.75, 0.0), Λb = 2 and

ρ = 0.3. To describe the shape of the results in Fig. 4.2a, we use only the subset of

the results in which the propagation did happen on the network. We stress that in a

sample of Nξ processes that start on a network, network propagation of defaults does

not happen for every one of them, and we mark with N
ξ
T the number of realizations

ξT in which it does happen. With the green shaded area we mark the fraction of the

process realizations in which the propagation on the network was triggered, N
ξ
T /Nξ. We

denote the fraction of default for such process realizations ξT with q(ξT ). The blue dots

represent a one dimensional histogram of the individual default fractions resulting from

propagation. The red line shows the median value of those fractions. The median is

shown instead of the mean, since it is a more appropriate statistic due to the multimodal

shape of the data. We stress that, due to the shape of the data, a large variance is

present when we take the expected value of the sample in the later analysis [137]. In the

Figures 4.2b,4.2c,4.2d, we show the histograms and the median value in two dimensions

for three different values of network degree. We can conclude from this figure that, in
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Figure 4.4: Switching between sub- and supercriticality. On x-axis the degree of
the network starts from 252 and goes up to a complete network, k = 19998, and on the
y-axis we plot the expected fraction of default, ⟨q⟩. In the first row the initial probability
of default is fixed, p⃗up = (0.09, 0.083, 0.827) and we change the shock sizes from left
σ⃗left = (−1.1,−0.5, 0) to right σ⃗right = (−1.1,−0.25, 0). In the second row we use a
different initial probability of default p⃗down = (0.05, 0.086, 0.864) for the same pair shock
sizes. Interbank leverage takes values from the range in Λb = {0.2, 1, 2, 4, 5, 6, 9, 12, 16}
and it is shown that with the decrease of the initial probability, or the shock size, the
system behaviour stays the same if we increase Λb appropriately. In the panel insets, we
plot the dependence of ⟨q⟩ on the interbank leverage Λb, for the chosen values of k that
are marked on the x-axis of the plot containing the inset.
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the case with correlation, diversification lowers the probability that propagation occurs

in the system. Nevertheless, the probability of default conditioned on the occurrence

of propagation increases significantly. If we apply this conclusion to a realistic setting,

it is clear that these unlikely events, that can create significant damage to the system,

will be underrepresented in the historical data, which will almost certainly lead to an

underestimation of the expected fraction of defaults.

Further on, using all the results obtained from the simulations, we show that, for un-

correlated external shocks, the diversified systems end up in either a subcritical or a

supercritical regime, i.e. either with diversification the expected fraction of default gets

reduced to some limit, or the entire system defaults every time regardless of it. The

regime the system chooses depends on the process and network parameters.

Next, when correlation is introduced to the external shocks, we demonstrate that, in a

previously well diversified system, the expected fraction of default takes up a finite value

regardless of the diversification.

Finally, we demonstrate that the effects do not depend on the size of the system N .

The process and network parameter ranges were chosen from the empirical values of the

real world interbank and asset markets. The results outline the importance of the network

contribution in the structure of the expected fraction of default, and accordingly in the

calculation of the CVA 4.1

4.4.1 Limiting values of convergence for the probability of de-

faults

Depending on the parameters of the network (interbank leverage) and the process (shock

sizes and probabilities), and if there are no correlations present, after the complete di-

versification, the probability of default will converge to one of the limiting values, as

previously shown in the Equation (4.28). The maximal number of the possible limiting

values of default probability is equal to the number of different shock values that we use

in our model. For example, for the shock p⃗ = (p1, p2, p3), the limiting values are equal

to p1, p1 + p2 and p1 + p2 + p3 = 1. The interpretation of this phenomenon lies in the
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fact that the initial shock with 3 possible values splits the N banks into compartments

with 3 different levels of vulnerability (N1, N2, N3). The compartment N1 always defaults

because the shock p1 causes default right away. In addition to that, the compartment N2

has the equity decreased to ϵ2, and will default if a fraction ϵ2/Λb of its interbank assets

is lost. If the probability of initial default p1 is equal or larger than the fraction ϵ2/Λb (in

a large and complete network), every bank in N2 will have a fraction of initially defaulted

borrowers (i.e. p1) large enough to drive it into default. Therefore, for some combinations

of the shock probabilities and sizes, and the interbank leverage, beside the default of the

compartment N1, we can have either the compartment N2, or both N2 and N3 (the whole

system) going into default as shown in Fig. 4.3.

4.4.2 Subcritical and supercritical regime resulting from uncor-

related shocks

Depending on the parameters of the network (interbank leverage) and the process, di-

versification can lead the probability of default either to decrease to one of the limits

mentioned above, or to remain at the highest level, equal to one. We refer to these two

modes of behaviour as subcritical and supercritical regimes. For a fixed probability and

size of the shocks, increasing the interbank leverage leads from the subcritical into the su-

percritical mode. The same effect, switching from a subcritical into supercritical regime,

is obtained with increasing the probability of initial default p1, and increasing the size of

the shock ϵ2.

In Fig. 4.4 we present this effect on four panels by varying the initial probability in

the vertical direction (p⃗up = (0.09, 0.083, 0.827) to p⃗down = (0.05, 0.086, 0.864)) and the

shock size in the horizontal direction (σ⃗left = (−1.1,−0.5, 0) to σ⃗right = (−1.1,−0.25, 0)).

We see that an appropriate choice of the interbank leverage Λb recovers both regimes

regardless of the intial probability of the shocks and their sizes.

Therefore, we see that maximal diversification can mitigate the effect of the network

component in the expected fraction of default ⟨q⟩ only if the interbank leverage is in the

subcritical range for the given parameters of the shock (probability and size).
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4.4.3 Correlated shocks cause a non-vanishing probability of de-

fault

(a) ρ = 0 (b) ρ = 0.1

(c) ρ = 0.2 (d) ρ = 0.3

Figure 4.5: Probability of defaults with correlation between shocks. The degree of
the nodes ⟨k⟩ starts from 211 and goes up to 19998 (complete network), for the number of
nodes N = 10000. The plots do not show a smaller ⟨k⟩ than 211, as the transitional effects
in that range are due to the choice of the network, and not relevant to real systems. At time
t = 0 the shock values are σ⃗ = (−1.1,−0.75, 0) , with probabilities p⃗ = (0.02, 0.09, 0.89),
respectively. We vary the interbank leverage Λb = {0.2, 1, 2, 4, 5, 8, 12, 14}. The red
horizontal line represents the initial probability of default (without taking into account
the network of liabilities). The grey dashed line represents double the values of the
initial probability of default. Subfigures a)-d) show different correlation coefficients ρ =
{0, 0.1, 0.2, 0.3}. Values where the introduced correlation increases the probability of
default by 100% or more are shown in colour, values below that are shown in greyscale.

We model the correlation on the equity levels using the Gaussian copula, as described in

the Section 4.2.

In a real market, banks invest in multiple assets outside the banking network. Their

portfolios can overlap, and the values of the assets, and thus their default probabilities,

can be correlated. However, simulating such a system for realistic parameters can be

computationally too expensive. We argue that reducing the structure of the external

assets and modeling the shocks on what we defined to be the external equity in Equation

(4.3) will not change the qualitative form of the results, since correlations on the external
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equity are a non-decreasing function of the correlations on the external assets.

For the shock levels that we use in simulations, we choose parameters realistic for markets,

values σ⃗ = (−1.1,−0.75, 0), with the probabilities p⃗ = (0.02, 0.09, 0.89) and we simulate

these shocks with 4 different levels of correlation ρ = {0, 0.1, 0.2, 0.3}.

The results of the simulations are presented in Figure 4.5. We plot the dependence of

expected fraction of default on the network degree. The horizontal red full line represents

the fraction of banks defaulted by the initial external shocks. The horizontal grey dashed

line represents the level of probability that is double than the fraction of banks defaulted

from initial shocks. The lines with dots, showing the expected fraction of default for

different interbank leverages, are presented in two color schemes, depending on whether

their value exceeds double the initial expected fraction (the grey dashed line) or not.

In the area where default fraction coming from the network is smaller than double the

initial default fraction they are presented in greyscale, and in the area where it is larger

than double, they are in colour. Figures 4.5b, 4.5c and 4.5d show how the introduction of

correlation on the equity values raises the level of the expected fraction of network default

for leverage values that were previously well diversified, lines Λb = {0.2, 1, 2, 4, 5}, on Fig.

4.5a.

On the other hand, if the interbank leverage Λb was high enough to maximize the expected

fraction of default without the correlations (Λb = 14 on Fig. 4.5a), the introduction of

correlations will reduce it. In the case with no correlation, the fraction of initially defaulted

banks comes from the binomial distribution, and for the large systems deviates very little

from the expected value, which is in this case equal to p1. If the expected fraction of

initially defaulted banks is enough to default the entire system, and, as we concluded,

the initial fraction of defaults does not vary much between realizations, the system will

default in every realization and the expected total fraction of defaults will be equal to 1.

However, if the probabilities of initial defaults of banks are correlated, although the ex-

pected value of the fraction of defaults stays the same, the fractions of defaults are no

longer drawn from a binomial, but from a distribution in the Equation (4.16), which has

positive skewness. Therefore, realizations where the fractions of initially defaulted banks

are very close to zero and thus not large enough to trigger the default of the entire system

become very likely. Taking an expectation over the sample of all realizations necessarily
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gives a value less than 1.

4.4.4 Finite probability of default is not system-size dependent

(a) ρ = 0.0 (b) ρ = 0.1

(c) ρ = 0.2 (d) ρ = 0.3

Figure 4.6: Probability of default and the system scale Probability of default is
plotted on the y-axis for maximally diversified (complete) networks with the numbers
of banks N = {300, 500, 800, 1000, 3000, 5000, 8000, 10000} on the x-axis. At time t =
0 the shock values are σ⃗ = (−1.1,−0.75, 0) , with probabilities p⃗ = (0.02, 0.09, 0.89),
respectively. In different subplots (a)-d)) we vary the correlation coefficient from 0 to
0.3. The subplots indicate that the correlation-induced probability of default does not
depend on the system size, which is further supported with horizontal lines that represent
the analytical result for the limit of an infinite network.

We show how the expected fraction of default scales with the size of the system with

correlation (Fig. 4.6b, 4.6c, 4.6d) and without correlation (Fig. 4.6a). We plot expected

fractions of default on complete networks for network sizes N = {300, 500, 800, 1000, 3000,

5000, 8000, 10000}. The shock values and probabilities used in simulations are σ⃗ =

(−1.1,−0.75, 0) , and p⃗ = (0.02, 0.09, 0.89). We vary the correlation levels ρ = {0, 0.1, 0.2,

0.3} and use the set of interbank leverages Λb = {0.2, 1, 4, 8, 12, 14}. The simulation re-

sults are plotted as points connected with dashed lines. In addition to that we depict

theoretical results in the limit of an infinite network (Equations (4.28) and (4.32)) with

horizontal lines.
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It is clear from Fig. 4.6a that the system size plays a role when the correlations are

absent. The theoretical limits show two limits for convergence, ⟨qlim⟩ = {0.02, 1.0}, which

correspond to the aforementioned subcritical and supercritical regime. We can see the

dashed lined approaching either of the two limits as the system size increases.

The introduction of correlations changes the picture, and in Fig. 4.6b, 4.6c, 4.6d we see

that the expected fraction of default remains approximately constant for all the system

sizes N , and that it corresponds to the theoretical limits. We can conclude that, in the

case when the external shocks are correlated, the network contribution to the structure of

the expected fraction of default cannot be neglected. Thus, a calculation of CVA without

the information about the network contagion would be deficient.
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Discussion

5.1 Conclusion

In this thesis we studied the network effects in systemic risk propagation from two different

perspectives, one being the detection of the default propagation from available data and

the other the quantification of its effect on the value of debt.

The methodology that infers the presence of the endogenous propagation from data was

developed in the Chapter 3. Our objective was, given a set of data, to be able to distinguish

when it is necessary to include the endogenous, network structure into the description of

the process, and when it is enough to model the dynamics as driven only by an external

field.

For that purpose, we developed a methodology that can determine, for the data that

can be turned into a temporal network, whether the endogenous propagation of default

occurred or not. We required the results to be statistically significant to conclude that

the contagion was present, and extensively tested the limits of the methodology.

We generated synthetic data to test our methodology, and it indicated the presence of

an endogenous component in the simulated process with the ratio of the exogenous and

endogenous rates up to ζ ≈ 1, for small networks with 1000 vertices. First, we used

KS-test to verify if there was a significant difference between the original and randomized

distributions of test statistic counts. Then we compared individual processes with their
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respective RRM ensembles using z-score and Mahalanobis distance to test for the presence

of endogenous spreading. For the cases of ζ that are borderline significant in distinguishing

endogeneity, the success of the method depends also on the percentage of defaults, average

degree and size of the network. The shape of the border between the part of the phase

space of parameters where we are able to detect propagation and the part where we are

not, is complex and differs for z-score and Mahalanobis distance. With the increase in

network size, the range of ζ where the detection is possible also gets extended. When

the endogenous component is modeled like an SI process, Mahalanobis distance performs

either better or as good as z-score, whereas when it is modeled like a voter model process,

z-score outperforms Mahalanobis distance. In addition to the simulated data, we provided

an extension of a theoretical framework of Approximate master equations, which we then

used to further our understanding of the temporal evolution of the test statistics. The

equations that we derived provide a good match between the calculated expected counts

of the causal motifs and the simulated results.

Ultimately, we applied our methodology to determine whether there was any endogenous

spreading in the pre-bankruptcy settlement data of Croatian companies. From the results

we obtained, we concluded that the defaults (pre-bankruptcy settlements) probably prop-

agated endogenously. This conclusion is in agreement with the previous research [111]

that was conducted on the same dataset, but employed more data, such as the values of

debts, assets of companies etc. However, unlike other types of cascade processes, such as

meme propagation, where it can be easily checked who copied the meme from whom, de-

termining the ground truth in the default cascades is way more complicated. Determining

the exact cause of default of a company involves checking the numerous court filings, fi-

nancial reports of the companies and interviews with employees. Our method can be used

to warn the regulators that the default process has obtained an endogenous component

and point to the parts of the network of companies where such an investigation should be

undertaken to prove the presence of the endogenous cascade.

In conclusion, we fulfilled our goal to distinguish potential endogenous spreading even

when using minimal possible information.

In Chapter 4 we studied the structure of the probability of default when the institutions

are connected with credit exposures, and the effect this has on the Credit Valuation Ad-
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justment. We aimed to show that the propagation of default on the network of credit

exposures can in some cases significantly increase the probability of default of the insti-

tutions, and that it should not be left out from the calculation of the CVA.

We approached this problem by setting up a simulation of the default propagation process

that includes all the information about the credit network. For the external shocks that

were not correlated, after diversification, the system occupied either the subcritical state,

where the probability of default was reduced, or the supercritical state, which implied the

default of the entire system. With the introduction of correlated external shocks, modeled

with the Gaussian copula, we observed both qualitative and quantitative differences in the

behaviour of the system, compared to the uncorrelated case. Systems that were previously

well diversified obtain an increase in the probability of default to more than double of the

value that disregards the network propagation. Although in the case where correlation

exists, the risk cannot be diversified away, there is a beneficial effect on the systems that

were previously in the supercritical state, since their probability of default gets reduced.

This result is tested against the system size increase, and it is shown not to be a finite

size effect. The simulated results are backed with an analytical treatment of the problem,

obtained by combining the threshold model with the derived distributions of shocks. The

advantage of the analytical approach is that we can take the limit of an infinite network,

and observe the asymptotic results. Finally, a connection with the calculation of the

Credit Valuation Adjustment is made, and the deficiency of the methodology that omits

the effect of the default propagation is pointed out.

To conclude, the aim to find the contribution of the credit network in the structure of

the probability of default was met, and its implication on the calculation of the CVA was

highlighted.

5.2 Future work

The work on the detection of the economic cascades can be naturally extended by releasing

out constraint about the minimal information. We could add the amounts of debt as

weights on the edges, as it is quite straightforward that the size of debt should affect

the possible propagation of defaults. Further on, we could introduce a limit on the time
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that passes between the default of a debtor and its creditor’s default for the default to

be classified as potentially causal. It is reasonable to assume that the probability of a

causal relationship between the debtor’s and the creditor’s default decays with time. The

presented work can be thought of as a starting point for a systematic inclusion of more

and more information in the detection of endogenous propagation, up to a point of purely

data driven methods.

Another direction in the future work could be to use more realistic network classes, for

example correlated or scale-free networks [138]. A study of the influence of the network

topology on the robustness of the detection methodology could have interesting results,

since its effects on contagion processes are well known [138, 139, 33].

We have seen in our results, that sometimes it is impossible to detect an endogenous pro-

cess if the "noise" of the exogenous process is too strong. We could expect an existence

of a phase transition between the detectable and undetectable phases of the contagion,

similarly to the detectability limit of communities [140]. The understanding of the ex-

ogenous - endogenous interplay of the interacting particle systems on complex networks

would be improved with a theoretical study of this limit.

The part of our research concerning the contribution of the network propagation to the

probability of default can be easily extended by introducing additional external shocks

that occur later in the process. They can be allowed to have a positive sign as well, to

model the reactions of the regulators trying to mitigate the default cascade. In addition

to having shocks that have a time dependence, a generalization could be made to shocks

with a continuous distribution, which could be implemented both in the simulations and

theoretically.

Another line of research could take the direction of making the structure of the external

assets more complex. A different type of correlation on the shocks could arise if we allow

the banks to have overlapping portfolios, and we could study the relationship between the

two types of correlation.

As in the work we did on the detection of cascades, this work could too be expanded

by considering networks that model the financial network more realistically. It has been

empirically found that formation mechanisms lead the financial network to take up a core-
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periphery structure, with the core forming a full clique and the peripheral banks being

connected only to the core [47]. Such a structure can be modeled using the stochastic

block model [141], which is a generative model that can reproduce the different edge

densities in the core and from the core towards periphery.

We also could go in the direction of working on the actual implementation of the network

contribution into the CVA policy framework. Since the real data needed to recreate the

entire network of credit exposures is available to the regulators, we would not need to be

concerned with modelling the underlying network. However, a more realistic model of the

external shock would be necessary, in line with the propositions mentioned above. Also,

the clearing framework would have to allow for more generality, such as possible non-zero

bankruptcy costs [132] and recovery rates. We could calibrate the shock distributions

on the historical shocks, and study how likely the actual defaults that occurred on the

network would have been predicted by our model.

92



Bibliography

[1] P. W. Anderson, “More Is Different”, in: Science 177 (1972), pp. 393–396, doi:

10.1126/science.177.4047.393.

[2] D. Sornette, Critical Phenomena in Natural Sciences, Berlin, Heidelberg: Springer,

2000, doi: 10.1007/978-3-662-04174-1_15.

[3] P. Erdős and A. Rényi, “On the Evolution of Random Graphs”, in: Publication of

the mathematical institute of the Hungarian Academy of Sciences, 1960, pp. 17–61,

doi: 10.1515/9781400841356.38.

[4] E. N. Gilbert, “Random Graphs”, in: The Annals of Mathematical Statistics 30

(1959), pp. 1141–1144, doi: 10.1214/aoms/1177706098.

[5] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks”, in: Rev.

Mod. Phys. 74 (2002), pp. 47–97, doi: 10.1103/RevModPhys.74.47.

[6] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks”, in:

Nature 393 (1998), pp. 440–442, doi: 10.1038/30918.

[7] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks”, in:

Science 286 (1999), pp. 509–512, doi: 10.1126/science.286.5439.509.

[8] T. Squartini, I. Van Lelyveld, and D. Garlaschelli, “Early-warning signals of topo-

logical collapse in interbank networks”, in: Scientific Reports 3 (2013), pp. 1–9,

doi: 10.1038/srep03357.

[9] S. Battiston et al., “Complexity theory and financial regulation”, in: Science 351

(2016), pp. 818–819, doi: 10.1126/science.aad0299.

[10] F. Schweitzer et al., “Economic Networks: The New Challenges”, in: Science 325

(2009), pp. 422–425, doi: 10.1126/science.1173644.

93



BIBLIOGRAPHY

[11] G. Caldarelli and A. Vespignani, Large scale structure and dynamics of complex

networks: from information technology to finance and natural science, Complex

Systems and Interdisciplinary Science, Singapore: World Scientific, 2007, doi: 10.

1142/6455.

[12] R. Milo et al., “Network Motifs: Simple Building Blocks of Complex Networks”, in:

Science 298 (2002), pp. 824–827, doi: 10.1126/science.298.5594.824.

[13] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex

Networks, Cambridge University Press, 2008, doi: 10.1017/CBO9780511791383.

[14] S. Grosskinsky, Interacting stochastic processes, Lecture notes, Warwick, 2009,

url: https : / / warwick . ac . uk / fac / sci / maths / people / staff / stefan _

grosskinsky/ma4h3/notes_ips_10.pdf.

[15] T. Liggett, Interacting Particle Systems, Classics in mathematics, Springer New

York, 1985, doi: 10.1007/b138374.

[16] J. M. Swart, A Course in Interacting Particle Systems, 2022, arXiv: 1703.10007.

[17] G. Grimmett, Probability on Graphs: Random Processes on Graphs and Lattices,

Institute of Mathematical Statistics Textbooks, Cambridge University Press, 2010,

doi: 10.1017/9781108528986.

[18] R. A. Holley and T. M. Liggett, “Ergodic Theorems for Weakly Interacting Infinite

Systems and the Voter Model”, in: The Annals of Probability 3 (1975), pp. 643–

663, doi: 10.1214/aop/1176996306.

[19] D. J. Watts, “A simple model of global cascades on random networks”, in: Pro-

ceedings of the National Academy of Sciences 99 (2002), pp. 5766–5771, doi:

10.1073/pnas.082090499.

[20] M. F. Weber and E. Frey, “Master equations and the theory of stochastic path

integrals”, in: Reports on Progress in Physics 80, 046601 (2017), doi: 10.1088/

1361-6633/aa5ae2.

[21] J. P. Gleeson, “High-Accuracy Approximation of Binary-State Dynamics on Net-

works”, in: Phys. Rev. Lett. 107, 068701 (2011), doi: 10.1103/PhysRevLett.107.

068701.

94



BIBLIOGRAPHY

[22] J. P. Gleeson, “Binary-State Dynamics on Complex Networks: Pair Approximation

and Beyond”, in: Phys. Rev. X 3, 021004 (2013), doi: 10.1103/PhysRevX.3.

021004.

[23] F. Deschâtres and D. Sornette, “Dynamics of book sales: Endogenous versus ex-

ogenous shocks in complex networks”, in: Phys. Rev. E 72, 016112 (2005), doi:

10.1103/PhysRevE.72.016112.

[24] S. A. Myers, C. Zhu, and J. Leskovec, “Information Diffusion and External Influ-

ence in Networks”, in: Proceedings of the 18th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China: Associa-

tion for Computing Machinery, 2012, pp. 33–41, doi: 10.1145/2339530.2339540.

[25] M. Piškorec et al., “Modeling Peer and External Influence in Online Social Net-

works: Case of 2013 Referendum in Croatia”, in: Complex Networks & Their Ap-

plications VI, Cham: Springer International Publishing, 2018, pp. 1015–1027, doi:

10.1007/978-3-319-72150-7_82.

[26] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and Correlation in So-

cial Networks”, in: Proceedings of the 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’08, Las Vegas, Nevada, USA:

Association for Computing Machinery, 2008, pp. 7–15, doi: 10.1145/1401890.

1401897.

[27] S. Battiston et al., “Debtrank: Too central to fail? Financial networks, the FED

and systemic risk”, in: Scientific Reports 2, 541 (2012), doi: 10.1038/srep00541.

[28] S. Battiston et al., “Default cascades: When does risk diversification increase sta-

bility?”, in: Journal of Financial Stability 8 (2012), pp. 138–149, doi: 10.1016/j.

jfs.2012.01.002.

[29] S. Battiston et al., “Liaisons dangereuses: Increasing connectivity, risk sharing,

and systemic risk”, in: Journal of Economic Dynamics and Control 36 (2012),

pp. 1121–1141, doi: 10.1016/j.jedc.2012.04.001.

[30] V. Zlatić, G. Gabbi, and H. Abraham, “Reduction of Systemic Risk by Means of

Pigouvian Taxation”, in: PLOS ONE 10 (2015), pp. 1–18, doi: 10.1371/journal.

pone.0114928.

95



BIBLIOGRAPHY

[31] S. Poledna and S. Thurner, “Elimination of systemic risk in financial networks

by means of a systemic risk transaction tax”, in: Quantitative Finance 16 (2016),

pp. 1599–1613, doi: 10.1080/14697688.2016.1156146.

[32] T. Roukny et al., “Default cascades in complex networks: Topology and systemic

risk”, in: Scientific Reports 3, 2759 (2013), pp. 1–8, doi: 10.1038/srep02759.

[33] G. D’Agostino et al., “Robustness and assortativity for diffusion-like processes in

scale-free networks”, in: EPL (Europhysics Letters) 97, 68006 (2012), doi: 10.

1209/0295-5075/97/68006.

[34] S. M. Krause et al., “Controlling systemic risk: Network structures that minimize

it and node properties to calculate it”, in: Phys. Rev. E 103, 042304 (2021), doi:

10.1103/PhysRevE.103.042304.

[35] G. Visentin, S. Battiston, and M. D’Errico, Rethinking financial contagion, 2016,

arXiv: 1608.07831.

[36] J. Gregory, Counterparty Credit Risk and Credit Value Adjustment: A Continuing

Challenge for Global Financial Markets, The Wiley Finance Series, Wiley, 2012,

doi: 10.1002/9781118673638.

[37] L. Gauvin et al., Randomized reference models for temporal networks, 2018, arXiv:

1806.04032.

[38] P. C. Mahalanobis, “On the generalized distance in statistics”, in: National Institute

of Science of India, 1936, url: http://bayes.acs.unt.edu:8083/BayesContent/

class/Jon/MiscDocs/1936_Mahalanobis.pdf.

[39] BCBS, Capital treatment for bilateral counterparty credit risk finalised by the Basel

Committee on Banking Supervision. Tech. rep., 2011.

[40] BCBS, Credit Valuation Adjustment risk: Targeted final revisions, tech. rep., 2019.

[41] J. Hull, Options, Futures, and Other Derivatives, Prentice Hall, 2012, Google

Books: LzBTpwAACAAJ.

[42] C. Gouriéroux, J.-C. Héam, and A. Monfort, “Bilateral exposures and systemic

solvency risk”, in: Canadian Journal of Economics/Revue canadienne d’économique

45 (2012), pp. 1273–1309, doi: 10.1111/j.1540-5982.2012.01750.x.

96



BIBLIOGRAPHY

[43] T. Banerjee and Z. Feinstein, “Pricing of Debt and Equity in a Financial Network

with Comonotonic Endowments”, in: Operations Research 0 (0), doi: 10.1287/

opre.2022.2275.

[44] P. Barucca et al., “Network valuation in financial systems”, in: Mathematical Fi-

nance 30 (2020), pp. 1181–1204, doi: 10.1111/mafi.12272.

[45] T. Schmidt, “Coping with copulas”, in: J. Rank, Copulas - From Theory to Ap-

plication in Finance, 2007, url: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.139.888&rep=rep1&type=pdf.

[46] L. Eisenberg and T. H. Noe, “Systemic Risk in Financial Systems”, in: Management

Science 47 (2001), pp. 236–249, doi: 10.1287/mnsc.47.2.236.9835.

[47] D. in ’t Veld, M. van der Leij, and C. Hommes, “The formation of a core-periphery

structure in heterogeneous financial networks”, in: Journal of Economic Dynamics

and Control 119, 103972 (2020), doi: 10.1016/j.jedc.2020.103972.

[48] J. C. Collins, Renormalization: An Introduction to Renormalization, the Renor-

malization Group and the Operator-Product Expansion, Cambridge Monographs

on Mathematical Physics, Cambridge University Press, 1984, doi: 10 . 1017 /

CBO9780511622656.

[49] M. Heimpel and P. Olson, “A seismodynamical model of lithosphere deformation:

Development of continental and oceanic rift networks”, in: Journal of Geophysical

Research: Solid Earth 101 (1996), pp. 16155–16176, doi: 10.1029/96JB00168.

[50] H. Saleur, C. G. Sammis, and D. Sornette, “Discrete scale invariance, complex frac-

tal dimensions, and log-periodic fluctuations in seismicity”, in: Journal of Geophys-

ical Research: Solid Earth 101 (1996), pp. 17661–17677, doi: 10.1029/96JB00876.

[51] H. Saleur, C. G. Sammis, and D. Sornette, “Renormalization group theory of

earthquakes”, in: Nonlinear Processes in Geophysics 3 (1996), pp. 102–109, doi:

10.5194/npg-3-102-1996.

[52] J.-C. Anifrani et al., “Universal log-periodic correction to renormalization group

scaling for rupture stress prediction from acoustic emissions”, in: J. Phys. I France

5 (1995), pp. 631–638, doi: 10.1051/jp1:1995156.

97



BIBLIOGRAPHY

[53] J. A. Feigenbaum and P. G. Freund, “Discrete scale invariance in stock markets

before crashes”, in: International Journal of Modern Physics B 10 (1996), pp. 3737–

3745, doi: 10.1142/S021797929600204X.

[54] A. Johansen and D. Sornette, “Critical Crashes”, in: Risk 12 (1999), pp. 91–94,

arXiv: cond-mat/9901035.

[55] D. Sornette and A. Johansen, “Large financial crashes”, in: Physica A: Statistical

Mechanics and its Applications 245 (1997), pp. 411–422, doi: 10.1016/S0378-

4371(97)00318-X.

[56] D. Sornette, A. Johansen, and J.-P. Bouchaud, “Stock market crashes, precursors

and replicas”, in: J. Phys. I France 6 (1996), pp. 167–175, doi: 10.1051/jp1:

1996135.

[57] G. Grimmett et al., Percolation, Die Grundlehren der mathematischen Wissenschaften

in Einzeldarstellungen, Springer, 1999, doi: 10.1007/978-3-662-03981-6.

[58] I. Jensen, “Critical behavior of branching annihilating random walks with an odd

number of offsprings”, in: Phys. Rev. E 47 (1993), R1–R4, doi: 10.1103/PhysRe

vE.47.R1.

[59] H. Takayasu and A. Y. Tretyakov, “Extinction, survival, and dynamical phase

transition of branching annihilating random walk”, in: Phys. Rev. Lett. 68 (1992),

pp. 3060–3063, doi: 10.1103/PhysRevLett.68.3060.

[60] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: An explanation

of the 1/f noise”, in: Phys. Rev. Lett. 59 (1987), pp. 381–384, doi: 10.1103/

PhysRevLett.59.381.

[61] P. Bak, How nature works: the science of self-organized criticality, Copernicus,

1996, doi: 10.1007/978-1-4757-5426-1.

[62] H. J. Jensen, Self-organized criticality: emergent complex behavior in physical and

biological systems, vol. 10, Cambridge university press, 1998, doi: 10.1017/CBO9

780511622717.

[63] T. C. Choy, Effective medium theory: principles and applications, vol. 165, Oxford

University Press, 2015, doi: 10.1093/acprof:oso/9780198705093.001.0001.

98



BIBLIOGRAPHY

[64] K. Binder and A. P. Young, “Spin glasses: Experimental facts, theoretical concepts,

and open questions”, in: Rev. Mod. Phys. 58 (1986), pp. 801–976, doi: 10.1103/

RevModPhys.58.801.

[65] M. Newman, “Models of the Small World”, in: Journal of Statistical Physics 101

(2000), pp. 819–841, doi: 10.1023/A:1026485807148.

[66] K. Brinda and S. Vishveshwara, “A network representation of protein structures:

implications for protein stability”, in: Biophysical Journal 89 (2005), pp. 4159–

4170, doi: 10.1529/biophysj.105.064485.

[67] S. L. Pimm, J. H. Lawton, and J. E. Cohen, “Food web patterns and their conse-

quences”, in: Nature 350 (1991), pp. 669–674, doi: 10.1038/350669a0.

[68] J. Moreno, Who shall survive? Foundations of Sociometry, Group Psychotherapy

and Sociodrama, Nervous and mental disease monograph series, Beacon House,

1953, doi: 10.2307/2785701.

[69] N. H. Gartner and C. Stamatiadis, “Traffic Networks, Optimization and Control

of Urban”, in: Encyclopedia of Complexity and Systems Science, New York, NY:

Springer New York, 2009, pp. 9470–9500, doi: 10.1007/978-0-387-30440-3_563.

[70] A. Broido and K. C. Claffy, “Internet topology: connectivity of IP graphs”, in:

Scalability and traffic control in IP networks, vol. 4526, International Society for

Optics and Photonics, SPIE, 2001, pp. 172–187, doi: 10.1117/12.434393.

[71] G. Cimini et al., “The statistical physics of real-world networks”, in: Nat Rev Phys

1 (2019), pp. 58–71, doi: 10.1038/s42254-018-0002-6.

[72] M. Newman, Networks, Oxford University Press, 2018, doi: 10.1093/oso/97801

98805090.001.0001.

[73] S. Milgram, “The small world problem”, in: Psychology Today 1 (1967), pp. 60–67,

url: http://snap.stanford.edu/class/cs224w-readings/milgram67smallwo

rld.pdf.

[74] S. Wasserman and K. Faust, Social network analysis: methods and applications,

Structural Analysis in the Social Sciences, Cambridge University Press, 1994, doi:

10.1017/CBO9780511815478.

99



BIBLIOGRAPHY

[75] J. Scott, Social Network Analysis: A Handbook, Social Network Analysis: A Hand-

book, SAGE Publications, 2000, Google Books: meSF2CquIAgC.

[76] P. W. Holland and S. Leinhardt, “Transitivity in structural models of small groups”,

in: Comparative Group Studies 2 (1971), pp. 107–124, doi: 10.1177/1046496471

00200201.

[77] T. Silva and L. Zhao, Machine Learning in Complex Networks, Springer Interna-

tional Publishing, 2016, doi: 10.1007/978-3-319-17290-3.

[78] D. G. Rand, S. Arbesman, and N. A. Christakis, “Dynamic social networks promote

cooperation in experiments with humans”, in: Proceedings of the National Academy

of Sciences 108 (2011), pp. 19193–19198, doi: 10.1073/pnas.1108243108.

[79] S. Liu et al., “Heterogeneous network approach to predict individuals’ mental

health”, in: ACM Trans. Knowl. Discov. Data 15 (2021), doi: 10.1145/3429446.

[80] J. You et al., “Graph Structure of Neural Networks”, in: Proceedings of the 37th

International Conference on Machine Learning, vol. 119, Proceedings of Machine

Learning Research, PMLR, 2020, pp. 10881–10891, url: https://proceedings.

mlr.press/v119/you20b.html.

[81] C. Matias et al., “Network motifs: mean and variance for the count”, in: REVSTAT-

Statistical Journal 4 (2006), pp. 31–51, url: https://hal.inrae.fr/hal-

02655236/document.

[82] F. Picard et al., “Assessing the Exceptionality of Network Motifs”, in: Journal of

Computational Biology 15 (2008), pp. 1–20, doi: 10.1089/cmb.2007.0137.

[83] C. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Nat-

ural Sciences, Proceedings in Life Sciences, Springer-Verlag, 1985, url: https:

//link.springer.com/book/9783540707127.

[84] J. T. Cox, “Coalescing Random Walks and Voter Model Consensus Times on the

Torus in Zd”, in: The Annals of Probability 17 (1989), pp. 1333–1366, doi: 10.

1214/aop/1176991158.

[85] T. C. Schelling, “Hockey Helmets, Concealed Weapons, and Daylight Saving: A

Study of Binary Choices with Externalities”, in: The Journal of Conflict Resolution

17 (1973), pp. 381–428, doi: 10.1177/002200277301700302.

100



BIBLIOGRAPHY

[86] I. Z. Kiss, J. C. Miller, and P. L. Simon, “Mean-field approximations for hetero-

geneous networks”, in: Mathematics of Epidemics on Networks: From Exact to

Approximate Models, Cham: Springer International Publishing, 2017, pp. 165–205,

doi: 10.1007/978-3-319-50806-1_5.

[87] V. Marceau et al., “Adaptive networks: Coevolution of disease and topology”, in:

Phys. Rev. E 82, 036116 (2010), doi: 10.1103/PhysRevE.82.036116.

[88] J. Lorenz, S. Battiston, and F. Schweitzer, “Systemic risk in a unifying framework

for cascading processes on networks”, in: The European Physical Journal B 71, 441

(2009), doi: 10.1140/epjb/e2009-00347-4.

[89] R. M. Anderson and R. M. May, “Population biology of infectious diseases: Part

I”, in: Nature 280 (1979), pp. 361–367, doi: 10.1038/280361a0.

[90] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and

control, Oxford University Press, 1992, doi: 10.1017/S0950268800059896.

[91] P. Gai and S. Kapadia, “Contagion in financial networks”, in: Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2010),

pp. 2401–2423, doi: 10.2139/ssrn.1577043.

[92] L. Weng et al., “Competition among memes in a world with limited attention”, in:

Scientific Reports 2, 335 (2012), doi: 10.1038/srep00335.

[93] D. G. Kendall, “Stochastic processes occurring in the theory of queues and their

analysis by the method of the imbedded Markov chain”, in: The Annals of Mathe-

matical Statistics (1953), pp. 338–354, doi: 10.1214/aoms/1177728975.

[94] E. Volz and L. A. Meyers, “Susceptible–infected–recovered epidemics in dynamic

contact networks”, in: Proceedings of the Royal Society B: Biological Sciences 274

(2007), pp. 2925–2934, doi: 10.1098/rspb.2007.1159.

[95] S. Blower and M.-H. Go, “The importance of including dynamic social networks

when modeling epidemics of airborne infections: does increasing complexity in-

crease accuracy?”, in: BMC medicine 9, 88 (2011), doi: 10.1186/1741-7015-9-

88.

101



BIBLIOGRAPHY

[96] I. Vodenska and A. P. Becker, “Interdependence, vulnerability and contagion in

financial and economic networks”, in: New Perspectives and Challenges in Econo-

physics and Sociophysics, Springer, 2019, pp. 101–116, doi: 10.1007/978-3-030-

11364-3_8.

[97] P. J. Mucha et al., “Community Structure in Time-Dependent, Multiscale, and

Multiplex Networks”, in: Science 328 (2010), pp. 876–878, doi: 10.1126/science.

1184819.

[98] S. Boccaletti et al., “The structure and dynamics of multilayer networks”, in:

Physics Reports 544 (2014), pp. 1–122, doi: 10.1016/j.physrep.2014.07.001.

[99] E. Cozzo et al., Multiplex Networks, 1st ed., SpringerBriefs in Complexity, Springer

International Publishing, 2018, doi: 10.1007/978-3-319-92255-3.

[100] C. D. Brummitt and T. Kobayashi, “Cascades in multiplex financial networks with

debts of different seniority”, in: Physical Review E 91, 062813 (2015), doi: 10.

1103/PhysRevE.91.062813.

[101] T. Kobayashi, “A model of financial contagion with variable asset returns may be

replaced with a simple threshold model of cascades”, in: Economics Letters 124

(2014), pp. 113–116, doi: 10.1016/j.econlet.2014.05.003.

[102] D. Acemoglu, A. Ozdaglar, and A. Tahbaz-Salehi, “Systemic risk and stability in

financial networks”, in: American Economic Review 105 (2015), pp. 564–608, doi:

10.1257/aer.20130456.

[103] N. Kiyotaki and J. Moore, “Credit chains”, 1998, url: https://www.princeton.

edu/~kiyotaki/papers/creditchains.pdf.

[104] F. Boissay, Credit chains and the propagation of financial distress, ECB working

paper, 2006, doi: 10.2139/ssrn.872543.

[105] T. Jacobson and E. Von Schedvin, “Trade credit and the propagation of corporate

failure: an empirical analysis”, in: Econometrica 83 (2015), pp. 1315–1371, doi:

10.3982/ECTA12148.

[106] D. Acemoglu et al., “The network origins of aggregate fluctuations”, in: Economet-

rica 80 (2012), pp. 1977–2016, doi: 10.3982/ECTA9623.

102



BIBLIOGRAPHY

[107] M. G. Hertzel et al., “Inter-firm linkages and the wealth effects of financial distress

along the supply chain”, in: Journal of Financial Economics 87 (2008), pp. 374–

387, doi: 10.1016/j.jfineco.2007.01.005.

[108] E. Oberfield, “A theory of input–output architecture”, in: Econometrica 86 (2018),

pp. 559–589, doi: 10.3982/ECTA10731.

[109] J. Gao, The Effects of Firm Network on Banks’ Portfolio Consideration, tech. rep.,

Mimeo. Kelly School of Business, Indiana University, 2015, doi: 10.2139/ssrn.

2829988.

[110] S. Battiston et al., “Credit chains and bankruptcy propagation in production net-

works”, in: Journal of Economic Dynamics and Control 31 (2007), pp. 2061–2084,

doi: 10.1016/j.jedc.2007.01.004.

[111] S. Košćak et al., Hub Think Tank Broj 3: Arhitektura Mreže Dugovanja Hrvatskih

Tvrtki, (Text is in Croatian), 2015, url: https://www.hub.hr/hr/hub-think-

tank-broj-3-arhitektura-mreze-dugovanja-hrvatskih-tvrtki.

[112] M. Torricelli, M. Karsai, and L. Gauvin, “weg2vec: Event embedding for temporal

networks”, in: Scientific Reports 10, 7164 (2020), doi: 10.1038/s41598-020-

63221-2.

[113] S. Lehmann, “Fundamental Structures in Temporal Communication Networks”, in:

Temporal Network Theory, Springer, 2019, pp. 25–48, doi: 10.1007/978-3-030-

23495-9_2.

[114] A. Mellor, Analysing collective behaviour in temporal networks using event graphs

and temporal motifs, 2018, arXiv: 1801.10527.

[115] S. S. Shen-Orr et al., “Network motifs in the transcriptional regulation network of

Escherichia coli”, in: Nature Genetics 31 (2002), pp. 64–68, doi: 10.1038/ng881.

[116] U. Alon, “Network motifs: theory and experimental approaches”, in: Nature Reviews

Genetics 8 (2007), pp. 450–461, doi: 10.1038/nrg2102.

[117] K. Ristl, S. J. Plitzko, and B. Drossel, “Complex response of a food-web module

to symmetric and asymmetric migration between several patches”, in: Journal of

Theoretical Biology 354 (2014), pp. 54–59, doi: 10.1016/j.jtbi.2014.03.009.

103



BIBLIOGRAPHY

[118] T. Ohnishi, H. Takayasu, and M. Takayasu, “Network motifs in an inter-firm net-

work”, in: Journal of Economic Interaction and Coordination 5 (2010), pp. 171–

180, doi: 10.1007/s11403-010-0066-6.

[119] F. W. Takes et al., “Multiplex network motifs as building blocks of corporate

networks”, in: Applied Network Science 3, 39 (2018), doi: 10.1007/s41109-018-

0094-z.

[120] V. Zlatić et al., “Wikipedias: Collaborative web-based encyclopedias as complex

networks”, in: Physical Review E 74, 016115 (2006), doi: 10.1103/PhysRevE.74.

016115.

[121] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks”, in:

Proceedings of the Tenth ACM International Conference on Web Search and Data

Mining, 2017, pp. 601–610, doi: 10.1145/3018661.3018731.

[122] P. V. Paulau, C. Feenders, and B. Blasius, “Motif analysis in directed ordered

networks and applications to food webs”, in: Scientific Reports 5, 11926 (2015),

doi: 10.1038/srep11926.

[123] A. C. Schwarze and M. A. Porter, “Motifs for Processes on Networks”, in: SIAM

Journal on Applied Dynamical Systems 20 (2021), pp. 2516–2557, doi: 10.1137/

20M1361602.

[124] T. LaRock et al., “HYPA: Efficient Detection of Path Anomalies in Time Series

Data on Networks”, in: Proceedings of the 2020 SIAM International Conference on

Data Mining (SDM), pp. 460–468, doi: 10.1137/1.9781611976236.52.

[125] I. Barjašić et al., “Causal motifs and existence of endogenous cascades in directed

networks with application to company defaults”, in: Scientific Reports 11, 24028

(2021), doi: 10.1038/s41598-021-02976-8.

[126] I. Barjašić et al., Supplementary information, url: https://github.com/ibarja

si94/default_process.

[127] F. G. Elfadaly, P. H. Garthwaite, and J. R. Crawford, “On point estimation of the

abnormality of a Mahalanobis index”, in: Computational Statistics & Data Analysis

99 (2016), pp. 115–130, doi: 10.1016/j.csda.2016.01.014.

104



BIBLIOGRAPHY

[128] R. C. Merton, “On the Pricing of Corporate Debt: The Risk Structure of Interest

Rates”, in: The Journal of Finance 29 (1974), pp. 449–470, doi: 10.2307/2978814.

[129] F. Rehm and M. Rudolf, “KMV Credit Risk Modeling”, in: Risk Management:

Challenge and Opportunity, Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,

pp. 141–154, doi: 10.1007/978-3-662-04008-9_8.

[130] D. Duffie and K. Singleton, “Modeling Term Structures of Defaultable Bonds”, in:

Review of Financial Studies 12 (1999), pp. 687–720, doi: 10.1093/rfs/12.4.687.

[131] C. H. Furfine, “Interbank Exposures: Quantifying the Risk of Contagion”, in: Jour-

nal of Money, Credit and Banking 35 (2003), pp. 111–128, doi: 10.2139/ssrn.

169089.

[132] L. C. G. Rogers and L. A. M. Veraart, “Failure and Rescue in an Interbank Net-

work”, in: Management Science 59 (2013), pp. 882–898, doi: 10.2139/ssrn.

1932911.

[133] T. Suzuki, “Valuing Corporate Debt: The Effect of Cross-Holdings of Stock and

Debt”, in: Journal of the Operations Research Society of Japan 2 (2002), pp. 123–

144, doi: 10.15807/jorsj.45.123.

[134] T. Banerjee, A. Bernstein, and Z. Feinstein, Dynamic Clearing and Contagion in

Financial Networks, 2018, arXiv: 1801.02091.

[135] A. Sklar, “Fonctions de Répartition À N Dimensions Et Leurs Marges”, in: Pub-

lications de l’Institut Statistique de l’Université de Paris 8 (1959), pp. 229–231,

Google Books: nreSmAEACAAJ.

[136] P. Krupskii and H. Joe, “Factor copula models for multivariate data”, in: Journal

of Multivariate Analysis 120 (2013), pp. 85–101, doi: 10.1016/j.jmva.2013.05.

001.

[137] J. Ward et al., “Micro-scale foundation with error quantification for the approxi-

mation of dynamics on networks”, in: Communications Physics 5, 71 (2022), doi:

10.1038/s42005-022-00834-1.

[138] M. E. Newman, A.-L. E. Barabási, and D. J. Watts, The structure and dynamics

of networks. Princeton University Press, 2006, url: https://www.jstor.org/

stable/j.ctt7ssgv.

105



BIBLIOGRAPHY

[139] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks”,

in: Physical Review Letters 86 (2001), pp. 3200–3203, doi: 10.1103/PhysRevLett.

86.3200.

[140] R. R. Nadakuditi and M. E. Newman, “Graph spectra and the detectability of

community structure in networks”, in: Physical Review Letters 108, 188701 (2012),

doi: 10.1103/PhysRevLett.108.188701.

[141] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First

steps”, in: Social Networks 5 (1983), pp. 109–137, doi: 10.1016/0378-8733(83)

90021-7.

106



Curriculum vitae

Irena Barjašić was born on the 13th of December 1994 in Zagreb, Croatia. After com-

pleting her secondary education at Gimnazija Jurja Barakovića in 2012, she enrolled on

the Physics programme at the Department of Physics, Faculty of Science, University of

Zagreb. In 2017 she defended her Master’s thesis, titled “Symmetry inheritance”, under

the supervision of Ivica Smolić, PhD. In 2018 she enrolled on the Biophysics doctoral pro-

gramme at the Department of Physics, working as a teaching assistant at the Scientific

Center of Excellence for Quantum and Complex Systems, and Representations of Lie Al-

gebras (QuantiXLie). She defended her doctoral thesis title “Network effects in systemic

risk propagation” (“Mrežni utjecaj u propagaciji sistemskog rizika”) under the supervision

of Vinko Zlatić, PhD in 2020.

During her doctoral studies, in 2019, she visited the group of Prof. Dirk Helbing at ETH

Zurich. Under the supervision of Nino Antulov-Fantulin, PhD, she worked on improv-

ing Bitcoin volatility prediction on a minute scale by including external signals into the

GARCH model, which resulted in a publication. In 2020 she was awarded the Swiss

Government Excellence Scholarship, to do a one-year-long research visit to the University

of Zurich. There, in the group of Prof. Stefano Battiston and under his supervision,

she researched the contribution of the credit exposure network to the Credit Valulation

Adjustment.

Publications

1. Barjašić, I., Štefančić, H., Pribičević, V., Zlatić, V. (2021) Causal motifs and ex-

istence of endogenous cascades in directed networks with application to company

107



BIBLIOGRAPHY

defaults. Scientific reports, 11, 24028. doi:10.1038/s41598-021-02976-8

2. Barjašić I. and Antulov-Fantulin N. (2021) Time-Varying Volatility in Bitcoin Mar-

ket and Information Flow at Minute-Level Frequency. Front. Phys. 9, 644102.

doi:10.3389/fphy.2021.644102

3. Zlatić V, Barjašić I., Kadović A., Štefančić H., Gabrielli A. (2020) Bi-stability of

SUDR+K model of epidemics and test kits applied to COVID-19. Nonlinear Dy-

namics 101, 1635–1642. doi:10.1007/s11071-020-05888-w

4. Barjašić, I., Smolić, I. (2018) On symmetry inheritance of nonminimally coupled

scalar fields. Classical and quantum gravity 35, 075002. doi:10.1088/1361-6382/aaabfc

5. Barjašić, I., Gulin, L., Smolić, I. (2017) Nonlinear electromagnetic fields and sym-

metries. Physical review. D 95, 124037. doi:10.1103/PhysRevD.95.124037

108


