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SUMMARY

Self-dual Z4-codes are, depending on their Euclidean weight distribution, divided on Type
I and Type II codes. For self-dual Z4-codes, a theoretical upper bound on the minimum
Euclidean weight of a code is known. Codes that meet that upper bound are called ex-
tremal Z4-codes. It is known that Type 1 extremal Z4-codes do not exist for lengths 24
and 48. For these lengths, self-dual Z4-codes that have the best possible minimum weight
are called near-extremal Z4-codes.

The main subject of this thesis are extremal and near-extremal Z4-codes. It is known
that Type II Z4-codes exist only for lengths divisible by 8. Since we wanted to construct
Z4-codes of Type I and Type II, our work is restricted to such lengths. The known method
of construction of a self-dual Z4-code has a doubly-even binary code of dimension k as

k(k+1)
2~ binary k X k ma-

a starting point. It consists of choosing one matrix B among the 2
trices that are suitable for the construction of a self-dual Z4-code. The usual approach
to the construction of extremal or near-extremal Z4-codes consists of the construction of
self-dual Z4-codes and checking their minimum Euclidean weight. The calculation of the
minimum Euclidean weight is necessary to determine extremality or near-extremality of
Zy-codes, but it is also time consuming. Calculation of minimum Euclidean weight of the
code gets slower as the length of the examined code gets bigger. This fact, together with
the size of the search space, makes this method inefficient. In this thesis, we modified the
known method in such way that more than one Z4-code can be checked for extremality or
near-extremality, from one calculation of the minimum Euclidean weight. This increases
the efficiency of the existing method. Also, we developed a method to construct a series
of Hadamard designs on 4n — 1 points from one skew-symmetric Hadamard matrix of

order n. This was motivated by the known fact that incidence matrix of a Hadamard 3-

design spans a doubly-even binary code. We used developed algorithms to construct new
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Summary

extremal Z4-codes of length 32 and 40. Also, we used the residue codes of the known ex-
tremal Z4-codes of length 40 to construct new extremal Z4-codes of the same length. Re-
garding length 48, by our modified method, we obtained already known extremal Z4-code,
and at least two nonequivalent near-extremal Z4-codes. This near-extremal Z4-codes are
of no great importance since they have the same residue code as the already known ex-
tremal Z4-code of that length. We applied described methods on codes of lengths 56,
64 and 72, but no extremal or near-extremal Z4-codes were constructed. From obtained
codes of length 32 and 40, we constructed strongly regular graphs. All of the obtained
graphs were already known. Also, we constructed 1-designs on 32 points from obtained

extremal Z4-codes of length 32. Some of the constructed designs are resolvable.

v



SAZETAK

Samodualni Z4-kodovi, u ovisnosti o njihovoj distribuciji euklidskih teZina, podijeljeni
su na kodove tipa I i tipa II. Za samodualne Z4-kodove, teorijske gornje granice mini-
malnih euklidskih tezina su poznate. Kodovi koji dostiZzu te teorijske granice nazivaju
se ekstremalnim Z4-kodovima. Poznato je da ne postoje ekstremalni Z4-kodovi tipa I i
duljina 24 1 48. Za te duljine, kodovi tipa I koji postizu maksimalnu moguéu minimalnu
euklidsku teZinu nazivaju se skoro ekstremalnim Z4-kodovima.

Predmet istraZivanja ove doktorske disertacije su ekstremalni i skoro ekstremalni Z4-
kodovi. Poznato je da Z4-kodovi tipa II imaju duljine djeljive s 8. S obzirom da smo
htjeli konstruirati Z4-kodove oba tipa, ograni€ili smo ovaj rad na duljine kodova djeljive
s 8. Poznata metoda konstrukcije samodualnog Z4-koda polazi od binarnog dvostruko

k(k+1) . . .
2~ binarnih k£ X k matrica B

parnog koda dimenzije k, a sastoji se od odabira jedne od 2
koje su pogodne za konstrukciju samodualnog Z4-koda. Dosadasnji pristup konstrukciji
ekstremalnih i skoro ekstremalnih Z4-kodova sastojao se od slu¢ajnog pretrazivanja pros-
tora tih matrica i izraCuna minimalne euklidske tezine dobivenog samodualnog Z4-koda.
Izra¢un minimalne euklidske teZine samodualnog Zs-koda nuZan je za utvrdivanje ek-
stremalnosti koda, ali postaje vremenski zahtjevan s porastom duljine koda. Zbog toga, i
velikog prostora pretrazivanja, ovakav pristup nije efikasan. U ovoj disertaciji modificirali
smo opisanu metodu tako da se iz jednog izraCuna minimalne euklidske teZine Z4-koda
uspjesno ispituje ekstremalnost i skoro ekstremalnost veceg broja kodova. Time smo
povecali uCinkovitost postojeée metode. Takoder, razvili smo metodu konstrukcije serije
Hadamardovih dizajna na 4n — 1 toCaka iz koso-simetricne Hadamardove matrice dimen-
zije n. Motivacija za ovu konstrukciju je poznata ¢injenica da Hadamardovi 3-dizajni

razapinju dvostruko parne binarne kodove, koji su polazna tocka konstrukcije samodual-

nih Z4-kodova. Pomocu te konstrukcije i modificirane metode konstrukcije ekstremalnih



Sazetak

i skoro ekstremalnih Z4-kodova, konstruirali smo nove ekstremalne Z4-kodove duljine 32
1 40. Modificiranu metodu primijenili smo i na rezidualne kodove poznatih ekstremalnih
Z-kodova duljine 40 te smo, takoder, konstruirali nove ekstremalne Z4-kodove. 1z bina-
rnih kodova duljine 48 konstruirali smo jedan, ve¢ poznati, ekstremalan Z4-kod te barem
dva neekvivalentna skoro ekstremalna Z4-koda. Dobiveni skoro ekstremalni kodovi nisu
od velikog znacaja jer imaju isti rezidualan kod kao i poznat ekstremalan Z4-kod iste
duljine. Konstrukciju smo proveli i za duljine 56, 64 1 72, medutim nismo pronasli ek-
stremalane niti skoro ekstremalne Z4-kodove. Iz dobivenih binarnih kodova duljina 32
i 40 konstruirali smo ve¢ poznate jako regularne grafove. Takoder, iz ekstremalnih Z4-

kodova duljine 32 konstruirali smo 1-dizajne sa 32 tocke.
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INTRODUCTION

Coding theory is a branch of mathematics exploring methods for exchanging information
in an imperfect communications channel. In an imperfect communication channel errors
can be introduced during transmission from source to a receiver. One of the main tasks of
coding theory is to construct error-correcting codes which are used to detect and correct
these errors. Development of this field began in 1948 when Claude Shannon published
the article [47]. In this article, he developed the concept of codes that optimize the ratio of
added bits to transmission, and number of errors that can be corrected. In 1950, Richard
Hamming published the article [25] in which he introduced the concept of distance be-
tween codewords in binary codes, and connected it to the number of errors that can be
corrected. Today, this distance is called Hamming distance. In the following years, the
rapid development of computer science allowed further development in this field.

A Z4-code of length 7 is a submodule of the module Z}. Research on Z4-codes began
in the early 1990s with the publication of the article [26]. In this article, the relationship
between Z4-codes and nonlinear binary Kerdock [37] and Preparata [45] codes was de-
scribed. Later, it was also shown that Z4-codes can be used to construct combinatorial
objects such as graphs and designs. An example of such a construction is given in the
article [24] where Z4-codes of length 24 are used to construct 5 — (24,10,36) design.

Three types of codeword weights are defined for Z4-codes. These are Hamming
weight, Euclidean weight, and Lee weight. In our research, we are interested in the Eu-
clidean weight of codewords. Self-dual Z4-codes are Z4-codes that are equal to their dual
code (with respect to the standard inner product in the Z4 module Zj). In terms of the
Euclidean weight of the codewords, self-dual Z4-codes are divided into two types. Type
II Z4-codes are self-dual Z4-codes in which all codewords of the code have the Euclidean

weight divisible by 8. Type 1 Z4-codes are self-dual Z4-codes that are not Type II codes.
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It is known that Type II Z4-codes have lengths divisible by 8. Codes of Type I can have
arbitrary lengths. In 1993, J. H. Conway and N. J. A. Sloane gave the classification of all
self-dual Z4-codes of lengths up to 8 in [13]. In 1996, P. Gaborit gave the characterization
of the self-dual Z4-codes together with the mass formula in [21]. In 1999, V. Pless, J.
S. Leon and J. Fields, in [43], used the mass formula to classify all Type Il Z4-codes of
length 16.

In [7], upper bound on the minimum Euclidean weight of Z4-codes was established.
The codes that have minimum Euclidean weight that meets that bound are called extremal
Zy-codes. In [34], all of the residue codes of extremal Type Il Z4-codes of length 24 were
classified. In [41], is stated that all extremal Type II Z4-codes of length 24 were classi-
fied by R. A. L. Betty and A. Munemasa. The codes of higher length are not classified.
Overview of the known extremal type Il Z4 codes of lengths 32 and 40 can be found in [1]
and [2]. New extremal Type Il Z4-codes of length 32, denoted by C,, C7, Cy9, C14, given
in [2], are constructed as part of our research. There are exactly two known inequivalent
type II extremal Z4-codes of length 48 [7, 33], and three inequivalent extremal Type 1I
Zy-codes of length 56 [27,31]. There is only one known Type II extremal Z4-code of
length 64 given in [27].

Unlike Type II Z4-codes, Type I codes are less well studied. The upper bound for the
minimum Euclidean weight of Type I Z4-codes of lengths from 25 to 47, except for length
37, is given in [29]. That upper bound is equal to the upper bound given for the Type II
codes for Type 1 Z4-codes that have length divisible by 8. In [30], the existence of Type
I codes of lengths 12, 16, 20, 32, 36, 40 and 44 is proved by applying odd unimodular
lattice theory on Type I Z4-codes. In the same paper, it is proved that Type I Z4-codes do
not exist for lengths 24 and 48. Also, a new upper bound for these two lengths is given.
Codes of lengths 24 and 48 whose minimum Euclidean weight is equal to this bound are
called near-extremal Z4-codes. The existence of near-extremal Zy-codes of length 24 is
proved, and one near-extremal Z4-code of length 48 is given.

Most of the codes of length 32 and greater are constructed by the random search
method applied to the characterization of self-dual codes given by P. Gaborit in [21].
Since the calculation of the minimum Euclidean weight of the code is time consuming,

we wanted to modify the existing method to increase the number of codes that are checked
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for extremality with one calculation of the minimum Euclidean weight. Also, the starting
point of the mentioned known construction are doubly-even binary codes. It is known
that the incidence matrices of Hadamard 3-designs span doubly-even binary codes [1].
It is well known fact that the Hadamard 3-designs can be obtained from Hadamard 2-
designs. Therefore, we developed a method to construct a series of Hadamard 2-designs
from a skew-symmetric Hadamard matrix. This construction gives a nice way to generate
a series of doubly-even binary codes that can be used to construct Zg-codes.

This dissertation is divided into four main chapters. In Chapter 1, we give the basic
definitions and properties of combinatorial designs, graphs, binary codes and Z4-codes,
needed for better understanding of this thesis. The main scientific contribution of the the-
sis 1s in Chapter 2, Chapter 3 and Chapter 4. In Chapter 2, a modification of the existing
algorithm is presented. This chapter consists of three subsections. In the first section,
we give a theoretical background and overview of the known extremal and near-extremal
Zy-codes. In the second subsection, we give the motivation for the modification of the
existing search algorithm. In the third part, the theoretical background of the modifica-
tion of the existing algorithm is given. Also, the modified algorithm is presented. After
that, we compared the two approaches to the traversal of the search space, and analyzed
their impact on the performance of the algorithm. In the end of that section, we tested
the performance of the modified method on the small example and compared it to the ex-
isting method. In Chapter 3, we give the method for construction of series of Hadamard
matrices that is used to obtain doubly-even binary codes. Finally, in Chapter 4, we give
the overview of the constructed extremal and near-extremal Z4-codes, and related combi-
natorial structures.

This thesis has one appendix. It consists of the incidence matrices of the Hadamard
2-designs that were used to construct doubly-even codes of lengths for which our con-
struction, given in Chapter 3, did not provide suitable codes for the construction of the

extremal or near-extremal Z4-codes.



1. PRELIMINARIES

In this chapter we give basic theory of combinatorial structures, Hadamard matrices, bi-
nary codes and Zj-codes. All results given in this chapter are well established and can be
found in a variety of sources. For combinatorial structures we used [6, 11,49]. The sub-
section on Hadamard matrices is based on [42,49]. For the general theory on the binary
codes and Z4-codes we used [36,40]. Other sources in this chapter are referenced as they

are needed.

1.1. COMBINATORIAL STRUCTURES

In this section we give some basic theory of combinatorial designs and graphs.

Combinatorial designs

Definition 1.1.1. A ¢-(v,k,A) design is a finite incidence structure ¥ = (£, %4,.7),
where &2 and 4 are disjoint sets and . C & x £ is the incidence relation, with the

following properties:
@ [2]=v,
(ii) every element of 4 is incident with exactly k elements of 2,

(iii) every ¢ distinct elements of & are incident with exactly A elements of A.
The elements of the set & are called points and the elements of the set & are called

blocks. A 7-(v,k,A) design is said to be symmetric if | 2| = | 4.

Proposition 1.1.2. Every t — (v,k,A) design is also a s — (v,k,A) design with A, =

l(,QES),andogsgt.

(=)
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Remark 1.1.3. Designs with parameters 2-(v,k,A) are called balanced incomplete block

designs, and are denoted as (v,k,A)-BIBDs.

Theorem 1.1.4. Let Z be a (v,k,A)-BIBD. Then the following holds:

(i) Every point of Z occurs in exactly r = ’l,(cv_l) blocks.

(ii) The number of blocks in Zis b = 7 =

Remark 1.1.5. The number r from the previous theorem is called the replication number
of a (v,k,A)-BIBD. When the parameters r and b want to be emphasized for a (v,k,A)-
BIBD, we will denote it as a (v, b,r,k,A)-BIBD. From Theorem 1.1.4 it follows that r = k

for a symmetric BIBD.

Definition 1.1.6. Let ¥ = (¥, %,.#) be at — (v,k,A) design with the set of points
P = {Pj|j = 1,2,...,\/}, and the blocks = {B;|i = 1,2,...,b}. The incidence matrix
of the design 2 is a b x v matrix M = [m;;] such that:

1, (P;,B)) € .7,

mij:

0, (P;,B;) ¢ .7.

The following theorem characterizes binary matrices that are incidence matrices of

(v,b,r,k,A)-BIBDs.

Theorem 1.1.7. Let M be a b x v binary matrix. The matrix M is an incidence matrix of

a (v,b,r,k,A)-BIBD if and only if both of the following conditions hold:
() MITM =AJ,+(r—A)1,,
(i) u,MT = kuy,

where J,, is the v X v matrix of all-ones, I, is the identity matrix of order v, u, and u, are

all-one vectors of length v and b, respectively.

Remark 1.1.8. Notice that the condition (i) is equivalent to the condition: each point in
a (v,b,r,k,A)-BIBD is incident with r blocks, and every two different points are incident
with A common blocks. The condition (ii) is equivalent to the condition: every block in a

(v,b,r,k,A)-BIBD is incident with & points.
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Definition 1.1.9. Let 9 = (:@1,:@1,%1) and 9, = (322,%2, fz) be t—(v, k,)L) designs.
The designs 2 and %, are isomorphic if there exists a bijection f : U %, — FPrUSB,
such that f maps &7 on &) and % on %,, and the following holds:

(p,B)G«ﬂl@(f(p),f(B»sz,pEng,BG,%l.

The function f is called an isomorphism of the designs %) and %,. If ¥ = %, then such

mapping is called an automorphism of the design Z.

Remark 1.1.10. The set of all automorphisms of a design Z, together with the compo-
sition of the functions, forms a group. This group is called the full automorphism group

of the design Z, and it is denoted by Aut (2).

Theorem 1.1.11. Let Z and 2’ be t — (v,k,A) designs with incidence matrices M =
[m; ;] and M’ = [m: j}. Designs 2 and %' are isomorphic if and only if there exists a
permutation ¢ of the set {1,2,...,v} and a permutation 7 of the set {1,2,...,b} such

that:

!

m; j = Me(i),6(j)

foralli e {1,2,...,b} and j € {1,2,...,v}.

Theorem 1.1.12. Let ¥ = (%2,9%,.%) be a (v,b,r,k,A)-BIBD. Let .# be a complement

relation of the relation .7, i.e.:
(p,B)€ I & (p,B) ¢ ..
Then 9 = (2,%,.7) is a (v,b,b—r,v—k,b—2r+ A)-BIBD.

Definition 1.1.13. Let 2 and 2 be as in the previous theorem. Design & is called the

complementary design of the design Z.

Remark 1.1.14. If M is an incidence matrix of a BIBD &, then J — M is an incidence

matrix of its complementary design, where J is the b X v matrix of all-ones.

Definition 1.1.15. Let Z be a design with v points and b blocks. Let M be a b x v
incidence matrix of &. The dual design of the design & is the design with incidence

matrix M7 .



Preliminaries Combinatorial structures

Theorem 1.1.16. If B and B’ are two different blocks of a symmetric (v,k,A)-BIBD,

then B and B’ are incident with A common points.

Corollary 1.1.17. If M is an incidence matrix of a symmetric (v,k,A)-BIBD, then M7

is also an incidence matrix of a symmetric (v,k, A4 )-BIBD.

Definition 1.1.18. A symmetric (v,k,A)-BIBD is self-dual if it is isomorphic to its dual

design.

Definition 1.1.19. A — (v,k,A) design ¥ is quasi-symmetric with the intersection num-
bers x and y, x < y, if any two blocks of & intersect in either x or y points.
Example 1.1.20. Here we give an example of a quasi-symmetric design. Let S (3,6,22)

denote the 3— (22,6, 1) design with the set of points &2 = {1,2,...,22}, and the following
blocks:

{1,2,3,5,9,16}
{1,2,6,7,13,20},
{1,3,11,19,20,22},
{1,7,15,16,17,19},
{1,4,9,13,14,19},
{1,8,10,11,13,16},
{3,5,6,7,15,22},
{2,3,10,13,14,22},
{6,7,10,11,14,19},
{3,4,9,18,21,22},
{7.8,13,18,19,22},
{4,6,11,12,13,22},
{3,8,9,10,15,19},
{5,7,9,19,20,21},
{2,5,11,13,15,19},
{2,6,10,12,15,16},
{3,6,13,16,19,21},
{3,7,10,16,18,20},
{9,11,12,16,18,19},

{9,13,15,16,20,22}

{1,3,4,6,10,17},
{1,3,7,8,14,21},
{1,4,12,16,20,21},
{1,8,9,17,18,20},
{1,5,10,14,15,20},
{2,3,4,7,12,19},
{4,6,7,8,9,16} ,
{3,4,11,14,15,16},
{7,8,11,12, 15,20},
{4,5,10,16,19,22}
{2,8,14,16,19,20},
{5,7,12,13,14,16},
{2,4,13,16,17,18},
{6,8,10,20,21,22},
{3,6,9,12, 14,20},
{3,7,9,11,13,17},
{4,7,14,17,20,22},

{4,8,11,17,19,21},

{10,12,13,17,19,20},

{1,4,5,7,11,18},

{1,2,4,8,15,22},

{1,5,13,17,21,22},
{1,2,11,12,14,17},
{1,6,9,11,15,21},
{3,4,5,8,13,20},

{2,5,7,8,10,17},

{4,5,9,12,15,17},
{2,8,9,12,13,21},
{5,6,11,16,17,20},
{2,4,9,10,11,20},

{6,8,13,14,15,17},
{3,5,14,17,18,19},
{2,7,11,16,21,22},
{4,7,10,13,15,21},
{4,8,10,12, 14,18},
{5,8,15,16,18,21},

{9,10,14,16,17,21},

{11,13,14,18,20,21}

{1,5,6,8,12,19},
{1,2,10,18,19,21},
{1,6,14,16,18,22}
{1,3,12,13,15,18},
{1,7,9,10,12,22},
{2,4,5,6,14,21},
{2,3,6,8,11,18},
{5,6,9,10,13,18},
{2,3,15,17,20,21},
{6,7,12,17,18,21},
{3,5,10,11,12,21},
{2,7,9,14,15,18},
{4,6,15,18,19,20},
{3,8,12,16,17,22},
{5,8,9,11,14,22},
{2,5,12,18,20,22},
{2,6,9,17,19,22},
{10,11,15,17,18,22}

{12,14,15,19,21,22}
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It can be checked that every two blocks from the given list intersect in either 2 points, or
are disjoint. Therefore, this design is quasi-symmetric with intersection numbers x = 0

and y = 2.

Remark 1.1.21. Designs with parameters t — (v,k, 1) are called Steiner systems, and are

denoted as S (¢,k,v).

Definition 1.1.22. A r— (v,k,A) design Z is resolvable if there exists a partition .7 of
the set of blocks of Z such that every A € o7 is a partition of the set of points of Z. The

partition <7 is called a resolution of &, and its elements are called parallel classes of 2.

Graphs

Definition 1.1.23. A graph G is an ordered pair of finite disjoint sets (V,E) such that £
is a subset of the set V(2 of unordered pairs of V. The set V is the set of vertices, and E
is the set of edges. If G is a graph, then V =V (G) is the vertex set of G, and E = E (G)
is the set of edges of G. If e = {x,y} € E (G), then vertices x and y are adjacent vertices
of G. Also, x and y are incident with the edge e. Vertices that are adjacent to some vertex

x are neighbors of x.

Definition 1.1.24. Let G be a graph, and let ¢ € E(G). The edge e is a loop if it is
incident with exactly one vertex of G. A graph G is a simple graph if none of the edges

are loops, and every two vertices of G are incident with at most one edge of G.

Definition 1.1.25. Let G = (V,E) be a simple graph. A complement of G is a simple
graph G such that V (G) =V (G), and two vertices are adjacent in G if they are not

adjacent in G.

Definition 1.1.26. Let G be a graph, and let v € V (G). The degree of the vertex v,
denoted by dg (v), is the number of the edges of G that are incident with v, where the

loops are counted twice. If dg (v) = k, for every v € V (G), then G is a k-regular graph.

Theorem 1.1.27. Let G be a graph with V (G) = {vi,v2,...,v,}, and let € = |E (G)|.
Then:
dG (Vl') = 2€.

-

1

~
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Definition 1.1.28. A simple k-regular graph with v vertices is a strongly regular graph
with parameters (v, k, A, ) if every two adjacent vertices have A common neighbors, and

if every two non adjacent vertices have t common neighbors.

Theorem 1.1.29. The complement of a strongly regular graph with parameters (v, k,A, 1)

is a strongly regular graph with parameters (v,v —k—1,v—2—2k+pu,v—2k+A).
Example 1.1.30. Let J (n,k) be a graph with the vertex set:
V={sc{1,2,....,n}||S| =k}.
Let the edges of J (n,k) be defined as follows:
{v,v’} cEF & |vﬂv’] =k-—1.

The described graph is called the Johnson graph. The special subfamily of the Johnson
graphs are triangular graphs. The n-triangular graph is T (n) = J (n,2). Also, a complete
graph on n vertices K, i.e., a simple graph with n vertices in which every vertex is ad-
jacent to all of the remaining vertices, is J (n,1). In Figure 1.1 some Johnson graphs are

presented. As stated, J(5,1) = Ks, and J (4,2) =T (4).

S50 i J14.2) =Ti4)

Figure 1.1: Examples of Johnson graphs

It can be shown that the n-triangular graph is a strongly regular graph with parameters

("5 2(n—2),n—2,4).
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Definition 1.1.31. A graph G is bipartite if there exists a partition {X,Y} of the set of

vertices V (G) such that if {v;,v,} € E(G) thenv; € X andv, €Y,orv; € X andv; €Y.

Definition 1.1.32. Let V be the set of all binary sequences of length n, and let E be the
set of 2-subsets of V such that {v|,v,} € E if and only if v; and v, differ in exactly one

coordinate. The graph Q,, = (V, E) is called the n-hypercube graph.

Remark 1.1.33. The n-hypercube graph Q,, is bipartite graph for n > 2. One block of
the partition consists of all sequences that have an even number of ones, and the other one

consists of the all sequences that have an odd number of ones.
The following definition and theorem can be found in [48].

Definition 1.1.34. The block graph I' of a quasi-symmetric 2 — (v,k,A) design ¥ =
(2,%,.7) with intersection numbers x and y is the graph with vertex set V (I') = 4,
such that blocks B and B’ are adjacent if and only if |[BNB'| = y.

Theorem 1.1.35. Let Z be a quasi-symmetric 2 — (v,b,r,k,A) design with intersection
numbers x and y. Then I is a strongly regular graph with parameters (n,a,c,d) where

MDAl e = a+ 610,401 + 05, d = a+ 6,6y, 6 = Ak ) — <=k

n=b,a= —x =

Example 1.1.36. Here we will describe the block graph of S(3,6,22) given in Example
1.1.20. By Proposition 1.1.2 we know that §(3,6,22) is also a 2 — (22,77,21,6,5) design.
Also, we know that blocks of S (3,6,22) intersect in either x = 0 points or y = 2 points. By
the previous theorem we get that the block graph of S (3,6,22) is a strongly regular graph
with parameters (77,60,47,45). Notice that in this graph blocks B and B’ are adjacent if
and only if |BN B’| = 2. By Theorem 1.1.29, the complement of that graph is also strongly
regular graph with parameters (77,16,0,4). It is obvious that this graph is the block graph
of §(3,6,22) where blocks B and B’ are adjacent if and only if [BNB'| = 0.

10



Preliminaries Hadamard matrices and Hadamard designs

1.2. HADAMARD MATRICES AND HADAMARD

DESIGNS

1.2.1. Definitions and properties
We start this section by giving the definition of a Hadamard matrix.

Definition 1.2.1. Letn € N. A Hadamard matrix of order n is a square matrix H of order

n such that every entry of H isin {—1,1},and HHT = HTH = nl,.

From the definition one can immediately conclude that if H is a Hadamard matrix of

order n then H' is also a Hadamard matrix of the same order. This follows from:
HT (H")' =H"H = nl,,
(H")" HT = HH" = nl,.
There are two Hadamard matrices of order 1:
=] =[] =[],
=1 = ][] = 1]

The following matrices are examples of Hadamard matrices of order 2 and 4:

11 1] [ 10
Hy = N ) ,
1 -1 11| |1 -1 0 1
o1 o1 1] [t 11 1]l 1] 1 0 0 0]
1 -1 1 -1 1 -1 1 —1| |1 -1 1 -1 0100
Hy = = . =4.
11 -1 -1 11 -1 1] |1 1 -1 -1 0010
L S N B R PR G B ) I PR S I 000 1

Let r;, i € {1,2,...,n}, denote the i-th row of the square matrix H of order n. Then

the condition from Definition 1.2.1 is equivalent to:

ri-rj=

11
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where r; - r; denotes the usual coordinate-wise scalar product of vectors in R". It is obvious
from this interpretation, that the matrix obtained from a Hadamard matrix by permuting

its rows and columns is a Hadamard matrix of the same order.

Proposition 1.2.2. Let H be a Hadamard matrix of order n, and let H' be the matrix
obtained from H by multiplication of any number of rows and columns of H by —1. Then

H' is a Hadamard matrix of order n.

Based on the previous proposition, and the discussion before it, we give the following

definition.

Definition 1.2.3. Let H be a Hadamard matrix of order n, and let H' be the Hadamard
matrix obtained from H by applying a sequence of the following elementary transforma-

tions:

* permutation of rows of H,

* permutation of columns of H,

* multiplication of some rows or columns of H by —1.
We say that H and H' are equivalent Hadamard matrices.

Definition 1.2.4. A Hadamard matrix H of order n is normalized (or in standard form)

if every entry of the first row and first column of H is equal to 1.

Proposition 1.2.5. Every Hadamard matrix is equivalent to some Hadamard matrix in

standard form.

Example 1.2.6. Here we give an example of equivalent Hadamard matrices of order 8.
The second Hadamard matrix is normalized. With red color, we marked the row that has

been multiplied by —1. and with green color we marked rows that have been permuted.

12
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_11111111_ _11111111_
-1 - -1 - 11 1 - 11 - 1 - -
1 - - 11 - 1 - r - - 11 - 1 -

_ 1 - - - 11 -1

h r 1 - - - 11 -
1 -1 - - - 11 r -1 - - - 11
r1 -1 - - -1 r1 -1 - - -1
r1 1 -1 - - - 111 -1 - - -

In the beginning of this chapter we presented examples of Hadamard matrices of or-
ders 1, 2, and 4. The following theorem gives a necessary condition for the existence of

Hadamard matrix of order n.
Theorem 1.2.7. If there exists a Hadamard matrix of order n > 2 then n = 0 (mod 4).

Remark 1.2.8. It is conjectured that the condition from the previous theorem is also
sufficient for the existence of Hadamard matrices i.e. that a Hadamard matrix of order 4k
exists for every kK € N. This conjecture is known as the Hadamard conjecture, and it is
still an open problem. The smallest order for which the existence of the Hadamard matrix

is not proved is 668.

Now we introduce a special family of Hadamard matrices that will be used in the later

construction.

Definition 1.2.9. A Hadamard matrix of order n is a skew-type Hadamard matrix if

H =A+1,, where AT = —A and I, is the identity matrix of order .

In [39], a survey of the known non-equivalent skew-type Hadamard matrices is given.
There are unique, up to the equivalence, skew-type Hadamard matrices of order 8 and 12.
The representatives of these equivalence classes are SHg and SH1 given in (1.1). For the
order 16, there are two skew-type Hadamard matrices, up to the equivalence. These are

the matrix SH ¢, given in (1.2), and its transpose.

13
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Ft—t———+++—+
F 4+ Ft—t——— -
— -+ e e
—— -+ Ft—tt+—+———++
———+++—+ FH+—++—+———+
SHg = ,SHyy = G R)
— 4 Ftt et ———
— =+t e e e

—+—+——++ to— ottt —+—

— -+ ——+ Fo— =ttt +—+
b=t

+—+———+++—++]

o s s SO CE A
— ettt
—— ettt ++—
——— ettt +——
— A+
— e —
—t—t——Ft++++——+—+
—t 4+

SHy6 = (1.2)
———————— e
—t ettt ——
— =+
e+
b —

———— - —t+——+++
——— - —+——++

— - —+
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1.2.2. Hadamard designs

In this section we describe well known connection between Hadamard matrices and com-

binatorial designs.

Theorem 1.2.10. Let m > 4 and m = 0(mod 4). Hadamard matrix of order m exists if

and only if a symmetric 2 — (m — 1,75 — 1,7 — 1) design exists.

A combinatorial design with parameters from the previous theorem is called a Hadamard

design. The incidence matrix of a Hadamard design can be obtained from a normalized
Hadamard matrix H by deleting the first row and column of H and then replacing every
—1 entry with O (see the construction of the matrix M in Example 1.2.13). This pro-
cess is reversible. If M is an incidence matrix of a Hadamard design, then a normalized
Hadamard matrix is obtained from M by changing every 0 entry of M to —1 and adding a
new first row and column that have all entries equal to 1.

The following theorem gives a method for extending Hadamard designs to 3-designs.

Theorem 1.2.11. Let M be the incidence matrix of a Hadamard 2 — (m—1,% —1,% —1)

design. Then the matrix:

o | LM
0|JM |
where Jis a (m—1) x (m— 1) all-one matrix, is the incidence matrix of a 3 — (m, 5,7 — 1)

design.

Remark 1.2.12. In the continuation of this thesis, we will refer to combinatorial designs

with parameters from Theorem 1.2.11 as Hadamard 3-designs.

In the end of this section we give an example of the construction of a Hadamard

3 —(8,4,1) design from a Hadamard matrix of order 8.

Example 1.2.13. We start with the Hadamard matrix SHg given in (1.1). When this

matrix is normalized, the following matrix is obtained:

15
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SHg =

The lines inside of matrix SH{ denote the first row and column which have all entries
equal to 1. When first row and column of SH{ are deleted, and all -1 entries are replaced

by 0, an incidence matrix of the Hadamard 2 — (7,3, 1) design is obtained. This matrix is

given as follows:

Notice that the matrix M is a skew binary matrix. Now one can obtain the incidence

11111111
1/- 11 -1 - -
- - 11 -1 -
- - - 11 -1
11T - - - 11 -
1- 1 - - - 11
1l -1 - - -1
1t 1 -1 - - -

S o O

o o O

16
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matrix of the Hadamard 3 — (8,4, 1) design from M by Theorem 1.2.11. This matrix is:

1
1

0
0
0

o o O

o o O

o o O

—

0
0

S O o o o o o

o O | O

o O

o | o o O

[a—

o O

17
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1.3. BINARY CODES

In this section by [, we denote the field with the standard modulo 2 addition and multi-

plication.

Definition 1.3.1. Let I}, n € N, be the n-dimensional vector space over the field IF>. Let
k € N. A binary linear [n,k] code C of length n and dimension k is a k-dimensional vector

subspace of the space 5.

Definition 1.3.2. Let x € ;. The Hamming weight of x, denoted by wry(x), is the

number of non-zero coordinates of x.
Definition 1.3.3. For x,y € F}, the Hamming distance of x and y is dy (x,y) = wtg (x—y).
Remark 1.3.4. It can easly be shown that dy is a metric on 7.

Definition 1.3.5. Let C be a binary linear [n, k| code. The minimum distance of the code

C is the number:
d (C) = min {dp(x,y)|x,y e C,x #y}.

If the code C has minimum distance d, then it is denoted as a [n,k,d] code.

Lemma 1.3.6. Let C be a binary linear [n,k,d| code. Then:
d(C) = min {wty(x)|x € C,x #0} .

Definition 1.3.7. Let C be a binary linear [n,k| code, and (by,bs,...,by) a basis of C.

Then the k x n matrix G:

by
by

by

is the generator matrix of the code C. The matrix G is in standard form if it is of the form:
6= A

where I, is the k X k identity matrix, and A is a k X (n — k) binary matrix.

18
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Definition 1.3.8. Let C and C’ be binary linear [n,k] codes. The codes C and C’ are

equivalent if there exists a n X n permutation matrix P such that C' = {xP|x € C}.

Remark 1.3.9. Since binary linear codes are vector spaces, it is easy to show that the
codes C and C’, with generator matrices G and G, are equivalent if and only if there exists

an X n permutation matrix P such that G’ = GP.

Theorem 1.3.10. Every binary linear code is equivalent to some binary linear code

which has a generator matrix in standard form.

Definition 1.3.11. Let x,y € F}, x = (x1,x2,...,%4), ¥y = (V1,¥2,...,¥n). The standard

inner product of x and y is defined as the ordinary dot product of x and y modulo 2, i.e.:
xX-y=x1y1 +xy2+ ...+ Xy, (mod 2). (1.3)

Remark 1.3.12. Notice that addition and multiplication in right side of the equation

(1.3) are usual addition and multiplication over Z.
Definition 1.3.13. Let C be a [n, k] binary linear code. The dual code of C is the code:
ct= {xGFS}x-yzO,VyEC}.

Proposition 1.3.14. If C is a binary linear [n, k| code then C* is a binary linear [n,n — k|

code and (Cl)L =C.

Definition 1.3.15. Let C be a binary linear code and C its dual code. The code C is
self-orthogonal if C C C*, and self-dual if C = C*.

Definition 1.3.16. A binary linear code C is even if for every x € C the number wty (x)
is divisible by 2. It is a doubly-even code if for every x € C the number wry (x) is divisible

by 4.
Theorem 1.3.17. Let C be a binary linear code. The following holds:

(i) If C is self-orthogonal and has generator matrix G such that every row of G has

weight divisible by 4, then C is doubly-even.

(ii) If C is doubly-even, then C is self-orthogonal.

19
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Definition 1.3.18. Let m > 1. The Reed-Muller codes of the first order R (1,m) are the

binary linear codes defined as follows:
i) R(1,1)=F3,

(i) For m > 1, R(1,m) = {(u,u),(u,u+1)|u € R(1,m—1)}, where 1 denotes the

codeword of all ones.

The following Theorem from [51] gives connection between combinatorial designs

and doubly-even codes.

Theorem 1.3.19. Assume that & is a 2-(v,k, 1) design with block intersection numbers
S1,---,8m- Denote by C the binary code spanned by the incidence matrix of . If v =
0 (mod 8), k=0 (mod 4) and sy,...,s, are all even, then C; is contained in a doubly-

even self-dual code of length v.

Let H be a Hadamard matrix of order n. By C»(H) we denote the binary linear code
spanned by the incidence matrix of the Hadamard 3-design defined by H. The following

Corollary of previous theorem is proved in [1].

Corollary 1.3.20. Let H be a Hadamard matrix of order n = 0 (mod 8). Then C;(H) is

a doubly-even binary code of length n.

20
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1.4. Z4-CODES

Definition 1.4.1. Let Z,4 be the ring of integers modulo 4 with usual modulo 4 addition
and multiplication. A Z4-code C of length n, n € N, is a Z4 submodule of the Z4-module

Zy. Elements of Zy-code C are called codewords of C.

The following definition gives the generating set for a Z4-code.

Definition 1.4.2. Every Z4-code C contains a set of k| + k; codewords {cl,...,ckl,
Chky+15°** »Cki+k, } Such that every codeword in C is uniquely expressible in the form:

ki k1+ky

Zaici+ Z aici,

i=1 i=ky+1

where a; € Zy, for 1 <i <k, and a; € {0,1}, for k; +1 < j < kj + k. Numbers k; and
k> determine the type of the code C, i.e. C is of type 4¥12%2. The matrix whose rows are

ci, 1 <i<kj+kp,iscalled a generator matrix of the code C.

Example 1.4.3. Let C be a Z4-code with codewords:

1013,3013,0220,2220,0022,2022, 1233,3233,

0202,2202,1031,3031,0000,2000,1211,3211.

Leta; = 1013, a, = 0202, a3 = 0022. It can easily be verified that every codeword of the
code C can uniquely be expressed as cja; + cpas + c3as for ¢ € Zy and ¢3,¢3 € {0,1}.

Therefore, the code C is of the type 4!22, and the generator matrix of the code C is:

1 013
G=10 2 0 2
002 2

Now we define the equivalence of Z4-codes.

Definition 1.4.4. Let C and C’ be Z4-codes of the same length n. Codes C and C’ are
equivalent if there exists a monomial' 7 x n matrix M, with non-zero entries from {1, 3},
such that C' = {vM|v € C}. If matrix M is a permutation matrix, then codes C and C’ are

permutation equivalent.

' A monomial matrix is a square matrix with exactly one non-zero element in every row and column.
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Remark 1.4.5. From Definition 1.4.4 it follows that equivalent Z4-codes are of the same

type.

Example 1.4.6. Let C and C’ be Z4-codes generated by the matrices G and G':

1013 1101
G=10202, G=1l0o0 22
0022 200 2

Notice that G’ can be obtained from G by applying the permutation (132) on the columns

of the matrix G, and then multiplying the 4th column with 3. In other words for:

010 0
0010
100 0
000 3

we have G’ = GM. Therefore, the codes C and C’ are equivalent.
Now we define the standard form of a generator matrix for Z4-codes.

Definition 1.4.7. A generator matrix G of a Z4-code C of the type 4¥12%2 is in standard

form if:

G Ikl A B +2B>
o 2, 20 |

where A, By, By and D are binary matrices and O is the kp X k; zero matrix.

Theorem 1.4.8. Every Z4-code is permutation equivalent to a code that has a generator

matrix in standard form.

In the sequel, with n;(v) we denote the number of coordinates of v € Z} equal to i, for

i € {0,1,2,3}. Now, we introduce the weights for Z4-codes.

Definition 1.4.9. Let x € Z, n € N. The Hamming weight of x is wtg(x) = nj(x) +
ny(x) +n3(x). The Lee weight of x is wty(x) = nj(x) + 2ny(x) + n3(x). The Euclidean
weight of x is wig (x) = ny(x) 4 4ny(x) +n3(x).
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Definition 1.4.10. Let C be a Z4-code. The minimum Hamming weight of the code C is
the number:

wty (C) = min{wtg (v)|v € C, v # 0} .

The minimum Lee weight of the code C is the number:
witr(C) = min{wrL(v)|v € C,v # 0}.
The minimum Euclidean weight of the code C is the number:
wtg(C) = min{wtg(v)|v € C,v # 0} .
Definition 1.4.11. Let C be a Z4-code of length n. The Euclidean weight enumerator of
the code C is the bivariate polynomial:

_ watE( An—witg (v ZA k. 4n— k (1.4)

veC keWw

where W = {wtg (v)|v € C}, and Ay is the number of codewords from C of Euclidean

weight k.

Remark 1.4.12. In this thesis, the Euclidean weight enumerator will only be used to
determine the Euclidean weight distribution of Z4-codes. Therefore, to abbreviate the
notation, instead of (1.4), polynomial p (x,y) will be written as univariate polynomial:

=) Ak,

keWw
with W and A; as in Definition 1.4.11.

The Euclidean weight distribution of the code is an invariant of equivalent codes.

Another invariant of equivalent codes is given in the following definition.

Definition 1.4.13. The symmetric weight enumerator of the Zj-code C is the polyno-
mial:

swec(x,y,2) Zx"o V() (V)
veC

Example 1.4.14. Let C be the Z4-code from Example 1.4.3. By the order of the appear-

ance in Example 1.4.3, the Euclidean weights of codewords from C are:

3,3,8,12,8,12,7,7,

8,12,3,3,0,4,7,7.
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Therefore, wtg(C) = 3. The Euclidean weight distribution of the code C is p(x) = 1+
4x® 4 1x* 4 4x” + 3x8 4 3x!2. The symmetric weight enumerator of C is swec(x,y,z) =

X+ 374 3x%22 4 dxy? + 332 4+ 43z

Every Z4-code C is associated with two binary linear codes of the same length as C,

in the following way.

Definition 1.4.15. Let C be a Z4-code. The residue code and the torsion code of C are
binary linear codes defined as:

Res(C) = {c (mod 2) | c € C},

Tor(C) ={c € F5|2c € C}.

If a Z4-code C has the generator matrix G in standard form, then the residue and

torsion codes have the following generator matrices:

Gres=| 1, A B |, (1.5)
L, A B

Gror = : . (16)
O I, D

From generator matrices of Res(C) and Tor(C) it is obvious that Res(C) C Tor(C).

Definition 1.4.16. For every x,y € Z%, x = (x1,X2,...,%,), ¥y = (¥1,Y2,- - -,Vn), the stan-

dard inner product is defined as the ordinary dot product of x and y modulo 4, i.e.:
X-y=x1y1 +X2y2+ ...+ Xy, (mod 4). (1.7)

Remark 1.4.17. Notice that addition and multiplication in the right side of (1.7) is usual

addition and multiplication over Z.

Definition 1.4.18. The dual code of a Z4-code C is defined as:
ct= {xe Zﬂx'y:O,VyEC}.
A code C is self-orthogonal if C C C1, and self-dual if C = C+.

The following theorems describe the Euclidean weights of the codewords in self-

orthogonal Z4-codes.
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Theorem 1.4.19. If C is a self-orthogonal Z4-code then wtg(v) = 0(mod 4), for every

veC.

Theorem 1.4.20. Let C be a Z4-code such that wrg(v) = 0(mod 8), for every v € C.

Then C is self-orthogonal.
The previous two theorems justify the following definition for the self-dual Z4-codes.

Definition 1.4.21. A self-dual Z4-code C is a Type II Z4-code if wtg(v) = 0 (mod 8), for
every v € C. If C is not a Type Il Z4-code, then it is a Type I Z4-code.
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2. AN ALGORITHM FOR THE
CONSTRUCTION OF EXTREMAL AND

NEAR-EXTREMAL Z4-CODES

In this chapter, we give an algorithm for the construction of extremal and near-extremal
Zy-codes. It is a modification of an existing algorithm for the search for extremal and
near-extremal Z4-codes described in [22]. This chapter is divided in three sections. The
first section introduces extremal and near-extremal Z4-codes, and their properties. In
the second section, we present a motivation for the modification of the existing algorithm.
The following section gives the theoretical background for the modification, together with
the modified algorithm. At the end of that section, we tested the modified algorithm and

compared it to the existing one.

2.1. EXTREMAL AND NEAR-EXTREMAL

Z.4-CODES

We ended the previous chapter with the definition of Type I and Type II Z4-codes. The
following theorem, proved in [7,46], gives an upper bound for the minimum Euclidean

weight of a self-dual Z4-code.

Theorem 2.1.1. Let C be a self-dual Z4-code of length n. If C is Type 1II, then the
minimum Euclidean weight of C is at most 8 L%J + 8. If C is Type I, then the minimum

Euclidean weight of C is at most 8 | 77 | + 8 except when n = 23(mod 24), in which case
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the bound is 8| 54| 4+ 12. If equality holds in this latter bound, then C is obtained by
shortening a Type II code of length n+- 1.

In the following remark, shortening of a Z4-code is explained.

Remark 2.1.2. The shortening of a Z4-code C for a given coordinate is done by the fol-
lowing procedure. If all the codewords of C have only 0 or 2 in the given coordinate, then
the shortened code of C is obtained from those codewords that have 0 in that coordinate by
deleting that coordinate. Otherwise, a shortened code of C is obtained from all codewords

of C that have 0 or 2 on the given coordinate by deletion of that coordinate.

Definition 2.1.3. A self-dual Z4-code C is extremal if its minimum Euclidean weight

wtg (C) meets the bound from Theorem 2.1.1.

In [30], for k > 2, Zj codes (defined as Z; submodules of Zy) are studied. The fol-
lowing upper bound for Type I Z4-codes is deduced from [30, Lemma 2.5, p.7] for the

special case of k = 4.

Proposition 2.1.4. Let C be a Type I Z4-code of length n.
(i) If n =24 then wtg(C) < 12,
(ii) If n = 48 then wtg(C) < 20.

Remark 2.1.5. Let C be a self-dual Z4-code of length n, n € {24,48}. By Theo-
rem 2.1.1, since n # 23 (mod 24), the upper bound on wtg(C) is either 8 |33 ] +8 = 16
or 8 Lg—ﬁj + 8 = 24. Therefore, an extremal Type I Z4-code of length 24 should have
wtg(C) = 16. Also, an extremal Type I Zs-code of length 48 should have wrg (C) = 24.
By Proposition 2.1.4 we conclude that this is impossible. Therefore, Type I extremal

Zy4-codes of lengths 24 and 48 do not exist.
Based on the previous remark we introduce near-extremal Z4-codes.

Definition 2.1.6. Let C be a self-dual Z4-code of length n, and let dg be the upper bound

on wtg(C) from Theorem 2.1.1. The code C is near-extremal Z4-code if wtg (C) = dg — 4.

In order to give the construction theorem for self-dual Zj-codes, an alternative form

for the generator matrix of Z4-code is given in the following theorem from [36].
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Theorem 2.1.7. Let C be a self-dual Z4-code with generator matrix in standard form.

Then C has a generator matrix of the form

, F I;+2B
G = , (2.1)
2H 0
where F, B, H are binary matrices, I; is k X k identity matrix and O is zero matrix. If C
has a generator matrix of the form (2.1), then the residue and torsion codes have generator

matrices of the form:

Ghres = [ F I } 2.2)
F I

Tor = : 2.3)
H O

The following theorem, first proved in [21], gives a characterization of self-dual Zy-

codes.

Theorem 2.1.8. Let C be a Z4-code with the generator matrix G’ of the form (2.1). The
code C is self-dual if and only if Res(C) is doubly-even, Res(C) = Tor(C)* and B is such

that the rows of G’ are orthogonal.

Remark 2.1.9. Let C be a self-dual code of length n and type 4%12%2. By comparison of
generator matrices of residue codes given in (1.5) and (2.2), we can conclude that k = k;.
Also, since Tor (C) = (Res (C))™, dim (Tor (C)) = n—dim (Res (C)) = n— k. From (1.6),
we know that dim (Tor (C)) = k; + k, = k+ ky. Therefore, k, = n — 2k. Therefore, every
self-dual Z4-code with the residue code of dimension k is of type 42" 2K, Since generator
matrices of C and Tor (C) are of same dimensions, matrix G’ given in (2.1)isa (n—k) xn

matrix.
The following corollary can also be found in [21].

Corollary 2.1.10. Let C be a Type II Z4-code of length n. Then Tor(C) is an even binary
code, Res(C) contains the all-one binary vector, C contains a codeword with all entries

from the set {1,3}, and n =0 (mod 8).
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Remark 2.1.11. Since we are interested in the construction of both Type I and Type 11

Zy4-codes, we restricted our work to codes of length divisible by 8.

The following remark describes the construction of self-dual Z4-codes starting from
the binary doubly-even code. The discussion in the remark is the summary of various

results from [21].

Remark 2.1.12. By Theorem 2.1.8, in order to construct a self-dual Z4-code C, we have
to start with a doubly-even [n, k| binary code C) that has a generator matrix of the form
(2.2). Since C) is self-orthogonal, we can find a generator matrix of its dual code c®@
of the form (2.3). It only remains to determine a binary matrix B such that the rows of the
generator matrix (2.1) are orthogonal.

Assume that G is the generator matrix of a self-dual Z4-code C given in the form (2.1).
Let (f,i+2b) be one of the first k rows of G, where f, i and b denote the corresponding
rows of matrices F, I; and B, respectively. Since C 1) = Res(C) is a doubly-even code,

the following holds:

(f,i+2b)-(f,i+2b)=f-f+i-i+4b-b(mod 4)=0(mod 4).

Therefore, by Definition 1.4.16, (f,i+2b)-(f,i+2b) =0, i.e. all of the first k rows of G
are self-orthogonal.

Further, let (2h,0) and (24, 0) be two (not necessarily different) rows taken from the
last n — 2k rows of the matrix G, where h, &' and o denotes the corresponding row in

matrices H and O respectively. We have that:

(2h,0) - (2K ,0) = 4hk' (mod 4) = 0(mod 4).

Therefore, (2h,0) - (2i',0) =0, i.e. all of the last n — 2k rows of G are pairwise
orthogonal and are self-orthogonal.

L
Also, since C?) = Tor (C) = (Res(C))*" = (C(l)) , the following holds:

(f,i+2b)-(2h,0) =2fh(mod 4) = 0(mod 4).

Therefore, (f,i+2b) - (2h,0) = 0. Thus, any of the first k rows of G is orthogonal to any

of the last n — 2k rows in G.

29



An algorithm of the construction Extremal and near-extremal Z.4-codes

Therefore, orthogonality of the rows of G entirely depends only on the orthogonality
of the different rows among the first k rows in G. Let B = [by,], u,v € {1,2,...,k}. Let
fm denote the m-th row of F. The inner product of the r-th and the s-th row, r # s, of the

matrix G is given as follows:

k
frefs+ Y (2bys + 81) (2by + 85 ) (mod 4) =

t=1

= fr- fs+ (2brr +1)2bg + 2b,5(2bgs + 1) (mod 4) =

= fr- fs+2(bys+ b )(mod 4),

(2.4)

where 9, denotes the Kronecker delta symbol, and f, - f; is the ordinary dot product of
fr and f; over Z. Since cW is self-orthogonal, f, - fy = 0(mod 2). Therefore, f, - f; = 2x
for some x € N. So, the (2.4) is congruent to 2x + 2(bs + by, ) (mod 4). Now we conclude

that the rows of G are mutually orthogonal if and only if the following holds:

2x+ 2(bys + bsy) = 0(mod 4). (2.5)
Since f; - fy = 2x is congruent to either O or 2 modulo 4, one the following holds:
2.5)
* 2x=0(mod 4) =" 2(bys+ bs,) = 0(mod 4) = b3 = by,
e 2x=2(mod 4) 5 2(bys + by,) = 2(mod 4) = byy by,

Therefore, it is shown that the lower triangle elements of the matrix B are uniquely
determined by the elements in the upper triangle of B by the following condition:

bsr7 fr f:v = O(mOd 4)7
bys = (26)

bsy+1(mod 2), f;- fy =2(mod 4),

where f; - f; is the ordinary dot product of the rows of F. The diagonal elements of B can

be chosen freely.

In [21] the following theorem, that gives the number of (not necessary noneqivalent)

self-dual Z4-codes, can be found.
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Theorem 2.1.13. Let N, (n) be the number of distinct self-dual codes over Z4 of length
n, and let o (n,k) be the number of distinct doubly-even binary codes of length n and

dimension k. We have:

(k+1)
Nim)=Y o(nk)2 s .

n

The following necessary condition for the extremality of Z4-codes can be found in

[27].

Lemma 2.1.14. Let C be an extremal Type Il Z4-code of length n. Then the torsion code
Tor(C) has minimum weight d > 2| 57| 4-2.

Proof. Let C be an extremal Z4-code of the length n. From Definition 2.1.3, we know that
the minimum Euclidean weight of the code C is 8 | 55 | + 8. Therefore, for every x € C the

following condition holds:

n
24
By the definition of Tor(C) we have that 2y € C for every y € Tor(C). Therefore:

wig(x) > 8| 2| +8.

n

24J+8.

wig(2y) > 8 {

Since y € I} we have 4wty (y) = wtg(2y). Therefore:

n

dwty (y) = wrg(2y) > 8 {ﬁj +38,

n

wig(y) > 2 {ﬁj +2,

which completes the proof. |

Remark 2.1.15. In the proof of Lemma 2.1.14 only assumption that is used is that the
Euclidean extremality upper bound is 8|n/24| + 8. Therefore, Lemma 2.1.14 is valid

even for Type I Z4-codes that have the same extremality condition as Type Il Z4-codes.

If C is a near-extremal Type I Z4-code of length 24 then, by Proposition 2.1.4, we
know that wtg(C) = 12. In the same way as in the proof of Lemma 2.1.14, for every
y € Tor(C) we have 4wty (y) = witg(2y) > 12. Therefore, wtg(y) > 3. In the same way,
and with the same notation, for Type I Z4-code of length 48 we get wrg (y) > 5. Therefore,

the minimum weight of torsion code of near-extremal Type I Z4-code of length 24 or 48 is
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at least 3 or 5, respectively. If Tor(C) is even code, then the minimum weight of Tor(C),
for Type 1 Z4-code C of length 24 or 48, is at least 4 or 6 respectively. This proves the

following corollary.

Corollary 2.1.16. If C is Type I near-extremal Z4-code of length 24 or 48 then the tor-
sion code Tor (C) has the minimum weight at least 3 or 5, respectively. If Tor(C) is even,

then its minimum weight is at least 4 for length 24, and at least 6 for length 48.

2.1.1. Known extremal and near-extremal Z4-codes

In this subsection, we present an overview of the known extremal and near-extremal Z4-
codes. As stated in the Remark 2.1.11 we are interested only in codes of length divisible
by 8.

All Z4-codes of lengths up to 9 were classified by J. H. Conway and N. J. A. Sloane
in [13]. Self-dual Z4-codes of lengths 10 up to 15 are classified in [20] by J. Fields, P.
Gaborit, J. S. Leon and V. Pless.

Also, all Type II Z4-codes of length 16 were classified by V. Pless, J. S. Leon and J.
Fields in [43].

The classification of Type I Z4-codes of length 16 and self-dual Z4-codes of lengths
17 up to 19 is given by M. Harada and A. Munemasa in [35].

More recently, in 2019, the self-dual Z4-codes of length 20 were classified by R.
A. L. Betty and A. Munemasa in [5]. All of the residue codes of extremal Type II Z4-
codes of length 24 were classified by M. Harada, C. H. Lam and A. Munemasa in [34].
In [41], all extremal Type Il Z4-codes of length 24 were classified by R. A. L. Betty and
A. Munemasa. As it was stated in Remark 2.1.5, Type I extremal Z4-codes of length
24 do not exist. The existence of two near-extremal Type I Z4-codes of length 24 was
proved theoretically by T. A. Gulliver and M. Harada in [23]. Later, in [31], M. Harada
constructed 58 nonequivalent near-extremal Type I Z4-codes of that length that are not
the codes from [23]. He concluded that there are at least 60 near-extremal Z4-codes of
length 24.

We are interested only in codes of length larger than 24. The largest known extremal

Zy-code is of length 64 and was constructed by M. Harada in [27]. Since Type I Z4-codes
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are far less researched, we will fist give an overview of the known Type Il Z4-codes for

each length. After that, we will give the summary of known facts on Type I Z4-codes.

Length 32

The following statements can be found in [28].

Proposition 2.1.17. There is an extremal Type Il Z4-code of length 32 whose residue
code has dimension k if and only if k € {6,7,...,16}.

Proposition 2.1.18. Every binary doubly-even self-dual code of length 32 can be real-

ized as the residue code of some extremal Type II Z4-code.

Proposition 2.1.19. Up to equivalence, there is a unique extremal Type Il Z4-code of

length 32 with residue code of dimension 6.

Remark 2.1.20. In [28] is also proved that the binary residue code from the previous

proposition is RM (1, 5).

In [22], 54 inequivalent extremal Type II Z4-codes with self-dual binary residue codes
were constructed (therefore of type 419).

In [28], one Type Il extremal Z4-code with dimension of the residue code k was con-
structed for every k € {6,7,...,15}. In the same article, 80 nonequivalent (and nonequiv-
alent to codes from [22]) extremal Type Il Z4-codes with residue code of dimension 16
were constructed. All of the binary residue codes of extremal Z4-codes of length 32
constructed in [28] have minimum weight 4.

In [44] two nonequivalent Type II extremal Z4-codes of type 41210 are constructed.
These codes have binary residue code of minimum weight 12. In [12], the following
extremal Type II Z4-codes were constructed: 219 codes of type 41326, 205 codes of type
41424 and 355 codes of type 41922,

Finally, in [1], the following previously unknown extremal Type II Z4-codes were
constructed: 5 codes of type 47216, 25 codes of type 43216, 12 codes of type 4724, 3
codes of type 419212 and 4942 codes of type 41424,

Based on the previous discussion, we conclude that there are 5913 known nonequiva-

lent extremal Type II Z4-codes. The known results are summarized in Table 2.1.
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Type 46220 47218 48216 49214 410212 411210

# 1 6 27 13 4 3

Type 41228 41326 41424 41522 416

# 1 220 5148 356 134

Table 2.1: The type and the number of known extremal Type I Z4-codes of length 32

Length 40

In [44], 22 extremal Z4-codes were constructed from self-dual binary codes together with
one code that have a binary residue code of dimension 13.

Later, in [4], the complete classification of the self-dual binary codes of length 40 is
given. In total, there are 94343 nonequivalent binary self-dual codes of length 40. In [32],
the method that gives an extremal Z4-code from a self-dual binary code of length 40 was
developed. With this method, from each of the 94343 binary self-dual codes of length 40,
one extremal Type Il Z4-code is constructed (of which 22 were equivalent to codes given
in [44]).

226 were constructed together with one code of

Also, in [28], two codes of type 47
type 45240k for every k € {8,9,...,19} (the code of type 4'32'* constructed here was
nonequivalent to the code from [44]).

In [12], the following new extremal Zj4-codes were constructed: 133 codes of type
41726 501 code of type 4'82% and 431 code of type 41922

Finaly, in [3], the following new extremal Z4-codes of Type II were constructed: one
code of type 472%6, 227 codes of type 43224, 99 codes of type 4°2%2, one code of type
410220 3 codes of type 411213, 19 codes of type 412219, 13 codes of type 413214, 4 codes
of type 414212, 2 codes of type 41724 and 400 codes of type 4'824. The summary of known

results is given in Table 2.2.
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Type 47226 48224 49222 410220 411218 412216 413214

# 3 228 100 2 3 20 15

Type 414212 415210 41628 41726 41824 41922 420

# 5 3 1 134 902 432 94343

Table 2.2: The type and the number of known extremal Type II Z4-codes of length 40

Lengths 48, 56, 64

The number of known extremal Z4-codes of lengths 48, 56 and 64 is small. There are only
two known extremal Type Il Z4-codes of length 48, and they are given in [7] and [33].
Both of these codes have self-dual residue codes, so they are of type 4°*.

There are three known extremal Type Il Z4-codes of length 56. The extremal Type II
Z4-code of type 414228 is given in [27], and two codes of type 4?3 in [31].

There is only one known extremal Type II Z4-code of length 64. This code is con-

structed in [27] and it is of type 416232

Type I Z4-codes

Type I Z4-codes are far less researched than Type Il Z4-codes. Most of the existing results
give theoretical proof of the existence of such codes, for various lengths.

In [29], an existence of extremal Type I Z4-codes of length 32 is proved for codes
with self-dual doubly-even residue codes, without the explicit construction of the codes.
To best of our knowledge, there are no classification or enumeration results for extremal
Type I Z4-codes of length 32.

In [9], 16470 nonequivalent extremal Type I Z4-codes of length 40 and type 4% were
constructed. All of these codes have different residue codes that are self-dual binary codes
of length 40 and the minimum weight 8 (the classification of binary doubly-even self-dual
codes is given in [4]). Also, 16 nonequivalent extremal Type I Z4-codes were obtained by
a random search method. The binary residue codes of these 16 codes have the following

parameters: one code is [40, 10, 16], one code is [40,10,12], 7 codes are [40,8,16], and
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finally 7 codes are [40,8,12]. Therefore, the constructed 16 extremal Type I Z4-codes are
of types 410220 (2 codes) and 432%* (14 codes).

As stated in Remark 2.1.5, extremal Type I Z4-codes of length 48 do not exist. There-
fore, for the length 48, it makes sense to search for near-extremal Type [ Z4-codes. In [30],
the existence of Type I near-extremal Z4-code of length 48 is proved by example. The

following generator matrix of Type I near-extremal Z4-code is given:

by 1

1

where R is circulant 23 x 23 matrix whith first row:
(1,1,3,0,3,3,1,2,0,1,3,2,3,0,0,3,3,2,1,2,1,1,0)..

This code is of type 424,
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2.2. MOTIVATION FOR THE MODIFICATION

At the beginning of this chapter we will describe the usual approach to the construction
of extremal and near-extremal Z4-codes described in [22].

Let C1") be a doubly-even binary [n,k] code, and let C?) = (C(l))l. Assume that the
generator matrix of C () is in the form (2.3). As stated in Remark 2.1.12, in order to obtain
a generator matrix G of a self-dual Z4-code C of the form (2.1), it is sufficient to construct
a k X k binary matrix B such that the condition (2.6) holds. In the further discussion, we
will write G (B) instead of G for a generator matrix of a self-dual Z4-code, when we want
to emphasize the related matrix B. From Theorem 2.1.13 it follows that the number of
such matrices B, for a given binary linear code C(l), is 2@. So, this is also a number of
different (not necessary nonequivalent) self-dual Z4-codes with the residue code C(1).

The following observation is obvious. Let B = [b;;] and B’ = [b; ;] be two k x k
matrices that give the generator matrices G (B) and G (B’) such that B and B’ differ only
in diagonal elements in columns i, iy, ..., iy, m < k. Therefore, matrices G (B) and
G (B') differ only in the diagonal elements of the blocks /; + 2B and I; 4+ 2B’. This means
that the matrix G (B’) can be obtained from the matrix G (B) by multiplying the columns
n—k+i,n—k+i,...,n—k+i, of G(B) with 3. Therefore, the matrices G (B) and
G (B') define monomially equivalent self-dual Z4-codes. By this simple observation, we
conclude that we can always choose matrices B that have all diagonal elements equal to
0. Therefore, the number of matrices B that generate self-dual Z4-code with fixed binary
residue code C(V) is equal to the number of choices for the elements above the diagonal
of B. Since B is a binary k X k matrix, this number is 2@.

The usual search method for extremal or near-extremal self-dual Z4-codes would con-
sist of (randomly) generating a suitable matrix B, and then checking the minimum Eu-
clidean weight of the code C with generator matrix G (B). Computation of the minimum
Euclidean weight of the code is usually done by the software package MAGMA ( [8]).
In Table 2.3, we give time of computation of the minimum Euclidean weight for codes
of various length and dimension. This computation was done on the machine with an

Intel(R) Core(TM) 17-6700HQ CPU @ 2.60GHz processor, and 16GB RAM memory of
frequency 2400MHz.
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n k Time

16 6 <0.001s

24 6 0.734s

32 6 170.830s

40 7 51206.48s

Table 2.3: Time of computation of minimum Euclidean weight of the self-dual Z4-codes

with [n, k] residue code executed with MAGMA

It can be seen from Table 2.3 that the execution time increases rapidly with the increase
of the length of the code. The size of the search space for the codes that have the residue
code of the dimension 6 is 2!°> = 32768. Therefore, all self-dual Z4-codes of length 16
can be checked for minimum weight in 32,768 seconds. For codes of length 24 this
execution time would be 24051,712 seconds, which is approximately 6.6 hours. For a
binary code of length 32 and dimension 6 this time would be 5597757, 44 seconds, which
is approximately 10,6 years. For codes of higher dimension and length this numbers
would get even larger. From this discussion it is clear that complete classification of the
extremal and near-extremal Zj-codes is out of reach for larger lengths.

The main motivation for our modification is to speed up the process of finding ex-
tremal and near-extremal Z4-codes by reducing the number of long lasting calculations
that are executed, i.e., by reducing the number of minimum Euclidean weights that are
calculated. We developed a method in which we can predict the minimum Euclidean
weights of the codes that slightly differ from the code whose Euclidean weight distribu-

tion is known.
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2.3. THEORETICAL BACKGROUND AND THE

MODIFIED ALGORITHM

Let C be a self-dual Z4-code with the generator matrix G (B) in form (2.1), i.e.:

F I+2B
G(B) = , 2.7)
2H 0

where B = [by,] is a k x k binary matrix for which self-duality condition (2.6) holds. Let
(i,j), 1 <i< j <k, be an upper diagonal position of B such that b;; = 0. Let B’ = [b{ ]

be a k X k binary matrix such that:

bs’ Y '7'
P LRy, o

L, (S,l‘):(i,j),

for all 1 <s <t <k, and such that the Z4-code C’ is generated by G (B'), i.e.:

F L +2B
G(B) = g , (2.9)
2H (0]
is self-dual (condition (2.6) holds for B'). We say that B’ is the (i, j)-neighbor of B, and

that the code C’ is the (i, j)-neighbor of the code C.

In the Definition 1.4.13 we introduced the symmetric weight enumerator of a Z4-code.
Recall that for v € Z], n; (v) is the number of coordinates of v equal to i, i € {0,1,2,3}.
For the purpose of the following proposition we introduce the following notation. With
swe (v) we denote the monomial x0()ym (V) +13(v) za(v)

The following two theorems are the core of our method.

Theorem 2.3.1. Let C be a self-dual Z4-code of length n with the generator matrix G (B)
of the form (2.7). Let C’ be the (i, j)-neighbor of C, with the generator matrix G (B’) of
the form (2.9). Let v € C be of the form:

k n—k
V=Cigi+Cjgj+ Z Cm&m + Z Cm8m; (2.10)
m=1 m=k+1
m#i,j
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where g5, s € {1,2,...,n—k}, is the s-th row of the matrix G (B). LetV' € C' be:

k n—k
V/:Cig;+cjglj'+ Z Cm&m + Z Cm8m- (2.11)
m=1 m=k+1

m#L,

If ¢; and ¢ are both even or both odd then swe(v') = swe(v).

Proof. First notice that, since C’ is (i, j)-neighbor of C, the block matrices I; + 2B and
I + 2B’ differ only in the positions (i, j) and (j,i). Therefore, the coordinates in which v
and V' can differare n —k+ jand n — k+1i.

If ¢; = ¢j = 0 then v = V' and therefore swe(v') = swe(v). Further, if ¢; = ¢; = 2 then
(281)n—tk+j = (28))n—k+j = 0, and (28)n—k+i = (28})n—k+i = 0. Since the generators g;
and g;, and g; and g are only generators that differ in (2.10) and (2.11), and they only
differ in coordinates n —k+ j and n — k+ i, the coordinates n —k+ j and n —k+i of
codewords v and V' are the same. Thus, v =1/, and therefore swe(V') = swe(v). Assume

that ¢;,cj € {1,3}. The following holds:

k
(V)nkari = (Cigi)nfk+£'+ (ngj)nfk+i+ Z Cm8m S {173}7
~"~ ~ ~" - =1
e{1,3} e{0,2} mti,j -
e{?)fz}
k
(MNn—tri = (Ci8n—kri+ (i€ nrri+ | Y, cm&m €{1,3}.
—_—— — m=1
€{1,3} €{0,2} m#i, j Nkt
€02}

Therefore, the (n — k + i)-th coordinate of both v and V' is odd. In a similar way we can
conclude that the (n —k + j)-th coordinates of v and V' is also odd. Thus, ny (v) = np (V/),
and n; (v) +n3 (v) = ny (V') +n3 (V). Therefore, swe(V') = swe(v).

Now, we observe the case when ¢; # c;, and c¢;,c; € {0,2}. First, let ¢; = 0 and
cj =2. Since ¢; =0, the (n — k+ j)-th coordinates in v and v’ are the same. Further,
since ¢; = 2, we have that (2g;),k1i = (28’)n—t1i = 0. Therefore, swe(v') = swe(v).
If c; =2 and ¢; = 0, the (n — k +i)-th coordinates in v and v/ are the same. Then, from
(28/)n—t+j = (287 )n—t+j = 0 we get that swe(v') = swe(v). This completes the proof.

|
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Theorem 2.3.2. Let C, C', G(B), G(B'), v and V' be as in Theorem 2.3.1. Let ¢; and
cj be of different parity, and s € {i, j} such that ¢, is even. Let & (cj,c;) be defined as
follows:

-1, 2¢ {C,‘,Cj},

1, 2 ¢ {C,’,Cj}.

o (cirej) =
Let S be the following set:

S={tlre{1,2,....k}\ {i,j}, (ci8)n—kss =2}

Then, swe(V') = swe(v) - ", where r is defined as follows:

(=D o (ciyc)), bij#bjands = j,
r= (circi) v 2.12)

(—1)SHPtbi & (¢;¢;),  otherwise.
Proof. Let us assume that b;; = bj;. Since B is a binary matrix, we have to prove that the

value of r for this case is:

r= (—1)|S‘ e (C,',Cj) .
We will observe only the case when s = i, since the case when s = j can be proved in the
same way. In that case, since ¢; € {0,2}, the (¢;gi)n—k+j = (¢ig})n—+j = 0. Therefore, v

and V' can only differ in the (n — k + i)-th coordinate. We have two possibilities for c;:

* Ifc;=0and ¢j € {1,3}. Itholds & (ci,cj) = 1. Let &, &, - - -, &i, be the generators
of vs.t. (¢i&i)ni+i 70, forallr € {1,2,...,a}, iy # j. This is equivalent to the

condition (c¢;,g;, )n—k+i = 2, s0 |S| = or. We have:

0, 2la,
n k+i — Z Ci, 8i; + (ngj)n*k+i =
n—k-+i ~ \2’ 2/}/05.
(
o , 2, 2la,
n k+i Z Ci, 8i; +(Cj8j)n—k+i =
=1 n—k—+i — 0, 2/}/05'
-2 L
Therefore:
swe(v) -z, 2|a,
swe(V') = = swe(v) LD

swe(v)-z7l, 2fa.
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* If ¢; =2 and ¢; € {1,3}, then 6 (¢j,c;) = —1. For g, &, - -,8i, as in previous

case, we have:

(
o 2, 2|a,
Vi = Zcitgif +£2gi)n,k+j+\(cjgj)n,k+£’:
=1 n—k+i ~ 0 \0, 2/a.
(
) y s+ (i) o
V) ki = Ci,8iy + (28i)n—k+i +(Cj&j)n—k+i =
e =1 n—k—+i T T’ 2, 2*06.
- = \
So, we can conclude that:
swe(v)-z7', 2|a, “
swe(V') = = swe(v) =D !
swe(v) -z, 2fa

Therefore, for s = i, it holds r = (—1)|S| e} (ci,cj).
Let b;; # bj;. First we have the case when s = i. In that case, we have to prove that
r=(-1) S+l & (ci, cj), since b;j+bj; = 1. As before, codewords v and V' can differ only

in coordinate n — k + i. We have the following possibilities:

* For¢; =0, and ¢; € {1,3}, it holds ¢ (c,-,cj) =1. Let g,,8i,,---,8i, be the gener-
ators of v s.t. (¢;, & )n—k+i =2, forallt € {1,2,...,a}, i; # j. This gives |S| = .

Then, we have:

(v)nfk+i = (

Me

ki T |00 2fa

I
—_

/ X / O? 2|a7
(V )n—k+i = Z Ci 8 + (ngj)n—k+i -
t=1 n—k-+i T 2, 2)a.
Therefore:
Swe(v) 'Z_lv 2‘&, a
swe(V') = = swe(v)-z7V !
swe(v)-z,  2fa
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* Forc;=2and cj € {1,3} we have 0 (c;,c;) = —1. Again, let g;,, &, - - -, 8i, be the
generators of v s.t. (¢;,gi, Jn—k+i = 2, forall t € {1,2,...,s}, iy # j. As before, the

(n — k+1i)-th coordinate of v and V' is given by:

(
0, 2la,

n k+i — <chtglt> +£2gi)n—k+£+(cjgj)n—k+i:<
n—k+i ~ — 12 2fa

(
a 2, 2|a,

(), i = (ch,gi,) +(Zg§)n—k+i+(cj8})n—k+i=

=1 n—kti Ty T 0, 2fa.

Therefore:
swe(v) -z, 2|a, «
swe(V') = = swe(v) -z7D",
swe(v)-z7 1l 2fa.
Therefore, r = (—1)|S|Jrl -0 (circj).

The remaining case is when s = j. In that case, we should prove that r = (—1)‘8 .
o (ci, c j). As before, codewords v and V' can differ only in coordinate n — k + j. We have

the following possibilities:

* Letcj=0andc; € {1,3}. Thus, o (c,-,cj) =1.Letg;,&i,,---,8&i, be the generators
of vs.t. (¢;,8i)n—k+j =2, forallr € {1,2,...,s}, i; # i. The following holds:

o 0, 2a,
(V>n—k+j = (Z Citgi,) + (cigi)nkarj =
=1 nktj T 2, 2)a.
- \
)
2, 2a,

s = (Lo

I 0, 2fa.
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* Let ¢; =2 and ¢; € {1,3}. Therefore, 0 (cj,c;) = —1. With same notation of

generators, we have:

o 2, 2a,
Wi = | Yocigi + (28 n—ktj+(Cigdn—tk+j =
=1 n—l+j ~7 5 0, 2fe.
(
/ - / / 07 2‘a7
(V )n—k+j = Z Cir8ir + (zgj)nkarj + (Cigi>nfk+j =
=1 n—k+j ~ ;E d ;’2 \2, 2*06.
And this gives the following:
swe(v)-z71, 2|a, “
swe(V') = = swe(v) -z !
swe(v) -z, 2fa.
Therefore, it holds r = (—1)‘S| -0 (circj).
This completes the proof. |

Remark 2.3.3. The value of the parameter r given by (2.12) is represented in Table 2.4
for all possible coefficients ¢; and c¢;. In that table, I and J represent set S from Theorem
2.3.2, for s =i and s = j, respectively. The parity of the size of sets marked by * does
not impact the value of r. By Theorem 2.3.1, for all coefficients that are not in Table 2.4,

holds r = 0.
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bij=bji bij#bji

¢ ¢;j |[(mod2) |J]|(mod?2)

~

¢ ¢j |[I[(mod2) |J]|(mod?2)

~

0 * 1 0 * -1
0 13 0 13

1 * -1 1 * 1

* 0 1 * 0 1
1,3 0 1,3 0

* 1 1 * 1 1

0 * 1 0 * 1
2 1,3 2 13

1 * 1 1 * 1

* 0 -1 * 0 1
1,3 2 1,3 2

* 1 1 * 1 1

Table 2.4: The parameter r from Remark 2.3.3

Corollary 2.3.4. With the notation as in Theorems 2.3.1 and 2.3.2, the following holds:
i) wig (V') =wrg (v)+r,
(i) wip (V') = wrp (v) +2r,
(iii) weg (V') = weg (v) +4r.

Proof. From the Definition 1.4.9 we have that the Hamming, Lee and Euclidean weight

of v are:
wtg(v) = n(v) + na(v) +n3(v)
wir(v) =n1(v) +2n2(v) +n3(v)
wig(v) = ny(v) +4ny(v) + n3(v).
From Theorem 2.3.1 and Theorem 2.3.2, we have that swe (V') = x10(V)ym (V)13 (v) o (v)+r
where r is given in Table 2.4. Therefore, the weights of v/ are:
wig (V) =n (V) +no(v) +r+n3(v) = wig (v) +r
wit (V) = ni(v) +2 (na(v) +7) +n3(v) = wep (v) +2r
wtg(V) =n1(v) +4 (na(v) +7r) +n3(v) = weg(v) +4r. [ ]
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Corollary 2.3.5. Let C and C’ be the self-dual Z4-codes such that C’ is the (i, j)-neighbor
of the code C. Let v € C and v/ € C’ be codewords as in Theorem 2.3.1. Then wig (V') €

{wtg (v) —4,wtg (v) ,wtg (v) +4}.

Proof. The statement follows immediately from Corollary 2.3.4 from the fact that r €

{-1,0,1}. ]

In the following theorem, we give an important connection between Euclidean weight

enumerators of self-dual Z4-code C and its (r,s)-neighbor.

Theorem 2.3.6. Let C be a self-dual Z4-code of length n, and C’ its (r,s)-neighbor. Let
p(x) = Y1 yAsx* and p'(x) = Y1 ALx* be the Euclidean weight enumerators of C
and C', respectively. For m € {0,4,...,4n}, let S,, and S/, denote the sets of codewords
of Euclidean weight m from C and C’, respectively. For i = 1,2,...,n, we define the

following sets and their cardinality:

Sy ={veSulV €Syi4}, |Sail = A
SQ,. = {v € Sy € Sﬁ”} , |Sgi| :Agn
Sz_l: {V€S4i|V/€S£‘l’+4}, |S4—|i._1| :AIN

where for v € C, V' is the codeword from C’ with the same coefficients as v. Then the

following holds:

() A} =Af 4 +AY+Ay,, fori> 1, and A} = AQ+Ag

(i) Ay +Ag+...+Ay 4, =As+Ag+.. . +Ay_4— Ay, +A,
where N € {8,12,....4n}.

Proof. Notice that |S,,| = A,,, and |S},| = A},. From Corollary 2.3.5, we know that the Eu-
clidean weight of v/ € C’ belongs to the set {wtg (v) — 4, wrg (v) ,wig (v) +4}. Therefore,
for v € S, wig (v) € {4i —4,4i,4i+4}. Depending on the value of the wrg (v), we have

the following:

wig(v) =4i—4=ve 52—1'—47
wig (v) =4i=v e Sy,

wip (v) =4i+4=vES, 4
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Therefore, |Sj{l.7 ne, Sgl. USgiral = |S7,;|, which gives the (i). The special case of A/, follows
from the fact that A({ = (. This is valid since the zero-codeword is uniquely expressed as
n—k
Z 0- g5, where g are rows of the generator matrix of C, and k = dim (Res (C)). There-
s=1

fore, by Table 2.4, it never changes weight.

Now we can use statement (i) to prove (ii). From (i) we have:

Ay = AQ+ Ay,
O _
Ag=A; +A5+A,
0 —
Al =Ag +AT, + A,
0 _
Ay_s =Ay_1, AN s +Ay_4;

Ay 4 =Af_g TAN_4+Ay.
Also, since Aj =0 and Ay; = A}, + A}, + Af, the following holds:

Ay+Ag+. Ay g+ AN s =AJ+A] + (A5 +AQ+AL ) + (A +AY +AL) +.. .+
+ (A;f—s +AN_s "‘AIJ\FJ—S) +AN 4 HAN 4 TAy =
=AY +AS +AsFA A+ F AN s Ay HAY LAY

n—k
Notice that A, = 0, since zero-codeword is uniquely expressed as Z 0- gs. Therefore,
s=1
S4 = Sg U Sj{, and this union is disjoint. So, A4 = Ag +AI. The previous expression

becomes:
A+ Ag+. . +Ay g +Ay 4 =As+As+Ap+.. . +AN_s+AN_a — A} ,+Ay.
This completes the proof. ]

Remark 2.3.7. Notice that the left side of (ii) in Theorem 2.3.6 represent the number of
all non-trivial words in C’ that have the Euclidean weight smaller than N. Especially, if
N =8| 53] +8, the C’" will be extremal if and only if the right side of the equation in the
second statement is equal to 0. This enables the determination of the extremality of the
code C’ from the coefficients in the Euclidean weight enumerator of the code C, and the

+ i
numbers Ay, and Ay.
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Main goal of our modification is to reduce the number of the minimum Euclidean
weight calculations. We achieve this by increasing the number of the codes whose ex-
tremality we can check with one calculation of the minimum Euclidean weight.

Let B be a binary matrix that have ¢ > 0 upper diagonal elements equal to 0. From the
Euclidean weight distribution of the code C determined by G (B), Proposition 2.4, and the
second statement in Theorem 2.3.6, we can determine whether any of the ¢ codes that are

neighbors of C are extremal.

Algorithm of the construction: Let N be desired minimum Euclidean weight of the

self-dual Z4-code (N = 8 \_ﬁj + 8 for the extremal Z4-codes, and N = 8 \_ﬁj + 4 for the

near-extremal Z4-codes). Steps of the algorithm:

1. Start with the arbitrary matrix B.
2. In each iteration of the algorithm do the following.
2.1 Generate a self-dual Z4-code C with the generator matrix G (B), and evaluate
D=|{veC|0<wig(v) <N},

(thisis A4 +Ag+ ... +An_4 from Theorem 2.3.6).
2.2 If D =0 then C is extremal.
2.3 Determine the sets Sy_4 and Sy defined in Theorem 2.3.6.

2.4 For every upper diagonal element (i, j) of the matrix B which is equal to 0 de-
termine the (i, j)-neighbor C'. If extremality of the corresponding neighbor is
undetermined, by using Theorem 2.3.1 and Theorem 2.3.2, evaluate numbers
AV 4 Ayandd =D—A}, ,+Aj.

2.5 All C’ that have d = 0 are extremal (see Remark 2.3.7).

2.6 Mark all neighbors of B as checked.

2.7 Repeat the process with the next unchecked matrix B.

Example 2.3.8. In this example we will demonstrate one iteration of the given algorithm.

All of the computations given here are executed with software MAGMA. Let C(!) be the

doubly-even binary code generated with the matrix:
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(11101 1101010000 0]

1 oo0o111110101QO0UO0O00O0

G — 1 00000O0O0OI1T1O0O0T1O0O0O0
01111001T1TT1TG0®O0O0OTTO0O
01110011 T1T1®O0O0O0OO0T1FPO0
| 00000 T1O0O0T1TT1TO0OO0OO0OOO0 1]

Its dual code C?) has the generator matrix

| 111011 1010T1TO0O0O0O0O0 ]

1 oo0o111110101O0°O0°O00O0

1 00000O0OI1T1O0OO0OT1O0O0O

01 111001T1TT1TG0®O0O0OT1ITTO0O0

G2 _ 01 1100T1T1TT1T1TTG0O0OO0O0T1O0
000O0O0O1O0O0O1T1QO0O0O0O0O0°1
011000O0O0O0O0O0O0OO0OO0OO0OO0OTGO0
0001 0O0O0T1TO0O0OO0OO0OO0OO0OO0OTO0
110001 0O01O0O0O0O0O0OO0OTGO
|1 00101O0O0O0O1QO0O0O0O0O0O®O |

From the condition (2.6) in Remark 2.1.12 we construct a 6 x 6 binary matrix B that has

all upper diagonal elements equal to O:

00

o

]
o o O
o o o O
o O o o O

o O
S O
—_
—_

S O o o o O

The generator matrix of the self-dual Z4-code C is the matrix:
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_1 11011 10101UO0UO0O00O0 O_
1 oo01111101O0T1TTO0QO0O0O0
1 00000O0OO0OT1T1221U0TG0O0
01 11100T1TT1T1UO0O0?21T0DPO0
G(B) - 01 11001T1TT1T1UO0O0?22T1F2F©0
0 00O0O0OT1TO0OO0OTT122722721
022000O0O0O0O0O0O0O0O0O00PO0
000200O024000O0O0O0O00
220002002000O0O0O0°TO0
_2 0 02020002200 °0°00 0_

Let N =8 B—SJ + 8 = 8 be the target weight i.e., we want to construct an extremal
Z.4-code. Notice that, since N = 8, it holds Sy_4 = S4. Also, from the definition of D, it
follows that in this case, D = |S4] (this also means that D = A4 from Theorem 2.3.6). The

set of all codewords of Euclidean weight 4 is given as follows:

S4={3000000011003000,0000103000000330, 1000000033001000,0000301000000110} .

Let vy, v2,v3,v4 be the codewords from Sy, given by the order of appearance. In the terms

of the generator matrix G (B), these codewords can be written as:

vi =2g1+2g>+3g3+g7+gs, vy = g4+ 3gs,

V3 =2g1+28+83+87+8s, V4 = 384+ g5,

where g; stands for the i-th row of the matrix G (B). Before we can determine the number
AI, we need to choose (i, j)-neighbor of B that we will examine. From Theorem 2.3.2,
we know that only the coefficients next to g;, for i € {1,2...,6}, are important for the
change of the weight of codeword, and that coefficients ¢; and c¢; should be of different

parity. Therefore, we should not take the following pairs of (i, j) into the consideration:
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(L,a), a=2,3,4,5,6,
(2,b), b=3,4,5,6,
(4,¢), c=35,6,

(3,6) (5,6).

Changes of weights in all codewords of S4 can happen only for the pairs (3,4), (3,5). Let
us consider the (3,5)-neighbor of B. Since b3 5 # bs 3, from the second part of Table 2.4,

we have the following.

* For vy: Since ¢3 = 3, and ¢s = 0 we have to check the parity of the |J| (see Remark
2.3.3). |J| is the number of all non-zero elements in the 5-th column in B, in the
rows 1 and 2 (since the non-zero generators of v| are g1, g» and g3, and the rows
3 and 5 are not counted). This gives |J| = 0. From the table we get r = 1 and

therefore, by Corollary 2.3.4, wig(v}) =4 +4 = 8. In other words, v| € ;.

* For vy: Since c3 =0, and ¢s = 3 we have to look at the parity of the |/| (see Remark
2.3.3). || is the number of all non-zero elements in the 3-rd column and the 4-
th row in B (since the non-zero generators of v, are g4, g5, and rows 3 and 5 are
not counted). This gives |I| = 1. From the table we get r = 1, and therefore, by

Corollary 2.3.4, wtg(v|) = 4 +4 = 8. In other words, v| € SI.
« In the similar way we conclude that v3,v4 € S .

Therefore, Ay, , =Aj = |S}| =4. It still remains to determine the number Ag . Since the
code C has 242 codewords of weight 8, we will calculate this by MAGMA. We verified,

in the same way as for AI, that A = 0. Now we can determine d:

d=D—A}, ,+Ay=D—A; +A; =4—4+0=0.

Therefore, a (3,5)-neighbor of C is extremal. The generator matrix of that code is:
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(1 1 1011101010000 0]
1001 111101010000
100000001 1221020
01 111001 1100271200
)= |0 1T TO0 10002 0
000001001 1222221
0 2200000000000 00
0 0020002000000 00
2200020020000000
(2002020002000000

where B stands for (3,5)-neighbor of B.

2.3.1. Testing the algorithm

Before we test the actual implemented algorithm described in the previous section, we
will analyze how the order in which matrices B are chosen impacts the performance of
the algorithm.
We have seen that every matrix B is uniquely determined by its upper diagonal ele-
ments by the condition (2.6). Therefore, we can identify each k x k matrix B with the
k(k—1)

binary sequence n (B), of length ==—, that consist of the upper diagonal elements of B,

in the following way:

[0 bip bz -+ big ]
* 0 Dby3z -+ by
B=|: + . : < n(B)=(b12,b13, b1, b2z, ,boj, - bi—1) -
* Kk o 0 bk
x x * e 0 |

We also know, from (2.8), that if B’ is a neighbor of B, then B and B’ differ in exactly one
element in the upper diagonal. Therefore, the binary sequences n(B) and n (B’) differ in

exactly one coordinate. So, for the code C(!) of the dimension , the corresponding search
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space can be presented by the @—hypercube graph whose set of vertices is given by

sequences n (B). Also, from the sequence n (B) that have ¢ coordinates equal to 0, we can
determine the minimum Euclidean weight of # neighbors of B that have r — 1 coordinates
equal to 0.

First we will discuss the situation when the matrices B are chosen in the lexicograph-
ical order. Since vertices in the same partition are not adjacent, we have to check all
the vertices in one of the two partitions. This means that the number of calculations of
minimum Euclidean weights would be 2@’1 (the half of the search space, since each

partition of hypercube graph is of the same size). In order to give more detailed analysis

of this case, we present the following example.

Example 2.3.9. Let us consider the 4-hypercube graph. This length of binary sequences
n(B) cannot occur in described construction, since equation @ = 4 have no integer
solutions. Still, this example is small enough to demonstrate the main idea behind the
lexicographic traverse of the search space. In Figure 2.1 the search space is given. The
vertices with the same number of ones are positioned between red lines. In the right side

of the figure, the number of ones for that set of vertices is given.

Figure 2.1: The search space for the sequences of length 4

With arrows on the edges of the graph we marked the visibility of each vertex from
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other vertices. Precisely, for x and y two vertices in the given figure, with an arrow that

starts in x and ends in y we denote that the minimum Euclidean weight of y can be deduced

from x. The lexicographical order of the set of vertices is given as follows:

0000,0001,0010,0011,
0100,0101,0110,0111,
1000, 1001,1010, 1011,

1100,1101,1110,1111.

In Table 2.5, we give the lexicographic traversal of this graph.

Step Current Checked vertices Total number
vertex in step of checked vertices
1. 0000  0000,0001,0010,0100,1000 5
2. 0011  0011,0111,1011 8
3. 0101  0101,1101 10
4. 0110 0110,1110 12
5. 1001 1001 13
6. 1010 1010 14
7. 1100 1100 15
8. 1111 1111 16

Table 2.5: Steps of the algorithm for the lexicographical traverse of the search space

We can observe that the size of the search space is 24 = 16, and that the number of

calculations of minimum Euclidean weights needed to cover the whole search space is 8

(half of the size of the search space). Also, notice how the vertices with odd number of

ones are covered by the vertices with even number of ones.
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We will now discuss the random order of traverse of the search space. First, we give

the following example.

Example 2.3.10. Let the search space be the same as in Example 2.3.9. Assume that the

order of traverse of search space is given with the following random order of vertices:

0110, 1100, 1000, 0000,
0011,1111,1010,0001,
0100,1001,0101,1110,

0111,0010,1101,1011.

For this order, the traverse of search space is given in Table 2.6.

Step Current Checked vertices Total number
vertex in step of checked vertices
1. 0110  0110,0111,1110 3
2. 1100  1100,1101 5
3. 1000  1000,1001,1010 8
4. 0000  0000,0001,0010,0100 12
5. 0011  0011,1011 14
6. 111 1111 15
7. 0101 0101 16

Table 2.6: Steps of the algorithm for the random order of traverse of search space

We can see that for this order of traverse of the search space, we get that the number

of the calculations of the minimum Euclidean weight needed to cover the whole search

space is 7. This is better than in Example 2.3.9.

From the previous example we have seen that the random traversal can preform better

than the lexicographical one. This is because vertices of the graph can be chosen from
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both blocks of partition, while in the lexicographical traversal they are always taken from
one block of the partition. This property of the random traversal becomes more noticeable
with larger search spaces. With that said, we will now give some statistical analysis of the
random traversal of the search space of size 2@, and k € {4,5}.

For k = 4, the size of the search space is 2° = 64. In this case, the binary sequences
n(B) are of length 6. The lexicographic traversal of search space needs 32 calculations of
minimum Euclidean weights in order to cover the whole search space. We randomly gen-
erated 1000 traversals of the search space, and determined the number of calculations of
minimum Euclidean weights needed to cover the search space for each of these traversals.
We get that the average number of calculations is 24.58. The maximum number of calcu-
lations that was needed was 36, and the minimum number was 23. The mean value of the
numbers of needed calculations of minimum Euclidean weight was 27. Among the gen-
erated 1000 traversals, 15 performed worse than the lexicographic one, which amounts to
1.5% of the generated ones.

For k = 5, the size of the search space is 2!0 = 1024. In this case, the length of the
binary sequences 7 (B) is 10. The lexicographic traversal needs 512 calculations of mini-
mum Euclidean weights in order to cover the whole search space. As in the case for k =4,
we generated 1000 traversals of the search space. The average number of calculations of
the minimum Euclidean weight needed to cover the search space was 356.659. In the
worst case, that number was 380, and in the best case 335. The mean value was 357. We
can see that in this case, all of the generated traversal orders performed significantly better

than the lexicographical one.

We will search for extremal and near-extremal Z4-codes that have dimension of the
residue code at least 6. Based on the previous discussion, it is reasonable to use a random
choice of matrices B instead of the lexicographical order. In addition to the discussed,
another reason why such order makes sense is the uneven distribution of extremal and
near-extremal Z4-codes in the search space. We have seen in Example 2.3.9 that, when
the lexicographic order is used, vertices in the search space are covered layer by layer,
1.e., first all vertices without ones, then vertices with two ones, etc. This means that a lot

of time could pass until extremal and near-extremal Z4-codes that have generator matrix
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G (B) with small number of 0 are reached. With random order approach, we will get the

wider sample of codes in the same execution time.

For the end of this discussion we will present the performance of the modified algo-
rithm on a [16,6,4] code given in Example 2.3.8, and compare it to the standard algorithm.
The algorithm was tested on the machine with an Intel(R) Core(TM) i7-6700HQ CPU @
2.60GHz processor, and 16GB RAM memory of frequency 2400MHz. The standard al-
gorithm finished in 155.844s. The modified method with the lexicographical order of
traverse completed in 200.860s. Up until 127.438s of the execution, the modified algo-
rithm performed better. Our method gets slower over time due to the exploit of unchecked
neighbors (see the last four steps in Table 2.5). We know that the calculation of the min-
imum Euclidean weight becomes time consuming even for codes of small lengths (for
example length 32), and that the search space grows exponentially with the increase of
the dimension of the residue code. Therefore, the impact of the slow down of the method
becomes negligible for codes that are yet unclassified.

As discussed before, in order to improve the number of checked codes per time, a ver-
sion of the modified algorithm with the random choice of matrices B should be used. This
modification of the order in which matrices B are generated improves the performance of
the algorithm. On the same example, we obtained the 95% of the codes in the 115.047s.
In 77s (= 50% of the standard algorithm execution time) the 13321 of the extremal Z4-
codes are constructed, which is 78.2% of the total number of extremal Z4-codes in this test
example. The comparison of modified methods and the standard method is given in Fig-
ure 2.2. One can also notice that the total execution time of the modified algorithm with
random approach is longer (= 400s). This happens due to the exploitation of the available
unchecked matrices B. Because the search space is large, we did not give complete order
of traverse as in Example 2.3.9 and Example 2.3.10, since that would be to demanding
for the memory of the computer. Instead, the new random matrix B is generated in each
step. As the most of the search space gets examined, the number of non-checked matrices
B gets small, so it takes longer to randomly find yet unchecked matrices B. As we have

already discussed, this does not present a problem for the codes of length 32 or greater.
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Figure 2.2: Comparison of the standard method (ST), the modified algorithm with lexico-

graphic traversal (MOD), and the modified algorithm with random choice of B (RMOD),

on residue code [16,6,4]
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3. CONSTRUCTION OF
2—(4n—1,2n—1,n—1) HADAMARD
DESIGNS FROM THE SKEW
INCIDENCE MATRIX OF A
HADAMARD 2 —(n—1,5—1,7—1)

DESIGN

In the previous chapters we have seen that the starting point of the construction of a self-
dual Z4-code is a doubly-even binary code. In Corollary 1.3.20 it was proved that the
incidence matrix of the Hadamard 3-design spans a doubly-even binary code. In this
section, we describe a new method of obtaining Hadamard 2-designs on 4n — 1 points,
starting from a skew incidence matrix of a Hadamard 2-design on n — 1 points. This
method gives a nice way to construct a series of Hadamard 2-designs from which we can
obtain doubly-even binary codes. In whole section we assume that » is a positive integer
and n =0 (mod 4).

Before the main construction, we give the following lemma. This construction as also

used in [2].

Lemma 3.1.1. Let By be a skew-symmetric incidence matrix of a 2-(n— 1,5 — 1,7 —1)

Hadamard design. Let J,_; be an all-one square matrix of order n — 1. For matrices
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By =B{, B, =J,_1 — By and B3 = J,_1 — By, the following hold:

n
BYBy ="J, 1 — 21 ~B{,

n
4
n n
BBy = (5= 1) a1+ Sl + B,
n n
BYBs = (5 =1) a1+ 1+ Bo,
n n
BIB; = <Z n 1) Jn1 =7l = Bo.

Proof. Let Zbea2-(n—1,5—1,% — 1) Hadamard design with incidence matrix By. Let
2’ be a dual design of 2, and let Z and 2’ be the complementary designs of designs
2 and 2’ respectively. With this notation, it is obvious that By, B, and B3 are incidence
matrices of designs 2’, 9" and 9. Since 2 is symmetric, the 2’ is also a 2-(n — 1,% —
1,% — 1) Hadamard design. Since 2’ and 2 are complementary designs of designs with

parameters 2-(n — 1,5 — 1,7 — 1), they are symmetric designs with parameters 2-(n —

,5,7)- Notice that r = k for all defined designs, since all of the designs are symmetric.

Now from Theorem 1.1.7 we have:

n n n n n
BYBy=B'B, = <Z_ 1) Joo1 + (——1——+1> Iy = (-— 1) Jor+ 2Ly, (3.

2 4 4 4
BB, —BTB,="J _ ('1—2)1_ LY 2
2 D) 303 4Jn 1+ ) 4 n—1 4Jn 1+4n1 (3 )

For the incidence matrices By and B3 (of complementary designs) we have:

(3.1)
BIBy =Bl (J,_1—By) =BlJ,_ —BlB) =
W—/
rJn—1
r=4-1
n n n n n
= (5= 1) (Gt ) =g = 3hr
In the same way we obtain the relation for matrices By and B> :
n n
BiBy=Bi (o1 = B1) = ZJn1+ Jhut. (3.3)

Now we determine Bg B1. Since By is a skew symmetric matrix, and Bg = By, we have
T . ..
that BY B; = (Bj)" . Therefore, we have to determine Bj. From the definition of the skew

symmetric matrix, we know that By + By = J,,_1 — I,,_1. Therefore, we have:

(Bo+B1)* = (Juo1 —Ip_1)> = B3+ BoB| + BBy + B =J> | — 21 +1,_1 (3.4)
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The left side of the previous equation is:

T 3.1
B} + BB, + BBy + B} = B+ BoB} + B} Bo+ B} = B} + (B} Bo) " + BBy + B} ‘%

2 n_ n T n n 2

4
n n
= B3+ Bi+ (5 —2) It + Sk

4 4

Since J,%fl = (n—1)J,_1, the right side of the equation (3.4) is:
P =2l ==y —2dp ALy = (n=3) Iy 1.
Therefore, the equation (3.4) is equivalent to the equation:

n n
B34+ B+ (5 —2) St + 5l = (0 =3)Ju 1+ Dy

From where we get:

BB = (g—1> J,H+(1—g) - (3.5)

On the other hand, from B; = J,,_; — I,,_1 — By, we have:
B} =(Jy 141 1—Bo) =J> | +B3+1> | —JBy—BoJ —2J, | +2Bg =
n
— (= 1)dpy + B34 Ly —2 (5 - 1) Joot —2Jp_i +2By =
=BG +2Bo+ i1 — Ju-1
Now, when we substitute the previous relation into the equation (3.5), we get:
n n
BBt = (3 =1)dr (1-3) o,
n n
B+ B+ 280+ 1yt —Jut = (5= 1) dacr + (15 ) e,
1
2

2 n n
2B; = EJ,H — EI,H —2By/ -

n n
B = 2/n1 = 3h-1=Bo.

Therefore,

T n n T n n
BYBo = (B}) = (31— 3h-1=Bo) = 21— 2l — By

Now we give the proof of the remaining relations. By the definition of the B,, we
have:

By=Jp1—B1=Jp1—(Ju—1 =1 —Bo) =Bo+1,_1.
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Therefore:

n

T

n
BYB, = BY (By+1,_1) = BLBo + B = <Z _ 1) Jo 1+

Since BT = By, and B3 = J,,_1 — By, we have:

7 5 (N n n
B B3 = By (Jy—1 —Bo) = BoJ,—1 —Bj = (— — 1) Jn—1— (—Jn—1 — =L —Bo) =
—— 2 4 4

kjnfl

—1q

n n
= <4_1 - 1) Jn—1+ Zln—l + Bo.

Finaly, since B} = (/,— —Bg)T =J,_1 — By and B3 = J,_| — By, we have:

BYBy = (Jy_1 —Bo)* =J%_ | — Ju_1Bo—BoJu—1 +Bf =
S—— =

rJ$,1 kJy,—1
— n

n n n
= (1= 1)1 =2 (5 = 1) Jact+ 3dnm1 = 3l = Bo =

n n
= (Z + 1) Joo1— Zln_l — By.

Now we define matrices that will be used in the construction of Hadamard designs.
Let J3,—1 be a3 x (n—1) all-one matrix. Let Ay, A, and A3z, be a 3 x (n— 1) matrices

given as follows:

Let Ay =J3,-1 — A1, Ay = J3 -1 — Ay, and A3 = J3,,_1 — A3 Let By, By, B, and B3 be
matrices defined as in Lemma 3.1.1. Let O be an (n — 1) x 3 zero matrix. Define the

following matrices:

[ L Jin1 A1 Ay Az ] [ L J3,1 A Ay Az ]
I3 A
Hi=| AT . H=| A :
AT D Al D
| A3 ] Y ]

62



Construction of 2 — (4n—1,2n— 1,n — 1) Hadamard designs from the skew incidence
matrix of a Hadamard 2 — (n—1,5 — 1,7 — 1) design

where D is a square block matrix of order 4n — 4, of the form:

11

Biz Bi3 Bi4
B B B

l5 lg 7 1

oo

> ®

1o

i1

iv Bi, Bi, Bip,
B, Bi. B

=)

i3 i14 i15 i16

with the possibilities for the combinations of indices i;i> .. .71 given in Table 3.1.

Table 3.1: The combination of indices for the matrix D

H,

H,

0000003303030330
0000003303031221
0000003303120321
0000003312031230
0000003312121221
0000012302131221
0000102312121320
0000112212121221
0001003203020331
0001003212021231
0001012202120331
0011002203030330
0011002203031221
0011002203120321
0011002212031230
0011002212121221
0111002302120320
0111012202120221

0002003103010332
0002003112011232
0002012102110332
0003003003000333
0003003003001222
0003003003110322
0003003012001233
0003003012110333
0003003012111222
0003012002100333
0003012002101222
0003013112110232
0003103113010333
0003103113011222
0012002103110322
0012002112001233
0013012103100222
0112012102110222
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The following proposition holds.

Proposition 3.1.2. Let By be an incidence matrix of a Hadamard design with parameters
2—(n—1,5—1,%—1). If By is skew-symmetric, then the matrices H; and H; are the
incidence matrices of 2— (4n—1,2n— 1,n— 1) designs, for any combination of the indices

given in Table 3.1.

Proof. In order to prove that each point is incident with 2n — 1 blocks and that any two
points are incident with n — 1 blocks we will use the relations given in Lemma 3.1.1.

Since By and B; are incidence matrices of 2- (n —-1,5-1,7— 1) designs, and B, and

n

Bs are incidence matrices of 2-(n— 1,5, %) designs, from Theorem 1.1.7 we have:

n n n n
BBy = BB, = (Z _ 1) Jor+3ht, BYBy=BYBy = Lhu 4Tl

Let D be the matrix obtained from H; and the third row of Table 3.1. The scalar product

of each block column of H; with itself gives the following identity:
B+Jp-1J3, 1 +AA] +AAT + A3AT = (n—1)J3+nl3,

for the first column, and the following identities for the remaining block columns, respec-

tively:

B3 u 131 +4B{By = (n—1)J3+nk,
ATA1+2B{ By + 2By By = (n— 1)J3 +nls,
ATA>+BYBy+BiBs + BBy + BYBy = (n—1)J3 +nl3,

AYA3 +BIBo+BiBs +BIBy + BIB; = (n—1)J5 4+ nls.

All the diagonal entries are equal to 2n — 1, which proves that the number of points that
are incident with each block is k = 2n — 1.
It remains to check the product of the two different block columns of H;. The product

of the first block column with the second, third, fourth and fifth block column, respec-
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tively, gives the following:

B3J3p—1+J3,-1Bo+A1By +A2By+A3By = (n—1)J3 41,
LA +J3,-1Bo+A1By+AxB3 +A3B3 = (n— 1)]37,1,1,
BAy+J3,—1Bo+A1B3+A2B1 +A3B3 = (n—1)J3 1,

LA3+J3,-1By+A1B3 +AxBy +A3B) = (n — 1).]37,1_1.

The product of the second block column with the third, fourth and fifth, respectively, is

determined as follows:

J3, 1A1+2B(Bo+2B{ B3 = (n—1)J,_1,
JL A2+ BYBo+ BYBs + BY B+ BY By = (n—1)J,1,

J3 . 1A3+B{Bo+B{Bs+B{By+BiB = (n—1)J,_1.

The products of the third block column with the fourth and fifth, respectively, are:

ATAy +BIBo+BlBs +BiB1 +BiBy = (n—1)J,_1,

ATA3 +BIBy+BiB; +BIB, +B{B1 = (n—1)J,_1.

Finaly, the product of the fourth and the fifth block column is:

ATA3+BYBy+BiB3; +BB, +BSB) = (n—1)J,_1.

This completes the proof for H; with the selected block matrix D, given by the third row
of Table 3.1. In a similar way it can be shown that the statement is valid for all other

indices in Table 3.1, for both H; and H;. |
Let us observe the following example.

Example 3.1.3. Let SHg be a Hadamard matrix of order 8 from (1.1). In Example

1.2.13 we constructed normalized Hadamard matrix equivalent to the SHg, and then used

65



Construction of 2 — (4n—1,2n— 1,n — 1) Hadamard designs from the skew incidence
1) design

matrix of a Hadamard2 — (n—1,5 — 1,7 —

Theorem 1.2.10 to obtain a skew-type incidence matrix of the corresponding Hadamard

2—(7,3,1) design. The obtained matrix is:

0
0
0
1
0

1
1

1
0
0
0
1

0
1

1 010

1
0
0
0
1
0

1
1

0
0
0

1

0
1
1

0
0
0

1
0
1
1
0
0

(en)

0

Since By is skew-type matrix, we can use it to construct incidence matrices of 2 —

(31,15,7) designs by Proposition 3.1.2. The matrices By, B, and B3 from the proposition

are: ~ _ ~ _
0001011 1110100
1000101 01110710
1100010 0011101

Bi={0 11000 1[,Bo=[1001110[,
1011000 0100111
0101100 1010011
0010110 110100 1]

(3.6)

0
01 01110
00101171

Here we will construct the incidence matrix of designs obtained from the block matri-
ces Hy and H, and the third row of Table 3.1. First we construct the matrix H;. Since the

third row of Table 3.1 is 0000003303120321, the corresponding matrix H is of the form:

66



Construction of 2 — (4n—1,2n— 1,n — 1) Hadamard designs from the skew incidence
matrix of a Hadamard 2 — (n—1,5 — 1,7 — 1) design

L S, Al Ay Aj
Ji..1 Bo Bo By By
Hy=| AT By By Bz Bj
AT By Bz By B

AT By B3 B, B

Let Z be a design with incidence matrix H;. If we transpose the matrix H; we will

get incidence matrix of the dual design 2’

L J3u1 Al Ay Az L J3u-1 Al Ay Ajz
Ji.1 By By Bf Bj Ji.1 B B B B
H =| AT ' B BT BT |=| AT B, B B B
AT BY  BY Bl BI AT By By By B;
| AT Bj B} B} Bl | | Al B By B3 By |

Since SHg is equivalent to SHST , the matrices By and Bg = B; are incidence matrices of
isomorphic designs. Therefore, by Theorem 1.1.11, we can obtain By and Bj, from each
other, by some permutation of columns ¢ and rows 7. Since B, is incidence matrix of
a complementary design of the design with the incidence matrix By, and Bj3 is incidence
matrix of a complementary design of the design with the incidence matrix By, we can
obtain B3 and B», one from another, with the same permutations ¢ and 7. Notice that
matrices J3 ,—1, A1, Ay and A3 are invariant to the column permutations. This gives that
J3T7 1> AT, AzT and Ag are invariant to the row permutations. Therefore, if we apply
permutations ¢ and 7 on each of the last four block rows and block columns of HIT , we
will obtain the matrix H;. Therefore, design & is self-dual. For given By and Bj in (3.6),
and 0 = 1= (27)(36) (45) we have:
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0110100 00071011
00110710 0010110
0001101 0101100

Bo=|1 000110 8" |1011000
010001 1 0110001
1010001 11000710
110100 0 10001 0 1]
(00010 1 1] (0001 01 1]
00101710 1000101
0101100 11000710
1011000 °°8™ 011000 1| =38
0110001 1011000
1100010 0101100
10001 0 1] 00101 1 0

Now we will construct the matrix H,. The third row of Table 3.1 for the matrix H> is

0002012102110332. Therefore, the corresponding block matrix H is of the form:

L Ji,o1 A1 Ay Az

Ay By Bo By B>
H2: A_QT B() Bl Bz Bl
A_lT By By By B

O By B; By B

L Jin1 Az Ay A L Jin1 Az Ay A
AT BY  BY BY Bl AT By By By By
Hy =| AT BT BT BT Bl |=|Al B, By B; B,
AT Bl Bl BT BY AT By B3 By B
| 0 B Bl Bl B | | O B3 By By B3|

We can immediately see, from the first block column, that the matrix H2T does not have



Construction of 2 — (4n—1,2n— 1,n — 1) Hadamard designs from the skew incidence
matrix of a Hadamard 2 — (n—1,5 — 1,7 — 1) design

the same form as the matrix H,. Therefore, the corresponding design is not necessarily

self-dual.
Based on the discussion in the previous example, we give following remark.

Remark 3.1.4. If the matrix By from Proposition 3.1.2 is an incidence matrix of the
self-dual design, then all the designs obtained from H; and indices given in Table 3.1 are
self-dual. So, in this case, this construction gives at most 54 non-isomorphic designs. If
By and Bg are incidence matrices of non-isomorphic designs, then the duals of designs
obtained from By and H; are constructed from Bg and H;. Therefore, in that case, at
most 108 non-isomorphic designs can be constructed from By and Bg , at most 54 from

the matrix By, and at most 54 from Bg .
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4. CONSTRUCTED CODES AND
RELATED COMBINATORIAL

STRUCTURES

This chapter contains the computational results of our work. The chapter is divided in to
three parts. In the first part, we give results about extremal and near-extremal Z4-codes
of smaller lengths: 32, 40 and 48. The second part consists of partial results on codes
of lengths 56, 64, and 72. In the last part of this chapter, we give an overview of the
constructed combinatorial designs and strongly regular graphs from the codes obtained
in the first part of this chapter. For the construction of Hadamard designs and their full
automorphism groups we used the software GAP [50]. Rest of the computations were

done by MAGMA [8].

4.1. CODES OF LENGTHS 32, 40 AND 48

Codes of length 32

Up to equivalence, there is only one Hadamard design on 7 points with a skew incidence
matrix. This design can be constructed from the skew-symmetric Hadamard matrix SHg
given in (1.1). From that matrix, using Proposition 3.1.2 we constructed 54 Hadamard
designs with parameters 2 — (31,15,7). From the block matrix H;, we obtained 18 de-
signs 21, %s,...,%18. Designs (25, 99), (P4,%212), (D5, 214), (D6, P11), (Z7,%17),
(28, 213), (P10, Z13) are pairwise dual. From the block matrix H, we obtained 18 de-

signs Yo, ..., D6, and their duals Z37,. .., Ps4. The structure of the full automorphism
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groups of designs %y, %5, ..., P54 is given in Table 4.1.

The size of The structure Designs
the group of the group
9999360 PSL(5,2) 2
64512 (E¢s : PSL(3,2)) : S5 D2, Dao
8064 (E¢s : Z01) : Zg Dy, D18, D6, Dsa
2688 (Zy : Egq) : Froby D16
336 SL(2,7) 7
336 E1s : Froby, Do, Da, D5, Do, Dr2, P14, P19

Drs, V31, P33, P37, Da3, Pao, D51

126 Froby; x S3 D3, Dy

42 Zy x Froby, De, D1, %11, P15, P17, D1, Doa, Do
D1, 928, P9, D32, P34, P35, P39,

Daz, Das, Yas, Das, Dar, D50, D52, D53

21 Froby; Do, P13, D0, P30, D38, Dasg

Table 4.1: The structure of the full automorphism groups of 2 — (31,15,7) designs

Let Z,..., %%, denote the corresponding Hadamard 3 — (32,16,7) designs. From
designs 77, ..., Y5, we obtained 21 inequivalent doubly-even binary codes: C3; 1, C32.2,
..., C3221. The dual codes of all of the constructed codes have minimum weight 4. There-
fore, by Lemma 2.1.14, all of these codes are suitable for the construction of extremal and
near-extremal Z4-codes. The classes of the designs that give inequivalent codes are given
in Table 4.2. The weight distribution of codes C331,C322,...,C3221 are given in Table

4.3. The code denoted with C3; ; is the RM (1,5) code.
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Codes of lengths 32, 40 and 48

The The The

code Designs code Designs code Designs

Ca,1 4 Cag P> V36 G215 D37 D515 Ds4
Ca D3, 95. g Ca9 Do Do1» Y35 Canie Py Dior Dap» s3
Cns 95,95, 2, 7 Cs,10 D3, Cx.17 Do

Coa 5. 7795 75 Caon Dr3» Dre» D7 Cas D31> Dias
G325 D5 Dy Co12 Doy Dos: Doy 731 C219 Dy Yiz» Zis» Zao»
Coe Do Z11- %17 Caz Dao Do P33 Py Ci2.20 Dis

C7 ZN C32,14 D33 C201 D1, Dig» D0

Table 4.2: Classes of designs that give codes C3;.1,C32.2,...,C3201
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Codes of lengths 32, 40 and 48

Code [n,k,d] 0 4 8 12 16
Cni  [32,6,16] 1 62
C32,C307  [32,9,8] 1 28 454
Cns  [32,12,4] 1 28 84 420 3030
C34 [32,15,4] 1 56 924 3976 22854
Cins 32,9,4] 1 7 49 398
Cap [32,15,4] 1 42 560 5558 20446
Cng  [32,10,4] 1 14 4 98 790
C30,C13 [32,16,4] 1 56 1180 11144 40774
Cnio  [32,7,8] 1 4 118
Con [32,10,8] 1 2 112 734
C3,12 [32,13,4] 1 28 228 868 5942
Cou  [32,10,8] 1 60 902
C32,15 [32,10,4] 1 8 28 56 838
Ciuie [32,16,4] 1 120 1820 8008 45638
Co.17 32,7,4] 1 1 7 110
Cnis  [32,104) 1 8 7 140 712
C32,19 [32,13,4] 1 36 196 924 5878
C3220 (32,10,4] 1 1 42 63 810
C31 [32,16,4] 1 50 1120 11438 40318

Table 4.3: Parameters and weight distributions of codes C331,C372,...,C3221 of length

32

By using the standard search algorithm on codes C32,1,C372,...,C32.21 we obtained
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extremal Z4-codes given in Table 4.4 (Type I), and Table 4.5 (Type II). All extremal Z4-
codes obtained from one binary code given in Table 4.5 have the same Euclidean weight
distribution. In that table, in the column Ejg, the number of codewords of Euclidean
weight 16 for each of the codes is given. Codes in Table 4.5 were used for construction
of extremal Z4-codes in [1].

As stated in Proposition 2.1.19, extremal Z4-codes obtained from C3; 1 are equivalent
and known. Known extremal Zs-codes of types 472!3, 49214 and 410212 have residue
codes of minimum weight 4 (constructed in [28]) or 12 (constructed in [1]). Extremal
Zy-codes given in Table 4.5, have residue codes of minimum weight 8. Therefore, these
codes are not equivalent to the previously known extremal Zj-codes. These extremal

codes can also be found in [2].

The binary  The number of obtained At least The The binary
code extremal Z4-codes inequivalent  type  residue code
Cx3 13 10 41228 [32,12,4]
Cx4 6 6 41522 [32,15,4]
Cas 35 2 410212 [32,10,4]
Ca.12 5 5 41326 [32,13,4]
Ca.15 210 2 410212 [32,10,4]
C.16 272 240 41620 [32,16,4]
Ca.1s 44 1 410212 132,10,4]
C32.19 188 177 41326 [32,13,4]

Table 4.4: Extremal Type I Z4-codes of length 32 from C33 1,...,C3221
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The binary The number of obtained  The Eg The binary

code extremal Zg-codes type residue code
Cs21 118 46220 128216  [32,6,16]
Cxp 114 42214120152 [32,9,8]
Cx7 91 42214120152 [32,9,8]
C32,10 296 47218 123608  [32,7.8]
C3.14 304 410212119576 [32,10,8]

Table 4.5: Extremal Type II Zy-codes of length 32 from C3, 1,...,C32.21

As one can observe from Table 4.4 and Table 4.5, there are binary codes from which
no extremal Z4-codes were found with the standard search algorithm. On these codes we
applied the modified search algorithm with the random choice of B. We successfully con-
structed extremal Z4-codes from all those codes. The summary of the obtained extremal
Zy4-codes is given in Table 4.6. The non-equivalence of the codes with the same residue
code was determined form their Euclidean weight distribution. The Type II codes, from
this table, of types 47218 49214 and 410220 have residue codes with minimum weight 4,
and are not equivalent to the extremal Zj-codes constructed in [1].

The Type 1l Z4-code obtained from the code C3; 17 is of type 47218 The binary code
(32,17 1s equivalent to the residue code of the known extremal Z4-code of type 47218
(B32,7 from [28]). Also, Type II extremal Z4-code constructed from C3; 17, and the code
from [28] both have Ej¢ = 125080. This means that they may be equivalent codes. The
Type 1l Z4-code obtained from the code C3; 5 is of type 4°214 The known extremal Z4-
code of that type from [28] have the residue code that have 4 codewords of Hamming
weight 4. Therefore, known code and extremal Type II Z4-code constructed from Cs3; 5
have nonequivalent residue codes. This means that the Type II Z4-code constructed from
C3p5 is new. Type II Zy-codes of type 419220 are constructed from C32,11 and C3220.
The code constructed from C3; 11 is new since its residue code have minimum weight 8.
The known extremal Z4-code of this type from [28] have the residue code B3; 19, which

have 10 codewords of weight 4. Since C3 59 have only one codeword of weight 4, B33 19
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and C37 ¢ are nonequivalent residue codes. Therefore, obtained Type 1I Z4-codes of type
410220 are new. We obtained Type II extremal Z4-codes of type 41927 from the code
C326. The known extremal Zy-code of that type (constructed in [28]) has the residue
code with 72 codewords of weight 4. Therefore, extremal Type II Z4-codes of type 41322
constructed from Cs; ¢ are not equivalent to the extremal Z-code from [28]. Also, all
355 extremal Type II Z4-codes of type 4!°2% constructed in [12] have residue codes of
minimum weight 8. Therefore, extremal Type II Z4-codes constructed from C3; ¢ are
new.

The 54 known extremal Type I Z4-codes of type 416 constructed in [22] have residue
codes of minimum weight 8. Therefore, extremal Type II Z4-codes of type 4'© constructed
from C3 9, C32,13 and C3; 21 are not equivalent to those codes. Among the 80 Type II ex-
tremal Z4-codes of type 416 constructed in [28], codes denoted by D334, D3y 5, D336 in
the same paper, are equivalent to the codes C32 9, C32 13 and C3 1. The known extremal
Z4-code constructed from Ds3; 4 have Ejq = 110678, and extremal Type II codes con-
structed from C3; 9 have the following values of Ej6:110756, 110808, 110844, 110708,
111424, 110664,110800, 110980, 110632, 110772, 110948. Therefore, these codes are
new. The known extremal Z4-code constructed from D3; 5 have E1g = 110984, and ex-
tremal Type II codes obtained from C3; 13 have the following values of Ejg: 110784,
110888, 111032, 110440, 111016, 110784, 110536, 110608, 110480, 111240, 111200.
So, this codes are also new. Finally, the known extremal Z4-code constructed from D3; ¢
have Ej¢ = 110928, and extremal Type II codes constructed from Cs;>; have one of
the following values of E14:110918, 110546, 110574, 110714, 110626, 110374, 110770,
110346. Thus, these codes are also new.

As stated in Section 2.1.1, to the best of our knowledge, extremal Type I Z4-codes of
length 32 were not yet explicitly constructed. Therefore, the codes given in Table 4.4 and

Table 4.6 are the first such codes.
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The binary  The number of obtained At least non At least non The The binary
code extremal Z4-codes equivalent Type I  equivalent Type I  type  residue code
Css 1664 2 1 49214 [32,9,4]
C 27 0 27 41572 [32,15,4]
Cs2.9 11 0 11 416 [32,16,4]
Cs2,11 409 0 1 410212132 10, 8]
C32,13 11 0 11 416 [32,16,4]
Cs2.17 4800 2 1 47218 [32,7,4]
C3220 1483 7 5 410212132 10,4
Ca21 8 0 8 4l [32,16,4]

Table 4.6: Extremal Z4-codes of length 32 obtained with the modified search algorithm

from C32’1, e ,C32721

Codes of length 40

On the length 40, the construction of Hadamard designs on 39 points by Proposition 3.1.2

is not possible since the order of the starting skew Hadamard matrix should be:
39=4n—-1=n=10.

This contradicts the necessary condition given in Theorem 1.2.7. Therefore we used
incidence matrices of Hadamard 2 — (39, 19,9) designs, from [15], given in Table A.1. Up
to the isomorphism, we obtained 11 designs denoted by %1, %, ..., Z11. The structure of

the full automorphism group of these designs is given in Table 4.7.

The size of  The structure Designs

the group  of the group

57 Zyg : Z3 D, Do, D3, Da, D5, D, D7, D

171 Z]g IZg @9, -@105 @]1

Table 4.7: The structure of the full automorphism groups of 2 — (39, 19,9) designs Z,%,
. .@1 1
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From these designs we constructed the corresponding 3 — (40,20,9) Hadamard de-
signs 27,95, ..., 9}, from which we constructed 3 nonequivalent doubly-even binary

codes Cy,1, C40,2, C40,3. The weight distribution of these codes is given in Table 4.8.

The Code  [mk,d] 0 4 8 12 16 20

Cs0,1,Ca02 [40,20,8] 1 0O 285 21280 239970 525504

Cy03 [40,20,4] 1 190 4845 38760 125970 709044

Table 4.8: Parameters and the weight distribution of binary codes Cy 1, C40,2, Cs03 Of

length 40.

The codes Cy,1, Ca0,2, Ca03 are self-dual (so, they are given in [4]). All three codes
C40,1, C402, C40 3 satisfy Lemma 2.1.14. As stated in Section 2.1.1, in [32], from each of
94343 binary self-dual codes of length 40, one extremal Type II Z4-code is constructed.
We reconstructed these known extremal Z4-codes and identified those codes that have
residue code equivalent to Cy.1, C402, Cs40,3. In Table 4.9 for these known extremal Z4-
codes, the number of codewords with Euclidean weight 16 is given. In Table 4.10 we
give the summary of results on extremal Z4-codes that we constructed from codes Cyo 1,
C40,2, C40,3. All of the extremal Z4-codes constructed from Cyg 1 and Cyg > are Type I Zy-
codes. From Cyg 3 we constructed 3 codes of Type II, and 4090 codes of Type I. Extremal
Z4-codes constructed from Cyo 1 have one of the following number of codewords of the
Euclidean weight 16: 34552,34540,34584,34596,34794,34850,34992. The extremal
Z4-code constructed from Cyg > have 34570 codewords of the Euclidean weight 16. Type
II Z4-codes constructed from Cyg 3 have one of the following number of codewords of
minimum weight 16: 24030,25214,26014. Therefore, by the comparison of the number
of codewords of Euclidean weight 16 in each constructed code with numbers given in
Table 4.9, we conclude that all constructed codes of Type II are new.

Also, as it is stated in section 2.1.1, in [9], Type I extremal Z4-codes of type 420 were
constructed from the self-dual codes of length 40 and minimum weight 8. Since Cyo3

have the minimum weight 4, all of 4090 Type I codes constructed from Cyg 3 are new.
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The binary ~ Number of codewords

code of Euclidean weight 16
Ca0.1 34730
Ca0,2 34694
Ci03 25918

Table 4.9: Known extremal Z4-codes with residue codes Cy.1, Ca0,2, Cs03

The binary The number of obtained At least non

code extremal Z4-codes equivalent
Cy0,1 7 7
Cao2 1 1
Cy0,3 4194 4093

Table 4.10: New extremal Z4-codes of length 40 obtained with the modified search algo-

rithm from Cy,1, C40,2, Cs03

We also used the residue codes of the known extremal Z4-codes from [3] and [28].
We were specially interested in finding the new extremal Z4-codes of types 47226, 410220,
411218 415210 and 41628 since the small number of the existing extremal codes is known
(see Section 2.1.1).

In Table 4.11, the weight distributions of the starting binary residue codes Cyq 1, Cyg 5,
o C4’107 11 are given together with the reference where the original extremal Z4-codes were
constructed. To find the new extremal Z4-codes we used the modified search algorithm
with the random choice of B. We denote the already known extremal Z4-codes constructed

~

in [3] and [28] with 5/4071,5/4072, .. ,C/40711.
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Codes of lengths 32, 40 and 48

Code Reference [n,k,d] 4 12 16 20
o [28] 40,7, 12] 1 11 102
Chonr 28] [40,7, 16] 15 96
Chos 28] [40,10,4] 6 10 150 688
Clhos 3] 140,10, 12] 18 223 540
CZO’S [28] [40,11,4] 10 22 313 1344
Cloe 3] [40,11,12] 34479 1020
20’7 [3] [40,11,12] 42 447 1068
Cfms [28] [40, 15,4] 37 688 5296 20374
Clos [3] 140,15, 8] 634 7589 16300
4"07]0 [3] [40,15,8] 658 7529 16380
o [28] 140,16, 4] 47 1548 10694 40330

Table 4.11: Parameters and weight distributions of residue codes of the known extremal

Z4-codes of length 40

In order to determine whether constructed Type II Z4-codes are equivalent to the al-
ready known Type Il Z4-codes, we compared their Euclidean weight distributions. Eu-
clidean weight distributions of the known Type Il Z4-codes CN”40,2,CN”40,3, ... ,CN”40711 are
given in Table 4.13. The Euclidean weight distribution of the code C 40,1 18 omitted since

the generator matrix from [28, p.15] (matrix A) does not give the extremal Z4-code.
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The Code Euclidean weight enumerator

Claon 1 4 16870x'0 4 39688320x2* + 2429343405x3% + 42212779392x*0 + 164801312200x*8 + 345272568960x + 338185000530x%* + 160981226880x7 +
3830843254850 +5635777920x38 + 1176862290x%¢ 4 366779520x104 + 87338440x112 + 13235584x'20 4 1203885x128 4 59520x136 4 15105144 4 X160

Cla03 1+ 21758x10 + 38847568x2* + 250907170932 + 39073052496x*0 + 171518064728x*3 4 344199907472x°¢ + 333515582530x% + 161003303056x7% +
40401241060x30 + 6130536176x38 491421373017 4 174965232x10% 1+ 29106744x12 + 3405872x120  290045x128 + 16944x1360 4 654x144 4 160

Claos 1+ 32566x10 + 3778547202 + 256846314932 + 37609444864x*0 + 173720402952x*3 + 346388958336x°C + 329044725458x%* + 160738711808x7% +
42377857284x%0 4+ 6325930112x38 + 618755026x% + 67322880x104 + 11421960x" 12 + 1657728x120 + 150573x128 4 7424x136 4 182,144 4 160

Claos 1+ 22558x10 - 38737280x24 + 2521538909x32 + 38634022880x + 172365506360x*8 + 344327711552x%0 + 332610202882x04 + 161003382048x72 +

777199172x°" + 7088x°° +861277666x° + x T +21787224x 1 + x4+ 197053x“° 4 x 7P 4526 +x

40777199172x30 4+ 6202617088x38 + 861277666x7 4 145043488x10% +21787224x112 + 2369088x120 + 197053x128 + 12000x136 + 526x144 4 x160

Claoe 1 4 3457410 4 37647488x2* + 257860862132 + 37262591168x* + 174364802408x*8 + 346560136704x7 + 328290267282x%* + 160685141312x7% +
42737367636x30 + 6374556288x58 4 569181714x%0 +44439360x'04 4 5944040x" 12 4 830208x!20 4 75117x!28 4 3776136 4 78x144 4. 160

Clao7 1 + 33406x'0 + 37646112x2% + 2578273965x32 + 37294058496x*0 + 174352264264x* + 346399629024x°0 + 328468693650x%* + 160747916352x7% +
42617396820x30 + 6375454944x88 4 586281426x0 +47023488x'04 4 6045832x! 12 4-830752x120 4 75501x128 4 3648136 4 945144 4. (160

Claos 1 + 26402x10 + 38052240x2* + 2565874765x32 + 37587377808x*0 + 174225886616x* + 344987924048x°C + 330164667570x%* + 161029812048x7% +
41754580556x30 + 6358235568x88 4 717685170x%° +74108080x'04 4 6846488x!12 4 510576x120 4 37197x128 4 2416x136 4 2265144 4 160

Cla00 1 + 34657x10 + 37536172024 + 2587364639x32 + 36984523448x%0 + 174941725730x* + 346506811348x7¢ 4 327834443124x% + 160708302096x7 +
42918028796x30 + 6419695764x88 4 545067032070 +26988984x104 4+ 1040638x" 12 4 60268x20 4 4819x!28 4 256x130 4 3,144 1 160

Ca0.10 1+ 34935x10 - 37526464x2% + 258748496932 + 3698336352000 + 174945596152x*8 4 346501952032x7° + 327834384942x04 + 160714043360x72 +
42913291758x30 + 6420260096x58 + 54579050200 +26829184x104 4+ 1006624x" 12 4 58144x120 4 4865x28 42245130 4 35144 1 160

Caont 1 4 27298x'0 4 37891608x2* + 2572582549x32 + 37452837944x*0 1 174441135808x*8 + 345136040376x0 + 329804112474x%* + 161014813400x7> +

41911514068x30 + 6376040904x38 4 694147082x%° + 64878888x10% 4-5246992x! 12 4-333928x120 122789128 1 1480x136 4 186x144 4 5160

Table 4.13: Euclidean weight enumerators of extremal Z4-codes (,N” 40,2, (,N” 403+ ,CN” 40,11

The information about constructed extremal Zj-codes (of Type I and Type II) is sum-

marized in Table 4.14. The Euclidean weight distribution of all constructed extremal

Z4-codes from 5’4071,5’4072, . ,5’40711 are given in Table 4.15. By the comparison of

Euclidean weight distributions in Table 4.13 and Table 4.15 we can conclude that all ex-

tremal Type II Z4-codes, except one constructed from Cy ¢, are new.
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The binary = The  The number of obtained At least non At least non
code type extremal Zj-codes equivalent Type I  equivalent Type II
Cio, 47226 488 4 1
Cho2 47226 959 3 0

403 410220 17 6 0
o4 410920 129 3 3
Clos 411218 7 7 0
406 411218 31 0 5
407 411218 13 0 4
Clos 415210 37 17 0
Cloo 415210 7 0 7
Choqo 47210 9 0 9
Chont 41638 104 14 1

Table 4.14: Extremal Z4-codes of length 40 obtained with the modified search algorithm

! /
from C4071,...,C40711

The Residue Code Euclidean weight enumerator

1+ 8454x10 4+ 999424x20 1+ 19376768x2% + 199475200623 + 1203405741532 + 5269733376x30 + 25377213568x*0 + 42019012608x* +
81617493576x*8 + 133349277696x52 + 169562209408x°° + 1907360727040 + 166235588434x% + 129528987648x%8 4 80149538432x72 +

Chos 41936388096x7° +20152183908x%0 + 6279413760x3+ + 3837755264x58 -+ 423018496x72 + 11287545142 + 13287424x1%0 - 370247040104 4
147456x'98 1 87536712x! 12 4 13236608x!20 + 1204653x128 + 59264x130 4 542,144 4 160

1+ 10502x'0 + 1015808x20 + 19155584x2% + 199393280x28 + 121337130932 + 5206605824x30 + 25591000192x*0 + 41560276992x** +
82241885768x*8 + 132929224704x52 + 169319021696x°° + 191734284288x%0 + 164964771666x%* + 130382364672x58 + 80040044160x72 +
41505193984x76 4 20705272932x30 + 5879726080x3% + 4039221120x88 + 348422144292 + 1149205842x% 4 9207808x'%0 4 370812288x104 -
98304x108 1 87538760x! 12 + 13236608x'20 4 1204653x128 59264x1360 4 1542144 4 160

1+ 14598x'0 4 1048576x20 + 18713216x>* + 199229440x28 + 123330244532 + 5080350720x30 + 26018573440x*0 + 40642805760x** +
83490670152x*8 + 132089118720x52 + 168832646272x°° + 193730707456x50 + 162423138130x%* + 132089118720x58 + 79821055616x72 +
40642805760x76 + 21811450980x30 + 5080350720x34 + 4442152832x88 + 199229440x92 + 1190108498x%° + 1048576x100 4 371942784x104 4
87542856x112 4 13236608x120 + 1204653x128 4 50264x130 + 15425144 4 x160

1 + 6406x!0 + 983040x20 + 19597952x2% + 199557120x23 + 1193440173x32 + 5332860928x30 + 25163426944x%0 + 42477748224x* +
80993101384x* 4 133769330688x72 + 169805397120x°° + 189737861120x%0 + 167506405202x% + 128675610624x%8 + 80259032704x72 +
4236758220876 + 19599094884x50 4 6679101440x34 4 3636289408x38 4 497614848x72 + 1108303186x7 + 17367040x'%0 + 369681792104 4
196608x'98 4 87534664x! 12 1 13236608x!20 + 1204653x128 + 59264x130 4 542,144 4 160

1 + 14598x10 1 39684736x2* + 2428679085132 + 42275695744x%0 + 164776281672 + 344951471232x%° 4 338541963090x%* +
161106667136x72 + 38068573284x50 4 5637529472x88 1 1211080018x% + 371942784x104 + 87542856x"12 + 13236608x'20 4 1204653128 +
59264136 4 15425144 4 160

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length

40 82



Constructed codes and related combinatorial structures Codes of lengths 32, 40 and 48

The Residue Code Euclidean weight enumerator

1+ 8678x'0 + 983040620 + 19601536x2* + 199557120x3 + 119410449332 + 5332860928x0 + 25100510592x*0 4 42477748224x* +
81018131912x*8 + 133769330688x72 + 170126494848x°° + 189737861120x50 + 167149442642x%* + 128675610624x58 + 80133592448x72 +
42367582208x70 + 19838954148x30 4 6679101440x34 4 3634537856x38 4 497614848x92 + 1074085458x7 + 17367040x'00 + 364518528104 4
196608x'%8 4-87330248x! 12 4 13235584x120 + 1203885x!28 4+ 59520x130 4 1510x144 4 160

/
C40A2

1+ 6630x10 + 966656x20 + 19822720x2% + 199639040x23 + 1184138925x32 + 5395988480x30 + 24886723968x*0 + 42936483840x* +
80393739720x*8 + 134189383680x72 + 170369682560x°° + 188739649536x%0 + 168420259410x% + 127822233600x%% + 80243086720x"2 +
42798776320x76 + 19285865124x50 4 7078789120x34 4 3433072000x38 4 572211200x72 + 1053634130x% + 21446656x'0 + 363953280x104 4
245760x'98 4 87328200x" 12 4 13235584x120 + 1203885x128 4+ 59520x130 4 1510x144 4 100

1+ 10726x'0 + 999424x20 + 19380352x2*4 + 199475200x28 4 1204070061x32 + 5269733376x30 + 25314297216x*0 + 42019012608x* +
81642524104x*8 + 133349277696x52 + 169883307136x°° + 190736072704x%0 + 165878625874x%* + 129528987648x%8 + 80024098176x72 +
41936388096x76 +20392043172x30 + 6279413760x3* 4 3836003712x38 4 423018496x72 + 1094536786x7 + 13287424x190 + 365083776x104 4-
147456x'98 4 87332296x112 4 13235584x120 + 1203885x128 4+ 59520x136 4+ 1510x144 4 160

1+ 11374x'0 + 950272420 + 19049344x%* + 200736768x%% + 125076558132 + 5462327296x°C + 21537877824x*0 4 43379064832 +
86502960392x*8 + 134614417408x52 + 169502446848x°° + 187776499712x%0 + 165032278834x%* + 126931501056x58 + 80397955008x72 +
43229380608x70 4 20811531060x30 + 7491846144x34 4 3723905920x88 + 644284416x92 + 772285298x%° + 24543232x190 4 171923136x104 4

C/
403 262144x108 1 29108936x!12 4 3406848x20 +289869x!28 4 16960x136 4 654x144 4 160

1+ 12670x'® + 944640x20 + 19138000x2* + 199587840x28 + 1258679389x2 + 5429892096x30 + 21632753744x%0 + 43175335936x* +
86801660376x*8 + 134370268672x52 + 169456571664x°0 + 188234657792x50 + 164345046594x54 + 127447832576x58 + 80301819536x72 +
42993479680x76 + 21132630884x50 + 7262680576x3% + 3827208560x%8 + 615225344x92 + 776264290x% + 25498624x100 4 171242224x104 4
407552x108 29072568x12 +2560x'16 -+ 3405744x120  290045x128 - 16944x130 4 654x144 - x160

1+ 12542x'0 4+ 958976x20 + 18943056x%* + 200660992x28 4 1255802205x32 + 5432787968x30 + 21637017424x*0 + 43158910976x* +
86818034776x*8 + 134378200576x52 + 169421346960x°° + 188264460288x%0 + 1643519376026 + 127413860352x%% + 80327663760x72 +
42993463296x76 4-21118080996x30 + 7274200576x3* + 3824350960x%8 + 613447680272 + 778275682x7° + 24527872x1%0 4 171547120x104 4-
333824x108 129087288x!12 512116 4 3405872x120 4 290045x128 + 16944x136 4 654x144 4 5160

1+ 15614x'0 4 999424x20 1 18539600x24 + 199475200x28 + 1283798365x32 + 5269733376x30 + 22174570320x*0 + 42019012608x* +
88359276632x*8 + 133349277696x52 + 168810645648x°° + 190736072704x%0 + 161209207874x%* + 129528987648x5% + 80046174352x72 +
41936388096x70 4 2248485168430 + 6279413760x3% + 4330761968x58 + 423018496272 + 831888226x0 + 13287424x'%0 4 173269488x104 4
147456x198 +29100600x'12 -+ 3405872x120 1 290045x128 4 16944x136 4 654x144 4 160

1+ 12670x'0 + 977408x%0 + 18875856x2* + 199489536x28 + 1268903005x32 + 5366420480x30 + 21846138960x*0 + 42717992960x* +
87425563096x*8 + 133948020224x52 + 169215923472x°0 + 189234016256x50 + 163070502466x%* + 128302356480x58 + 80194864784x72 +
42560090112x76 + 21685230436x30 + 6864385536x34 + 4028273008x%8 + 540284928x92 + 796973666x70 + 21402624x!90 4 171766512x104 4
374784x108 129072568x! 12 4 2560x! 10 4 3405744x120 +290045x128 + 16944x130  654x144 X160

1+ 13694x'® + 969728x20 + 18836944x2* + 200511488x28 + 1260837981x32 + 5403219968x30 + 2173615931240 + 42940420096x* +
87133105624x*8 + 134136837120x52 + 169340249360x°° + 188758827008x%0 + 163671598658x%* + 127893983232x%8 4 80257365648x72 +
42754777088x76 4 21424637796x%0 + 7059796992334 + 3924793712x88 + 581521408272 + 784263778x%° 4 24483840x'%0 4 171174640x1%4 4-
462848x108 129063352x112 4 3072x116 4 3405744x120 4 290045128 - 16944x130 4 654144 4 5160

1+ 32822x10 1 37782144x2% + 2568483117x32 + 37609371648x%0 + 1737205859923 + 346388628864x°°0 + 329045164754x%4 +
160738272512x72 + 42378186756x%0 + 6325747072x%8 + 6188282429 + 67302912x!0% 4+ 11425288x112 + 1657472x'20 4 150573x!28 4+
7424x136 4 182x144 4 160

Cz/xo,4
1+ 17782x'0 + 928768x20 + 18469440x2* + 199733248x28 4+ 1298451117x32 + 5555795968x30 + 19740971648x*0 + 44094271488x* +
87755198664x*8 + 135207941120x52 + 172133776576x°° + 1862398361600 + 162412950482x% + 125741666304x%% + 80258073600x72 +
43854127104x70 4 22002971844x30 + 8063210496x3* + 3619102656x%3 + 764145664x7% + 440217426x% + 33634304x'%0 1 6241190404 4
520192x108 4 11385416x112 4 3072x116 4 1657152120 4 150573x128 4 7424x136 4 182,144 4 4160

1+ 17526x'0 + 928768x20 + 18472768x24 + 199733248x28 4 1298431149x32 + 5555795968x30 + 19741044864x%0 + 44094271488x* +
87755015624x*8 + 135207941120x52 + 172134106048x°° + 1862398361600 + 162412511186x%* + 125741666304x%8 + 80258512896x72 +
43854127104x76 + 22002642372x30 + 8063210496x3% + 3619285696x38 + 764145664172 + 4401442107 + 33634304x!00 + 624318724104 4
520192x108 4 11382088x'12 ++3072x116 + 1657408x120 4 150573x128 4 7424x136 4 182x 144 4 160

1+ 17654x'0 + 92876820 4 18471104x2* + 199733248x8 + 1298441133x32 + 5555795968x30 + 19741008256x*0 + 44094271488x* +
87755107144x*8 + 135207941120x52 + 172133941312x°° + 186239836160x50 + 162412730834x% + 125741666304x58 + 80258293248x72 +
43854127104x76 + 22002807108x30 + 8063210496x3% + 3619194176x38 + 764145664192 + 440180818x%° + 33634304x!00 + 62421888x104 +
520192x108 4 11383752x12 4 3072x!16 4 1657280x120 + 150573x128  7424x136 1 182x144 4 (160

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length
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Constructed codes and related combinatorial structures

Codes of lengths 32, 40 and 48

The Residue Code

Euclidean weight enumerator

1+ 32694x'0 4+ 37783808x%* + 256847313332 + 37609408256x*0 + 173720494472 + 346388793600x°° + 329044945106x%* +
160738492160x7% + 42378022020x30 + 6325838592x%8 + 618791634x%0 + 67312896x'0% + 11423624x'12 + 1657600x'20 + 150573128 +
7424x136 4 1825144 4 4160

1 + 32950x'0 + 37780480x2* + 2568493101132 + 37609335040x%0 + 1737206775126 + 346388464128x°°0 + 329045384402 +
160738052864x72 + 4237835149268 + 632565555288 + 618864850x%° + 67292928104 4+ 11426952x112 + 1657344x'20 4 150573x!28 4+
7424x136 4 182x144 4 160

!
Ca0s

1+ 13630x'® + 967680x20 + 18802464x2* + 200077312428 + 1275002365x32 + 5401643008x30 + 2129420083240 + 4294683443244 +
87972848088x*8 + 134139493376x52 + 1694878316480 + 188734889984x%0 4 162757459746x% + 127914897408x%8 + 80249595584x72 +
42757840896x76 4 21805974436x30 + 7049870336134 + 3997996000x%8 + 583872512192 + 730760642x° 4 25004032x'%0 4 141018752x14 4-
421888x108 1+ 21732664x112 41024110 4 2367136x20 + 197405128 + 11968x130 4 526x144 4 x160

1+ 12590x'0 + 971776x20 + 18823952x2*4 + 199929856x28 + 1274113069x32 + 5401585664x3° + 21298209200x*0 + 42950160384x* +
87967468296x*8 + 134129200128x52 + 1694838718880 + 188747702272x%0 + 162776894098x%* + 127910424576x58 + 80227358384x72 +
42752303104x76 + 21815942260x%0 + 7056354304x%* + 3998367408x%8 + 58169344022 + 72908680217 + 24946688x'00 + 141314192x1%4 +
536576x108 +-21771080x"12 +5120x'16 +2371504x120 + 196589x128 1 12048x130 4 526x144 4 x160

1+ 12846x'0 + 958976:x%0 4 18961104x2* + 200341504x28 + 1263499437x32 + 5472363520x30 + 21060086512x*0 + 43430123520x* +
87364782856x*8 + 134468025856x52 + 169832727632x°° + 187739992064x50 + 163902241810x%* + 127203145728x58 + 80320292848x72 +
43119472640x70 4 21337536884x30 + 7412563456234 + 3794540528x%8 + 673323008x72 + 698165970x0 + 34579456x'00 4 138718800x104 4
915456x'08 +-21669192x!12 4 8704x!16 42367728120 + 197229x128 - 11984x136 - 526144 4 1160

1+ 10670x'® + 948224x20 4 19145040x2* + 199983104x28 + 1259903405x32 + 5500325888x30 + 20959203824x*0 + 43656691712x* +
87040554376x* 4 134706898944x52 + 169931806672x°0 + 187228094464x%0 + 164580717074x% + 126741700608x%8 + 80375149040x72 +
43358453760x76 4- 21039648244x30 + 762028236813 + 3695437168x%% + 706510848272 + 690996178x”° + 35115008x'%0 4 138972496x104 -
802816x108 121692104x!12  6144x116 4 2367856x120 + 197229x128 4 11984x130 4 526144 4 160

1+ 10542x'0 4+ 955392x20 4 19045136x24 + 200011776x28 + 1264147501x32 + 5464713216x30 + 21084422576x*0 + 43408896000x* +
87343076104x*8 + 134549253120x52 + 169727059600x°° + 187749490688x%0 + 164047710866x%* + 127057047552x%8 + 80336852656x72 +
43183497216x76 4 21262853236x30 + 7456041984x3% + 3796901552x88 + 656289792172 + 708635474x%° + 29026304x'%0 4 140748944x104 4-
585728x108 +-21769032x12 4 5120x!16 4 2371504x120 + 196589x128 + 12048x136 4 526144 4 X160

1+ 11582x'0 + 951296:x%0 4 19023648x2* + 20015923208 + 1265036797x2 + 5464770560530 + 21080414208x*0 + 43405570048x* +
87348455896x*8 + 134559546368x52 + 169731019360x°° + 187736678400x50 + 164028276514x%* + 127061520384x58 + 80359089856x72 +
4318903500870 + 21252885412x80 + 7449558016134 + 3796530144x%8 + 658468864172 + 710309314x%0 + 29083648x'%0 4 140453504x104 4
471040x'%8 +-21730616x12 4 1024x!16 42367136120 + 197405x128 + 11968x136 4 526x144 4 5160

1+ 15806x'® + 988160x20 + 18523104x2* + 200355840x28 + 1282895485x32 + 5340063744x30 + 21512550848x%0 + 42483347456x* +
88602473048x* 4 133711637504x°2 + 1692245017920 + 189763444736x%0 + 161501047714x% + 128745123840x08 + 80140892032x72 +
42320814080x76 4 22357080356x30 + 6663351296x3* + 4198273568x%% + 505835520292 + 751332162x%° + 20375552x190 4 141886400x104 +-
471040x198 4 21761720x12 + 5120x116 +2370528x120 4 196765x128 - 12032x!36 4 526x144 4 5160

o/
C40.6

1 + 34446x10 1 376491522 + 2578598637132 + 37262627776x*0 + 174364710888x*3 + 3465603014405 + 328290047634x%* +
160685360960x72 +42737202900x30 + 6374647808x%8 + 569145106x70 + 44449344x104 1 5042376x'12 4+ 830336x'20 +75117x128 4+ 3776x130
78x144 4 x160

1+ 34574x10 4+ 37647488:x2*4 + 257860862132 + 37262591168x*0 + 174364802408x* + 346560136704x°° + 328290267282x%* +
160685141312x72 4 42737367636x30 + 637455628858 + 569181714x%0 -+ 44439360x! %4 4 5944040x! 12 4 830208x120 +75117x'28 + 3776x130 +
78x144 4 160

1+ 34702x'0 + 37645824x%* + 257861860532 + 3726255456060 + 174364893928x* + 346559971968x°° + 328290486930x% +
160684921664x72 +42737532372x%0 + 6374464768x%8 +569218322x% + 44429376x1%4 + 5945704x112 + 830080x'20 +75117x128 +3776x136
78x144 4 160

1 + 34638x10 1 37646656x2* + 2578613613132 + 37262572864x%0 + 174364848168x*3 + 346560054336x°° + 328290377106x% +
160685031488x72 +42737450004x30 + 6374510528x%8 4+ 569200018x70 + 44434368x104 + 5944872x112 4+ 830144x'20 4 75117x128 4 3776x1360
78x144 4 x160

1 + 34510x'0 + 37648320524 + 2578603629x32 + 37262609472x*0 + 174364756648x* + 346560219072x°° + 328290157458x%* +
160685251136x72 +42737285268x30 + 6374602048x58 +569163410x7 + 44444352x104 1 5943208x112 4+ 830272x120 +75117x128 +3776x130
78):144 Jr’,6160

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length
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1+ 33406x'0 + 3764611234 + 257827396532 + 37294058496x*0 + 174352264264x* + 346399629024x°° + 328468693650x% +
160747916352x72 +42617396820x%0 + 6375454944x%8 4 586281426x7 + 47023488x104 + 6045832x!12 4+ 830752x120 475501128 4 3648x136 4
94x144 4 160

84



Constructed codes and related combinatorial structures Codes of lengths 32, 40 and 48

The Residue Code Euclidean weight enumerator

1+ 33726x'0 + 3764195234 + 257829892532 + 37293966976x*0 + 174352493064x* + 346399217184x°° + 328469242770x%* +
160747367232x72 +42617808660x%0 + 6375226 144x%8 458637294627 + 46998528x104 -+ 6049992x112 -+ 830432x120 75501128 4 3648x136
94x144 4 160

1+ 33214x10 1 37648608x2* + 2578258980x32 + 37294113408x%0 + 174352126984x*3 + 346399876128x7°0 + 328468364178x%4 +
160748245824x72 +42617149716x30 4 6375592224x%8 4+ 586226514x70 + 47038464x104 + 6043336x! 12 + 830944x120 475501128 4 3648x130
94144 4 160

1+ 33342x10 4+ 37646944x2 + 2578268973x32 + 37294076800x*0 + 174352218504x* + 346399711392x°C + 328468583826x%* +
160748026176x72 +42617314452x30 4 637550070458 + 586263122x7 + 47028480x!%4 -+ 6045000x' 12 + 830816x'20 4+ 75501128 4 3648x130
94144 1 160

1+ 14626x'0 + 94388820 4 1875504062 + 199560480x28 + 1276268077x32 + 5714343984x30 + 19184375744x%0 + 45023930176x* +
87532630360x*8 + 134967526544x52 + 171919287200x°° + 184909985504x50 + 164334863314x%4 + 125522403120x58 + 80485365760x72 +
43990717824x76 + 2117107527633 + 8351820464134 + 3362061088x38 + 978634976x92 + 416639954x%¢ + 88586256x!00 + 48927424x104 4
6930240x108 4+ 5084120x"12 + 416176x!10 + 427872x120 1 14112x124 1 35373x128 4 144x132 424324136 4 206144 - 160

1+ 14114x'0 + 930736x20 + 19128480x2* + 197508096x28 + 1272911949x2 + 5804003824x30 + 18834123872x%0 + 45630720384x* +
87051733528x*8 + 134924651632x52 + 172531081120x°° + 184013436032x%0 + 165085168178x%* + 125166285744x%8 4 80496357984x72 +
44191796992x76 + 20889178956x30 + 8604867856x34 4 3178495200x38 4 1092547840x2 4-356393138x% + 117124048x'%0 + 37148704x104 4-
11124608x'%8 4 3716760x12 4 782032116 4 328416x120 - 33408x! 24 30925x128 + 656x132 +2336x130 4 226x 144 4 5160

CZ&O.S
1+ 15402x'0 4+ 923072020 + 19072552x24 + 197868928x28 + 1273732693x32 + 58062096003 + 18820619240x*0 + 45625396480x* +
87099746112x*8 + 134909539264x52 + 172468669256x°° + 184066266240x%0 + 165100476890x%* + 125116340800x%8 + 80529191304x72 +
44199427584x76 4 2086601533243 + 8617012032434 4 3177147256x38 4 1088466560x 4 360022986x7 + 116140224x'%0 + 37240760x'04 4-
11347200x'98 4+ 3543376x112 - 838464x116 4 290072x120 4 36736x124 4 28165x128 4-704x132 4-2264x136 4-226x144 4 160

1+ 13074x'0 + 94614420 4 19020480x2* + 196997664x28 + 1277010813x32 + 5804090048x30 + 18811494656x*0 + 45642309056x* +
87103987656x*8 + 134882801824x52 + 172475128000x°° + 184077730656x50 + 165101581346x%* + 125121181696x58 + 80515699968x72 +
4419754764870 4 20873564444x50 4 8614377248x34 4 3178391616x38 4 1089406688x2 + 358928450x7¢ + 116129216x'%0 + 37130496x!04 4
11384768x108 -+ 3539752x112 - 869472x116  291904x120 4 40864x!24 4 28701x128 4 896x132 4-2304x136 4 226x144 4 x160

1+ 14874x'0 + 923376x20 + 19132136x2* + 197353248x28 + 1274519557x2 + 5795497360x30 + 18858599976x*0 + 45602679360x** +
87027785968x*8 + 135029660144x52 + 172428272776x°° + 183998321120x%0 + 165218109514x%* + 125031565328x%8 + 80529454920x72 +
44251693952x76 + 20815887412x30 + 8644008528x3* 4 3171563704x38 4 1083355360x2 4 367602394x7 + 110143536x'%0 + 40404856x104 4-
9895488108 4+ 4086240x"12 + 687312x!10 - 345560x120 - 29216x124 4 31445x!28 4 560x!32 4 2328x136 4 226x144 4 160

1+ 13634x'0 4+ 946224x20 + 18929728x24 + 197981888x28 4 1274474797x32 + 5805391792x30 + 18820670272x*0 + 45624368640x* +
87094160696x*8 + 134921729136x52 + 172478866240x°° + 184039879872x%0 + 165097166610x%* + 125140037616x%8 + 80521651776x72 +
44193794560x7° + 2087317930830 + 8612471696x%* + 3176604864x38 + 1090651200x72 + 358702674x%° + 116570640x'%0 4 37436864x'04 4
11167744x'98 4-3627000x! 12 4 789456x116 4 298944x120 4 32832x124 4 28013x!28  592x132 4 2240x136 - 226144 4 5160

1+ 13170x'0 + 9557920 4 19000016x>* + 196801152x8 + 1276753885x32 + 5804042448x30 + 18813634384x*0 + 456469912320% +
87097065512x*8 + 134866482384x52 + 172488391696x°° + 184102653184x50 + 165085063042x%* + 125103278352x58 + 80528455568x72 +
44200677120x76 +20868913980x30 + 8617461936x34 4 3177684080x38 + 1088156800x72 4 360087650x7 + 115947120x'%0 + 36951024x104 4
11417984x198 4 3463240x'12 + 901360x! 16 + 303280x!20 4 46080x!24 4 3078 1x128 4 944x132 4 2352x136 4 226144 4 160

1+ 14010x'® + 92723220 4 18766616x2* + 199147520028 + 1298356421x32 + 5568193536x30 + 19658902776x*0 + 44157136896x* +
88311146832x*8 + 135023936000x72 + 170936086456x°° + 186209943552x%0 4 163283098954x% + 126058862592x%8 + 80458236568x"2 +
43720187904x76 + 21554453396x30 + 7973734912234 + 3649886408x38 + 796622848x92 + 514264730x%° + 45663232100 + 65498472x104 4
1437696x'08 4 6584704x112 4 19968x1 16 1 480872120 4 34133x!28 4 2312x130 4 226144 4 X160

1+ 13322x'0 4 944368x20 + 18905624x2* + 198569952x28 4 1272161941x32 + 58070100003 + 18826456888x*0 + 45614516416x* +
87094899040x*8 + 134930006896x52 + 172469134264x°° + 1840495652160 + 165096932314x%* + 125125364176x%8 + 80534425560x72 +
44195041920x7 + 20866443908x30 + 8616320336x%* + 3175289288x%8 -+ 1090489888x2 + 359633674x%° + 116060912x'%0 4 37543464x104 4
11102400x'98 4363755212 4 788048x116 4 305768x!20 +32736x! 24 +28805x!28 + 624x132 4 2248x136 4 226144 4 4160

1+ 13842x'0 + 934400520 4 18807920x%* + 200079616x28 + 1273538813x32 + 5730719232x30 + 19123108976x*0 + 45190752256x* +
87172952392x*8 + 135411651584x52 + 171863305776x°° + 184301015296x%0 + 165215789346x%* + 124926970880x58 + 80574024496x72 +
44294166528x70 + 20780443420x30 + 8612473344134 4 3248773456x%8 + 1002629888x72 + 424460226x%° 4 79642112x100 4 54272848x104 4
4603904x108 4 5824680x"12 + 172032x1160 + 460816x120 + 2816x124 + 34333x128 1 2320x136 4 226x144 4 160

1+ 12490x'® + 95492820 4 18997208x2* + 197220608x28 + 1276759157x32 + 5801660784x30 + 18821794904x*0 + 45629727104x* +
87092174304x*8 + 134924537072x52 + 172448719800x°° + 184062534016x50 + 165136991994x%4 + 125084972336x58 + 80531040696x72 +
44215863040x70 +20847013188x30 + 8626802832x%* + 3177761416338 + 1085119488x%2 + 362735402x%0 + 11439572820 4 37890824x'%4 4
11153280x08 43594544112 1 834640x110 4 296936x120 +37248x124 4 28517x128  784x132 4 2280x130 4 226x!44 4 5100

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length
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1+ 13994x'0 + 92702420 4 19094280x2* + 197561984x28 + 1275374101x2 + 5804378864x30 + 18818900360x*0 + 45629543552x% +
87090278720x*8 + 134922451184x52 + 172484259368x°° + 184024832000x50 + 165107161114x%* + 125150947760x58 + 80502660136x72 +
4419955123276 4 20880885988x50 + 8604913552434 4 3177949464x38 4 1091724928x72 4 358052874x% + 116911312x1%0 + 37281688104 4
11219584x108 -+ 3583056x!12 + 814672x116 + 288696x120 4 35584x124 4 27589x128 4 656x132 4-2232x136 4-226x144 4 X160

1+ 13970x'® + 944784x20 4 18902256x2* + 198497472428 + 1271107965x32 + 5805872272x30 + 18836891248x*0 + 45611685120x* +
87077328584x*8 + 134939533392x52 + 172466283696x°° + 1840574012800 + 165116120226x% + 125097615440x%8 + 80532484912x72 +
44205883392x76 + 20858959516x%0 + 8623050416x34 4 3175014096x38 4 1088608320x2 4 360704834x7 + 114924720x'%0 + 37933392x104 4-
10971904x'08 4 3717928x112 4 791152x116 4 318352x120 - 33600x!2* -+ 30365x128 + 624x132  2320x130 - 226x 44 4 5160

1+ 20282x'0 + 999424x20 + 17668424x24 + 199475200x28 + 1343994341x32 + 5269733376x30 + 20670250696x*° + 42019012608x* +
91110536464x*3 + 133349277696x72 + 1695480232721 + 190736072704x%° + 157885256746x%* + 129528987648x%8 + 80070994920x7% +
41936388096x70 + 23835712148x30 + 6279413760x3 + 4557299928x88 + 423018496x7% + 636059514x% + 13287424x100 1 72702552x104 1
147456x108 4 6787648x12 + 471544x120 32885128 1 2296x130 2265144 4 160

1+ 13546x'0 + 95254420 4 18919016x2* + 197184576x8 + 1278698869x32 + 5803874592x30 + 18803535304x0 + 45638868096x** +
87121217088x*8 + 134895939808x72 + 172456728136x°° + 184057971136x%0 + 165108492730x%* + 125133648928x58 + 80519769512x72 +
44198405888x70 + 2086911850045 + 8608954784x34 4 3179054776x38 4 1091677120x72 4 359345834x%° + 116211296x'% + 37101016x'04 4
11211904x198 4 3496912x'12  867488x110 -+ 291480x120 + 44608x12* 4 28709x128 4 1120x!32 4-2232x136 4 226x144 - 160

1+ 14706x'0 + 922736x20 + 19052528x2* + 198887136x28 + 1266800157x32 + 5807573840x30 + 1885313579240 + 45606772416x* +
87040667048x*8 + 134949614320x52 + 172517055280x°0 + 184028346144x50 + 165092573250x% + 125133577296x%8 + 80511948016x72 +
4419759475270 + 2087843897210 + 8613884880x%* + 3176912080x38 + 1090348832x%2 + 357735458x%0 + 116360816100 4 37357584x104 4
11124416x'08 4-3749320x! 12 4 775376x1 10 + 338960x!20 + 30432x!24 4 32125x128  496x!32  2384x130 4 226x!44 4 5160

1+ 14178x'0 + 940528x20 + 19070768x2* + 196428608x28 + 1279842477x32 + 5802513648x30 + 18803876496x*0 + 45651189504x* +
87101746840x 4 134878519344x52 + 1724994054880 + 184061230144x%0 + 165076244818x% + 125140576560x08 + 80522335376x72 +
44196390912x76 + 20875696524x30 + 8609213136x34 4 3177581584x38 4 1089402816x 435918113827 + 117107664x'% + 37019696x'04 4-
11434240x08 4 3487640x112 4 83124816 4 281104x!20 - 35008x!24 ++27309x!28  528x132  2224x136 4 226144 4 4160

1+ 35015x'0 4 3752923202 4 2587413065x°2 + 36984341824x*0 + 174942149352x* 1 346506156112x°0 + 327835131054x%* +
160707815424x7% 4 42918251294x80 4+ 6419635760x38 + 54507591057 + 26986944x!%* + 1041584x112 + 60144x120 4 4801x128 + 256136 4
3X144 + X160

C/
409 1+ 34733x10 1 37536964x2* + 2587353827132 + 36984571432%0 + 174941611982x* + 346506969916x°° + 327834321720x% +

160708323120x72 + 42918082688x50 + 6419637500x88 + 545094788x%° + 26982696x'%4 + 1041026x'12 + 60292x!20 + 4831x128 4 256x130 4+
3)(144 +,\'160

1+ 34779x'0 4+ 37538400x24 + 258733839732 + 36984636800x*0 + 174941458156x* + 346507188704x°C + 327834140658x* +
160708381440x72 + 42918124442x30 + 6419578912x38 + 545124354x% + 26975872x10% + 1041436x'12 + 60320x'20 4 4845x128 2561130 4-
3xl44 +xlf’0

1+ 34633x10 4+ 3753750002 + 25873536552 + 36984565528x*0 + 174941634058x* + 346506928676x°° + 327834369228x% +
160708286544x72 + 42918103796x%0 + 6419625828x%8 + 54510172827 + 26979352x'%4 + 1041974x!12 4 60188x!20 + 4827x128 4 256x130 4+
3xl44 + xIBO

1 + 34899x10 1 37535696x2% + 2587358405132 + 36984558816x40 + 174941646628x*3 + 346506884464x°°0 + 327834480666x% +
160708113984x72 + 4291827437080 + 6419516848x88 + 545145274x96 + 26969568x'* + 1042884x!12 4 60176x!20 4+ 4837x128 4 256x136 4+
3xl44 +x160

1 + 34869x'0 + 37534180x2* + 258737354732 + 36984497320x*0 + 174941783734x*8 + 346506708444x°C + 327834587808x%* +
160708146480x72 + 42918151832x50 4 6419627356x38 + 545092124x%° + 26983592x'%4 + 1041146x'12 4 60260x!20 + 4823x128 4 256x130 4+
3)(144 +x160

1+ 34685x10 4+ 37540764x2*4 + 258732121132 + 36984699256x*0 + 174941325966x* + 346507354372x°C + 327834039840x%* +
160708353552x72 + 42918237200x%0 + 6419473892x88 + 54517758027 + 26960376x'%* + 1043810x!12 4 60156x!20 + 4855x128 4 256x130 4
3xl44 +x160

1+ 34745x10 4+ 375302047 + 258745875932 + 36983461880x*0 + 174945367162x* + 346502304612x°° + 327834018012x%* +
160714298480x7% + 42913179588x50 + 6420287076x38 + 545788112x%€ + 26829624x!%* + 1006214x'12 + 58204x120 4 4875x128 4 224,136 1
3X144 + XIGO

1 + 34845x10 1 37520540x2% + 2587460467x32 + 36983459336x%0 + 174945373246x* + 3465022824927 4 327834071880x% +
160714216784x72 + 42913259856x50 + 6420235388x88 + 545809332190 + 26824520x'%* + 1006802x! 12 + 58180x!20 4 4879x128 4 2245136
3X144 +x160

W
C0,10

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length

40 26



Constructed codes and related combinatorial structures

Codes of lengths 32, 40 and 48

The Residue Code

Euclidean weight enumerator

1+ 34723x10 4+ 3752858424 + 258747452532 + 36983398096x*0 + 174945509988x* + 346502118296x°° + 327834138882x%* +
160714317248x7% 4 42913067346x50 + 6420391864138 + 54573725057 + 26843024x!%* + 1004580x!12 + 58280x120 4 4861x128 4+ 2241136 1
3Xl44 + xl60

1 + 34675x10 1 37520080x2% + 2587472317x32 + 36983403376x%0 + 174945503828x*8 + 346502116712x° + 327834157890x% +

160714281344x72 + 4291310694650 + 6420362824x88 + 545751682x%° + 26838320x'%* + 1005492x!12 4 58200x!20 4 4861x128 4 224x136
3xl 44 + xl 60

1+ 34839x10 4+ 37527584x24 + 258747901732 + 36983382528x*0 + 174945555672x* + 346502012224x°° + 327834321582x%% +
160714089824x72 + 42913269582x50 4 6420265376x38 + 54579120617 + 26828224x'4 1 1006912x!12 4 58112x!20 + 4865x128 4 224x136
3X144 +x160

1+ 34797x'0 4+ 37529020624 + 258746737132 + 36983429400x*0 + 174945441598x* + 346502194468x°C + 327834123600x% +
160714237616x72 + 42913193568x50 4 6420293444x38 + 545782204x% + 26831320x'%* + 1006066x' 12 + 58204x!20 4 4871x128 4 224x136
35144 4 4160

1+ 34855x10 4+ 37527504x%* + 2587478729x32 + 3698338640060 + 174945538952x* + 346502054992x°C + 327834247662 +
160714180640x7% 4 42913188798x%0 + 6420317296138 + 545767622x%¢ + 26835424x1%4 1 1005584x112 + 58224120 4 4865x128 4 224,136 1
3X144 + XIGO

1+ 34729x10 1 37530412x%* + 2587457511x32 + 36983466456x*0 + 174945355722x% 4 346502325204x°° + 327833990556x%* +
160714325936x72 + 42913158996x50 + 6420298516x88 + 545783536x7° + 26830872x'%* + 1006006x' 12 + 58220x!20 4 4875x128 4 2245136
3)(144 +x160

1+ 34879x'0 4+ 3752048024 + 258745930532 + 36983466864x*0 + 174945350768x* + 346502323704x°° + 327834020670x%* +
160714262528x72 + 4291322871080 4 6420252664x38 + 545801286x70 + 26827440x' + 1006120x'12 4 58248x!20 + 4881x128 4 224x136
3xl44 +xlf’0

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length
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1+ 11562x'0 + 958176:x%0 4 19038640x2* + 196291520x28 + 1285412861x32 + 5787906592x30 + 1872964792050 + 45608893824x* +
87214859304x*8 + 135067054304x52 + 172572634480x°° + 183957837888x50 + 164901808546x%* + 125013466912x58 + 80504997360x72 +
44272954624x76 4 2095759870045 + 8652027808x34 4 3187230480x38 4 1079881792x2 + 347440066x7 + 108395872x'%0 + 32352656x104 4
9485696x108 +2594312x112 4+ 632992x110 4 169424x120 1 25536x124 4 16029x!28 4 352x132 4 1360x136 4 186x144 4 x160

1+ 16026x'® + 920064x2°0 + 19102336x2* + 196287360x28 + 1285933485x2 + 5788660352x30 + 18724871744x*0 + 45606559488x* +
87227587544x*8 + 135070413568x52 + 172558087680x°° + 183954800768x%0 + 164905553810x% + 125015594368x%8 + 80512871616x72 +
44272140800x76 + 20949441340x30 4 8651406336x34 4 3189806208x58 4 1080845440x°2 4 347538898x7 + 108037504x1%0 + 32245696x104 4-
9465600x'08 4 2566552x!12 4 653056x! 10 + 172800x!20 4 28544x124 4 1662128 + 640x!32 + 1344130 1 1865144 4 160

1+ 12562x'0 + 927744x20 + 18581640x2* + 200466432x28 4 1294682277x32 + 559859712030 + 19450369544x%0 + 44348497920x* +
88194674096x*8 + 135305320448x52 + 171122523176x7° + 185747226624x%0 + 163642470250x% + 125494714368x%8 + 80547894824x72 +
43980931072x70 4 21366689700x30 + 8213321728x3 + 3565023896x%8 + 822042624x9% + 489857722x% + 42717184x100 1 57576472x104 4
1040384x'08 4+ 5103328x112 4 10240x1 16 4 330424x120 4 22325128 4 1464x136 4 186x144 4 X160

1+ 18282x'0 4+ 929152x20 + 18414512424 + 201730688x28 + 1291612733x32 + 5548892416x30 + 19683331248x%0 + 43902204672x* +
88764613992x*8 + 134783713408x52 + 171072755312x°° + 186763684736x50 + 162187224802x% + 126506526208x58 + 80383652976x72 +
43466682880x70 + 22035025580x30 + 7767611008x3* + 3765065488x38 + 767056256x7% + 4928241949 + 45295872100 + 55606288x104 +
1467136x'08 4-5238728x 12 4-19328x!16 4-398032x120 4 128x!24 4-29789x128 4 1744x136 4 186x144 4- 160

1+ 12802x'® + 947040x20 + 19029512x2* + 196311200228 + 1285316149x32 + 5788121024x30 + 1873035972050 + 45607789248x* +
87212896672x*8 + 135069480224x52 + 172575835624x°° + 183954788576x%0 + 164897931130x% + 125015837696x%% + 80508876936x72 +
4427178099270 +20954716148x3 + 8652409760x%* + 3188438680x38 + 1079804000x%2 + 3473435949 4 108390080x' % 4 32266360x'** +
9497792x108 4 2595248x112  630752x! 10 + 177016x120 + 25120x124 4 16741x!28 4 384x132 4 1368x!30 4 186x144 4 160

1+ 13354x'0 4+ 939104x20 + 19086672x2* + 196119648x28 4 1285969597x32 + 5788081792x30 + 18725805200x*0 + 45611074880x* +
87224135592x*8 + 135061927584x52 + 172560574480x°° + 183959609376x%0 + 164911641058x%* + 125018484800x%% + 80500088144x72 +
44268299136x76 +20957926380x30 + 8651448736x34 4 3188669680x38 4 1081820832x2 4 346791682x7 + 107987456x'%0 + 32265392x104 4-
9331520x'08 4 2644872x112 4 655200x! 16 + 182704x120 4 32992124 4 17501128 4 832132 4 1392136 1 186144 4 5160

1+ 13282x10 + 948816x20 + 18938552x2% + 196933440x28 + 1283076117x32 + 5789438800x°C + 18737980696x% + 45597301248x% +
87206400128x*8 + 135084154640x52 + 172575904856x°° + 183950746944x%0 + 164895568730x%4 + 125012350480x58 + 80514544312x72 +
44273116672x70 4 20954066068x30 + 8650823152134 4 3186566312438 4 1082027456x2 4 347467146x7° + 108108016x'%0 + 32389320104 4-
9228288x108 4+ 2683984x112  609456x!16 + 194120x120 1 26048x124 4 18693x!28 4 432x132 4 1384x136 4 186x144 4 160
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1+ 13010x'0 + 923376:x%0 4 1904663262 + 198695840x28 + 1281693349x32 + 5683665296x30 + 19171852456x*0 + 44937702208x* +
87552822512x*8 + 135344686064x52 + 171867213960x°° + 184757833056x50 + 164385414122x%* + 125171340816x58 + 80507261896x72 +
44179689856x70 + 21122863076x30 + 8461610576x3% + 3369805496x38 + 947162208x92 + 424470458x%¢ + 68880432x100 + 48263928x104 4
3489600x!08 4 4695456x! 12 + 130768x! 10 4+ 367064x120 + 3744x124 4 28597x128 + 48x132 4 1688x130 4 186x144 4 x160

1+ 15386x'® + 908160x20 + 19097264x2* + 197888032428 + 1276998861x32 + 5790492640x30 + 18765441424x%0 + 45573074624x* +
87170501016x*8 + 135137743552x52 + 172570747440x°° + 183917802592x%0 4 164934874994x% + 125002805664x%8 + 80494483344x72 +
44281956480x76 +20954503996x30 + 8654433792334 4-3186107024x38 4 108216291212 4 346708658x7 + 107075872x1%0 + 33175856x104 4-
8895680x198 +2919000x!12 + 552896x1 16 +218256x120 +20640x'24 + 19725x128 4 352x132 1 1456x130 1 186x144 4 x160

1+ 17690x'® + 902912x20 + 19049600x2* + 197592320x28 4 1280295565x32 + 5792074240x30 + 18742386144x*0 + 45583299584x* +
87216033688x*8 + 135098215168x52 + 1725493518720 + 183958243584x%0 + 164909370418x%* + 124996093440x%8 + 80523901344x72 +
44274651136x70 +20945268284x30 + 8656444672x34 4 3186339072x38 4 1080837888x"2 - 348347890x7 + 107589120x'%0 + 32585504x104 4-
9223168x'08 4+ 2656344x!12 4+ 618752x10 4 190656x120 +27392x!24 4 18253128 4 512x!32 4 1376x136 4 186x144 4 x160

1+ 12858x0 + 913408x20 + 18850448x%* + 199393280x%% 4 1294837805x32 4 55957012483 + 194609952480 4 44364922880x* +
88142898360x*8 + 135297388544x52 + 171201326096x°° + 185717424128x%0 + 163608270546x%* + 125528686592x58 + 80528825264x72 +
43980947456x70 + 21380830364x30 + 8201801728x3* + 3568894256x38 + 823820288x9% + 487583698x%¢ + 43687936x!%0 + 56972688x104 +
1114112x108 +5128120x'12 + 12288x110 + 360496x120 + 25901128 4 1552x136 4 186x144 4 x160

1+ 27098x'0 4+ 3791299224 + 257171486132 + 37457942048x*0 + 174427638424x* + 345155952416x°° + 329786402706x% +
161024617376x72 +41908152316x30 + 6376490720x%8 4+ 694464338x7 + 647005 12x104  5237464x112 4+ 348256x120 +24557x128 4 1504x136
186x144 4 160

1+ 19002x'0 + 962560x20 + 18186896x24 + 199147520x28 4 1324734509x32 + 5406318592x30 + 20102355120x%0 + 42988716032x* +
90016074936x* + 1340372295682 + 170471762960x7 + 188712058880x%0 + 159795820242x%* + 128088817664x%8 + 80200342448x72 +
42687365120x76 + 23040097436x30 + 7002738688x3% + 4173291824x38 + 600031232492 + 548937682x%¢ + 31449088x!00 + 58668432x104 +
966656x'08 4 5134264x12 4 12288x!16 4 360496x!20 1 25901x!128 1 1552136 4 186x144 4- 160

1+ 15058x'® + 932640x20 + 18971784x2* + 197593408x28 + 1279434373x2 + 5791319264x30 + 18749494376x*0 + 45585079424x* +
87198253104x* 4 135098790688x72 + 172566561896x°° + 183951796928x%0 + 164910979466x% + 125004080608x%8 + 80507983176x72 +
44271820544x70 +20955194212x30 + 8655352416x%* + 3186681880x38 + 1081539264x%2 + 346553562x%° + 107684768x' % 4 32690872x1%4 4
9206912x'08 4 2777824x!12 4 593760x! 10 4 201976x!20 + 22848x!24 + 18709x!28 - 416x!32 + 1432130 1 186x144 4 160

1+ 14346x'0 4+ 920640x20 + 19124384x24 + 197235328x28 4 1279945981x32 + 5789743552x30 + 18752808384x%0 + 45589243648x* +
87174961096x*8 + 135111132736x52 + 1726060422080 + 1839095376640 + 164891941858x% + 125042741696x%8 + 80497835520x72 +
44266686976x76 +20965107212x30 + 8646552256x34 4 3187018592x38 4 1083783552x2 4 34551302627 + 108524352x1%0 + 32445120104 4-
9133824x!08 428245525112 4 557760x110 4210848120 4 19584x124 4 19165128 4 320x!32 4 1408136 1 186x144 4 1160

Table 4.15: Euclidean weight enumerators of the obtained extremal Z4-codes of length
40

In [9], extremal Type I Z4-codes of type 48224 and 419220 were constructed. There-
fore, our extremal Type I Z4-codes of types 47226 411218 415210 4nd 41628 are new.
The minimum weight of the residue codes of the known extremal Type I Zs-codes of
type 419220 is 12 or 16. Therefore, codes constructed from Cf;o,g are new. The binary
[40, 10, 12] code, which is the residue code of the known extremal Type I Z4-code of the
type 419220, have 10 codewords of weight 12. Therefore, that code is not equivalent to

the code Cj 4. So, all Type I extremal Z4-codes obtained from Cj , are also new.
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Codes of length 48

There is only one, up to equivalence, Hadamard design on 11 points with the skew in-
cidence matrix. This design is constructed from the skew-symmetric Hadamard matrix
SHi; given in (1.1). From the construction given in Proposition 3.1.2, we obtained 54
pairwise nonisomorphic 2 — (47,23,11) designs. From the block matrix H; we obtained
18 designs %1, ..., %3. From H, we obtained another 18 designs %9, ..., Z3¢, and their
duals %37,...,%54. In Table 4.16, the structure of the full automorphism groups of the
obtained designs are shown. These designs were previuosly constructed in [16]. From the
designs %1, ..., 754 we constructed the corresponding Hadamard 3 — (48,24, 11) designs
denoted by 77, ..., %s,.

The size of ~ The structure Designs

the group of the group

3960 PSL(2,11) x S3 D, Doz, Dao

330 (Zy1 : Zs) x S3 Dy, D8, D23, Da6> Da1, Dsa

110 Zy x (Za1 - Zs) Do, D3y Das Ds5, Do» D1 Do, 2115 P12, Dhas
Ds, Dres Phi> Dh9s Dars Doas Dass Does D21, Doss
D29, D31, D32, D335 D3a, Das, D31, D39, Dz Das,

Das, Das, Dass Da1, Dao, D50, Ds1, Dsay Dss

55 Zy1 - Zs Do, 213, Do, D30, P33, Dag

Table 4.16: The structure of the full automorphism groups of 2 — (47,23,11) designs
D, Ds4

From %7,...,%5, we obtained 15 binary linear codes Cyg1,Ca32,...,Cs8,15. The

classes of designs that give nonequivalent codes are given in Table 4.17.
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Codes of lengths 32, 40 and 48

The The The The The The
code Designs code Designs code Designs
Dyr,D<, Do, D5
24>225:228:229>
Cag.1 Cag 6 241.Dsy Cag 11 Dy
D30, D31, D3, D5,
30731732734
394 sC( 24" >
Cag2 19Z36 Cag7 D Zig P59y Casz
12:213°715:716
* * * * * * * *
C48,3 @1 ’@2 ,@5 ’@g C48,8 @33 C48,13 920,@21,@35
DiesDigsDiin, D
38°239:242>243>
Caga 0-211-217 Cago Dis Cag 14 L
Di46P49- D52 Ds3
Cags 523’59f8 Cas,10 52;295233’52§£’5957 Cag,15 EZ@},EZZb,EZ@],EZ@}

Table 4.17: The classes of designs that give codes Cag.1,C482,...,Cs8,15

Weight distributions of the constructed binary codes Cag.1,Csg2,. - .,Csg,15 are given

in Table 4.18.
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Codes of lengths 32, 40 and 48

The code  [n,k,d] 0 4 8 12 16 20 24
Cu8,1 [48,24,4] 1 132 5346 71284 638319 3007752 9331548
Cis, [48,14,12) 1 0 0 136 495 2904 9312
Cug3 [48,13,8] 1 0 66 0 495 0 7068
Cag 4 [48,23,4] 1 66 902 29018 283679 1733732 4293812
Ciss [48,13,12) 1 0 0 66 275 1342 4824
Cise  [48,144] 1 1 11 121 451 3014 9186
Cug7 [48,24,4] 1 78 2046 58102 564927 3474108 8578692
Cug 8 [48,14,12] 1 O 0 4 1023 1980 10368
Cu8.9 [48,14,12] 1 1 0 77 1111 946 12112
C48.10 [48,14,8] 1 0 66 4 759 1980 10764
Cisii [48,13,16) 1 0 0 0 759 0 6672
Ca8,12 [48,23,4] 1 132 5346 67188 367983 980232 5546844
C48.13 [48,24,4] 1 66 1254 55642 546975 3581028 8407284
C48,14 [48,24,4] 1 276 10626 134596 735471 1961256 11092764
C48,15 [48,14,4] 1 12 66 220 495 792 13212

Table 4.18: Parameters and the weight distribution of binary codes Cag.1,Cag2, - . .,Cas.15

These codes were constructed in [17]. All of the codes Cyg,1,Cas2, .- - .,Cag,15, have

the dual codes of minimum weight 4. By Lemma 2.1.14, the codes Csg,1,C48.2, .. .,C48 15

could be the residue codes of the extremal or near-extremal Z4-codes if the minimum

weight of their duals is at least 6. Therefore, we conclude that no extremal or near-

extremal Z4-codes can be obtained from these codes.

We also constructed binary linear codes from the 53 Hadamard matrices of order 48

given in [38]. In total 6 nonequivalent binary codes Cjg {, Cjg 5.- - -» Cjg ¢ Were obtained.

All of these codes are self-dual. The weight distribution of codes Cyg |, Cig 5, - - Cyg 6 is
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given in Table 4.19.

The code [mk,d] 0 4 8 12 16 20 24

28’1 [48,24,4] 1 276 10626 134596 735471 1961256 11092764

4"8’2 [48,24,8] 1 O 276 15088 542823 3979920 7701000

4"8’3 [48,24,8] 1 0 138 16192 538959 3987648 7691340

C£8,4 [48,24,8] 1 0 0 17296 535095 3995376 7681680

Cfl&S [48,24,8] 1 0 138 16192 538959 3987648 7691340

Czlts,() [48,24,8] 1 0 1518 5152 577599 3910368 7787940

Table 4.19: Parameters and the weight distribution of binary codes Cjg ;,Cas 2, .- ,Cé’l&6

Since the minimum weight of the codes Cé’l&z, 4’18,3, e C4,18,6 is greater than 6, by
Lemma 2.1.14, these codes are good for the construction of extremal Z4-codes. The code
Cjg,1 have the minimum weight 4, so this code is not good for the construction of extremal
Zy4-codes by Lemma 2.1.14. The codes Cfl& 4 and ngﬁ are the residue codes of already
known extremal Z4-codes given in [7] and [33]. From Cé’l&(), we constructed already
known extremal Type II Z4-code given in [33]. Also, we found 146 near-extremal Type
I Z4-codes with the same residue code. At least two of those 146 codes are nonequiv-
alent. The number of codewords of Euclidean weight 20 in these near-extremal codes
are 307520,308752. All of the constructed near-extremal Z4-codes are neighbors of the
known extremal Z4-code from [33].

From other binary codes, no extremal or near-extremal Z4-codes were found.
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4.2. CODES OF LENGTHS 56, 64, AND 72

In this subsection we give the overview of the codes of greater lengths. These lengths
proved to be too large for the current computational power that was available to us. On
these lengths we even had the problem to determine the equivalence of some binary codes
that were constructed. Therefore, we are able only to present partial results that can be of

use in some future work.

Codes of length 56

As in the case of the length 40, construction given in Proposition 3.1.2 cannot be used
since:

dn—1=55=n=14,

which contradicts the necessary condition given in Theorem 1.2.7. Therefore, in order to
construct Hadamard 2 — (55,27,13) designs, we used incidence matrices given in Table
A.1 for n = 55. We obtained 15 designs %, %, ..., %5, [15]. The first five matrices in
Table A.1 yield designs %1, %, ..., Y5 that are self-dual or pairwise dual. From the sec-
ond five matrices we obtained designs %, %7, ..., %10 and their duals %1, %12,...,%s.

The structure of the full automorphism group of designs is given in Table 4.20.

The size of The structure Designs

the group  of the group

78 Frobsg :Zo D3, Da, D5, D7, Do, P10, P12, D14, D15
26 Do D, Do, Do, D3, P11, 213

Table 4.20: The structure of the full automorphism group of 2 — (55,27,13) designs
-@17@27"'7@15

From 21,2, ...,%5 we constructed the corresponding 3 — (56,28,13) designs 77,

95, ..., Y[s. These designs give 15 binary linear codes Cy,(3,...,Cis which are dis-
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tributed in 4 equivalence classes:

C67 (C37C9> 3 (C4,C5,C12,C]3) )

(C1,C>,C7,C3,C19,Ci1,C14,Ci5) -

The weight distribution of nonequivalent codes is given in Table 4.21. All of the con-
structed codes are self-dual. By Lemma 2.1.14, the minimum weight of the torsion code
of the extremal or near-extremal Z4-code of length 58 should be at least 6. Since the min-
imum weight of the codes Cy, C3, and Cg is 4, they cannot be used for the construction of
extremal or near-extremal Z4-codes. Only the code Cy satisfies Lemma 2.1.14 since its

minimum weight is 8.

# [nk,d] 0 4 8 12 16 20 24 28

C; [56,28,4] 1 14 91 17836 769769 11533522 64090299 115612392

Cs [56,28,4] 1 378 20475 376740 3108105 13123110 30421755 174334328

Cs [56,28,8] 1 O 91 8736 614761 11729536 64847419 114034368

Ce [56,28,4] 1 182 10283 188188 1783929 12524330 48013147 143395336

Table 4.21: Parameters and the weight distribution of binary codes of length 56

Codes of length 64

Up to the equivalence, there are two skew-symmetric Hadamard matrices of order 16.
These matrices are SHjg, given in (1.2), and its transpose. From the corresponding skew
Hadamard designs, by Proposition 3.1.2, we obtained 104 nonisomorphic designs with
parameters 2 — (63,31,15). From the first skew-symmetric Hadamard matrix SHj¢, we
obtained designs %1, %,...,%s4. The designs Y, s,... 713 were obtained from the
first block matrix H; of Proposition 3.1.2. The designs %19, %>, ... Z3¢ were obtained
from the second block matrix H; of Proposition 3.1.2. The designs %37, Zsg, ... P54 are
duals of the designs Z19, %50, ... Z36. From the second skew-symmetric Hadamard ma-
trix SH1T6, we obtained designs Zss, ..., Z1og. Again, the first 18 designs are obtained

from Hj, and the folowing 36 designs are obtained from H, and their duals. The pairs of
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designs (P32, P39),(Zss, Ps6) (D50, Z107),(Ps3, P104) are isomorphic. The structure of

the full automorphism groups of the obtained designs are given in Table 4.22.

The size of The structure Designs
the group of the group
1008 (Eg : Froby) X S3 D2, Dag
504 Froby; x S4 D8, Deo>
4032 (Es : Froby;) X S4 D, Dss, D6, Doy
126 Froby; x S D8, D23, Da1, D12, P17, Dos
84 Ey X Froby) Do, D2, D14y Dr6, D33, D51, Zss, P9,

D3, 210, P13, P79, Dss, Do1, Do7, Z103

42 Zn X Froby Dy, Da, D5, Ds, D7, Do, D11, P15, D17,
D9, Dors Dos, Das, Doy D1, Do8, P29, D31,
D32, D3a, D3s, D36, P31, P39, Dz, Pazy Daa,s
Das, Daey Pa1, Pa9, D50, Ds2, Ds3, Dsar Dse,
D51, D60, P61, Y65, Po6s Zes> Y69, Y11, Y15,
D8, Do, D81, D82, D3, D1, Pss, Poo, Yos,
Do6, Dos; P99, 1005 2101, 2105, Z106> 2108

21 Froby; Do, D3, Do, P30, P38, Dass
Doa, Ds1, 14, Doa, Doz, D102

Table 4.22: The structure of the full automorphism groups of 104 pairwise nonisomorphic

2—(63,31,15) designs

From these designs, we obtained 104 pairwise nonisomorphic 3 — (64,32,15) designs
D5, .., D}y, which give binary linear codes that distribute in 21 classes of the same
weight distributions. The weight distribution classes are given in Table 4.23. All the
obtained codes have dual codes of minimum weight 4. By Lemma 2.1.14, the extremal
or near-extremal Z4-code of length 64 should have the torsion code of minimum weight
that is at least 6. Therefore, no extremal or near-extremal Z4-codes can be obtained from

these codes.
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Codes of lengths 56, 64, and 72

#  [nkd 4 8 12 16 20 24 28 32

1 [64,18,4] 16 120 560 1820 4368 8008 11440 209478

2 [64,18,4] 170 91 1672 2025 16730 14267 192430

3 [64,18,4] 28 198 56 788 5712 4522 39004 161526

4 [64,32,4] 178 9564 260294 4059716 37634946 217909924 865313542 2044590966
5 [64,17,8] 0 56 0 1180 0 11144 0 106310
6 [64,17,4] 21 99 28 490 2814 1869 19537 81354

7 [64,32,4] 496 35960 906192 10518300 64512240 225792840 471435600 2748564038
8 [64,18,8] 0 56 0 1692 0 25480 0 207686

9 [64,31,4] 240 18040 452816 5260060 32253936 112900424 235712080 1374288454
10 [64,24,4] 120 1848 11368 64028 255992 722568 1813288 11038790
11 [64,32,4] 240 18040 452816 5325596 40118256 232175944 760524368 2217736774
12 [64,32,4] 176 9720 262672 4019740 37199280 219091400 865083280 2043634758
13 [64,18,8] 0 120 0 1824 480 15288 32032 162654
14 [64,31,4] 162 7548 172566 2288516 19060722 107236484 432039254 1025873142
15 [64,25,4] 136 2520 19992 119388 496264 1535464 3661528 21883846
16 [64,11,4] 1 0 7 28 21 0 99 1734

17 [64,11,16] 0 0 0 32 0 112 0 1758
18 [64,17,8] 0 120 0 1820 0 8008 0 111174
19 [64,19,4] 120 1848 11368 97052 286712 2105992 3863336 20821574
20 [64,18,4] 2 120 176 1211 3444 6124 46342 147264
21 [64,10,16] 0 0 0 32 0 112 0 1758

Table 4.23: Parameters and the weight distribution of classes of codes of length 64 ob-

tained from Proposition 3.1.2

From 46 designs with parameters 2 — (64,28, 12) described in [18], we obtained 46

doubly-even binary codes Cg4.1,Ce4.2, - - - ,Co4.46. The following pairs of codes are mutu-
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ally equivalent:

(C4,3,Cé4,30) » (C4,9,Cé4,10) » (Co4,22,C64,33),  (Cea,24,Co4.35)
(Co4,5,Cé4,26) » (Co4,2,Co4,29) (Co4.6,Co4,27) » (Cos.4,Co4,28) »

(Cos.40,Cos41),  (Cos21,Cos32),  (Ce423,Cos34) s (Coa38:Cos44)
(

Ce4,20,Co4,31) -

Therefore, there are 33 binary codes, up to the equivalence. The weight distribution of
these codes is given in Table 4.24. The dual codes of the codes Cey 11 and Cgs 12 have
minimum weight 4. The dual codes of the codes Cg4 7 and Cg4 9 have minimum weight
6. The dual codes of the remaining codes have minimum weight 8. Therefore, only
codes Cgq,11 and Ce4,12 do not satisfy the necessary condition given in Lemma 2.1.14 (the
minimum weight of the duals have to be at least 6). Due to the memory limitations, we

were not able to produce any of the Z4-codes from these binary codes.
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Codes of lengths 56, 64, and 72

The Code  [n,k,d] 0 4 8 12 16 20 24 28 32
Cos1.Cosze [64,26,12] 1 0 0 7 7434 283675 3653608 16267742 26683930
Cos2:Cors [64,27,8] 1 0 1 161 13916 570381 7300951 32544850 53357206
Cess [64,27,8] 1 0 1 168 14070 568904 7306383 32533776 53371122
Cosa 64,27,8] 1 0 1 168 14238 567560 7311087 32524368 53382882
Coss (64,27,8] 1 0 1 140 14350 567644 7309743 32527896 53378178
Cos 64,27,8] 1 0 1 210 15218 569002 7280735 32616068 53255258
Coss 64,27,8] 1 0 1 217 13692 570213 7303639 32537794 53366614
Cos [64,27,8] 1 0 29 658 14714 564970 7289667 32612484 53252682
Coarl (64,27,8] 1 0 1 238 18354 603862 7236831 32427068 53645018
Cos.12 64,27,8] 1 0 1 217 18060 606949 7225239 32450882 53615030
Costs  [64,26,12] 1 0 0 98 6888 284858 3652880 16266468 26686478
Cos14Coats [64,26,12] 1 0 0 77 7154 283465 3656968 16258922 26695690
Costs  [64,26,12] 1 0 0 63 7294 282835 3658648 16255982 26699218
Cosr7  [6426,12) 1 0 0 112 6804 285040 3652768 16266272 26686870
Costs  [64,26,12] 1 0 0 98 7224 282170 3662288 16247652 26709998
Costo  [64,26,12] 1 0 0 7 7294 284795 3649688 16275582 26674130
Cos20 64,27,8] 1 0 1 126 14322 568358 7306719 32534364 53369946
Cosn1:Cosns [64,27,8] 1 0 1 28 14686 568876 7301231 32548280 53351522
CosmnCoana [64,27,8] 1 0 1 35 14392 570983 7294119 32562294 53334078
Cosns  [64,26,12] 1 0 0 77 7126 283689 3656184 16260490 26693730
Cosz7  [64,26,12] 1 0 0 21 7070 286097 3645656 16283226 26664722
Coa.38 64,27,8] 1 0 1 112 14238 569520 7302127 32543968 53357794
Co430 64,27,8] 1 0 1 14 14994 566902 7307615 32535932 53366810
Cos 40 64,27,8] 1 0 1 28 14630 569324 7299663 32551416 53347602
Coss2 (64,27,8] 1 0 1 42 14266 571746 7291711 32566900 53328394
Cosss  [64,26,12] 1 0 0 105 6678 286293 3648120 16275778 26674914
Cosss  [64,26,16) 1 0 0 0 7588 282688 3656800 16261568 26691574
Co4.45 (64,27,8] 1 0 1 210 13482 572138 7296639 32552004 53348778

Table 4.24: Parameters and the weight distribution of doubly-even codes of length 64

constructed from the designs given in [18]
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Codes of length 72

Since 4n—1 =71 gives n = 18, the construction given in Proposition 3.1.2 cannot be used
due to the condition from Theorem 1.2.7. We constructed and analyzed 45 Hadamard
2 —(71,35,17) designs from incidence matrices given in Table A.1 under n = 71, ob-
tained from [15]. From the first fifteen matrices we obtained designs %y, %, ..., %5
which are self-dual or pairwise dual. From the second fifteen block matrices we obtained
D6, P17, ..., D3 and their duals P31, Z17,...,%s5. The structure of the full automor-
phism groups of designs %1, %»,..., %45 are given in Table 4.25. These designs were

previously constructed in [19].

The size of The structure Designs

the group  of the group

136 Z7: Zg D2, Do, Da3
68 VAYRY/ Da, D5, Dr9, D30, Dass Das
34 D34 @l @2’ @35 -@47 @5’ @65 -@77 -@87 @9’

Do, 211, D13, Dre, P17, D18, 219, Dro, Zois
D22, Doz, Dosy Dos, Doss D21, D31, D32, I3,
Dra, Das, Dy D37, D38, D39, Da0, D1, Da2

Table 4.25: The structure of the full automorphism groups of the 2 — (71,35,17) designs
D, Da, -, Das

The corresponding 3 — (72,36,17) designs Z{, 95, ..., ;s give 45 self-dual binary
linear codes Cy,Cs,...,Cys. These codes are distributed in 8 classes of the same weight

distribution:

C1,(2,C5,C) ,(C3,C4) , (C2,C23,Ca4,C25,Ca6,Ca7,C28,Ca9)

(

(C7,Go),Cs,
(C10,C11,C12,C13,C14,C15,C18,C19,C34,C35,C36,C37,C38,C39,Ca0, Cat )
(

C16,C17,C20,C21,Ca2,C43,Cu4,Css) , (C30,C31,C32,C33) -

The weight distribution of these codes is given in Table 4.26.
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The Code  [n,k,d] 0 4 8 12 16 20 24 28 32 36
C [72,36,4] 1 18 153 13872 551412 26721144 495128196 4317481296 16486794990 26066094572
G [72,36,8] 1 0 153 6528 277236 18074880 461482884 4404774528 16585890030 25778464256

(] [72,36,4] 1 630 58905 1947792 30260340 254186856 1251677700 3796297200 7307872110 43434873668

Cy [72,36,4] 1 306 29529 973488 15131700 131807736 839757636 4144182480 11996428590 34462853804

Cio [72,36,4] 1 18 425 13328 745892 25862712 495169812 4324680048 16466504606 26093523052

Cie [72,36,4] 1 18 153 10608 590580 26505720 495846276 4315865616 16489380078 26063078636

Cn [72,36,8] 1 0 289 6256 374476 17645664 461503692 4408373904 16575744838 25792178496

C3o [72,36,8] 1 0 153 4896 296820 17967168 461841924 4403966688 16587182574 25776956288

Table 4.26: Parameters and the weight distribution classes of binary codes of length 72

By Lemma 2.1.14, the torsion code of the extremal or near-extremal Z4-code of length
72 should have minimum weight at least 8. Therefore, only codes C3,Cy, and Csg satisty
the necessary condition given in Lemma 2.1.14. Due to the memory limitations, we were

not able to produce any of Z4-codes.
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4.3. COMBINATORIAL STRUCTURES

In this section we describe combinatorial structures that we obtained from constructed

Z.4-codes, and their residue and torsion codes.

Strongly regular graphs

At the beginning of this subsection we give the method that was used for construction
of strongly regular graphs from binary codes C3; 1, C322, ..., C3221, and Cyg 1, Cug 2, - - -,

C4g,15 described in subsection 4.1. This method is not new, and it can also be found in [17].

Let C be any of the mentioned codes, and let n be length of C. Further, let w be
any weight of the code C such that S, = {c eC {th (c) = w} is a non-empty set. For

c=(c1,¢2,...,¢cn) € Sy, a support of ¢ is defined as:
supp (c) = {jlcj=1,j€1,2,...,w}.
Let B be the following set:
B={supp(c)|ceS,}.

A set of intersection numbers of the set B is the set I = {[bNb'||b,b’ € B,b#b'}. Let
P= (P(l),P(Z)) be a partition of the set /. Our goal is to construct a strongly regular
graph G = (B, E) such that:

(b} €E<« [pnb| € PV, (4.1)

Notice that, if such strongly regular graph exists, then its parameters would be (|B|,k,A, ).

Since every strongly regular graph is also regular graph, from Theorem 1.1.27, we have:

2|E
|B|k:2|E|@k:ﬁ. 4.2)
Therefore, it is necessary that % is an positive integer. Also, if for a given partition P

described graph G is a strongly regular graph, then the graph defined by G’ = (B, E’) for
E’ defined as:
(bt} €E & |bnb/| € PP,
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is the complement of the graph G. Therefore, it is sufficient to construct graphs with
edges defined by (4.1), and from the partitions P such that ‘P(l)‘ < ‘P(z) ‘

Based on this discussion, for the described set I, we would determine all non-empty
subsets of the set / that have at most L%J elements, and define P(!) at that subset. If
‘P(l)‘ = Uizlj, then we do not consider its complement. There are 2//I=1 — 1 such sets.
For the fixed set P(!) we determine |E| (where E is defined by (4.1)). If k, given by (4.2),
is not an positive integer we discard the set P as possible set for the incidence of a

strongly regular graph. For all feasible sets P, we constructed graphs G = (B,E) and

used computer software GAP ( [50]) to determine if G is a strongly regular graph.

Example 4.3.1.  We give an example of the described method on the code C3; 3, and for
the weight 4. Notice, from Table 4.3, that there are 28 codewords of the weight 4 in the
code C3; 3. Therefore, the number of vertices in the graph is |V| = 28. These codewords

form the following set of the supports, S4:

{1,2,8,24}, {1,3,8,25}, {1,4,8,26} {1,5,8,27},

{1,6,8,28}, {1,7,8,29} {1,8,20,21}, {2,3,24,25}
{2,4,24,26} {2,5,24,27} {2,6,24,28} , {2,7,24,29}
{2,20,21,24},  {3,4,25,26}, {3,5,25,27}, {3,6,25,28},
{3,7,25,29}, {3,20,21,25},  {4,5,26,27}, {4,6,26,28}
{4,7,26,29} {4,20,21,26},  {5,6,27,28}, {5,7,27,29},
{5,20,21,27},  {6,7,28,29}, {6,20,21,28},  {7,20,21,29}.

It can be checked that every two distinct elements of the set S4 either intersect in
2 points, or are disjoint. Therefore, I = {0,2}. The only non-trivial partition of I is
P = ({0},{2}). This is also confirmed from 2//I=1 —1 =221 _1 = 1. We can freely
chose whether PU') = {0} or P(1) = {2}, since they are pair of complementary subsets in
I. Let PU) = {2}. One can verify that the number of pairs of the distinct blocks from Sy
that intersect in 2 elements is 168. Therefore the number of edges in the graph that we
want to construct is |E| = 168. Therefore, k = %868 = 12. Since this is a positive integer

we can try to construct a strongly regular graph. We verified by GAP that this is indeed
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a strongly regular graph with parameters (28,12,6,4). This graph is isomorphic to the

triangular graph T (8). It is also given in the second row of Table 4.27.

As stated at the beginning of this subsection, we applied the described method on the
binary codes of lengths 32 and 48 from Subsection 4.1 that were obtained from construc-
tion given in Proposition 3.1.2. The graphs constructed from the codes of length 32 are
presented in Table 4.27. The graphs constructed from the codes of length 48 are pre-
sented in Table 4.28. The graphs from codes of the length 48 were previously constructed
in [17]. No new strongly regular graphs were obtained. In both tables, we give the binary
code from which graphs are obtained, the weight w that was used to construct set S,
the subset of the intersection set P{!) that defines the edges of the graph, the parameters
(v,k,A, ) of the obtained strongly regular graph and finally the known strongly regular
graphs to which obtained graphs are isomorphic. In Table 4.28, we obtained a strongly
regular graph from Cyg 3 and set Sj¢ with parameters (495,238,109,119). By the entry
J(12,4), d € {2,4}, we denote the strongly regular graph obtained as the distance graph
of the Johnson graph J(12,4) for distance set {2,4}. In the same table, we obtained a
strongly regular graph from Cyg 9 with parameters (77,16,0,4) which is isomorphic to
the graph constructed from blocks of quasi-symmetric Steiner triple system S (3,6,22)
constructed in [48]. All of isomorphisms were checked by GAP. The information on the

known strongly regular graphs were obtained from [10].

The Codewords Incidence Parameters of Known

code  weightw intersection SRG graph
C32 8 {4} (28,12,6,4) T (8)
C323 4 {2} (28,12,6,4) T (8)
C32.12 4 {2} (28,12,6,4) T (8)
C32.15 8 {4} (28,12,6,4) T (8)
C32.16 4 {2} (120,28,14,4) T (16)
C32,19 4 {2} (36,14,7,4) T (8)

Table 4.27: Strongly regular graphs obtained from binary codes of length 32
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The Codewords Incidence Parameters of Known
code weight intersection SRG graph
Cug3 8 {4} (66,20,10,4) T(12)
Cug3 16 {0,8} (495,238,109,119) J(12,4)
de{2,4}
Cu8.7 4 {2} (78,22,11,4) T (13)
Cag.9 12 {0} (77,16,0,4) S(3,6,22)
‘Bi ﬂBj‘ =0
C48714 4 {2} (276,44,22,4) T (14)

Table 4.28: Strongly regular graphs obtained from binary codes of length 48

Combinatorial designs

In this section we will present the combinatorial designs that were

constructed from ob-

tained extremal Z4-codes. The method that we used was first described in [3]. The fol-

lowing theorem can be found in the same paper.

Theorem 4.3.2. Let C be an extremal Type II Z4-code of length n = 24,32,40 such that

the minimum weight of Res(C) is at least 8. Let Sy, Sz, S3, S4 be the sets defined as

follows:

The following statements hold:
(1) wty (C) >4, wtiC > 8, wig (C) =16,

(i1) S is the set of all codewords in C of Hamming weight 4,
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(ii1) S is the set of all codewords in C of Lee weight 8,
(iv) S1USUS3US;y is the set of all codewords in C of Euclidean weight 16,

(v) The set of supports of all codewords in §; is the set of supports of codewords of

weight 4 in Tor (C).
The following remark can also be found in [3].

Remark 4.3.3. Let d be the minimum weight of Res (C) in previous theorem. If d = 12,
then S4 1s empty. If d = 16 then sets S3 and S4 are empty, and the set of supports of all

codewords in S is the set of the supports of the codewords of minimum weight in Tor (C).

For the extremal Z4-codes of length 32 presented in Section 4.1, we constructed the
sets S1, S7, S3 and S4 and checked whether the supports of codewords in this sets form
a design. In Table 4.29 we give the summary of constructed designs. All of the designs
were constructed from the supports of codewords from S;. From other sets no designs
were constructed. All of the constructed designs are 1-designs. The summary of obtained
designs is given in Table 4.29. All binary codes from Table 4.29 except C3; 15 and C32 16
are residue codes of the extremal Type Il Z4-codes. Since codes C32.1, C32.7, C32.10, C32,11
and C3 14 have minimum weight at least 8, by the statement (v) of Theorem 4.3.2 they
depend only on the code Tor (C). The codes C3; 9 and C3; 13 have the minimum weight 4
and therefore they do not satisfy that statement. For each of 11 extremal Type Il Z4-codes
constructed from C3p 9 and C3p 13 we constructed designs from the set §; and checked
the isomorphism of the obtained designs by MAGMA. All of constructed designs from
each of these codes are isomorphic. Therefore, from each of the codes C3; 7, C327, C32.9,
C32,10, C32.11, C32,13 and C3p 14 (or precisely from their duals), up to isomorphism, one
1-design is constructed.

Codes C33,15 and C3; 6 are binary residue codes of the Type I extremal Zy-codes, so
they are not covered by Theorem 4.3.2. We tried the same construction as for Type II Z4-
codes and we also obtained, up to isomorphism, only one design from each of the codes.

The quasi-symmetric designs obtained from C3, ¢ and Cs3; 16 are resolvable.
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The Set of Parameters of Size of the Number of Block intersection
code codewords design Automorphism group blocks numbers
Cs Si 1—(32,4,155) 228.34.5.73 1240 0,1,2
Cs27 S 1—(32,4,43) 231.34.52.72 344 0,1,2
(%) S 1—(32,4,7) 218.32.7 56 0,2
C32.10 S 1—(32,4,91) 224.33.5.7 728 0,1,2
Ca.11 S 1—(32,4,21) 221.32.72 168 0,1,2
Cx.13 S 1-(32,4,7) 210.33.5.7 56 0,1,2
Cs2,14 Si 1—(32,4,35) 221.34.52.72 280 0,1,2
Csa.15 S1 1—(32,4,43) 215.32.5.7.31 344 0,1,2
Cs2.16 S1 1—(32,4,15) 231.36.53.72.11-13 120 0,2

Table 4.29: Combinatorial designs obtained from extremal Z4-codes of length 32
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CONCLUSION

In Chapter 2, we presented a modification of an existing algorithm for the construction
of self-dual Zj-codes. The main goal of the modification was to increase the number
of codes that are checked for extremality or near-extremality with one calculation of the
minimum Euclidean weight. We have showed that, if G (B) is the generator matrix of a
self-dual code determined by k X k binary matrix B, then the number of codes that can
be checked for extremality (near-extremality) is equal to the number of 0-elements in the
upper diagonal of B. We have also showed that, the order in which matrices B are cho-
sen, effects the number of calculations of minimum Euclidean weight needed to cover the
search space, since the search space has the structure of the hypercube graph. If matrices
B were taken in lexicographical order, then the number of calculations of minimum Eu-
clidean weights needed to cover the whole search space was halved compared to the usual
approach without modification. We showed, experimentally, that this number is signifi-
cantly smaller when matrices B are taken randomly. We tested the modified algorithm on
the [16,6,4] binary code, and observed its efficiency. We concluded that the modified al-
gorithm is not good for the classification of the extremal and near-extremal Z4-codes, but
still checks the extremality of significantly more Z4-codes than the unmodified version.

After the analysis of the modified algorithm, in Chapter 3 we developed a new method
for the construction of Hadamard designs from skew-symmetric Hadamard matrices. This
construction gives a series of at most 54 Hadamard designs on 4n — 1 points from one
skew incidence matrix of Hadamard design on n — 1 points. Since the incidence matrices
of Hadamard 3-designs span doubly-even binary codes, this is a nice way to construct
input data for the modified algorithm.

In the end of this work we applied the modified method to construct new extremal

and near-extremal Z4-codes. The results were presented in the Chapter 4. From the only
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skew-symmetric Hadamard matrix of order 8 (up to the equivalence), we constructed
21 nonequivalent binary codes. On these codes we applied both the standard, and the
modified algorithms in attempt to construct extremal and near-extremal Z4-codes. With
the standard method, we obtained at least 4 new Type Il extremal Z4-codes, one of each
of the types 47218, 410212 and two of the type 4°2'4. Also, we obtained at least 443
nonequivalent Type I Z4-codes of which: 5 of type 419212 10 of type 41228, 182 of type
41326 6 of type 41922, and 240 of type 4'6. With the standard method we were unable
to construct any extremal Zjs-codes from 8 binary codes of length 32. Only when the
modified method was applied, we successfully constructed extremal Z4-codes with this
residue codes. At least 64 new extremal Type Il Z4-codes were constructed: one code
of type 4°2!4, 6 codes of type 419212, 27 codes of type 4!322, and 30 codes of type 4'°.
Additionally, 11 Type I extremal Z4-codes were constructed: 2 codes of type 4°2'4, 2
codes of type 4728, and 7 codes of type 4!2!2. New numbers of known extremal Type

II Z4-codes of length 32 are given in Table 4.30.

Type 46220 47218 48216 49214 410212 411210

# 1 7 27 16 11 3

Type 41228 41326 41424 41522 416

# 1 220 5148 383 164

Table 4.30: The type and the new numbers of known extremal Type II Z4-codes of length
32

For the length 40, we were unable to use developed method for the construction of
Hadamard matrices, so we used Hadamard matrices given in Table A.1. From them, we
obtained, up to the equivalence, 3 self-dual doubly-even binary codes. With the modified
algorithm, we obtained 11 new extremal Type II Z4-codes of type 4°°. Also we obtained
4090 extremal Type I Z4-codes of the same type. We applied the modified algorithm on
the residue codes of the known extremal Z4-codes of length 40 from [3] and [28] (of types

on which a small number of extremal codes is known). From those codes, we obtained
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at least 29 new extremal Type II Z4-codes: one of type 47229, 3 of type 419220, 8 of type
411218 16 of type 419210, and one of type 4'928. On the same residue codes, we also
constructed 54 new extremal Type I Z4-codes: 7 of type 4722, 9 of type 41922, 7 of type
411218 17 of type 49219, and 14 of type 4'928. Therefore, the new numbers of known

extremal Z4-codes of Type II are given in Table 4.31.

Type 47226 48224 49222 410220 411218 412216 413214

# 4 228 100 5 11 20 15

Type 414212 415210 41628 41726 41824 41922 420

# 5 19 2 134 902 432 94354

Table 4.31: The type and the numbers of known extremal Type II Z4-codes of length 40

For the length 48, binary codes constructed from Hadamard matrices obtained by
method developed in this thesis were not good for construction of extremal or near-
extremal Z4-codes. We also tried to construct extremal Z4-codes from binary codes
obtained from Hadamard matrices given in [38]. From these codes we constructed al-
ready known extremal Type Il Z4-code given in [33]. Also, we constructed at least two
nonequivalent near-extremal Zj-codes that are neighbors of that extremal Type II Zg4-
code.

For the codes of greater lengths, the method was unsuccessful in construction of ex-
tremal and near-extremal Z4-codes.

In the end, we used method given in [17] to construct strongly regular graphs from bi-
nary codes of length 32 and 48 obtained from Hadamard matrices constructed by method
developed in Chapter 3. Since these binary codes of length 48 were already constructed
in [17], results obtained in this thesis were confirmation of the results given in that article.
For the length 32, we obtained already known strongly regular graphs 7' (8) and 7 (16).
We also used the method given in [3] to construct 1-designs from the obtained extremal

Zy-codes of length 32. Up to the isomorphism, 9 designs were obtained.
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A. THE INPUT HADAMARD MATRICES

OF SPORADIC CASES

In this section incidence matrices of designs used in constructions are given [15]. In Table
A.1 these matrices are written in the following way. The column n denotes the number of
points in corresponding design. In the column Matrix the rows of each matrix are written
in the hexadecimal form. For example, the first incidence matrix of the design on 39
points is:

0 x 3FFFF80000|
0 x SED4838CD1

0 x 4F6A45C668

In order to obtain the incidence binary matrix, one needs to convert each row in the binary

number:

0 x3FFFF80000;¢ = 27487738265610 = 111111111111111111100000000000000000005,
0 x SED4838CD1 = 40729231688119 = 101111011010100100000111000110011010001>,

0 x 4F6A45C668 = 34108537405619 = 100111101101010010001011100011001101000,.

Since the binary number 11111111111111111110000000000000000000 have 38 digits,
and we have a design on 39 points, a leading zero is added to the beggining of the row.

Then the previous matrix converts to:

_01 1111111111111 10000000000000000000_
101111011010100100000111000110011010001
100111101101010010001011100011001101000
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs

Matrix

39

0x3FFFF80000, 0xSED4838CDI1, 0x4F6A45C668, 0x47B522E334, 0x43DA91719A, 0x41ED48B8CD, 0x60F6A45C66, 0x507B522E33, 0x483DADI719,
0x641ED68B8C, 0x520F6B45C6, 0x6907B1A2E3, 0x5483DCDI171, 0x6A41EE68B8, 0x7520F3345C, 0x5A90799A2E, 0x6D4838CD17, 0x76A41C668B,
0x7B520E3345, 0x7DA90719A2, Ox11663FDA90, 0x28B31BED48, 0x345989F6A4, 0x3A2CCOFB52, 0x1D16607DA9, OxE8B343ED4, 0x7459A1F6A,
0x23A2C90FBS, 0x31D16487DA, Ox18E8B243ED, 0xC745D21F6, 0x263A2A90FB, 0x331D15487D, 0x198ES8EA43E, 0x2CC743521F, 0x1663A5A90F,
0xB31D6D487, 0x598EF6A43, 0x22CC77B521,

0x3FFFF80000, 0xSED4822CC7, 0x4F6A451663, 0x47B5268B31, 0x43DA974598, 0x41ED4BA2CC, 0x60F6A1D166, 0x507B5S0ESB3, 0x483DAC7459,
0x641ED63A2C, 0x520F6B1D16, 0x6907B18E8B, 0x5483DCC745, 0x6A41EE63A2, 0x7520F331D1, 0x5A907D98ES, 0x6D483ACC74, 0x76A419663A,
0x7B5208B31D, 0x7DA904598E, 0x1C668FDA90, 0x2E3343ED48, 0x1719A1F6A4, 0xB8CDOFB52, 0x5C6687DA9, 0x22E3343ED4, 0x11719A1F6A,
0x28B8CY90FB5, 0x345C6487DA, O0x1A2E3243ED, 0xD171D21F6, 0x268BS8A90FB, 0x3345C5487D, O0x19A2E6A43E, 0xCD173521F, 0x668BDAYOF,
0x23345ED487, 0x319A2F6A43, 0x38CD17B521,

0x3FFFF80000, 0x5D44B1F216, 0x4EA258F90B, 0x67512C7C85, 0x73A8963E42, 0x59D44B1F21, O0x6CEA258F90, 0x567512C7C8, 0x4B3A8963E4,
0x659D40B1F2, 0x52CEAO058F9, 0x4967542C7C, 0x44B3AA163E, 0x6259DI10BIF, 0x512CEC858F, 0x68967642C7, 0x544B3F2163, 0x6A259F90B1,
0x7512CFC858, 0x7A8963E42C, 0xDO9F65BAS, 0x684FB2DD4, 0x23427996EA, 0x31A138CB75, 0x38D09C65BA, 0x3C684A32DD, 0x3E3425196E,
Ox1F1A128CB7, O0xF8DOD465B, 0x27C686A32D, O0x13E3475196, O0x9F1A3A8CB, O0x4F8D5D465, 0x27C6EEA32, 0x213E337519, 0x109F1DBASC,
0x284F8ADDA46, 0x3427C16EA3, 0x1A13E4B751,

0x3FFFF80000, 0x5D44B1A13E, 0x4EA258D09F, 0x67512C684F, 0x73A8963427, 0x59D44F1A13, 0x6CEA278D09, 0x567517C684, 0x4B3A8BE342,
0x659D41F1A1, 0x52CEA4F8DO0, 0x4967527C68, 0x44B3A93E34, 0x6259D09F1A, 0x512CE84F8D, 0x68967427C6, 0x544B3A13E3, 0x6A259D09F1,
0x7512CE84F8, 0x7A8963427C, 0xF90B65BAS, 0x7C85B2DD4, 0x23E42996EA, 0x31F210CB75, Ox18F90C65BA, 0x2C7C8232DD, O0x163E45196E,
0xB1F228CB7, 0x58F95465B, 0x2C7CEA32D, 0x2163E75196, O0x10B1F3A8CB, 0x858FDD465, 0x242C7EEA32, 0x32163B7519, 0x390B1DBASC,
0x3C858ADD46, 0x3E42C16EA3, 0x1F2164B751,

0x3FFFF80000, 0x5C668BDA90, 0x6E3341ED48, 0x5719A0F6A4, 0x4B8CDO07B52, 0x45C6683DA9, 0x62E3341ED4, 0x51719A0F6A, 0x68B8C907BS5,
0x745C6483DA, 0x5A2E3241ED, 0x4D171D20F6, 0x668B8A907B, 0x7345C5483D, 0x59A2E6A41E, 0x4CD173520F, 0x4668BDA907, 0x63345ED483,
0x719A2F6A41, 0x78CD17B520, 0x12B7DD338, 0x2095BAE99C, 0x304AD974CE, 0x382568BA67, 0x3C12B45D33, 0x1E095E2E99, 0x2F04AF174C,
0x3782538BA6, 0x1BC129C5D3, 0x2DE094E2E9, O0x16F04E7174, 0x2B782338BA, 0x15BC119C5D, O0xADEOCCE2E, 0x256F026717, 0x12B785338B,
0x95BC699CS5, 0x4ADE74CE2, 0x256F3A671,

0x3FFFF80000, 0x5C668ASECI, 0x6E33452F60, 0x5719A297B0, 0x4B8CD14BDS8, 0x45C668ASEC, 0x62E33052F6, 0x517198297B, 0x68B8CC14BD,
0x745C660ASE, 0x5A2E33052F, 0x4D171D8297, 0x668B8ECI14B, 0x7345C760A5, 0x59A2E7B052, 0x4CD173D829, 0x4668BDECI14, 0x63345AF60A,
0x719A297B05, 0x78CD14BDS82, 0x106F4DD338, 0x2837A2E99C, 0x141BD174CE, 0xAODESBA67, 0x2506F45D33, 0x12837E2E99, 0x2941BF174C,
0x34A0DB8BA6, 0x3A5069C5D3, 0x3D2834E2E9, Ox1E941E7174, 0x2F4A0B38BA, 0x37A5019C5D, Ox1BD284CE2E, 0xDE9426717, O0x6F4A5338B,
0x37A5699C5, 0x1BD2F4CE2, 0x20DE93A671,

0x3FFFF80000, 0x5C668A0DE9, 0x6E334506F4, 0x5719A2837A, 0x4B8CD141BD, 0x45C66CAODE, 0x62E332506F, 0x51719D2837, 0x68B8CE941B,
0x745C674A0D, 0x5A2E37A506, 0x4D171BD283, 0x668B8DE941, 0x7345C6F4A0, 0x59A2E37A50, 0x4CDI171BD28, 0x4668BSDE94, 0x6334586F4A,
0x719A2837A5, 0x78CD141BD2, 0x12F60DD338, 0x297B02E99C, 0x14BD8174CE, O0xASECOBA67, 0x52F645D33, 0x297B62E99, 0x14BDF174C,
0x20ASEB8BA6, 0x3052F1C5D3, 0x18297CE2E9, 0x2C14BE7174, 0x360A5B38BA, 0x3B05299C5D, 0x3D8294CE2E, Ox1EC14A6717, 0x2F60A5338B,
0x17B05699C5, 0xBD82F4CE2, 0x25EC13A671,

O0x3FFFF80000, 0x5C6688256F, 0x6E334412B7, 0x5719A6095B, 0x4B8CD704AD, 0x45C66F8256, 0x62E333CI12B, 0x51719DE095, 0x68B8CEF04A,
0x745C637825, 0x5A2E35BC12, 0x4D171ADE09, 0x668B8D6F04, 0x7345C2B782, 0x59A2E15BCI, 0x4CDI174ADEO, 0x4668BAS6F0, 0x6334592B78,
0x719A2895BC, 0x78CDI104ADE, 0x1ED485D338, OxF6A42E99C, 0x7B52174CE, 0x3DA90BA67, O0x1ED4C5D33, 0x20F6A62E99, 0x107B57174C,
0x83DAB8BA6, 0x241ED1C5D3, 0x120F6CE2E9, 0x2907B67174, 0x1483DB38BA, 0x2A41E99C5D, 0x3520F4CE2E, 0x1A907A6717, 0x2D483D338B,
0x36A41E99CS5, 0x3B520F4CE2, 0x3DA903A671,

O0x3FFFF80000, 0x53D4327A86, 0x49EA193D43, 0x64F50C9EA1, 0x727A864F50, 0x593D4327A8, 0x4C9EA193D4, 0x464F50CI9EA, 0x4327A864F5,
0x6193D4327A, 0x50C9EA193D, 0x6864F50C9E, 0x54327A864F, 0x6A193D4327, 0x750C9EA193, 0x7A864F50C9, 0x7D4327A864, 0xSEA193D432,
0x4F50C9EA19, 0x67A864F50C, 0x13D4358579, Ox9EAI1EC2BC, 0x24F50B615E, 0x327A81BOAF, 0x193D44D857, O0xC9EAG66C2B, 0x64F573615,
0x327AF9B0A, 0x2193D3CD85, 0x10C9EDE6C2, 0x2864F2F361, 0x14327D79B0, 0x2A193ABCDS8, 0x350C995E6C, 0x3A8648AF36, 0x3D4320579B,
0x1EA1942BCD, 0xF50CE15E6, 0x27A8630AF3,

0x3FFFF80000, 0x53D4327A86, 0x49EA193D43, 0x64F50C9EAI, 0x727A864F50, 0x593D4327A8, 0x4C9EA193D4, 0x464F50C9EA, 0x4327A864F5,
0x6193D4327A, 0x50C9EA193D, 0x6864F50C9E, 0x54327A864F, 0x6A193D4327, 0x750C9EA193, 0x7A864F50C9, 0x7D4327A864, 0xSEA193D432,
0x4F50C9EA19, 0x67A864F50C, 0xC2BCE7A86, 0x2615E33D43, Ox130AF59EA1, 0x9857ECF50, 0x24C2BB67A8, 0x326159B3D4, 0x3930A8DIEA,
0x3C98506CF5, 0x1E4C2C367A, 0x2F26121B3D, 0x17930DODYE, 0x2BC98286CF, 0x15E4C54367, OxAF266A1B3, 0x5793750D9, O0x2BCIFA86C,
0x215E4BD436, 0x30AF21EA1B, 0x185794F50D,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x3FFFF80000, 0x53D4318579, O0x49EA1CC2BC, 0x64F50A615E, 0x727A8130AF, 0x593D449857, 0x4C9EAG4C2B, 0x464F572615, 0x4327AF930A,
0x6193D3C985, 0x50COEDE4C2, 0x6864F2F261, 0x54327D7930, 0x6A193ABC98, 0x750C99SE4C, 0x7A8648AF26, 0x7D43205793, 0xSEA1942BC9,
0x4F50CE15E4, 0x67A8630AF2, 0x13D4367A86, Ox9EA1B3D43, 0x24F50D9EAI, 0x327A86CF50, 0x193D4367A8, O0xCI9EAIB3D4, 0x64F50D9EA,
0x327A86CF5, 0x2193D4367A, 0x10C9EA1B3D, 0x2864F50D9E, 0x14327A86CF, 0x2A193D4367, 0x350CO9EA1B3, 0x3A864F50D9, 0x3D4327A86C,
0x1EA193D436, 0xF50C9EAI1B, 0x27A864F50D,

55

0x4FFFFFFC000000, 0x2FFF8003FFE000, 0x1FFF8000001FFF, 0x7685A9949E439C, 0x7B42D4C84F21CE, 0x7DA12A662780E7, 0x76D0D53113D073,
0x7B682A9889F839, 0x75B4154E44FC1C, 0x72DA4AA7226EOE, 0x716D6553912707, 0x70B6B2ABC89383, 0x785B1955E459C1, 0x742DCCAS8F23CEQ,
0x7A16A656790E70, 0x7D0B53293C8738, 0x42790E725E959A, 0x413C87392F4ACD, 0x489E039C97B566, 0x444F41CE4BCAB3, 0x4227EOE525F559,
0x4913F07292FAAC, 0x4C89B83B496D56, 0x4E449CIFA4A6AB, 0x4F224E0FD25355, 0x47916705E939AA, 0x43C8F382F48CDS, 0x49E439C17AS566A,
0x44F21CEOBD2B35, 0x21CE6C354CB2F4, 0x20E7761AA6497A, 0x2073BB0D5324BD, 0x2839DD86A9925E, 0x2C1CEEC154C92F, 0x2EOE3760AA7497,
0x27071BB2553A4B, 0x23838DDB2A9D25, 0x29C186ED955E92, 0x2CEOC374CAAF49, 0x2E7061BA6557A4, 0x273830DD32ABD2, 0x239C586E9945E9,
0x1532CBD38C64F2, 0x1A9925EBC62279, 0x154C92F7E3113C, 0x1AA64979F1889E, 0x155324BCF8C44F, 0x12A9D25C7C7227, O0x1954E92E3E3913,
0x1CAA74971F1C89, 0x16557A498F9E44, 0x132ABD24C7CF22, 0x19955E9063E791, 0x14CAAF4A31F3C8, 0x1A6517A718E9E4,

0x4FFFFFFC000000, O0x2FFF8003FFE000, O0x1FFF8000001FFF, 0x7685A9949E439C, 0x7B42D4C84F21CE, 0x7DA12A662780E7, 0x76D0D53113D073,
0x7B682A9889F839, 0x75B4154E44FCI1C, 0x72DA4AA7226EQE, 0x716D6553912707, 0x70B6B2ABC89383, 0x785B1955E459C1, 0x742DCCAS8F23CEO,
0x7A16A656790E70, 0x7D0B53293C8738, 0x41CE13CAB352F4, 0x40E709E559A97A, 0x4073C4F2ACC4BD, 0x4839A27956725E, 0x4C1C913EAB292F,
0x4EOE489F559497, 0x4707644DAADAA4B, 0x4383F224D57D25, 0x49C1F9126ABE92, 0x4CEOBC8B354F49, 0x4E701E459AB7A4, 0x47384F22CD4BD2,
0x439C279166A5E9, 0x2532CBD0739B0D, 0x2A9925E839DD86, 0x254C92F41CEEC3, 0x2AA6497A0E7761, 0x255324BF073BB0, 0x22A9D25F838DDS,
0x2954E92DC1C6EC, 0x2CAA7494E0E376, 0x26557A4A7061BB, 0x232ABD273830DD, 0x29955E939C186E, 0x24CAAF49CE0C37, 0x2A6517A4E7161B,
0x1279718ESE8A65, 0x113CF8C52F5532, 0x189E7C6097AA99, 0x144F3E324BD54C, 0x12279F1925EAA6, 0x19138F8E92E553, 0x1C89C7C74972A9,
O0x1E44E3E3A4B954, 0x1F2231F3D24CAA, 0x179118F9E92655, 0x13C88C7EF4932A, 0x19E4463D7A4995, 0x14F2631CBD34CA,

0x4FFFFFFC000000, 0x2FFF8003FFE000, Ox1FFF8000001FFF, 0x7586B18CB342F4, 0x7AC358C459A17A, 0x7561EC622CCOBD, 0x7AB0B63116705E,
0x7D581B1A8B282F, 0x76ACOD8F459417, 0x735646C5A2DA0B, 0x71AB6360D17D05, 0x70D5B1B268BES2, 0x786A98DB344F41, 0x7C350C6D9A37A0,
0x761AC636CDOBDO, 0x7B0D63196685E8, 0x42CDOBD29E539C, 0x416685E94F29CE, 0x48B302F6A784E7, 0x4459C17953D273, 0x4A2CAOBCA9F939,
0x4D16505E54FCIC, 0x468B682F2A6E4E, 0x4345F417952727, 0x49A2FAOBCA9393, 0x4CDI13D0SE559C9, 0x4668DESOF2BCE4, 0x4B342F42794E72,
0x459A17A13CA739, 0x217A69958C74F2, 0x20BD74CAC62A79, 0x205SEBA6763153C, 0x282F5D31B18A9E, 0x2417AE98D8C54F, 0x2A0B974C6CT72A7,
0x2D05SCBA6363953, 0x2E82ESD31B1CA9, 0x2F4132E98D9E54, 0x27A09974C6CF2A, 0x2BD04CB8636795, 0x25E8265E31B3CA, 0x22F4532F18C9ES,
0x1631D3CBA1659A, 0x1B18A9E7DOA2CD, 0x1D8CS54F3E85166, 0x16C62A79F428B3, 0x1363153EFA1459, 0x11B1CA9D7D1A2C, 0x18DSE54CBESD16,
0x1C6C72A45F468B, 0x163679502FB345, 0x131B3CAA17D9A2, 0x118DIESSOBECD1, 0x18C6CF2A85F668, 0x1C63279742EB34,

0x4FFFFFFC000000, 0x2FFF8003FFE000, Ox1FFF8000001FFF, 0x7586B18CB342F4, 0x7AC358C459A17A, 0x7561EC622CCOBD, 0x7AB0B63116705E,
0x7D581B1A8B282F, 0x76ACOD8F459417, 0x735646C5A2DA0B, 0x71AB6360D17D05, 0x70D5B1B268BES2, 0x786A98DB344F41, 0x7C350C6D9A37A0,
0x761AC636CDOBDO0, 0x7BOD63196685E8, 0x417A166A7394F2, 0x40BDOB3539CA79, 0x405EC5989CF53C, 0x482F22CE4E6A9E, 0x4417D16727254F,
0x4A0BE8B39392A7, 0x4D05B459C9D953, 0x4E829A2CE4FCA9, 0x4F414D16727E54, 0x47A0E68B392F2A, 0x4BD033479C8795, 0x45E859A1CES3CA,
0x42F42CDOE729ES5, 0x2631D3C85E9A65, 0x2B18A9E42F5D32, 0x2D8C54F017AE99, 0x26C62A7A0BD74C, 0x2363153D0SEBA6, 0x21B1CA9E82E5D3,
0x28D8ES54F4172E9, 0x2C6C72A7A0B974, 0x26367953D04CBA, 0x231B3CA9E8265D, 0x218D9ES6F4132E, 0x28C6CF297A0997, 0x2C632794BD14CB,
0x12CD742E9E4C63, 0x1166FA154F3631, 0x18B37D0AA79B18, 0x1459BE8553CD8C, 0x1A2CDF40A9E6C6, 0x1D162FA254E363, 0x168B17D32A71B1,
0x13458BEB9538D8, 0x19A285F7CA8C6C, 0x1CD142F9E54636, 0x1668A17CF2A31B, 0x1B3450BE79518D, 0x159A685D3CB8C6,

0x4FFFFFFC000000, 0x2FFF8003FFE000, Ox1FFF8000001FFF, 0x7586AC349E44F2, 0x7AC356184F2279, 0x7561ABOE27913C, 0x7ABODS58513C89E,
0x7D586ACO89E44F, 0x76AC356244F227, 0x73561AB3227913, 0x71ABOD5B913C89, 0x70D586AFC89E44, 0x786AC355E44F22, 0x7C3561A8F22791,
0x761AB0OD67913C8, 0x7BODS58693C89E4, 0x427913CA9ES54F2, 0x413C89E54F2A79, 0x489E44F2A7953C, 0x444F227953CA9E, 0x4227913CA9ES4F,
0x4913C89ES4F2A7, 0x4C89E44F2A7953, 0x4E44F227953CA9, O0x4F227913CA9ES4, 0x47913C89ES4F2A, 0x43C89E44F2A795, O0x49E44F227953CA,
0x44F227913CA9ES, 0x2586D3C89ESBOD, 0x2AC329E44F3D86, 0x2561D4F2278EC3, 0x2AB0AA7913D761, 0x2D58153C89FBBO, 0x26AC4A9E44EDDS,
0x2356654F2266EC, 0x21AB72A7912376, 0x20D5F953C881BB, 0x286ABCA9E450DD, 0x2C351E54F2386E, 0x261ACF2A790C37, 0x2B0D27953C961B,
0x12796C369E4B0OD, 0x113CF6194F3586, 0x189E3BOEA78AC3, 0x144F5D8553D561, 0x1227EECOA9FABO, 0x1913B76254ED58, 0x1C899BB32A66AC,
0x1E448DDB952356, 0x 1IF2206EFCA81AB, 0x17914375E550D5, 0x13C8E1B8F2B86A, 0x19E430DE794C35, 0x14F2586D3CB61A,

0x4FFFFFFC000000, 0x2FFF8003FFE000, O0x1FFF8000001FFF, 0x6685A9949E5C63, 0x6B42D4C84F3E31, 0x6DA12A66279F18, 0x66D0D53113CF8C,
0x6B682A9889E7C6, 0x65B4154E44E3E3, 0x62DA4AA72271F1, 0x616D65539138F8, 0x60B6B2ABCS8CT7C, 0x685B1955E4463E, 0x642DCCA8F2231F,
0x6A16A65679118F, 0x6D0B53293C98C7, 0x52790E725E8A65, 0x513C87392F5532, 0x589E039C97AA99, 0x544F41CE4BD54C, 0x5227EOE525EAAG6,
0x5913F07292E553, 0x5C89B83B4972A9, 0x5E449C1FA4B954, 0x5F224EOFD24CAA, 0x57916705E92655, 0x53C8F382F4932A, 0x59E439C17A4995,
0x54F21CEOBD34CA, 0x31CE6C354CADOB, 0x30E7761AA65685, 0x3073BB0D533B42, 0x3839DD86A98DA1, 0x3C1CEEC154D6D0, 0x3EOE3760AA6B68,
0x37071BB25525B4, 0x33838DDB2A82DA, 0x39C186ED95416D, 0x3CE0C374CABOB6, 0x3E7061BA65485B, 0x373830DD32B42D, 0x339C586E995A16,
0x532CBD38C7B0OD, 0xA9925EBC63D86, 0x54C92F7E30EC3, 0xAA64979F19761, 0x55324BCFSDBBO0, 0x2A9D25C7C6DDS8, 0x954E92E3E26EC,
0xCAA74971F0376, 0x6557A498F81BB, 0x32ABD24C7D0DD, 0x9955E9063F86E, 0x4CAAF4A31EC37, 0xA6517A718F61B,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFC000000, 0x2FFF8003FFE000, O0x1FFF8000001FFF, 0x6685A9949E5C63, 0x6B42D4C84F3E31, 0x6DA12A66279F18, 0x66D0D53113CF8C,
0x6B682A9889E7C6, 0x65B4154E44E3E3, 0x62DA4AA72271F1, 0x616D65539138F8, 0x60B6B2ABCS8CTC, 0x685B1955E4463E, 0x642DCCA8F2231F,
0x6A16A65679118F, 0x6D0B53293C98C7, 0x51CE13CAB34D0B, 0x50E709E559B685, 0x5073C4F2ACDB42, 0x5839A279566DA1, 0x5C1C913EAB36DO,
0xSEOE489F558B68, 0x5707644DAACS5B4, 0x5383F224D562DA, 0x59C1F9126AA16D, 0x5CEOBC8B3550B6, 0xSE701E459AA85B, 0x57384F22CD542D,
0x539C279166BA16, 0x3532CBD07384F2, 0x3A9925E839C279, 0x354C92F41CF13C, 0x3AA6497A0E689E, 0x355324BF07244F, 0x32A9D25F839227,
0x3954E92DC1D913, 0x3CAAT7494E0FC89, 0x36557A4A707E44, 0x332ABD27382F22, 0x39955E939C0791, 0x34CAAF49CE13C8, 0x3A6517A4E709E4,
0x279718E5E959A,  0x13CF8C52F4ACD, 0x89E7C6097B566, 0x44F3E324BCAB3,  0x2279F1925F559, 0x9138F8E92FAAC, 0xC89C7C7496D56,
O0XxE44E3E3A4A6AB, 0xF2231F3D25355, 0x79118F9E939AA, 0x3C88C7EF48CD5, 0x9E4463D7A566A, 0x4F2631CBD2B35,

0x4FFFFFFC000000, 0x2FFF8003FFE000, 0x1FFF8000001FFF, 0x6685A994739B0D, 0x6B42D4C839DD86, 0x6DA12A641CEEC3, 0x66D0D5320E7761,
0x6B682A9B073BB0, 0x65B4154F838DD8, 0x62DA4AASCIC6EC, 0x616D6550E0E376, 0x60B6B2AA7061BB, 0x685B19573830DD, 0x642DCCABICI186E,
0x6A16A655CE0C37, 0x6D0B5328E7161B, 0x51CE13CASE8A65, 0x50E709E52F5532, 0x5073C4F097AA99, 0x5839A27A4BD54C, 0x5C1C913D25SEAAG,
O0xSEOE489E92E553, 0x5707644F4972A9, 0x5383F227A4B954, 0x59C1F913D24CAA, 0x5CEOBC89E92655, 0xSE701E46F4932A, 0x57384F217A4995,
0x539C2790BD34CA, 0x3279718D4CADOB, 0x313CF8C6A65685, 0x389E7C61533B42, 0x344F3E32A98DA1, 0x32279F1954D6D0, 0x39138F8CAA6BGS,
0x3C89C7C65525B4, O0x3E44E3E32A82DA, 0x3F2231F195416D, 0x379118F8CABOB6, 0x33C88C7E65485B, 0x39E4463D32B42D, 0x34F2631E995A16,
0x532CBD361BC63, 0xA9925EBBODE31, 0x54C92F5D87F18, 0xAA6497AEC2F8C, 0x55324BF7607C6, 0x2A9D25DBBO03E3,
0xCAA74946EDSFS, 0x6557A48376C7C, 0x32ABD261BAG63E, 0x9955E930DC31F, 0x4CAAF4986F18F, 0xA6517A6C378C7,

0x954E92CDD91F1,

0x4FFFFFFC000000, 0x2FFF8003FFE000, O0x1FFF8000001FFF, 0x668593C873959A, 0x6B4289E439CACD, 0x6DA144F01CF566, 0x66D0A27A0E6AB3,
0x6B68113F073559, 0x65B4489F839AAC, 0x62DA644DCICD56, 0x616D7224E0E6AB, 0x60B6F912707355, 0x685B3C8B3839AA, 0x642D9E479C0OCDS,
0x6A16CF21CE166A, 0x6D0B2790E70B35, 0x51CE29965E84F2, 0x50E754C92F4279, 0x5073AA6497B13C, 0x5839D5324BC89E, 0x5CICAA9925E44F,
O0xSEOE154E92F227, 0x57074AA7497913, 0x5383E553A4BC89, 0x59CIB2ABD25E44, 0x5CE09955E92F22, 0xSE704CAAF48791, 0x573826557A53C8,
0x539C5328BD29E4, 0x3532F18CI9E4DO0B, 0x3A9978C44F3685, 0x354CFC62279B42, 0x3AA63E3113CDAI1, 0x35531F1889F6D0, 0x32A98FSE44EB6S,
0x3954C7C72265B4, 0x3CAA63E39122DA, 0x365531F3C8816D, 0x332A98F9E450B6, 0x39950C7CF2285B, 0x34CAC63E79142D, 0x3A65631D3C9A16,
0x2794BD2B35C63, 0x13CASE959BE31, O0x89EI2F6ACDF18, 0x44F4979566F8C, 0x227A4BEAB27C6, 0x913D25F5583E3, O0xC89E92DAADIFI,
0xE44F494D578F8, 0xF227A4A6AACTC, 0x7913D2735463E, 0x3CSDE919AA31F, 0x9E42F4ACDS18F, 0x4F217A566B8C7,

0x4FFFFFFC000000, 0x2FFF8003FFE000, Ox1FFF8000001FFF, 0x6586AC349E5B0OD, 0x6AC356184F3D86, 0x6561ABOE278EC3, 0x6AB0D58513D761,
0x6D586ACO89FBBO0, 0x66AC356244EDDS, 0x63561AB32266EC, 0x61AB0OD5B912376, 0x60D586AFC881BB, 0x686AC355E450DD, 0x6C3561A8F2386E,
0x661ABOD6790C37, 0x6B0OD58693C961B, 0x527913CA9E4B0OD, 0x513C89E54F3586, 0x589E44F2A78AC3, 0x544F227953D561, 0x5227913CA9FABO,
0x5913C89ES4ED58, 0x5C89E44F2A66AC, 0x5E44F227952356, 0x5F227913CA81AB, 0x57913C89ES50D5, 0x53C89E44F2B86A, 0x59E44F22794C35,
0x54F227913CB61A, 0x3586D3C89E44F2, 0x3AC329E44F2279, 0x3561D4F227913C, 0x3ABOAA7913C89E, 0x3D58153C89E44F, 0x36AC4A9E44F227,
0x3356654F227913, 0x31AB72A7913C89, 0x30D5F953C89E44, 0x386ABCA9E44F22, 0x3C351E54F22791, 0x361ACF2A7913C8, 0x3B0D27953C89E4,
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0x2796C369E54F2,  0x13CF6194F2A79, 0x89E3BOEA7953C, 0x44F5D8553CA9E, O0x227EECOA9ES4F, 0x913B76254F2A7, 0xC899BB32A7953,
0xE448DDB953CA9, 0xF2206EFCA9ES54, 0x7914375E54F2A, 0x3C8E1B8F2A795, 0x9E430DE7953CA, 0x4F2586D3CAYES,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x IFFFF800000001FFFF, 0x77213A36C4A7943A5C, 0x7B909D1B6053CA1D2E,
0x7DC84A8DB229E40E97, 0x7EE42146D914F3074B, 0x777210A36E8A7983A5, 0x73B90C51B5453DCID2, 0x79DC8628DSA29EEOEY,
0x74EE43146E514F7074, 0x7277258 A3728 A6B83A, 0x713B96C51B94525C1D, 0x709DCB628FCA292E(E, 0x784EE5B145E5149707,
0x742776D8AOF28B4B83, 0x7213BB6C527945A5C1, 0x7909D9B6293CA3D2EO, 0x7C84E8DB169E50E970, 0x7E42746D894F2874B8,
0x429E50E97237B1724E, 0x414F2874B91BD8B927, 0x48A7903A5C8DED5C93, 0x4453CC1D2C46F7AE49, 0x4A29E60E96237BD724,
0x4514F7074B11BCEB92, 0x428A7B83AS588DE75C9, 0x49453DC1D2C46F3AE4, 0x4CA29AEOEB62369D72, 0x4E51497077B11A4EB9,
0x4F28A4B83BD88D275C, 0x4794525C1DEC4693AE, 0x43CA2D2EOEF62249D7, 0x49E51697077B1124EB, 0x44F28F4B81BD899275,
0x4A7943A5CODEC5C93A, 0x453CA1D2EO6F62E49D, 0x21D2E6BOD51B631BDS, 0x20E977586 ASDBOSDEC, 0x2074BBAC3546D846F6,
0x283A5DD618A36C237B, 0x2C1D2AEBOC51B711BD, 0x2EOE95758628 DB8SDE, 0x27074EBAC3146CC46F, 0x2B83A35D618A376237,
0x25CID1AEB2C51BB11B, 0x22E0E8D75B628DD88D, 0x2970706BADB 147EC46, 0x24B83C35D6D8A2F623, 0x2A5CIEIAEB6C517B11,
0x2D2EOBOD75B629BDS8S, 0x2E970586B8DB 14DEC4, 0x274B82C35C6D8A6F62, 0x23A5C561AE36C437B1, 0x146D8C6F638B4653CA,
0x1A36C237B3C5A229E5, 0x151B611BDBE2D114F2, 0x128DBOSDEDF1688A79, 0x1146DC46F4F8B5453C, Ox18A36E23787C5AA29E,
0x1C51B311BE3E2C514F, 0x1628DD8SDDI1F1728A7, 0x1B146EC46E8F8B9453, 0x1D8A37623747C5CA29, 0x16C51FB119A3E3ES14,
0x1B628BD8SED1FOF28A, 0x1DB145EC4568F87945, 0x16D8A6F620B47D3CA2, 0x136C537B105A3E9ES|, 0x11B629BD8A2D1F4F28,
0x18DB10DEC7168EA794,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x77213A36C4A7943A5C, 0x7B909D1B6053CA1D2E,
0x7DC84A8DB229E40E97, 0x7EE42146D914F3074B, 0x777210A36E8A7983A5, 0x73B90C51B5453DC1D2, 0x79DC8628DSA29EEOE9,
0x74EE43146E514F7074, 0x7277258A3728 A6B83A, 0x713B96C51B94525C1D, 0x709DCB628FCA292EQE, O0x784EESB145E5149707,
0x742776D8AOF28B4B83, 0x7213BB6C527945A5C1, 0x7909D9B6293CA3D2EO, 0x7C84E8DB169E50E970, 0x7E42746D894F2874B8,
0x41D2E14F2AE49D1BDS, 0x40E970A795724E8DEC, 0x4074BC53CAB92646F6, 0x483A5A29E75C92237B, 0x4C1D2D14F3AE4911BD,
0x4EO0E928A79D72588DE, 0x470749453CEB92C46F, 0x4B83A4A29E75C96237, 0x45C1D6514D3AESB11B, 0x42E0EF28A49D73D88D,
0x49707794524EB9EC46, 0x44B83BCA29275CF623, 0x4A5C19E51493AF7BI11, 0x4D2E0CF28A49D7BDS8S, 0x4E9702794724EADEC4,
0x474B853CA392746F62, 0x43A5C29E51C93A37BI1, 0x246D8C6OF6074B9AC3S, 0x2A36C237B03A5SDD61A, 0x251B611BD81D2EEBOD,
0x228DB08DEEOE977586, 0x2146DC46F7074ABAC3, 0x28A36E237B83A55D61, 0x2C51B311BDC1D3AEBO, 0x2628DD88DEEOESD758,
0x2B146EC46D70746BAC, 0x2D8A376234B83A35D6, 0x26C51FB11A5CICIAEB, 0x2B628BD8SD2EOF0D75, 0x2DB145EC46970786BA,
0x26D8A6F6234B82C35D, 0x236C537B13A5C161AE, 0x21B629BD89D2EOBOD7, 0x28DB10DEC4E971586B, 0x129E57168E37B0SDB1,
0x114F2F8B451BD946D8, 0x18A797C5A08DECA36C, 0x1453CBE2D046F651B6, 0x1A29E1F16A237A28DB, 0x1514FOF8B711BD146D,
0x128A7C7C5988DF8A36, 0x19453A3E2EC46EC51B, 0x1CA29D1F176237628D, 0x1E514ES8FSBB11BB146, 0x1F28A347C7D88CDSA3,
0x179455A3E1EC476C51, 0x13CA2ADI1F2F623B628, 0x19E51168FB7B10DB14, 0x14F288B47DBD886DSA, 0x1A79445A3CDEC436C5,
0x153CA62D1C6F631B62,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x 1FFFF800000001FFFF, 0x77123A9694B3341E78, 0x7B891D4B48599A0F3C,
0x7DC48AA5A62CCCO79E, 0x7EE24552D1166603CF, 0x777122A96A8B3301E7, 0x73B89154B7459980F3, 0x71DC4CAAS59A2CDCO79,
0x78EE22552CD167E03C, 0x7477152A9668B2F01E, 0x723B8E954B3458780F, 0x791DC34AA59A2D3C07, 0x748EE5SA550CD179E03,
0x724772D2AA668BCFO1, 0x7123B969573345E780, 0x7891DCB4A999A2F3CO0, 0x7C48EA5A56CCDO79EO, 0x7E24752D2966683CFO0,
0x42CCDO079E23B715A5A, 0x4166683CF11DB8AD2D, 0x48B3301E788EDD5696, 0x4459980F3C476EAB4B, 0x4A2CCCO79E23B755A5,
0x4D166603CF11DBAAD2, 0x468B3701E788ECD569, 0x43459F80F1C4776AB4, 0x49A2CBCO7AE23AB55A, 0x4CD161E03F711C5AAD,
0x4668B4F01DB88F2D56, 0x43345E780EDC4696AB, 0x499A2F3C076E234B55, 0x4CCD179E03B711A5AA, 0x46668BCF01DB88D2DS5,
0x4B3341E780EDCS5696A, 0x4599A0F3C076E2B4B5, 0x20F3C699954B4B1DBS, 0x2079E74CCAASA48EDC, 0x203CF3A66552D2476E,
0x201E7DD332A96823B7, 0x280F3AE99954B511DB, 0x2C079974CCAAS5BSSED, 0x2E03CCBA66552DC476, 0x2F01E65D312A96E23B,
0x2780F32E9A954B711D, 0x23C079974F4AASBSSE, 0x29E03CCBASA552DC47, 0x2CFO1E65D2D2A96E23, 0x2E780B32E96955B711,
0x2F3C019974B4ABDBSS, 0x279E04CCBASAS54EDC4, 0x23CF02665D2D2A76E2, 0x21E785332E96943B71, 0x152D2C76E3C30ES599A,
0x1A96923B73E1862CCD, 0x154B491DBBF0C31666, 0x1AA5SAO8EDFF8608B33, 0x1552D4476DFC314599, 0x12A96E23B4FE19A2CC,
0x1954B711D87FO0CD166, 0x14AA5B88EC3F8668B3, 0x1A552DC4761FC33459, 0x1D2A96E23BOFE19A2C, 0x16954B711D87F0CD16,
0x1B4AAS5B88CC3F8668B, 0x15A556DC4461FD3345, 0x12D2AF6E2030FF99A2, 0x196953B712187ECCDI, 0x14B4A9DB8BOC3F6668,
0x1A5AS0EDC7861EB334,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x77123A9694B3341E78, 0x7B891D4B48599A0F3C,
0x7DC48AA5A62CCCO79E, 0x7EE24552D1166603CF, 0x777122A96A8B3301E7, 0x73B89154B7459980F3, 0x71DC4CAA59A2CDCO79,
0x78EE22552CD167E03C, 0x7477152A9668B2F01E, 0x723B8E954B3458780F, 0x791DC34AA59A2D3C07, 0x748EESA550CD179E03,
0x724772D2AA668BCFO1, 0x7123B969573345E780, 0x7891DCB4A999A2F3CO0, 0x7C48EAS5A56CCDO79EO, 0x7E24752D2966683CFO0,
0x40F3C1666AB4B51DBS, 0x4079E0B3355A5A8EDC, 0x403CF4599AAD2C476E, 0x401E7A2CCD569623B7, 0x480F3D1666AB4B11DB,
0x4C079E8B3355A588ED, 0x4E03CB4599AAD3C476, 0x4F01E1A2CED568E23B, 0x4780F4D1656AB5711D, 0x43C07E68BOB55BBSSE,
0x49E03B345A5AACDCA47, 0x4CF0199A2D2D576E23, 0x4E780CCD1696ABB711, 0x4F3C06668B4B55DBSS, 0x479E033345A5AAEDC4,
0x43CF0599A2D2D476E2, 0x41E782CCD1696A3B71, 0x252D2C76E03CF1A665, 0x2A96923B701E79D332, 0x254B491DB80F3CE999,
0x2AA5A08EDCO79F74CC, 0x2552D4476E03CEBAG6, 0x22A96E23B701E65D33, 0x2954B711DB80F32E99, 0x24AA5SB8SEFC079974C,
0x2A552DC475E03CCBAG, 0x2D2A96E238F01E65D3, 0x26954B711E780F32E9, 0x2B4AAS5B88F3C079974, 0x25A556DC479E02CCBA,
0x22D2AF6E23CF00665D, 0x296953B711E781332E, 0x24B4A9DB88F3C09997, 0x2A5A50EDC479E14CCB, 0x12CCD7861E3B70A5AS,
0x11666FC30D1DB952D2, 0x18B337E1848EDCA969, 0x14599FF0C0476F54B4, 0x1A2CCBF86223B6AASA, 0x1D1661FC3311DA552D,
0x168B30FE1B88ED2A96, 0x1345987F0DC476954B, 0x19A2CC3F86E23B4AAS, 0x1CD1661FC3711DAS552, 0x1668B30FE1B8SED2A9,
0x13345987F2DC476954, 0x199A28C3FBOE22B4AA, 0x1CCD1061FFB7105A55, 0x16668C30FDDB892D2A, 0x1B3346187CEDC49695,
0x1599A70C3C76E34B4A,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x770C3A9994B4B41DBS, 0x7B861D4CC85A5A0EDC,
0x7DC30AA6662D2CO76E, 0x7EE1855331169603B7, 0x7770C2A99A8B4B01DB, 0x73B86154CF45A580ED, 0x71DC34AA65A2D3C076,
0x70EE1E5532D168E03B, 0x78770B2A9968B5701D, 0x7C3B81954CB45BBS0E, 0x761DC4CAA65A2CDCO7, 0x730EE665512D176E03,
0x71877332AA968BB701, 0x70C3B999574B45DB80, 0x7861DCCCA9ASA2EDCO, 0x7C30EA6656D2D076EO0, 0x7E1875332969683B70,
0x42D2D076E23CF1599A, 0x4169683B711E78ACCD, 0x48B4B01DB88F3D5666, 0x445A580EDC479EAB33, 0x4A2D2C076E23CF5599,
0x4D169603B711E7AACC, 0x468B4F01DB88F2D566, 0x4B45A380EFC4786AB3, 0x45A2D5C075E23D3559, 0x42D16EE038F11F9AAC,
0x4968B3701E788ECD56, 0x44B45DB80F3C4666AB, 0x4A5A2EDC079E233355, 0x4D2D176E03CF1199AA, 0x46968BB701E788CCDS,
0x4B4B41DB80F3C5666A, 0x45A5A0EDC079E2B335, 0x20EDC696954CCB1E78, 0x2076E74B4AA6648F3C, 0x203B73A5A55332479E,
0x201DBDD2D2A99823CF, 0x280EDAE96954CD11E7, 0x2C076974B4AA6788F3, 0x2E03B4BAS5A5533C479, 0x2701DASD2F2A99E23C,
0x2B80ED2E95954CF11E, 0x2DC0769748CAA6788F, 0x26E03B4BA665533C47, 0x2B701DAS5D332A99E23, 0x2DB80AD2E99955CF11,
0x2EDC016974CCABE788, 0x276E04B4BA6654F3C4, 0x23B7025A5D332A79E2, 0x21DB852D2E99943CF1, 0x15332C79E3C48ESASA,
0x1A99923CF3E2462D2D, 0x154CC91E7BF1231696, 0x1AA6608F3FF8908B4B, 0x155334479DFC4945A5, 0x12A99E23CCFE25A2D2,
0x1954CF11E47F12D169, 0x1CAA6788F23F8968B4, 0x165533C4791FC4B45A, 0x132A99E23C8FE25A2D, 0x19954CF11E47F12D16,
0x1CCAA6788D23F8968B, 0x1665573C4491FD4B45, 0x1332AF9E2048FFA5A2, 0x199953CF12247ED2D1, 0x14CCA9E78B123F6968,
0x1A6650F3C7891EB4B4,

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x 1FFFF800000001FFFF, 0x770C3A9994B4B41DBS, 0x7B861D4CC85A5A0EDC,
0x7DC30AA6662D2CO76E, 0x7EE1855331169603B7, 0x7770C2A99A8B4B01DB, 0x73B86154CF45A580ED, 0x71DC34AA65A2D3C076,
0x70EE1E5532D168E03B, 0x78770B2A9968B5701D, 0x7C3B81954CB45BBS0E, 0x761DC4CAA65A2CDCO7, 0x730EE665512D176E03,
0x71877332AA968BB701, 0x70C3B999574B45DB80, 0x7861DCCCA9ASA2EDCO, 0x7C30EA6656D2D076E0, 0x7E1875332969683B70,
0x40EDC1696AB3351E78, 0x4076E0B4B5599A8F3C, 0x403B745A5AACCC479E, 0x401DBA2D2D566623CF, 0x480EDD1696AB3311E7,
0x4C076E8B4B559988F3, 0x4E03B345A5AACDC479, 0x4701DDA2D0D567E23C, 0x4B80OEAD16A6AB2F11E, 0x4DC07168B73558788F,
0x46E03CB4599AAD3C47, 0x4B701A5SA2CCD579E23, 0x4DB80D2D1666ABCF11, 0x4EDC06968B3355E788, 0x476E034B4599AAF3C4,
0x43B705A5A2CCD479E2, 0x41DB82D2D1666A3CF1, 0x25332C79E03B71A5AS, 0x2A99923CF01DB9D2D2, 0x254CC91E780EDCE969,
0x2AA6608F3C076F74B4, 0x255334479E03B6BASA, 0x22A99E23CF01DASD2D, 0x2954CF11E780ED2E96, 0x2CAA6788F1C076974B,
0x265533C47AE03B4BAS, 0x232A99E23F701DASD2, 0x29954CF11DB80ED2E9, 0x2CCAAG6788EDC076974, 0x2665573C476E02B4BA,
0x2332AF9E23B7005A5D, 0x299953CF11DB812D2E, 0x24CCA9E788EDC09697, 0x2A6650F3C476E14B4B, 0x12D2D7891E3CF0A665,
0x11696FC48D1E795332, 0x18B4B7E2448F3CA999, 0x145A5FF120479F54CC, 0x1A2D2BF89223CEAAG6, 0x1D1691FC4B11E65533,
0x168B48FE2788F32A99, 0x1B45A47F13C479954C, 0x15A2D23F89E23CCAAG, 0x12D1691FC4F11E6553, 0x1968B48FE2788F32A9,
0x14B45A47F33C479954, 0x1A5A2923FB9E22CCAA, 0x1D2D1091FFCF106655, 0x16968C48FDE789332A, 0x1B4B46247CF3C49995,
0x15A5A7123C79E34CCA,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x76C0DB462D703AB18D, 0x7B606DA316B81D58C6,
0x7DB036D1895COEAC63, 0x76D81B68CO6AEN75631, 0x7B6CODB4635703AB18, 0x7DB602DA33AB80D58C, 0x76DB016D19D5C06AC6,
0x736D80B68CEAE03563, 0x71B6C45B4475711AB1, 0x70DB662DA03AB98DS5S, 0x706DB316D01D5CC6AC, 0x7036D98B680EAE6356,
0x781B68C5B6075631AB, 0x7CODB462DB03AB18DS5, 0x7606DA316F81D58C6A, 0x7B036D18B5COEAC635, 0x7D81B68C5AE075631A,
0x45COEAC6364FC92E74, 0x4AE075631927E4973A, 0x45703AB18C93F24B9D, 0x4AB81D58C649F925CE, 0x4D5COEAC6124FC92ET7,
0x4EAE035630927F4973, 0x475701AB1A493FA4B9, 0x43AB80D58F249FD25C, 0x41D5C46AC7924EE92E, 0x40EAE63563C9267497,
0x4075731AB3E4933A4B, 0x403AB98D5BF2499D25, 0x481D58C6ADF925CE92, 0x4COEAC6354FC92E749, 0x4E075631AATE4973A4,
0x4703AB18D53F24B9D2, 0x4B81D58C689F925CE9, 0x258C6D1F89A31727E4, 0x2AC6328FC6D18A93F2, 0x25631D47E368C449F9,
0x2AB18AA3F1B46324FC, 0x2D58C151FADA30927E, 0x26AC60A8FD6D18493F, 0x235634547CB68D249F, 0x21AB1E2A3C5B47924F,
0x28D58F151E2DA3C927, 0x2C6AC78A8F16D1E493, 0x263567C5458B69F249, 0x231AB7E2A0C5B5F924, 0x218D5BF15062DAFC92,
0x28C6A9F8AA316CTE49, 0x2C6350FC5518B73F24, 0x2631AC7E2A8C5A9F92, 0x2B18D23F17462C4FC9, 0x168C5CI9F929CE4B81D,
0x1B462A4FC94E735C0E, 0x1DA31127E6A738AE07, 0x16D18C93F1539D5703, 0x1B68C249F8A9CFABSI, 0x15B46124FES4E7D5CO,
0x12DA34927F2A72EAEQ, 0x116D1E493F95387570, 0x18B68F249DCA9C3ABS, 0x1C5B47924CES4E1DSC, 0x162DA7C92672A60EAE,
0x1316D7E49339520757, 0x118B6BF24B9CA903AB, 0x18C5B1F925CE5581D5, 0x1462DCFC90E72BCOEA, 0x1A316ATE4A7394E075,
0x1D18B13F2539CB703A,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x76C0ODB462D703AB18D, 0x7B606DA316B81D58C6,
0x7DB036D1895COEAC63, 0x76D81B68C6AEN75631, 0x7B6CODB4635703AB18, 0x7DB602DA33AB80D58C, 0x76DB016D19D5C06AC6,
0x736D80B68CEAE03563, 0x71B6C45B4475711AB1, 0x70DB662DA03ABY8DSS, 0x706DB316D01D5CCOAC, 0x7036D98B6S0EAE6356,
0x781B68C5B6075631AB, 0x7CODB462DB03AB18D5, 0x7606DA316F81DS58COA, 0x7B036D18B5COEAC635, 0x7D81B68CSAE075631A,
0x458C6AE0765CE927E4, 0x4AC63570392E7493F2, 0x45631AB81C973A49F9, 0x4AB18D5COE4BI9D24FC, 0x4D58C6AE0525CE927E,
0x46AC67570292E6493F, 0x435633AB834973249F, 0x41AB19D5C3A4B9924F, 0x48D588EAE1D25DC927, 0x4C6AC07570E92FE493,
0x4635603ABA7497F249, 0x431AB01D5F3A4BF924, 0x418D5COEAF9D24FC92, 0x48C6AE0755CE927E49, 0x4C635703AAE7493F24,
0x4631AB81D573A49F92, 0x4B18D5COE8BID24FC9, 0x268C5C9F91631B47E2, 0x2B462A4FCAB18CA3F1, 0x2DA31127E558C751F8,
0x26D18C93F2AC62A8FC, 0x2B68C249FB5630547E, 0x25B46124FDAB182A3F, 0x22DA34927CD58DI151F, 0x216D1E493C6AC78ASF,
0x28B68F249E3563C547, 0x2C5B47924F1AB1E2A3, 0x262DA7C9258D59F151, 0x2316D7E490C6ADF8AS, 0x218B6BF2486356FC54,
0x28C5B1F92631AATE2A, 0x2462DCFC9318D43F15, 0x2A316A7E498C6B1FSA, 0x2D18B13F26C6348FC5, 0x15COED39CA4FC8D18B,
0x1AE0729CES27E568C5, 0x15703D4E7093F3B462, 0x1AB81AA73A49F8DA3I, 0x1D5C09539D24FD6D18, 0x1EAE04A9CC927EB68C,
0x17570654E6493E5B46, Ox13AB872A73249E2DA3, 0x11D5C3953B924F16D1, 0x10EAE1CA9FC9278B68, 0x107574E54FE492C5B4,
0x103ABE72A7F24862DA, 0x181D5F3951F924316D, 0x1COEAB9CABFC9318B6, 0x1E0751CE567E488C5B, 0x1703ACE7293F25462D,
0x1B81D273949F93A316,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x 1FFFF800000001FFFF, 0x76CODASF149CE435AC, 0x7B606D47884E721AD6,
0x7DB032A3C627380D6B, 0x76D81D51E1139D06B5, 0x7B6COAASFO89CF835A, 0x7DB601547A44E6C1AD, 0x76DB00AA3F227360D6,
0x736D84551F9138B06B, 0x71B6C62A8DC89D5835, 0x70DB671544E44FACIA, 0x706DB78AA27226D60D, 0x7036DBC55339136B06,
0x781B69E2ABIC88B583, 0x7CODBOF155CE455AC1, 0x7606DC78ASE723AD60, 0x7B036A3C567390D6B0, 0x7D81B51E2939C86B58,
0x427390D6B24FC95C3A, 0x4139C86B5927E4AEI1D, 0x489CE035AC93F3570E, 0x444E741AD649F8AB87, 0x42273E0D6924FD55C3,
0x49139B06B4927FAAEL, 0x4C89CD835A493FD570, 0x4E44E2C1AF249EEABS, 0x47227560D7924E755C, 0x43913EBO6BC9263AAE,
0x49C89B5837E4921D57, 0x4CE44DAC1BF2490EAB, 0x4E7222D60DF9258755, 0x4739156B04FC93C3AA, 0x439C8EB5827E48E1DS5,
0x49CE435AC13F2570EA, 0x44E721AD609F92B875, 0x21AD66C635478B27E4, 0x20D6B7631AA3C493F2, 0x206BSBB18D51E249F9,
0x2835ADD8C6A8F124FC, 0x2C1AD6EC615478927E, 0x260D6B7630AA3C493F, 0x2B06B1BB18551F249F, 0x258358DDSE2A8F924F,
0x2AC1AC6EC71547C927, 0x2D60D637638AA3E493, 0x26B06B1BB3C551F249, 0x2B58318DD9E2A9F924, 0x25AC18C6ECF154FC92,
0x2AD60C637478 AATE49, 0x2D6B0631BA3C553F24, 0x26B58318DD1E2A9F92, 0x235AC58C6OESF144FC9, 0x151E2C9F9394A64E72,
0x1A8F124FCBCA522739, 0x15478927E7TE529139C, 0x1AA3C493F1F29489CE, 0x1551E249F8F94A44E7, 0x12A8F124FE7CA52273,
0x11547C927D3E539139, 0x18AA3E493E9F29C89C, 0x1C551F249D4F94E44E, 0x1E2A8F924CA7TCA7227, 0x1F1547C92653E53913,
0x178 AATE49129F39C89, 0x13C553F24A94F9CE44, 0x11E2A9F9254A7CE722, 0x18F154FC90A53E7391, 0x1478 AATE4A529F39C8,
0x1A3C513F27294E9CE4,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x76CODA8SF149CE435AC, 0x7B606D47884E721AD6,
0x7DB032A3C627380D6B, 0x76D81D51E1139D06B5, 0x7B6COAABFO89CF835A, 0x7DB601547A44E6C1AD, 0x76DBO0AA3F227360D6,
0x736D84551F9138B06B, 0x71B6C62A8DC89D5835, 0x70DB671544E44FACIA, 0x706DB78AA27226D60D, 0x7036DBC55339136B06,
0x781B69E2ABIC88B583, 0x7CODBOF155CE455ACl1, 0x7606DC78ASE723AD60, 0x7B036A3C567390D6B0, 0x7D81B51E2939C86B58,
0x41AD6139CAB87527E4, 0x40D6B09CES5C3A93F2, 0x406B5SC4E72AE1C49F9, 0x4835AA2739570F24FC, 0x4C1ADI1139EAB86927E,
0x460D6C89CF55C2493F, 0x4BO6B644E7AAE1249F, 0x45835F2271D571924F, 0x4AC1AB9138EAB9C927, 0x4D60D1C89C755DE493,
0x46BO6CE44C3AAFF249, 0x4B583672261D57F924, 0x45AC1F39130EAAFC92, 0x4AD60BIC8B87547E49, 0x4D6B01CE45C3AB3F24,
0x46B584E722E1D49F92, 0x435AC2739170EA4FC9, 0x251E2C9F906B59B18D, 0x2A8F124FC835ADD8C6, 0x25478927E41AD6EC63,
0x2AA3C493F20D6B7631, 0x2551E249FBO6B5BB18, 0x22A8F124FD835ADDSC, 0x21547C927EC1AC6ECS, 0x28 AA3E493D60D63763,
0x2C551F249EB06B1BB1, 0x2E2A8F924F58358DD8, 0x2F1547C925AC1AC6EC, 0x278 AATE492D60C6376, 0x23C553F2496B0631BB,
0x21E2A9F926B58318DD, 0x28F154FC935AC18C6E, 0x2478 AATE49AD60C637, 0x2A3C513F24D6B1631B, 0x127397294E4FC8A3CS5,
0x1139CF94A527E551E2, 0x189CE7CAS5093F2A8F1, 0x144E73E52A49F95478, 0x122739F29524FCAA3C, 0x19139CF948927E551E,
0x1C89CATCA6493E2ASF, 0x1E44E53E53249F1547, 0x1722729F2B924F8AA3, 0x1391394F97C927C551, 0x19C89CAT7CBE493E2A8,
0x1CE44A53E7F248F154, 0x1E722529F1F92478AA, 0x17391294F8FC923C55, 0x139C894ATETE491E2A, 0x19CE44A53D3F248F15,
0x14E726529C9F93478A,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x768C5B606D703AB18D, 0x7B462DB036B81D58C6,
0x7DA316D8195COEAC63, 0x76D18B6COEAE075631, 0x7B68C5B6075703AB18, 0x75B466DB03AB80D58C, 0x72DA336D81D5C06AC6,
0x716D19B6COEAE03563, 0x78B688DB6075711ABI, 0x7C5B406DB03AB98D58, 0x762DA036D81D5CCO6AC, 0x7316D01B6COEAE6356,
0x718B6CODB6075631AB, 0x78C5B606DB03AB18DS5, 0x7462DB036F81D58C6A, 0x7A316D81BSCOEAC635, 0x7D18B6CODAE075631A,
0x45COEAC6365CE927E4, 0x4AE07563192E7493F2, 0x45703AB18C973A49F9, 0x4AB81D58C64BID24FC, 0x4D5COEAC6125CE927E,
0x4EAE03563292E6493F, 0x475701AB1B4973249F, 0x43AB80D58FA4B9924F, 0x41D5C46AC5D25DC927, 0x40EAE63560E92FE493,
0x4075731AB27497F249, 0x403AB98D5B3A4BF924, 0x481D58C6AFID24FC92, 0x4COEAC6355CE927E49, 0x4E075631AAE7493F24,
0x4703AB18D573A49F92, 0x4B81D58C68BID24FC9, 0x258C6D1F89B0372E74, 0x2AC6328FC6D81A9T3A, 0x25631D47E36C0C4BID,
0x2AB18AA3F1B60725CE, 0x2D58C151FADB0292E7, 0x26AC60A8FF6D814973, 0x235634547DB6C1A4B9, 0x21ABI1E2A3CDB61D25C,
0x28D58F151C6DBOE92E, 0x2C6AC78A8C36D87497, 0x263567C5441B6D3A4B, 0x231AB7E2A00DB79D25, 0x218D5BF15206DBCE92,
0x28C6A9F8ABO36CE749, 0x2C6350FC5581B773A4, 0x2631AC7E2ACODABYD2, 0x2B18D23F17606C5CE9, 0x16CODCBI9D29CE4B81D,
0x1B606ASCE94E735COE, 0x1DB0312E76A738AE07, 0x16D81C9739539D5703, 0x1B6COA4BICAICFABSI1, 0x1DB60525CES4E7DS5CO,
0x16DB0692E72A72EAEQ, 0x136D87497395387570, 0x11B6C3A4BICA9C3ABS, 0x10DB61D25CES4E1DSC, 0x106DB4E92E72A60EAE,
0x1036DE749739520757, 0x181B6F3A4B9CA903AB, 0x1CODB39D25CE5581D5, 0x1606DDCE90E72BCOEA, 0x1B036AE74A7394E075,
0x1D81B173A539CB703A,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x768C5B462C5CE82E74, 0x7B462DA3142E74173A,
0x7DA316D188173A0B9D, 0x76D18B68C60BIDOSCE, 0x7B68C5B46105CE82E7, 0x75B462DA3282E74173, 0x72DA316D1B4173A0B9,
0x716D18B68FAOBIDOSC, 0x78B68C5B45D05CES2E, 0x7C5B462DA0ES2E7417, 0x762DA316D274173A0B, 0x7316D18B6B3A0BIDOS,
0x718B68C5B79D05CES2, 0x78C5B462D9CE82E741, 0x7462DA316EE74173A0, 0x7A316D18B573A0B9DO, 0x7D18B68C58BIDOSCES,
0x4173A0B9D25CE92E74, 0x40B9DO5SCE92E74973A, 0x405CE82E74973A4B9D, 0x482E74173A4B9D25CE, 0x44173A0B9D25CE92E7,
0x4A0B9DO5SCE92E74973, 0x4D05CES2E74973A4B9, 0x4E82E74173A4B9D25C, 0x474173A0BID25CE92E, 0x43A0BIDO5CE92E7497,
0x49D05CE82E74973A4B, 0x4CE82E74173A4B9D25, 0x4E74173A0B9D25CE92, 0x473A0B9D0O5SCE92E749, 0x4B9DO5CES2E74973A4,
0x45CE82E74173A4B9D2, 0x42E74173A0B9D25CE9, 0x268C5CB9DOSCE9D18B, 0x2B462A5CE82E75E8CS, 0x2DA3112E74173BF462,
0x26D18C973A0BICFA31, 0x2B68C24B9D05CF7D18, 0x25B46525CE82E6BESC, 0x22DA3692E741725F46, 0x216D1F4973A0B82FA3,
0x28B68BA4B9D05D17D1, 0x2C5B41D25CE82F8BES, 0x262DA4E92E7416C5F4, 0x2316D674973A0A62FA, 0x218B6F3A4B9D04317D,
0x28C5B39D25CES318BE, 0x2462DDCE92E7408C5F, 0x2A316AE74973A1462F, 0x2D18B173A4B9D1A317, 0x1173A7462E5CE8D18B,
0x10B9D7A3152E7568C5, 0x105CEFD188973BB462, 0x182E73E8C64B9CDA31, 0x14173DF46125CF6D18, 0x1AOB9AFA3292E6B68C,
0x1D05C97D1B49725B46, 0x1E82EOBESFA4B82DA3, 0x1741745F45D25D16D1, 0x13A0BE2FAOE92F8B68, 0x19D05B17D27496C5B4,
0x1CE8298BEB3A4A62DA, 0x1E7410C5F79D24316D, 0x173A0C62F9CE9318B6, 0x1B9D02317EE7488C5B, 0x15CE8518BD73A5462D,
0x12E7468C5CB9D3A316,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x75COEB606DA316B18D, 0x7AE075B036D18B58C6,
0x75703ED81B68C4AC63, 0x7AB81B6CODB4635631, 0x7D5CODB606DA31AB18, 0x7EAE06DB016D18D58C, 0x7757036D80B68COACH,
0x73AB81B6C05B463563, 0x71D5CODB622DA31ABI1, 0x70EAE06DB316D18D58, 0x70757036D98B68COAC, 0x703AB81B6CC5B46356,
0x781D5CODB462DA31AB, 0x7COEAE06DA316D18D5, 0x7E0753036D18B78C6A, 0x7703AD81B68C5AC635, 0x7B81D6CODB462D631A,
0x468C5AC6368FC527E4, 0x4B462D631947E293F2, 0x4DA312B18EA3F049F9, 0x46D18D58C551F924FC, 0x4B68C6AC60ABFCI27E,
0x45B4635630547E493F, 0x42DA31AB1A2A3F249F, 0x416D18D58F151F924F, 0x48B68C6ACT8ASFC927, 0x4C5B463563C547E493,
0x462DA31AB3E2A3F249, 0x4316D18D5BF151F924, 0x418B68COADFSASFC92, 0x48C5B46354FC547E49, 0x4462DE31A87E2B3F24,
0x4A316B18D63F149F92, 0x4D18B58C691F8A4FC9, 0x258C6CBI9D1B03747E2, 0x2AC6325CEADS1AA3FI, 0x2563192E776COD51F8,
0x2AB18C9739B606ASFC, 0x2D58C24B9EDB02547E, 0x26AC6525CF6D802A3F, 0x23563692E5B6C1151F, 0x21AB1F4970DB618ASF,
0x28D58BA4B86DB1C547, 0x2C6ACID25C36D9E2A3, 0x263564E92C1B6DF151, 0x231AB674940DB7F8AS, 0x218D5F3A4A06DAFC54,
0x28C6ABID27036C7E2A, 0x2C6355CE9181B63F15, 0x2631AAE74ACODBIF8A, 0x2B18D173A7606C8FCS5, 0x16CODD1F8A9CE4D18B,
0x1B606A8FCS54E7368CS5, 0x1DB03547E2A739B462, 0x16D81AA3F1539CDA31, 0x1B6C0951F8A9CF6D18, 0x1DB600ASFES4E6B68C,
0x16DB04547F2A725B46, 0x136D862A3F95382DA3, 0x11B6C7151DCA9ID16DI, 0x10DB678A8CES4F8B68, 0x106DB7C54672A6C5B4,
0x1036DFE2A3395262DA, 0x181B6BF1539CA8316D, 0x1CODB1F8A9CE5518B6, 0x1606DSFC54E72A8C5B, 0x1B036C7E2A7395462D,
0x1D81B23F1539CBA316,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x 1FFFF800000001FFFF, 0x75COEA59A4D32C47E2, 0x7AE0752CD0699623F1,
0x75703A966A34CB11F8, 0x7AB8194B371A6488FC, 0x7D5COCA5998D32447E, 0x7EAE0252CEC698223F, 0x7757052965634D111F,
0x73AB8694B0B1A7888F, 0x71D5C34A5A58D3C447, 0x70EAE1AS52F2C69E223, 0x707574D2959635F111, 0x703ABE6948CB1BF888,
0x781D5B34A6658CFC44, 0x7COEAD9A5132C67E22, 0x7E0752CD2A99623F11, 0x7703A966974CB11F88, 0x7B81D4B349A6588FC4,
0x434CB11F8A8FC56996, 0x41A6588FC547E2B4CB, 0x48D32C47E2A3F15A65, 0x4C699223F151F9AD32, 0x4634C911F8ASFCD699,
0x4B1A6088FC547F6B4C, 0x458D34447E2A3EB5SA6, 0x42C69E223F151E5AD3, 0x49634F111F8A8F2D69, 0x4CB1A7888FC54796B4,
0x4658D7C447E2A2CBSA, 0x432C6FE223F15065AD, 0x499633F111F8A932D6, 0x44CB19F888FC54996B, 0x4A6588FC447E2B4CBS5,
0x4D32C47E223F15A65A, 0x4699623F111F8AD32D, 0x223F1659A52CD347E2, 0x211F8F2CD29668A3F1, 0x288FC396694B3551F8,
0x2447E1CB34A59AAS8FC, 0x2223F4E59A52CC547E, 0x2111FA72CD29662A3F, 0x2888FD396694B3151F, 0x2C447E9CB34A598AS8F,
0x2E223B4E59A52DC547, 0x2F1119A72CD297E2A3, 0x2F888CD396694BF151, 0x2FC44669CB34A5F8AS, 0x27E22334E59A52FC54,
0x23F1159A72CD287E2A, 0x21F88ACD3966943F15, 0x28FC41669CB34B1F8A, 0x247E24B34E59A48FCS5, 0x14B34D1F8B703A6996,
0x1A59A28FC7B81C34CB, 0x152CD547E1DCOF1A65, 0x12966AA3F2EE078D32, 0x194B3151FB7702C699, 0x14A598A8FFBB81634C,
0x1A52CC547DDDCOB1AG6, 0x1D29662A3CEEE(058D3, 0x1694B7151C77712C69, 0x134A5F8A8C3BB99634, 0x19A52FC5441DDCCBIA,
0x1CD297E2A00EEE658D, 0x16694BF152077732C6, 0x1B34A1F8AB03BA9963, 0x159A50FC5781DD4CBI, 0x12CD2C7E29COEFA658,
0x1966923F16E076D32C,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x 1FFFF800000001FFFF, 0x75COEA59A4D32C47E2, 0x7AE0752CD0699623F1,
0x75703A966A34CB11F8, 0x7AB8194B371A6488FC, 0x7D5COCAS5998D32447E, 0x7EAE0252CEC698223F, 0x7757052965634D111F,
0x73AB8694B0B1A7888F, 0x71D5C34A5A58D3C447, 0x70EAE1AS52F2C69E223, 0x707574D2959635F111, 0x703ABE6948CB1BF888,
0x781D5B34A6658CFC44, 0x7COEAD9A5132C67E22, 0x7E0752CD2A99623F11, 0x7703A966974CB11F88, 0x7B81D4B349A6588FC4,
0x423F11A65AD32D47E2, 0x411F88D32D6996A3F1, 0x488FC46996B4CB51F8, 0x4447E634CB5A64A8FC, 0x4223F31A65AD32547E,
0x4111FD8D32D6982A3F, 0x4888FAC6996B4D151F, 0x4C4479634CB5A78ASF, 0x4E223CB1A65AD3C547, 0x4F111E58D32D69E2A3,
0x4F888B2C6996B5F151, 0x4FC4419634CB5BF8AS, 0x47E224CB1A65ACFC54, 0x43F112658D32D67E2A, 0x41F88D32C6996A3F15,
0x48FC4699634CB51F8A, 0x447E234CB1A65A8FCS, 0x24B34D1F888FC59669, 0x2A59A28FC447E3CB34, 0x252CD547E223F0ES9A,
0x22966AA3F111F872CD, 0x294B3151F888FD3966, 0x24A598A8FC447E9CB3, 0x2A52CC547E223F4ES9, 0x2D29662A3F111FA72C,
0x2694B7151F888ED396, 0x234A5F8ABFC44669CB, 0x29A52FC547E22334ES, 0x2CD297E2A3F1119A72, 0x26694BF151F888CD39,
0x2B34A1F8A8FC45669C, 0x259A50FC547E22B34E, 0x22CD2C7E2A3F1059A7, 0x2966923F151F892CD3, 0x134CB6E0768FC49669,
0x11A65F703947E34B34, 0x18D32BB81EA3F0A59A, 0x1C6995DCOD51F852CD, 0x1634CEEE04A8FD2966, 0x1B1A677700547E94B3,
0x158D33BB822A3F4A59, 0x12C699DDC3151FA52C, 0x196348EEE38A8ED296, 0x1CB1A07773C546694B, 0x1658D03BBBE2A334AS5,
0x132C681DDFF1519A52, 0x1996340EEDF8A8CD29, 0x14CB1E0774FC556694, 0x1A658F03B87E2AB34A, 0x1D32C381DE3F1459A5,
0x169965COED1F8B2CD2,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x67213A36C4A795C5A3, 0x6B909D1B6053CBE2D1,
0x6DC84A8DB229E5F168, 0x6EE42146D914F2F8B4, 0x677210A36E8AT787C5A, 0x63B90C51B5453C3E2D, 0x69DC8628D8A29F1F16,
0x64EE43146E514E8F8B, 0x6277258A3728A747C5, 0x613B96C51B9453A3E2, 0x609DCB628FCA28D1F1, 0x684EE5B145E51568F8,
0x642776D8A0F28AB47C, 0x6213BB6C5279445A3E, 0x6909D9B6293CA22DI1F, 0x6C84E8DB169E51168F, 0x6E42746D894F298B47,
0x529E50E97237B0OSDB1, 0x514F2874B91BD946DS, 0x58A7903A5C8DECA36C, 0x5453CC1D2C46F651B6, 0x5A29E60E96237A28DB,
0x5514F7074B11BD146D, 0x528 A7B83A588DF8A36, 0x59453DC1D2C46EC51B, 0x5CA29AEOEB6237628D, 0x5E51497077B11BB146,
0x5F28A4B83BD88CDSA3, 0x5794525C1DEC476C51, 0x53CA2D2EOEF623B628, 0x59E51697077B10DB 14, 0x54F28F4B81BD8S6DSA,
0x5A7943A5CODEC436C5, 0x553CA1D2E06F631B62, 0x31D2E6BOD51B62E427, 0x30E977586A8DB17213, 0x3074BBAC3546D9B909,
0x383A5DD618A36DDC84, 0x3C1D2AEBOCS51B6EE42, 0x3EOE95758628DA7721, 0x37074EBAC3146D3B90, 0x3B83A35D618A369DCS,
0x35C1D1AEB2C51A4EE4, 0x32E0ES8D75B628C2772, 0x3970706BADB14613B9, 0x34B83C35D6D8A309DC, 0x3A5CIEIAEB6CS084EE,
0x3D2EOBOD75B6284277, 0x3E970586B8DB15213B, 0x374B82C35C6D8BY0ID, 0x33A5C561 AE36C5C84E, 0x46D8C6F638B47AC3S5,
0xA36C237B3C5A3D61A, 0x51B611BDBE2DOEBOD, 0x28DBOSDEDF1697586, 0x146DC46F4FSB4BAC3, 0x8A36E23787C5B5D61,
0xC51B311BE3E2DAEBO, 0x628DD88DD1F16D758, 0xB146EC46E8F8AGBAC, 0xD8A37623747C435D6, 0x6C51FB119A3E21AEB,
0xB628BDSSED1F10D75, 0xDB145EC4568F986BA, 0x6D8A6F620B47CC35D, 0x36C537B105A3F61AE, 0x1B629BD8A2D1EBOD7,
0x8DB10DEC7168F586B,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x67213A36C4A795C5A3, 0x6B909D1B6053CBE2D1,
0x6DC84A8DB229E5F168, 0x6EE42146D914F2F8B4, 0x677210A36E8A787C5A, 0x63B90C51B5453C3E2D, 0x69DC8628D8A29F1F16,
0x64EE43146E514ESF8B, 0x6277258 A3728A747C5, 0x613B96C51B9453A3E2, 0x609DCB628FCA28D1F1, 0x684EE5B145E51568F8,
0x642776D8AOF28AB47C, 0x6213BB6C5279445A3E, 0x6909D9B6293CA22D1F, 0x6C84E8DB169E51168F, 0x6E42746D894F298B47,
0x51D2E14F2AE49CE427, 0x50E970A795724F7213, 0x5074BC53CAB927B909, 0x583A5A29E75C93DC84, 0x5C1D2D14F3AE48EE42,
0xSEOE928A79D7247721, 0x570749453CEB933B90, 0x5SB83A4A29E75C89DCS, 0x55C1D6514D3AE44EE4, 0x52E0EF28A49D722772,
0x59707794524EB813B9, 0x54B83BCA29275D09DC, 0x5A5CI9ES51493AE84EE, 0x5D2E0CF28A49D64277, 0x5E9702794724EB213B,
0x574B853CA39275909D, 0x53A5C29E51C93BCS84E, 0x346D8COF6074B853CA, 0x3A36C237B03A5C29ES, 0x351B611BD81D2F14F2,
0x328DB08DEEOE968AT9, 0x3146DC46F7074B453C, 0x38A36E237B83A4A29E, 0x3C51B311BDC1D2514F, 0x3628DD8SDEEOE928A7,
0x3B146EC46D70759453, 0x3D8A376234B83BCA29, 0x36C51FB11ASCIDES14, 0x3B628BD8SD2EOEF28A, 0x3DB145EC4697067945,
0x36D8A6F6234B833CA2, 0x336C537B13A5C09ES51, 0x31B629BD89D2E14F28, 0x38DB10DEC4E970A794, 0x29E57168E37B1724E,

0x14F2F8B451BD8B927, 0x8A797C5A08DEDS5C93, 0x453CBE2D046F7AE49, 0xA29E1F16A237BD724, 0x514F0F8B711BCEB92, 0x28A7C7C5988DE75C9,
0x9453A3E2EC46F3AE4, 0xCA29D1F1762369D72, 0XES14E8FSBB11A4EBY, 0xF28A347C7D88D275C, 0x79455A3E1EC4693AE, 0x3CA2AD1F2F62249D7,
0x9E51168FB7B1124EB, 0x4F288B47DBD899275, 0xA79445A3CDEC5C93A, 0x53CA62D1C6F62E49D,

0x4FFFFFFFFC00000000,
0x6DC84A8DB01D2EEBOD,
0x64EE43146EEOE8D758,
0x642776D8A2970786BA,
0x529E50E972E49CE427,
0x5514F70749D7247721,
0x5F28A4B83A4EB813B9,
0x5A7943A5C39275909D,
0x328DBOSDED14F3074B,
0x3B146EC46F28A6B83A,
0x36D8A6F6227945A5C1,

0x2FFFF80003FFFE0000,
0x6EE42146DA0E977586,
0x6277258A3570746BAC,
0x6213BB6C534B82C35D,
0x514F2874B9724F7213,
0x528A7B83A4EB933B90,
0x5794525C1D275D09DC,
0x553CA1D2E1C93BCS84E,
0x3146DC46F68AT7983A5,
0x3D8A37623794525C1D,
0x336C537B113CA3D2EQ,

0x1FFFF800000001FFFF,
0x677210A36F074ABAC3,
0x613B96C518B83A35D6,
0x6909D9B62BASC161AE,
0x58A7903A5EB927B909,
0x59453DC1D275C89DCS,
0x53CA2D2EOC93AES4EE,
0x346D8C6F60A7943A5C,
0x38A36E2379453DC1D2,
0x36C51FB11BCA292EOE,
0x31B629BD8AYESOE970,

0x67213A36C474B9AC35,

0x63B90C51B783A55D61,
0x609DCB628ESCICIAEB,
0x6C84E8DB15D2E0BOD7,
0x5453CC1D2F5C93DC84,
0x5SCA29AEOE93AE44EE4,
0x59E516970649D64277,
0x3A36C237B053CA1D2E,
0x3C51B311BCA29EEOEY,
0x3B628BD8SDES5149707,
0x38DB10DEC54F2874B8,

0x6B909D1B603ASDD61A,
0x69DC8628D9C1D3AEBO,
0x684EES5B1452E0F0D75,
0x6E42746D8SE971586B,
0x5A29E60E97AE48EE42,
0x5E514970749D722772,
0x54F28F4B8324EB213B,
0x351B611BDA29E40E97,
0x3628DD88DES514F7074,
0x3DB145EC44F28B4B83,
0x1D2E6BOD637B1724E,

0xE97758691BD8B927, 0x74BBAC348DEDS5C93, 0x83A5DD61846F7AE49, 0xC1D2AEBOE237BD724, 0XxEOE95758711BCEB92, 0x7074EBAC188DE75C9,

0xB83A35D62C46F3AE4,

0x5C1D1AEB362369D72,

0x2EOE8D75BB11A4EB9,

0x970706BAFD88D275C,

0x4B83C35DSEC4693AE,

0xASCIEIAEAF62249D7, 0xD2EOBOD777B1124EB, 0xE970586B9BD899275, 0x74B82C35CDECS5C93A, 0x3A5C561 AC6F62E49D,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x67213A36C474B9AC35, 0x6B909D1B603ASDD61A,
0x6DC84A8DB01D2EEBOD, 0x6EE42146DA0E977586, 0x677210A36F074ABAC3, 0x63B90C51B783A55D61, 0x69DC8628DIC1D3AEBO,
0x64EE43146EEOE8D758, 0x6277258A3570746BAC, 0x613B96C518B83A35D6, 0x609DCB628ESCICIAEB, 0x684EE5B1452E0F0D75,
0x642776D8A2970786BA, 0x6213BB6C534B82C35D, 0x6909D9B62BASC161AE, 0x6C84E8DB15D2EOBOD7, 0x6E42746D88E971586B,
0x51D2E14F2A37B0SDB1, 0x50E970A7951BD946D8, 0x5074BC53C88DECA36C, 0x583A5A29E446F651B6, 0x5C1D2D14F2237A28DB,
0x5EOE928A7B11BD146D, 0x570749453D88DF8A36, 0x5B83A4A29EC46ECS51B, 0x55C1D6514F6237628D, 0x52EOEF28A7B11BB146,
0x5970779453D88CDSA3, 0x54B83BCA29EC476C51, 0x5A5CI9E516F623B628, 0x5D2EOCF28B7B10DB 14, 0x5E97027945BD886DSA,
0x574B853CAODEC436C5, 0x53A5C29E506F631B62, 0x329E57168D1B62E427, 0x314F2F8B468DB17213, 0x38A797C5A146D9B909,
0x3453CBE2D0A36DDC84, 0x3A29E1F16851B6EE42, 0x3514FOF8B628DA7721, 0x328A7C7C5B146D3B90, 0x39453A3E2D8A369DC8,
0x3CA29D1F16C51A4EE4, 0x3E514E8F8B628C2772, 0x3F28A347C5B14613B9, 0x379455A3E2D8A309DC, 0x33CA2ADI1F36C5084EE,
0x39E51168F9B6284277, 0x34F288B47CDB15213B, 0x3A79445A3C6D8BY0ID, 0x353CA62D1E36C5C84E, 0x46D8COF63586BC5A3,
0xA36C237B3AC35E2D1, 0x51B611BD9D61BF168, 0x28DBOSDEEEBOCFSB4, 0x146DC46F575867C5A, 0x8A36E237ABAC23E2D,
0xC51B311BF5D611F16, 0x628DD8SDDAEBOSFSB, 0xB146EC46CD75947Cs5, 0xD8A3762346BADA3E2, 0x6C51FB11835D6D1F1,
0xB628BD8SE1AEBGSFS, 0xDB145EC470D74B47C, 0x6D8A6F62186BASA3E, 0x36C537B12C35C2DIF, 0x1B629BD8961AF168F,
0x8DB10DEC6B0D78B47,

0x4FFFFFFFFC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x6721394F2874B9724E, 0x6B9098A7943A5CB927,
0x6DC84C53C81D2F5C93, 0x6EE42229E60E97AE49, 0x67721514F3074BD724, 0x63B90A8ATB83A4EBI2, 0x69DC81453DC1D275C9,
0x64EE44A29EEOE93AE4, 0x627726514D70749D72, 0x613B9728 A4B83A4EBY, 0x609DCF94525C1D275C, 0x684EE3CA292EOE93AE,
0x642771E516970649D7, 0x6213BCF28B4B8324EB, 0x6909DA7947A5C19275, 0x6C84ED3CAID2E1C93A, 0x6E42729E50E970E49D,
0x546D88E973586AE427, 0x5A36C074BBAC357213, 0x551B603A5SDD61BB909, 0x528DB41D2EEBODDC84, 0x5146DEOE957586EE42,
0x58A36F074ABAC27721, 0x5C51B383A75D613B90, 0x5628DDC1D1AEB09DCS, 0x5B146AEOE8D7584EE4, 0x5D8A3170746BAC2772,
0x56C51CB83835D613B9, 0x5B628ASCIEIAEB0O9DC, 0x5DB1452E0FOD7484EE, 0x56D8A6970586BA4277, 0x536C574B82C35D213B,
0x51B62BA5C161AF909D, 0x58DB11D2E2BOD7C84E, 0x329E546F611B623A5C, 0x314F2A37B28DB01D2E, 0x38A7911BD946DS0EY7,
0x3453C88DECA36D074B, 0x3A29E446F451B783A5, 0x3514F6237A28DBC1D2, 0x328A7B11BF146CEQE9, 0x39453D88DD8A377074,
0x3CA29EC46EC51ABS3A, 0x3E514F6237628C5C1D, 0x3F28A7B119B1472EOE, 0x379453D88ED8A29707, 0x33CA2DEC476C514B83,
0x39E516F621B629A5Cl, 0x34F28B7B10DB15D2E0, 0x3A7941BD886DSAEY70, 0x353CAODEC636C474B8, O0x1D2E5C93A37B1AC35,

0xE972E49D1BDI9D61A, 0x74BD724C8DECEBOD, 0x83A5EB92446F77586, 0xC1D2F5C92237ABAC3, 0XEOE93AE4B11BD5D61, 0x70749D72588 DFAEBO,

0xB83A4EB92C46ED758,

0x5C1D275CB62366BAC,

0x2EOE93AE7B11A35D6,

0x970749D73D88C1AEB,

0x4B83A4EBYEC470D75,

0xA5C19275EF62386BA, 0xD2E0C93AF7B10C35D, 0xE970649D5SBD8961AE, 0x74B8724ES8DEC4B0D7, 0x3A5C392746F63586B,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x6721394F2874B9724E, 0x6B9098A7943A5CB927,
0x6DC84C53C81D2F5C93, 0x6EE42229E60E97AE49, 0x67721514F3074BD724, 0x63B90ASA7B83A4EB92, 0x69DC81453DC1D275C9,
0x64EE44A29EEOE93AE4, 0x627726514D70749D72, 0x613B9728 A4B83A4EB9, 0x609DCF94525C1D275C, O0x684EE3CA292EOE93AE,
0x642771E516970649D7, 0x6213BCF28B4B8324EB, 0x6909DA7947A5C19275, 0x6C84ED3CAID2E1C93A, 0x6E42729E50E970E49D,
0x51D2E236C637B053CA, 0x50E9751B611BD829ES, 0x5074BA8DBOSDED14F2, 0x583A5946D846F68A79, 0x5C1D28A36E237B453C,
0x5EOE9451B711BCA29E, 0x57074E28D988DES 14F, 0x5B83A3146EC46F28A7, 0x55C1D58A3762379453, 0x52EO0EEC51BB11BCA29,
0x597073628FD88DE5 14, 0x54B83DB145EC46F28A, 0x5A5CIED8A2F6227945, 0x5D2E0B6C537B113CA2, 0x5E9701B629BD88YES 1,
0x574B80DB14DEC54F28, 0x53A5C46D886F62A794, 0x346D8F168CA794E427, 0x3A36C78B4453CB7213, 0x351B67C5A229E5B909,
0x328DB3E2D114F3DC84, 0x3146D9F16A8A78EE42, 0x38A368F8B5453C7721, 0x3C51B47C58A29F3B90, 0x3628DA3E2ES514E9DCS,
0x3B146D1F1728 A64EE4, 0x3D8A368F8B94522772, 0x36C51B47C7CA2813B9, 0x3B628DA3EIES51509DC, 0x3DB142D1FOF28A84EE,
0x36D8A168FA79444277, 0x336C50B47D3CA3213B, 0x31B62C5A3E9ES51909D, 0x38DB162D1D4F29C84E, 0x29E546F62E49DC5A3,

0x14F2A37B1724FE2D1, 0x8A7911BDAB927F168, 0x453C88DEF5C92F8B4, 0xA29E446F7AE487C5A, 0x514F62379D7243E2D, 0x28A7B11BCEB931F16,
0x9453D88DE75C88F8B, 0xCA29EC46D3AE547CS5, 0xE514F62349D73A3E2, 0xF28A7B11A4EBSDI1F1, 0x79453D88D275D68F8, 0x3CA2DEC4493AEB47C,
0x9E516F62249D65A3E, 0x4F28B7B1324EA2DIF, 0xA7941BD8B9275168F, 0x53CAODEC5C93B8B47,

0x4FFFFFFFFC00000000,
0x6DC48AA5A62CCDF861,
0x68EE22552CD1661FC3,
0x624772D2AA668 A30FE,
0x52CCDO079E23B70A5AS,
0x5D166603CF11DA552D,
0x5668B4F01DBSSED2A9,
0x5B3341E780EDC49695,
0x301E7DD332A969DC48,
0x3780F32E9A954A8EE2,
0x3F3C019974B4AA2477,

0x2FFFF80003FFFE0000,
0x6EE24552D11667FC30,
0x6477152A9668B30FE1,
0x6123B969573344187F,
0x5166683CF11DB952D2,
0x568B3701E788ED2A96,
0x53345E780EDC476954,
0x5599A0F3C076E34B4A,
0x380F3AE99954B4EE24,
0x33C079974F4AA44771,

0x379E04CCBAS5A55123B,

0x1FFFF800000001FFFF,
0x677122A96A8B32FE1S,
0x623B8E954B345987F0,
0x6891DCB4A999A30C3F,
0x58B3301E788EDCA969,
0x53459F80F1C476954B,
0x599A2F3C076E22B4AA,
0x30F3C699954B4AE247,
0x3C079974CCAA5ATT12,
0x39E03CCBA5A55323B8,

0x33CF02665D2D2B891D,

0x67123A9694B335E187,
0x63B89154B745987F0C,
0x691DC34AA59A2CC3F8,
0x6C48EASA56CCD1861F,
0x5459980F3C476F54B4,
0x59A2CBCO7AE23B4AAS,
0x5CCD179E03B7105A55,
0x3079E74CCAA5A57123,
0x3E03CCBA66552C3B89,
0x3CF01E65D2D2A891DC,
0x31E785332E9695C48E,

0x6B891D4B48599BFOC3,
0x61DC4CAAS59A2CC3F86,
0x648EESAS550CD1661FC,
0x6E24752D296669C30F,
0x5A2CCCO79E23B6AASA,
0x5CD161E03F711DA552,
0x56668BCF01DB892D2A,
0x303CF3A66552D3B891,
0x3F01E65D312A971DC4,
0x3E780B32E9695448EE,
0x52D2C76E3C30FA665,

0xA96923B73E187D332, 0x54B491DBBFOC2E999, 0xAA5A08EDFF86174CC, 0x552D4476DFC30BA66, 0x2A96E23B4FE185D33, 0x954B711D87F0D2E99,

0x4AASB88EC3F87974C,

0xA552DC4761FC2CBAG,

0xD2A96E23BOFE065D3,

0x6954B711D87F132E9,

0xB4AASB88CC3F99974,

0x5A556DC4461FCCCBA, 0x2D2AF6E2030FE665D, 0x96953B712187F332E, 0x4B4A9DB8BOC3E9997, 0xA5AS0EDC7861F4CCB,

0x4FFFFFFFFC00000000,
0x6DC48AA5A40F3CE999,
0x68EE22552FC079974C,
0x624772D2AB9E02CCBA,
0x50F3C1666A3B70A5AS,
0x5C079E8B3311DAS552D,
0x59E03B3459B8SED2A9,
0x53CF0599A0EDC49695,
0x34599FF0C2A969DC48,
0x39A2CC3F86954A8EE2,
0x3CCD1061FCB4AA2477,

0x2FFFF80003FFFE0000,
0x6EE24552D0079F74CC,
0x6477152A95E03CCBA6,
0x6123B96957CF00665D,
0x5079E0B3351DB952D2,
0x5SE03CB459B8SED2AY6,
0x5CF0199A2EDC476954,
0x51E782CCD076E34B4A,
0x3A2CCBF86154B4EE24,
0x3CD1661FC34AA44771,
0x36668C30FE5A55123B,

0x 1FFFF800000001FFFF,
0x677122A96A03CEBA66,
0x623B8E9548F01E65D3,
0x6891DCB4A9ET781332E,
0x503CF459988EDCA969,
0x5F01E1A2CDC476954B,
0xSE780CCD176E22B4AA,
0x32CCD7861D4B4AE247,
0x3D1661FC30AA5A7712,
0x3668B30FE1A55323B8,
0x3B3346187D2D2B891D,

0x67123A96943CF1A665,
0x63B89154B701E65D33,
0x691DC34AA6780F32E9,
0x6C48EAS5A54F3C09997,
0x501E7A2CCC476F54B4,
0x5780F4D166E23B4AAS,
0x5F3C06668BB7105A55,
0x31666FC30EA5AS57123,
0x368B30FE1A552C3B89,
0x33345987F2D2A891DC,
0x3599A70C3E9695C48E,

0x6B891D4B481E79D332,
0x61DC4CAASBSOF32E99,
0x648EE5A5533C079974,
0x6E24752D2879E14CCB,
0x580F3D166623B6AASA,
0x53C0O7E68B3711DAS552,
0x579E033345DB892D2A,
0x38B337E18552D3B891,
0x3345987F0D2A971DC4,
0x399A28C3F9695448EE,
0x52D2C76E34CCBE187,

0xA96923B73A665F0C3, 0x54B491DB9D333F861, 0xAASAOSEDEE999FC30, 0x552D4476D74CCFE18, 0x2A96E23B4BA667F0C, 0x954B711DAS5SD323F86,
0x4AASB8SEF2E981FC3, 0xA552DC475974DOFE1, 0xD2A96E238CBA787F0, 0x6954B711E65D2C3F8, 0xB4AAS5SB88F32E861FC, 0x5A556DC45997430FE,
0x2D2AF6E20CCBA187F, 0x96953B712665D0C3F, 0x4B4A9DB89332F861F, 0xASAS0EDC69997C30F,

0x4FFFFFFFFC00000000,
0x6DB036D1895COF539C,
0x636D80B6SCEAEICA9C,
0x681B68C5B60757CES4,
0x55COEAC6364FC8D18B,
0xSEAE035630927EB68C,
0x5075731AB3E492C5B4,
0x5703AB18D53F25462D,
0x3AB18AA3F1B462DB03,
0x38D58F151E2DA236D8,
0x38C6A9F8AA316D81B6,

0x2FFFF80003FFFE0000,
0x66D81B68COAEO6AICE,
0x61B6C45B447570E54E,
0x6CODB462DB03AAE72A,
0x5AE075631927E568C5,
0x575701AB1A493E5B46,
0x503AB98D5BF24862DA,
0x5B81D58C689F93A316,
0x3D58C151FADA316D81,
0x3C6AC78A8F16D01B6C,
0x3C6350FC5518B6CODB,

0x IFFFF800000001FFFF,
0x6B6CODB463570254E7,
0x60DB662DA03AB872A7,
0x6606DA316F81D47395,
0x55703AB18C93F3B462,
0x53AB80DS58F249E2DA3,
0x581D58C6ADF924316D,
0x358C6D1F89A316D81B,
0x36AC60A8FD6D19B6CO,
0x363567C5458B680DB6,
0x3631AC7E2A8C5B606D,

0x66C0DB462D703B4E72,
0x6DB602DA33AB812A73,
0x606DB316D01D5D3953,
0x6B036D18B5SCOEB39CA,
0x5AB81D58C649F8DA31,
0x51D5C46AC7924F16D1,
0x5COEAC6354FC9318B6,
0x3AC6328FC6D18B6COD,
0x335634547CB68CDB60,
0x331AB7E2A0C5B406DB,
0x3B18D23F17462DB036,

0x6B606DA316B81CA739,
0x66DB016D19D5C19539,
0x6036D98B6SOEAFICAY,
0x6D81B68C5AE0749CES,
0x5D5COEAC6124FD6D18,
0x50EAE63563C9278B68,
0x5E075631AATE488C5B,
0x35631D47E368C5B606,
0x31AB1E2A3C5B466DBO0,
0x318D5BF15062DB036D,
0x68C5COF929CES47E2,

0xB462A4FC94E72A3F1, 0xDA31127E6A73951F8, 0x6D18C93F1539CA8FC, 0xB68C249F8A9CES4TE, 0x5B46124FES4E62A3F, 0x2DA34927F2A73151F,
0x16D1E493F95398A8F, 0x8B68F249DCA9DC547, 0xC5B47924CES4FE2A3, 0x62DA7C92672A7F151, 0x316D7E4933953F8AS8, 0x18B6BF24B9CASFC54,
0x8C5B1F925CES47E2A, 0x462DCFC90E72A3F15, 0xA316A7TE4A73951F8A, 0xD18B13F2539CA8FCS,
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The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

Matrix

0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x66C0DB462D703B4E72, 0x6B606DA316B81CA739,
0x6DB036D1895COF539C, 0x66D81B68CO6AE06AICE, 0x6B6CODB463570254E7, 0x6DB602DA33AB812A73, 0x66DB016D19D5C19539,
0x636D80B68CEAE1CAIC, 0x61B6C45B447570E54E, 0x60DB662DA03AB872A7, 0x606DB316D01D5D3953, 0x6036D98B6SOEAFICAY,
0x681B68C5B60757CE54, 0x6CODB462DB03AAET72A, 0x6606DA316F81D47395, 0x6B036D18B5COEB39CA, 0x6D81B68C5AE0749CES,
0x558C6AE0765CESDS81B, 0x5AC63570392E756C0D, 0x55631AB81C973BB606, 0x5AB18D5COE4B9CDB03, 0x5D58C6AE0525CF6D81,
0x56AC67570292E7B6CO, 0x535633AB834972DB60, 0x51AB19D5C3A4B86DBO, 0x58D588EAE1D25C36D8, 0x5C6AC07570E92E1B6C,
0x5635603ABA74960DB6, 0x531AB01D5F3A4A06DB, 0x518D5COEAF9D25036D, 0x58C6AE0755CE9381B6, 0x5C635703AAE748CODB,
0x5631AB81D573A5606D, 0x5B18D5COES8BID3B036, 0x368C5CI9F91631ABSI1D, 0x3B462A4FCAB18D5COE, 0x3DA31127E558C6AE(7,
0x36D18C93F2AC635703, 0x3B68C249FB5631ABS1, 0x35B46124FDAB19D5CO0, 0x32DA34927CD58CEAEOQ, 0x316D1E493C6AC67570,
0x38B68F249E35623ABS, 0x3C5B47924F1ABO1DSC, 0x362DA7C9258D580EAE, 0x3316D7E490C6AC0757, 0x318B6BF248635703AB,
0x38C5B1F92631AB81DS, 0x3462DCFC9318D5COEA, 0x3A316A7E498C6AE075, 0x3D18B13F26C635703A, 0x5COED39CA4FC92E74,

0xAE0729CE527E4973A, 0x5703D4E7093F24B9D, 0xAB81AA73A49F925CE, 0xD5C09539D24FC92E7, 0OXEAE04A9CC927F4973, 0x7570654E6493FA4B9,
0x3AB872A73249FD25C, 0x1D5C3953B924EE92E, OxEAE1CA9FC9267497, O0x7574E54FE4933A4B, 0x3ABE72A7F2499D25, 0x81D5F3951F925CE92,
0xCOEAB9CASFC92E749, 0xE0751CE567E4973A4, 0x703ACE7293F24B9D2, 0xB81D273949F925CE9,

0x4FFFFFFFFC00000000,
0x6DB036D18958C751F8,
0x636D80B68CO6ACTSASFE,
0x681B68C5B46356FC54,
0x55COEAC6365CESDS1B,
0xSEAE03563292E7B6C0,
0x5075731AB274960DB6,
0x5703AB18D573A5606D,
0x36D18C93F2AE(075631,
0x38B68F249C75711AB1,
0x38C5B1F92703AB18DS5,

0x2FFFF80003FFFE0000,

0x66D81B68CO6AC62A8FC,
0x61B6C45B463563C547,
0x6CODB462DA31AATE2A,
0x5AE07563192E756C0D,
0x575701AB1B4972DB60,
0x503AB98D5B3A4A06DB,
0x5B81D58C68B9D3B036,
0x3B68C249FB5703AB18,
0x3C5B47924C3AB98DS5S,

0x3462DCFC9381D58C6A,

0x1FFFF800000001FFFF,
0x6B6CODB4635630547E,
0x60DB662DA31AB1E2A3,
0x6606DA316F18D43F15,
0x55703AB18C973BB606,
0x53AB80D58FA4B86DB0,
0x581D58C6AF9D25036D,
0x368C5CI9F91703AB18D,
0x35B46124FFAB8OD5SC,
0x362DA7C9241D5CC6AC,
0x3A316A7E49COEAC635,

0x66C0DB462D631B47E2,
0x6DB602DA31AB182A3F,
0x606DB316D18D59F151,
0x6B036D18B58C6B1FSA,
0x5AB81D58C64B9CDB03,
0x51D5C46AC5D25C36D8,
0x5COEAC6355CE9381B6,
0x3B462A4FCAB81D58C6,
0x32DA34927DD5CO6AC6,
0x3316D7E4900EAE6356,

0x3D18B13F26E075631A,

0x6B606DA316B18CA3FI,
0x66DB016D18D58D151F,

0x6036D98B68C6ADFSAS,
0x6D81B68C5AC6348FCs5,
0x5D5COEAC6125CF6D81,
0x50EAE63560E92E1B6C,

0x5SE075631AAE748CODB,
0x3DA31127E55COEAC63,
0x316D1E493CEAE03563,

0x318B6BF24A075631AB,

0x58C6D1F8A4FCI2E74,

0xAC6328FC527E4973A, 0x5631D47E093F24B9D, 0xAB18AA3F249F925CE, 0xD58C151F924FC92E7, 0x6AC60A8FC927F4973, 0x35634547E493FA4B9,
0x1AB1E2A3F249FD25C, 0x8D58F151F924EE92E, 0xC6ACT78A8FC9267497, 0x63567C547TE4933A4B, 0x31AB7E2A3F2499D25, 0x18D5BF151F925CE92,
0x8CO6AIFSASFCI2E749, 0xC6350FC567E4973A4, 0x631ACTE293F24B9D2, 0xB18D23F149F925CE9,

0x4FFFFFFFFC00000000,
0x6DB032B81D58C64B9D,
0x636D81D5SCO6ACTD25C,
0x681B6COEAC6357CE92,
0x568C5AC6368FC4D81B,
0x55B4635630547FB6CO,
0x562DA31AB3E2A20DB6,
0x5A316B18D63F15606D,
0x3AB81C93F1B4635631,
0x31D5C7249E2DA31AB1,
0x3COEA9F926316D18D5,

0x2FFFF80003FFFE0000,
0x66D81D5COEAC6325CE,
0x61B6COEAE23562E92E,
0x6CODB6075631AAE749,
0x5B462D631947E36C0D,
0x52DA31AB1A2A3EDB60,
0x5316D18D5BF15006DB,
0x5D18B58C691F8BB036,
0x3D5COA49FADA31ABI1S,
0x30EAE7924F16D18D58,
0x3E0754FC9118B78C6A,

0x1FFFF800000001FFFF,
0x6B6COEAE07563092E7,
0x60DB6075731AB07497,
0x6606DF03AB18D573A4,
0x5DA312B18EA3F1B606,
0x516D18D58F151E6DBO,
0x518B68C6ADFS8A9036D,
0x35COEC9F91A316B18D,
0x3EAE0124FD6D18D58C,
0x307577C9258B68COAC,
0x3703AA7E4A8C5AC635,

0x66CODAE075631B2E74,
0x6DB6075701AB194973,
0x606DB03AB98D593A4B,
0x6B036B81D58C6ABID2,
0x56D18D58C551F8DB03,
0x58B68COACTS8ASE36DS,
0x58C5B46354FC5581B6,
0x3AE0724FCAD18B58C6,
0x375704927CB68CHACH,
0x303ABFE490C5B46356,
0x3B81D13F27462D631A,

0x6B606D703AB18C973A,
0x66DB03AB80D58DA4B9,
0x6036D81D5CC6ADID25,
0x6D81B5COEAC6345CEY,
0x5B68C6AC60A8FD6D81,
0x5C5B463563C5461B6C,
0x5462DE31A87E2ACODB,
0x35703927E768C4AC63,
0x33AB86493C5B463563,
0x381D5BF24862DA31AB,
0x58C6CBID24FC947E2,

0xAC6325CE927E4A3F1, 0x563192E7493F351F8, 0xAB18C973A49F8ABFC, 0xD58C24B9D24FC547E, 0x6AC6525CC927E2A3F, 0x3563692E6493F151F,
0x1AB1F4973249F8ASF, 0x8D58BA4BB924FC547, 0xC6ACID25FC927E2A3, 0x63564E92FE493F151, 0x31AB67497F249F8AS8, 0x18D5F3A49F924FC54,
0x8C6ABID24FC927E2A, 0xC6355CE927E483F15, 0x631 AAE7493F251F8A, 0xB18D173A49F928FCS,

0x4FFFFFFFFC00000000,
0x6DA316D188173BF462,
0x616D18B6SFAOBS82FA3,
0x618B68C5B79D04317D,
0x5173A0B9D25CESD18B,
0x5A0B9D05SCE92E6B68C,
0x59D05SCE82E7496C5B4,
0x55CE82E74173A5462D,
0x36D18C973A0BIDOSCE,
0x38B68BA4BID0O5SCES2E,
0x38C5B39D25CE82E741,

0x2FFFF80003FFFE0000,
0x66D18B68C60BICFA3I,
0x68B68C5B45D05D17D1,
0x68C5B462D9CE8318BE,
0x50B9D05CE92E7568CS,
0x5D05CE82E749725B46,
0x5CE82E74173A4A62DA,
0x52E74173A0B9D3A316,
0x3B68C24B9DO5CES2E7,
0x3C5B41D25CE82E7417,
0x3462DDCE92E74173A0,

0x IFFFF800000001FFFF,
0x6B68C5B46105CF7D18,
0x6C5B462DA0ES2FSBES,
0x6462DA316EE7408C5F,
0x505CE82E74973BB462,
O0xSE82E74173A4B82DA3,
0x5E74173A0B9D24316D,
0x368C5CB9DOSCES2E74,
0x35B46525CE82E74173,
0x362DA4E92E74173A0B,
0x3A316AE74973A0B9DO,

0x668C5B462C5CE9D18B,
0x65B462DA3282E6BESC,
0x662DA316D27416C5F4,
0x6A316D18B573A1462F,
0x582E74173A4B9CDA31,
0x574173A0B9D25D16D1,
0x573A0B9D0O5CE9318B6,
0x3B462A5CE82E74173A,
0x32DA3692E74173A0BY,
0x3316D674973A0B9DOS,

0x3D18B173A4B9DOSCES,

0x6B462DA3142E75E8CS,

0x62DA316D1B41725F46,

0x6316D18B6B3A0AG2FA,
0x6D18B68C58BID1A317,
0x54173A0B9D25CF6D18,
0x53A0B9D0O5SCE92F8B68,
0x5B9DOSCES2E7488C5B,
0x3DA3112E74173A0B9D,
0x316D1F4973A0B9DO5C,
0x318B6F3A4B9D05CES2,
0x173A7462E5CE92E74,

0xB9D7A3152E74973A, 0x5CEFD188973A4B9D, 0x82E73E8C64BID25CE, 0x4173DF46125CE92E7, 0xAOBY9AFA3292E74973, 0xD05C97D1B4973A4B9,
0xE82EOBESFA4B9D25C, 0x741745F45D25CE92E, 0x3A0BE2FAOE92E7497, 0x9D05B17D274973A4B, 0xCE8298BEB3A4B9D25, 0xE7410C5F79D25CE92,
0x73A0C62F9CE92E749, 0xB9D02317EE74973A4, 0x5CE8518BD73A4B9D2, 0x2E7468C5CB9D25CEY,

128



The input Hadamard matrices of sporadic cases

Table A.1: Incidence matrices of input designs(cont.)

n Matrix
0x4FFFFFFFFEC00000000, 0x2FFFF80003FFFE0000, 0x1FFFF800000001FFFF, 0x65COEA59A4D32DBS81D, 0x6AE0752CD06997DCOE,
0x65703A966A34CAEE(07, 0x6AB8194B371A657703, 0x6D5COCA5998D33BB81, 0x6EAE0252CEC699DDCO, 0x6757052965634CEEEQ,
0x63AB8694B0B1A67770, 0x61D5C34A5A58D23BBS, 0x60EAE1AS52F2C681DDC, 0x607574D29596340EEE, 0x603ABE6948CB1A0777,
0x681D5B34A6658D03BB, 0x6COEADY9AS5132C781DD, 0x6E0752CD2A9963COEE, 0x6703A966974CBOE077, 0x6B81D4B349A659703B,
0x534CB11F8A8FC49669, 0x51A6588FC547E34B34, 0x58D32C47E2A3F0AS9A, 0x5C699223F151F852CD, 0x5634C911F8A8FD2966,
0x5B1A6088FC547E94B3, 0x558D34447E2A3F4A59, 0x52C69E223F151FA52C, 0x59634F111F8AS8ED296, 0x5CB1A7888FC546694B,
0x5658D7C447TE2A334A5, 0x532C6FE223F1519A52, 0x599633F111F8A8CD29, 0x54CB19F888FC556694, 0x5A6588FC447TE2AB34A,
0x5D32C47E223F1459A5, 0x5699623F111F8B2CD2, 0x323F1659A52CD2B8I1D, 0x311F8F2CD296695COE, 0x388FC396694B34AE(7,
0x3447E1CB34A59B5703, 0x3223F4E59A52CDABS1, 0x3111FA72CD2967D5CO0, 0x3888FD396694B2EAEQ, 0x3C447E9CB34A587570,
0x3E223B4E59A52C3ABS, 0x3F1119A72CD2961D5C, 0x3F888CD396694A0EAE, 0x3FC44669CB34A40757, 0x37E22334E59A5303AB,
0x33F1159A72CD2981D5, 0x31F88ACD396695COEA, 0x38FC41669CB34AE(75, 0x347E24B34E59A5703A, 0x4B34D1F8B703B9669,
0xA59A28FC7B81DCB34, 0x52CD547E1DCOEES9A, 0x2966AA3F2EE0672CD, 0x94B3151FB77033966, 0x4A598A8FFBB809CB3,
0xA52CC547DDDCI14E59, 0xD29662A3CEEE1A72C, 0x694B7151C7770D396, 0x34A5F8A8C3BB869CB, 0x9A52FC5441DDD34ES5,

0xCD297E2A00EEF9A72, 0x6694BF1520776CD39, 0xB34A1F8AB03BB669C, 0x59AS0FC5781DCB34E, 0x2CD2C7E29COEES9A7, 0x966923F16E0772CD3,

0x4FFFFFFFFC00000000,
0x65703A966A34CAEE(07,
0x63AB8694B0B1A67770,
0x681D5B34A6658D03BB,
0x523F11A65AD32CB81D,
0x5111FD8D32D699D5CO0,
0xSF888B2C6996B40EAE,
0x58FC4699634CB4E075,
0x32966AA3F111F98D32,
0x3694B7151F888F2C69,
0x3B34A1F8A8FC449963,

0x2FFFF80003FFFE0000,
0x6AB8194B371A657703,
0x61D5C34A5A58D23BBS,
0x6COEAD9A5132C781DD,
0x511F88D32D69975COE,
0x5888FAC6996B4CEAEO,
0x5FC4419634CB5A0757,
0x547E234CB1A65B703A,
0x394B3151F888FCC699,
0x334A5F8A8FC4479634,
0x359A50FC547E234CBI1,

0x1FFFF800000001FFFF,
0x6D5COCAS5998D33BBS1,
0x60EAE1A52F2C681DDC,
0x6E0752CD2A9963COEE,
0x588FC46996B4CAAE(7,
0x5C4479634CB5A67570,
0x57E224CB1A65ADO03AB,
0x34B34D1F888FC46996,
0x34A598A8FC447F634C,
0x39A52FC547E222CB1A,
0x32CD2C7E2A3F11A658,

0x65COEA59A4D32DB81D,
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