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In order to facilitate the comprehension of this inconceivable thesis, a heresiarch of
the eleventh century devised the sophism of the nine copper coins, whose
scandalous renown is in Tlon equivalent to that of the Eleatic paradoxes. There are
many versions of this "specious argument," with varying number of coins and
discoveries; the following is the most common:

"On Tuesday, X crosses a deserted road and loses nine copper coins. On Thursday, Y
finds in the road four coins, somewhat rusted by Wednesday’s rain. On Friday, Z
discovers three coins in the road. On Friday morning, X finds two coins on the
veranda of his house."

The heresiarch would deduce from this story the reality —i.e., the continuity in
time - of those nine recovered coins. "It is absurd" he said "to imagine that four of
the coins did not exist between Tuesday and Thursday, three between Tuesday and
Friday afternoon, two between Tuesday and Friday morning. It is logical to think
that they in fact did exist — albeit in some secret way, hidden from the

comprehension of men — at every moment of those three periods of time."

Jorge Luis Borges

!As a reminder of one passionate discussion on "Do events exist (operationally) if there are no
(quantum) clocks to measure them?"



Vremensko i kauzalno uredenje u kvantnoj
mehanici i kvantnoj teoriji polja

Sazetak

Jedna od glavnih poteskoca koja se javlja u pokusajima pomirenja kvantne teorije
i opce teorije relativnosti proizlazi iz dubokih razlika u na¢inima na koje su poj-
movi prostora, vremena, referentnog sustava i kauzalnosti implementirani u nave-
dene teorije. Cesto se tvrdi da bi obje teorije trebale istrpiti kompromis u koncep-
tualnim razumijevanjima spomenutog, kako bi njihovo spajanje (u teoriju kvantne
gravitacije) bilo moguce.
Potaknuti tom mislju, u ovom ¢emo se radu usredotociti na pretpostavke iznesene
unutar novouspostavljenog okvira kvantne kauzalnosti i formulacije vremena preko
uvjetnog probabilistickog pristupa (tzv. Page-Wottersov formalizam ). Ovim proSiren-
jima konceptualne razlike ve¢ na razini usporedbe kvantne mehanike s obzirom na
kvantnu teoriju polja postaju snazne, a njihovo razumijevanje predstavlja prelimi-
narni korak prema idejama kvantne gravitacije. Potaknuti time, cilj ove disertacije
bio je preispitati pojmove vremenskog i kauzalnog uredenja u kontekstu modernih
pristupa kvantnoj teoriji u odnosu na pristupe unutar perturbativne teoriji polja.
Kao zanimljivu okosnica za ispitivanje naseg razumijevanja uzeli smo operator vre-
menskog uredenja i istrazili ga u nekoliko razlic¢itih, iako povezanih konteksta: (1)
kako se pojavljuje u Schrédingerovom rjesenju standardne kvantne mehanike s vre-
menski ovisnim Hamiltonijanom, (2) u Page-Wottersovom formalizam, gdje smo raz-
matrali jednadzbe ogranicenja s nekoliko kvantnih satova i (3) u kontekstu kvantne
teorije polja i Feynmanovog propagatora. Cilj istrazivanja bio je razumjeti moze li se
promatrati djelovanje operatora vremenskog uredenja kao omogucavanje superpozi-
cije razli¢itih vremenski uredenih konfiguracija, uvodeci vremensku neodredenost u
gore navedene postavke. Sto se ti¢e kvantnih polja, doveli smo u pitanje moguénost
operativnog tumacenja procesa virtualne izmjene Cestica (teorija rasprSenja), koji se
Cesto shvaca u terminima dva vremenski uredena procesa koji se odvijaju putem izm-
jene Cestica/anticestica.
Nas$ je pristup bio promatrati vremenski uredene eksponencijale do drugog reda

) $ati izolirati i , Zicii
i pokusati izolirati jednu od ’grana’ reda, projiciraju¢i superpoziciju na odredeno



stanje. Otkrili smo da se superpozicija vremenskog uredenja eksponencijalne ekspanz-
ije ne moze proicirati na definitno stanje jedne od ’grana’ superpoziciju, u kontekstu
standardne kvantne mehanike, spajanjem s potencijalom pomo¢nog sustava; medu-
tim, ova vrsta projekcije moze se izvesti u kontekstu Page-Wotters formalisma s dva ili
viSe kvantnih satova. Zatim smo pristupili ovim razmatranjima u kontekstu kvantne
teorije polja, koriste¢i Schrodingerovu funkcionalnu reprezentaciju, nastojeci imple-

mentirati Page-Wotters pristup i prethodno razvijeni 'toy model’.

Kljucne rijec¢i: superpozicija vremenskih uredenja, kvantna kauzalnost, pertur-
bativnha kvantna teorija polja, Feynmanov propagator, Page-Wottersov formalizam

(bezvremenski formalizam), Schrodingerova funkcionalna reprezentacija



Time and causal ordering in quantum mechanics
and quantum field theory

Abstract

One of the grates difficulties arising within the attempts to reconcile the quantum
theory and general relativity stems from the profound differences in the ways the
notions of space, time, reference frame, and causation enter the two formulations.
It is often argued that both theories should compromise on their respective under-
standings for this merging (in the theory of quantum gravity) to be possible.
Motivated by this thought, in the thesis we will focus on the assumptions brought up
within the newly established framework of quantum causality and the formulation
of time within the conditional probabilistic approach (so-called Page-Wotters formal-
ism). With these extensions, there are already strong conceptual differences at the
level of comparison between quantum mechanics and quantum field theory, the res-
olution of which would represent a preliminary step towards the ideas of quantum
gravity. Stirred by this friction, the goal of the dissertation was to reexamine the
notions of temporal and causal ordering in the context of modern approaches to
quantum theory in relation to approaches within perturbative field theory.

As an interesting playground for challenging our understanding we took time order-
ing operator and investigated it in several different, albeit related contexts: (1) as
it appears in the Schrodinger solution of standard quantum mechanics with time-
dependent Hamiltonian, (2) in Page-Wotters formalism, considering a constraint
equation with several quantum clocks and (3) in the context of quantum field theory
and Feynman propagator. The research objective was to understand whether one can
view the action of the time ordering operator as enabling a superposition of different
time-ordered configurations, introducing time indefiniteness in the aforementioned
settings. Regarding quantum fields, we questioned the possibility of the operational
interpretation of the (scattering theory) virtual particle exchange process, often un-
derstood in terms of two time-ordered processes happening via particle/antiparticle
exchange.

Our approach was to look at the time-ordered exponentials up to the second order

and attempt to isolate one of the ordering 'branches,” projecting a superposition to



a definite state. We found that one cannot break the time ordering superposition
of the exponential expansion in the context of standard quantum mechanics cou-
pling it with the ancilla potential; however, one can perform this kind of projection
in the context of timeless quantum mechanics with two or more quantum clocks.
We then approached these considerations in the context of quantum fields, using
the Schrodinger functional representation, seeking to implement the Page-Wotters

approach and the previously developed toy model.

Keywords: superposition of temporal orders, quantum causality, perturbative
quantum field theory, Feynman propagator, Page-Wotters formalism, Schrodinger

functional representation
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1 Introduction and motivation

All established physical paradigms presuppose in a certain way a notion of space and
time, or spacetime, in which matter content evolves. Spacetime is a set of events 2
subjected to the causal and time ordering. Thus, time is essentially different from
space in the way that it comes with a preferred orientation, known as the arrow
of time, imposing an ordering of the events in a fixed manner. Particular choice
of orientation implements the fact that our experiences are time asymmetric. Such
asymmetry seems to be lacking in the fundamental dynamical laws, nevertheless it is
often ascribed to the second law of thermodynamics and low entropy initial states.
A question sometimes posed is whether the arrow of time can be understood as a
feature of how we as the agents probe the world and not intrinsic to nature itself?
[74]

Accepting the asymmetry of ordering in time, in the standard sense we relate it to
asymmetry of causation; causes precede the effects in time. However, the two order-
ings are essentially different. Whereas the causal ordering implies the temporal one,
the temporal ordering is, for the causal one, a necessary but not sufficient condition.
The differences are most prominently manifested when going beyond non-relativistic
physics. There, the ordering in time establishes a relation between every pair of
events, which we call a total ordering over the set, but bears the observer depen-
dence. On the other hand, the causal ordering will be partial, due to the spacelike
region where events lack causal relation, and absolute in sense of observer indepen-

[1

dence. Even so, ° if one arranges phenomena in a series such that every term
contains the reason for all those which come after it in the series, the causal order of the

phenomena so defined will coincide with their temporal order of succession.’[61].

To elucidate these points one should notice that although all physical paradigms

work with the notions of ’time’, ’event’, and the ’observer’, the way these enter the

2Here we will distinguish abstract pointlike events in a sense of a set which constitutes a spacetime
manifold, from the events defined in the operational sense via some transformation on the system
i.e. some physically meaningful occurrence. Theories such as general relativity and quantum field
theory will postulate the events as points, as elements of the set existing a priori where the rest of
the physical reality is represented by mathematical structures over the sets of these points. On the
other hand, theories set up operationally will assume that physical transformations representing an
event will occur in some finite extend of space and time. Moreover, in probabilistic theories such as
quantum mechanics, the events in a spacetime are defined with a spread of probability distribution
assigned to that event and not (in general sense) sharply.
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Figure 1.1: (a) Three fundamental constant represent three major paradigm shifts.
Going along the edge of a cube represents making a specific constant significant
relative to the of the rest of physical structure. Going along the edge representing
Newton’s gravitational constant (G, thus means considering the realms where grav-
itational force is non-negligible in comparison to the rest of the forces. Similarly,
going along the edge of 1/c we are approaching theories where the speeds are com-
parable to the speed of light. Going along the edge with h, represents considering
scales comparable to minimal length scale. (b) Shows the regimes we often deal
with separately. Namely, 'Newton-Einstein’ classical plane and ’Particle physics’ non-
gravitational plane. (c) Here we see the way of approaching ’Quantum gravity’ vertex
without extending the Planckian cube. If one aims to extend the notions of regular
quantum mechanics to combine with general relativity, this extension will need to be
implemented into quantum field theory contexts first. [2]

formalism often differ significantly across those, representing a conceptual problem
in the regimes where two theories should combine. Namely, if one considers the ar-
chitecture of modern theoretical physics, it seems to be spanned by the three known
fundamental constants of Nature: Newton’s gravitational constant G, Planck’s con-
stant 7 and the reciprocal of the speed of light ¢, as seen in Figure (1.1). One should
notice that out of all vertices of the Planckian cube, for all except one we have a
formalism with working predictive power. The vertex which, after almost a cen-
tury of research effort 3 remains unestablished, is the one of quantum gravity. The
main difficulty can be understood as coming from the disparate nature of its ingre-
dient theories, as it attempts to reconcile general relativity with quantum mechanics
which belongs to a different class with respect to how the notions of space, time, and
causality are implemented within

This is often recognized in a division on background dependent and background

independent theories. Quantum mechanics then, along with Newtonian physics, spe-

3The first speculations came from Einstein’s 1916. paper on gravitational waves, culminating in
the first attempt by Rosenfeld in 1930.



cial relativity, and quantum field theory, is background-dependent, since it is set in
the fixed, rigid structure of space and time, completely external to its dynamical law.
On the other hand, in general relativity, both matter field and spacetime are possibly
evolving, treating both structures as subjected to the dynamical law present within.
This arises from the relational nature of general relativity, background independence
coming from the diffeomorphism invariance of the theory. Contrasting with the stan-
dard quantum mechanics, not only that quantum theory lack such symmetry, but it
fully leaves the notions of time outside its regime: time is not observable in the the-
ory, nor is it subjected to quantum indefiniteness, rather it is treated as an external
classical parameter. Both time and causal ordering are thus, within standard treat-
ments of quantum mechanics and quantum field theory, unaffected by the quantum
regime. Naturally, this represents a difficulty when considering possible quantum
gravity contexts where spacetime, and thus time itself, should be quantized. There,
one might expect that the notion of causality should succumb to the principle of
superposition, introducing a ’fuzziness’ in the spacetime structure, making the back-

ground both dynamical and probabilistic [15].

Nevertheless, in the recent efforts, the idea of causal relations being subjected to
quantum indefiniteness was posed [12][58][45][47]. Interestingly, the framework
of these considerations lies within the realm of information theory and computation
[46], where the configuration of quantum circuit is contrasted with the unraveling
of the events in the structure of spacetime. It has been proposed [22] that the ge-
ometry of the wires between the gates could be controlled by the quantum state of
a controlled qubit, introducing coherent superposition in the ordering of the pro-
cesses. Such a realization is known as the quantum switch and represents an example
of a causally non-separable process. These processes, incompatible with definite or-
dering of operations but, in certain subsets still embeddable in definite spacetime
background, were proven to exist by employing so-called "causal witnesses" [3][75].
Even beyond this, the framework of process matrices was established [63], where
resources incompatible with the definite causal order of quantum operations were
introduced. The main mathematical tool for implementing the ordering indefinite-
ness are quantum supermaps [19]. Within this framework, recent considerations

addressed also the possibility of backwards-facing agents probing quantum processes



with an inverted time arrow or even with an arrow in a superposition of orienta-
tions[21]*. However, as seen from the (1.1), to make these considerations significant
for the quantum gravity vertex these features should first be lifted to the quantum
field theory context.

It is then legitimate to ask, can we find an example of ordering indefiniteness, e.g.
as the one appearing on the level of quantum switch, within the framework of stan-
dard physics?®> One of the possible places to look is Feynman’s interpretation of
antiparticles [35], and the spacetime interpretation of interaction processes in terms
of Feynman diagrams [34]. Namely, by labeling the events representing transfor-
mations as, A = particle created’ and B =’ particle annihilated’, we would have a
similar ordering indefiniteness, on the level of superposition of orderings in the Feyn-
man propagator. Within formalism, this indefiniteness of operations is accounted for
with the time ordering operator, having role to chronologically reorder the series of
operators.

In this thesis we aimed, therefore, to investigate the ordering coming from the
time ordering operator. In particular, we considered the time ordering operator as
having two ’branches’, corresponding to the two definite ordering realizations. Con-
trasting with the superposition of orderings as appearing in the quantum switch, we
aimed to "isolate" one of these branches by making suitable choices of the prepara-
tions and the measurements. Taking these questions as a motivation, the goal of the
thesis was to investigate common points and points of departure of state-of-the-art
understanding of time and causality in quantum mechanics, with respect to the one
in quantum field theory contexts. In these considerations we will embed our original
results, regarding the superposition of orders within time ordering operator. This
thesis will not investigate algebraic formulations of quantum field theory, rather it
will focus on the perturbative approach and corresponding interpretations. We will
also suppose that the concept of a point-like particle and point evaluated field oper-

ators are viable working idealisation. The thesis is organized as follows:

* In Preliminaries (2) we will introduce theoretical context of our considerations;

— In subsection (2.1) we will unravel the notions of time and symmetry in

4Superposition of thermodynamical arrow of time was already mentioned prior in [39]
Seven without encountering metric indefiniteness suspected in the quantum gravity realm

4



quantum mechanics and quantum field theory. We will touch upon the ex-
tension of the covariance principle in quantum mechanics by considering

in section (2.1.3) quantum reference frame transformations.

— In subsection (2.2) we will state the implementations of causality in quan-
tum mechanics, surpassing the classical ways of treating causality in the
quantum regime. Here we will introduce the notion of the quantum switch

and quantum time flip.

— Subsection (2.3) will portray how causality is implemented in quantum
field theory, by considering Klein-Gordon and Dirac field. We will consider
the interpretation regarding the antiparticles as negative energy solutions
propagating backward in time. We will then proceed to analyze the struc-
ture of the time ordering operator as appearing in the Dyson perturbative
expansion and consider it in the context of the transition amplitude of
Feynman diagrams. Lastly, we will contrast the ordering appearing on
the level of virtual particle exchange with the old-fashioned perturbation

where diagrams come with a fixed order.

* In section (3) we will show an attempt to couple the ancillary system to a
particular ordering configuration, attempting to use it as a control enabling us

to project on a definite ordering state.

* In section (4) we introduce the Page-Wotters formalism which surpasses the
classical ways of treating time and extends the Schrodinger equation if several
quantum clocks are used. Within the context of Page-Wotters formalism with
multiple clocks, we were able to make the entangling preparation and measure-
ment and to isolate one branch of time-ordered exponential, as appearing this

time in the context of history state.

* In (5) we then attempted to put these considerations back into the context of
scattering amplitude and Feynman diagrams by proposing a way of implement-
ing the history state in the Schrédinger functional representation of quantum

field theory.

* In (6) we conclude.



2 Preliminaries

2.1 Time, clock and symmetries in quantum mechanics and quan-

tum field theory
2.1.1 Time and clock in quantum mechanics

1927. Heisenberg in his paper [49] stated the uncertainty relations, with particular

interpretational difficulty rising around the statement of time-energy uncertainty:

AEAt > — . (2.1)

DO | St

Namely, since the uncertainty relations come from the non-commutativity of quan-

tum mechanical observables [73]:

1 A
(AuA) - (AuB) = 5 [(v|[4 B]| )] (2.2)
equation (2.1) would presuppose relation of the form:
[T, H] =il . (2.3)

Even though Heisenberg didn’t formulate uncertainty relation in a general way of
equation (2.2), his reasoning also relied on the arguments of incompatibility of the
observables, stating the commutator relation with time and energy as operators.

As one of the responses to Heisenberg’s time-energy uncertain relation came Pauli’s
criticism [66] regarding the impossibility of the time operator appearing in equation
(2.3). Namely, if 7" would be a self-adjoint operator satisfying such a commutation
relation, then H as its conjugate operator, would have an unbounded spectrum. This
is a general result; we say that any two operators satisfying such a commutator
relation are unitarily equivalent to the position and momentum operators on the

6

real line, as a consequence of the Stone-von-Neumann theorem®. We can see this

also by noting that 7" would now be a generator of energy shifts:

5The statement regarding the unboundedness imposed by the commutator is usually known under
the uniqueness of unitary representation of the Heisenberg group on finitely many generators (the
Stone-von-Neumann theorem). Namely, the theorem ensures us that the representation in terms of
unbounded operators on a Hilbert space of square-integrable functions, as in the case of position and
momentum [z, p] = ih, is unique up to an isomorphism. The theorem does not hold in the case of
infinitely many generators (i.e. in a QFT context).

6



eTAE|E) = |E + AE) (2.4)

This means that, by considering negative energy displacements —AFE, we could
generate displacements going below the minimal energy F,,;, bound on the Hamil-
tonian operator, implying that the spectrum has no lower bound. Such a situation is
not physical since no system should be able to radiate energy infinitely.

In Pauli’s conclusion:

... from the C.R. written above, it follows that H possesses continuously all eigenvalues
from —oo to +oc. [...] We, therefore, conclude that the introduction of an operator t is
basically forbidden and the time t must necessarily be considered as an ordinary number
(Cc-number’).[66]

Nonetheless, one can overcome the criticism of Pauli, if one relates time observ-
ables to POV measures, characterized by covariance under time translations. In other
words, any time observable 7' should possess covariance with respect to a group of

time translations

a:R—=R, t—1t+b (2.5)

inducing a group homomorphism from the additive group G' = (R, +) to a group of

unitary operators et The covariance condition is thus, [52]
M E()e M = BE(t+¢) teR (2.6)
Then time operator can be constructed via non-orthogonal resolution
T = /R tdE(t) (2.7)

where the properties of POV measure are (as introduced in Section (A)),

‘ (2.8)



Let us now take POV measures to be 1-dim projector on a clock states E(t) = |t)(¢|,
such that the clock states corresponding to different ¢ are not necessarily orthogonal.
Then, the covariance of 7' with respect to the group G generated by H, is equivalent

to the following relation between clocks states
It + 1) = e |t) (2.9)

which we get by integrating relation (2.6),
/eim’u) (t|le " gt = / It + ) (t + t|dt (2.10)

On the other hand, if the states associated with the projectors E(t) = |t)(t| are
clock eigenstates, we get back to the situation of self-adjoint 7" and unbounded .
Nevertheless, in this case the clock behaves perfectly in the sense that the clock states
are perfectly distinguishable, (t|t') = 6(t — t') 7. Even though the perfect clock is not
physically realisable, in Chapter (4) we will take it as a working assumption, keeping

in mind the possibility of generalization.

Much of the discussion following the Heisenberg uncertainty relation (2.1) cleared

a careful distinction between:

* External time: background classical time, inherited from Newtonian physics. It
is measured by an external, classical clock and is not affected by the laws of

quantum mechanics.

* Observable time: some dynamical variable of the system. It is based on nonsta-
tionary observables and defined as the time determined by the scale through

A

which (O) changes significantly.

As discussed, time operator 7" did not enter to be a part of standard quantum
mechanics, precluding At to have a clear meaning in terms of its standard deviation.
This is why the character of time in time-energy uncertainty is still disputable, and
the relation is often misused to justify various desired interpretations. Nevertheless,

one typical way of understanding At is as the minimum time in which the mean

"To a perfect clock we will usually additionally associate a property that it doesn’t run backwards,
ie. (t'|le”tt) =0forallt > 0ift > ¢'.



value of the observable changes by more than one standard deviation. To show this,

let us choose A = H and B = (@, in the generalized uncertainty principle (2.2),

2
a@ngﬂ&@o @2.11)

where we introduced the notation 04 = A,A. We now use the equation for the

rate of change of the expectation value

d, i 0Q
E<Q> = ﬁ([HQD + <§> (2.12)
assuming that ) does not depend explicitly on ¢, % =0,
Lad@\* _ (B (@)
202 > [ —=—21) = (= —</ .
7HoQ = (22‘7; dt ) 2) \"at 213
Or simply,
hld{Q
= oy > 1 ‘%’ (2.14)
We define
AFE =og
N 0 (2.15)
|d(Q) /dt]

from which we get AEAt > g We see now that At is the time it takes for the expec-
tation value to change by one standard deviation. The uncertainty then simply means
that, if AF is very small, the rate of change of any observable ) must be gradual. Or
vice versa, if the rate of change of all the observables is abrupt (for example, in the
case of particles living for a very short time), then the uncertainty in energy is very

large. We will refer to this in Chapter (2.4.3)

2.1.2 Symmetries of quantum theory

Let us recall the symmetries of quantum mechanics. The state space of a quantum

system is a Hilbert space #. This means that set of all linear maps that preserve



Hilbert space structure U : % — H, must be unitary

(Ov106) = (w1 ) (2.16)

for all |)), |¢) € H, since from

(0¥ 109) = (v |o70]o)

=UlU=1

(2.17)

Nevertheless, what we actually measure are probabilities, | (1 | ¢) |?. This allows

for another type of transformation,

(0w 10s) = (6] v) (2.18)

These are antilinear 8 and antiunitary. Antiunitary operators can correspond only
to discrete transformations (for example time reversals) whereas unitary transforma-
tions are continuously connected to unity and thus can correspond to both continuous

and discrete transformations.

Theorem 1. [52] Any automorphism of the set of quantum states p(H) has the form

p— Vvt (2.19)
where V is a unitary or anti-unitary operator on the Hilbert space .

Demanding unitary representation in the context of quantum field theory will
have an important consequence, as we shall see below. Note that the unitarity condi-
tion implies that the adjoint U is a compositional inverse to U, hence making every
unitary operator invertible. Therefore, unitary operators on the Hilbert space ‘H form

a group, which we will denote U(H).

We will call transformation a symmetry, if it leaves the functional form of the

Hamiltonian (and consequently a dynamical law) invariant. This means that we

ST(I6) + ) = U) + Ulg), Uelw) = c*Ua)
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impose further that,
7 : o+ in g 2.20)
H'(w) = H(w;) = UHU" + ih—-U (2.

where in the case of time-independent transformation, U(g,t) = U(g) descends to

the condition that the transformation commutes with the Hamiltonian,
[U,H] =0 (2.21)

Non-relativistic physics admits a symmetry group of Galileian transformations
G = SO(3) x R3, representing isometries of Euclidean 3D space. As discussed, in
the context of quantum mechanics, these transformations will be represented by the
unitary operators. Each such transformation can be represented in the form of ex-
ponential U(e) = ¢“C, where  is hermitian operator called the generator, as a con-
sequence of Stone’s theorem. Thus, for the dynamical symmetries of non-relativistic

quantum mechanics we have:

e translations in time Tt =t + a — U, = e—iHt

e translations in space T;7 = 7+ ad — U, = ™"
* rotations in space Ryt = ' — Uy = e~ /¢

* Galileaian boosts (change from one to another inertial, non-relativistic refer-
ence frame)

o = PV T = f—Vm — Uy = e V) yielding Up|) = eV 7|74 V)
and Uy |p) = e V2|5 + Vm)

2.1.3 Quantum reference frames

In classical mechanics, reference frames consist of a spatial Cartesian coordinate sys-
tem and a clock. Each time we write a state, we assume a choice of some classical
reference frame. For example, writing |¢)) = [ dzy)(z)|z), assumes some measuring
rod labeling with 'z’ a position of a coordinate basis. Now, since reference frames are
ultimately realized as physical systems, it can be assumed they are subjected also to

a quantum regime [31]. Such quantum transformations are now taking into account

11



that one reference frame, from the perspective of another, might appear in a super-
position or even become entangled with the system. In other words, the group of
symmetries established via classical reference frames doesn’t encompass the symme-

tries of a full set of fundamental transformations.

Let us illustrate the idea of a quantum reference frame transformation via an
example. We describe the situation in which C is the initial reference frame, A is
the reference frame to which perspective we want to move, and B is, in general, a
composite system. To change from the C reference frame to A, we need to change
relative position coordinates as seen from C' to the relative position coordinates as
seen from A,

A TA '—i _QC: pa '—>A— <7TBA+ Tco) (2.22)
Tp = 4B — 4o, PB — T,

generalizing the classical transformations in a sense that coordinates and mo-

menta are now quantum and satisfying canonical commutation relations,

(Ta,pa) = (do.Tc), [Ta.Dal = do, 7c] = ih,
(2.23)

(#p,pB) = (4B, 7B), [TB,DB] = |dB,7B] = ih.

Then the quantum reference frame transformation will be defined as a quantum
map S,
S 1O @D =y @D (2.24)

such that it preserves the structure of canonical commutation relations. For the trans-
formation from the perspective of C' to the perspective of A, this map will take the
form

S = ﬁAceijAﬁB. (2.25)

It contains two pieces which we will elaborate on more carefully. One is the
translation operator en?4P5 and another is parity swap operator P,c. The translation
operator e#?4P5 can be understood by looking first at the bottom case of Figure (2.1).
We are considering a system B, described from the perspective of system C. Now,
if we want to translate to a reference frame A, we simply have to apply a unitary
generating spatial translation to move the system B by the amount of parameter

14, €4P5|¢)p. What if now we have a situation as depicted in the upper part of

12
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Figure 2.1: Example of relative states in a reference frame of particle C. The upper
figure assumes A to be sharply localized at the position 24 = «, whereas the upper
figure assumes a delocalized quantum state, serving as a new reference frame to
which we want to jump.[13]

Figure(2.1), where A is a delocalized quantum system? Since the position of A, in
this case, is not sharp, we again consider translations of B but this time for each
x4 constituting the positions covered by the system A. Thus, the translation of the
system B will be controlled by the position of the system A, in a sense that total

translation will take the form:

/ da'y(ay)e 4P |¢) pla'y) (2.26)

where we summed over all 2/,’s, weighted by the probability amplitude. This is

now

[ a8 alaly) @) a = ) al) 227

The crucial point then is that now x4 parameter of standard translation trans-
formation, became an operator which acts on the Hilbert space serving as a reference

frame.

To account fully for the change of perspective, we additionally need parity swap op-

(@)
A

erator. Namely, as seen from C, Hilbert spaces assigned to A and B are #,’ and

7). In the new reference frame A, we assign H';” to B and %" to C. We can thus

13



define a parity swap operator P ac,

75AC : /Hff) — /H(CA)
Ya(x) = Po(—x)

= PaciaPle = —Gc

(2.28)
75A025A75,T4(; = —T¢
Given (2.25) we conclude that the state of B and C relative to A is given by,
pie = SpisiSt (2.29)

Let us derive now the Schrodinger equation as seen from a quantum reference
frame. Consider the Schrodinger equation in the reference frame of particle C'

i) 10 o
ih LA — [HAB, pAB] (2.30)

Schrodinger equation in A’s reference frame is then

dplye Pr(A) A(A)
Zh—dt = [HBCMOBC}
ds .
- ST
dt

(2.31)
A = SHOS + in

This implies that provided a transformation via S operator exists, starting from a clas-
sical reference frame, the evolution can be described unitarily also from any quantum

reference frame. Then, we can also define a symmetry transformation as:

SH ({mi i, pikicap) ST+ ihfi—fé* = i ({misi.pibicsc) (2.32)

a transformation leaving the functional form of the Hamiltonian invariant.

The important consequence of this is that the notions of entanglement and super-

position may now be reference frame dependent, as depicted in Figure(2.2)

14
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Figure 2.2: In a reference frame of C, A and B are entangled and perfectly correlated
such that the relative distance between them is always L. In the reference frame of
particle A, B is in a well-defined position and C'is in a superposition of positions.[31]

2.1.4 Time and clock in quantum field theory

Time in quantum field theory is the one of special relativity and Minkowski space-
time structure. In non-relativistic quantum mechanics, the notion of time is inherited
from Newtonian physics . We will thus here briefly contrast the notions of time in

Newtonian physics compared to relativistic physics.

We define a process of datation, assigning a real number ¢ € R to any event of
a spacetime M. Formally, we define a spacetime to be an ordered pair (M, g,,).
Here g, is metric tensor: smooth, symmetric and nondegenerate (0, 2)-tensor field
defined on a manifold M. This defines chronological (time) ordering via a function
f : M — R called timefunction. Time ordering defines a total ordering over the set of
spacetime points; with respect to any given event, we can define a subset of events
constituting its chronological past, present, and future.
The causal structure, imprinted in the metric, encodes a well-defined causal order-
ing in spacetime. The crucial difference between Newtonian physics and relativis-

tic physics lies in the fact that the metric in relativity is of semi-Riemannian type

°Although the parameter serving as time in quantum theory can still be compatible with the context
of relativistic quantum mechanics, one should keep in mind that the formalism of quantum theory
was built assuming the Newtonian notion of time. Since the formalism of quantum theory has subtle
conceptual and interpretational caveats, the nature of time assumed in its foundations should be
kept in mind while coupling this parameter to the symmetries of spacetime (i.e. adding Lorentz
transformations).
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(more concretely Lorentzian, having (1, 3) signature). Namely, space and time in
Newtonian physics R x R? admit separate metrics of Riemannian (Euclidian) type.
Physical events may thus be described by the independent quantities ¢ € R and
x € R3. The action of a metric tensor on two vectors gives us an inner product
G T,M x T,M — R which induces a notion of length. Namely, we define a line
element as:

ds® = Gudxtdz” (2.33)

For the spatial components of Newtonian spacetime g, = (1,1, 1), we get back famil-
iar Euclidian distance formula ds®> = dz? + dy* + dz*. On the other hand, for special

relativity we have 7, = (1,—1, -1, —1)!°, yielding a line element of the type,
ds® = ndetds” = dt* — da® — dy* — d2* (2.34)

This is called a spacetime interval. A consequence of such a metric is the division of

spacetime directions into three families:
e timelike z,2* < 0,
* spacelike z, 2" > 0,
¢ lightlike z,2# = 0.

Consequently, spacetime trajectories are classified into timelike, spacelike and light-
like, depending on the type of tangent vector field on it. Massive particles will move
on timelike trajectories, massless particles on lightlike, and particles of imaginary
mass (sometimes referred to as tachyons) on spacelike trajectories. Standardly, we
assume no signals or particles propagating through the spacelike region.

Such a structure of Minkowski spacetime also implies a difference in the notion of
duration. Namely, the duration of a process in the Newtonian sense is merely a differ-
ence between the times of its initial and final events, whereas in relativistic physics
it depends on the trajectory through the spacetime, i.e. it is given by the spacetime
arc length.

Newtonian physics has well defined, unique timefunction - presupposing an absolute

notion of simultaneity. Its time ordering coincides with the causal one, which is again

10The important thing is a flip of the sign in the first slot, i.e. that the metric is of Lorentzian type.
Equivalent choice of the metric can be 7, = (—1,1,1,1).
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Figure 2.3: Lorentzian metric splits up spacetime into three regions. Given a point
p € M, we define set of tangent vectors v € T, M to be timelike if g(v,v) > 0,
lightlike if g(v,v) = 0 and spacelike if g(v,v) < 0.

then absolute. The existence of a timefunction in a spacetime induces a decomposi-
tion of spacetime into a product of space and time, M = 3 x R. We call this folliation
of spacetime in terms of ¥ non-intersecting hypersurfaces. If spacetime admits such
splitting, we call it globally hyperbolic ''. This enables us to have well-defined time
evolution from initial data defined on each hypersurface (Cauchy surface). Of such
type are both Newtonian (Euclidian space + time) and Minkowski spacetime of spe-
cial relativity. Nevertheless, the difference between the two spacetimes is that the
unique timefunction of Newtonian induces anisotropy, due to the preferential status
this puts on the time direction (we can rotate in space but not in space + time).
Isotropy in Newtonian physics exists only in the spatial part, implying the existence

of SO(3) symmetry of spatial rotations. 2

On the other hand, in globally hyperbolic spacetimes one has infinite choices of
timefunctions, implying isotropy in time directions. Then, only upon choosing a time
function, does this symmetry gets broken. In this thesis we will restrict our con-

siderations to Minkowski spacetime, which has even further symmetries; it is both

Hnot all solutions of Einstein equations are of this type

12This is to be contrasted with pre-Newtonian physics which distinguished horizontal,
2—dimensional isotropic plane, and 1—dimensional vertical direction exterior to it [59][57]. Namely,
due to the effects of a gravitational field, the isotropy in all three spatial directions was not obvious.
We will now have a similar shift in the perspective, where isotropy lifted to include also temporal
directions will imply the existence of symmetry rotations which will mix temporal and spatial compo-
nents, in a way 3D rotations mix vertical and horizontal components.
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homogeneous and isotropic in all directions. As such it is called maximally symmet-
ric spacetime, admitting a maximal group of isometries. Here we see the departure
between time and causal ordering in relativistic physics, whereas there are infinitely
many possible time orderings, depending on the choice of an observer, the causal

ordering will be invariant.

Different observers will thus in relativistic considerations be associated with dif-
ferent timefunctions, slicing up spacetime with a different set of hypersurfaces. These
hypersurfaces define each of his/her notions of simultaneity. They will nevertheless
agree on the causal ordering between the events. What defines how the observer
splits spacetime, is the notion of velocity at which one is traveling. Each observer
is tracing a path in spacetime called a worldline. A worldline is a path ~ through
spacetime, parameterized by A, having associated tangent vector u* = dz*/d\. For
simplicity, we take this parameter to correspond to the proper time A\ — 7 3. Proper
time is a measure of a distance traveled through a spacetime, up to the minus sign
(reflecting the fact that the shortest possible path between the two events will max-
imize the elapsed time !*). Now the tangent to the worldline becomes a 4-velocity,
u” = dx*/dr. Thus, the direction in which future points depend on the velocity one
is traveling through spacetime. The perspective of any point observer traveling along

a worldine!®, spacetime decomposes as Ru* @ X (u”), .

2.1.5 Symmetries of special relativity

Every physical theory admits a certain set of equally valid reference frames with
respect to which it forms a covariance principle. In Newtonian, those are inertial ref-
erence frames at low velocities, where physical laws admit symmetry under Galilean
group of transformation G = SO(3) x R3. For special relativity, those are all inertial
reference frames, and changes of reference frames that leave the physics of special
relativity invariant are translations, rotations, and spacetime rotations, called boosts.

All these transformations define Poincaré group, P = SO(1, 3) x R"3, often also called

13The theory is reparametrization invariant. Choosing a parameter corresponding to proper time,
reduces some redundancies and simplifies the equations of motion

14This is why a twin who stays at Earth gets older!

151n local rest frame, 4-velocity is u* = (1,0)
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inhomogeneous Lorentz group, since it is build out of Lorentz group and spacetime
translations. With respect to the Galilean group thus, we now consider translations
and boosts in spacetime that mix up spatial and temporal directions. Let us thus first
define the Lorentz group, which describes spacetime boosts and rotations. We define
Lorentz transformation A as

1 = A 52 (2.35)

a transformation that leaves Minkowski metric invariant,

(As8)? = nyrypda® da’
= na/,y/Aa/ﬁAv/ngﬂdl'é (236)

= ngsda’ da’

S s = Ny A 5D 5
g e (2.37)
n=ATnA

The set of Lorentz transformations defines a Lorentz group,

Definition 1 (Lorentz group). [88] The Lorentz group O(1,3) is the group of linear

transformations preserving the Minkowski space inner product on R*3.

Lorentz group has four disconnected components, as seen in Figure (2.4), rep-
resenting solutions to the condition (2.37). From the defying relation, we get the
condition det A = +1 by taking the determinant of both sides. We often consider
a subgroup called proper Lorentz group, defined via the extra restriction det A = 1.
The components corresponding to det A = —1 are called improper. Let us consider
timelike components v = 00 of (2.37),

= (A9)° =0 ()
i (2.38)
= (A)*>1

Thus, we have two components A > 1 called orthochronous and A < —1 non-

orthochronous. With respect to det A = 1 and AJ > +1, we will have 4 disconnected
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Figure 2.4: The Lorentz group consists of four separate components. The proper
orthochronous Lorentz subgroup SO(1, 3)* is the component continuously connected
to the identity. The other components can be reached using time reversal, parity
swap, or a combination of both.

components of Lorentz group,

{ar=rL=rlu(tlepr)u(Ltler)u(LlePr)

LLE{AG detA—1A0>1}

(2.39)

P
—13x3

13x3

as shown in Figure (2.4). Our focus will be restricted Lorentz group, representing
proper, orthochronous component; the part of the Lorentz group continuously con-
nected to the unity Ll = SO(1,3)". The other three components are obtained by

multiplying with discrete symmetries, as denoted in Figure (2.4).

Lorentz group has six parameters, three corresponding to boost velocities 5n and
the three to rotation angles a. Each A € SO(3,1)" can be reconstructed from a
Lorentz boost with velocity # = % in direction n and spatial rotation R(a) € SO(3).
Whereas rotations form a subgroup of the Lorentz group, boosts do not. There are
two important consequences the Lorentz group will inherit from these transforma-
tions; namely, since it contains boosts, it will be non-compact and as such it will ad-

mit only infinite-dimensional irreducible unitary representation. On the other hand,
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Figure 2.5: Orbits of the Lorentz group [88]

since it contains rotations it will not be simply connected, implying the projective
representation. As in the case of SO(3), one can deal with this by looking at the
covering group (in the case of SO(3) it is SU(2)) which will have the same algebra.
Thus, when considering SO(1, 3)", we will consider covering group SL(2,C). These

considerations are important in spinor representations.

Let us consider orbits of restricted Lorentz group SO(1,3) on R"? by considering
its action on 4-momentum p, € R'?® : p,p* = m?. Setting different values of mass

will yield different types of orbits. Namely,

* positive energy particles p = (m, 0,0, 0) will, upon boosting, trace upper sheet of

the two sheeted hyperboloid
HY={p, e R :pp'=m? p" >0} (2.40)

This will correspond to particles with mass m moving forward in time

* negative energy particles p = (—m,0,0,0) will trace bottom sheet of the two

sheeted hyperboloid

H, ={p, e RY :pp"=m> p’ <0} (2.41)
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passing backward in time. This corresponds to antiparticle solutions

* massless m = 0 particles travelling forward through time
Hf ={p, e R :pp" =0, p’>0} (2.42)

associated to forward lightcone

* massless m = 0 particles travelling backwards in time
Hy ={p, e R :pp"=0, p’<0} (2.43)

associated with backwards lightcone

* particle with imaginary mass im
Him = {p, € R : pp/ = —m*} (2.44)

passing through spacelike regions are associated with one sheeted hyperboloid.

The particle is specified with the mass and the spin. Here mass will determine the
size of the hyperboloid whereas the spin will be determined by the representation of
the stabilizer group acting on the orbit. The part with the spin comes from consider-

ing a representation of the Poincaré group.

Let us now go back to what is a full symmetry group of special relativity, that is

the Poincaré group. Poincaré transformations are defined as

=T\ a)zx=Ar+a (2.45)

6resulting in 10-parameter group which now contains, along with rotations and
boosts, also spacetime translations. In analogy to the above, the component which

contains the identity 7°(1, 0) is called 7.SO(3,1)", where I stands for inhomogeneous.

Symmetries of quantum field theory are characterized by the unitary represen-

tation of Poincare group P = SO(1,3) x R"?. This implements both symmetries

. . ’ /
16where we used matrix notation z# = A* ,z¥ — 2’ = Az
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of quantum mechanics (in a sense of preserving Hilbert’s space structure) and spe-
cial relativity. As we said, the Lorentz group is non-compact and admits infinite-
dimensional irreducible unitary representation. This is the reason why field theory
admits infinite dimensional Fock space structure on which field operators act. Gener-
ators that define a unitary representation of the Poincaré algebra on the state space
are M*, which contains six generators of the Lorentz group, and P* which repre-
sents generators of spacetime translations. We can thus represent the Poincaré group

as an operator
U\ a)= ezem MM giap P _ g 4 %st"” + iaup’” + ... (2.46)

acting on a Hilbert space (Fock space of field theory). The algebra these operators

satisfy is given by the following commutation relations,

i [M}LV’ Mpo‘] — gua'Ml/p + gl/pMuU _ gupMVU _ gVUMup
Z- [P,LL7 Mpa] — guppcf _ guUPP (247)

[P, P] =0

which defines the algebra of the Poincaré group. We can cast the Poincaré algebra
relations in a less compact form, defining the generator of SO(3) rotations J (the

angular momentum) and the generator of boosts K via
ij k i 1 jk 0i i
MY = —Eijkj <~ J' = _§5ijkM , M =K (248)
then the commutator relations take the form
[J, ] = iggJ®, [J, P?] =ieuP*, [P, P]=0
[J', K] =i K*,  [K', P7] =ié;Py, [J',Py] =0 (2.49)
(K’ K] = —igg.J*, [K',R] =iP', [P, P]=0
We see that whereas the angular momentum is hermitian, K is antihermitian
for all finite-dimensional representations, preventing them from being unitary. Re-
garding commutation relations, we see that boosts and rotations will generally not

commute, except if their axes coincide. Moreover, P, commutes with rotations and

spatial translations but not with boosts. Therefore the eigenvalues of boost operator

23



K cannot be used for labelling physical states.

The Poincaré group can be classified by recalling that one can associate irreducible
representations of semi-direct products M x N to M-orbit O, for a € M, and an ir-
reducible representation of the corresponding little group N, (see for example [88],
Chapter 20). Thus, referring to the discussion above, we need to further specify the
representation of the stabilizer group N, on the eigenspace of the momentum oper-
ators with eigenvalue p. Irreducible representations of this group are classified by
the spin. For spin 0, points on the hyperboloid can be identified with positive en-
ergy solutions of the Klein-Gordon equation, and functions on the hyperboloid both
correspond to the space of all solutions of this equation and carry an irreducible rep-
resentation of the Poincaré group. The case of spin 1 will correspond to the solutions
of the Dirac equation, where one must use the double cover SU(2) of SO(3). The
Poincaré group representation will be on functions on the orbit that take values in
two copies of the spinor representation of SU(2). For choices of higher spin repre-
sentations of the stabilizer group, one can again find appropriate wave equations and
construct Poincaré group representations on their space of solutions. For an alterna-
tive classification via Casimir operators, see [88], for more detailed discussion refer

to Wigner’s paper [87].

The important point we want to make here is that unitary irreps of the Poincaré
group specify the mass and the spin, which completely determines the particle. We

can state the definition of a particle a la Wigner,

Definition 2. [32] A quantum mechanical particle is a projective, irreducible unitary

representation of the Poincaré group.

2.2 Quantum causality

Quantum theory has, in many ways, challenged our understanding of causality. Early
discussions questioned the causality in quantum realms due to the probabilistic na-
ture of the theory 7. In the words ’...an event is causally determined if it can be pre-

dicted with certainty.” [68] the attitude of what is now known as causal determinism

17Given identical initial state preparation, the outcomes of the experiments follow probabilistic
distributions.
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is reflected. Coming as naturally inherited from Newtonian physics, this view was
by that time, a general way of understanding causation. Nevertheless, the advent
of quantum theory disentangled the notions of causality and determinism, putting

forward an understanding of causal relations as genuinely probabilistic. &

The other challenging point was the notion of quantum non-locality. Namely, in
1964. Bell [7] proved that the predictions of quantum theory are incompatible with
the notion of, what is known as the local realism. The assumptions made by the local
realism hypothesis were that the results of the observations on the individual systems
are predetermined by the elements of reality (realism) and independent of whatever
measurements might be performed distantly (locality). Here one should distinguish
this notion of locality from the one defined in the context of special relativity. Namely,
while relativity imposes locality in terms of a finite speed of information propagation,
the notion of locality referred to in local realism assumes the impossibility of a cor-
relation between separated systems without dynamic and causal relations. Here by
causal relations, one understands either direct or indirect relations, later ones de-
scribed by Reichenbach’s common cause principle '° For clarity, in the following, we
will refer to this notion of the locality as Bell’s locality. As showed by Bell, quantum
mechanics exhibits correlations between spacelike separated measurements without
the set of common classical past influences, amusingly by Einstein attributed with

the phrase “spooky action at a distance” [28].

Aiming to disprove the completeness of quantum mechanics, the aforementioned
assumptions which came to be known as the local realism, ware made in the famous
Einstein Podolsky Rosen (EPR) argument [29]. Since these considerations will serve

as a good analogy to understanding the structure of causal correlations and since

18plank believed that the probabilistic understanding of causality is not inevitable due to causal
relations being subjected to intrinsic uncertainty, but rather something to be attributed to the subject’s
imperfection, "We have to stick to our starting point, the statement, that an event is causally determined if
it can be predicted with certainty. Otherwise, we should lose our only basis. On the other hand, we remain
bound to the other statement that it is in no case possible to predict an event with certainty. Consequently,
we have to modify the first statement in order to maintain the principle of causality in nature. [But]
an ideal spirit (idealer Geist), who knows perfectly all the physical events of today, would be capable of
predicting the weather of tomorrow in all details with absolute certainty; and that applies to any other
prediction of physical events."[54]

9Reichenbach’s principle. If two quantities are correlated, then one quantity directly influences the
other, or both have a common cause
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Bell’s experiment represents one of the most important results in quantum mechan-
ics, let us briefly sketch the structure of the EPR argument. The argument starts by
presupposing that theory can establish isomorphism with objective reality, only if it
satisfies the condition of correctness and completeness. Regarding correctness, it is
defined with respect to the degree of agreement between the conclusions of the the-
ory and human experience 2°. Completeness can then be stated with the following

definition,

Definition 3 (Completeness). [29] A theory is complete if every element of physical

reality has a counterpart in it.

Related to the criterion of correctness, they state the sufficient criterion of physical

reality

Definition 4 (Sufficient criterion of physical reality). [29] If without in any way
disturbing a system, we can predict with certainty ( i.e. with probability equal to
unity) the value of a physical quantity, then there exists an element of the physical

reality corresponding to this physical quantity.

EPR argument focused on the aspect of completeness, using, stated in their paper

less explicitly, the notion of what we will call Bell’s locality,

Definition 5 (Bell locality). Measurements performed on dynamically and causally
independent systems, must be independent of each other. More concretely, if out-
comes of measurements performed on spacelike separated, dynamically independent
systems are not independent, we should be able to identify a set of past factors, de-
scribed by some variables )\, having a joint causal influence on both outcomes, which

fully account for the dependence between the outcomes.

The structure of the EPR argument then went as follows,

[( Suff. Cond. Reality ) A ( Bell’s locality)] ﬁ — Completeness, (2.50)

where the assumptions on the left-hand side would be, as they assumed, the as-

sumptions of any physically valid theory. We will call these the assumptions of local

20°This experience, which alone enables us to make inferences about reality, in physics takes the form
of experiment and measurement. It is the second question that we wish to consider here, as applied to
quantum mechanics.’[29]
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realism. What invalidated completeness in the case of quantum mechanics is the
uncertainty principle, as they conclude: 'More generally, it is shown in quantum me-
chanics that, if the operators corresponding to two physical quantities, say A and B, do
not commute, that is, if AB # BA, then the precise knowledge of one of them precludes
such a knowledge of the other. Furthermore, any attempt to determine the latter experi-
mentally will alter the state of the system in such a way as to destroy the knowledge of
the first. From this follows that either (1) the quantum mechanical description of reality
given by the wave function is not complete or (2) when the operators corresponding to
two physical quantities do not commute the two quantities cannot have simultaneous
reality.’[29]. In other words, given the stated assumptions (of local realism) and
the non-commutativity of quantum mechanics, EPR concludes the incompleteness of
quantum theory.

Nevertheless, as a response to the EPR argument came Bell’s experiment showing
that the assumptions of the local realistic theory are not consistent with quantum me-
chanics. To state Bell’s argument, consider Alice and Bob and a source S distributing

to each a physical system, as shown in Figure (2.6).

X
¥ v
4—*—»

+ S +
a b

Figure 2.6: Bell experiment. Two distant parties, Alice and Bob, are receiving a
system coming from the source S. Variables = and y label measurement choices avail-
able to Alice and Bob respectively, whereas a and b denote obtained measurement
outcomes. [14]

Each agent performs an experiment on the corresponding subsystem 2!. We will
denote the measurement settings of Alice and Bob by x and y respectively. Chosen
variables are said to be free, in the sense “that the values of such variables have impli-
cations only in their future light cones” [8] 22. We will denote measurement outcomes

by a and b respectively. Measurement results are assumed to be non-deterministic in

2lsubsystems being entangled due to the past interaction.

220ne interpretation of free variables is that they can be set directly by an experimenter. A simple
example of a free variable would be a light switch by which we control a light bulb which will have
the switch in its past lightcone. [6]
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general, i.e. for a fixed set-up, we will have some probability distribution of possible
outcomes. Thus, the experiment will be described with the probability distribution
p(ab | xy). What can be shown is that when such an experiment is performed, out-

comes on both sides are not statistically independent from each other:

p(ab | zy) # pla|x)p(bly). (2.51)

To explain this within the assumptions of local realism, we should be able to ac-
count fully for the dependence between outcomes a and b by identifying a set of past
variables, having a joint causal influence on both outcomes. These random variables
representing a common past influence on the statistics of both parties are called hid-

den variables \, sometimes referred to also as shared randomness (ref. Figure(2.7)).

Figure 2.7: Two boxes represent local operations of Alice, on the left, and Bob, on
the right. Alice chooses some measurement setting x and obtains the measurement
result a, whereas Bob does similarly, adjusting y and obtaining . The dashed lines
represent light cones, for measurement setting, their future causal region, and for
measurement outcomes, their past causal region, assuming time to flow from bottom
to top. A represents assumed shared causal influence on the measurement settings.

[6]

Bell’s principle of locality then requires a factorization of probability distribution

as follows:

plab | xy) = / dAq(\)plalz, N)p(bly, ) (2.52)

where p()\) represents probability distribution for \ 2.
Bell’s argument was based on stating so-called Bell’s inequality. In the follow-

ing, we will portray the idea based on a slightly modified version, stated by Clauser,

23here we implicitly assume that the measurements = and y can be chosen independently of ), i.e.,
that g(Alz,y) = q(})
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Horne, Shimony, and Holt in 1969. [23] in terms of CHSH inequality ?*. Let us as-
sume only two measurement choices per observer x, y € {0, 1} and possible outcomes
taking only two values a,b € {—1,+1}. We define expectation values of the products

ab, for certain measurement choices (z,y) as,

(azby) = Zabp(ab|xy) (2.53)

a,b

We now define S, a function of the probabilities p(ab|zy),

S = <6L0b0> + (a0b1> + <CL1Z)0> — (a1b1> (254)

Under the assumption that these probabilities satisfy the locality decomposition

(2.52), we arrive at the CHSH inequality:
S = <Cl0bo> + <(10b1> + <a1b0> — <(11b1> S 2 (255)

Namely, the assumption of local hidden variable theory, enables us to write expec-
tation values of a product ab as a product of local expectations (a,), = Y ap(a|z, \)

and (b,), = >_, bp(bly, \) taking values in [—1,1],

(@) = [ O (02, (), (2.56)

We then derive (2.55) via, [7]

S = /d)\q(A)SA (2.57)
with
Sx =(ao)y (bo), + (ao)y (b1)y + {a1)y (bo)y — (@), (b1)y

= (ao)y ((bo), + (b1)y) + ({bo) — (b1),) (a1),

Since each (ay), , (a1),, (bo),, (b1), € [—1,1]. If we assume that \ is deterministic

(2.58)

conditioning, we have either ((by), + (b1),) or ((bo), — (b1),) is 0 while the other is
+2. However, if the variable ) is not constant for all runs of the experiment, then

we can marginalize the absolute value S\ < [(bo), + (b1),| + [(bo), — (b1),|. We can

24Bell’s inequality is a special case of CHSH that holds when one has perfect anticorrelation of
outcomes in one measurement run.
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assume now assume, without loss of generality, that (b)), > (b;), > 0 which yields
Sy =2(b), <2,and thus S = [ dAg(A)S) < 2.

In conclusion, if quantum mechanics is consistent with local hidden variable the-
ory, inequality (2.55) always holds. We will now show with a counterexample that

this does not hold.

Consider Alice and Bob sharing a singlet state |V ~) = %(!Ol) —]10)). Suppose that
each has access to measurement choices = and y respectively. Let each measurement
choice correspond to a vector ¥ or 7, such that corresponding to measurements on
fist or second qubit are associated to 7 - & and i - ¢ respectively. We then have the
expectations

(aghy) = —T - (2.59)

Let the two settings x € {0, 1} correspond to measurements in the orthogonal direc-
tions ¢, and é,, whereas y € {0, 1} to measurements in the directions — (é; + é;) /v/2
and (—é; + &) /v/2. By plugging in the direction choices, we get {aghy) = (agh;) =
{a1by) = 1/v/2 and (a,b,) = —1/+/2. Therefore, in contradiction with (2.55) we get,

G932 (2.60)

which proves the non-local character of quantum theory.

In conclusion, the result of Bell’s experiment was to show that the predictions
of quantum theory, in general, do not admit a decomposition of the form (2.52).
This implies that the established correlations are stronger than the ones which can be
attributed to a classical common cause, which might seem at odds with relativistic
causality. Nevertheless, the no-signalling principle is retained by the fact that proba-

bility distributions satisfy the following constraints:

* Alice and Bob spacelike separated

pla|z) = Zp ab| xy) =Y plab|ay)
b
p(b]y) = Zp ab|zy) => plab|a'y),

Namely, the local marginal probabilities of Alice p(a|z), representing her local

(2.61)
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Figure 2.8: Local laboratories embedded in spacetime structure. Causal relations
coming from the spacetime structure will induce different constraints on the joint
probability distributions. [11]

statistics, are independent of Bob’s measurement setting y, and so Bob cannot signal
any message to Alice (and converse). Quantum mechanical distributions satisfying

(2.61) are called no-signalling correlations.

On the other hand, if we now assume that Alice is at a timelike separation from

Bob, we can define one-directional signalling in terms of relations:

* Alice and Bob timelike separated

pa|2) =3 plab|r.y)
’ (2.62)
p(b|y.x)=> pla,b|z,y)

where we have assumed that Alice signals to Bob, as in the right of Figure(2.8).
This defines the arrow of causation from Alice to Bob. In quantum mechanics, space-
like correlations generally arise from local measurements on joint quantum states,

while time-like correlations are established via quantum channels.

The models we will consider are set up within operational framework. Namely,
physical situations will be modeled by parties interacting with physical systems, es-
tablishing correlations. Physical quantities will be understand as random variables.
We can either define constraints on correlations out of knowing their spacetime rela-

tions,

Definition 6 (Space-time past, space-time future). [6] A random variable A is in the
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space-time past of the random variable B, iff a signal at the speed of light or slower

could travel from A to B. We denote this relation with A <g1 B.

or we can obtain causal order and spacetime relations from the correlations de-
fined on the set of physical variables via causal inference (see [67]). For example,
we will say that A has a causal influence on B if conditional probability p(B|A) for
B observably changes under the free variation of A [12]. As in ([6]), one can even
take the definition of freeness of a variable to be more fundamental then the causal
relations, enabling us to derive causal relations from correlations and postulated

freeness,

Definition 7 (Causal past, causal future, cause, and effect.). [6] A random variable
A is said to be in the causal past of the random variable B, iff A and B are correlated
and A is free. This relation is expressed by A < B, where < denotes partial ordering

25 The random variable A is called a cause and B is called an effect.

Let us also note that one should distinguish entanglement as a resource from
nonlocality [38]. Namely, not all entangled states are such that violate Bell’s inequal-
ity [86]. Let us we first define the notion of separability. Suppose we have parties
A, B,C,.... Astate, shared by these parties, is said to be separable if it can be written

in the form

pABC. = > DnPh @ PE® pe ... (2.63)

where p, corresponds to the probability of the n-th outcome within given probabil-
ity distribution, p, > 0 and ) p, = 1. Such decomposition reflects the fact that a
separable state can be prepared by local quantum operations (LO) and classical com-
munication (CC) between parties [62]. Importantly, converse also holds and thus a
quantum state may be generated perfectly using LOCC iff it is separable. On the other
hand, the state is called entangled if it cannot be written in the form (2.63). Entan-
glement is then operationally defined as a resource that allows parties to overcome
the LOCC constraint solving certain multipartite tasks (games).

We can choose a different set of restrictions on possible operations, namely the
local operations and shared randomness (LOSR). In LOSR parties are forbidden com-

munication during the game but are allowed to share in advance common classical

25A relation on a nonempty set is called a partial ordering or a partial-order relation if it is reflexive,
antisymmetric, and transitive.
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random variable. As in LOCC, using LOSR only separable states can be created ’ex
nihilo’ but now the resource to overcome LOSR is nonlocality.

The states violating CHSH inequality are (Bell) nonlocal (those that can over-
come LOSR constraint). We will understand this as a crucial feature of quantum
correlations. CHSH inequality defines thus the boundary between the region of local
correlations £ and quantum correlations Q, both satisfying no-signalling constraints
(2.61). As it turns out [70], there exists even bigger set of correlations satisfying
no-signaling constraints, as is shown in Figure(2.10). We will refer to these as simply
no-signalling correlations N'S, where it holds £ ¢ @ c N'S. All those sets are closed,

bounded, and convex 2°.

Local £ and no-signaling 'S correlations form convex
polytope?” whose facets correspond to the (Bell’s) inequalities.
Namley, let us first introduce ter-

minology (based on [85]) where we

will refer to the set p = {p(ablzy)}

of all probabilities as a behavior. The pellineaualy
behaviour can be understood as as
the correlations characterizing black box
shared by Alice and Bob, i.e. as a
point in the probability space p € P C
R”. Here the dimension N will be de-

fined by the dimension of possible in-
Figure 2.9: Sketch of the no-signaling N'S,

puts and outputs on both sides. I.e if quantum Q and local £ sets. NS and £

2,y ={1,..,n} and a,b = {1,...,1}, then are can be polytopes while the set Q is
- o convex, but not a polytope. The hyper-
N = [I’n°. Due to the normalization pane representing a boundary between

constraints P is a subspace of dimension £ afEd ]Q set correspond to Bell inequali-
ties.[14

dim P = (I* — 1)n?

Now, for each p € R! that does not belong to one of the sets, there exists a hyper-

plane that separates this p from the corresponding set 2. For example, if p ¢ K,

26The sets of correlations are defined to be closed, bounded, and convex, such that if p; and p-
belong to one of these sets, then the mixture up; + (1 — p)p2 with 0 < p < 1 also belongs.

27Convex polytope has the structure of a simplex; an n-simplex being defined as a convex polytope
generated by n + 1 vertices that are not confined to any (n — 1)-dimensional subspace.

28this can be shown by the hyperplane separation theorem
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where K = £, Q or NS, there exists an inequality of the form

S-p= Z sl,yp (ab | zy) < Sk (2.64)
abxy
satisfied by all p € K but violated by all p ¢ K : s-p > Sk, where s is arbitrary
p € RV,
In the following, we will see that somewhat similar considerations hold for the
case of (non)causal and causally (non)separable correlations, as for the considered

Bell (non)local and (non)separable (entangled) states.

2.2.1 Quantum correlations with no causal order

As mentioned in the introduction, standard quantum mechanics is a background-
dependent theory. As such it a priori assumes some fixed causal configuration of lab-
oratories, forcing an ordering with respect to some global notion of time. Nonethe-
less, even in a fixed background structure, causal order itself can be a random vari-
able: there might be a situation where Alice exists before Bob with a probability of
0 < ¢ < 1 and Bob exists before Alice with a probability of 1 —¢. This will then be rep-
resented as probabilistic mixture of two possible orderings p(a,b | x,y) = A\p*=B(a, b |
z,y) + (1 —N)pB3~(a,b | x,7). One can also formulate a the notion of causality which
doesn’t pertain to a "fixed background" [63], [47], by letting the order of events
depend on the operations performed at the locations of these events. Namely, depen-
dent on the choice of its measurement setting, an operation at A could influence the
order in which B and C, laying in the future of A, occur. This makes causal order a
random function of random events rather than the ordering of underlying spacetime

locations in which events happen.

Such considerations assume a set of agents, embedded in the environment®’, per-
forming a local experiments in respective local laboratories. A local argent in a local
laboratory is what is called a party, whereas corresponding experiment is what de-
fines the event. Every party is isolated from all the other parties and interacts with

the environment only once. In each run of the experiment, agent receives a physical

29The environment is simply a channel that takes the outputs of the parties and produces the inputs
to the parties.
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Figure 2.10: A party S; has a free variable x; and a channel C; that transforms the
inputs (received from the environment) [;, to the outputs (sent back to the envi-
ronment) a; and O,. Parties are assumed to be isolated such that every party can
perform operations only on their random variables.[6]

system from the environment, chooses a measurement setting, performs a measure-
ment, obtains an outcome and lets the transformed system out. As one may notice,
this already presupposed a notion of time on the scale of each party. Nevertheless,
globally, there is no notion of time or fix causal ordering over the set of parties.
Causal relations, now treated as random and dynamical, are then implemented in

the following way:

Definition 8 (Party and causal relation between parties.). [6] A party S; = (z;, a;, C;)
is a triple that consists of a free random variable z,*°, a non-free random variable a;,
and a local operation C;. The variable z; is called input of S;, and the variable q; is
called output of S;. For two parties S; and Sk, we say that S; is in the causal past of
Sy, iff z; < aj. This relation is expressed by S; < Sy, where < is defined in Definition

(7).

In other words, causality between parties is defined such that the choice of a
setting in the local experiment cannot affect events occurring in the past or simulta-

neously, nor the causal configuration of these events.

Causal correlations are those that can be embedded in the fixed background
spacetime. As already mentioned, in a definite causal structure it may still be the
case that the causal relations between events are not known with certainty. Such

correlations, for the case of two parties, will be defined as:

30A (free) random variable can also be composed of multiple (free) random variables, e.g., x; =

/ 1 7
(%‘v TjsTj ).
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Definition 9 (Biparty causal correlations). [6] Let S; and S, be two parties. The
probability distribution p(a, as | 1, 25) is called causal if and only if it can be written
as

52551(

p(a, az | 21, %2) = qp™ = (a1, az | 21,22) + (1 — q)p a,az | x1,2)

(2.65)
= gqp(a1 | w1)p(ag | a1, w1, 22) + (1 — q)p(ay | a2, v1,22)p(az | z2)

where ¢ is a probability.

Now the question was posed: do more general causal relations exist, such that

they would extend to the new set of correlations similarly to the way quantum corre-
lations, violating Bell’s inequalities, extend beyond the set of a local polytope? And
indeed, as was shown in [63], the possibility of causal correlations not compatible
with definite underlying causal ordering is exists. Then, in similar manner to nonlo-
cality considerations, for a fixed number of settings and outcomes, causal correlations
form a causal polytope whose facets define causal inequalities [64] [10] [3]. If prob-
ability distribution violates causal inequalities, it cannot be decomposed in terms of
relation (2.65), i.e. p(a,b | z,y) # W *=B(a,b | z,y) + (1 — \)pP=A(a,b | x,y) and it
lies outside the causal polytope.
Let us consider a causal inequality in the example of a communication task between
two parties. Consider Alice S; and Bob S, each receiving a system in their respective
laboratory. After a given party receives the system, by some means they generate
random variables x (referring to Alice’s laboratory) and y (referring to Bob’s). Bob
will additionally generate another random bit ¢/, that determines whether he should
guess the bit of Alice, or she should guess his bit. We will label produced guess for
Alice and Bob denoted by a and b respectively. The task of their game is to maxi-
mize the probability of success. Let us denote Alice S} = {z; = z,a; = a} and Bob
Sy = {x2=(y,vy'),a2 = b}. We consider a situation in which Bob is in the past of
Alice, B =< A. Bob is given additional bit 3/, such that if 3/ = 0, Bob will send his bit
y to Alice, enabling her to guess now his bit perfectly p(a =y | v/ = 0) = 1, while if
vy’ =1, he will have to guess the bit z at random p (b=z |y = 1) = 1/2, yielding

Succ

3
P = (p(azy\y’=0)+p(b=fc|y’=1))SZ—l (2.66)

N | —

As it turns out, any ordering in S; <gt Ss, or S; =gt Ss, or probabilistic mixture

of these, does not outperform a success probability of p**® = 3/4. For causal distri-
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butions, thus the highest value for success probability is 3/4, reflecting the fact that
at best a party can send the value of one’s free variable to the other party, enabling

the other to guess perfectly, while oneself making a random guess.

It is important to note that the causal inequalities are theory-independent con-
straints: they are formulated independently of the physics assumed to be valid in
each local laboratory. To get the classification of quantum correlations that allows
indefinite causal structures, we will now open ’black boxes’ defining parties, and as-
sume the validity of quantum mechanics on the level of each local laboratory, leading
us to the framework of process matrices. The process matrix framework represents
a general framework for studying correlations between local experiments without
the assumption of a predefined causal order. Similarly to the theory-independent
framework, we can now ask whether all situations are encompassed with the decom-
position of the form (2.65), where now we are assuming that the maps performed
on systems inside laboratories are quantum. The decomposition can now be stated
in terms of processes, separability of which will define a class of so-called causally

separable processes,

Definition 10 (Biparty causally separable process.). Let us define a process W4 for a
biparty set of local experiments S = {A, B} as the collection of probabilities W4Z =
p(M;y, M5) obtained through a quantum operations M;, M, performed within each
local laboratory. Causally separable processes are those which can be written as

convex mixtures of ordered processes:
WAB — gWASB (1 — g)WB=4 (2.67)

where ¢ is a probability.

Correlations stemming from the processes that are causally non-separable, are re-
ferred to as quantum correlations with indefinite causal order, yet they may still be
realized in a global causal structure. Namely, the difference between causally sep-
arable and causal processes is the similar as between a separable (non-entangled)
quantum state and Bell local (one that does not violate Bell’s inequalities) state: a
separable quantum state is Bell local, but the reverse is known not always to be true

(as we discussed above, there exist entangled states which don’t violate Bell’s in-
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equalities). Physically realized causally non-separable processes are processes that
have some system (quantum or classical) as control over the order, making the or-
dering of the events indefinite. This can still be realized in the background causal
structure, as was experimentally realized and proved via so-called causal witness
[75] [40]. On the other hand, a process that would violate causal inequality cannot
be realized in definite background ordering, so it may come as no surprise that the

physical realization of such processes is not yet known. 3.

2.2.2 Quantum switch

One of the examples of causally non-separable processes is so called quantum switch,
first discussed in the context of quantum computation [22]. Causally non-separable
processes can be understood as overcoming the uncertainty in the order of events
that could be attributed to classical randomness, introducing the idea of causal re-
lations being subjected to quantum coherences. As we already mentioned, one way
of implementing such quantum coherence is by introducing an extra variable, serv-
ing as a quantum control over the circuit wires, and thus over the order between
gates. We can thus have a linear superposition of orders A < B and B < A, as seen
in the Figure(2.11). This may come as natural if one thinks, via Choi-Jamiotkowski
(CJ) isomorphism, of quantum operations as quantum systems, subjected to quantum
superposition. The maps between these systems (representing quantum operations)
will be ’higher order’ maps, so-called supermaps. The framework of quantum su-
permaps enables us to implement superpositions of channels and encompass in a

precise way the indefinite causal order.

Let us consider a party S;, having free (classical) random variable z; and non-free
(classical) random variable a;, receiving a quantum system from the environment /;,
performing a local operation C}, and returning quantum transformed quantum sys-
tem O; to the environment. This local operation C; can be considered as a quantum
operation from I; to O;. We often describe quantum operations in the diagrammatic

language (the language of quantum circuits), as shown in Figure (2.12).

31but might be expected in the context of quantum gravity
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Figure 2.11: The scheme of a quantum switch. The state of the control qubit de-
termines the order in which two parties act on a target qubit depends on the state
of a control qubit. Preparing the control qubit in superposition induces controlled
superposition of configurations, Alice < Bob and Bob < Alice.[75]

Transformations on a quantum sys-

tems are represented with gates (or A C

boxes), out of which wires, represent- — u u

B

ing systems, are coming in and out. — f [

The quantum state of the system then

Figure 2.12: Systems in a quantum circuit
are represented as wires and operations
tum gates, ordered in time, from left to as boxes. The state of the system evolves
through a sequence of quantum gates. The

time is assumed to flow from left to right.
nels are transformations of single sys- [22]

evolves through a sequence of quan-

right. Gates representing quantum chan-

tems. It may be a unitary gate or in gen-
eral, some noisy quantum channel. A box with multiple wires describes an interaction
between the corresponding systems.

Mathematically, we describe quantum channels via superoperators. We will refer
to superoperators and quantum channels as the most general evolution of the density

matrix preserving the normalization (i.e. trace) [71]%2:

C:pes f =C(p) (2.68)

under the restriction that the map:
* linear:

Vpa,pa € B(H), 0, B € C:  Clapa+ Bps) = aC(pa) + BC(ps)  (2.69)

32whereas quantum operation and the quantum process are more generally restricted to be trace
non-increasing

39



where B() denotes bounded linear operators on Hilbert space
* C preserves hermiticity: /' hermitian if p is
* C is complete positive:

— positive: ' > 0= p> 033
— complete positive: C, is completely positive on H 4 if for all possible exten-
sions Hqo — Ha ® Hp, map C4 ® Ip 1s positive

* (C is trace-preserving: Trp = 1if Trp = 1.

We will use a representation of this map in terms of Kraus operators:
C(p) =Y _ MipMf with > MM =1 (2.70)

The simplest example is then unitary channel, for which we have: U(p) = UpUT
with UTU = UUT = 1.

Such a completely positive, trace preserving map (C'PT P map) can be decom-
posed into a collection of completely-positive trace non-increasing (C'P) maps, which
define a most general operation on a system. A C'P map can be understood as a gen-
eralization of a measurement, where the probability that a particular map is applied
equals the trace of the resulting state. In most general terms, a quantum map is

defined as a map that satisfies two axioms:

Axiom 1. A Quantum map must map from the set of quantum states back to itself.
i.e. it maps quantum states into quantum states, and

Axiom 2. All quantum maps must be convex-linear on the set of quantum states.

Namely, if we have some p = )., p;p; representing the ensemble of mixed
states {(p;,pi) |« € I}, for a given transformation p — C(p) then we expect to have
{(C(p;),pi) | i € I}, representing new ensemble where all the components of the ini-

tial state evolved according to the given transformation.

33where p' > 0 means (|p[p) > 0 for Vo
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To introduce the concept of supermap, first, we need to introduce the idea of
Choi-Jamiotkowski isomorphism. Establishing the isomorphism between C'P maps
and linear operators on the tensor-product space, Choi-Jamiotkowski isomorphism

enables us to view quantum maps in terms of quantum states representations, [20]

Definition 11 (Choi-Jamiotkowski isomorphism). Given some C'P map, from a set

of linear maps £ over some Hilbert space,
M :L(Ha) = L(HB), (2.71)

there exists a map C, establishing one to one correspondence between linear maps

M e L(L(Ha),L(Hp)) and linear operators on L(H4 ® Hp) as follows,
M=CM)=(Zy, M) |®) (| € L(Has® Hp) (2.72)

Here 7;,, denotes the identity map on # 4 and |®) is defined as the unnormalized

maximally entangled state:
[B) =D li)ali)a € Ha® Ha (2.73)
Such map C
C:M€eLL(Ha),L(Hp) = MELHA®HEB) (2.74)

is called Choi-Jamiotkowski isomorphism.

Given some Choi map M € L (H4 ® Hp), the corresponding C' P map is

M L(Ha)— L(Hp)

par—Tra ((ph @ 1) M)

(2.75)

where the superscript 7" denotes the transposition. If the Choi map represents a
C'PTP map, we have
TI‘B M = ]-A (276)

if M is a CP map, it holds
Trg M <1 (2.77)
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The probability that some C'P map M, is applied to an input state p,4 is

If we denote a collection of C'P maps by {M;},, then from the normalisation
condition we can see that a C' PT'P map M can be written as the sum of C'P maps:
{Mj}

1:Zpk:ZTr((p£®1B)Mk):Tr((p£®1B)M) (2.79)
k k

Quantum operations (C'P) thus can be viewed as positive linear matrices on a

tensor product state via C'.J isomorphism.

A quantum switch is defined as a special type of map between two quantum
operations, called a quantum switch supermap. Namely, since a quantum operation
can be understood as a generalized notion of a quantum state, we can define a so-
called ’higher order map’ called a supermap defined as a transformation of quantum

maps, such as channels, namely
S . ;C (;C (Hll'l ) ,E (Hout )) — £ (E (Hll’ll) 5 £ (Hout/)) (2.80)

for some Hilbert spaces Hiy, Hout , Hin and Hour, where £(H) is space of linear oper-
ators on the Hilbert space.
Since quantum supermaps must represent physical transformations of quantum

maps, we impose:
Axiom 3. All quantum supermaps map quantum maps to qunatum maps.
Axiom 4. All quantum supermaps must be convex-linear on the set of quantum maps.

As in the case of quantum maps, if the input quantum channel C describes a sta-
tistical ensemble of quantum channels {(C;,p;) | i € I} , then the output quantum
channel §(C) must describe the ensemble {(S (C;),p;) | i € I}. Thus, the axioms are

in complete analogy with axioms for quantum maps.

We then define a quantum switch via the supermap S mapping
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S(A® B)(pr) = BA(0] pr|0)q + AB(Llgprllig (2.81)

or in Kraus representation

S(A,B) (pr) = Z SijpTSJj (2.82)
1,J
where
Sij = AiB; ®10){(0]q + B;jA; @ [1)(1]q (2.83)

where A(pr) =Y, AiprAl  and  B(pr) = 3, BjprB!

In other words, a quantum switch consists of two quantum systems: target pr
and control, pc and two C'P maps A, B acting on a target. The control system serves
as a control over the order of maps on a target, i.e. if |¢))c = |0), the resulting
operation is A o B, and for |¢))c = |1) we have B o A. Thus the coherence in the
control system translates to coherence in the order of operations. For example, a
control qubit in superposition, |¢))¢ = (|0)¢ + [1)¢) /v/2 results in superposition of
two different orders.

We can also have a quantum n-switch, for the n-th permutation of operations [72]

Snl)e| V) = [2) 1| W), (2.84)

here |¥), denotes the target, which can be arbitrary dimensional; |z). denotes
the control, which now needs to be n! dimensional; II, := U,,(v-1) - Us,(1)Us.(0),

denotes the product of the n unitary gates from a some given set U := {U4, Up, .. .}.

2.2.3 Quantum time flip

The main motivation of our work was to compare the indefiniteness appearing on the
level of Feynman propagator, as sketched in (2.13), with the indefiniteness appearing
on the level of quantum switch.

As will be shown in Chapter (2.4), Feynman propagator is defined as the sum of
the processes depicted on the left and right spacetime sketch, where the comparison

with quantum switch is depicted on the rightmost picture. This kind of situation
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Figure 2.13: The Feynman propagator as a superposition of diagrams corresponding
to particle and antiparticle degrees of freedom, compared with the structure of a
quantum switch.

comes about due to the second order partial derivative in a timelike component in
the differential equation describing the field of interest, splitting the energies into
a positive and negative spectrum. The grey line in the figure represents the same
kind of entity, where left diagram corresponds to positive part of the spectrum and
right diagram to negative part. As it will be explained bellow, one can either view
the situation within the framework admitting only forward in time propagation, with
the necessity of implementing C transformation as denoted on the sketch with red
line. This now changes the description of only particle degrees of freedom to par-
ticles and antiparticles, differing in charge. Alternatively, we can view the situation
within the scope of only particle degrees of freedom, in the manner usually depicted
on Feynman diagrams. This then admits also backwards in time motion for the nega-
tive energy solutions. But quantum switch description would not be compatible with
such backwards in time description! Namely, from Figure (2.13) we see that the time
arrow is always forward in the quantum switch, even though the ordering is indefi-
nite. Nevertheless, recently processes with indefinite time arrow were also discussed

[21] [39], precise implementation stated via so called quantum time flip.

Within the framework of supermaps, we can put quantum operations into super-

position. In the context of superposition of time arrows of operations, we define a

k

channel C as a superposition of channels A and B, with Kraus representation (A4;),_,

and (B;)"

1=1>

Gy = A, ®10) (0]+B,®| 1) (1] (2.85)
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following closely discussion in [21]. Imagine now putting in a superposition
two channels probing the box representing a quantum process from two different
directions. Namely, let us denote a forward process C with Kraus representation
(Ci)le and the channel oriented in backward direction with 6 (C;). The coherently-

controlled time reversal is then defined as the process,
F:p—F= Z EpF} (2.86)
with Kraus representation;
F,:=C; ®10) (0|46 (C;) ®| 1) (1] (2.87)

Not all processes can admit such a superposition of directionality. Namely, for the
process F¢ to be a valid quantum channel we need C to be bistochastic. In general,
we will call the processes that can be probed both in forward and backward direction
bidirectional processes. Here we are assuming some hypothetical backward facing
agent whose description will be defined via 6 : C — 6(C), as denoted in the Figure
(2.14). We call this change of description from the forward agent, to the hypothetical
backward agent via the map 6 a time reversal. This change of description is assumed

to satisfy the following axioms:[21]

Axiom 5. Time reversal inverts the order of processes.
O(C10C) =0(Cy) 0O (Cy) (2.88)

Axiom 6. All reversible processes admit a time reversal, and their time reversal is a

reversible process.

Axiom 7. The time reversal of a mixture of channels is the mixture of their time
reversals.

O (pC1 + (1 = p)Cz) = pO (C1) + (1 — p)© (C2) (2.89)

Axiom 8. Time reversal maps distinct processes into distinct processes

In general case, the set of such processes will be bistochasic,
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Figure 2.14: Forward and backwards-facing agents probing the boxes in the opposite
order

Theorem 2. The largest set of quantum channels admitting a time reversal satisfying

aforementioned axioms is the set of bistochastic channels, that is, maps of the form
C:ipr > CipCl (2.91)

with 3, CIC; =3, CiCf = 1
while in the case of unitary channels we will have two possibilities,

Theorem 3. Up to unitary equivalence, there are only two possible time reversals

satisfying aforementioned axioms: the adjoint U + U and the transpose U s U”

In other words, if we would take the interpretation of backwards in time motion
literally, and if we would lift the notion of a quantum channel to quantum field the-
ory context, it seems, within the formalism worked out so far, that the total channel
showing one of the sketches in Figure (2.13) should be bistochastic. In our analogy,
the Feynman propagator would be understood as a quantum supermap, mapping
two quantum processes into superposition. Nevertheless, in this thesis, we didn’t for-
malize what would the notion of a quantum channel, quantum supermap, or Choi-
Jamiotkowski isomorphism translate to in the QQF'T context, thus technical parallel
is not yet clear and modifications to this constraints, in the QF'T context, would be

expectable.

2.3 Causality in quantum field theory and reason for antiparticles

Quantum field theory is, roughly speaking, quantum mechanics applied to dynamical

systems of fields (i.e. systems having infinite degrees of freedom). The main reason
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for quantum field theory is to couple symmetries of spacetime, induced by the action
of the Poincaré group, with the symmetries of quantum mechanics, represented via
unitarity transformations. Therefore, quantum field theory will be defined on a vector
space which is a unitary representation of the Poincaré group. To demonstrate the
need for theory beyond standard fix-particle quantum mechanics, we consider the
notion of causality which forces us to invoke quantum fields and, more concretely,
antiparticle solutions.

Let us consider probability amplitude for a particle to propagate from x; to x,

A= (x ‘e’th‘ Xo) (2.92)

in the context of non-relativistic quantum mechanics, for a free particle we have:

A= (x]e

XQ>

2y

d3p _;p7t
:/kZSﬂMGmeMPIM>
1

dgpe_i% eip~(x—xo)
(2m)?

_ (ﬂ)g/ 2 im(x—x0)?/2t
2mit

The expression is nonzero for all x and ¢. This conflicts with a theory of rela-

(2.93)

tivity since this would imply that a particle can propagate between any two points
of spacetime, violating causality. The problem cannot be fixed just by invoking the

relativistic expression for the energy F = \/p?> + m?.

A= {xle VP )

™

1 o0 .
Y — / dppsin (p |x — x) e VP
272 |x — %o Jy

(2.94)

One can evaluate this integral explicitly in terms of Bessel functions. Nevertheless,
for the purposes of our discussion we will consider only its asymptotic behaviour
z? > t? (well outside the light cone). Within the approximation, the integral can
now be evaluated using the method of stationary phase (for more details consider
[76]1[53]). It yields:

A~ emmVart (2.95)
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The propagation amplitude decays outside the light cone but is still non-vanishing
and thus causality is again violated. Such an attempt to merely consider the ex-
pression for energy in its relativistic form was also made while trying to establish a
relativistic analogue of the Schrodinger equation:

ﬁ2
E=-— — E=p°+m’ (2.96)
2m

where £ =i0, and p = —iV gives:

i —Hp(t) = (00, +mA)(z) =0 (2.97)

34 This is known as the Klein-Gordon equation and in the case of single particle
relativistic mechanics gives rise to negative probability densities. For this reason,
such a single particle extension to relativistic realms is not possible. Nonetheless,
the Klein-Gordon equation is an important equation in the QFT context where it de-

scribes multi-particle excitations of a scalar quantum field.

Causality in QFT is established by invoking antiparticle solutions, cancelling the

‘leaking’ of probability amplitude outside the timelike region.

2.3.1 Causality of Klein-Gordon field

The main purpose of quantum fields is to implement the notion of locality 3>. Whereas
in nonrelativistic physics, we assume that an observer has access to all possible mea-
surements of a system, within the context of special relativity, an observer can access
only its local measurements, reflecting the fact that information can travel with the
maximal limit being the speed of light. The locality is then implemented by defining
operator-valued fields on which so-called microcausality condition will be imposed.
Namely, we demand of these field operators (1) not to allow transmission of infor-
mation faster than the speed of light and (2) be Hermitian operators such that they

correspond to quantum mechanical observables. The first condition is implemented

34Here z* = (t,x) denotes a 4-vector. If 4-vector is contracted with its dual, or if it appears as
the argument in a function, then superscript p will be dropped. Bold symbols will denote 3-vectors
through the text. The metric convention we will be using in the following chapters will be 7,, =
(1,—1,—1,—1). Four derivative is given by 9,, = (Jp, V).

35Where here we are talking of locality, which refers to limit on information propagation and not
locality in the sense of Bell.
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via the microcausality condition,

[0(z),0()] =0 for (z—y)?<0 (2.98)

36

implementing a fact that there is no difference in the ordering of measurements
O(z)O(y) or O(y)O(z) in the spacelike region and the results of spacelike separated

measurements cannot affect each other.

Let us now consider an equation (2.97):
("0, +m?*)p(x) =0 (2.99)

Here we changed the notation from ¢ (z) of the equation (2.97), where it denotes
quantum mechanical wave function, to distinguish it from the field ¢(z), which will
promote to a quantum field. 37

If additionally, we impose that the equation
= p* = pp" =m? (2.100)
is satisfied, we can write a solution to (2.99) as a plane wave,
P(z) = 7T = g iEHIPX (2.101)

This condition is often referred to as being on mass-shell. Particle is said to be on

mass-shell if it satisfies £ = p? + m?. We can write further

2
N (8_2 —py m2) o 1BtHPx _ ()
ot (2.102)

¢(x) + wpp(x) =0

36where the microcausality condition for fermions will be given in terms of anticommutator instead

37A field is formally just a function assigning a quantity to each point of space(time). Thus, tech-
nically, the standard wave function can also be thought of as a scalar (classical) field. Nevertheless,
physically quantum fields are related to the construction of a Fock space which structure allows super-
position of configurations having different number of particle excitations F,(H) = @, S, H®" =
COHB(S,(HOH)D(S,(HRH®H))®---. Excitations of the quantum field are indistinguishable
particles, which can be bosonic (spin number integer-valued) or fermionic (spin number half integer-
valued) which can be shown to impose (anti)symmetrization S,, = +1 where +1 is symmetrization

for bosons and —1 is antisymmetrization for fermions. For more details see [9].
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where

w, = tE = £4/p? + m? (2.103)

from which we see that for each momentum, we get the equation of harmonic os-
cillator. Since the relativistic equation for energy (2.103) has a square of energy, we
now have both positive and negative solutions in the spectrum. While in quantum
mechanics this seemed worrisome inconsistency 3, in quantum field theory, nega-
tive energy solutions will play an important role, enabling us to satisfy the condition
of microcausality (2.98). What represented a much worse interpretational incon-
sistency for the Klein-Gordon equation was the presence of negative probabilities:
p ~ £|E|. In the context of field theory, however, p now represents charge density

for a field and as such can be both positive and negative.

For each momentum thus we have two independent solutions: e “»!tiP* and

etiwrttiPx The general solution of (2.99) is then

1 d*p

)3/2 \/— (

where a(k) and bf(k) are complex coefficients. Upon making a change p — —p

o(x) = (p)e 't ™PX) 4 pi(—p)ellrttP) (2.104)
in the second term, we get

1 d*p

)32 \/— (

Notice also that if ¢(z) is a real field we have a(k) = b(k)>.

P(z) = p)e 7" 4+ bl (p)e?) (2.105)

As a part of well known quantization recipe, in order to quantize field ¢ we
promote coefficients in the expansion (2.194) into ladder operators a(p),b(p) —

a(p), b(p) such that it holds:

(2.106)

38In the end, negative energy solutions managed to find their meaning even in the context of rel-
ativistic quantum mechanics, in the context of Dirac equation. Even though the Dirac equation ran
into the same problem of negative energies, it didn’t encounter the problem of negative probability
densities.

39This case where a particle is its own antiparticle is called Majorana particle.
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and similarly for B(p) From (2.107) we can also show:

~

[6(x,1), d(y,t)] =16¥ (x —y)

. . : . (2.107)
[0(x,1), 6(y, )] = [o(x, 1), (y, )] = 0,

Now, the quantum Klein-Gordon field (in the Heisenberg picture)*° is represented

as

A 3 . A .
b(x) = / dp 1 (a(p)e 7 + b (p)e™) (2.108)

and

50) = [ Gl g (@0 b)) (2.109

We will call the negative part of the spectrum antiparticle solutions, for which a

detailed account will be given in a later section.

Here ¢!(z) represents the operator which creates a particle, and annihilates the
antiparticle:
1t d3p ip-x
¢'(2)[0) = | ————Ip)e (2.110)
(2m)2 (2Ep)?

We interpret this as particle being created at the point (z° x). One can see
this as plausible by comparison with the x representation of the nonrelativistic one-
particle momentum state. Consider the overlap with one particle momentum state,
(in Schrodinger picture)

3
2

(21)% (2E,)* (q|d! ()|0) = / d’pe®*(q | p) = / d*peP =) (q — p) = €97 (2.111)

we see that this yields a similar overlap as
(q|x) ~ e (2.112)

and thus we interpret ¢!(x)|0) ~| ). The expression (2.111) = €'* tells us how
much probability amplitude there is in the ¢-th momentum mode if we create a scalar
particle at spacetime point z.

Now, similarly, we have for ¢(y). This operator creates antiparticles and annihilates

particles,

40ne can show that a,, and a}; are time independent operators
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) d’p o
0= [ ——L _|perv 2.113
o) = [ 5 Eie 2113)

Going back to causality considerations, let us define now the amplitude of propa-

gation. We define it as the overlap between (2.112) and (2.113):

Gz —y) = (0lé(x)o' ()|0)

<O Particle annihilated Particle created

:<0

containing the following steps:

0> (2.114)
at (2, x) at (y°,y)

0)

eiﬁxoé(m)e—iﬁ(zo—yo)éT(y)e—iHyo

(1) state |0) is evolved to a time y° via e—ily’
(2) then ¢'(y) adds to the e~1#%"|0) state a particle at time y° at a position y.
(3)e_iﬁ<m0_yo)q@*(y)e‘iﬁyo |0) is that state evolved to a time z°.
(4) second disturbance, given by the operator eifl ””Oqg(cc) removes the particle at time
20
(5) by overlapping with the vacuum state, we finally ask for the probability amplitude
that this second disturbance restored the original state |0)

For a given field, the propagation amplitude equals to

Glo =) = WI0N0 = [ GHpemen e
Let us now analyze this expression with respect to spacetime intervals. Let us

consider first the case of the timelike interval (z — y)* > 0:

* To make calculations simpler, we will choose a system where ¥ — ¢/ = 0 and

define 2° — y° = t. Transitioning to polar coordinates, we have

3 o} 2
Gy =y | e
0

- % P /p2 + m?
= Lz - AdENVE? — m2e Bt (2.116)
47z /.,
= =~ e—imt _ e—im(xo—yo)
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Importantly, notice that G(x — y) is not symmetric on the exchange = «» y i.e.

20 < 90,

For the spacelike interval (z — y)? < 0:

* Now let us choose a system where 2° — y° = 0 and let us define ¥ = Z — . We

get: .
—z' o pe'P
Glx—vy) = /d
e ey
/dp e (2.117)
m /P2 —m?
= =~e

G(z — y) is now dependent on |7] and thus symmetric on the exchange x < y

ie. 29 < o0,

What is alarming here is that the probability amplitude for the spacelike transition
is exponentially decaying but non-vanishing. Nevertheless, our condition of locality
referred to the locality of the measurements and the finite speed of information prop-
agation. Thus, as Peskin and Schroeder nicely put it:

"To really discuss causality however we should ask not whether particles can propagate
over spacelike intervals but whether a measurement performed at one point can affect a
measurement at another point whose separation from the first is spacelike’[76] Let us
thus focus on the causality condition of the field ¢(x) measurements. Commutator of
the field in two different points is given by: For the complex Klein-Gordon field we
have three kinds of commutators: [é(m), qg(y)} : [@T(:p),gyﬁ(y)} , [QBT@)’ q@(y)} , where

the only commutator which is not by itself vanishing is:

5w, - [ o2, T I N

[ ) )

d3p 1 —ip-(z— ip-(x—
:/(271')32_Eﬁ(6 p-(x—y) _ oip-( y))

=G(z —y) - Gy — ).

(2.118)

The first contribution is due to only antiparticle degrees of freedom and represents
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the propagation of antiparticles from point y to point x. The other contribution is
due to only particle degrees of freedom and represents particle propagating from z
to y. These two contributions cancel each other out in the spacelike region if to every
particle solution there exists an antiparticle solution with the same mass but opposite
quantum numbers, propagating in the exactly opposite manner. Thus, we conclude
the following:[35]

(1) The existence of the antiparticle solutions is crucial for preserving causality in QFT.

(2) Antiparticle behavior is completely determined by particle behavior.

2.3.2 Dirac field equation and antiparticles

All the similar considerations we can do for the case of the Dirac field. Here we will
also pause to understand how negative energy solutions arise and how they can be

reinterpreted as antiparticles. Dirac equation is,
(iv"0, — m)Y(x) =0 (2.119)
41 Representing via momentum operator p, = i0,,
(308"~ 7B —m) () =0 (2.120)

where now due to the structure of v matrices we have

0 F 0 o m 0
_ L Yo 0 (2.121)
E 0 —o-p 0 0 m (o
which can be rewritten as
(E —0o-p)ir =myg
(2.122)

(E+o-p)Yr=miy

“where 4 = (+°,7) such that
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YL

In other words, four-component eigenstate ¢y = splits into two two-
VR
component states, ¢r, and g called Weyl spinors. Spinor solutions can be found by

taking the two simplest orthogonal choices for ¢, and ¢,
5= 1 o= 0
UR = and Y'Y = (2.123)
0 1

where we introduced s index to refer to the spin degree of freedom. The corre-

sponding components are coupled due to the presence of mass,

U'p¢ 1 22 pz_ipy

Yr = L= YL, (2.124)
E+m E+m px+ipy —Pz
g - 1 Dz Pz — ip
Y=+ _I;n¢R =7 . R (2.125)
Dz + Zpy —Pz
In total, we get four solution of the form:
U = u;(E, p)e'"EHPY) — o (E, p)e P (2.126)
where
1 0 T
O 1 pz+lpy
Uy = N1 , , Uy = N2 Pa—ipy , Uz = N3 E=m and
E—i—zm %;;n 1
pac“l‘ipy —p+m 0
E+m E+i (2127)
pz_ipy
E—m
—P=z
U4 — N4 E—m
0
1

We call these four component objects Dirac spinors *?. Upon substituting back into

423 bispinor that transforms spinorial under the action of the Lorentz group
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the equation we get the equation:

(Y'pu —m)u(E,p) =0 (2.128)

To see that two solutions correspond to negative energies, consider a rest frame

of a particle p = 0 where

¢ = u(E,0)e ", (2.129)

and thus equation reduces to

(B’ —m)u=0 (2.130)

This can be expressed as an eigenvalue equation for the components of the spinor

10 0 0 b1 &
01 0 0

E 2l _ e (2.131)
00 —1 0 s s
00 0 —1 G4 P4

We see that we have two positive energy solutions and two negative energy solu-

tions:

e for F = +m we have

1 0
0 1

ui(E,0) = N and  wuy(E,0) = N , (2.132)
0 0
0 0

e for £ = —m we have

0 0
0 0

us(E,0) = N and  wy(E,0) =N (2.133)
1 0
0 1

In conclusion, the spinors u; and u, are £ > 0 spinors and u3 and u, are £ < 0

56



spinors where F is again given by the relativistic energy relation:

E= i(m) (2.134)

2.3.3 Physical interpretation of negative energy solutions

(Stiickelberg and Feynman interpretation)

[“Wheeler saying:] Feynman, I know why all electrons have the same charge and the
same mass” “Why?” “Because, they are all the same electron!” And, then he explained on
the telephone, “suppose that the world lines which we were ordinarily considering before
in time and space — instead of only going up in time were a tremendous knot, and then,
when we cut through the knot, by the plane corresponding to a fixed time, we would see
many, many world lines and that would represent many electrons, except for one thing.
If in one section this is an ordinary electron world line, in the section in which it reversed
itself and is coming back from the future we have the wrong sign to the proper time — to
the proper four velocities — and that’s equivalent to changing the sign of the charge, and,
therefore, that part of a path would act like a positron.” “But, Professor”, I said, “there
aren’t as many positrons as electrons.” “Well, maybe they are hidden in the protons or
something”, he said. I did not take the idea that all the electrons were the same one from
him as seriously as I took the observation that positrons could simply be represented as
electrons going from the future to the past in a back section of their world lines. That, I
stole! - Richard P. Feynman, Nobel Lecture, December 11, 1965 [34]

For the sake of clarity, let us introduce a new kind of notation for the energy
of a physical entity: E,.,, = |E|. Negative energy solutions, corresponding to F =
—FE,.q, are interpreted as negative energy particles propagating backwards in time.
By associating negative energy solutions to the backward in time motion, we are
yielding mathematically the same evolution as for the dynamics of positive energy

propagating forwards in time. Namely,

. .0 .
H@/J3,4 =1 2};’74 - _Erealw?),él =1

N34
o(—t)

- E’/‘ealqu)SA (2135)

where we interpreted ¢ to label values of ’backward’ process, thus —¢ labels values

of "forward’ process *3 i.e time arrow of the process with negative energy is flipped with

43it can be also stated other way around, what is important is the flip reflected in the minus sign
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Figure 2.15: Absorption of negative energy particle F, with positive charge e and
momentum p is equivalent to emission of an antiparticle in a positive energy state.[9]

respect to time arrow of the process with positive energy. Let us show this by employing
an example. Suppose negative energy, with say negative charge, is flowing from point
(t;,x; = B) to a point (t;,x¢ = A). This means that point B is gaining energy (and
getting positive in charge), whereas point A is vice versa. We now claim that this
situation describing the negative energy solution is backward in the time motion of
some original situation moving forward in time. Then, forward in time motion would
see entity at the initial point (¢, x; = A) and at final point (¢}, x}; = B). For physical
consequences to stay the same (for B to gain positive energy and charge), the particle

needs to be positive in energy and charge. ** Thus, we will conclude:

(absorption of E' < 0 particle of — S, —p) <> (emission of E > 0 antiparticle of , S, D)
(2.136)

as shown in Figure (2.15). Thus, negative energy is not a problem if we flip also
the sign of 3-momentum. Going back to equation (2.126), we re-express everything
in terms of physical quantities and redefine negative energy particle spinors by intro-

ducing antiparticle spinors v;:

“4Notice that this is different than just running footage of a process backwards. Here we demand
that in both forward and backward time, physical consequences are indistinguishable (at the end
of both processes B becomes more positive), trading off with the identity of a propagating entity,
whereas if we just ran the movie backward, this would represent a physically nonequivalent process.
Namely, say we filming point B while the negative charge is flowing from B to A. By the end of
the movie, B will become more positive in charge. If we now run the movie backward, we would
have still a negative charge going from A to B. Now in the opening scene, B starts as positive and
becomes negative by the last scene. In contrast to that, what we wanted in the main text are two
movies showing B starting negative and becoming positive in time.
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u4,3(E4,3 = _Erealv P43 = _preal)ei(i(iEreal)t+(7preal)IX)

— a473<E~’473 — ET‘ECLZ) 13473 — preal)6i(_(+Ereal)'(_t)""p'r*eal'(_x))

(2.137)
— ) Erea t— real
= vl,Q(Ereab preal) 61( 1t=Prea)
S
eipreal'x
such that:
Dz Dz
E—m E+m
Pz +ipy Pa+ipy
Uz = ]\/—3 E—m = Uy = N3 +E+m
1 1
0 0
(2.138)
Dz —1py Pz —1py
E—m E+m
—D=z Dz
Uy = Ny fmm = v; = Ny Frem
0 0
1 1

we swapped the signs in momenta and energy. In conclusion, whereas u,, uz were
particle states solutions which had unphysical negative energy, propagating backwards
in time, with some momentum p, 3 (positive or negative), v,, v, are antiparticle states
conjugated in charge, propagating forward in time, expressed in terms of positive val-
ued physical energy and opposite signed momentum. One can also get antiparticle
spinors directly, by taking the ansatz 1; = v;e®P«*, This would again yield four
spinor solutions, two with positive and two with negative energy. We would then
have eight solutions in total, but only four independent: {u;,us,v;,v2}, all corre-

sponding to positive energies:*

Incoming positive Outgoing positive
Y(x) = energy particle + | energy antiparticle (2.139)
 e—i(Et—p-x) x eTi(Et—p-x)

where v(z) denotes a solution to Dirac equation (2.119). Note also that the same

structure has also the solution of Klein-Gordon equation (2.156).

4>From now on we will denote with E strictly positive values of energy E = ’\/ p? + m? ’
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2.3.4 Operators and the antiparticle spinors

Now that we have antiparticle spinors written in terms of the physical energy and
momenta:

Y = v(E,p)e P (2.140)

we need to redefine also corresponding Hamiltonian and momentum operators.
Namely, in the world where negative energy solutions are actually £ > 0, one is
actually using the opposite sign of coordinatisation from the one appearing in par-
ticle solution part (#,x’) = (—t, —x). This naturally represents a problem, since we
want the meaning of ¢ and x to be in correspondence with what our rods and clocks
measure, regardless if we measure particle or antiparticle, i.e. to be consistent on
the level of all expressions. Nevertheless, since (¢,x) is just representing the coor-
diantisation of spacetime, they are not directly observable. Thus, we can fix this by
implementing a minus sign in the antiparticle observables.
Namely, as written in (2.113), we need to fix the operators which give the physical

energy and momenta of the antiparticle spinors are, therefore:

HWy = —ig—f = (E>0) (2.141)

and also momentum operator would give now opposite signed momentum, thus

we redefine:

p=—iVy=-p = pY=+iVy (2.142)

The orbital angular momentum of a particle goes to:
L =1 X Prea = 1 X (=Prear) = —L (2.143)

For the commutator, [I:I L+ S} to remain zero for the antiparticle spinors, the

operator giving the physical spin states of the v spinors must have
S —=_§ (2.144)

Let us now consider charge conjugation. To get the Dirac equation for the electron

with charge ¢ = —e in the presence of an electromagnetic field, we make a minimal
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substitution

i0, = i0, — qA, (2.145)

which gives

Y (8, —ieA,) Y +imip = 0 (2.146)

Now, we want to introduce an operator doing transformation

Y = C =iyt (2.147)

such that for ¢’ we get the same equation as (2.146) just with the opposite charge.

By first taking the complex conjugate and then pre-multiplying by —i?, we get:

Y (9, + ieA,) iy " + imiy** = 0

(2.148)
(D, + ieA,) Y +imy =0
which we notice precisely as the equation for ¢/, using (2.147)
Y (0, +ieA,) Y 4+ imy' =0 (2.149)

The C operator as given above would then be charge conjugation operator. *°
As discussed above, now we can show concretely that the charge conjugation
operator C, transforms a particle wavefunction into the corresponding antiparticle

wavefunction. Namely, consider particle Dirac spinor:

Y = uy e PxED (2.150)

which we charge conjugate:
Y = iyPuie PR, (2.151)
“In the Dirac-Pauli representation of the y-matrices, (1°)" = 1%, (v!)" = 4%, (+?)" = —? and

(v*)" = ~°. Using these relations and 2" = —y*~? for y # 2
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where

0 00 —i 1 pe—ipy
0 0 ¢ O 0 L=
iV ul =i vVE+m =VE+m| Ftm =y,
0 i 0 0 o 0
o +ipy
i 00 0 Bt 1
(2.152)
Thus, we conclude
Y = X E) Gyl = g milPxEY (2.153)

and likewise (up to a unobservable overall complex phase) the effect on u; is
) = uge’PFEY i) Y = vpe T PxTEY, (2.154)

2.3.5 Causality of Dirac field

Putting all together, the plain wave solutions of Dirac equation have the form:
. uj .
Particles: ¢ (x) = u®(p)e”P* = L) e P
(2.155)

. Uf .
Antiparticles: ¢(z) = v*(p)e?” = L) e

vR(p)

where s denotes a spin degree of freedom, as defined in the equation (2.123).
Following the same procedure as in the case Klein-Gordon field, from the pain wave

solutions, we can construct now the Dirac field

~

() = / o mz(m B i)

("ST s zpy+bsT s( ) —zp.y>

(2.156)

Ji(y) = / Jﬁ

To check how this field implements microcausality (i.e locality) condition, we
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consider a commutator:

»

2m)3 2y, (2.157)

Since the commutator of a real Klein-Gordon field [¢(z), $(y)] vanishes outside

the light-cone, this quantity does also.

2.3.6 Propagators

Green’s function specifies how a system responds to a localized pointlike disturbance.

For the Schrédinger equation H o(x,t) = '—a¢éf’t)

b (2,t,) = / QG (2t y,ty) 6 (1) (2.158)

Green’s function is evolving wave function from the spacetime point (y,¢,) to
(x,t,). Plus-sign superscript means that we constrain G* to have non-vanishing val-
ues only for ¢, > t,, propagating particles only forward in time. From equation
(2.158), we can get:

Gt =0(t, —t,){z, t.|y, t,) (2.159)

This is called retarded propagator. Similarly, we can also define advanced propa-
gator as:

G~ =0(t, — t.)(y, tylz, ts) (2.160)

Nevertheless, the propagator of the second type doesn’t exist for Schrodinger’s
equation. Namely, advanced and retarded propagators are Green functions for the
hyperbolic differential operators, such as the Klein-Gordon equation, on manifolds
with causal structure. The corresponding integral kernels say how a point excitation

propagates into the future or past, respectively, via the given differential equation.

* Propagators for Klein-Gordon field
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In Section (2.3.1) we noted that transition amplitude of a particle to go from y to

x is given by:

d? .
Gle —3) = 00()6! W)0) = [ FHsge e (2.161)

Nevertheless, this correlator propagates particle degrees of freedom in both di-
rections of time, i.e. both in the future and past, depending on the possible relation
between z° and ¢°. To implement the discussion regarding antiparticles, Feynman
introduced a propagator which propagates particle degrees of freedom towards the

future and antiparticle towards the past:

Glr,y) =0 (20 =) (0 [o(@)d' ()| 0) +6 (4 —2°) (0

Bly)'(x)|0)
Correlator in equation (2.161) is a satisfies free Klein-Gordon equation,
(0,0" +m*) Gx(z —y) =0 (2.162)

whereas (2.3.6) is the Green function of the Klein-Gordon equation, i.e. it satisfies

the equation with a delta source term:
(0,0" +m*) Gx(z —y) = —id(x —y), X =R,AFD (2.163)

Where we denote with R = retarded, A = advanced, F = Feynman, D = Dyson
propagator. Four different Green functions come from the four different ways of

circling the pole. Namely, let us write the Green function as 4D Fourier integral:

G-y = [ L2 wewg (2.164)
( y) (27’(’)4 R(p)

Upon plugging in Klein-Gordon equation 4/

(=p* +m?) G(p) = —i. (2.165)
we get
d'p —ip(a—y)__ !

“while using & (z — y) = 7 [ e (z=y) qdp)
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Dg(z —y)

Dp(x —y) Dp(x—y)

(a) Retarded and advanced contour (b) Feynman and Dyson contour

Figure 2.16: Four ways of circling around the poles [53]

When the particle is on mass-shell, the function diverges due to the presence of
poles at p*> = m? = p° = ++/m? + p = +E,. As a standard procedure of complex in-
tegration, to yield non-divergent contribution we need to integrate along the contour
which will circle around the pole. Thus, we add infinitesimal contribution +in << 0
which will displace us from the real axis where poles are.

From Figure (2.16) we see there are four different ways to circle around the pole,

yielding four different results for the Green function. We will denote them with

R:sas=sg=1,A:sy=sg=—-1,F:s4=—-sg=1,D: —s4 = sg = 1such that
we have:
x—qy) = Crl_pe—ip(x—y) ’
ixte =0 = | G R TR T B T
d® o o exp[—iE, (2 —y") +ip(Z — ¢
:/(27:;3{3A9(SA($ _y)) p[—iE, ( 2E?JJP)+p( 9)]
—sgb (SB (IO _ yO)) exp [iff, (z° — y°) —ip(7 — y_))q
2,
=540 (sa (z° = ¢°)) <(D ‘¢(x)¢T(y)‘®> — 550 (sp (2° —4°)) <(D‘¢T(y)¢>(m)‘ (D>
£ (010 (2 - ) (¢()e's) - 60 >!@> Gl 1)
2(0]-0 (s —2) (¢() ¢T ()] 0) = Ga(z —y)
(010 (2* - ) ¢<m>¢*< )+ ( )qﬂ( )6(2)) 10) = Gr(z — y)
201 =0 (" —a°) 0(2)e! (y) — 0 (= —y)¢T(y)¢(:c)) 0) = Gl — )

(2.167)
Given the structure in terms of a commutator, we see that retarded and advanced
propagators are strictly causal (in the sense that they are vanishing outside the light-

cone):
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Grlz—y) =0 (2* =) (0|[¢(z). 6'(»)]| 0)
Galz—y) =0 (y° — =) (0][¢(4), ()] | 0)

whereas Dyson’s and Feynman’s propagators are not strictly causal, in the sense

(2.168)

that they decay outside the lightcone. Namely, since they are built out of contribu-
tions of the form (2.161) for which we have at a spacelike distance (2.117) (due to
Heaviside functions in different domains of spacetime so that contributions do not
cancel out). Thus, at spacelike region Feynman propagator decays with ~ e~"#~¥,
Nevertheless, notice that advanced and retarded propagators propagate both particle
and antiparticle degrees of freedom in either future or past lightcone. On the other
hand, Feynman propagator is designed to propagate particles and antiparticles to fu-
ture lightcone, as shown in Figure (2.16) “8. Feynman propagator is thus causal in
the sense that it always first produces and then annihilates (anti)particles. In that
sense, the Dyson propagator is called anticausal, since it first annihilates and then
produces (anti)particle.

In a similar manner we can construct propagators for the Dirac equation. See for

example [76].

2.4 Time ordering and Feynman diagrams
2.4.1 Time ordered product

The time ordering operator is a mathematical object appearing in the context of
perturbation expansions in non-relativistic quantum mechanics and field theory set-
tings. It represents an operation of re-ordering a string of operators according to their
causal ordering. Namely, for the case of field observables associated to the distinct
events x,y € M, where M denotes spacetime, the time-ordered product is defined

by

T () (y)) = ()Y (y) 2 not in the past of y (2.169)

+)(y)p(x) otherwise

'+’ refers to the fact that for the bosonic fields we use commutation relations to

re-order field operators chronologically, corresponding to the '+’ sing, whereas for

48Recall that in Feynman diagrams we sketch always in terms of particle u; solutions having positive
or negative energy propagating forward vs. backwards in time.
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the fermionic fields we use anticommutation relations, corresponding to the .
Let us consider the first context of non-relativistic quantum mechanics. The dynam-

ics of the states are given by deterministic evolution, defined by the Schrédinger

equation:

MO f ) (2.170)
with the solution

(1)) = Ut to)|e(to)) 2.171)

To find the form of the U(t,t,), let us consider infinitesimal expansion around

some point ¢:
[ (t+ ) = [1 —idt - H(t)]o(t)

= e Oy (1)

Accordingly the value of ¢ at any instant ¢; can be expressed in terms of its value

(2.172)

at some initial instant ¢; (< ¢;) as the product of deterministic evolutions over all the

infinitesimal intervals ¢, between ¢; and ¢;:

/ .
U(ty) = (H 6‘i‘5t”H(t“)) o (L) (2.173)
Naively, in the lim(é — 0) this would give the solution of the form:
A t A
U ~ exp (—z/ H(t)dt) (2.174)
to

which would upon expansion look like:

A~

C (i)
U(t,to)zl—z'/ dt H (1) + -
to

t t
/dtl/ dtyH(t)H () + . .. (2.175)
to to

Notice however that this expansion assumes that Hamiltonians pertaining to dif-
ferent instants of time commute. Nevertheless, generally [H (t), H(t')] # 0 and more
care must be taken. Namely, let us consider the second order, as this is the lowest
order in which the problem occurs. Double integral going from ¢, to ¢ represents
integration over the entire square. Nonetheless, operator actions should be ordered
such that the first operators defined at earlier times act, then the later ones. From

the Figure (2.17) it may be noticed that the integral should be split into two parts,
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covers entire
dty f dta square

- e
> w0
=
c\
-

to

t i1
-‘—f(f,tl /dtg
to to

covers only
to -+ lower triangle

} f “tl

Figure 2.17: Geometrical interpretation of time ordering in the second order term.
[76]

each pertaining to one triangle where operators should be appropriately ordered: or-
dering associated with the lower triangle should be H(t,)H(t,), taking into account
that in that region of integration ¢; > t,, whereas ordering associated to the upper
triangle should be H(t,)H(t,), taking into account that in that region of integration
to > t1. This can be done by defining the time ordering operator; for the second order

we have:
T (ﬁ, (t) Hy (t2)> — Hy (0) Hy (t2) 00t — t) + Hy (8) Hy (1) 0t — 1) (2.176)

The time ordering operator splits the integration into integration through upper
and lower triangle, giving appropriate ordering of the operators. The expansion can

now be written as:

A

U(t,tg):l—i/tdtlﬁ[(tl)Jr (=0)* /tdtl/tdtQT{ﬁI(tl)ﬁI(tg)}—|—...

to 2
(2.177)
The solution for the case when [H (), H(t')] # 0 is thus:
A t A
U (t,tg) = T exp {—z/ dt’H(t’)} (2.178)
to

where T is the time ordering operator, as defined above. We can see the time
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ordering arising also by considering defining the equation for U (¢, t,):

0

and solving the equation iteratively. Starting from:

t
U(tty)=1— z/ dty H(t)U (1, 1) (2.180)

to

substitute U (t1, o) back to the equation:

ﬁ(t,to)zl—i/tdtlﬁ( )[1—z’/tldt2]f[( )U(tz,to)]

to

=14 (—i )/tdtl /dtl/ dto H(t1)H (t3) U (ta, to)

Now notice the implied time order of variables of integration: t, < ¢ty < t; < t.

(2.181)

The second order can be viewed as integration over the lower triangle represented in

Figure 2.17. This can be rewritten in terms of integration through the whole square

/ dt, / dtsHy (1) Hy (1) = / dt / dth Ay (0) Hy (tg)}

=5 /to dty /to dt,H; (t1) H; (o) Oty — ta) + H; (t2) H; (t1) O(ty — t1)

as:

(2.182)

where we introduced the time order operator which, as stated before, splits the

integration into integration through the upper and lower triangle. We have:

U (t,to) = 1—2‘/ dt, H dt1 dtQT H; (t) H; (tg)}U(tg,to)
t
’ (2.183)
Proceeding iteratively we get:
A t A
U (t,tg) = T exp {—z/ dt’H(t’)} (2.184)
to

the expansion of this operator is usually called Dyson series.

Each order in the Dyson series can be visualized as going through different paths, di-
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Figure 2.18: Starting from the state |¢(fy)) = |/) and aiming to the target state
|t(t)) = |k) Dyson operator describes all possible paths between initial and final
state. [83]

vided into more and more intermediate states as order increases (see Figure (2.18).

In the context of field theory, the Dyson series is considered in the interaction

picture and features in the central object of the theory namely, the scattering matrix:

t
) (\Z) = tlim T (exp (—z/ %(t)dt)) = tlim U(t,—t) (2.185)
00 ¢ —00

which sends asymptotic in states |1)(—oc0)); to the asymptotic out states |)(+00));.

At first, one might expect that time ordering depends on the specific choice of
time function with respect to which the ordering is done. Nevertheless, the claim
that time ordering comes from causal axioms imposed on the S-matrix implies in-
variance of the time ordering operation. To illuminate this fact, let us consider first
time-like separated points, x; and w,, (z; — 72)* > 0. In this case we have causal
ordering between z; and z, and thus the sign of ¢, — t;, where ¢; and ¢, represent
respective timelike components, is independent of the frame of reference. However,
in the case of space-like separated events, (z; — z2)* < 0, the sign of ¢, — ¢; is not
independent of the frame of reference and thus Lorentz transformation may reverse

the sequence of time instants. Invariance of time order is here provided by invoking
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the microcausality condition

Namely, recall that non-commutativity of operators physically means that corre-
sponding quantities cannot be measured simultaneously. However, no matter what
are the operators related to the space-like separated points, since there is no causal
connection between them simultaneous measurements can always be done. Given
the commutation, the factors in the time ordering product can always be restored ac-
cording to their chronological order. Thus, in both scenarios, time ordering product

stays invariant. Notice that here we used the following implication:
microcausality = invariance of time ordering product (2.187)

2.4.2 From S matrix to Feynman diagrams

Rigorous models of quantum field theory are applicable so far only for a small num-
ber of toy models, non-interacting theories, or axiomatizations in lower dimensional
spacetimes. For this reason, perturbative quantum field theory plays a crucial role
in phenomenological considerations. The central mathematical object of these con-
siderations is the scattering matrix (S-matrix), expanded in a Dyson series, as power
series in the coupling constant. S-matrix enables us to calculate probability ampli-
tude A and further scattering cross sections o, which is a quantity directly measured
in scattering experiments. Scattering experiments consist of incoming particles, ’in’
states, starting at a large enough distance so that at the beginning of the experiment,
t = —oo they can be considered as free. Then the beams of the particles are made to
collide, a collision lasting for a very short time. In the end, we measure the outgo-
ing distribution of particles, again at large enough distances so that particles can be
considered again as free ‘out’ states. In perturbative quantum field theory we work in
an interaction picture Hamiltonian is split in free and interacting part [/ = Hy + V
where interaction is considered weak perturbation of the non-interacting case. S-

matrix represents unitary transformation which evolves ’in’ states to ’out’ states:

S = Uj(—00,00) = Texp (—i/oo %(t)dt) (2.188)

o0
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Then, the probability amplitude for a process with two ’in’ and several 'out’ states

is simply defined as:

S

A =" A(q1qz... | P2p1>in =0 <Q1Q2~-~ pgp1>0 (2.189)

The scattering process contains the creation and annihilation of particles. The
interactions between ’'in’ and ’out’ particles are carried via mediating bosonic parti-
cles. This can be represented via famously known Feynman diagrams, which make
calculations of scattering amplitude easier.

We will consider the procedure of computing Feynman diagrams by employing an
example. Let us consider one of the simplest theories, ¢* theory through which scalar

field interacts with itself. The Lagrangian density contains a free scalar field and ¢*

potential,
L= 1 (@) — gm*o(a)? — 2 o(a)’ (2.190)
49
Free Hamiltonian density
Ho = % ((atqﬁ)Q (V)2 + m2g52> (2.191)

evolves in time the field operators ¢(z) = elolj(x)e o whereas states evolve

via the interaction Hamiltonian:

H; = —% (z)* (2.192)
such that i 2 |[v(t))r = Vi(t) |y (t))r where Vi(t) = [ H;(z)d%w.

For simplicity, we will consider a case of one ’in’ particle and one ’out’ particle,

A =" {g|p)™ = o(q|S|po

1 1 (2.193)
= (2m)° (2B,)? (2E,)* (0

o Sat
aqSa,

%)

where we used momentum state with relativistic normalisation |p) = (2r)2 (ZEP)% at|0).

4*There is also a quick trick giving pieces of Feynman diagrams directly from Lagrangian density.
Namely, first, we notice how many different fields there are (when we here discuss fields, it doesn’t
matter if there is a direct field appearing or a field derivative). These pieces give legs to the diagram.
Terms quadratic in fields (and field derivatives) will give rise to a propagator. Other terms, having in
total more than two field terms, will give a vertex. Then the terms are pieced in all possible ways.
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Upon expanding:

A =(q|S|p)

~air (=1 [ avico )

[e’e) _ 2 0 R .
= <q ‘T (1 - i/ dt Vi(t) + ( 21) / dty dtaVi(t:) Vi(te) + - ) ‘p>
- - (2.194)

)

and inserting particular form of interaction,
) . —i)2 /A2 " 4
A= < T (1 — / d*2e(2)* + ( 2? <E) / d'y d*we(y)'o(w)" + )
—(21)? (2B,)? (2E,) { (_TM) / diz <0 ag0(z)4al o>
02 /a2 o
L 21!) (Z) /d4y 4w <o agd(y) ' dw)'al|0) + ...
(2.195)

where we will refer to A = A© + AM + A®) . as zeroth order, first order and sec-

ond order term. The crucial tool in the following will be Wick’s theorem, enabling us
to simplify time-ordered strings of operators. Namely, the Wick theorem (Appendix

B) gives an expression,

all possible contractions of

ABC...Z

ABC...Z +

] (2.196)

where N represents normal ordering. The purpose of introducing a normal order-
ing is to make vacuum expectation values vanish, by placing annihilation operators
on the right and creation operators on the left. We will be left with terms involving

just contractions, enabling us to break up the strings into smaller pieces.

Let us try to compute .A(Y). We have to unravel a term of the form:

(0[T(ag@)'a)| 0) = (0]T(a,d(2)d()d()d()al)| 0) = (=) (2.197)
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[ — \

g, 9(2)0(2)(2)(2)a!

~

CLqCLp

Using Wick theorem following contractions:
1h] 0) (0T 6(2)0(2)[0)(0T'(2)(2)0)

(4 = <o 0> _ (0
(2.198)

where we first considered the contraction of ladder operators with ladder oper-

ators and fields with fields. This term will come in the amplitude multiplied with a
symmetry factor S = 3 since there are three different ways to do contraction of this
type. Namely, one can contract a ladder operator with a ladder operator, for which
there is only one option, and field operators with field operators, for which there
are three ways, all giving indistinguishable contributions. Notice that contractions

involving ladder operators aren’t time ordered since they are defined only at asymp-

1

g, (2)9(2)d(2)p(2)a"

totic regions, t = —oo and ¢ = co. Now we can also consider the contraction of ladder
operators with field operators,
149(2)] 0) (OIT3(2)d(=)10) (0] d(=)a,|0)

() = <0 0> (0
(2.199)

we can contract first the ladder operator by choosing one out of four field opera-

tors, giving a symmetry factor of 4. Then we can contract other ladder operator with
one of the rest three field operators, giving a symmetry factor of 3. In total, symmetry
factor of this termis S = 3 -4 = 12.

The resulting amplitude in the first-order term is

A = (2m)? (28,)* (28,) & / 2 (3(0 ) {016(2)9(2)[0){0]6(2)6(2)[0)
+12.(0]agd(2)| > 01T()d(=)|0) (0 \qs i0))
(2.200)
We can now compute the correlators we got from the contractions,
* From a contractions between two fields we get a free propagator
PR PO diq ielel=2)
$)ol) = OGN0 = My —2) = [ S 20D

Here we calculated the Feynman propagator, along with the discussion repre-
sented in (2.3.6). For the expression to be well defined, particles propagated should
be off mass-shell, i.e. ¢> # m?. In conclusion, the Feynman propagator introduces

a new kind of propagating particle, called virtual particle. In the discussion of the
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section below, we will see that either we could have kept on mass-shell particles,
paying the price of energy temporarily not being conserved in the interacting vertex,
and amplitude expression not being invariant; or we introduce virtual particles so
that the amplitude is invariant and 4-momentum is conserved in the vertex, but with
a price of introducing the virtual particles which do not satisfy relativistic energy-

momentum relation.

* From the contractions between field and the creation operator we get a term

d? 1
:/ d* ;<0
(27)2 (2E,)?

d3 1 :
= / % e %68 (g — p)
(27)2 (2E,)?
11
. . e~ipz

M?T = <0 ’Qg(z)&;

(aqe™* + ale'*) al| 0)

(age™* + age'”*) | p)
(2.202)

Factors (27) 2 (2E,,)_71 will exactly cancel with the factors in the amplitude (2.200)

1

coming from the relativistic normalization |p) = (27)2 (2E,)2. In total, we will have

a resulting contraction

- 1

~

o(z)|p) = e " (2.203)

This will represent an incoming particle.

In a similar manner, the contraction between a field operator and a final state

annihilation operator, corresponding to outgoing particle.

Amw) - 3 : el
(2m)2 (2E,)? (2.204)

* Finally, contractions between initial and final particles will simply yield a delta

function

_
aqt,' = (0

0) =% (g —p) (2.205)

5ol
aqa,,

Here let us notice that time order does not affect the outer legs, rather only the

propagator part. This means that breaking time order would affect only what is hap-
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Figure 2.19: Steps in drawing the Feynman diagram. [9]

pening on the level of the propagator.

We can now draw Feynman diagrams, corresponding to our amplitude expan-
sion. Order of amplitude expansion will determine number of interaction vertices;
zeroth order has no interactions, first has one (corresponding to V[(zl)), second has
two (corresponding to V;(z)V;(z;)) etc. Incoming (2.203) and outgoing particles
(2.204) are emerging from the vertices. They are called the legs of the diagram. The
Wick contractions of field parts (2.201) represent propagators, joining the legs of the

diagram. For example, let us consider the term

12\
—i—== | d*z <O

4! &pé(z)é(z)é(z)é(z)d;

o> (2.206)

corresponding to one part of first-order amplitude expansion. This means we
draw one vertex in some spacetime point z. Following the structure given in (2.19),
we draw an incoming particle going into one of the vertex legs. Propagator contrac-
tion then connects two of the other field lines. Lastly, the outgoing particle connects

with the remaining free leg.

Now that we have an idea of how things work, let us briefly comment on how to
get a scattering second order diagram, which is our main focus. Now we have two

incoming and outgoing particles,

A= <Q1Q2’g‘p2p1> = <0

o> (2.207)

Ao Sat at
(g, Gq, S Qg Gy
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For example, take scattering in Yukawa’s )11 ¢ theory, which describes a complex
scalar field ¢ and a real scalar field ¢ interacting. Lagrangian density is the following,
1 1

L= 0" 0 —m™ 1y + —(0,0)" — S°¢" — g¥o (2.208)

Interaction part is H; = —giT1¢. We start by writing down the mode expansions

of each of the free fields: *°
We expand the S-operator using Dyson’s expansion
b,

i, (119 [ @1201()0(:)02)
[ty dtu [5wiwéw)] [Hwiwiw)] +..)aj,
(2.209)

0)

(0]aq,q,9a},a}, | 0) =(0
(~ig)”
T

Let us consider the second-order term®!
a1, () ()DY) 6 (w)d (w)b(w)a, | 0)
(2.210)

9 omys (21,)2 (2B,)* (0

A®?) —

One possible way of contracting this is the following,
I
0> (2.211)

ot af

1 [ [
()9 (w)d (w)(w)af, ah,

S 1h

—F— A
<0 g, gy T (1)1 (y)

this represent ¢- process. We have also u-channel, given by:
! |
(w)p(w)al,al 0> (2.212)

[
— [ [
<0 gy g ()0 (1) D (1) (w)

as shown in Figure(2.20). Here initial and final particles have changed places

50
. d3 1 . o
U(x) :/ ape P 4 bl elPT
(2m)2 (2E,) (% )
1 . L

i) — d3p
v )_/@w)% B,
1

[N

—~

(NI

(éqe_iq'x + égeiq'”")

[N

~ d3q
b= [ 2
(27)7 (2¢4)
1 1
where E, = (p? + m?)? and g4 = (¢* + p?)? Here the a-operators describe the creation and anni-
hilation of psions, and the b-operators describe the creation and annihilation of antipsions and the

¢-operators
S1First order will end up vanishing.
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Wly)ap, P(w)as,

Figure 2.20: Representation of Feynman diagram with the considered Wick contrac-
tions [9]

after the interaction and thus both diagrams contribute to the process if the particles
are indistinguishable.

As one can notice from the zeroth term in the expansion (2.194), even in interact-
ing theory, there will exist a possibility that particles do not interact. Thus, S—matrix
is often split into a trivial part and the rest, to isolate that contribution. We call the
rest transition matrix T,

where

Ty = (2m)*6W <p1 +p— ) Qf> M (p1,p2 — {a5}) (2.214)

where p;,p, and g; are on mass-shell 4—momenta. Term 6 (p; + pa — > ¢;) ac-
tually comes from diagram calculations when expressed in momentum space, mak-
ing S—matrix conserve 4—momenta. This is here factored out to make amplitude M

Lorentz invariant. We’re now ready to reveal a wonderful simplification. 2. Thus,

All connected, amputated Feynman
Ty = Z diagrams with incoming momentum p; (2.215)

and outgoing momentum p¢

>2Single Feynman diagram can be constituted of one or several connected pieces. If it contains
only one connected piece, we call it a connected diagram. Otherwise, a diagram is disconnected.
Disconnected diagrams correspond to physical processes which do not interact with each other, thus,
only fully connected diagrams contribute to the T-matrix. There are also diagrams with loops attached
to external legs. Such diagrams represent self-energy contributions and yield non-trivial infinities.
Those are also excluded from the 7T— matrix, and in fact, excluded from the whole S— matrix through
the procedure called amputation.
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Invariant amplitude M is what relates directly to differential cross section - quan-

tity measured in scattering experiments such as ones at LHC, through the formula,

do_|MmP

— 2.21
dQ ~ 64n2E2,, (2.216)

2.4.3 Old fashioned perturbation theory

As one may notice, the time ordering operation was a crucial part of simplifying
string operator correlators and calculating the propagators. Time ordering dropped
out on the level of external legs, since there was no time ordering ambiguity, but
stayed of crucial relevance in the propagators of Feynman diagrams. An alternative
way of doing perturbation in QFT is to do it in a way of standard quantum mechanics,
as it was done in calculations somewhere till the1960s. In fact, Julian Schwinger, the
biggest rival of Feynman, never embraced Feynman diagrams and continued to use
the approach which we will call here old fashioned perturbation. As it was eventually
shown in the works of Dyson [26] and others, the old-fashioned perturbation yield
equivalent results.

Here, we will look at independent diagrams with definite time ordering, each giv-
ing non-invariant amplitude M. Summing over all possible orderings will give a
corresponding Feynman propagator. This is consistent with interpreting Feynman
propagator as superposition of two processes with a definite time arrow, into a total

process where the ordering remains indefinite.

In quantum mechanics, we had a picture based on scattering in a potential where
particles act as sources of fields that give rise to a potential in which other particles
scatter. The transition rate I'; between initial state ¢ and final state f is given by
Fermi’s golden rule I'y; = 27 |sz-|2 p (Ey), where TY; is the transition matrix element,

given by the perturbation expansion:

= (fIV]iy+ > f|v|] ‘7|V|>+ : (2.217)
JF#i

Here j denotes some intermediate state through which scattering occurs. With
the description in terms of the potential, we have some issues. For example, when

a particle scatters in potential there is a transfer of momentum from one particle to
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another without any apparent mediating body. The other problem is that if a distant
particle were moved suddenly, the potential due to that particle would change instan-
taneously at all points in space, in violation of the special theory of relativity. This
is why in QFT we have interactions between particles modeled as being mediated by

the exchange of other particles.

To analyze the interaction, split the Hamiltonian into a free and interacting parts,

H=Hy+V (2.218)

Here H, is the free part with eigenstates that are known exactly, and interac-
tion part V' gives corrections to those eigenstates. We will also denote two sets
of states, {|¢)} for free part and {|¢))} for the full Hamiltonian, where we have
limy_0|Y) = |¢). We will also assume that in asymptotic future and past of scat-
tering event interaction is negligible lim; ,1, |[¢)) = |¢). Suppose that the incident

state has fixed energy E at some initial time,

Hol|p) = E|¢) (2.219)

In QFT the energies £ are continuous, thus we should be able to find an eigenstate

|1) of the full Hamiltonian with the same eigenvalue

H|y) = E|) (2.220)

From this we get,
1

¥ =16+ 51

Vi) (2.221)

which is known as the Lippmann-Schwinger equation. The potential acts at in-
termediate times, inducing transitions among the free states |¢) via Green function
G = E+HO We would like to express |¢) entirely in terms of |¢). We define an

operator T by
Vi) =T]o) (2.222)
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T is known as the transfer matrix. Inserting this back in (2.221) we get:

1
E— H,y

) = [9) + T|e) (2.223)

which gives |¢) in terms of |¢). Multiplying by V' and some state (¢, |,

(2.222)

(6, VI) ®2 <¢j|T|¢>:<¢j|V|¢>+<¢j

E— H,y

T T‘ ¢> (2.224)

Since it hold for any |¢;) and |¢;), an operator equation for 7" must hold

1

T=V+V T 2.225
= +V i ( )
We can then solve perturbatively in V' to get
T=V+V V4+V ! Vv L V+ (2.226)
B E — H, E—H, E-H, ‘

If we now insert complete set }.[¢;) (¢;| of eigenstates |¢;) of Hp, and write

Tri = (¢f|T|¢s) and V;; = (¢;|V|¢;) we get:

1
Ty =V Vine—"-—"Voi + - 2.227
f i+ Zn: f E._ L. + ( )
where E, is the energy of the intermediate state. Notice that we recreated the

expression (2.217).

Let us now consider the particle interaction for some process a + b — ¢ + d, as
depicted in Figure(2.21). The process can occur via an intermediate state corre-
sponding to the exchange of a particle X but there is also another possible spacetime
picture with the same external legs, the one via intermediate state corresponding to
the exchange antiparticle X. Let us consider the first-order perturbation in the first

spacetime picture. We have the initial state:

i) = |a,b) (2.228)

the intermediate state

1)

le,b, X) (2.229)
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and the final state
|f) = le,d) (2.230)

Particle a can be thought of as emitting the exchanged particle X, and then at a
later time X is absorbed by particle b. Let us now consider energies and momenta.
For both time-ordered diagrams, the exchange particle will be on mass-shell; mean-
ing that the energy of the exchanged particle will be related to its momentum by the
usual energy-momentum relation, £% = p% + m%. From momentum conservation

we have:

Px = (Pa — Pc) (2.231)

for the first-time order process. In the case of the second time-ordered process we

have:

Pz = (Pv — Pa) = — (Pa — Pe) (2.232)

Consequently, for both time-ordered diagrams, the energy of the exchanged par-

ticle can be written as
E% = px +mx = (Pa — Po)* + mx (2.233)

The corresponding term in the perturbation expansion is

par _ SIVIDGIVIE) _ (e dVie,b, X) (e, b, X|V]a,b)
[ Ez_E] (Ea+Eb)_(Ec+EX+Eb)

(Ea+ By) — (Eo+ Bx + By)

(2.234)

Let us now notice that the energy is not conserved in the vertex since this would
produce the divergences in the denominator. The standard interpretation of this is
that the violation of conservation of energy for a short period of time can be justified
via energy-time uncertainty relation AEAt > h/2. > On the other hand, Feynman
diagrams introduced the idea of off mass-shell particle p? # m?, referred to as virtual
particle, trading off 'mass-shellness’ for the conservation of 4-momentum conserva-

tion in the vertex.

>3Nevertheless, as we mentioned in the chapter (2.1.1), the character of time in energy-time uncer-
tainty relation is disputable, since it does not refer to the standard deviation of some time operator.
In this context time is taken to mean internal time, stating that the since the lifetime of an exchange
particle is very short, the energy of a particle has great uncertainty.
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Space
Space

Time Time

Figure 2.21: Two possible time-orderings for the process a +b — ¢ + d [82]

The interactions at the two vertices are defined by the non-invariant matrix elements

Vi = (¢, X|V]a) and Vj; = (d|V]X,b) (2.235)

The non-invariant matrix element V; is related to the Lorentz-invariant matrix
element M ; by

Vi = My [[ 2B (2.236)
k

where the index k runs over the energies of the particles involved. We have:

Vii = (¢, X|V]a) = Maerx — (2.237)
(2E,2E.2Ex)"

where M, .., x is the Lorentz invariant matrix element for the fundamental inter-
action a — ¢+ X. The matrix element M, _,., x will be given by the scalar, denoting

strength of interaction M,_,., x = g,, and thus

Ja
Vii = (¢, X[V]a) = (2E,2E.2F )1/2 (2.238)
a c X

Jq is constant denoting the magnitude of the coupling and it represents a measure

of the strength of the scalar interaction. Similarly

9b
Vi = (d|V|X,b) = (2.239)
53 = {dIVIX, b) (2E,2E,2Ex)"?

where g, is the coupling strength at the b + X — d interaction vertex. Therefore,
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the first-order term in the perturbation series gives

w_  (dVIX, b)(c, X|V]a)
I (BEy+ Ey) — (E. + Ex + E)
_ 1 _ 9aJb
- 2Bx (2E,2E2E2Ey)? (Eu— E.— Ex)

(2.240)

The Lorentz invariant matrix element for the process a + b — ¢ + d is related to

the corresponding transition matrix element by,
MY = (2E,2E2E.2E,)" > T¢! (2.241)

Thus we get:

1 9aGb
ab
_— . 2.242
M= S5 BT BBy (2.242)

For the second possible time-ordering for the process a + b — ¢ + d we have that
the state b emitting X which is subsequently absorbed by a. The exchanged particle
is in this case X. It is assumed that X has the same mass as X but has the opposite
charge. This must be the case if the charge is to be conserved at each vertex. For the

second time-ordering process we get:

1 GaGb
ba
L — . 2.243
Mii 2Ex (By — Eq — Ex) (2:243)

Since both processes are possible, we need to sum over both to get the total

amplitude. The total amplitude (in the lowest order) is given by:

My; = M+ M

s . . . (2.244)
2Ex \E.— E.—Ex  B,— Eq— Bx

which, using energy conservation £, — F; = E. — E,, can be written

M o GaGb . ( 1 B 1 )
"= 9py \E,—E.—Ex E,—E,+Ex
Ga9b
(E, — E,)* — E%

(2.245)
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Substituting this expression for £% (2.233) leads to

9aGb
My =
(Ea - Ec)2 - (pa - pc)2 - mg(

9a9b
(pa - pc)2 - mg(

(2.246)

where p, and p. are the respective four-momenta of particles a and c. Finally

writing the four-momentum of the exchanged virtual particle X as

q = Pa — Pc (2247)
gives
Ga9b
=Gl 2.248
My e (2.248)

We see that the sum over the two possible time-ordered diagrams in second-order
perturbation theory has produced an expression for the interaction matrix element
that depends on the four-vector scalar product ¢* and is, therefore, manifestly Lorentz

invariant. The term
1

m (2.249)

is referred to as the propagator, and is associated with the exchanged particle.
This propagator corresponds to the Feynman propagator. In the case of particular
time-ordering, we have propagation via an advanced or retarded propagator (which
diagram is advanced or retarded depends on what we call the source), which after
summing up yields the Feynman propagator. Modern QFT perturbation theory is thus
a theory with respect to Feynman diagrams, working in terms of virtual particles (off-
shell particles) and yielding manifestly Lorentz invariant results. On the other hand,
old-fashioned perturbation theory considers diagrams with respect to some fixed time
ordering, where all states are physical, in a sense that they are on mass-shell at all

times. This means that the 3-momentum is conserved at each vertex, but the energy

is not (which is justified via time-energy uncertainty).
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3 Ancilla approach

In the following, we will present the original results of the thesis where we will ana-
lyze a time ordering operator as it appears in the time-ordered exponential formula.
We will focus on its expansion in the interaction picture, up to the second-order term.
As explained in detail in Section (2.4), the time ordering operator has a sum along all
possible ordering configurations, where each term in the sum will, in the following
notes, we call a ’branch’ of the time ordering operator. Motivated by the discussion
in Section (2.2), we will think of the system as being in a superposition of going
through different possible branches of time configurations. The main question of the
work is now whether one can isolate a branch of time ordering by means of coupling
a system to an ancilla and performing an indirect measurement on a system, as intro-
duced in (A). The idea is that the ancilla interaction could couple to a particular time
ordering configuration, such that the measurement on the ancilla would collapse the

superposition of configurations, isolating a particular ordering.

In the interaction picture, time ordered exponential reads,
. rt / /
Ult, ty) = Te i SWHIE) (3.1)
where 7" denotes time ordering operator. Upon expanding:

Ut tg) =1+ (—1) /tdtlHI (t1)+(_2—?2/tdt1dt2T(Hz (t1) Hr (t)) +--- (3.2)

We will focus on the second order term, where time ordering begins to be rele-

vant;

S /t dt; /t dty (Hy (t1) Hr (t2) 0 (t1 — ta) + Hy (t2) Hr (t1) 0 (ta — 1)) (3.3)

2!

Notice that the integral contributions from the two different time orderings are
the same, making them indistinguishable.
Let us now try to project on t; > t, or t; < ty branch of evolution; to do so, let

us consider a system | (¢)) coupled with the continuous spectrum ancillary system
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la(t)):
(W(t)) = [(t))]a(t)) (3.4)

We now have H;(t) — V(t) @ A(t) : Hs(t) @ Ha(t) — Hs(t) ® Ha(t). We define

the ancillary system to initially be in the state:
la(to)) = |ag) (3.5)
and define the eigenstates of the ancilla potential operator A(t) to satisfy:
(c(t) [ct)) = (| c)=0(—c) (3.6)

where we switched to notation {c(t;)} = {¢;}. Let us take {|¢) : ¢ € X} and take

ancilla A(t) to be general ancilla interaction. Expanded via spectral theorem,

At) = / ele) (clde 3.7)
X
Let us consider now the evolution of the total state

[W(t)) = Ut to)[4(t0))ao) (3.8)

Upon inserting the expansion (3.2),

(=i)?
21

(W(t)) = <1 —i/t dt1V (t1) @ A(ty) + /dtldtzT(V(tl) ® A(t1)V (t2) ® A(t2) + > 19 (t0))|ao)
N ! (3.9)

Inserting the interaction yields

U () = (1—i/ttdt1/x derV(t1) @ eler) ale]

2 [t t

( 2‘) /to dt1 /to dts /X dcy /X dCQT(V(tl) ® 01’01>A<01‘V<t2) ® 02’02>A<02‘)) + - > ‘w(t0)>‘a0>
(3.10)

+

Let us now project on the ancillary system by measurement over some finite in-
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terval. As mentioned above, we will focus on the second-order term:
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To yield a non-vanishing result, delta functions obligate us to satisfy the condition:

c=c¢=C¢C = (3.12)

making at the same time both contributions non-vanishing. If ¢; and ¢, appearing
in one branch would not be exactly ¢; and ¢, in the other branch (as will be discussed

bellow) we would be able to distinguish by demanding appropriate conditions. Let

t t

to covers entire
) f dit, / dty square
to to
t 4
Cy
¢ t
-'l—/dtl f(lfg
to to
C.
covers only
to + lower triangle
| 'r > 1)
© 1o t

Figure 3.1: Geometrical representation of 2nd order Dyson expansion term. In order

to couple to a particular time ordering, ancilla potential needs to depend on the
function in 2D parametric space.
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us, therefore, suppose that coefficients ¢ could acquire different values if associated
with a different time ordering configuration. As an example, consider Figure(3.1)
where we see how the values of ¢ coupled to a particular time ordering configuration,
making the ancilla potential couple differently to two-time orderings. Namely, we

would now have

t ———— > Qv
| |
V(t) —— V() @ A(v)

where v = v(t1, ;) would be some hypotetical function in 2D parameter space
of 2-nd order term. Here one should not that this is already problematic and cannot

make sense on the level of (3.1). Nevertheless, for the sake of example take:
U(tl,tz) = tl — t2 (313)

and

Aty ts) = A(v > 0)0(t, — t3) + A(v < 0)(ta — £1)0(ty — t1)

(3.14)
= / cile) ey |de 6(v > 0) +/ c_|e_Y{c_|dec_0(v < 0)
X5 X

We would then get:

JELELIOE
_/\c><cdc(...

to
/\ (c|de(..
to

5 / [tV 1)V (1) © Al < 0)A(w < 0)6(—0) + ) (t0)lao)

dtldtQV (t)V (t2) @ A (v(t1,t2)) A (v(t1,t2)) 0 (11 — t2)

to

dtldt2V (t2)V(t1) ® A (v(t1,t2)) A (v(t1,t2)) 0 (ta — t1) + -- I (to))|ao)

dtldtgv (t)V (ta) @ A(v > 0)A(v > 0)0(v)

to

dtidty

dcl_

dc B B dCQ_dzleQa(tl — tg)‘

to Jto

(V(@)V(t2))er ey (e —ef )5(61 — ¢3)0(cy —ao)

_'2
+(22' /dzldzz/dc/ dcl/ deg O(ta — t1)-

A(V(t)V (t2))ef e5 (e — ¢ )o(ef — ¢3)d(e5 —ao) ... ) ¥ (t0))v)

(3.15)
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Now we could impose some initial and final conditions, such that:
c=cf =cf =aq (3.16)

to project on an upper or

c=c =c¢Cy =ay (3.17)

to project on the lower branch. However, as already mentioned, such construction
wouldn’t make sense since it would not be well defined in all orders, for v(¢y,t,) is a
function defined in the parametric space of 2-nd order term. In conclusion, this kind
of dependence cannot exist on the level of equation (3.1) and we are left with the
correct construction (3.11) which cannot distinguish two contributions. One may
attribute this to the fact that there is no real indefiniteness in the evolution since
external time always flows in the same direction from ¢, to ¢. As explained in the
section (2.4), time-ordered exponential is just a product of infinitesimal deterministic

steps, as given by the formula:
A f . )
Ulto,t) = [ [ e "0 (3.18)

In order to introduce indefiniteness in the dynamic, one would expect to introduce

indefiniteness on the level of each infinitesimal time step, as discussed in [33].
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4 Page-Wotters approach: expansion of time ordered

exponentials using timeless state formalism

One of the attempts to reconcile the differences between how gravitational versus
quantum physics addresses time, is to overcome the notion of time as an external
parameter in quantum mechanics. Serving as a parameter of time translations, time

as an external parameter appears in Schrodinger’s equation
A2 _ gy @1

dt

Operationally one can interpret it as the ’time measured by the classical, labora-
tory clock’. As such, it is not observable in the quantum mechanical sense; it stands
outside the realm of the theory. The external character of time is at odds with how
time is implemented in the theory of general relativity. Namely, as mentioned in
the Introduction (1), diffeomorphism symmetry Diff(M) of general relativity induces
background independence (see e.g. [69]), succumbing the spacetime to the dynam-
ical law presented within. In such a theory, space and time in their unified fabric of
spacetime are treated as internal variables. Coming as an unease in the attempts to
reconcile quantum theory into a unified framework with the theory of general rel-
ativity, the disparate nature of time in the two represents a seed for the cluster of

problems in literature known as 'The problem of time’.

In order to make time internal to the quantum theory, we will promote a clock
to a quantum degree of freedom. Namely, we will consider some quantum system,
assigned with the Hilbert space H; on which time operator 7" acts, serving as a tem-
poral quantum reference frame>* i.e. physical (quantum) clock. Considering now the
system coupled to the physical clock will enable us to describe the change in time via
conditional probabilities, replacing ‘being at a time’ by timeless correlations. That is
to say, the temporal behavior we observe, depends on relations between some inter-
nal clock and the system, instead of on an external coordinate time parameter. Let
us now look more thoroughly this formalism to which we will refer as Page-Wootters

formalism ( sometimes known also as Timeless approach to quantum mechanics).

>4As we saw in Chapter(2.1.3), using quantum degree of freedom as a reference frame will promote
parameter of translation into an operator.
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4.1 Page-Wootters formalizam

In the timeless formulation, one considers a global, timeless state |¥)) called history
state, which can be viewed as the total system composed of a clock and the system of
interest. Since any isolated system is in an eigenstate of energy and thus stationary
with respect to the coordinate time, the timeless state is usually considered to be the
state of the whole Universe (as this is the smallest truly isolated system). This state

is famously present in Wheeler-DeWitt equation,
H|TY) =0 (4.2)

appearing within Dirac quantization approach to quantum gravity (canonical quan-
tum gravity). As with any constraint equation, (4.2) reduces the kinematical space
of states (all possible states) to physical state space (states satisfying the constraint).
If we now consider the dynamics of the system given by Schrodinger equation (4.1),
Wheeler—-DeWitt equation (4.2) implies
d|¥)

That is to say, our state |V)) is deprived of time evolution. This kind of situation
appears generally within time relationalism and is known as the Frozen formalism

problem.

The question we now face is, how do we yield everyday dynamics from this frozen
global state |¥))? One of the observations we can make is that the notion of time is
not well defined at the level of such a global state. The nature of time itself is
not fully clear to us, yet time is an undeniable fact of our everyday experience and
these experiences always concern subsystems rather than the Universe as a whole °°.

That is to say, No observation is possible without an observer. [25]°°, hence shifting a

S5This is at the heart of temporal relationalism for which it is characteristic to be manifestly
reparametrization invariant (as it is the case with general relativity) and to get constraint equations
forcing the frozen formalism

561n fact, Crane even goes further and states: Hence there is no Hilbert space associated with a closed
universe.” but we shall sustain from going into his formulation.
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perspective to what one observes, implies shifting a perspective to one of a subsystem.
Along these lines, in 1982. Page and Wootters formulated conditional probabilities
approach to timeless quantum mechanics. Namely, they defined a history state |¥))

to be the correlated state of the system and the clock:

7y = / dtft)e ® [(6)s (4.4)

such that it satisfies the equation (4.2). It encodes the full dynamics of the system
represented in terms of some internal observer measuring time evolution |¢(t)), with
respect to some subsystem serving as a clock. We will define a perfect clock as a
subsystem associated with an infinite-dimensional Hilbert space #, isomorphic to
the Hilbert space of a particle on a line, having canonical coordinates 7, and Hy,
satisfying the Heisenberg algebra [T, Hc] = i. We define a dynamical state of the
internal observer to be the state one gets upon conditioning the static, global state

by projecting on the eigenvector of the clock:
(1)) = c(t|¥) . (4.5)

This state is called 'reduced state’ and corresponds to the state of the system S
when clock C shows time ¢. Comparing with Einstein’s definition of time: 'The “time”
of an event is that which is given simultaneously with the event by a stationary clock
located at the place of the event’[30], we further assume that the clock is stationary
with respect to the observer.

Here we introduce |¢) eigenstates of the time operator 7¢,

Tolt)e = tlt)e (4.6)

and interpret the eigenvalue ¢ as the outcome of a measurement on the clock
showing time ¢. As mentioned in Chapter (2.1.1), we should keep in mind that this

kind of perfect clock is not physical since the commutator
T, H] =1 (4.7)

cannot hold for a physically realistic Hamiltonian, as discussed in 2.1.1. Neverthe-

less, such a model can serve as a working idealization.
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As mentioned above, history state contains all the information about the correla-
tions between the system and the clock and it belongs to the physical Hilbert space.

Generally, it satisfies, some constraint equation:
ClU) =0 (4.8)

Starting from an element of kinematical Hilbert space |®), we can restrict the

solutions to the physical Hilbert space using the equation (see [60]):
W) = / dae 0| D) (4.9)

In jargon, we sometimes say that |®) is "projected’ onto the physical Hilbert space.
Despite this, one should note that kinematical #y;, and physical Hilbert space H,,
do not have the same inner product, and thus H,, ¢ Hin. (4.10) is therefore not

formally a projection. For our model, we have the following constraint equation:
C=Ho®1s+1c® Hg (4.10)

such that the reduced state satisfies the usual Scrodinger equation upon condi-

tioning equation (5.18) on the state of the clock in time ¢:

c(tC|W) = o(t|(He @ Ls + 1e ® Hg)|¥) =0

3 . (4.11)
N (5 _ Hs) (1)) = 0

4.1.1 Multiple time measurements

Performing sequential measurements on the system was not adequately defined in
the context of Page-Wotter’s original proposal. Following the lines of Kuchat’s criti-
cism [56], we can see that such formulation leads to the wrong expression for prop-
agators. To see this, we ask for the probability of the state |¢)(¢)) to be in the state

|¢*) at time ¢ = t*, we would look for the conditional probability P (¢*|t*). Let

Il = |t) ('] (4.12)
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on Hr and the projection operator

Iy = |q") (q"| (4.13)

on Hg. The conditional probability is then:

W) @ 1) {a"DIv)
(W) (| @ 1) W)

P(q'lt") = P(¢" when 1) = @ s (414)
So far, (4.14) is consistent with quantum theory. However, if one now asks for the
probability of finding a particle in state ¢, at time ¢;, given that the particle was in

the state ¢, at time ¢,, we have:

((W I (1, q1) IT (t2, g2) TL (t1, qu)| W)
(U I (t1, qn)| W) (4.15)

=16 (ts — t)) a1 | @2)I” # {2 |Us (2, t1)| an)

P (g2 whent, | ¢ when t,) =

Equation (4.15) seems to be radically wrong, as it gives non-vanishing probability

only if t; = t5, implying the frozen formalism.

To resolve this criticism, one can argue that it is operationally more meaningful
to compute the probability of finding a particle at ¢,, given that the time is ¢, and
there is a record of a particle being at ¢; at time ¢;. In other words, we will introduce
an ancillary system serving as a memory. This was worked out in [37] but the idea
that the resolution lies along these lines, was already argued by Page himself, 'Here I
simply wish to argue that all of the testable predictions of ordinary quantum mechanics
appear to arise from one-time conditional probabilities. [...] We can never directly
test what happened yesterday, but we can check the consequences that a hypothetical
scenario for yesterday has on the situation today.” [65]

In other words, after dividing the space into H = Hc®H r, where C' denotes clock
and R denotes rest’, we further divide subsystem R into the system of interest .S, and
a set of ancillary systems a; serving as a measurement device that records the infor-
mation about the i-th measurement. By doing so we are purifying the measurement:
modeling the measurement on S by explicitly including an interaction Hamiltonian

between S and the ancillary systems «; in the constraint C.. For example, in the case
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Figure 4.1: For each measurement, we need to introduce one ancillary system serving
as a memory [50]

of two time measurements we would have:
(ﬁs +6 (TA - tl) Hsay +0 (TA . t2) HS) W) =0 (4.16)

where we introduced H sa;» fOr i = 1,2, an operator acting on Hg ® H,,, H., being
the Hilbert space associated to the i-th ancilla. We used Dirac delta distribution to
model interactions as sharply localized. Now the history state, besides encoding cor-
relations with the clock states, describes all the measurement interactions between
the system S and the ancillas «;.

To see how one now obtains the history state of the form, consider von Neumann’s
formulation of a measurement apparatus describing the process of measurement in
terms of pointer observable O 4, corresponding to the apparatus .4 and observable
Og, corresponding of a system of interest S. The general state of the pointer is
|A) = ", cala)r, where we labeled {|a),}. Initially, pointer will be in some ’ready’
state |A(0)) = |r). Since we assume no free dynamics for the pointer (or memory),
the change in its state will be only due to the measurement. The measurement is
described as an instantaneous transformation which at time ¢* induces entangling

unitary mapping:

[ (£)) g @ )~ 37 Koy [ ()6 © [a) (4.17)

where {Ka} are Kraus operators satisfying the normalization condition ) K gf(a =

1. In the case of 1-dimensional K, = |a)(a| corresponding to the eigenspace of O 4.
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In this case,

[ () @ [rhar = Y e (1) |a)s @ |a)u, (4.18)
were 1), (t*) := (a | ¢ (t*)). Accordingly, the probability of getting the outcome «a
is given by

P(a|t) = |Kq|v(t)s]’ (4.19)

and the update rule, A

Ko ¢ (17))g
alg T T ————— 4.20

g = s (4:20)

describing the state of the system immediately after memory has recorded an

event. For the one time measurement, we have the form,
H(t) = Hs(t) + 6 (t — t*) Hon (4.21)
where the total evolution would take the form,

. Us (t, o) Vi < t*
Us (t,t0) = (4.22)

Us (¢, ) VonUs (£, 1)Vt > t*

and the history state would accordingly become

o) = [ e e s ©
T A ) (4.23)
+ [t e Y Us 40 Kl (1) o,

*
a

(For alternative resolution of the criticism, see [51].) In case of two time mea-

surement, we would then similarly have,

’

~

US (t7 tO) Vt < tl

Us (t.to) = § Us (t,t1) VearUs (11, to) Viity>t>1 (4.24)

K[A]S (t,12) Ve Us (t2, 1) VsnUs (t1,t0) Vt>to
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where the history state is now of the form

7)) :/_t;+/t1t2+/t:odt|t>T

® Z Us (t,t2) K@US (t2, 1) f(al [V (t1)) g ® |a1) vr1 @ |ag) my,

ai1a2

(4.25)

Suppose that we are now looking for the probability of obtaining a result a,, cor-
responding to the measurement performed at ¢;, and a result a,, corresponding to
the measurement performed at ¢,, given that clock shows time ¢ > ¢,. The probabili-
ties for the results of measurements are obtained by projecting the history state only
once:

Plan, as|t > ts) = (| ® (a1 | (az] - | )] (4.26)

From this we would get:

[(t2] ® (a1 |® (az| - L)
(2] @ (aa] - W)

P((azltz2)|(a1]t1)) = = |(aa|U (t2, t1)|a1)|? (4.27)

Which gives the correct two time probabilities.

4.1.2 Extension of PaW to several clocks

Let us consider an extension of Page-Wotters formalism extended to include several
clocks [17], as this will be of importance when considering our results. We will
assume that clocks are non-interacting. We will define as an event any operation
on S and use clocks to label the temporal localization of the events. The constraint

equation (4.11) now reads:
C=Hy+ Hg + fa <TA) + fi (TB) (4.28)
while the history state gets promoted to,
o) = / dae @ (AatHs) =i f5 as(fa(s+7) + o (s+70)) | ) (4.29)

where the procedure for obtaining this will be explained in more details in the section
(4.2). T appearing in the (4.29) is time ordering operator, introduced in Chapter

(2.4). By casting the history state with respect to different clock reference frames,
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we can show that each clock will describe the state of all the other subsystems as
evolving unitarily:

7y = / dt[t) 4 ® Ua(t)1a(0)) 1 (4.30)

where clock is marked with A and we denoted with bar all the subsystems other than

clock. To show this, let us write the state of kinematical Hilbert space |p) as

o) = / Aty (r. t) [, ) ap © PO 4.31)

and plug it back into equation (4.29):

|\I/>> — /dtgdtgdago (tk,t%) e—ia(ﬁA+I:IB)T6—ifD"‘ds(fA(s+TA>+fB(s+TB)> |t/A7t;3>AB ® |X>R
(4.32)

Next, we evaluate the operators acting on the state:

|\Ij>> _ /dt’Adt%dago (t/A,tig) e*ia(HA‘FHB)TefifOO ds(fA(Sth/A)+fB(s+t;3)) ‘tlAvt;B>AB ® |X>R
_ /dt’Adtgdagp AL ds(fa(s+t) )+ (st+th)) [+ 0)y @ [th + @) ap ® )R
(4.33)

We want to eliminate « and write the integral in terms of time measured by the clock

A. We define the variable ¢5 () = )y + «, and rewrite the integral:

W) = / At adty iy (t, 1) Tem o™ SUNCHA) A l48) ) 1) @l + 8 — 1)y )
(4.34)
Furthermore, in the integral in s, we make the change of variable s — s — ¢/, so

that:
e—ifotA_ti’* ds(fA(s—i—t’A)—f—fB(s—i—t;g)) _ e_i ttf ds(fA(S)+fB(5+t;3)) (4.35)

Lastly, divide the integral in the exponent in one from 0 to ¢, and another one from

ty to 0 and rearrange the terms:

0 = / dty [ta), @ e"italoeifo™ ds(fa@ i (s470)) |y, (0))5 (4.36)
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Where we put part not depending on ¢4 into the state:
7 t/A s fal(s fo (s+T
a0} = [ Aty et B SOOI (1 b 1y~ ), @ [\ (437)
We can write this state also as just, after integrating over ¢ :

a5 = [t (83) ) © D (438)
Notice that we have the same form as equation (4.30), where unitary is given by:
UA(tA) _ e—italzpy=i fo* ds(fas)+n(s+78)) (4.39)

Thus, the important conclusion is that even if the clock, from the perspective of
another, might be entangled with some third clock, it will nevertheless always in its

reference frame see just unitary evolution of the rest with respect to it.

In the following chapters, we will focus on the constraints having multiple systems

serving as clocks.

4.2 Time ordered exponential in the solution with two quantum

clocks

In this section, we will present the original results of the thesis where we used Page-
Wotters formalism with several clocks to investigate time ordering appearing in the
time ordering operator. Let us recall that in Section (2.4.2) we showed how the time
ordering operation appearing on the level of Feynman propagator is the one coming
precisely from the time ordered exponential, analyzed in Chapter (3) (where the
ordering ambiguity dropped off on the level of external legs). The main motivation
of our work was to compare two orderings appearing on the level of the Feynman
propagator, with the controlled superposition of orders appearing in the quantum

switch. As seen in Chapter (2.4), the Feynman propagator is defined as the sum of
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Figure 4.2: The Feynman propagator as a superposition of diagrams corresponding
to particle and antiparticle degrees of freedom, compared with the structure of a
quantum switch. For the operational setup of the calculation, imagine that the ver-
tices of spacetime diagram A and B represent local laboratories in which Alice and
Bob have their entangled clocks. Clocks are in a superposition in an entangled basis
with respect to some third observer who will perceive a situation as the superposi-
tion of two depicted diagrams. The shared system is in this case a field and the kicks
correspond to vertices.

the processes

(0|7 () w)) | 0) = (0[é(@)d' )] 0) 6a® — 4°) + (0] W)d(@)| 0) (4° — o)

N J/ N J/

partic?erDOFs antiparacrle DOFs
Particle annihilated Particle created 0 0
=(0 0)0(z" —y°)
at (2%, x) at (y°,y)
Antiparticle annihilated Antiparticle created o o
+(0 0)0(y" —z)
at (y°,y) at (2, )

(4.40)

as depicted on the left and right spacetime sketch of Figure (4.2), where the
comparison with the quantum switch is shown on the rightmost picture. We can
thus make an (unrigorous) parallel between the structure of a quantum switch, as
discussed in Chapter (2.11), and the structure of Feynman propagator by making the

following associations:

* Target system is now a vacuum state of the field |0) on which the agents will

act.

 Agents®’, labelled by A and B, are associated with the vertices of the prop-

57In this context, Jlaboratories’ and ’agents’ should be taken figuratively. The important thing is only
to find the local input-output structure and the notion of a map between the maps.
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agator where they are performing local C'P transformations on some local-
ized region representing a subspace of the total Hilbert space corresponding to
the target system. These transformations will concretely be particle creation
and annihilation, which we will label as: ¢!(y) = A =’particle created’ and
¢(x) = B =’particle annihilated’. Since the state space should be preserved
with the action of field operators, considered maps comply with the desired

description. The lines on the diagrams represent produced field excitations.

8 in this case are the spacetime positions on which agents choose

* ’Free variables
to create or annihilate the particle. In other words, agents are maps which

assign the algebras of the observables to desired spacetime region.

* Control is now Heaviside 6 function, determining the time relation between

time components of the events.

We can thus view Feynman propagator as analogous to a supermap, in the sense
that it is mapping two C'P maps A = ¢!(z) : |0) — ¢'(2)|0) and B = ¢(y) : |[0) —
¢(y)|0) into a superposition (4.40). This is a bit different structure from the structure
of supermap appearing in (2.80) due to both unconventional notion of the control
appearing and the fact that we are working in the Heisenberg representation.

One should also note that in this case upon projecting on the particular state of the
control, we would get a single amplitude which violates the causality, as described in

Chapter (2.2), and contributes to the propagation in the spacetime region. °°

Time directionality serving as a control seems problematic because it makes the
control inaccessible within the context of standard considerations. What we pre-
sented in Chapter (3) can be understood precisely as the attempt to access this control
degree of freedom; or in other sense, to implement the accessible control. However,
we saw that the only possibility was to propose a hypothetical ancillary potential, in
the form of relation (3.14), which would depend not on time but on time directional-

ity, inconsistently with the starting expression for a time-ordered exponential.

58In some natural QFT scenario, they wouldn’t really be free in a sense of having only future light-
cone.

>9Thus, if such a controlled superposition could be projected, it might be only for the short scales,
possibly within the quantum gravity regimes.
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In the following, we will show that a suitable extension on of our observations
where implementation of such a control is possible is the framework of Page-Wotters
formalism. Similarly to the approach presented in Chapter (3), in the following we
will attempt to isolate one ’branch’ of the time ordering operator, or in other words,
to implement the control over the branches of superposition, but this time in the
context of the solution to the constraint equation, which in the case of several clocks
represents a generalization to the Schrodinger equation and therefore extends be-
yond standard quantum mechanics. The reason for considering constraint equation
with more then one system serving as a clock is because, as explained in this Chapter
(4), Page-Wotters formalism with one clock gives back the ordinary quantum dynam-

ics and reduces to already tried out attempt.

Let us consider system S coupled with two clocks A and B, such that we have
a composite system |®) € Hg ® H4 ® Hp. Dynamics is specified by the following

constraint:

~ A

C=Hy+ Hp+ Hg + Vs(Ta) + Vs(Ts) (4.41)

defining our physical states (history states) via constraint equation:
C|v) =0 (4.42)
Using group averaging® (see [60]) we solve for the history states:
) = / dae™C|®) 4 5 5 (4.43)

where

|P)aB,s = |ta,tB) @ |0)s (4.44)

Computing the action of the exponential in equation (4.43), as shown in Supple-

ments (C). The equation for the history state takes the form:
|\If>> — /daeia(ﬁA+HB)Te—i foo‘ d)\(VS(TA+)\)+\75(TB+A)) |tA7 t37 ¢> (445)

where T represents time ordering operator (introduced in Chapter (2.4) with

60Averaging over all possible elements of the group, such that the average element is in the kernel
of the constraint operator.
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respect to scale A:

T(f(M)g(N2)) = 0\ — X2) F(M)G(A2) +0(N2 — M)g(A2) fF (M) (4.46)

Now, let us consider the expansion of time ordering exponential, up to the second

order,

Te i Jo dAVs (Ta+0)+Vs(Tp+2) ~1—1 d/\(VS(TA + )\) + Vs(TB + )\))
0

—4)? @ R R R R
+ % T/ dMdNa(Vs(Ta+ M)+ Vs(Tp + M) (Vs(Ta + Xo) + Vs(Tp + A2))
: 0

-~
=%

(4.47)
Focusing only on the second order term:
. T/ AN (Vs(Ta + M)WVs(Ta + Ao) + Vs(Ta + A)Va(Ti + o)
0
+ VS(TB + )\1)VS(TA + A2) + VS(TB + )\1)VS(TB + A2))

= T/ d/\ld)\z Z VS(TI + Al)VS(TJ + )‘2)
0 1,J=A,B

= / d\1d), [ZLJ:AVB V(T + M)Vs(Ty 4+ A)0( M — Xo) + V(T + M) V(T 4+ M)Ay — Ap)

0 R )
(4.48)

Now, we will make a choice of the potential. We will take the potential with
respect to each clock to be such that it ’kicks’ once in some predefined instances ¢}

and ¢ (local times with respect to each clock):

V(T + M) = Vs(t)d(Ta + Ao — 1)

o ] ) (4.49)
Vs(Ti + M) = Vs(t5)3(T + Ao — £5)
Going back into equation (4.48) using equation (4.71), we get:
(1) = / d)\ld)Q(VS(TA FNVs(Tu + ) + V(T + M)Vs(Th + M)
0
V(T 4 M) Vs(Ta 4 do) + V(T + M) Vs(T5 4 X0) )0 = A), oo

= Vs(t)Vs(11)0(t] — Ta — ] + Ta) + V() Vs (83)0(8] — Ta — t5 + Tp)

+ Vs(t3)Vs(1)0(t; — Tp — 1] + Ta) + Vs(t3)Vs(13)0(t — Tp — 15 + T)
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@%:/(MM&O@@E+&M@@b+M)+%@}+Aﬁ%@h+M)
0

VS (La - 2o) V(T4 X0) + Vs(Ta b M) Vs(Ta b M) )00 = M)
= V() Vs(2)00t5 — T — 15 + T) + Vs () Vs (60055 — T — £ + 7)

+ Vs(E)Vs(t5)0(t: — T — t5+ Tg) + Vst Vs (E)O(tr — T — t +Ty)

= > > o Ty - 6+ T Vs()Vs(t;,)
mn=1,21,J=A,B (4.52)

00t — Ty =t + T)Vs(t)Vs(t,) }
From equation (4.52) we get:

=2 ) { (t5 — 5 )Va(t:) Vs (L)

m,n=1,2
T 0(t;, = Ta— 15, + To)Vs(6)Vs(t;,) + 0065 — T — 63, + Ta)Vs(t:)Va(th,) }
=2{20(t; — t)Vs(t1)Vs(t3) + 20(t3 — £1) Vs (13) Vs (1)

+20(87 — ))Vs (6 Vi (87) + 20(t5 — t3) Vs (£3) Vs (1)

(t7 — Ta — ] + Tp)Vs(t))Vs(t]) + 0(t] — Tu — t3 + T) Vs () Vs(t3)
O(t; — T — t; + Ta)Vs(t])Vs(t]) + 0(t; — T — t5 + Ta) Vs (t]) Vs (t3)
+0(ts — Tu — t; + Tp)Vs(t3)Vs(t]) + 0ty — Ta — t3 + T) Vs (ts) Vs (t3)
(ty — Tp — 7 + Ta)Vs(ty) Vs (t]) + 0ty — T — 5+ Ta)Vs(t3) AS(t;)}
(4.53)
Introducing notation:
St =1 — 1]
ST =Tg — Ty

(4.54)

In the following, we will ignore terms of the form Vs(t5)Vs(t}), Va(t3)Vs(ts) as

they are irrelevant for the time ordering. We will ignore also all the other terms, up
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to the second order, which do not show different time ordering. We get,

Te—i S dAVs (tA+A)+Vs (tp+A)

=+ 2{29(7&*)2 + 20(6t YW + 0(—6t* + 6T)Z + 0(—6t* — 6T)Z + 0(6t* + 6T)W + 0(6t* — 5T)W}
(4.55)

Since times of the potential kicks are predefined, §¢* will have definite value and

sign. Without loss of generality, let us take:
ot* >0 (4.56)

Notice also that the expression (4.55) has two ordering of Vg with respect to t*
values. We will look for the preparations and the measurements such that only one
time ordering of Vi operators remains. Let us partition the space H 4 ®Hp into centre
of mass H¢y, and relative coordinates H,.;, such that |t4,t5) = |tcnm) ® |tre), Where
It,e) = |6t) is eigenstate of 0T'|0t) = 6t|6t). We have |t4, tz, &) — |tear) @ |tre) ® |0).

Let us consider now preparation of the clock states such that:
trer) ap = 1|0t < 5t + € |0t > 6t7) (4.57)

Here one should note that such preparation states might arise quite naturally. For
example, when clocks at different positions interact with each other and with other
systems, as in the case of gravitational quantum switch [89]. Or if the clocks are in
different states of relative motion, causing them to succumb time dilatation [78].

Going back to equation (4.45)

’\I/» — /dOéeia(HAJrI:IB)'
. Te—z' I dA(Vs(TA+)\)+VS(TB+)\)) {77 |5t < 5t*> + g |5t N 5t*> } Q |tC’M> ® |¢>S (458)

N

'
*%k

= ok = Tefifo" d/\(VS(TA+/\)+VS(TB+)\)){n |(5t S 5t*> + g |(5t > (5t*> } ® |tCM> ® |¢>S
(4.59)
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Using expression (4.55), which is up to the second order:

ok = 2{ o 2W 4 O(—6t* + 61 Z + O(—0t" — 68)Z + 0(6t* + 0t)W + 0(5t* — 5t)W}
: {n |6t < 6t*) + £ |5t > 6t) } ® |tom) © |)s

_ { o 8 |6t < Ot + 26(Z 4 3W) |6t > Ot*) } ® |9)s

(4.60)
where ...’ represent all the other terms in the expansion. Now, for the measure-
ment, consider a state:
() ap = 7 10t < 6t") + B0t > 6t*) (4.61)
Which gives (leaving out parts not relevant for time ordering):
anlC] 1) & [ daemietisHiastin o (]
~ /dae‘ia(ﬁs+ﬁA+ﬁB) : (7 (6t < 6t*| + B (6t > 5t*|>
(4.62)
A B 16t < ot + 26(Z + 3W) ot > 6t°) | @ Jtour) @ |)s
~ / dae WA (171 4 2(Z + 3W)BE) @ ltowr) @ 10)s
Under the conditions:
8W717 + 6WB§ =0
A (4.63)
BE=—3m
3
we isolate one ordering configuration of the second order term of time ordered
expansion of (4.45),
anlCl 1) = [ daem sl () Vi (13)5¢ @ o) (4.64)

where ordering was considered with respect to some parameter \.

In conclusion, by considering constraint equation with two quantum clocks, we
managed to construct a history state which can be projected to the subspace pertain-
ing to a particular time ordering branch of time ordering operator 7' (ordering with

respect to some classical scale \). In other words, within the given framework we
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Figure 4.3: At the beginning of the experiment Alice and Bob prepare their clocks in
the entangled state |t,.;) 4. They proceed the experiment by measuring their local
clock which triggers a ’kick’ on a subsystem accessible from their local laboratory.
Red wavy line denotes the entanglement. [17]

managed to obtain quantum controlled superposition of time orderings of considered
time ordered exponential, where now relative degrees of freedom of clocks served as
a control. Therefore, we can understand the history state as having a superposition
of time orderings, with respect to a scale . To make a parallel with the superposition
of orderings considered in the context of the Feynman propagator, we could attribute
this scale to the classical clock of some third observer who will see the superposi-
tion of processes corresponding to different orderings within time ordered operator,
where internal degrees of freedom of scattering particles could now represent con-

sidered quantum clocks.%!

Going back to our toy model, let us suppose for the operational setup that we
have Alice and Bob making measurements on their clocks in their local laboratories
and sending their statistics to the observer with a classical clock, ticking according
to the scale \. Measurement of the clocks will trigger a ’kick’ on the system and set
up an event in a physically meaningful way. Two clocks are in the entangled state of
relative degrees of freedom. The state is in the superposition in the entangled basis,
where eigenspaces are split with respect to fixing the temporal distance between two
kicks 6t*. Each clock will then set up an event performing a transformation on a sub-
system of a system S when their local time shows some predetermined values ¢] or
t5. We can imagine that the clocks are programmed in advance to kick in these times.

Within the analogy with the Feynman propagator, we can assume that the system

61We should emphasize that generally, it is not necessary to associate this classical parameter with
some classical clock. Classical clocks can be completely removed within the framework of Page-Wotters
formalism.
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is a field and that Alice and Bob are performing transformations on some localized
subsystem. We will label V' (¢;) = A and V(¢5) = B to make a connection with Figure
2.13. Particular preselections and the postselections on the systems A and B will re-
sult in scenarios where the observer C, will be able to see either A < Bor B < A, but
will generally see the superposition of orders (A < B) and (B < A). Namely, let us
note that the considered situation reduces to the usual case under the preparations

which set up 6t = 0, i.e. when the clock tick synchronized with each other.

Now, one may argue that the discussion could be lifted to the quantum field theory
context, by promoting the history state of the wave function of finite particle state
|1)(t)) to the history state of the wave functional, as it appears in the Schrodinger
functional formulation, which we will consider in Chapter (5). In light of that, we
will consider the following a generalization of our two-clock toy model to the case of

N clocks as a toy model for the general functional case.

~7
7

Figure 4.4: The grid of clocks imagined on a hypersurface. [16]

4.3 Time order exponential with N quantum clocks and continu-

ous limit

Let us now extend the discussion to the case of system S coupled to N clocks. Follow-
ing the previous discussion, one can imagine a classical distant observer, splitting up
spacetime and associating a grid of clocks to a particular hypersurface, as sketched
in Figure (4.4). The motivation behind such consideration can be understod as the

attempt to definine a spacetime operationally (instead of defining a spacetime with
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respect to abstract points, we will imagine it as defined with respect to physical rods
and clocks).
The constraint with NV clocks now reads:

N
r=1

Vs(T3) + Hg (4.65)

HMZ

here x labels each clock. History state is again defined via
(W) = / dae™C|®); s (4.66)

where

1P Ns=|t1...tn) ®|D)s (4.67)

Generalizing equation (4.45):

‘ql» — /dOée_ia<HS+zivl Hé) Teiizi\rzl foa d/\VS(TzJF)\)J ‘tl o tNa ¢> (4.68)
*)

Expanding (*):

Te i SN [ dAVs(Te+))

[ N s «
~1— z/o d\ (Z Vs(T, + /\)> + ( 22!)2 T/o dA\1d )\ (zgzl Vs(To, + m) (zﬁzzl Vs(To, + M))

r=1

(+%)
(4.69)
Focusing on the second order:
@ N N
T/ dAidXs (Z V(T + /\1)> (Z 5(Tyy + )\2)>
0 r1=1 xo=1
o N N
— / dMrd)y (Z Vs (Thy + M) ) (Z s(Thy + AQ)) O\ — o) (4.70)
0 zro=1
N N
+ (Z 5(Thy + >\2)> > Vs(Th, + )\1)> O( Ny — )\1)]
xro=1 r1=1
Assuming again form of potential
Va(Th, + M) = Vs(t2)0(Thy + Mg — £5,) (4.71)
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upon which we have,
(03 N . .
o= / s [ 3 (Vs(t;)vs(t;Q)é(Tm A = £5)0(Thy + Mg — t;)) O\ — \o)
0 r1,2=1

+ Z (VS t* )(5(Tx2 + Ay — t )5(Tz1 + A — t;l)) 9()\2 — )\1)]
z1,2=1

(4.72)

Keeping only parts relevant for the time ordering will imply taking only x; # 9

pairs,
N A
xR0, — Toy — 5, + 1) + Vs (2, Vs(82,)0(t2, — Toy — £, + T2}
z1,2=1;71#T2
(4.73)
Introduce notation:
0ty 4y = 1oy — o,
5Ty o =T, — To,
e (4.74)

A ~

War, = V(1) Vs (15,
Zyywy = Vs(ts,)Vs(t2,)
We see now that we need to pick two clocks z; and z, to compare the kicks and

readings between them. Upon picking these two clocks, calculation reduces to the

one stated in the previous section and we get,

e (C]- W) = / dae™ *FsT0a B9V (£Y Vs (£5) B o s » © |d)s (4.75)

where we used preparations,

|trel>1 ..... N = Nzq,xo ‘575961,962 < 5t;1x2> + fm,acz ‘&zmcz > 5t;1z2> (4‘76)

and a measurement,

e = ot s s < O} + B 0,y > 07 | (4.77)

We again considered time ordering relative to two clocks picked from the set of

N clocks.
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Expression generalises to continuous case by replacing sums with the integral
over the space and considering time ordering with respect to any two spatial points.

Namely, we would then have:
¢ = / dz (ﬁc(x) + VS(TC(I))> + Hy (4.78)
here x labels each clock. This generalizes (4.65). History state is again defined via
W) = /d@e_iaé@h...f\r,s (4.79)

where

[©)1.nv.s = IL|t(z)) @ [0)s (4.80)

would now be infinite dimensional tensor product state. Generalizing equation (4.45):

‘\If» _ /dae_ia(ﬁs+f” dacI:Ic(x)) \Teii L J3 dAVs(T'(z)+)) 1T, \t(m), ¢> (4.81)

-~

(%)

By doing preparations and measurements, we would get

(e (€] [0) = / dae~ieHs+ [ e @V (1) Vg (15) 1, 22)E (21, 22) @ |)s (4.82)

One should here note that taking an infinite tensor product has some caveats. For
example, the index set should be countable, and in our case it is dense and uncount-
able [5]. The prime problem comes from the topology of the index set. This is why
the construction which takes into account Hilbert space over each spacetime point is
set into the context of fibre bundles, where one can implement nontrivial topology
via glueing trivial bundles defined over finite spaces [4].

The main point of the continuous limit was to construct a field of clocks. In Chapter
(5) we will approach this consideration from a slightly different perspective, starting

already with a field.

Let us also note that the comparison we were making, regarding quantum switch
and Feynman propagator, is yet not fully refined and should be taken figuratively.
There is yet no clear formalism which would translate the notions of quantum chan-

nels and quantum supermaps in a precise way to the quantum field theory context.
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Our considerations may be understood as a step in this direction. %2 As we already
mentioned, the notion of supermaps is a mathematical way to put quantum channels
in superposition. Thus, it might be relevant, from the viewpoint of quantum gravity,
to introduce this concept in the field theory. Recall also that Page-Wotters formalism
was tailored to capture the nature of time one may expect in such a regime. There-
fore, it might as well be that the context where our considerations would realise

themselves naturally, would be the quantum gravity regime.

In the following chapter, we will implement a continuous limit of our N-clock
toy model, constructing a quantum field serving as a clock within the Schrédinger

functional formulation.

62The way we could approach these notions more rigorously may be in the context of categorical
formulation of quantum theory (the framework of process theories [1]) with respect to categorical for-
mulations of field theory (functorial quantum field theory [84]) as this gives clear common underlying
mathematical structure.
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5 Schrodinger functional representation and Page-Wotters

formalism

Quantum field theory is essentially quantum mechanics of infinite degrees of free-
dom, meaning that it too succumbs to Schrodinger’s formulation. Nonetheless, the
particularity of quantum field theory with respect to quantum mechanics is the imple-
mentation of spacetime symmetry. Precisely the lack of manifestly Lorentz invariance
when cast in the form of Schrodinger’s representation, along with the fact that its
renormalizability was proven relatively late [80], was the reason why Schrodinger’s
representation of quantum field theory never attained much popularity. Nonetheless,
lately, it gained attention in some cosmological [36][42][42] and conceptual con-
siderations (as for our purposes, where it is suitable for implementing history state
formulation of quantum mechanics).

We can work with this formalism in any curved globally hyperbolic spacetime since
there one can introduce a time function ¢ with a globally valid time direction. This
allows us to make a foliation of spacetime R x ¥, globally. We can also assume the
construction on a finite interval / encompassing encompassing relevant events, al-

lowing for the folliation () locally. In our considerations, we will restrict to

teICR
Minkowski spacetime.

Roughly speaking, we can use most of the basic intuition from quantum theory while
substituting the word wave function with wave functional, making coordinate rep-
resentations of state vector functional. In other words, in this representation states
|W) are functionals of a time-independent field ¢(x). We will restrict our attention to
scalar field configurations, defined as a map ¢ : M — C. The space in which | V) lives
is the space of square-integrable functionals L* (C (3;)),C (¥;) denoting a space of all
possible instantaneous field configurations. Eigenvectors of the operators, defined
via

O(7)|¢) = ¢(7)[¢) (5.1)

will define ’coordinate representation’ in functional space, where equation (5.1)
mimics the role of X|z) = xz|z) of one-particle QM. Here ¢(%) denoted just an

ordinary scalar function. The coordinate representation of the state |V) is now time

114



dependent wave functional V[¢(Z), t] = (¢(z)|¥(t)), for which it holds:

.0
15, 12(8)) = H|¥(t)) (5.2)

U[p(Z),t] = (¢|¥(t)) represents probability amplitude of observing the field con-

figuration on a spacelike hypersurface of constant time ¢.

The space of states is also equipped with a functional norm D¢, such that we have

a normalization:

[T = Do |U,[g]|? (5.3)
C(%t)

Here we will take what is standard procedure in constructing a space of square
integrable functions [79]; namely, we denote with L? space quotiented out with the
set of configurations which are almost everywhere the same ¥; ~ W, (i.e. which

differ on the set of measure zero)
L*(C (%), D) := L2 (C (%)) ] ~ (5.4)

such that we can say || ¥;|| = 0 = ¥, = 0. To define a probability density, we use
indicator functional A4 on a measurable subset of A C C(%;) such that |\, ¥[¢]|*
can be understood as the probability for the field configuration to be given by some

¢ € A. On this space, we can define now an inner product as,

(W, | W) = / DOW; (4]0 (5.5)

To quantize the theory, we must impose the canonical commutation relations.
This fixes the form of the canonical momentum field operator to be of the form of a
functional derivative,

(5.6)
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such that commutation relations hold:®3

[@(y), I(x)] = i6(x —y) (5.8)

Operators of the theory are represented as time independent functional kernels
Ol) = [ Dol10l6)(ol0) = [ DoO(6, )10 (5.9)
For the canonical variables we have,

O(x) = (¢'|2(x)|9) = ¢(x)d[6 — ¢]

5 (5.10)
II(x) = (¢'[1I(x)[|¢) = —i5¢(x)5 [0 —¢']

where we made use of a functional delta function and functional differentiation.
The equation (5.10) defines the action of the field operator ®(x) as the multiplication

with ¢(x),
O(x)|W) = o(x)¥[¢] (5.11)

The action of any operator is then defined as,

O(I1, )| T) — O (12, gb) e (5.12)

1 0¢
In the case of the Klein-Gordon field, we have the Hamiltonian:
1 .
H= 3 /d%: (I + |Vo|* + m?¢?) (5.13)

which, upon inserting (5.6) turns into a functional differential operator,

1 52
H=< [dz|- 2+ mPe? 1
Q/d:v( 5¢2(X)+|V¢| +m¢) (5.14)
63since for the functional derivative holds:
1)
5o ) = 8x ~y) G.7)

116



and Schrodinger equation into a functional differential equation,

0 1 52
Vot = [~ Vet ) Wt d. 19

Since the Hamiltonian does not explicitly depend on time, we may separate out
the time dependence of the wave functional ¥[¢, t] and write

U[p(x), 1] = e s [p(x)]. (5.16)

where U[¢(x)] satisfies the time-independent Schrodinger functional equation,

1 W [g(x)]

§/d31‘ (_W + (IVol* +m?¢?) ‘I’WX)]) = EV[p(x)] (5.17)

For more details, refer to [48], [27].

5.1 Schrodinger functional history state

We can also think now of promoting constraint equation
OZH0®15+10®HS (5.18)

into a functional differential equation such that the reduced state satisfies the
functional differential Scrodinger equation upon conditioning on the state of the
clock. Notice that in the equation (5.15) we still have standard partial derivative
with respect to time. Interpreting via Page-Wotters formalism, this implies that (at
this stage) time operator still corresponds to the standard coordinate operator, for
which we have eigenvalue equation 7'|t) = t|t). We can thus write the history state

in terms of clock being one particle system:

w»—/mmc®wwm (5.19)

which takes the form of standard Page-Wotters history state, reflecting a mere fact
that quantum field theory satisfies standard Schrodinger equation (5.2). Neverthe-

less, one should keep in mind that |¥(¢)) now represents a general state in the space

117



L*(C (%)), such that in ’coordinate’ representation,

W) = / dtft)e @ U, s (5.20)

Equation (5.20) corresponds to the situation of taking a perspective of one parti-
cle clock degree of freedom and looking at the history state of field state configuration
with respect to its preferred slicing.

Nevertheless, as we stated in Chapter (2.1.5), in order to implement symmetries of
spacetime, we need to look for unitary representation of Poincaré group which is
infinite dimensional. Thus, we cannot couple to the 1-dimensional system without
breaking relativistic covariance. To account for this, we can take into considerations

continuous limit of clocks, such that they correspond to the field =
7(Z)|7) = 7(Z)|7) (5.21)

where 7(7) represents operator corresponding to the field of clocks and 7(Z%) is a
scalar function representing field configuration. This now means that every degree
of freedom of a field can be associated to some time function with corresponding

foliation. For the clock momentum we would now have,

J

57(@) (5.22)

O(F) = —i

and the constraint equation gets promoted into functional differential equation

with respect to two functions:

oA|C|W) = o{r|(He ® 15 + 1c ® Hg)|¥) =0 (5.23)

.0 . Ay
(<5 + Hslola]) 10l = (5.24
where for the clock Hamiltonian we assumed the perfect clock form

. 5
H = = —1
CTYT TS @)

(5.25)
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In 'coordinate’ representation we have the equation:

)
O7(Z)

?

V[p(T), 7(7)] = Hs[¢(Z)]W]p(T), 7(Z)] (5.26)

This can be recognized as the form of Schwinger-Tomonaga equation:

(H(x) — 5025)) U[o] =0 (5.27)

where the formal solution of this equation will be given by the state functional[81]

Vo] =U [o,00] ¥ 0] (5.28)

Here o, denotes the initial condition on the hyper-surface and ¥ [0,] denotes the
state functional corresponding to this initial condition. Thus, Schwinger-Tomonaga
equation describes the evolution of the the state of a quantum field from one initial
Cauchy surface, to another and was introduced by Schwinger and Tomonaga [77]
attempting to make invariant generalization of Schrodinger equation. It might seem
interesting how we arrived to the same equation, bearing similar conceptual input,
out of somewhat different context. Nevertheless, it was argued in [18] that the
transformation functional will not be unitarily implemented on the Fock space rep-
resentation of the quantum field for the case of interacting fields, for the dimension
of spacetime grater then two, even in the flat spacetime. Particular problem seems
to be that the evolution from an initial surface to a final surface is dependent of the
choice of foliation, as was discussed by Kuchar in [56]. However, it is not so obvious
that this problems cannot be addressed in any way and that criticism cannot be sur-
passed. Keeping that in mind, we will for the sake of discussion proceed, recalling
that the motivation of using this approach was to lift the discussion of Section (4.2)

to the field theory context.

The history state would now be written as,

vy = / Drirle ® [U[r(@))s (5.29)

where Dt is the measure of functional integration. This would represent evolu-

tion of the field state |¥), spanned by the basis elements of {|¢)}, evolving relative
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Figure 5.1: Two time ordering of Feynman propagator. [82]

to the field configurations of a field 7(Z), given by (5.21).

5.2 Scattering amplitude

Let us recall that the idea of our considerations was to view the situation of two
time orderings appearing in the Feynman propagator (see Figure(??)), in the sense
of Hilbert state superposition of orders A < B and B < A, analogous to [89]. Recall
that Feynman diagrams are directly related to the scattering amplitude, which for

two particle 'in’ and ’out’ states takes the form:

S

A =" Aq1q, | P2p1>in =1 <CJ1C]2 172101>D (5.30)

where |¢)) = |pap1), represent asymptotic free states existing at the beginning of
the experiment t — —o0, |¢) = |¢2¢1), asymptotic state at the end of the experiment

t — oo. The definition of the S-matrix is given by (as discussed in (2.4.2)):

S = U(oo, —00) = T exp (—1/00 Hilnt(t)dt> (5.31)

where the Dyson operator comes as a solution of Schrédinger’s equation which
one gets from the constraint equation (5.18). Let us now implement Page-Wotters
formalism into the expression of scattering amplitude.

In standard quantum mechanics, we define the propagator between some initial

|I)g state at time ¢; and some final state |F')s at time tp:
G (Fytrs 1,tr) = s (F|Us (tr 1) T) (5.32)

S

To cast the propagator in terms of Page-Wotters formalism we simply fix the initial
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condition of history state |¥)), i.e. we identify ¢, with the time ¢; and |+ (¢¢]) ¢ with

|I)s in the equation:
wiol) = [ dtt)e @ Ut toswlos s (5.33)
The propagator then simply takes the form (see [37] eqv. (22)):
G(Ftp;1,t;) = o (tp |@s(F | ¥)) (5.34)

Now we can extend this to QFT scenarios via Schrodinger functional represen-
taiton. The propagator will now go from some initial hypersurface field configuration

¥, att, to final ¥, at ¢,:
G (F, tF, ],t]) =C <ty |®S<\Ij(ty)|\1]>>(tz,21) (535)

which enables us immediately to cast the scattering amplitude in terms of history

state. Namely, equation (5.30) would now have the form:
A= lim (tr|®o{q1q | ¥)) (5.36)
tp—00

where

W) = /dtmc ® U(t, —00)s|pap1)o.s (5.37)

Here U (t,—0)s is a solution to equation (5.2). In the coordinate representation,
wlol) = [ dt)c @ Ut —oo)sal ()al (1) ¥4l (5.38)
where we used (¢ | pip2) = W', [6] = af () a (7,) U\ [¢] [48] and thus,

A= / D¢ lim {tr| / dtft)c @ U [¢]sa (@) a (@) U(t, —oo)sal (72) al (51) U [¢]s
(5.39)

Here \If(()o) denotes noninteracting ground state. This equation assumes that the
clock is some external, non-interacting system and does not refer to Schwinger-
Tomonaga formulation. In this case, we can implement considerations stated in (4.2)

since we would again expect some time ordered exponential but this time acting on
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the kinematical state functional, constraining functional Fock space.

If we now want to implement the equation with respect to (5.29),

A= t;iinoo@ﬂ ®0(h1¢2 | (/DT‘T>C @ U(T, To)|p2}?1>o,s> (5.40)

where U/ now refers to the solution of (5.26). Or, we can write it as:

A= [ Do tim (te100%"r.6l5n () a (@) [ Drir)ostilrmjal (5)al (7)o nls
(5.41)
where, if we are choosing internal degrees of freedom of particles as clocks, we
can define initial clock configuration 7, to correspond to the |7)c = ), _, |tn), i.€.

an initial state of the experiment with respect to the initial particles.

In this way we can argue the connection between the toy model results of Chapter
(4.2) and the motivation given in the context of time ordering and Feynman prop-
agators. Namely, one can argue that given this construction, one can make specific
initial preparations and measurements such that time ordering, which is expected to
appear in the context of the solution (5.26) [81], would correspond with isolating

one or the other branch of the process, as depicted in Figure (5.1).
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6 Summary and outlook

In this thesis, we explored the notions of time and causal ordering as they appear
in quantum mechanics and perturbative quantum field theory. Special attention was
dedicated to the structure of time order exponentials, expanded into the Dyson se-
ries, where we attempted to understand their time ordering in a sense of ordering
appearing in a quantum switch. Namely, the main motivation of our contemplation
was to compare the orderings appearing on the level of the Feynman propagator,
with the superposition of a quantum switch. As it was explained in the Chapter (2.4)
the ordering operator plays an important role in the Feynman propagator and the in-
teraction process viewed as an exchange over the virtual particle, can be understood
as a superposition of two processes exchanging on mass-shell particle or antiparticle.
It seems plausible then to say that isolating one branch of the ordering configuration
in Dyson series expansion, would mean isolating one of the mass-shell exchange pro-

cesses.

Having in mind this motivation, we first considered time ordered exponential in
the context of standard quantum mechanics, as it appears in the solution to time
dependent Schrédinger equation with [H(t), H(')] # 0. This setting was analyzed in
Chapter (3) where we attempted to couple the ancillary system with an interaction
that would couple differently to one ordering branch or the other, enabling us to
use it as the control over the orders. Namely, if such coupling were to be possible,
one could use the ancillary system to serve as control over the ordering branches,
enabling us to isolate one of the branches via certain PVM measurements on the
ancillary state. Nevertheless, we convinced ourselves that it was not possible to in-
troduce a control degree of freedom, within the scope of the presented methods.
The puzzling aspect of these considerations is that according to the no-go theorem
stated in [24] one cannot have a superposition of orders without a control system.
We will thus conclude that there might be some inaccessible background degree of
freedom serving as a control, enabling a superposition of ordering configurations, or
that the superposition of orders is merely an artifact of this mathematical formalism
and should not be taken in the exact sense of a quantum switch. We emphasize that

these considerations rely on interpretations attached to a perturbative understanding
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of the theory and reasoning should be compared with algebraic description and that
it is yet not fully clear how to understand the notions of supermaps in QF7T con-
text. Since the notion of supermap is mathematical tool for encoding superpositions
of quantum evolutions, efforts towards the implementation of supermaps into QF'T’
context bares potential significant in the quantum gravity context. Our work can be

understood as the initiative in that direction.

In Chapter (4) we proceeded with the attempt to isolate one ordering branch in
time ordered exponential, this time in the context of history state with several clocks,
which now goes beyond the context of standard quantum mechanics (understood
in terms of Schrodinger’s equation). Here we managed to isolate contributions of
time ordering by suitable choice of preparations and the measurement of states in
the Hilbert space of relative degrees of freedom. We offered an interpretation in
terms of parameters appearing in the history state to have the meaning of classical
parameter corresponding to a time of some classical external clock. This means that
we will understand our results as indefiniteness appearing with respect to a classical
clock observing operations done by two entangled quantum clocks attached to two
different time functions, in the context of fixed Minkowski background. The fact that
the attempt succeeded might be understood as the fact that the history state encodes
all the correlated configurations between the system and the clocks, where now rel-
ative degrees of freedom of the clocks may be understood as control over the order
enabling a superposition. As a preliminary step towards the final construction, we

extended our model to N-clocks.

In the last section, we described Schrodinger’s functional representation of quan-
tum field theory, emphasizing its importance in the contexts of these discussions. We
argued that the extension to the Page-Wotters formalism is in this setting simple if one
takes one degree of freedom serving as a clock with respect to which hypersurfaces
of field configurations evolve. Nevertheless, since the symmetry of field theory space
has a unitary representation of the Poincaré group, which is infinite-dimensional as
discussed in Chapter (2.4), coupling one degree of freedom would not be compatible
with it and such a history state would not be Lorentz invariant. We thus extended

considerations by assuming a field whose space of eigenstates will serve as a clock for
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the evolution of another field with respect to it. With this simple argumentation in-
spired by the Page-Wotters formalism, we arrived at an already known equation, the
Schwinger-Tomonaga equation. This construction gave the evolution of one field with
respect to field configurations of the clock field. Nevertheless, as it was discussed in
[18][56], the Schwinger-Tomonaga equation suffers its difficulties, the biggest being
the dependence of the evolution from one Cauchy surface to another on the choice of
foliation and nonunitary for the spacetimes dim > 2. Given our considerations, if the
Schwinger-Tomonaga equation cannot be implemented in the quantum gravity con-
text, the consequence might be also that the program of the Page-Wotters approach
itself cannot be covariantly implemented. To lift Page-Wotter’s approach to field the-
ory setting, the construction of Schrédinger functional space should be understood
more rigorously and the problems of the Schwinger-Tomonaga equation need to be

circumvented.
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Appendices

Appendix A Probabilistic approach to quantum mechan-
ics

Any experiment can be understood in terms of preparation, when a particular exper-
imental set-up determines some initial conditions and the measurement in which the
prepared system is coupled to a measuring device, resulting in some output data.
Let us suppose a state p is prepared. Then a measurement will lead to some out-
come ;. In the context of quantum mechanics, the final results of the experiment
are described by probability distributions. Namely, deterministic dependence on the
initial preparation is replaced by statistical: ’...the individual results in a sequence of
identical, independent realizations of an experiment may vary, but the occurrence of one
or another result in a long enough sequence of realizations can be characterized by a
definite stable frequency.’

For a given observable A, associated with the outcomes {a;} measurement can be

described via mapping:
()" = p™ (a:]p) == p) (as) (A1)

where p denotes input state. One should note that we can have different input states,
yielding the same measuring statistics for a same measuring procedure; thus, we will

define states instead as an equivalence class p = [p] € S corresponding to the indis-

preparation measurement registration statistics

Figure A.1: [55]
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tinguishable statistics, where S will denote set of states.

The structure of possible output data can be either discrete or continuous. For ex-
ample, we can have a discrete set of pointer readings or we can have a measurement
resulting in a picture of a whole trajectory. To encompass both cases, we assume
that the outcomes of measurement form a measurable space, defined on a set U with
o-algebra ¥ given on a collection of open sets A(U). ®* A set U is topological space,
thus o-algebra is Borel o-algebra. The result of the measurement a will lie in a mea-
surable subset B C U and will represents an event. On a measurable space, we can
define a measure p as a map p : 3 — [0, 00] on a o-algebra ¥ such that
(1 u(®) =0
@) 1 (U;?'; X Aj) = 3% u(Ay) if A; N Ay = 0 for all j # k ( o-additivity)

As we said, algebra will be Borel o-algebra B(U) and the corresponding measure will
be Borel measure.

The measure is called a probability measure, if further conditions are satisfied:

1) positivity (/' (a;) > 0) and

2) normalisation condition (Y, s (a;) = 1)

Here we stated definition in terms of discrete measurement, assuming a finite set of

pointer readings {ay,...,a,}.

We define a statistical model as a pair (S, M) where S is a set of states and M rep-
resents a class of affine maps such that they map S into the collections of probability
distributions on some measurable spaces U. These maps represent measurements.
Namely, we define measurement as a map which transforms a state into a probability

distribution over possible outcomes,
p > ) (A.2)

In quantum mechanics, a set of states S will correspond to a set of complex Her-
mitian matrices p, satisfying

p>0, Trp=1 (A.3)

called density matrices. The set of all such matrices is a convex set S, extreme

64Taking that an algebra is closed under countable unions, defines that it is o-algebra.
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points being the one-dimensional projections p,, = | ¥)(¢ |. We will impose that
measurement maps any mixture of states into the corresponding convex mixture of
probabilities i.e. to preserve the convex structure of the state space ®. Meaning, for
a sequence of independent experiments, such that in each the object is prepared in
some of the states p,, with corresponding probabilities p, °®. The total state will be

called a mixed state and will be denoted by

p=p{pa}  {Pa}) =D Papa (A4)

we have for any measurement p — 1,
py( da) = Zpa,upa (da) (A.5)

Furthermore, referring to map (A.1), we see that any outcome a; induces a state
functional E;:

E;:p— Ei(p) :=pla;,p) (A.6)

called an effect. We can define now a measured observable as a map associating to

each outcome q; corresponding effect.

Effects will define either orthogonal or nonorthogonal measurement, depending on
whether they satisfy condition of projectivity.
Namely, a mapping F : B(R) — L(H) is a projection valued (PV) measure, corre-

sponding to orthogonal measurement, if

E(X)=E(X) = E(X)*forall X € B(R)
ER)=1 (A.8)
E(UX;) = Z E (X;) for all disjoint sequences (X;) C B(R)

where the series converges in the weak operator topology of £L(H). Here L(H)

5This is a property we will impose on a general quantum map, of which measurement is an exam-
ple.

6preparing such mixture can be understood as a consequence of some fluctuations in the measure-
ment apparatus.
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denote the set of bounded linear operators on . This is a Banach space with respect
to the operator norm, ||A| = sup{||A¢|| | ¢ € H,|¢|| = 1}. If the measurable
space (U, B) underlying a PV measure F is the real Borel space (R, 3(R)), then £
determines a unique self-adjoint operator A, and conversely, any real PV measure is
determined by a unique selfadjoint operator. %’

These properties of a PV measure F, along with continuity and the additivity

properties of the inner product guarantee that for any unit vector ¢ the mapping

po - B(R) = [0, o0] (A.9)
X € B(R) — p,(X) == (| E(X)|p)

is a probability measure. If ¢ € # is an arbitrary vector, then X — (p|E(X)|p) is
a real measure, with normalisation (¢ | E(R)¢) = (¢ | ¢), us(R) = ||¢]|* < oo. This
enables us to define integration with respect to our projection-valued measure, and
define self-adjoint operators with the continuous spectre. Namely, A := [zdE(z)
with its domain of definition D(A) consisting of those vectors ¢ € H for which the
integral [ 2*duf(x) is convergent. Namely, let A be a self-adjoint operator with the

domain D(A) C H. There is a unique PV measure F : B — L(H) such that

D(A) = {9067‘”/ d{p|E(z |90><OO} (A.10)

and for any ¢ € D(A)

(ol Alg) = /R wd(o|E(2)]0) (A11)

Let U be a nonempty set and B Borel o-algebra of subsets of U so that (U, B)

68

is a measurable space. A normalised positive *° operator valued (POV) measure

7An operator A € L(H) is self-adjoint if A equals its adjoint A*, and it is a projection operator if
A = A* = A2, The notion of adjoint operator can be extended also to unbounded operators defined
on a dense domain D(A). Then an operator is self-adjoint whenever D(A) = D (A*) and A = A*.

%8An operator A € L(H) is positive, A > O, if (¢ | Ap) > 0 for all vectors ¢ € H. A positive
operator is always self-adjoint. The relation A > B (or B < A ), defined as A — B > O, is an ordering
on the set of self-adjoint bounded operators.

129



E :B(R) — L(H) on (U, B) is defined through the properties:[41]

E(X)>Oforal X € B
EQ) =1 (A.12)

E(UX;) = Z FE (X;) for all disjoint sequences (X;) C B

where the series converges in the weak operator topology of £(#). For any POV

measure F : B — L(H) the following two conditions are equivalent:
E(X)?=E(X)forall X ¢ F

(A.13)
E(XNY)=EX)E(Y)forall X,Y € F

Thus a positive operator valued measure is a projection valued measure exactly

when it is multiplicative.

Now, one can show [44] that any affine functional u(p) has the form u(S) =

Tr SE, where E is a Hermitean matrix. Then, the relation
pp(u) =TrSE,, wuel, (A.14)

establishes the one-to-one correspondence between affine maps p — p, of the set
of density matrices into the set of probability distributions on U and the resolutions

of identity { E,;u € U}, i.e., the collections of Hermitean matrices { £, }, satisfying

E,>0, Y E,=1I (A.15)
uel

According to this, any pair (£, p) of an observable E and a state p induces a
probability measure .’ on the value space (U,B) of E. The number n}(X) is the
probability that a measurement of the observable £ performed on the system p leads
to a result in the set U. The notion of an observable provides a representation of the
possible events occurring as outcomes of a measurement. In this sense an observable
is defined as and identified with a POV measure £ : B — L(#H),U — E(U) on a

measurable space (U, B), describing the possible measurement outcomes.
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According to spectral theorem, we can then write a general observable as:

X = /)\E( \) (A.16)

If the measurements correspond to a discrete set, we will have,

E(d)) = [Z 5 (A=) By | dX (A.17)
k
where )\, € B(R). This then simply yields,
X =Y ME (A.18)
k

Appendix B Wick’s theorem

To derive Wick’s theorem, we split the operators into positive (which contains only

a operators and positive e **! phases) and negative part of the spectrum (which

contains only a' operators and negative part of the spectrum e™*#?),

d3p 1 .
-+ . 1p-T
o) = / EORv
1 (B.1)

atezp-x

[ &p
oy (I>_/(27r)3\/2_Eﬁ f2

We then introduce 7" product, as defined in Chapter (2.4),

T (¢1(x)pr(y)) =0 (2° — 4°) dr(2)d1(y) + 6 (3° — 2°) ¢r(y) o1 ()
=0 (2" —o°) (¢F ()07 () + of ()07 (v) + &7 (2)f (y) + o7 ()07 ()
+0 (v —2°) (o] (o7 () + oF (W) o7 () + &7 ()] () + &7 (y)¢7 (x))

(B.2)

where normal ordering, denoted by N, is defined to put annihilation operators
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on the right and creation operators on the left, so that for every operator we have:

A N

N(O) = O —(0|0|0) (B.3)

and where the contractions give Feynman propagator,

d(2)o(y) = 0 (2° — ) [¢F W] +0(° —2°) [of (), &7 (2)]
=0« — ") QOIor@e W) +6 (6 o) Oloxw@o)
= ( yO)D —I—@(y —x)D(y—x)
= Dr(z —y)
This construction then generally gives,
U . A . all possible contractions of
TIABC...2]=N |ABC ... 7 + (B.5)

A A A

ABC...Z

For more details, see [76].

Appendix C Supplements

In order to compute the action of the exponential in equation (4.43), we rewrite the

integrand using the Trotter product formula

N
—i%(ﬁA+ﬁB+ﬁs)e—i%(Vs(TAHVS(TB))

oo s

=L

lta,tB, ®)aB,s

Cial .
e |tA7tBa¢>A,B,S = 1\}151 ¢

(C.1)

Let us take Hg = 0 to switch to the interaction picture. Consider the action on

%Trotter product formula
tA+B) _ |im (etA/netB/n)"

n—oo
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first few terms:

n=1

B lta tn, 6) = e % Hatin) =i (s @a+Vs (o) |, 4 )
A A o (C.2)
e i w (Vs(ta)+Vs(ts)) g —ify (HatHp) tasts, @)

e—i%(Vs(tA)+Vs(tB)) ta+ %7 tg + %’ ¢>

Repeat iteratively:

n=2

L2 [ta,tp, ¢) = e N HatHR) =it (Vs(Ta)tVs(Tp) o —ify (Vs ta)+Vs(to)) |1y 4 & tp 4 & 4)
— e R AT AE) iy (Vs (T Vs(To)) |y & 4 4 &)t Hs iR (Vs(ta) V(1) | )

_ i (HatHp) lta+ 2, t5+ %>6—z‘%<Vs(tA+%>+Vs(tB+%)>e—i%ﬁse—z%(vs(mws(ts)) 16)

_ e—i%(VS(tA+%)+VS(tB+%))8_i%ﬁSe_i%(VS(tA)+VS(tB))‘tA + QWa,tB + QW‘I>

n=N

LN [ta,tp, ¢) =
a(n—1)

_ o m (Vs(tat e+ Vs (tp+205 ) il i (Vs(ta)+Vs(ts)) lta + o, tp + a, d)

_ ﬁnNZIG—i%(VS(tA-l-w)—FVS(tB-FQ(T;V_I))) lta+a,ts + a, )
(C.3)
where we used 11 to denote that the product is ordered with respect to the ar-
guments of potentials appearing in the exponentials (lowest arguments appearing
rightmost). Under the ordering condition, effectively [V (¢), V()] = 0 since regard-
less of the permutations of the string of operators, the resulting sequence will simply
be re-ordered with respect to the chronological sequence of a chosen parameter.

Thus, using the Baker-Campbell-Hausdorff formula’® formula:

lim ﬁN ’tA; ts, ¢> _ e—ia(Hs-&-ﬂA—‘,—f{B)e—iig:IVS(TA—F)\)-&-Vs(TB-‘r)\) |tA7tB7 ¢> (C4)
N—o00

To consider continuous limit N — oo, define \ = % suchthatn =1=A=0

70

XY — XY +3 XY+ (X [X Y] = [V [X Y]+
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and n = N = )\ = a. It follows:
lim [:N ’tA; ts, ¢> _ 6—ia(ﬁA+ﬁB)T€—i I dAVs (Ta+N)+Vs(Ts+N) ’tA; ts, ¢> (CS)
N—oo
where we introduced time ordered product with respect to A:

T(f(M)g(A2)) = 0\ — A2) F(M)G(A2) +0(Aa — AM)a(Na) F(A1) (C.6)
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7 Prosireni sazetak

7.1 Uvod

Iako sve paradigme fizike pretpostavljaju pojam 'vremena’, ’dogadaja’ i ‘promatraca’,
nac¢in na koji su ti pojmovi implementirani u formalizam cesto se znacajno raz-
likuje medu njima, Sto predstavlja konceptualni problem u reZimima u kojima bi
se dvije teorije trebale kombinirati. Jedna od prepoznatih podjela s obzirom na
navedene pojmove je podjela na teorije ovisne i neovisne o pozadini prostorvre-
mena. Kvantna mehanika, uz Newtonovu fiziku, specijalnu teoriju relativnosti i kvan-
tum teorija polja, ovisi o pozadini, bududi da je postavljena u fiksnu, nedinami¢nu
strukturu prostora i vremena, potpuno netaknutu pretpostavljenim dinamickim za-
konom. S druge strane, u opcoj teoriji relativnosti, i polje materije i prostorvri-
jeme su podvrgnute dinamickom zakonu koji teorija pretpostavlja. Ovo proizlazi iz
relacijske strukture opce teorije relativnosti, gdje se neovisnost o pozadini prostorvre-
mena moze pokazati kao posljedicu simetrije s obzirom na proizvoljne infinitezimalne
difeomorfizme. Suprotno tome, ne samo da kvantna teorija nema takvu simetriju,
veC ona u potpunosti prepusta pojam vremena izvan svog rezima. Naime, vrijeme
nije observabla teorije, niti je podvrgnuto kvantnoj neodredenosti, ve¢ se tretira kao
vanjski klasi¢ni parametar. I vremenski i kauzalni poredak zaparavo su, u kontekstu
standardne kvantne mehanike i kvantne teorije polja, potpuno netaknuti kvantnim
rezimom. Naravno, ovo predstavlja potesko¢u kada se razmatraju mogucdi konteksti
kvantne gravitacije u kojima prostorvrijeme, a time i samo vrijeme, treba kvantizirati.
Tu bi se moglo ocekivati da bi pojam kauzalnosti trebao podle¢i nacelu superpozi-
cije, uvodeci kvantnu neodredenost u strukturu prostorvremena, ¢inec¢i pozadinu i

dinami¢nom i probabilisticnom [15].

Imajudi to u vidu, u nedavnim istrazivanjima javila se ideja o kauzalnim odnosima
podvrgnutim kvantnoj neodredenosti [12][58][45][47]. Iznenadujuce je moZzda to
Sto je kontekst ovih razmatranja smjesSten u kontekst teorije informacija i kvantnog
racunarstva, gdje je konfiguracija kvantnog kruga (eng. quantum circuit) kompari-
rana s razlaganjem dogadaja u strukturi prostorvremena. PredloZeno je [22] da se
geometrija zica izmedu vrata (eng. gate) moze kontrolirati kvantnim stanjem kon-

troliranog dvorazinskog sustava (eng. qubita), uvodeci koherentnu neodredenost u



poredak procesa. Takva realizacija poznata je kao kvantna sklopka (eng. quantum
switch) i predstavlja primjer kauzalno neseparabilnog procesa. Ovi procesi, nekom-
patibilni s odredenim vremenskim redoslijedom, ali u odredenom podskupu jo$ uvi-
jek kompatibilni sa fiksnom kauzalnom strukturom, eksperimentalno su dokazani ko-
ri$tenjem takozvanih "kauzalnih svijedoka" [3][75]. Cak i iznad toga, uspostavljen je
okvir procesnih matrica (eng. process matrices) [63], gdje su uvedeni resursi nekom-
patibilni s definitnim kauzalnim redoslijedom kvantnih operacija. Glavni matem-
aticki alat za implementaciju neodredenosti uredenja jesu kvantne supermape [22].
S obzirom na motivaciju u kontekstu kvantne gravitacije, spomenuta je razmatranja
potrebno najprije implementirati u kontekst kvantne teorije polja, gdje nase istrazi-
vanje predstavlja korak u tom smjeru.

Stoga smo se pitali moze li pronaci primjer neodredenosti uredenja, poput one koja
se pojavljuje na razini kvantne sklopke, unutar okvira standardne fizike?”! Jedan od
mogucih mjesta za trazenje je Feynmanova interpretacija anticestica [35] i prostorno-
vremenska interpretacija procesa interakcije u smislu Feynmanovih dijagrama [34].
Naime, oznacavanjem dogadaja koji predstavljaju transformacije kao, A =’ Cestica
stvorena’ i B =’ Cestica anihilirana’, imali bismo slicnu neodredenost uredenja, na
razini superpozicije poredaka u Feynmanovu propagatoru. Unutar formalizma, ova
neodredenost operacija se manifestira operatorom vremenskog uredenja, koji ima

ulogu kronoloskog poretka nizova operatora.

Iz tog je razloga glavni cilj istrazivanja bio razmotriti poredak koji dolazi od oper-
atora vremenskog uredenja. Namjeravali smo promatrati operator vremenskog ure-
denja u smislu dvije ’grane’, koje odgovaraju dvjema definitivnim realizacijama ure-
denja. U suprotnosti sa superpozicijom poredaka koji se pojavljuju u kvantnom preki-
dacu, nastojali smo izolirati jednu od tih grana odgovaraju¢im odabirom priprema i
mjerenja. Uzimajuci za motivaciju ova pitanja, cilj diplomskog rada bio je istraziti
dodirne tocke i tocke razilazenja suvremenog razumijevanja vremena i kauzalnosti
u kvantnoj mehanici, s obzirom na ono u kontekstu kvantne teorije polja. U ova
razmatranja ¢emo ugraditi nase originalne rezultate, u vezi sa superpozicijom un-
utar operatora vremenskog uredenja. Ovaj diplomski rad nece istrazivati algebarsku

formulacije kvantne teorije polja, ve¢ ¢e se usredotociti na perturbativni pristup i

71¢ak i bez susreta s neodredenom metrikom koju bismo oéekivali u kontekstu kvantne gravitacije



odgovarajuce interpretacije. Takoder ¢emo pretpostaviti kao radnu idealizaciju kon-

cept idealizirane Cestice definirane u tocki, kao i operatore polja definirani u tocki.

7.2 Kvantne korelacije bez uzro¢nog reda

Kao sto je spomenuto u uvodu, standardna kvantna mehanika je teorija koja ovisi
o fiksnoj pozadini prostorvremena. Kao takva, a priori pretpostavlja neku fiksnu
kauzalnu konfiguraciju laboratorija, namecu¢i poredak s obzirom na neki globalni
pojam vremena. Unato¢ tome, ¢ak i u fiksnoj pozadinskoj strukturi, uzro¢ni poredak
moze biti slucajna varijabla: moze postojati situacija u kojoj Alice postoji prije Boba
s vjerojatnos¢u od 0 < ¢ < 1 i Bob postoji prije Alice s vjerojatnos¢u od 1 — g.
To ¢e tada biti predstavljeno kao probabilisticka mjeSavina dvaju mogucih poredaka
pla,b| x,y) = \p*=B(a,b | z,y) + (1 - N)pB=~(a,b | z,y). Takoder se moze formulirati
pojam uzrocnosti koji se ne odnosi na "fiksnu pozadinu" [63], [47], dopustajuci da
redoslijed dogadaja ovisi o operacijama koje se izvode na lokacijama tih dogadanja.
Naime, ovisno o izboru mjerenja, operacija na A moze utjecati na redoslijed u kojem
se pojavljuju B i C, koji leze u buduénosti A. Ovo ¢ini uzro¢ni poredak slu¢ajnom
funkcijom slucajnih dogadaja, a ne redoslijedom temeljnih prostorno-vremenskih

lokacija u kojima se dogadaji dogadaju.

O O, O3

| | |
A Ay & A3 4

Sl SZ 53
X1 5 X2 5 X3 N

I I |

I I Iy

Figure 7.1: Stranka S; ima slobodnu varijablu z; i kanal C; koji transformira ulaze
(primljene iz okoline) /; u izlaze (poslano natrag u okolinu) a; i O,. Pretpostavlja se
da su stranke izolirane tako da svaka stranka moze izvoditi operacije samo na svojim
slu¢ajnim varijablama.[6]

Takva razmatranja pretpostavljaju skup agenata (eng. agents), ugradenih u okolinu’?,

izvodeci lokalne pokuse u odgovaraju¢im lokalnim laboratorijima. Lokalni agent u

720kolina je kanal koji preuzima izlaze agenata i proizvodi inpute agentima.



lokalnom laboratoriju je ono Sto se naziva stranka, dok je odgovarajuci eksperiment
ono Sto definira dogadaj. Svaka stranka je izolirana od svih ostalih stranaka i komuni-
cira s okolinom samo jednom. U svakom izvodenju eksperimenta, agent prima fizicki
sustav iz okoline, odabire postavku mjerenja, izvodi mjerenje, dobiva ishod i pusta
transformirani sustav van. Kao $to se moze primijetiti, to je ve¢ pretpostavljalo pojam
vremena na lokalnoj skali svake stranke. Usprkos tome, globalno gledano, ne postoji
pojam vremena ili fiksnog uzro¢nog reda nad skupom stranaka. Uzro¢ni odnosi, koji

se sada tretiraju kao slucajni i dinamicki, tada se implementiraju na sljede¢i nacin:

Definition 12 (Stranka i uzro¢ni odnos izmedu stranaka.). [6] Stranka S; = (z;, a;, C})
je trojka koja se sastoji od slobodne slu¢ajne varijable z;”3, neslobodna slu¢ajna var-
ijabla a; i lokalna operacija C;. Varijabla z, naziva se ulaz od S;, a varijabla «a; se
naziva izlaz od S;. Za dvije stranke S; i S;, kaZemo da je S; u uzro¢noj proslosti Sy

akko z; < a;. Ova relacija je izraZzena sa S; < S;.

Drugim rije¢ima, uzro¢nost medu strankama definirana je tako da izbor postavki
u lokalnom eksperimentu ne moze utjecati na dogadaje koji su se dogodili u proslosti

ili istodobno, niti na uzro¢nu konfiguraciju tih dogadaja.

Uzrocne korelacije su one koje se mogu ugraditi u fiksnu pozadinu prostorvre-
mena. Kao S$to je ve¢ spomenuto, u odredenoj kauzalnoj strukturi jos uvijek moze
biti slu¢aj da uzroc¢ne veze izmedu dogadaja nisu sa sigurnos¢u poznate. Takve ko-

relacije, za slucaj dviju strana, bit ¢e definirane kao:

Definition 13 (Kauzalne korelacije izmedu dvije stranke). [6] Neka su S; i S, dvije
stranke. Distribucija vjerojatnosti p(a;,as | 1, z5) naziva se uzrocnom ako i samo

ako se moZze napisati kao

51552( 52j51(

play,az | 21, 22) = qp ar,az | r1,z2) + (1 —q)p ai,az | r1,x2)

(7.7)
= gp(a1 | z1)p(az | a1, 21, 22) + (1 — g)p(ar | az, 1, x2)p(as | z2)
gdje je ¢ vjerojatnost.
Sada se postavlja pitanje: postoje li opcenitiji uzroc¢ni odnosi, takvi da bi se prosir-
ili na novi skup korelacija slicno kao Sto se kvantne korelacije, krse¢i Bellove nejed-

nakosti, protezu izvan skupa lokalnog politopa?[14] I doista, kao Sto je pokazano

73Gdje (slobodna) slucajna varijabla takoder moZze biti sastavljena od vise (slobodnih) slu¢ajnih

varijabli, npr. z; = (x;,x;.’, x;”).



u [63], postoji moguénost kauzalnih korelacija koje nisu kompatibilne s definitivnim
temeljnim kauzalnim poretkom. Zatim, na slican nacin kao i razmatranja nelokalnosti,
za fiksni broj postavki i ishoda, uzro¢ne korelacije tvore uzrocni politop ¢iji aspekti
definiraju uzrocne nejednakosti [64] [10] [3]. Ako distribucija vjerojatnosti narusava
uzro¢ne nejednakosti, ne moze se rastaviti u smislu p(a, b | z,y) # \p*=B(a, bx,y) +
(1 — \)pB=~(a, bx, y) a nalazi se izvan kauzalnog politopa.

Razmotrimo uzro¢nu nejednakost na primjeru komunikacijskog zadatka izmedu dviju
stranke. Razmotrimo Alice S; i Boba 55, koji svaki primaju sustav u svom labora-
toriju. Nakon Sto odredena strana primi sustav, na neki nacin generiraju slucajne
varijable = (odnosi se na Alicein laboratorij) i ¥ (odnosi se na Bobov). Bob ¢e do-
datno generirati jo$ jedan nasumicni bit ¢/, koji odreduje treba li on pogoditi bit od
Alice ili ona treba pogoditi njegov bit. Proizvedeno pogadanje za Alice i Boba oznacit
¢emo s a odnosno b. Zadatak njihove igre je maksimizirati vjerojatnost uspjeha. Oz-
nacimo Alice S| = {z1 = z,a; = a} i Boba Sy = {z3 = (v,¥') , a2 = b}. Razmatramo
situaciju u kojoj je Bob u proslosti Alice, B < A. Bobu je dan dodatni bit ¢/, tako da
ako je iy = 0, Bob ¢e poslati svoj bit y Alice, omogucujuci joj da sada pogodi njegov
bit savrseno p(a =1y |y =0) =1, a ako je ¥/ = 1, morat ¢e pogoditi bit z nasumicno

pb=xz|y =1)=1/2,daje

(7.8)

W] o

(pla=yly =0)+pb=2|y =1)) <

Kako se ispostavilo, svako uredenje u S| <gt s, ili S; =g Ss, ili probabilisticka
mjeSavina ovih, ne nadmasuje vjerojatnost uspjeha od p*"*“ = 3/4. Za kauzalne dis-
tribucije, najveca vrijednost za vjerojatnost uspjeha je 3/4, odrazavajudi Cinjenicu da
u najboljem slucaju stranka moze poslati vrijednost svoje slobodne varijable drugoj
stranki, omogucujuci drugoj da savrSeno pogodi, dok sama tada mora pogoditi na-

sumicno..

Vazno je primijetiti da su uzro¢ne nejednakosti ogranicenja neovisna o teoriji:
formulirana su neovisno o fizici za koju se pretpostavlja da je vazeca u svakom
lokalnom laboratoriju. Da bismo dobili klasifikaciju kvantnih korelacija koja dop-
usta neodredene kauzalne strukture, sada ¢emo otvoriti ’crne kutije’ koje definiraju

stranke i pretpostaviti valjanost kvantne mehanike na razini svakog lokalnog labora-



torija, $to nas vodi do formalizma matrica procesa (eng. process matrix formalism).
Formalizam matrica procesa predstavlja op¢i fromalizam za proucavanje korelacija
izmedu lokalnih eksperimenata bez pretpostavke unaprijed definiranog uzro¢nog
poretka. Sli¢no teorijski neovisnom formalizmu, sada se moZemo zapitati jesu li
sve situacije obuhvacene dekompozicijom oblika (7.7), gdje sada pretpostavljamo da
su mape izvedene na sustavima unutar laboratorija kvantne. Dekompozicija se sada
moze izraziti u terminima procesa, Cija ¢e separabilnost definirati klasu takozvanih

kauzalno separabilnih procesa,

Definition 14 (Kauzalno separabilni procesi izmedu dvije strane). Definirajmo pro-
ces WAB za dvostrani skup lokalnih eksperimenata S = {A, B} kao skup vjerojat-
nosti WAB = p(M;, M,) dobiveno kroz kvantne operacije M;, M, izvedeno un-
utar svakog lokalnog laboratorija. Kauzalno separabilni procesi su oni koji se mogu

napisati kao konveksne mjesavine uredenih procesa:
WAB — qWAZB L (1 — )B4 (7.9)

gdje je g vjerojatnost.

Korelacije koje proizlaze iz procesa koji su kauzalno neseparabilni nazivaju se
kvantnim korelacijama s neodredenim ugrocnim poretkom, ali se ipak mogu ostvar-
iti u globalnoj kauzalnoj strukturi. Naime, razlika izmedu kauzalno separabilnih
i kauzalnih procesa slitna je kao izmedu separabilnih (neseparabilnih) kvantnog
stanja i Bellovog lokalnog (onog koje ne narusava Bellove nejednakosti) stanja: sep-
arabilno kvantno stanje je Bellovo lokalno, ali obrnuto je poznato je da nije uvijek
istinito (postoje neseparabilna stanja koja ne krsSe Bellove nejednakosti). Fizikalno
realizirani kauzalno seseparabilni procesi su procesi koji imaju neki sustav (kvantni
ili klasi¢ni) kao kontrolu nad poretkom, ¢ime je poredak dogadaja neodreden. To
se jo$ uvijek moze spoznati u pozadinskoj kauzalnoj strukturi, kao Sto je eksperi-
mentalno spoznato i dokazano putem takozvanog kauzalnog svjedoka [75] [40]. S
druge strane, proces koji bi narusio kauzalnu nejednakost ne moze se realizirati u
odredenom pozadinskom poretku, stoga ne ¢udi da fizicka realizacija takvih procesa

jo$ nije poznata. 74.

74ali se moze ocekivati u kontekstu kvantne gravitacije



7.2.1 Kvantna sklopka

Jedan od primjera uzro¢no neodvojivih procesa je takozvana kvantna sklopka (eng.
quantum switch), o kojem se prvi put govori u kontekstu kvantnog racunanja (eng.
quantum computing) [22]. Kauzalno neseparabilni procesi mogu se shvatiti kao pre-
vladavanje neodredenosti u redoslijedu dogadaja koji bi se mogli pripisati klasi¢noj
slucajnosti, uvodeci ideju o uzrocno-posljedicnim odnosima koji su podvrgnuti kvant-
nim koherencijama. Kao $to smo ve¢ spomenuli, jedan od nacina implementacije
takve kvantne koherencije je uvodenje dodatne varijable, koja sluzi kao kvantna kon-
trola nad zicama kruga, a time i nad redoslijedom izmedu vrata. Stoga mozemo imati
linearnu superpoziciju redoslijeda A < Bi B < A), kao §to se vidi na slici (7.2). Ovo
se moZe prirodno shvatiti ako se razmislja, u terminima Choi-Jamiotkowskog (CJ)
izomorfizma, o kvantnim operacijama kao o kvantnim sustavima, podvrgnutim kvant-
noj superpoziciji. Preslikavanja izmedu ovih sustava (koje predstavljaju kvantne op-
eracije) bit ¢e preslikavanja 'viSeg reda’, takozvane supermape. Okvir kvantnih su-
permapa omogucuje nam implementaciju superpozicija kanala i na precizan nacin

obuhvatimo neodredeni kauzalni poredak.

- s = 1051
Control e =10 Control ey =11y Control A2
qubit qubit qubit
A =
LN
e o /7 ] Target, «#°
a ) 7 7 g¢ ) ~
W Ta,.gé/‘//) o qubit 'V
B byt ﬂ@/

Figure 7.2: Shema kvantne sklopke. Stanje kontrolnog kubita odreduje redoslijed
kojim dvije strane djeluju na ciljni kubit, a ovisi o stanju kontrolnog kubita. Priprema
kontrolnog kubita u superpoziciji inducira kontroliranu superpoziciju konfiguracija,
Alice < Bob i Bob < Alice.[75]

Uzmimo u obzir stranku S; koja ima slobodnu (klasi¢nu) slucajnu varijablu z;
i neslobodnu (klasi¢nu) slu¢ajnu varijablu a; koja prima kvantni sustav iz okoline
I;, izvodi lokalnu operaciju C; i vraca transformirani kvantni sustav O, u okolinu.
Ova lokalna operacija C; moZze se smatrati kvantnom operacijom od I; do O;. Cesto

opisujemo kvantne operacije u dijagramskom jeziku (jezik kvantnih sklopova), kao



Sto je prikazano na slici (2.12).

Transformacije na kvantnim sus-

tavima predstavljene su vratima (eng.

gates) (ili kutijama), iz kojih ulaze i ,,4 C

izlaze Zice, koje predstavljaju sustave. B

Kvantno stanje sustava zatim se razvija N f 9

kroz slijed kvantnih vrata, poredanih u __ .
Figure 7.3: Sustavi u kvantnom krugu

vremenu, s lijeva na desno. Vrata koja predstavljeni su kao Zice, a operacije kao
kutije. Stanje sustava razvija se kroz niz

kvantnih vrata. Pretpostavlja se da vrijeme
macije pojedinacnih sustava. To mogu teée s lijeva na desno. [22]

predstavljaju kvantne kanale su transfor-

biti unitarna vrata ili opéenito, kvantni
kanal sa Sumom (eng. noisy channel). Kutija s viSe Zica opisuje interakciju izmedu
odgovarajucih sustava.

Matematicki, kvantne kanale opisujemo preko superoperatora. Pozivat ¢emo se
na superoperatore i kvantne kanale kao na najopcenitiju evoluciju matrice gustoce

koja ¢uva normalizaciju (tj. trag) [71]7° :

C:p p =C(p) (7.10)

uz ogranicenje da je preslikavanje:

* linearno:

Vpu,pa € BH), 0, € C:  Clapa+ Bps) = aCpa) + BC(p5)  (7.11)

gdje B(H) oznacava omedene linearne operatore na Hilbertovom prostoru
e C C¢uva hermiti¢nost: p hermiti¢an ako p hermitican
* (C je potpuno pozitivan

— pogitivan: p/ >0=p>07°

- potpuna pogzitivnost: C4 je potpuno pozitivan na H 4 ako za sve moguce

ekstenzije H4 — Ha ® Hp, preslikavanje C4 ® I je pozitivno

7>dok su kvantne operacije i kvantni proces opéenito ograni¢eni na preslikavanja koja ne povecavaju
trag
7°gdje ¢ > 0 znadi (¥|ply) > 0 za Ve



e Ccuvatrag: Trp' =1if Trp = 1.

Koristit ¢emo Krausovu reprezentaciju ovog preslikavanja:
C(p)=>_ MpM! with Y MM =1 (7.12)

Najjednostavniji primjer je unitarni kanal za koji vrijedi U (p) = UpUT gdje UTU =
UUt =1.

Takva potpuno pozitivna preslikavanja koja ¢uva trag (C' PT P preslikavanja) mogu
se rastaviti na skup potpuno pozitivnih preslikavanja bez povecanja traga (C' P), koji
definiraju najopcenitiju operaciju na sustavu. C'P preslikavanje moZze se shvatiti kao
generalizacija mjerenja, gdje je vjerojatnost da je odredeno preslikavanje primijen-
jeno jednaka tragu rezultirajuceg stanja. U najopcenitijim terminima, kvantna mapa

se definira kao mapa koja zadovoljava dva aksioma:

Axiom 9. Kvantna mapa mora preslikavati skupa kvantnih stanja u skup kvantnih

stanja.

Axiom 10. Sve kvantne mape moraju biti konveksno-linearne na skupu kvantnih

stanja.

Naime, ako imamo neki p = )., p;p; koji predstavlja ansambl mjeSovitih stanja
{(pi,pi) | © € I}, za danu transformaciju p — C(p) tada ocekujemo da ¢emo imati
{(C(p;),p:) | i € I}, predstavljajuci novi ansambl u kojem su sve komponente pocetnog

stanja evoluirale prema danoj transformaciji.

Da bismo predstavili koncept supermape, prvo moramo uvesti ideju izomorfizma
Choi-Jamiotkowskog. Uspostavljajuci izomorfizam izmedu C' P mapa i linearnih oper-
atora na prostoru tenzorskih produkata, izomorfizam Choi-Jamiotkowski nam omogucuje

da kvantne mape promatramo u smislu prikaza kvantnih stanja, [20]

Definition 15 (Choi-Jamiotkowski izomorfizam). Neka je dato neko C'P preslika-

vanje, iz skupa linearnih preslikavanja £ preko nekog Hilbertovog prostora,

M L(Ha) = L(Hp), (7.13)



tada postoji preslikavanje C, uspostavljajuci korespondenciju jedan prema jedan
izmedu linearnih mapa M € L(L(Ha).L (Hp)) i linearni operatori na L(Ha ®
mathcal Hp) kako slijedi,

M =C(M) = (T, @ M) |®) (| € L(Ha @ Hp) (7.14)

Ovdje 7, , oznacava preslikavanje identiteta na # 4, a |®) je definiran kao nenor-

malizirano maksimalno prepleteno stanje:
) = Z [i)ali)a € Ha®@ Ha (7.15)
Takvo preslikavanje C
C:MeL(LHa),L(Hp) > MeL(HsQHp) (7.16)

zove se Choi-Jamiotkowski izomorfizam.

Neka je dato neko Choijevo preslikavanje M € £ (Ha ® Hp), odgovarajuce C'P

preslikavanje je
M : E(HA) — ﬁ(HB)

par Tra ((ph ®1p) M)

(7.17)

gdje superskript 7' oznacava transpoziciju. Ako Choi mapa predstavlja C PT P

preslikavanje, imamo

Trg M =14 (7.18)

ako M je C'P preslikavanje, tada vrijedi
Trg M <1 (7.19)
Vjerojatnost da se neko C'P preslikavanje M, primijeni na ulazno stanje p,4 je
pr=Tr ((py @ 1p) My) (7.20)

Ako skup C'P mapa oznacimo s {M},},, tada iz uvjeta normalizacije moZemo vid-

jeti da C' PT P preslikavanje M se moZe napisati kao zbroj C'P preslikavanja: { M},

10



1:Zpk:ZTr((p£®]lB) Mk) :Tr((p£®]13) M) (7.21)

Kvantne operacije (C'P) stoga se mogu promatrati kao pozitivne linearne matrice

na stanju tenzorskog umnoska preko C'J izomorfizma.

Kvantna sklopka definirana je kao posebna vrsta preslikavanja izmedu dviju kvant-
nih operacija, nazvana supermapa kvantne sklopke. Naime, budu¢i da se kvantna op-
eracija moze shvatiti kao generalizirani pojam kvantnog stanja, mozemo definirati
takozvano ’preslikavanje viSeg reda’ nazvano supermapa, definirano kao transforma-

cija kvantnih mapa,
S:L(LHin), L (Houw)) = L(L (Hiw), L (Hou)) (7.22)

za neke Hilbertove prostore Hi,, Hout , Hin' 1 Hour» gdje je L(H) prostor linearnih
operatora na Hilbertovom prostoru.
Bududi da kvantne supermape moraju predstavljati fizicke transformacije kvant-

nih preslikavanja, namec¢emo:

Axiom 11. Sve kvantne supermape preslikavaju kvantna preslikavanja u kvantna

preslikavanja.

Axiom 12. Sve kvantne supermape moraju biti konveksno-linearne na skupu kvant-

nih preslikavanja.

Kao u slucaju kvantnih preslikavanja, ako ulazni kvantni kanal C opisuje statisticki
skup kvantnih kanala {(C;, p;) | i € I}, tada izlazni kvantni kanal S(C) mora opisivati
ansambl {(S (C;),p;) | i € I}. Dakle, aksiomi su u potpunoj analogiji s aksiomima za
kvantne mape.

Zatim definiramo kvantnu sklopku preko supermapa S,

S(A® B)(pr) := BA(0|g pr|0)q + AB(llgpr|l)e (7.23)

11



tj. u Krausovoj reprezentaciji

S (A,B) (pr) = Z SijpTSiTj (7.24)
1,J
gdje

gdje Alpr) =3, AiprAl i Blpr) =X, BiprB]

Drugim rije¢ima, kvantna sklopka sastoji se od dva kvantna sustava: ciljni sustav
pr 1 kontrolni sustav, pc te dva C'P preslikavanja A, B koje djeluju na ciljni sustav.
Kontrolni sustav sluzi kao kontrola nad redoslijedom preslikavanja na ciljnom sus-
tavu, tj. ako je )¢ = |0), rezultirajuca operacija je A o B, a za |))¢ = |1) imamo
Bo A. Stoga se koherentnost kntorolnog sustava prevodi se u koherentnost u redosli-
jedu operacija. Na primjer, kontrolni kubit u superpoziciji, [¢)). = (|0). + |1)) /V/2
rezultira superpozicijom dva razli¢ita reda operacija.

Takoder mozemo imati kvantnu n-sklopku, za n-tu permutaciju operacija [72]
Sulz)e[¥)e = |2)Ilo | T)e (7.26)

ovdje |¥); oznacava ciljni sustav, koji moze biti proizvoljne dimenzije; |z). oz-
nacava kontrolu, koja sada mora biti n! dimenzionalna; IL, := U, (v-1) - - - Us,(1)Us, (0)>

oznacava produkt n unitarnih vrata iz nekog zadanog skupa U := {Uy, Ug, .. .}.

12



7.3 Vremensko uredenje

Operator vremenskog uredenja matematicki je objekt koji se pojavljuje u kontekstu
perturbativnog razvoja u nerelativistickoj kvantnoj mehanici i teoriji polja. Pred-
stavlja operaciju prslagivanja niza operatora prema njihovom uzro¢nom redoslijedu.
Naime, za slucaj observabli polja povezanih s razli¢itim dogadajima z,y € M, gdje

M oznacava prostorvrijeme, vremenski ureden proizvod definiran je s

T () (y)) = P(x)Y(y) x not in the past of y 7.27)

+(y)p(x) otherwise

'+’ se odnosi na Cinjenicu da za bozonska polja koristimo komutacijske relacije
za kronoloski redoslijed operatora polja, Sto odgovara znaku '+’, dok za fermionska
polja koristimo antikomutacijske relacije, koje odgovaraju ’—’.
Razmotrimo prvi kontekst nerelativisticke kvantne mehanike. Dinamika stanja odredena

je deterministickom evolucijom, definiranom Schrédingerovom jednadzbom:

OlY(t) 4

i 5 = H(t)|w(t)) (7.28)
with the solution

(1)) = U(t, to)[1b(to)) (7.29)

Da bismo pronasli oblik U(¢, ¢y), razmotrimo infinitezimalni razvoj oko neke tocke

[t +6t)) = [1—idt - H(t)]y(t)

n (7.30)
= O )

Prema tome, vrijednost ¢ u bilo kojem trenutku ¢, moZe se izraziti u smislu nje-
gove vrijednosti u nekom pocetnom trenutku ¢; (< ¢;) kao produkt deterministicke

evolucije u svim infinitezimalnim intervalima 6t, izmedu ¢; i t;:

f
U (ty) = (H €_i6t“ﬁ(t“)) W (t) (7.31)

i

Naivno, u lim(é — 0) to bi dalo rjeSenje oblika:
A t A
U ~ exp (—z/ H(t)dt) (7.32)
to

13
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to to
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to -+ lower triangle

} f “tl

Figure 7.4: Geometrijska interpretacija vremenskog uredenja u ¢lanu drugog reda
razvoja. [76]

koji bi nakon razvoja izgledao:

t -\ 2 t t
U(t,to)zl—z’/ dt H(t)) + <_;) /dtl/ dty H(t)H () + . .. (7.33)
to to

to

Medutim, primijetite da ovaj razvoj pretpostavlja da Hamiltonijani koji se odnose
na razliCite trenutke vremena komutiraju. UnatoC tome, opcenito se mora voditi
ratuna o [H(t), H(t')] # 0. Naime, razmotrimo drugi red, jer je to najnizi red u kojem
se javlja problem. Dvostruki integral koji ide od ¢, do ¢ predstavlja integraciju po ci-
jelom kvadratu. Unatoc¢ tome, radnje operatora trebaju biti poredane tako da djeluju
prvi operatori definirani ranije, a zatim oni kasniji. Na slici (7.4) moZe se primi-
jetiti da bi integral trebao biti podijeljen na dva dijela, od kojih svaki pripada jed-
nom trokutu gdje bi operatori trebali biti odgovarajuce poredani: poredak povezan s
donjim trokutom trebao bi biti H(t,)H (t,), uzimajuéi u obzir da u tom podruéju in-
tegracije t; > t,, dok bi poredak povezan s gornjim trokutom trebao biti H (t,)H (),
uzimajudi u obzir da je u tom podrudju integracije ¢, > ¢;. To se moZe uciniti defini-

ranjem operatora vremenskog uredenja; za drugi red imamo:

T (ﬁ, () Hy (t2)> — Hy (0) Hy (t2) 00t — t) + Hy (£2) Hy (8) 0(ts — 1) (7.34)

14



Operator za vremensko uredenja dijeli integraciju na integraciju kroz gornji i donji

trokut, dajuci odgovarajuci poredak operatora. Razvoj se sada moze napisati kao:

dt1 dtQT H] (t) HI@Q)} .. (7.35)

U(t,to)zl—i/ dt, H

to

RijeSenje za slutaj [H (t), H(t')] # 0 stoga glasi:
A t A
U (t,tg) = T exp {—z/ dt’H(t')] (7.36)
to

gdje je T operator za vremensko uredenja, kako je gore definirano. Mozemo vid-

jeti da vremenski poredak nastaje i razmatranjem definiranja jednadzbe za U (t,to):

90t t0) = ~H O (1, 1) (7.37)

i iterativno rjeSavanje jednadzbe. Pocevsi od:

t
Ut,itg)=1—1i / dty H(t,)U (t1, to) (7.38)

to

nakon uvrStavanja U (¢4, tg) natrag u jednadzbu:

U(t,to)zl—i/tdtlﬁl( )[1—i/tldt2f]( )U(t2,t0)]

to

=1+ (- )/jdz&1 /dtl/ dto H (1) H (t3) U (ta, to)

Sada primijetite implicirani vremenski poredak varijabli integracije: ¢, < ¢, <

(7.39)

t; < t. Drugi red se moZe promatrati kao integracija preko donjeg trokuta predstavl-

jenog na slici 7.4. Ovo se moze prepisati u smislu integracije kroz cijeli kvadrat kao:

/dtl/ dts Hy () Hi (t2) /dtl/ dth Hy (t) Hy (tQ)}

= 5/ dtl/ dtoHy (ty) Hy (t2) 0(ty — to) + Hy (t5) Hy (1) 0(ty — t)
to
(7.40)

gdje smo uveli operator vremenskog uredivanja koji, kao $to je prije receno, dijeli

15



Figure 7.5: Polaze¢i od stanja |¢(t,)) = |l) do nekog konacnog stanja |¢(t)) = |k)
Dysonov operator opisuje sve moguce putove izmedu pocetno i konacno stanje. [83]

integraciju na integraciju kroz gornji i donji trokut. Imamo:

A~

¢ R (—i)2 [t ¢ . . X
U(t,to):l—z'/ dnFi(h) + /dtl/ atsT { iy (1) Hy (1)} 0 (12, 10)
to to to
(7.41)

Nastavimo li iterativno:
A t A~
U(t,tg) =T exp [—z/ dt’H(t’)] (7.42)
to

ovaj se operator obi¢no naziva Dysonov operator.
Svaki red u Dysonovom operatoru moze se vizualizirati kako prolazi kroz razlicite

puteve, podijeljen na sve vise medustanja kako se red povecava (vidi sliku 7.5).

U kontekstu teorije polja, Dysonov operator razmatra se u slici interakcije i znaca-

jkama u srediSnjem objektu teorije, naime, matrici rasprSenja:

t
S <V]) = tllr&T (exp <—’l/ V](f)d?f)) = tlg& U‘(t’ —1) (7.43)

—t

koji salje asimptoticka ulazna stanja |¢)(—o0)); u asimptoticka izlazna stanja | (+00));.

Isprva bi se moglo ocekivati da vremenski poredak ovisi o specificnom izboru vre-
menske funkcije s obzirom na koji se vr$i poredak. Unato¢ tome, tvrdnja da vremen-

sko uredenje dolazi iz kauzalnih aksioma nametnutih S-matrici (vidi [43]) implicira
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nepromjenjivost operacije vremenskog uredenja. Da bismo rasvijetlili ovu ¢injenicu,
razmotrimo prvo vremenoliko odvojene tocke, x; i 9, (x1 —x9)? > 0. U ovom slu¢aju
imamo uzroc¢ni poredak izmedu x; i x5, a time i predznak ¢, — ¢, gdje su ¢; i t5 pred-
stavljaju odgovarajuce vremenolike komponente, neovisno je o referentnom sustavu.
Medutim, u slu¢aju prostorno odvojenih dogadaja, (z; — x2)? < 0, predznak ¢ty — t;
nije neovisan o referentni okvir i stoga Lorentzova transformacija mogu obrnuti slijed
vremenskih trenutaka. Invarijantnost vremenskog poretka ovdje je osigurana pozi-

vanjem na uvjet mikrokauzalnosti

Naime, podsjetimo da nekomutativnost operatora fizikalno znaci da se odgovara-
juce velicine ne mogu mjeriti istovremeno. Medutim, bez obzira koji su operatori
vezani uz prostorno odvojene tocke, budu¢i da izmedu njih ne postoji kauzalna veza,
uvijek se mogu vrsiti simultana mjerenja. Uzimajuéi u obzir komutaciju, faktori u
produktu vremenskog slijeda uvijek se mogu poredati prema njihovom kronoloskom
redoslijedu. Stoga, u oba scenarija, operator vremenskog uredenja ostaje neprom-

jenjiv. Primijetite da smo ovdje koristili sljede¢u implikaciju:

mikrokauzalnost = invarijantnost vremenskog uredenja (7.45)
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8 Pristup s ancillom

U nastavku ¢emo predstaviti orginalne rezultate disertacije u kojoj ¢emo analizirati
operator vremenskog uredenja u kontekstu u vremenski uredenih eksponencijala,
rjeSenja vremenski ovisne Schrodingerove jednadzbe. Usredotocit ¢emo se na ekspanz-
iju vremensko uredenog eksponencijala u interakcijskoj slici, do ¢lana drugog reda.
Kao $to je detaljno objasnjeno u Odjeljku (7.3), operator vremenskog uredenja sadrzi
superpoziciju duz svih moguc¢ih konfiguracija uredenja, gdje ¢emo svaki izraz koji
predstavlja zasebnu konfiguraciju, u ovom tekstu, nazvati ’granom’ uredenja vre-
menskog operatora. Potaknuti raspravom u odjeljku (7.2), razmis$ljat ¢emo o sus-
tavu kao o superpoziciji prolaska kroz razli¢ite moguce grane vremenskih konfigu-
racija. Glavno pitanje rada sada je moZe li se izolirati grana vremenskog uredenja
pomocu vezanja sustava na pomocni sustav, koji ¢emo nazivati ancillom, te izvodenja
neizravnog mjerenja na sustavu. Ideja je da bi se ancilla interakcija mogla vezati na
odredenu konfiguraciju vremenskog poretka, tako da bi mjerenje na ancilli urusilo

superpoziciju konfiguracija, izoliraju¢i odredeni poredak.

Na slici interakcije, vremenski ureden eksponencijal glasi,
Ut ty) = Te i WHIE) (8.1)

gdje T' oznacava operator vremenskog uredenja. Nakon razvoja imamo:

U (t,t6) = 1+ (—i) /tdtlHI () + S /tdtldtQT(HI () Hy(6) + - (8.2)

to 2 . to

Usredotocit ¢emo se na ¢lan razvoja do drugog reda, gdje vremensko uredenje

pocinje biti relevantno;

o /t dty /t dty (Hy (t1) Hy (t2) 0 (t1 — t2) + Hy (t2) Hy (1) 6 (t2 — t1)) (8.3)

2!

Primijetite da su integralni doprinosi dvaju razli¢itih vremenskih redoslijeda isti,
$to ih ¢ini nerazlucivim.

Poku$ajmo sada projicirati na ¢; > t, ili ¢; < ¢, granu evolucije; da bismo to u¢inili,
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razmotrimo sustav |¢(¢)) vezan s pomo¢nim sustavom kontinuiranog spektra |a(t)):

(W (t)) = [¢()]a(t)) (8.4)

Sada imamo H;(t) — V(t) ® A(t) : Hs(t) @ Ha(t) — Hs(t) ® Ha(t). Definiramo

da pomocni sustav inicijalno bude u stanju:
|a(to)) = lao) (8.5)
i definirajmo da vlastita stanja operatora ancilla potencijala fl(t) zadovoljavaju:
() [e(t) = ([ c)=6d( =) (8.6)

gdje smo presli na notaciju {c(t;)} = {c¢;}. Uzmimo {|¢) : ¢ € X} i A(t) kao

opcenit potencijal ancille. Prosireno preko spektralnog teorema,

At) = / cle) (clde ®8.7)
X
Razmotrimo sada evoluciju ukupnog stanja

[W(t)) = Ut to)[4(to))ao) (8.8)

Nakon umetanja ekspanzije (8.2),

i) = (11 [ anvin e ae)+ GF [ ananrovm) o amvi e a) +- ) ot
(8.9)
Umetanje interakcije daje
T () = (1—i/ttdt1/x derV(t) @ eler) aler]
+ <_21,)2 /tjdh /t:dh/XdCl/XdQT(V(h)®C1|C1>A<01\V(t2)®02102>A<02\))—|—--->w(t0)>a0>
(8.10)

Projicirajmo sada na pomoc¢ni sustav mjerenjem preko nekog konacnog intervala.
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Kao sto je gore spomenuto, usredotocit ¢emo se na pojam drugog reda:

dey / dCQG(tl — tQ)(V(tl) X 1 <C’Cl><01|V(7f2) &® CQ|CQ><CQ|)

deaf(ta —t1)(V (t2) @ ca(cle)(ca|V (t1) ® 01\01>(01|)> [v(to))]ao)|c)

Cc2

deaf(ta — 1) (V (t2) ® ca{clez)(ca|V (t1) @ 01\01><01|a0>) [¥(to))le)

/
. /
— (... 4 (_2?2 /t:dtl /t:dtQ Cdc/c1 dcl/ deaf(t1 — t2)(V (t1) @ c1{cler)(e1]V (t2) @ ca|ea)(calao)
ﬁ /
/

dcl/ dCQH(tl — tz)V(tl)V(t2)01625(C — 61)5(01 — 02)(5(02 — ao)

1 Cc2

(8.11)
Da bismo dobili rezultat koji ne iscezava, delta funkcija nas obvezuju da zado-

voljimo uvjet:
c=c¢=C¢C = q (8.12)
¢inedi u isto vrijeme oba doprinosa neisCezavaju¢ima. Ako ¢; i ¢ koji se po-

javljuju u jednoj grani ne bi bili to¢no ¢; i ¢, u drugoj grani (kao Sto ¢e biti objasn-

jeno u nastavku), mogli bismo razlikovati grane zahtijevaju¢i odgovarajuce uvjete.

t t
to covers entire
) f dit, / dty square
to to
t 4
Cy
¢ t
-q—/dtl f(lfg
to to
C.
covers only
to + lower triangle
| 'r > 1)
© 1o t

Figure 8.1: Geometrijski prikaz ¢lana drugog reda Dysonovog razvoja. Kako bi
se povezao s odredenim vremenskim poretkom, pomo¢ni potencijal treba ovisiti o
funkciji u 2D parametarskom prostoru.
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Pretpostavimo, dakle, da bi koeficijenti ¢ mogli poprimiti razlicite vrijednosti ako su
povezani s razli¢itom konfiguracijom vremenskog poretka. Kao primjer, razmotrite
sliku (8.1) na kojoj vidimo kako su vrijednosti ¢ vezane s odredenom konfiguracijom

vremenskog poretka. Naime, tada bismo imali

t ——— tQ®uw
| I
V(t) — V() ® A®v)

gdje bi v := v(t, t5) bila neka hipotetska funkcija u 2D prostoru parametara ¢lana
drugog reda. Citatelj bi trebao uo¢iti da je ovo problemati¢no i nema zapravo smisla
na razini relacije (8.1). Ipak, nastavit ¢emo da pokaZemo poantu, da upravo takvim

potencijalom bismo postigli Zeljeno. Uzmimo:

U(tl,tg) = tl — t2 (813)

Aty ty) = A(v > 0)8(t) — to) + A(v < 0)(ty — t1)0(ty — 1)

= /X cilep)(eq|de 6(v > 0) + /X c_|e_){c_|dc_0(v < 0)

(8.14)

Tada bismo dobili:

/ €) (e (2))de

:/|c><cdc(... t
/ / dtydtaV (t2)V (t1) © A (u(tr, £2)) A (v(t1,£2)) 0 (t2 — t1) + - )| (t0))|ao)

:/|C><cdc((i..

t

dtldtQV (t1)V (t2) @ A (v(t1,t2)) A (v(t1,t2)) 0 (t1 — to)

dtldtQV (t)V (t2) ® A(v > 0)A(v > 0)8(v)

to

dtldtQV (t2)V(t1) ® A(v < 0)A(v < 0)0(—v) + -+ ) [1b(to))|ao)

0
/ / dtldtQ/dC/ dCl / dC2 d21d229 tl —tz)
to Jto

~(V(t1)V(t2))ey eg 6(c — ¢y )d(c; —¢y)d(cy — ao)

_' 2
+ ( 22' / dzleQ/dC/ dCl / d02 to — tl

(V(E)V(E)ef e ole — D)ol — e)ales — ao) ... Jilto))lo)

(8.15)
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Sada bismo mogli nametnuti neke pocetne i konacne uvjete, kao $to su:
c=cf =cf =aq (8.16)

projicirati na gornji ili

c=c =c¢Cy =ay (8.17)

projicirati na donju granu. Medutim, kao $to je ve¢ spomenuto, takva konstrukcija
ne bi imala smisla jer ne bi bila dobro definirana u svim redovima. Naime, v(t;, ts)
je funkcija definirana u parametarskom prostoru drugog reda. Ova vrsta ovisnosti ne
moze postojati na razini jednadzbe (8.1) i ostaje nam ispravna konstrukcija (8.11)
koja ne moze razlikovati dva doprinosa. To se moZze pripisati ¢injenici da u evoluciji
nema stvarne neodredenosti jer vanjsko vrijeme uvijek tece u istom smjeru od ¢, do
t. Kao $to je objasnjeno u odjeljku (7.3), vremenski ureden eksponencijal samo je
proizvod infinitezimalnih deterministickih koraka, kao sto je dano formulom:
f ~
Ulto, t) = ettt (8.18)
7
Kako bi se uvela neodredenost u dinamiku, ocekivalo bi se uvodenje neodredenosti

na razini svakog infinitezimalnog vremenskog koraka, kao Sto je objasnjeno u [33].
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9 Page-Wottersov pristup: razvoj vremenski uredenih
eksponencijala koristenjem formalizma bezvremen-
skog stanja

Jedan od pokusaja da se pomire razlike u nac¢inu na koji gravitacijska naspram
kvantne fizike tretira vrijeme jest prevladavanje pojma vremena kao vanjskog parame-
tra u kvantnoj mehanici. Sluze¢i kao parametar vremenskih translacija, vrijeme kao

vanjski parametar pojavljuje se u Schrédingerovoj jednadzbi

d(t))
dt

ih = H|y(t)) (9.1)

Operativno ga se moZze protumaciti kao ’vrijeme mjereno klasi¢nim, laboratori-
jskim satom’. Kao takvo, ono nije kvantnomehanicka opservable te stoji izvan rezima
teorije. Takav vanjski karakter vremena je u suprotnosti s nacinom na koji je vrijeme
implementirano u teoriji ople relativhosti. Naime, kao Sto je spomenuto u Uvodu
(7.1), simetrija difeomorfizma Diff(M) opce relativnosti inducira neovisnost o poza-
dini (vidi npr. [69]), podvrgavajuci prostorvrijeme dinamickom zakonu predstavljen
unutar. U takvoj teoriji prostor i vrijeme u njihovoj jedinstvenoj strukturi prostorvre-
mena tretiraju se kao unutarnje varijable. Ovo predstavlja napetost prilikom pokusaja
da se kvantna teorija pomiri u jedinstveni okvir s teorijom opce relativnosti, razlicita
priroda vremena u te dvije teorije predstavlja sjeme za skup problema u literaturi

poznatih kao 'Problem vremena’ [2].

Kako bismo vrijeme ucinili internim za kvantnu teoriju, promovirat ¢emo sat
u kvantni stupanj slobode. Naime, razmotrit ¢emo neki kvantni sustav, kojem je
pridruZen Hilbertov prostor H, na koji djeluje vremenski operator 7', koji sluzi kao
vremenski kvantni referentni sustav’’ tj. fizikalni (kvantni) sat. Uzimajuéi u obzir
sada, sustav povezan s fizikalnim satom omogucit ¢e nam da opiSemo promjenu
vremena putem uvjetnih vjerojatnosti, zamjenjujudi ’biti u trenutku’ bezvremenskim
korelacijama. Odnosno, vremensko ponasanje koje promatramo ovisi 0 odnosima

izmedu nekog unutarnjeg sata i sustava, umjesto o vanjskom koordinatnom parametru

77Kao $to vidi u poglavlju (2.1.3), kori$tenje kvantnog stupnja slobode kao referentnog sustav pro-
movirat ¢e parametar translacije u operator.
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vremena. Pogledajmo sada detaljnije ovaj formalizam koji ¢emo nazivati Page-Wottersov

formalizam (ponekad poznat i kao Bezvremenski pristup kvantnoj mehanici).

9.1 Page-Wootters formalizam

U bezvremenoj formulaciji, razmatra se globalno, bezvremeno stanje |¥)) zvano stanje
povijesti, koje se moze promatrati kao ukupni sustav sastavljen od sata i sustava od
interesa. Bududi da je svaki izolirani sustav u vlastitom stanju energije i stoga sta-
cionaran u odnosu na koordinatno vrijeme, bezvremeno stanje se obi¢no smatra stan-
jem cijelog Svemira (bududi da je ovo najmanji istinski izolirani sustav). Ovo stanje

je poznato u Wheeler-DeWittovoj jednadzbi,
H[WY) =0 (9.2)

koji se pojavljuje unutar Diracovog pristupa kvantizaciji gravitaciji (kanonska
kvantna gravitacija). Kao i kod svake jednadzbe ogranicenja, (9.2) reducira kine-
maticki prostor stanja (sva moguca stanja) na fizicki prostor stanja (stanja koja zado-
voljavaju ogranicenje). Ako sada razmotrimo dinamiku sustava koju daje Schrodingerova
jednadzba (9.1), Wheeler-DeWittova jednadzba (9.2) implicira
d|¥)

= zh—dt =0 (9.3)

Odnosno, nase stanje |¥)) je liSeno vremenske evolucije. Ova vrsta situacije opéen-
ito se pojavljuje unutar vremenskog relacionizma i poznata je kao problem zamrznu-

tog formalizma.

Pitanje s kojim se sada suocavamo je, kako iz ovog zamrznutog globalnog stanja
|¥) izvuéi svakodnevnu dinamiku? Jedno od zapaZanja koje mozemo iznijeti jest
da pojam vremena nije dobro definiran na razini takvog globalnog stanja. Priroda
vremena sama po sebi nije nam potpuno jasna, no vrijeme je neporeciva Cinjenica
naseg svakodnevnog iskustva a ta se iskustva uvijek ticu podsustava, a ne Svemira

kao cjeline 78. Odnosno, Nijedno promatranje nije moguée bez promatrata. [25],

780vo je srz temporalnog relacionizma za koje je karakteristicno da su otito reparametrizacijski
invarijantni (kao Sto je slucaj s op¢om relativnos¢u) i da dobivaju jednadzbe ogranicenja koje forsiraju
zamrznuti formalizam
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dakle pomicanje perspektive na ono Sto se promatra, implicira pomicanje perspek-
tive na jedan od podsustava. U skladu s tim, 1982. Page i Wootters formulirali su
pristup uvjetnih vjerojatnosti bezvremenskoj kvantnoj mehanici. Naime, definirali su

bezvremensko stanje |¥) kao korelirano stanje sustava i sata:

7y = / dtft)e ® [(6)s 9.4)

tako da zadovoljava jednadzbu (9.2). Ono sadrzi punu dinamiku sustava nekog
unutarnjeg promatraca koji mjeri evoluciju vremena [¢)(¢)), s obzirom na neki pod-
sustav koji sluzi kao sat. Definirat cemo savrseni sat kao podsustav povezan s beskon-
atnodimenzionalnim Hilbertovim prostorom ., izomorfnim Hilbertovom prostoru
Cestice na liniji, s kanonskim koordinatama To 1 He, zadovoljavajuci Heisenbergovu
algebru [T, H] = 4. Dinamic¢ko stanje unutarnjeg promatraca definiramo kao stanje
koje se dobiva uvjetovanjem statickog, globalnog stanja projiciranjem na svojstveni

vektor sata:

() = c(t[¥) . (9.5)

Ovo stanje se naziva 'reducirano stanje’ i odgovara stanju sustava S kada sat
C pokazuje vrijeme ¢. Usporedujuci s Einsteinovom definicijom vremena: Vrijeme’
nekog dogadaja je ono koje je zadano istovremeno s dogadajem pomocu stacionarnog
sata koji se nalazi na mjestu dogadaja’[30], nadalje pretpostavljamo da sat miruje u
odnosu na promatraca.

Ovdje uvodimo [t) svojstvena stanja vremenskog operatora Te,

Tolt)e = tt)e (9.6)

i interpretirajte svojstvenu vrijednost ¢ kao rezultat mjerenja na satu koji pokazuje
vrijeme ¢. Trebali bismo imati na umu da ova vrsta savrSenog sata nije fizikalna
buduéi da komutator

7, H] =i 9.7)

implicira neomedeni spektar oba operatora po Stone-von-Neumannovom teoremu.

Ipak, takav model moze posluziti kao radna idealizacija.

Bezvremensko stanje sadrzi sve informacije o korelacijama izmedu sustava i sata i
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pripada fizickom Hilbertovom prostoru, budu¢i da zadovoljava jednadzbu ogranicenja:

CIwY) =0 (9.8)

Polaze¢i od opceg elementa kinematickog Hilbertovog prostora |®), mozemo ograniciti

rjeSenja na Hilbertov prostor fizikalnih stanja pomoc¢u jednadzbe (vidi [60]):
o) = / dae=C|) 9.9)

U zargonu ponekad kazemo da je |®) projiciran’ na Hilbertov prostor fizikalnih
stanja. UnatoC tome, treba primijetiti da kinematicki #,;, i fizikalni Hilbertov prostor
H,n, nemaju isti skalarni produkt, pa stoga Hyny #C Hyin. (9.9) stoga formalno nije

projekcija. Za na$ model imamo sljedec¢u jednadzbu ogranicenja:
C=Ho®1s+1c® Hy (9.10)

tako da reducirano stanje zadovoljava uobicajenu Scrodingerovu jednadzbu nakon

uvjetovanja (10.19) na stanje sata u vremenu ¢:

c(tIC|W) = o (t|(He ® 1s + 1e ® Hg)|W) =0

5 . (9.11)
N (a - Hs) B(6)) = 0

9.2 Eksponencijalno uredeno vrijeme u rjesenju s dva kvantna sata

U ovom ¢emo odjeljku predstaviti izvorne rezultate disertacije u kojoj smo koris-
tili Page-Wottersov formalizam s nekoliko satova kako bismo istrazili konfiguracije
vremenskih uredenja koje se javljaju u operatoru vremenskog uredenja. Operacija
vremenskog uredenja koja se pojavljuje na razini Feynmanovog propagatora je ona
koja dolazi upravo iz vremenski uredene eksponencijalne, analizirane u Poglavlju
(8). Glavna motivacija naseg rada bila je usporedba dvije konfiguracije koje se javl-
jaju na razini Feynmanova propagatora, s kontroliranom superpozicijom poredaka

koji se pojavljuju u kvantnoj sklopki. Kao $to se vidi u poglavlju (7.3), Feynmanov

26



el WY » WO
f A IN\TEL

#Y;.\ %l A 3 /
vis e
\ f
VA& \

4"'/
&) ¢ [ —
(Z2 o G '(\./" ‘@ /
I D . N \
XA Xt Xa Xe,

Figure 9.1: Feynmanov propagator kao superpozicija dijagrama koji odgovaraju
Cesticnim i anticesticnim stupnjevima slobode, u usporedbi sa strukturom kvantne
sklopke. Za operativno razumijevanje, zamislite da vrhovi dijagrama prostorvremena
A i B predstavljaju lokalne laboratorije u kojima Alice i Bob imaju svoje prepletene
satove. Satovi su u superpoziciji u prepletenoj bazi u odnosu na nekog treceg pro-
matraca koji ¢e situaciju vidjeti kao superpoziciju dvaju prikazanih dijagrama. Zajed-
nicki sustav je u ovom slucaju polje na koji agenti vrSe operacije.

propagator je definiran kao zbroj procesa

(0|7 (6@)5'(w) [ 0) = (0]6@)5'w)|0) 0~ 4+ (0|8 )o()|0) 06— 2)

(. J (.

Cesticni stup‘r:jevi slobode anticesticni sta;njevi slobode

PoniStavanje Cestice Stvaranje Cestice o o

=(0 0(z" —y")
0 0
na (z", ) na (y",y)

PoniStavanje antiCestice Stvaranje antiCestice o o

+(0 0)0(y" —=x")
0 0
at (y°,y) na (", x)

(9.12)

kao sto je prikazano na lijevoj i desnoj prostornovremenskoj skici slike (9.1), gdje

je usporedba s kvantnom sklopkom prikazana na krajnjoj desnoj slici. Stoga moZemo
napraviti (nerigoroznu) paralelu izmedu strukture kvantne sklopke, kao Sto je ob-
jasnjeno u poglavlju (7.2.1), i strukture Feynmanova propagatora praveci sljedece

asocijacije:
* (Ciljni sustav sada je stanje vakuuma polja |0) na koje ¢e agenti djelovati.

» Agenti’®, oznacene s A i B, pridruZene su vrhovima propagatora gdje izvode
lokalni C'P transformacije na nekom lokaliziranom podrudju koje predstavlja

potprostor ukupnog Hilbertovog prostora koji odgovara ciljnom sustavu. Ove

7°U ovom kontekstu, ’laboratoriji’ i ’agenti’ trebaju se shvatiti figurativno. Vazno je samo pronadi
lokalnu ulazno-izlaznu strukturu i pojam preslikavanja izmedu mapa.
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transformacije ¢e konkretno biti stvaranje i ponistavanje Cestica, koje ¢emo oz-
naéiti kao: ¢f(y) = A ='Cestica stvorena’ i phi(z) = B =’anihilirana Cestica’.
Bududi da prostor stanja treba ocuvati djelovanjem operatora polja, razmatrana
preslikavanja odgovaraju Zeljenom opisu. Crte na dijagramima predstavljaju

proizvedene pobude polja.

* ’Slobodne varijable®®® u ovom slucaju su prostorno-vremenski poloZaju na ko-
jima agenti odlucuju stvoriti ili unistiti cesticu. Drugim rijec¢ima, agenti su pres-
likavanja koja dodjeljuju algebre observabli Zeljenom prostorno-vremenskom

podrudju.

* Kontrolni sustav sada je Heavisideova 6 funkcija, koja odreduje vremenski odnos

izmedu vremenskih komponenti dogadaja.

Stoga Feynmanov propagator mozemo promatrati kao analogon supermapi, u
smislu da preslikava dvije CP mape A = ¢f(z) : [0) = ¢(2)]|0) i B = ¢(y) : |0) —
&(y)|0) u superpoziciju (4.40). Ovo je malo drugaéija struktura od strukture su-
permape koja se pojavljuje u (7.22) zbog nekonvencionalnog pojma pojavljivanja
kontrole i ¢injenice da radimo u Heisenbergovoj reprezentaciji.

Treba takoder primijetiti da bismo u ovom slucaju nakon projekcije na odredeno
stanje kontrole dobili jednu amplitudu koja narusava kauzalnost, i pridonosi Sirenju

u podrudju prostor-vremena . !

Usmjerenost vremena koja sluzi kao kontrola ¢ini se problemati¢nom jer ¢ini kon-
trolu nedostupnom u kontekstu standardnih razmatranja. Ono $to smo predstavili u
poglavlju (8) moze se shvatiti upravo kao pokusaj pristupa tom kontrolnom stupnju
slobode; ili u drugom smislu, implementirati pristupa¢nu kontrolu. Medutim, vidjeli
smo da je jedina mogucnost bila predloziti hipotetski pomoc¢ni potencijal, u obliku
relacije (8.14), koji ne bi ovisio o vremenu, ve¢ o time directionality, $to nije u skladu

s pocetnim izrazom za vremenski ureden eksponencijal.

U nastavku ¢emo pokazati da je prikladno pros$irenje nasih opazanja gdje je moguca

800vo nisu slobodne varijable u doslovnom smislu. Naime, slobodne varijable su definirane kao
varijable koje imaju samo bududi svjetlosni stozac, reflektirajuéi slobodu izbora eksperimentatora.

81Dakle, ako bi se takva kontrolirana superpozicija mogla projicirati, to bi moglo biti samo za kratka
mjerila, vjerojatno unutar rezima kvantne gravitacije.
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implementacija takve kontrole okvir Page-Wottersovog formalizma. Sli¢no pristupu
predstavljenom u poglavlju (8), u nastavku ¢emo pokusati izolirati jednu ’granu’
operatora vremenskog uredenja, ili drugim rije¢ima, implementirati kontrolu nad
granama superpozicije, ali ovo vremena u kontekstu rjesenja jednadzbe ogranicenja,
koja u slucaju nekoliko satova predstavlja generalizaciju Schrodingerove jednadzbe
i stoga se proteZe izvan standardne kvantne mehanike. Razlog za razmatranje jed-
nadzbe ogranicenja s viSe od jednog sustava koji sluzi kao sat je zato sto, kao sto je
objasnjeno u ovom poglavlju (9), Page-Wottersov formalizam s jednim satom vraca

uobicajenu kvantnu dinamiku i svodi se na ve¢ isprobanu pokusaj.

Razmotrimo sustav S spojen s dva sata A i B, tako da imamo kompozitni sustav

|®) € Hs ® Ha ® Hp. Dinamika je odredena sljede¢im ograni¢enjem:
C=Hy+ Hp+ Hg + Vs(Ta) + Vs(Tp) (9.13)
definiranje nasih fizickih stanja putem jednadzbe ogranicenja:
C|U) =0 (9.14)
Koriste¢i grupno usrednjavanje[60], rjeSavamo povijesna stanja:

7y = / daeC|0) 4 5 s (9.15)

gdje
|1PYaps = |ta,ts) ®|p)s (9.16)

Izracunavanje djelovanja eksponencijala u jednadzbi (9.15), kao Sto je prikazano

u Dodacima (C). JednadZba za povijesno stanje ima oblik:
|¥) = / dae=ioUHatin) o=t 5 NVsTatN4Vs(TotN) 11y 1 ) (9.17)

gdje T predstavlja operator vremenskog reda (uveden u poglavlju (7.3) s obzirom

na mjerilo \:
T(F(M)3()) = 0\ — Aa) F(AD)G(Aa) +0(Na — M) A2) F( A1) (9.18)
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Sada, razmotrimo eksponencijalno Sirenje vremenskog reda, do drugog reda,

Te~iJo AVsTatN+Vs(To43) oy g — 4 / AN(Vs(Ta 4+ ) + Vo(Ts + )
0

— 2 o R R R R R R R R
+ ( 2|) T/ d)\ld)\g(VS(TA + )\1) + Vs(TB + Al))(VS(TA + )\2) + Vs(TB + )\2))
: 0

J/

(9.19)

=x
Usredotocujuci se samo na ¢lan drugog reda:

. = T/ A dXo(Vs(Ta 4+ M)Vs(Ta 4+ Xo) + Vs(Tu + M) Vs(Ts + Aa)
0
+ Vs(Ts + M)Vs(Ta + X)) + V(T + M)Vs(Ts + \2))

= T/ dhady Y Vs(Tr+M)Vs(Ty + )
0 I,J=A,B

— / dA1d)s [ZLJ:A’B Vs(Tr + M)Vs(Ty + A2)0( A1 — Na) + V(T + M)V (Tr + M )0(Ag — A1)
0
1) (2

(9.20)
Sada ¢emo napraviti izbor potencijala. Potencijal u odnosu na svaki sat uzet
¢emo kao takav da ’okrene’ jednom u nekim unaprijed definiranim slucajevima ¢}

i t5 (lokalna vremena svakog sata):

Vs(Tu+ Mi2) = Vs(t])6(Ta + Az — t])

o . . (9.21)
Vs(TB + /\172) = Vg(t;)5(TB + )\172 — t;)
Vracajudi se na jednadzbu (9.20) koristeci jednadzbu (9.21), dobivamo:
(1) = / dhada (Vs(Ta + M)Vs(Ta + Xa) + Vs(Ta + M)Vs(T + o)
0
V(L + Xa)Vs(Ta o+ do) + V5T + M) Vs (Do 4 X0) )0 =X o

= Vs(t})Vs(t1)0(t; — Ta — t; + Ta) + Vs(t}) Vs (t3)0(t; — Ta — t + Tp)

+ VsV ()0t — T — t8 + Ta) + Vs(t5) Vs(85)0(ts — T — 5 + Tp)
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(2) = / Ay d)s (VS(TB + A2)Vs(T + M) + Vs(T + Ao)Vs(Ta + M)
0
+ VS(TA + )\Q)VS<TB + )\1) + V5<TA + )\Q)VS(TA + )\1)>9()\2 — )\1) (9.23)
= Vs(t3)Vs(t3)0(t; — T — 5 + Tip) + Va(t3)Vs(t))0(t; — T — t; + Ta)

+ Vs(E)Vs(t5)0(t: — T — t5+ Tg) + Vst Vs (E)O(tr — T — t +Ty)

= Y Y {0 =T -t + T Vs Vs(E;,)
mn=1,21,J=A,B (924)

00t — Ty =t + T)Vs(t)Vs(t,) }

Uvodeci notaciju
St =t —
0T =Tp — Ty
R R X (9.25)
W = Vs(t3)Vs(t])

Z = Vs(t)Vs(t3)

U nastavku éemo zanemariti &lanove oblika Vs (1) Vs(t1), Vi (t5)Vs(t3) jer su nevazni

za narucivanje vremena. Takoder ¢emo zanemariti sve ostale termine, do drugog

reda, koji ne pokazuju drugaciji vremenski poredak. dobivamo,

Te—i Jo dAVs (ta+A)+Vs (tp+A)

=+ 2{29(—&*)2 + 20(6t )W + 0(—=6t* + 6T)Z + 0(—6t* — 6T)Z + 0(6t* + 6T)W + 0(6t* — 5T)W}
(9.26)

Bududi da su vremena potencijalnih udaraca unaprijed definirana, §¢* ¢e imati

odredenu vrijednost i predznak. Bez gubitka opcenitosti, uzmimo:

" >0 (9.27)

Takoder primijetite da izraz (9.26) ima dva reda Vs s obzirom na t* vrijednosti.

Trazit ¢emo pripreme i mjerenja tako da ostane samo jedno vremensko naredivanje

Vs operatora. Podijelimo prostor H 4, ®H g na centar mase H ), i relativne koordinate

Hye, tako da |ta, i) = |ton) ® |teer), gdje je |ta) = |0t) svojstveno stanje 07'|6t) =

dt|ot rang. Imamo |t4,tp, d) — |ton) @ |tre) @ |¢). Razmotrimo sada pripremu stanja
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sata tako da:

[trat) 4 = 1|08 < 8t*) + €6t > 6°) (9.28)

Ovdje treba napomenuti da takva stanja pripreme mogu nastati sasvim prirodno.
Na primjer, kada satovi na razli¢itim polozajima djeluju medusobno i s drugim sus-
tavima, kao u slucaju gravitacijske kvantne sklopke [89]. Ili ako su satovi u razli¢itim
stanjima relativnog gibanja, uzrokujuéi da podlegnu vremenskoj dilataciji [78].

Vratimo se jednadzbi (9.17)

|\I/> :/daeio‘(ﬁ‘*+ﬁ3)~

. Te_ifoa d)\(VS(TA—i-)\)—i-VS(TB—i-)\)){n |(5t < §t*> + 5 ’5t S (St*> } Q |tCM> ® ‘¢>S (929)

N

-~
*k

= ok = Tefifoa d/\(VS(TAJr)\)JrVS(TBJr)\)){n |5t S 6t*> + g |(St > 5t*> } ® |tCM> ® |¢>S
(9.30)

Koristedi izraz (9.26), koji je do drugog reda:

ok = 2{ o 2+ O(—6t + 0t) Z 4 0(—0t" — 6t)Z + O(6t* + 6t)W + 0(5t* — 5t)W}
: {77 |0t < 0t*) + £t > ot7) } ® [tem) @ |9)s

_ { S|t < 5t + 26(Z + 3W) |5t > ot) } ® |6)s

(9.31)

gdje ’...” predstavljaju sve ostale pojmove u ekspanziji. Sada, za mjerenje, raz-
motrite stanje:

(O an =70t < 6t7) + B 6t > ot") (9.32)

Sto daje (izostavljaju¢i dijelove koji nisu relevantni za vremensko odredivanje):

An{C] W) ~ / dae™ AT 5 (] (10)
~ / dae~Hs+Ha+Hp) | (7 (6t < 5t*| + B (0t > 5t*|>
(9.33)
- {817W 16t < 0t%) + 26(Z + 3W) |5t > ot*) } ® |to) ® |)s

~ /dae—ia(ﬁs+ﬁA+HB) <8W777 + 2(2 + 31?[/)55) ® |tenr) @ |d)s
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Pod uvjetima:

8W777 + 6Wﬁ§ =0
4 (9.34)
BE = 37

izoliramo jednu konfiguraciju uredenja ¢lana drugog reda vremenski uredenog

Sirenja (9.17),

an(C] - ) ~ / dae AT AR IV () Vg (1) BE @ | 6)s (9.35)

gdje se poredak razmatrao s obzirom na neki parametar \.

Zaklju¢no, razmatrajuci jednadzbu ogranicenja s dva kvantna sata, uspjeli smo
konstruirati povijesno stanje koje se moZe projicirati na potprostor koji se odnosi na
odredenu granu vremenskog uredenja operatora vremenskog uredenja 7' (poredak s
obzirom na neku klasi¢nu skalu lambda). Drugim rije¢ima, unutar zadanog okvira
uspjeli smo dobiti kvantno kontroliranu superpoziciju vremenskih poredaka razma-
trane vremenski uredene eksponencijalne, gdje su sada relativni stupnjevi slobode
satova sluzili kao kontrola. Stoga, povijesno stanje mozemo shvatiti kao superpozi-
ciju vremenskih poredaka, s obzirom na skalu A. Da napravimo paralelu sa super-
pozicijom poredaka razmatranih u kontekstu Feynmanova propagatora, mogli bismo
pripisati ovu ljestvicu klasicnom satu nekog tre¢eg promatraca koji ¢e vidjeti super-
poziciju procesa koji odgovaraju razli¢itim redoslijedima unutar vremenski uredenog
operatora, gdje unutarnji stupnjevi Sloboda rasprSenih cestica sada bi mogla pred-

stavljati kvantne satove.5?

Vracajuéi se nasem toy modelu, pretpostavimo za radnu postavku da imamo Al-
ice i Boba koji vrSe mjerenja na svojim satovima u svojim lokalnim laboratorijima
i Salju svoje statistike promatracu s klasicnim satom koji otkucava prema skali \ .
Mjerenje satova pokrenut ¢e "udarac" na sustavu i postaviti dogadaj na fizicki smis-
len nacin. Dva sata su u isprepletenom stanju relativnih stupnjeva slobode. Stanje je
u superpoziciji u zapletenoj bazi, gdje su svojstveni prostori podijeljeni s obzirom na

fiksiranje vremenske udaljenosti izmedu dva udarca §t*. Svaki ¢e sat zatim postaviti

82Trebamo naglasiti da op¢enito nije potrebno ovaj klasi¢ni parametar povezivati s nekim klasi¢nim
satom. Klasi¢ni satovi mogu se potpuno ukloniti unutar okvira formalizma Page-Wottersa.
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Figure 9.2: Na pocetku eksperimenta Alice i Bob pripremaju svoje satove u zapetljano
stanje |t.;)ap. Oni nastavljaju s eksperimentom mjerenjem svog lokalnog sata koji
pokrece 'udarac’ na podsustavu dostupnom iz njihovog lokalnog laboratorija. Crvena
valovita linija oznacava prepletenost. [17]

dogadaj koji izvodi transformaciju na podsustavu sustava S kada njihovo lokalno vri-
jeme pokaze neke unaprijed odredene vrijednosti ¢ ili t5. Mozemo zamisliti da su
satovi unaprijed programirani da rade u ovim vremenima. Unutar analogije s Feyn-
manovim propagatorom, mozemo pretpostaviti da je sustav polje i da Alice i Bob
izvode transformacije na nekom lokaliziranom podsustavu. Oznacit ¢emo V (t7) = A
i V(t;) = B kako bismo uspostavili vezu sa slikom 8.1. Odredeni prethodni odabiri
i naknadni odabiri na sustavima A i B rezultirat ¢e scenarijima u kojima ¢e proma-
tra¢ C modi vidjeti ili A < B ili B < A, ali ¢e opcenito vidjeti superpozicija naloga
(A < B) + (B < A). Naime, napomenimo da se razmatrana situacija svodi na uo-
bicajeni slucaj pri pripremama koje postavljaju 6¢ = 0, odnosno kada su otkucaji sata

medusobno sinkronizirani.

Sada se moze tvrditi da bi se rasprava mogla podi¢i u kontekst kvantne teorije
polja, promicanjem povijesnog stanja valne funkcije stanja konacnih Cestica |¢(¢)) u
povijesno stanje valnog funkcionala, kako se pojavljuje u Schrodingerovoj funkcional-
noj formulaciji, koju ¢emo razmotriti u poglavlju (10). U svjetlu toga, razmotrit ¢emo
sljedecu generalizaciju naseg modela igracke s dva sata na slucaj N satova kao mod-

ela igracke za op¢i funkcionalni slucaj.
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Figure 9.3: MreZa satova zamiSljena na hiperpovrsini. [16]

10 Schrodingerova funkcionalna reprezentacija i Page-

Wottersov formalizam

Kvantna teorija polja je u biti kvantna mehanika beskonac¢nih stupnjeva slobode, Sto
znaci da takoder podlijeze Schrodingerovoj formulaciji. Ipak, posebnost kvantne
teorije polja u odnosu na kvantnu mehaniku je implementacija prostorno-vremenske
simetrije. Upravo nedostatak ocigledne Lorentzove invarijantnosti kada se izrazi
u obliku Schrodingerove reprezentacije, zajedno s Cinjenicom da je njena renor-
malizabilnost dokazana relativno kasno [80], bio je razlog zasto Schrodingerova
reprezentacija kvantne teorije polja nikada nije postigla veliku popularnost. Unato¢
tome, u posljednje je vrijeme privukao pozornost u nekim kozmoloskim [36][42][42]
i konceptualnim razmatranjima (za nase svrhe, gdje je prikladan za implementaciju
bezvremenskog formalizma).

S ovim formalizmom moZemo raditi u bilo kojem zakrivljenom globalno hiperboli¢cnom
prostorvremenu bududi da se tamo moze uvesti vremenska funkcija ¢ s globalno val-
janim vremenskim smjerom. To nam omogucuje da napravimo globalnu folijaciju
prostorvremena R x ;. Takoder moZemo pretpostaviti konstrukciju na kona¢nom in-

tervalu [ koji obuhvaca relevantne dogadaje, dopustajudi folijaciju () lokalno.

teICR

U nasim razmatranjima ogranicit ¢emo se na prostorvrijeme Minkowskog.

Grubo govoreci, mozemo Koristiti ve¢inu osnovne intuicije iz kvantne teorije dok
zamjenjujemo rije¢ valna funkcija s valnim funkcionalom, stvarajuc¢i koordinatne prikaze

funkcionalnog vektora stanja. Drugim rije¢ima, u ovoj reprezentaciji stanja |V) su
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funkcionali vremenski neovisnog polja ¢(x). Ograni¢it ¢éemo na$u pozornost na
skalarne konfiguracije polja, definirane kao preslikavanje ¢ : M — C. Prostor
kojem pripada |¥) je prostor kvadratno integrabilnih funkcionala L? (C (%)), C (%)
oznacavajuci prostor svih mogucih trenutnih konfiguracija polja. Vlastiti vektori op-

eratora definirani putem

O(7)[¢) = ¢(7)[6) (10.1)

¢e definirati ’koordinatnu reprezentaciju’ u funkcionalnom prostoru, gdje jed-
nadzba (5.1) oponasa ulogu X|z) = z|z) jednocestitnog QM. Ovdje ¢(F) oznatava
samo obi¢nu skalarnu funkciju. Koordinatni prikaz stanja | V) sada je valni funkcional

ovisan o vremenu V[¢(Z), t] = (¢(x)|V(t)), za koji vrijedi:
—|W(t)) = H|U(t (10.2)

U(p(Z),t] = (¢|¥(t)) predstavlja amplitudu vjerojatnosti promatranja konfigu-
racije polja na hiperpovrsini konstantnog vremena ¢.

Prostor stanja takoder je opremljen funkcionalnom normom D¢, tako da imamo
normalizaciju:

[T || = Do |W,[¢]|° (10.3)

C(%)
Ovdje ¢emo uzeti ono $to je standardni postupak u konstruiranju prostora kvadratno
integrabilnih funkcija [79]; naime, s L? ozna¢avamo prostor kvocijentiran sa skupom
konfiguracija koje su gotovo posvuda iste ¥; ~ W, (tj. koje se razlikuju na skupu
mjere nula )

L2 (C (%), Do) == L2(C (%)) /] ~ (10.4)

tako da mozemo reéi ||¥,|| = 0 = ¥, = 0. Za definiranje gustoée vjerojatnosti
koristimo indikatorski funkcional A4 na mjerljivom podskupu A C C (%) tako da se

A4, [#]|> moZe shvatiti kao vierojatnost da konfiguracija polja bude dana nekim ¢ €

(0, | W) = / DOV (6] Vs (10.5)

Da bismo kvantizirali teoriju, moramo nametnuti kanonske komutacijske relacije.

To implicira da oblik kanonskog operatora polja momenta bude u obliku funkcionalne
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derivacije,

)
T(x) = —i (10.6)
%= 50
tako da vrijede komutacijske relacije:®3
[@(y), (x)] = id(x —y) (10.8)

Operatori teorije predstavljeni su kao vremenski neovisne funkcionalne jezgre

O} = [ Do (#1006) tolv) = [ D60, &)v(0) 10.9)

Za kanonske varijable imamo,

B(x) — (0! B(x)|6) = 6603[6 — o (1010)
1) = (¢N160[0) =~ =30 — 0] (10.11)

gdje smo koristili funkcionalnu delta funkciju i funkcionalno diferenciranje. Jed-

nadzba (10.10) definira djelovanje operatora polja ®(x) kao mnoZenje s ¢(x),
O(x)|¥) = o(x)¥[¢] (10.12)

Akcija bilo kojeg operatora se tada definira kao,

10
O(I1, )| T) — O (;%, gb) U[g] (10.13)

U slucaju Klein-Gordonovog polja, imamo Hamiltonian:

1
H = /d% (I + [V¢[* + m?¢?) (10.14)
83jer za funkcionalnu derivaciju vrijedi:
0
W(X)QS(Y) =d(x-y) (10.7)
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koji se nakon umetanja (10.6) pretvara u funkcionalni diferencijalni operator,

1 3 02 2 2 .2
H—ﬁ/dx(—5¢2(x)+|v¢\ +m¢) (10.15)

i Schrodingerovu jednadzbu u funkcionalnu diferencijalnu jednadzbu,

.0 1 52
zaww&»ﬂ=§/ﬁ%(—wﬁg++vwﬁwﬁﬁ)ww@»ﬂ (10.16)

Budu¢i da Hamiltonijan eksplicitno ne ovisi o vremenu, moZemo odvojiti vremen-

sku ovisnost valnog funkcionala ¥[¢, ¢] i napisati
U[p(x), 1] = e s [p(x)]. (10.17)

gdje ¥[¢(x)] zadovoljava Schrédingerovu funkcionalnu jednadzbu neovisnu o vre-

menu,

1 [ 5 [ 8*V[p(x)] >, 22 o) = .
§/dx( 50%(x) +(|V¢| +m¢ )‘I’[Gb( ﬂ) EV[¢(x)] (10.18)

Za vise detalja, vidi [48], [27].

10.1 Schrodingerovo funkcionalno bezvremensko stanje

Sada takoder mozemo razmisljati o promicanju jednadzbe ograni¢enja
C=He®1ls+1c® Hs (10.19)

u funkcionalnu diferencijalnu jednadzbu tako da smanjeno stanje zadovoljava
funkcionalnu diferencijalnu Scrédingerovu jednadzbu nakon uvjetovanja stanjem sata.
Primijetite da u jednadzbi (5.15) jo$ uvijek imamo standardnu parcijalnu derivaciju
u odnosu na vrijeme. Tumacenjem putem Page-Wottersovog formalizma, to implicira
da (u ovoj fazi) vremenski operator jos uvijek odgovara standardnom koordinatnom
operatoru, za koji imamo jednadzbu svojstvene vrijednosti Tt) = t|t). Stoga mozemo

napisati povijesno stanje u terminima sata kao sustava jedne Cestice:
W) = [ dtlthe o we)s (10.20)
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koji ima oblik standardnog Page-Wottersovog bezvremenskog stanja, odrazava-
juci puku c¢injenicu da kvantna teorija polja zadovoljava standardnu Schrédingerovu
jednadzbu (10.2). Ipak, treba imati na umu da |¥(¢)) sada predstavlja opce stanje u

prostoru L? (C (%)), u ’koordinatnom’ prikazu,

W) = / dtlt)e @ U (t, d)s (10.21)

(oznaka ¥ (¢, ¢] naglasava da je ¥ funkcija od t, ali funkcional od ¢ 8*). Jednadzba
(10.21) odgovara situaciji uzimanja perspektive jednog stupnja slobode kvantnog
sata i promatranja stanja povijesti konfiguracije stanja polja s obzirom na preferiranu
foliaciju.

Ipak, kao Sto smo naveli u poglavlju (2.1.5), da bismo implementirali simetrije pros-
torvremena, trebamo traziti unitarnu reprezentaciju Poincaréove grupe koja je beskon-
acno dimenzionalna. Stoga polje ne moZemo vezati na 1-dimenzionalni sustav bez da
narusimo relativisticku kovarijantnost. Da bismo to uzeli u obzir, moZemo razmatrati

kontinuirano sustav satova, tako da oni odgovaraju polju 7
7(Z)|1) = 7(Z)|7) (10.22)

gdje 7(Z) predstavlja operator koji odgovara polju satova, a 7(Z) je skalarna
funkcija koja predstavlja konfiguraciju polja. To sada znaci da se svaki stupanj slo-
bode polja moze pridruziti nekoj vremenskoj funkciji s odgovaraju¢om folijacijom.

Za impuls sata koji bismo sada imali,

)
O7(Z)

o(7) = —i (10.23)

a jednadzba ogranicenja se promice u funkcionalnu diferencijalnu jednadzbu s

obzirom na dvije funkcije:

o(T|CN) = o (7] (He ® 19 + 1c @ Hg)|U) =0 (10.24)

(—5L i Hs[aa(f)]) Wr(#))) = 0 (10.25)

840vo je preuzeto iz [56]
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gdje smo za sat Hamiltonian pretpostavili savrSen Hamiltonijan sata

0
Ho=0= _Z(Sr(f) (10.26)
U ’koordinatnom’ prikazu imamo jednadzbu:
) o . o
i=——=V[¢(T), 7(T)] = Hs[p(D)]V[o(T), 7(T)] (10.27)
d7(Z)
Ovo se moZze prepoznati kao oblik Schwinger-Tomonagine jednadzbe:
H(x)—1i 0 Ulo] =0 (10.28)
T) — i @ o]l = .

gdje ¢e formalno rjeSenje ove jednadzbe biti dano funkcionalom stanja[81]
Vo] =U [0, 00] ¥ [00] (10.29)

Ovdje 0, oznacava pocetni uvjet na hiper-plohi, a ¥ [0y] oznacava funkcional
stanja koji odgovara ovom pocetnom uvjetu. Dakle, Schwinger-Tomonagina jed-
nadzba opisuje evoluciju stanja kvantnog polja od jedne pocetne Cauchyjeve povrsSine
do druge, a uveli su je Schwinger i Tomonaga [77] pokuSavajuéi napraviti invari-
jantnu generalizaciju Schrédingerove jednadzbe. Moglo bi se ciniti zanimljivim kako
smo dosli do iste jednadzbe, sa slicnim konceptualnim inputom, iz ponesto drugaci-
jeg konteksta. Usprkos tome, u [18] se tvrdilo da transformacijski funkcional nece
biti jedinstveno implementiran na Fockovu prostornu reprezentaciju kvantnog polja
za slucaj medudjelovanja polja, za dimenziju prostor-vremena vecu od dvije, ¢ak ni u
ravnom prostor-vremenu . Cini se da je poseban problem to $to evolucija od potetne
povrsine do konacne povrsine ovisi o izbor folijacije, kao $to je raspravljao Kuchat u
[56]. No, nije toliko oCito da se tim problemima ne moZze nikako pristupiti i da se
kritike ne mogu nadmasiti. Imajudi to na umu, radi rasprave ¢emo nastaviti, pod-
sjecajuci da je motivacija koriStenja ovog pristupa bila podizanje rasprave o odjeljku

9.2 u kontekst teorije polja.
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X2

b d b d b d

Figure 10.1: Vremenska uredenja Feynmanovog propagatora. [82]

Stanje povijesti sada bi bilo zapisano kao,

7y = / Drir)e ® [T[r(T))s (10.30)

gdje je Dt mjera funkcionalne integracije. Ovo bi predstavljalo evoluciju stanja
polja |¥), razapeto baznim elementima {|¢)}, koje se razvija relativno u odnosu na

konfiguracije polja 7(Z).

10.2 Amplituda rasprsenja u bezvremenskom formalizmu

Prisjetimo se da je ideja naSih razmatranja bila sagledati situaciju dvaju vremenskih
poredaka koji se pojavljuju u Feynmanovu propagatoru (vidi sliku(10.1)), u smislu
Hilbertove superpozicije stanja uredenja A < B i B < A, analogno [89]. Podsjetimo
se da su Feynmanovi dijagrami izravno povezani s amplitudom rasprsenja, koja za

dva stanja Cestice ’in’ i 'out’ ima oblik:

S

A="""A(q1q | P2p1>in =0 <Q1Cl2 p2p1>0 (10.31)

gdje ) = |pap1), predstavljaju asimptotska slobodna stanja koja postoje na
pocetku eksperimenta ¢t — —o0, |¢) = |¢2¢1), asimptotsko stanje na kraju eksperi-

menta ¢t — oo. Definicija S-matrice dana je (kako je objasnjeno u (2.4.2)):
S = U(oo, —o0) = T exp (—i/ Hilnt(t)dt) (10.32)

gdje Dysonov operator dolazi kao rjeSenje Schrodingerove jednadzbe koja se do-
biva iz jednadzbe ogranicenja (5.18). Implementirajmo sada Page-Wottersov formal-

izam u izraz amplitude rasprsenja.
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U standardnoj kvantnoj mehanici, definiramo propagator izmedu nekog pocetnog

stanja |/)s u trenutku ¢; i nekog konac¢nog stanja |F)s u trenutku tz:
G (F it I,t;) = s <F ‘(75 (tr, t,)‘ 1>S (10.33)

Da bismo uspostavili propagator u smislu Page-Wottersovog formalizma, jednos-
tavno fiksiramo pocetni uvjet povijesnog stanja |¥)), tj. identificiramo ¢, s vremenom

trily (to))s s |I)s ujednadzbi:
wiol) = [ dtltye ® 0t t0)s0(00: s (10.34)
Propagator tada jednostavno poprima oblik (vidi [37] jedn. (22)):
G(Fitp; 1, tr) = o (tr |@s(F | ¥)) (10.35)

Sada to mozemo proSiriti na QFT scenarij pomoc¢u Schrodingerove funkcionalne
reprezentacije. Propagator ¢e sada i¢i od pocetne konfiguracije polja hiperpovrsine

¥, nat, do kona¢ne ¥, na t,:
G (F, tF; I, t[) = C <ty ’®S<\I/(ty)|\ll>>(tz,21) (1036)

sto nam omogucuje da odmah odredimo amplitudu rasprSenja u smislu bezvre-

menskog stanja. Naime, jednadzba 10.31 sada bi imala oblik:
A= lim {tr]®o (a2 | V) (10.37)

gdje
) = [ dlte o 0 ~oc)slmpos (1039

U koordinatnoj reprezentaciji

WWDz/ﬁWc®0w—MB§@MJ@D%Mb (10.39)

42



gdje smo koristili (¢ | pipa) = ¥, (0] = a' (52) a' (p1) ¥ol¢] [48] te stoga,

A= /D¢ tll{noo@ﬂ@/ dt|t) c@W(t; ¢lsa (@) a(qi) U(t, —oo)sal () al (1) Yo(t; ¢
(10.40)

Ova jednadzba pretpostavlja da je sat neki vanjski sustav bez interakcije i ne
odnosi se na Schwinger-Tomonaginu formulaciju. U ovom slu¢aju, mozemo primijen-
iti razmatranja navedena u (4.2) jer bismo opet ocekivali neki vremenski ureden ek-
sponencijalni, ali ovaj put koji djeluje na funkcional kinematickog stanja, ogranicava-

ju¢i funkcionalni Fockov prostor.

Ako sada Zelimo implementirati jednadzbu s obzirom na (10.30),

A= [ Do tim (tel00%"r.6l5n (@) a (@) [ Drir)ostilrmjal (52)al (7)o uls
(10.41)
gdje, ako biramo unutarnje stupnjeve slobode Cestica kao satove, mozemo defini-
rati pocetnu konfiguraciju sata 7, da odgovara |)c = Q),,_, |tn), ti. pocetno stanje
eksperimenta u odnosu na pocetne Cestice.

Na ovaj na¢in mozemo argumentirati vezu izmedu rezultata toy modela iz poglavlja
(9.2) i motivacije dane u kontekstu vremenskog uredenja i Feynmanovih propaga-
tora. Naime, s obzirom na ovu konstrukciju, analogno diskusiji u poglavlju (8), bi
se odredenim pocetnim stanjima i odabirom mjerenja, eventualno izolirao vremenski

poredak, za koji se ocekuje da ce se pojaviti u kontekstu rjesenja (10.27) [81].

43



11 Zakljucak

U ovom smo radu istrazili pojmove vremena i kauzalnog uredenja u kvantnoj mehanici
i perturbativnoj kvantnoj teoriji polja. Posebna paznja posvecena je strukturi vremen-
sko uredenih eksponencija, proSirenoj u Dysonov razvoj, gdje smo pokusali razum-
jeti njihovo vremensko uredenje u smislu superpozicije poredaka koji se pojavljuju
u kvantnoj sklopki. Naime, glavni motiv naseg promisljanja bio je usporediti super-
poziciju vremenskih uredenja koja se pojavljuje na razini Feynmanova propagatora
s neodredenosc¢u vremenskih poredaka u kvantnoj sklopki. Kao Sto je objasnjeno u
poglavlju (7.3) operator uredenja igra vaznu ulogu u Feynmanovu propagatoru, a
proces interakcije promatran kao razmjena preko virtualne cestice moze se shvatiti
kao superpozicija dvaju procesa koji se izmjenjuju na ljusci mase Cestice ili antiCes-
tice. Tada se Cini uvjerljivim reci da bi izdvajanje jedne grane konfiguracije uredenja
u Dysonovom Sirenju niza znacilo izdvajanje jednog od procesa izmjene na ljusci

mase.

Imajuéi na umu ovu motivaciju, prvo smo razmotrili vremenski uredenu ekspo-
nencijalnu funkciju u kontekstu standardne kvantne mehanike, kako se pojavljuje
u rje$enju vremenski ovisne Schrodingerove jednadzbe s [H(t), H(t')] # 0. Ova je
postavka analizirana u poglavlju (8) gdje smo pokusali vezanjem na pomoc¢ni sus-
tav interakcijom koja bi razlucivala jednu ili drugu konfiguraciju vremenskog ure-
denja. Naime, kada bi takvo vezanje bilo moguce, moglo bi se koristiti pomo¢ni
sustav da sluzi kao kontrola nad granama reda, omogucuju¢i nam da izoliramo
jednu od grana putem mjerenja na pomo¢nom sustavu. Ipak, uvjerili smo se da
nije moguce uvesti kontrolni stupanj slobode, u okviru prikazanih metoda. Zagone-
tan aspekt ovih razmatranja je taj da se prema teoremu o zabranjivanju navedenom
u [24] ne moze imati superpozicija naloga bez kontrolnog sustava. Stoga ¢emo za-
kljuciti da bi mogao postojati neki nedostupni pozadinski stupanj slobode koji sluzi
kao kontrola, omogucujuci superpoziciju konfiguracija uredenja, ili da je superpozi-
cija poredaka samo artefakt ovog matematickog formalizma i ne treba je shvatiti u
tocnom smislu kvantni prekida¢. Naglasavamo da se ova razmatranja oslanjaju na
tumacenja povezana s perturbativnim razumijevanjem teorije i razmisljanje treba us-

porediti s aksiomatskim opisom.
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U poglavlju (9) nastavili smo s pokusSajem izolacije jedne od grana vremenskog
uredenja u eksponencijalnom razvoju, ovaj put u kontekstu bezvremenskog stanja s
nekoliko satova, Sto sada nadilazi kontekst standardne kvantne mehanike (shvacene
u terminima Schrodingerove jednadzbe). Ovdje smo uspjeli izolirati doprinose ure-
denja odgovarajuc¢im izborom priremljenog i mjerenog stanja u Hilbertovom prostoru
relativnih stupnjeva slobode. Ponudili smo tumacenje klasi¢tnog parametara koji se
pojavljuju u bezvremenskom stanju da imaju znacenje klasi¢nog parametra koji odgo-
vara vremenu nekog klasi¢nog vanjskog sata. To znaci da ¢emo nase rezultate shvatiti
kao neodredenost koja se pojavljuje u odnosu na klasi¢ne operacije promatranja sata
koje obavljaju dva isprepletena kvantna sata povezana s dvije razli¢ite vremenske
funkcije, u kontekstu fiksne Minkowskijeve pozadine. Cinjenica da je pokusaj uspio
moze se shvatiti kao Cinjenica da stanje povijesti sadrzi sve korelirane konfiguracije
izmedu sustava i satova, gdje se sada relativni stupnjevi slobode satova mogu shvatiti

kao kontrola nad redoslijedom koji omogucuje superpoziciju.

U posljednjem odjeljku opisali smo Schrodingerov funkcionalni prikaz kvantne
teorije polja, naglasavajuci njezinu vaznost u kontekstu ovih rasprava. Tvrdili smo
da je prosirenje Page-Wottersovog formalizma u ovoj postavci jednostavno ako se
uzme jedan stupanj slobode koji sluzi kao sat u odnosu na koji se radi folijacija pros-
torvremena. Unato¢ tome, bududi da simetrija prostorvremena ima ireducibilnu uni-
tarnu reprezentaciju Poincaréove grupe, koja je beskona¢nodimenzionalna, spajanje
jednog stupnja slobode ne bi bilo kompatibilno s tom simetrijom i takvo bezvre-
mensko stanje ne bi bilo Lorentz invarijantno. Stoga smo prosirili razmatranja pret-
postavkom polja ¢iji ¢e prostor vlastitih stanja sluziti kao sat za evoluciju drugog polja
u odnosu na njega. Tj. svojstvena stanja pripisana konfiguraciji jednog polja sluze
kao referentni sustav za konfiguracije drugog. Ovom jednostavnom argumentacijom
inspiriranom Page-Wottersovim formalizmom, dosli smo do ve¢ poznate jednadzbe,
Schwinger-Tomonagine jednadzbe. Unatoc¢ tome, kao Sto je raspravljeno u [18][56],
Schwinger-Tomonagina jednadzba ima poteskoca, a najveca je ovisnost evolucije od
jedne Cauchyjeve povrsine do druge o izboru folijacije i neunitarnosti za prostorvre-
mena dim > 2. Obzirom na nasa razmatranja, ako se Schwinger-Tomonagina jed-

nadzba ne moze implementirati u kontekstu kvantne gravitacije, posljedica bi takoder
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mogla biti da se sam program Page-Wottersovog pristupa ne moze kovarijantno im-
plementirati. Da bi se Page-Wotterov pristup implementirao u teoriju polja, konstruk-
ciju Schrodingerovog funkcionalnog prostora treba shvatiti rigoroznije i probleme

Schwinger-Tomonagine jednadZzbe treba zaobici.
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