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Geometrija Standardnog Modela

Sažetak

Ovaj diplomski rad je gotovo samodostatno rigorozno izlaganje Standardmog modela

(SM) kao baždarne teorije. Izgradili smo pojmove iz diferencijalne geometrije, difer-

encijalne topologije i spinske strukture nužne za matematički opis baždarnih teorija

i usput ih demonstrirali primjerima na Općoj teoriji relativnosti (OTR). Posebna po-

zornost je dana glavnim i pridruženih svežnjevima koji su centralni matematički ob-

jekti za definiranje baždarnih teorija. Zatim je ukratko izložen SM u stilu diplomskih

kolegija Fizika elementarnih čestica, fokusirajući se najvǐse na njegove simetrije i

strukturu njegovog lagranžijana. Na kraju, primijenjene su razvijene matematičke

strukture na konkretnu baždarnu teoriju Standardnog modela rigoroznim definiran-

jem svakog člana njegovog lagranžijana na geometrijski način.

Ključne riječi: Standardni model, diferencijalna geometrija, topologija, simetrije,

glavni svežanj, pridruženi svežanj, spinor



The geometry of the Standard Model

Abstract

This Master’s Thesis is an almost completely self-contained outline of the Standard

Model (SM) in the framework of gauge theory. The tools from differential geome-

try, differential topology and spin structure necessary for mathematical description

of gauge theories were built and their examples in General theory of relativity (GR)

were shown. Special attention was paid to principal and associated bundles which

are central mathematical objects used to define gauge theories. Then the SM was

shortly outlined in the style of undergraduate courses Elementary particle physics,

focusing mostly on its symmetries and the structure of its Lagrangian. In the end, the

developed mathematical structures were applied on the concrete gauge theory of the

Standard Model by rigorously defining every term of its Lagrangian in a geometrical

way.

Keywords: Standard Model, differential geometry, topology, symmetries, principal

bundle, associated bundle, spinor
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1 Mathematical introduction to gauge theories

1.1 Introduction

Gauge theories are theories that represent distinct physical states as equivalence

classes of field configurations. The goal of this chapter is to rigorously define the

geometric and spin building blocks for describing gauge gauge theories on manifolds

(for the definition of a manifold, see Appendix A.1.1). We will start the first Chapter

with a section that focuses on examples of a classical and quantum gauge theory and

later we will build the theory of bundles which is a natural formalism for describing

gauge theories.

1.1.1 Classical Electrodynamics

Classical Electrodynamics (CE) is the first gauge theory physicists encounter during

their studies, specifically, CE is a U(1) gauge theory. That is, Maxwell equations

~∇ · ~E =
ρ

ε0

∇× ~E =
−1

c

∂ ~B

∂t

~∇ · ~B = 0

~∇× ~B = µ0
~J +

1

c2

∂ ~E

∂t

(1.1)

can be simplified into one equation

�Aµ − ∂µ (∂αA
α) = Jµ , (1.2)

by introducing the four-vector electromagnetic potential Aµ = (φ
c
, ~A) and the four-

current Jµ = (ρ, ~J), where Aµ is defined in a way such that the following two rela-

tions are true

~E = −~∇φ− ∂ ~A

∂t
(1.3)

and

~B = ~∇× ~A . (1.4)
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It can be deduced from the definitive properties of Aµ that the CE is invariant to

transformations

Aµ → Aµ +
1

q
∂µχ (1.5)

and this is where the reduction from 4 equations to only one equation is hidden. That

is, Maxwell equations have a unique solution, while the electromagnetic potential

determined by equation (1.2) and some boundary conditions is not the only field

which yields the same physically observable quantities ~E and ~B. The choice of Aµ

which we are going to do calculations with is called gauge fixing1. The previous

relation (1.5) can be written in a different way:

Aµ → e−iχAµeiχ − i

q
e−iχ∂µeiχ , (1.6)

and this is a familiar expression from which it can be seen that the CE is a U(1) gauge

theory, which, in other words, means that CE is invariant under local (the ones which

depend pointwise) U(1) transformations. Sometimes undergraduate courses might

not mention the expression (1.6) and that the theory is exactly a U(1) gauge theory,

but it is certainly true that the CE is an example of a gauge theory. Also, this whole

theory can be reformulated using the Lagrangian of CE

LCE = −1

4
FµνF

µν + JµAµ (1.7)

where F µν = ∂µAν − ∂νAµ is the Faraday tensor. It can be shown that the Euler-

Lagrange equations generated with this Lagrangian are Maxwell equations and that

this Lagrangian is invariant under transformations (1.6) if the equation of continuity

holds (∂µJµ = 0), i.e., for conserved currents. Later, we are going to see that transfor-

mation properties (1.6) are not unique to CE, but that they are the way in which the

connection pullback to the base manifold transforms under gauge transformations.

1.1.2 Local phase invariance of quantum electrodynamics

The next example we are going to study is how we can enrich relativistic quantum

mechanics with an electromagnetic interaction if we insist on invariance of the theory

under local phase transformations of the wave function/spinor. Let us consider the

1In quantum field theory it is impossible to define the photon propagator without gauge fixing.
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Dirac Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ (1.8)

and apply a local gauge transformation

ψ → e−iχ(x)ψ . (1.9)

Then the transformed Lagrangian is

L′ = ψ̄
(
i/∂ −m

)
ψ + ψ̄/χψ . (1.10)

We can see that the Lagrangian (1.10) does not differ from the starting one just

by a surface term, therefore, we conclude that we would generate different Euler-

Lagrange equations from the starting ones which, in turn, means that the relativistic

quantum mechanics is not gauge invariant. It is very important to notice this fact, be-

cause we know that the physical probability density |ψ|2 does not depend on a point-

wise phase factor (nor the global phase, obviously). The Dirac Lagrangian, which

describes the quantum theory of fermions, becomes gauge invariant if we modify the

Lagrangian with a function Aµ, which transforms under gauge transformations like

(1.6)

Lgauge invariant = ψ̄
(
i/∂ − q /A−m

)
ψ . (1.11)

We have acquired the fermion sector of the Lagrangian of quantum electrodynamics

whose total Lagrangian is given by

LQED = ψ̄
(
i/∂ − q /A−m

)
ψ + LCE

= ψ̄
(
i /D −m

)
ψ + LCE

(1.12)

where we have used Dµ = ∂µ + iqAµ, which is referred to in literature as (gauge)

covariant derivative. Covariant derivatives are naturally described with the mathe-

matics of bundles which we are going to develop throughout this chapter. Also, more

on this introduction (and almost all definitions which we are going to use in this

chapter) can be found in e.g. [1] or in Schuller’s lectures on Geometrical anatomy of

theoretical physics [2].
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1.2 Introduction to differential geometry

For physicists, one of the most important concepts from differential geometry are

tensors on manifolds because they allow us to define tensor quantities on spacetime

(e.g., Faraday tensor, stress energy tensor, vector fields, etc.). We are going to con-

struct tensors by taking tensor products of tangent vectors and 1-forms.

Definition 1.1. Tangent vector (definition as in [3]) at the point p on the manifold

M , X|p (sometimes denoted as Xp or, if it is completely clear, just X for short), is a

function X|p : C∞p (M)→ R which for all f, g ∈ C∞p and λ, µ ∈ R satisfies:

1. Linearity

X|p(λf + µg) = λX|p(f) + µX|p(g)

2. Leibniz’ rule

X|p(fg) = f(p)X|p(g) + g(p)X|p(f)

The set of all tangent vectors at a point p is denoted as TpM and we call it the tangent

space at p.

Theorem 1.1. It can be shown that the dimension of the space TpM is equal to the

dimension of the manifold M . Also, it can be shown that for every chart (O,ψ) =

(O, (x1, ..., xdimM)) around the point p, the base of the space TpM is the set{
∂
∂xµ

(
≡ ∂

∂xµ
|p
)

= ∂µ
}

. In the end, if (O, (xµ)) and (V, (yµ′)) are two charts around

the point p and if the components of the vector X|p in the bases defined by coordinate

systems (xµ) i (yµ′) are:

X|p = X|µp
∂

∂xµ

X|p = X|µ′p
∂

∂yµ′

(1.13)

Then the connection between components X|µp and X|µ′p is given by

X|µ′p =
∂yµ′

∂xα
X|αp . (1.14)

Definition 1.2. 1-form at the point p ∈ M , ω|p (or ωp for short) is an element of

the vector space dual to the tangent space TpM . Duals of vectors (which come from

4



the chart (O, (xµ))) ∂µ are denoted by dxµ. T ∗pM denotes the set of all 1-forms at the

point p.

Theorem 1.2. Let (O, (xµ)) and (V, (yµ′)) be two coordinate charts around the point

p. If the components of the 1-form ω|p in bases defined by coordinate systems (xµ) and

(yµ′) are

ω|p = ω|pµ dxµ

ω|p = ω|pµ′ dyµ′
(1.15)

Then the following connection between components ω|pµ and ω|pµ′ is true

ω|pµ′ =
∂xα

∂yµ′
ω|pα (1.16)

We are now able to define tensors at the point p of arbitrary rank using linear

combinations for appropriate tensor products of basis vectors ∂µ and basis covectors

dxµ. Also, a vector field (or more generally, a tensor field) is a function which maps

points p ∈M to tangent vectors (tangent tensors) Xp ∈ TpM . A problem arises when

we think about smooth tensor fields of any rank. That is, our previous definitions

do not contain enough information to classify the map p 7→ X|p as smooth. We use

bundle theory to work with smooth vector (tensor) fields and their generalizations.

Also, it is worth mentioning that differential 1-forms are smooth (where smoothness

is defined with respect to a natural topology which we will discuss later) functions

that map p 7→ ωp ∈ T ∗pM .

1.3 Introduction to bundle theory

In this section we are going to define the topological objects called bundles.

1.3.1 Fiber bundles

Definition 1.3. Bundle is a triple (E,π,M) consisting of smooth manifolds (see Ap-

pendix A.1) E and M and of a continuous surjection π : E → M . We call E the

total space and we call M the base space, while the surjection π is often called the

projection map. Also, sometimes we denote bundle (E, π,M) as E π−−→M . For every

p ∈M , we call the set Ep := π−1(p) the fiber at the point p.

5



The first additional structure that we define over bundles is the standard fiber.

Definition 1.4. Fiber bundle with standard fiber F is a quadruple (E, π,M, F ), such

that (E, π,M) is a bundle with a local trivialization, i.e., for every point p ∈ M there

exists a neighborhood Op and a homeomorphism (local trivialization) ψp such that

the following diagram commutes:

π−1(Op) Op × F

Op

ψp

π
π1

where π1 is the projection to the first variable, π1(p, f) = p ∀p ∈ M,∀f ∈ F . If π is

a smooth map, we call the fiber bundle (E, π,M, F ) a smooth fiber bundle (with fiber

F ). If F is a vector space, then we say that the fiber bundle (E, π,M, F ) is a vector

bundle.

We are also going to define sections of bundles, functions that we will recognize

as tensor fields in a special case of the total space.

Definition 1.5. Bundle section is any function σ : M → E which satisfies σ ◦ π =

idM . The set of all sections of the bundle (E, π,M) is denoted as Γ(E).

Notice that the condition σ ◦ π = idm means that we are only regarding functions

which map to every p ∈M a point in its fiber Ep.

1.3.1.1 Example of a fiber bundle

It is worth commenting on stated definitions. Fiber bundles are bundles such that

the total space locally ”looks like” the product space M × F . One often mentioned

example of a fiber bundle is the Möbius strip, depicted on the Figure 1. As it can be

seen, the standard fiber of a Möbius strip (with respect to the projection like on the

Figure 1) is a segment. Bundles are useful for describing geometrical objects which

are hard to define using methods like implicit defining, but are also applicable to

physicists, e.g., in General Theory of Relativity (GR) where spacetime can be chosen

for the base manifold and the total manifold can be chosen to be the tangent bundle,

with standard fiber isomorphic to tangent vector spaces TpM [4].
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Figure 1.1: Möbius strip as the total space to the circle base space - thin, perpendic-
ular gray lines are projected onto the black curve.

1.3.2 Tangent bundle

As we have noticed before, at first it is not clear how to define continuous or smooth

vector fields. The problem arises in the fact that even though all the spaces TpM are

isomorphic as vector spaces, still for p 6= q, the spaces TpM and TqM are different

vector spaces so we can not actually compare tangent vectors from different tangent

spaces. We got away with it in special relativity because we worked with a flat

spacetime which has the structure of a vector space, but in GR the same idea will not

work because manifolds, in general, are not vector spaces. The solution is to define

a topology over the (disjoint) union of tangent spaces.

Theorem 1.3. The set

TM :=
⊔
p∈M

TpM (1.17)

with a natural topology (details on that topology are in references [3, 5]) is a smooth

manifold and we call it the tangent bundle. If M and N are diffeomorphic (definition

in Appendix A.1) manifolds, then so are TM and TN .

With the topology [3, 5] we have a smooth vector bundle TM π−−→ M with the

standard fiber RdimM and now we have made all the necessary definitions in order

to define smooth vector fields as smooth sections of the tangent bundle. Of course,

for general tensor fields of rank (l, k) we can use an analogous bundle, except that

in the disjoint union (1.17) we do not use tangent spaces but instead we use tan-

gent tensor spaces of the rank (l, k). Also, for every tensor bundle T lkM , there exist

7



generalizations of pointwise relations (1.14) and (1.16), which can be derived using

linear algebra on each tangent space.

1.3.3 Bundle morphisms and bundle restrictions

Let us continue with the definitions of subbundles and bundle restrictions.

Definition 1.6. Subbundle of the bundle E π−−→ M is a bundle E ′ π′−−−→ M ′ such

that E ′ ⊆ E, M ′ ⊆M and π′ = π|E′.

Definition 1.7. Bundle restriction E
π−−→ M to the manifold N ⊆ M is the bundle

E
π′−−−→ N with projection

π′ = π|π−1(N) .

Now let us define morphisms of the types of bundles we have defined so far.

Definition 1.8. Bundle morphism of bundles E π−−→M and E ′ π′−−−→M ′ is a pair of

functions u : E → E ′ and v : M →M ′ for which the following diagram commutes:

E E ′

M M ′

u

π π′

v

If u and v are diffeomorphisms, we specially say that the bundle morphism is a

bundle isomorphim. Additionally, if a bundle is isomorphic to the product bundle

(M × F, π1,M), we say that it is trivial.

Definition 1.9. We say that E π−−→ M is locally isomorphic to the bundle E ′ π′−−−→
M ′ if for every point p ∈ M , there exists a neighborhood Up such that the restriction

of E π−−→ M to Up is isomorphic to E ′ π′−−−→ M ′. If a bundle is locally isomorphic to

the product bundle, we say that it is locally trivial.

The definition of bundle pullbacks will be the last one in this section.

Definition 1.10. Bundle pullback E π−−→ M induced by a function f : M ′ → M is

the bundle E ′ π′−−−→M ′ where

E ′ (≡M ′ ×M E) = {(m′, e) ∈M ′ × E : f(m′) := π(e)}

and π′ = π1, i.e., π′(m′, e) = m′.
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1.4 Principal and associated bundles

In order to study gauge theories, it is necessary to have a Lie group action on a

manifold. Roughly speaking, a principal bundle is a fiber bundle with the Lie group

G for its standard fiber, while an associated bundle is a bundle upon whose fiber the

group G acts. In this section, we are going to study principal and associated bundles

and give physical examples.

1.4.1 Lie group actions on manifolds

Definition 1.11. Let (G, ·) be a Lie Group and M a smooth manifold. A smooth

function

B: G×M →M

(g, p) 7→ g B p
(1.18)

which satisfies

1. ∀p ∈M : e B p = p

2. ∀g1, g2 ∈ G,∀p ∈M : (g1 · g2) B p = g1 B (g2 B p)

is called a left (Lie) group action or a left G-action on M . We call the manifold M ,

on which we have defined B, a left G-manifold

We similarly define right group action.

Definition 1.12. Right (Lie) group action or right G-action of the group (G, ·) on

the manifold M is a smooth function

C: M ×G→M

(p, g) 7→ p C g
(1.19)

which satisfies

1. ∀p ∈M : p C e = p

2. ∀g1, g2 ∈ G,∀p ∈M : p C (g1 · g2) = (p C g1) C g2

9



Definition 1.13. Let B: G ×M → M be a left G-action and M a smooth manifold.

For every point p ∈M we define the orbit of the point p as the set

Gp := {q ∈M : ∃g ∈ G such that q = g B p} . (1.20)

Definition 1.14. Let B: G ×M → M be a left G-action on the manifold M . The

stabilizer of the point p, Sp, is the set

Sp = {g ∈ G : g B p = p} . (1.21)

Note that Sp is always a subgroup of G.

Definition 1.15. Let us define an equivalence relation ∼ on the manifold M

p ∼ q :⇔ ∃g ∈ G such that q = g B p . (1.22)

We define the orbit space M/G as the quotient space of the relation ∼

M/G := G/∼ = {Gp : p ∈M} . (1.23)

Definition 1.16. Left (analogously right) G-action B on the manifold M is defined

as

1. Free if ∀p ∈M : Sp = {e}

2. Transitive if ∀p, q ∈M : ∃g ∈ G such that p = g B q .

A useful property of free left (analogously for right) G-actions is

g1 B p = g2 B p ⇐⇒ g1 = g2 . (1.24)

1.4.1.1 Example of a free action

An example of a non-free left action would be the action of the SO(2) rotations on

the plane R2. For every non-zero element p ∈ R2 : Sp = {e}, but, since the stabilizer

of 0 is SO(2), the group action can not be free. On the other hand, SO(2) is free on

R2 \(0, 0). This claim is illustrated on Figure 1.2, along with orbits of the points p

and 0.
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Another example of a free action would be the free left G-action on G (regarded as

a smooth manifold) simply defined as multiplication. Since G is a group, g1 · x =

g2 · x implies g1 = g2 because we can always multiply with x−1 from the right. This

canonical example is also called the (left) regular representation of G.

•
p

•

Gp

0 G0

|p|

R2

Figure 1.2: Orbits of two points from R2 under the action of SO(2).

1.4.2 Principal bundles

Definition 1.17. LetG be a Lie group. We call a smooth bundleE π−−→M a principal

G-bundle if there is a free right G-action defined over E and if the smooth bundle

E
π−−→ M is isomorphic to the bundle E

ρ−−→ E/G, where ρ is a projection which

maps every point to its equivalence class, i.e.,

p
ρ7−→ [p] = Gp . (1.25)

Remark, because the action is free (so the useful property (1.24) holds), we have

that the fiber of any arbitrary point Gp ∈ E/G

ρ−1(Gp ∈ E/G) = Gp ∈ E

is equal to that same orbit Gp (now regarded as the set of points in E and not as
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an equivalence class) and it is diffeomorphic (i.e., topologically isomorphic) to the

group G by the useful property (1.24).

1.4.2.1 Geometry of GR - frame bundle LM as a principal bundle

In physics (especially in GR) the frame bundle is of exceptional importance. It is

defined using a smooth manifold2 M of dimension d and a special right action from

which it becomes a principal GL(d,R)-bundle (for the definition of GL(d,R) see

Appendix A.1). Define the space

LpM := {(e1, ..., ed) : {e1, ..., ed} is a basis for TpM} . (1.26)

One can see that LpM is the set of all ordered bases of the tangent space of p ∈ M .

It is clear from the definition (considering the d-tuple of vectors as a d × d matrix)

that LpM ∼= Md(R) (they are isomorphic as real vector spaces because they have the

same finite dimension).

Definition 1.18. The frame bundle LM is defined as the disjoint union

LM :=
⊔
p∈M

LpM (1.27)

And, using a similar idea (see, e.g., [4]) as when we defined the tangent bundle, we

endow it with a differentiable structure. Projection is defined in a quite obvious way,

we simply map (e1, ..., ed) ∈ LpM to p, the point whose tangent space the vectors

(e1, ..., ed) ∈ LpM are the basis of.

In order to arrive at the structure of a principal GL(d,R)-bundle, we also need a

right action of the general linear group. We define it in the following way:

(e1, ..., ed) C g := (ga1ea, ..., g
a
dea) (1.28)

where gij are the components of the group element g with respect to the standard

basis of Rd. It is easy to show that such left action is well defined. It is also evident

that this action is free because the only GL(d,R) element that does not change any

of the basis vectors is the identity map.
2When talking about frame bundles in physics, the base manifoldM is almost always the spacetime

manifold.
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It remains to show that LM π−−→M is isomorphic to the bundle LM
ρ−−→ LM/GL(d,R).

In other words, we are looking for diffeomorphisms u : LM → LM and f : M →
LM/GL(d,R) for which the following diagram commutes:

LM LM

M LM/GL(d,R)

u

π

u−1

ρ

f

f−1

The choice u = idLM is quite obvious, while for f we can choose the function which

maps p ∈M to the entire set GL(d,R) in any basis from LpM . Function f defined so

is surely an injection, because for different p 6= q the bases from LpM and LqM will

be from different vector spaces so it follows that f(p) 6= f(q), but it is also clear that

it is surjective because every orbit from LM/GL(d,R) is surely an orbit of some basis

from LpM for some p ∈ M . It is now clear that the previous diagram commutes and

that we have arrived at an example of a principal GL(d,R)-bundle. Later, in other

”Geometry of GR” comments (1.4.4.2, 1.5.3.2, 1.5.4.1, 1.5.6.1), we are going to see

that the frame bundle is useful for defining many geometrical tools that we use often

in GR.

1.4.3 Principal bundle morphisms

Next we are going to define principal G-bundle morphisms and morphisms between

principal G-bundles and principal H-bundles.

Definition 1.19. Let (P, π,M) and (Q, π′, N) be principal G-bundles. Principal G-

bundle morphism is a pair of smooth functions (u, f) such that the following dia-

gram commutes:

P Q

P Q

M N

u

u

CG

π

JG

π′

f
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i.e., ∀p ∈M and ∀g ∈ G the following is true:

(f ◦ π)(p) = (π′ ◦ u)(p)

u(p C g) = u(p) J g .
(1.29)

We say that the morphism of principal G-bundles is a principal G-bundle isomor-

phism if it is also a bundle isomorphism. In the end, a the principal G-bundle is

trivial if it is isomorphic as a principal G-bundle to the trivial bundle (M ×G, π1,M).

After this definition we arrive at an important theorem.

Theorem 1.4. PrincipalG-bundle (P, π,M) is trivial if and only if there exists a (global)

smooth section σ : M → P (such that σ ◦ π = idM).

The proof of Theorem 1.4 can be found in [1], section 9.2. It is also worth

mentioning a more general version of the Definition 1.19, which generalizes to the

case of morphisms between principal bundles of different Lie groups. Firstly, it will

be necessary to define the notion of equivariant functions.

Definition 1.20. Let G and H be Lie groups, ρ : G→ H a Lie group homomorphism

and let

C: M ×G→M

J: N ×H → N
(1.30)

be left G- and H-actions on some smooth manifolds M and N . We say that a smooth

function f : M → N is ρ equivariant if the following diagram commutes:

M ×G N ×H

M N

C

f×ρ

J

f

i.e., if ∀m ∈ M,∀g ∈ G : f(m C g) = f(m) J ρ(g). The definition for right actions

is completely analogous so we will not specify equivariant functions as left or right

equivariant whenever it is clear from context.

Definition 1.21. Let (P, π,M) be a principalG-bundle, let (Q, π′, N) be a principalH-

bundle and let ρ : G→ H be a homomorphisom of Lie groupsG andH. Morphism of
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principal bundles from (P, π,M) to (Q, π′, N) is an ordered pair of smooth functions

(u, f) such that the following diagram commutes (i.e., such that u is a ρ-equivariant

function and f ◦ π = π′ ◦ u):

P Q

P ×G Q×H

P Q

M N

u

u×ρ

C J

i1

π

u

i1

π′

f

where i1 is any funcion for which π1 ◦ i1 = id (we use it to draw a commutative dia-

gram from which one recognizes ρ-equivariance). The morphism between a principal

G-bundle and a principal H-bundle is an isomorphism if ρ is a Lie group isomor-

phism and if (u, f) defines a bundle isormophism.

The Definition 1.21 is the most general morphism between principal bundles and

now we are ready to study associated bundles.

1.4.4 Associated bundles

We are going to define associated bundles using principal bundles in such a way that

they are capable of reproducing known transformation rules of objects we use in

physics. But, associated bundles with familiar transformation rules are only special

cases and we can define associated bundles with more general transformation rules.

Definition 1.22. Let (P, π,M) be a principal G-bundle and let F be a smooth mani-

fold equipped with a left G-action B. We define the smooth manifold

PF := (P × F )/∼G
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where ∼G is defined as follows

(p, f) ∼G (p′, f ′) :⇔ ∃g ∈ G such that p′ = p C g, f ′ = g−1 B f .

We are going to label points from PF as [p, f ] because PF is a quotient space. Addi-

tionally, we define the projection πF as follows:

πF : PF →M

[p, f ] 7→ π(p) .

Notice that such πF is well defined because any other element of the class [p, f ] is of

the form [p C g, g−1 C f ] and we know that p C g for all g ∈ G belong to the same

fiber. With all that said, the associated bundle (to the bundle (P, π,M) with F and

B) is the bundle (PF , πF ,M).

1.4.4.1 Associated vector bundles

In the case when F is a vector space and the left G-action B respects its vector space

structure, i.e. g B is a linear operator3 on F for every g ∈ G, we will call (PF , πF ,M)

an associated vector bundle and denote it for short PF =: P ×B F .

1.4.4.2 Geometry of GR - tangent bundle as an associated bundle

Remember (from 1.4.2.1) that (LM, π,M) is a principal GL(d,R)-bundle. If for F

we take F = Rd and define a left action

B: GL(d,R)× Rd → Rd

(g, x) 7→ g B x ((g B x)a := gabx
b)

(1.31)

we get an associated bundle (LMRd , πRd ,M) isomorphic (as a bundle) to the bundle

(TM, π,M)

LMRd TM

M M

πRd

u

π

idM

3From the property 2. in Definition 1.11, we can see that B is a representation of G on F .
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using a function u defined as follows:

u : LMRd → TM

[(e1, ..., ed), x] 7→ xaea .
(1.32)

The function u is surely a bijection because every X ∈ TM can, at every point p ∈M ,

be expanded in any basis (e1, ..., ed) ∈ LpM . Pick any such basis and map

X
u−1

7−−→ [(e1, ..., ed), XRd ] , (1.33)

where XRd is a vector from Rd with components Xa of the vector X w.r.t. the basis

(e1, ..., ed), however, (1.33) is well defined (in the sense that it does not depend on the

choice of basis from LpM) because it maps to equivalence classes. It is worth men-

tioning that the isomorphism of bundles (LMRd , πRd ,M) and (TM, π,M) is largely

due to the appropriate choice of the left action (1.31), so we can conclude that the

formalism of associated bundles can be used to construct many general theories (by

choosing different left Lie actions), but it still covers the one we already know. Addi-

tionally, one can also find an isomorphism between the tensor bundle (of any rank)

and some associated bundle (associated to the frame bundle). The isomorphism for

tensors of rank (l, k) is constructed with the fiber F := Rd × ...× Rd︸ ︷︷ ︸
l times

×Rd∗ × ...× Rd∗︸ ︷︷ ︸
k times

.

1.4.5 Associated bundle morphisms

We are concluding the introduction to the theory of associated bundles with the

definition of the morphism.

Definition 1.23. Let (PF , πF ,M) and (QF , π
′
F , N) be associated bundles (with the

same fiber F ) of principal G-bundles (P, π,M) and (Q, π′, N). A morphism of as-

sociated bundles is a morphism of bundles (ũ, v) such that, for some u, (u, v) is a

principalG-bundle morphism (of the underlying principal bundles) and the following

relation between ũ and u holds:

ũ ([p, f ]) = [u(p), f ] , (1.34)

or equivalently, if the following two diagrams commute (and the relation (1.34) is

satisfied):
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P Q

PF QF

P Q

M N

M N

u

ũ

πF π′F
u

CG

π

JG

π′
v

v

We say that (ũ, v) is a principal bundle isomorphism if ũ and v are bijections and

(ũ−1, v−1) also defines an associated bundle morphism. In the end, the associated

bundle (PF , πF ,M) is said to be trivial if its underlying principal G-bundle (P, π,M)

is trivial as a G-bundle.

It is worth mentioning after the Definition 1.23 that an associated bundle can be

trivial as a fiber bundle without having its underlying principal bundle being trivial

(and as such not being a trivial associated bundle). On the other hand, a trivial

associated bundle is necessarily trivial as a fiber bundle.

1.5 Geometry on bundles

In this section, we are going study geometry on bundles. We are going to define

connections on bundles and connection 1-forms. Then, we are going to define the

connection curvature, and in the end, the covariant derivative. The objects defined

in this section are the most basic geometric structures commonly used in physics and

mathematics and we are going to show some of their most important properties as

well as examples when they are applied to GR.

1.5.1 Connections

The connection is an additional structure on principal bundles which, in a special

way, associates to each point p ∈ M one special vector space compatible with the

right action of the principal bundle. It can be shown that the choice of these vector

spaces is equivalent to the choice of a Lie algebra valued differential form.
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Definition 1.24. The vertical subspace at the point p ∈ P of the bundle (P, π,M) is

VpP := ker (π∗) = {X|p ∈ TpP : π∗ (X|p) = 0} (1.35)

Where π∗ is the push-forward (see Appendix A.1.5 for the definition) of tangent

vectors using the projection map.

Additionally, one often encounters in literature the function ip : TeG → TpP ,

which maps an element A ∈ TeG of the Lie algebra to the tangent vector XA
p in the

following way:

XA
p : C∞p (P )→ R

f 7→ [f(p C exp(tA))]′ (0) .
(1.36)

It can be shown that ip is a Lie algebra isomorphism. Also, it is easy to see using the

definition that ∀A ∈ TeG and ∀p ∈ P : ip(A) = XA
p ∈ VpP .

Definition 1.25. The horizontal subspace at the point p of the bundle (P, π,M) is

a subspace HpP ≤ TpP which is complementary to the vertical subspace, i.e.:

TpP = HpP ⊕ VpP . (1.37)

It is clear that the choice of HpP is not unique at any point p, but, once we have

made the choice, we get a unique decomposition to the vertical and horizontal part

of vectors:

Xp(= X|p) = hor (Xp) + ver (Xp) . (1.38)

We are ready to define the connection on principal bundles.

Definition 1.26. The connection on a principal G-bundle (P, π,M) is the choice of

horizontal subspaces HpP for every point p ∈ P such that:

1. for every g ∈ G we have

(C g)∗Hp = HpCgP , (1.39)

2. for every smooth vector field X ∈ Γ(TP ), the summands in the unique decom-

position

Xp = hor (Xp) + ver (Xp) (1.40)
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generate smooth vector fields hor(X) and ver(X).

The Definition 1.26 completely formalizes ”smoothness” of the choice of horizon-

tal spaces both inside the fiber (1.39) and between fibers (1.40). Also, even though it

may not be clear at first, but in general both the horizontal and the vertical part in the

decomposition (1.40) depend on the choice of HpP (unless the vector is completely

contained in the vertical subspace).

1.5.2 Connection 1-forms

Next we are going to define the connection 1-form, the choice of which is equivalent

to the choice of connection. Firstly, a Lie algebra valued 1-form ω is a map which

maps every point p ∈ P to a linear operator ωp : TpP −→ TeG.

Definition 1.27. Let ωp be a function such that:

ωp : TpP → TeG

Xp 7→ ωp (Xp) := i−1
p (ver (Xp)) .

(1.41)

We call the function ω, which maps every point p ∈ P to ωp the connection 1-form

with respect to the connection. We sometimes denote ω as an element of the set

Ω1(TpP, TeG).

We justify the previous definition as follows. Namely, if someone gives us a func-

tion ω and claims that it is the connection 1-form with respect to the connection, then

we are able to reconstruct the horizontal subspace HpP as

HpP = ker (ωp) .

Of course, not every Lie algebra valued 1-form will generate a connection in an

acceptable way (in the sense of Definition 1.26), but the following theorem states

the necessary and sufficient conditions a form has to obey in order to generate a

connection.

Theorem 1.5. ω is a connection 1-form if and only if it satisfies:

1. ∀p ∈ P we have ωp(XA
p ) = A, i.e., ωp ◦ ip = idTeG. Diagramatically shown
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TeG VpP

TeG

idTeG

ip

ωp|VpP

2. ∀p ∈ P and ∀Xp ∈ TpP the following is true

((C g)∗ ω)p (Xp) = (Adg−1)∗ (ωp (Xp)) (1.42)

Where Adg−1 is the adjoint map, i.e., Adg(h ∈ G) = g · h · g−1. Equivalently, for all

p ∈ P the following diagram commutes:

TpP TeG

TeG

((Cg)∗ω)p

ωp

(Adg−1)∗

3. ω is a smooth function.

The proof of this theorem and the map from connections to connection 1-forms

can be found in [7], Theorem 5.2.2.

1.5.3 Local representations of connection forms on the base manifold

Our next goal is to express the connection 1-form on the base manifold. That is useful

to us because in physics, spacetime is always regarded as the base manifold.

Definition 1.28. Let σ : U ⊆ M → P be a local section4 of the principal G-bundle

(P, π,M), i.e., π|U ◦ σ = idU . The given local section induces:

• A Yang-Mills field ωU : Γ(TU)→ Γ (TeG) given as

ωU := σ∗ω .

4Local sections are, in the case of principal bundles, also called local gauges.
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• A Local trivialisation h of the principal bundle P

h : U ×G→ P

(m, g) 7→ σ(m) C g

which is a G-equivariant diffeomorphism, meaning that h−1 is a local trivializa-

tion in the sense of Definition 1.4.

• A local representation of ω on U :

h∗ω : Γ (T (U ×G))→ Γ (TeG) .

When discussing local representations of ω on U , it is worth mentioning that the

tangent space of the point (m, g), T(m,g), is isomorphic as a Lie algebra to the algebra

TmU ⊕ TgG

T(m,g) (U ×G) ∼= TmU ⊕ TgG . (1.43)

1.5.3.1 Maurer-Cartan form and gauge function Ω

The following connection between a Yang-Mills field and a local representation (gen-

erated by the same local section) holds:

Theorem 1.6. The following is true for all v ∈ TmU and γ ∈ TgG:

(h∗ω)(m,g) (v, γ) = (Adg−1)∗
(
ωU(v)

)
+ Ξg (γ) (1.44)

Where Ξg : TgG → TeG is the Maurer-Cartan form and it is defined as the inverse of

the push-forward by left translation5 (lg)∗

(lg)∗ : TeG→ TgG

A 7→ XA
g .

(1.45)

Sometimes, in physics, we need a global picture of Yang-Mills fields, but only

have access to Yang-Mills fields induced by local sections. This means we need a way

5The left translation lg : G→ G, lg(h) = g ·h is a Lie group automorphism and as such can be used
to push forward Lie group’s tangent vectors. The right translation is defined analogously, rg(h) = h ·g.
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to identify Yang-Mills fields at intersections of domains of local sections. Moreover,

Theorem 1.4 tells us that on principal bundles it is not even possible to define smooth

global sections (a smooth section whose domain is the entire base manifold) except

for the case when the principal bundle is trivial (product). The gauge function, which

we will define next, is used to identify local Yang-Mills fields on the intersections of

their domains.

Definition 1.29. Let U1, U2 ⊆ M be open sets on M and consider Yang-Mills fields

associated to two local sections σ1 and σ2 like on the following diagram:

P

U1 ⊆M U2 ⊆M

π π

σ1 σ2

The gauge function Ω is a function Ω : U1 ∩ U2 → G such that

σ2(m) = σ1(m) C Ω(m) . (1.46)

Because the Lie action on principal bundles is (by definition) free, the relation (1.46)

uniquely defines the gauge function Ω.

Theorem 1.7. Under the assumptions of Definition 1.29, the connection between ωU2

and ωU1 is given as:

(ωU2)m =
(
AdΩ−1(m)

)
∗

(
ωU1
)

+ (Ω∗Ξg)m . (1.47)

Theorem 1.7 supplies us with the connection between two Yang-Mills fields on

the intersections of their domains.

1.5.3.2 Geometry of GR - Christoffel symbols as Yang-Mills fields

We are now going to show that in the case when P = LM and G = GL(d,R),

Christoffel symbols can be considered as Yang-Mills fields and their transformations

between reference frames follow from the Theorem 1.7. It can be directly shown

(see, e.g. [4]) that for GL(d,R), the Maurer-Cartan form has the form:

(Ξg)
i
j =

(
g−1
)i
k

(
dxkj

)
g
, (dxkj)g ∈ T ∗gG⊗ TeG . (1.48)
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The second summand in Theorem 1.7. expands in the basis
(

∂
∂xµ

)
p

as follows:

(Ω∗Ξ)p
i
j

((
∂

∂xµ

)
p

)
= ΞΩ(p)

i
j

(
Ω∗

(
∂

∂xµ

)
p

)
Ω(p)

= (1.49)

using the relation (1.48)

=
(
Ω(p)−1

)i
k

(
dxkj

)
Ω(p)

(
Ω∗

(
∂

∂xµ

)
p

)
Ω(p)

= (1.50)

by definition of differentials acting on vectors

=
(
Ω(p)−1

)i
k

(
Ω∗

(
∂

∂xµ

)
p

)
Ω(p)

(
xkj
)

= (1.51)

definition of vector pushforward

=
(
Ω(p)−1

)i
k

(
∂

∂xµ

)
p

(
xkj ◦ Ω

)
(p) =

(
Ω(p)−1

)i
k

(
∂

∂xµ

)
p

Ω(p)kj . (1.52)

To calculate the first summand one needs to remark that ∀A ∈ TeGL(d,R)

(
(Adg)∗A

)i
j = gikA

k
l

(
g−1
)l
j , (1.53)

and then, because ωU1 is a Lie algebra valued 1-form, we can directly apply (1.53)

((
AdΩ−1(m)

)
∗ ω

U1
)i
j =

(
Ω−1(m)

)i
k

(
ωU1
)k
l (Ω(m))lj . (1.54)

All together, the connection between Yang-Mills fields on the intersection of open sets

U1 and U2 is (
ωU2
)i
jµ =

(
Ω−1

)i
k

(
ωU1
)k
lµΩl

j +
(
Ω−1

)i
k∂µΩk

j . (1.55)

It is important to note that in the expression (1.55) we still have not explicitly chosen

the local sections of bundles, σ1 : U1 → P and σ2 : U2 → P , so the result we arrived

at is completely general and independent of the choice of sections. If we choose the
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natural sections induced by coordinate charts (U1, x) and (U2, y),

σ1 : m 7→ xµ
(

∂

∂xµ

)
m

σ2 : m 7→ yµ
(

∂

∂yµ

)
m

(1.56)

we conclude that obviously Ωi
j = ∂yi

∂xj
(as the consequence of (1.14)). With all of this

said, ωU2 expressed using coordinates y and the form ωU1 is:

(
ωU2
)i
jν =

∂yµ

∂xν

(
∂xi

∂yk
(
ωU1
)k
lµ
∂yl

∂xj
+
∂xi

∂yk
∂2yk

∂xµ∂xj

)
(1.57)

and this is exactly the transformation rule of Christoffel symbols. We arrived at this

rule using the most natural choices of sections and maps, exactly the ones we use in

GR.

1.5.4 Curvature on principal bundles

It is often stated in literature that curvature is a property of covariant derivative. We

will show in this subsection that in order to define curvature on principal bundles one

only needs a connection. Firstly, in order to define curvature we need the concept of

exterior covariant derivative.

Definition 1.30. Let (P, π,M) be a principal G-bundle with the connection 1-form ω

and let φ be a module V (see Appendix A.1.7 for the definition) valued k-form. We

define the exterior covariant derivative of φ, Dφ, as the (k + 1)-form

Dφ : Γ
(
T k+1

0

)
−→ V

(X1, ..., Xk+1) 7→ dφ (hor (X1) , ...,hor (Xk+1)) .
(1.58)

If the horizontal subspaces are generated from a connection 1-form ω, we also denote

the exterior covariant derivative as dω.

We are now ready to define curvature.

Definition 1.31. Let ω be the connection 1-form on a principal G-bundle (P, π,M).

Curvature of the connection 1-form is the Lie algebra (TeG) valued 2-form Fω on P

defined as

Fω := Dω = dωω . (1.59)
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The following theorem is useful for calculations.

Theorem 1.8. Let ω be the connection 1-form and Fω its curvature. Then the following

equality holds:

Fω = dω + ω ∧ ω , (1.60)

where the exterior product of Lie algebra valued 1-forms is naturally defined using the

Lie algebra commutator

ω ∧ ω (X, Y ) := Jω (X) , ω (Y )K . (1.61)

Theorem 1.9. First Bianchi identity. Let Fω be the connection curvature. Then the

following equality holds:

DFω
(
= D2ω

)
= 0 . (1.62)

In contrast to the regular differential, the operator D2 6= 0 in general, but we can

see (using Theorem 1.9) that it has a nontrivial kernel after all.

As we shall see next, Yang-Mils field strength is an object closely tied to the connection

curvature.

Definition 1.32. Let (P, π,M) be a principal G-bundle and let F ω be the curvature

of its connection 1-form ω. Let σ : U ⊆ M → P be a local section. Then we call the

2-form

σ∗Fω ∈ Ω2(U)⊗ TeG

the Yang-Mills field strength. Sometimes we will denote σ∗Fω as F , F ω, W , B, G

or Riem, depending on the context.

1.5.4.1 Geometry of GR - Riemann tensor as Yang-Mills field strength

Let us again study the case when P = LM andG = GL(d,R). In the comment 1.5.3.2

we have shown that ωU carries matrix indices and have shown its transformation

properties in the relation (1.57). If we plug in such a Yang-Mills field into the relation

(1.60) of the Theorem 1.8, we arrive at (using commutativity of differentials and
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pullbacks) the Yang-Mills field strength which we will now denote by R,

Ri
jµν =

(
dωU
)i
jµν +

(
ωU
)
i
kµ ∧

(
ωU
)
k
jν =

= ∂ν
(
ωU
)i
jµ − ∂µ

(
ωU
)i
jν+

+
(
ωU
)i
kµ

(
ωU
)k
jν −

(
ωU
)i
kν

(
ωU
)k
jµ .

(1.63)

This Yang-Mills strength, R, using the explained correspondence from 1.5.3.2,

(
ωU
)i
kµ ≡ Γikµ ,

exactly matches the definition of the Riemann tensor.

1.5.5 Forms with values in Ad(P )

We will now show how the difference of two connection 1-forms on P (where P is the

total space of a principal bundle) can be understood as a form on the base manifold

M with values in a special vector bundle, Ad(P ) := P ×Ad g, where Ad is the adjoint

representation defined in the Appendix A.3.6. We are studying this correspondence

because in physics, what we usually consider excitations of gauge fields, i.e., gauge

bosons, are actually differences of two gauge fields, one representing the excited

state and one representing the vacuum state. We will later see that gauge fields

are connection 1-forms, which means (as a consequence of Theorem 1.5) that the

vacuum state can not be simply a constant 1-form with values equal to 0 (because

the 1-form ω = 0 does not generate a connection).

We start with the definition of horizontal forms and forms of the type Ad.

Definition 1.33. Let ω ∈ Ωk(P, g) be a k-form on P with values in the Lie algebra

g = TeG. We say that ω is:

1. Horizontal if for all p ∈ P

ωp(X1, ..., Xk) = 0 (1.64)

whenever at least one of the vectors Xi is vertical (equals its vertical part).

2. Of type Ad if

(g B)∗ ω = Adg−1 ◦ ω, ∀g ∈ G . (1.65)
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We denote the subset of Ωk(P, g), consisting of horizontal k-forms of type Ad

on P with values of g, as Ωk
hor(P, g)Ad.

The following theorem explains some of our previous constructions in terms of

horizontal k-forms of type Ad.

Theorem 1.10. Let π : P →M be a principal G-bundle . The following statements are

true:

1. Let A and A′ be connection 1-forms on P with values in g. Then

A− A′ ∈ Ω1
hor(P, g)Ad . (1.66)

Additionally, for any ω ∈ Ω1
hor(P, g)Ad, A+ω is a connection 1-for on P with values

in g.

2. The curvature 2-form of A on P is an element of Ω2
hor(P, g)Ad.

3. The vector space Ωk
hor(P, g)Ad is isomorphic to Ωk(P,Ad(P )) with the isomorphism

given with

Λ : Ωk
hor(P, g)Ad → Ωk(P,Ad(P ))

ω 7→ Λ(ω)x(X1, ..., Xk) = [p, ωp(X1, ..., Xk)] ∈ Ad(P )x where π(p) = x .

(1.67)

1.5.6 Covariant derivative

What remains is to define the covariant derivative. We are going to supply an abstract

definition of the covariant derivative on associated bundles. There exists also a geo-

metrically intuitive way to define covariant derivative which relies on parallel trans-

port, but because of the sheer number of necessary definitions and the fact that the

end result (although completely equivalent to the abstract approach) is very compu-

tationally inefficient, it is deemed outside of the scope of this Thesis. The geometrical

idea of covariant derivatives is to consider associated vector bundles (their fiber F is

a vector space) and linear (in the second argument) left Lie actions B: G × F → F .

Because F is a vector space, we can subtract vectors, which means we can compare

vectors from some point’s fiber with parallelly transported vectors from some nearby
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point’s fiber. Depending on the curve over which we have transported, we will obtain

the covariant derivative in the direction of the curve’s tangent vector field.

Our goal is to construct an operator ∇ which maps local sections σ : U → PF along

with a vector field X ∈ TU into a local section ∇Xσ : U → PF , while at the same

time obeying standard properties that we expect from the covariant derivative:

1. ∀f, g ∈ C∞p (M), ∀X, Y ∈ TU :

∇fX+gY σ = f∇Xσ + g∇Y σ (1.68)

2. ∀X ∈ TU :

∇X (σ + τ) = ∇Xσ +∇Xτ (1.69)

3. ∀f ∈ C∞p (M):

∇Xfσ = X (f)σ + f∇Xσ (1.70)

Let us begin with the theorem which uniquely connects G-equivariant (for the defi-

nition see Appendix A.1.4) functions and local sections of the associated bundle.

Theorem 1.11. Let (P, π,M) be a principal G-bundle and (PF , πF ,M) its associated

bundle. The set of local sections U ⊆M → PF is in a 1-to-1 correspondence with the set

of G-equivariant functions φ : π−1 (U) ⊆ P −→ F .

The previous theorem allows us to define the covariant derivative on the codomain

F and then to equivalently (using the theorem’s correspondence) move it to the as-

sociated bundle.

Theorem 1.12. Let φ : P → F be a G-equivariant function, let s : U ⊆ M → P be a

local section and X ∈ TP . Then the following identity holds:

(s∗Dφ) (X) = (ds∗φ) (X) + ωU (X) B (s∗φ) . (1.71)

With identifications

s∗φ←→ σ : U → PF

(s∗Dφ) (X)←→ ∇Xσ
(1.72)
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one arrives at the construction of the directional covariant derivative with properties

(1.68), (1.69) and (1.70) from the previous discussion. It is important to mention

that σ and ∇Xσ are obtained from the bijective pairs of φ and Dφ (the pairs, also lazily

denoted φ andDφ in the identification (1.72), are in the sense of Theorem 1.11) because

otherwise the codomains of σ and ∇Xσ would be F instead of PF .

Using the Theorem 1.12., we have constructed the (directional) covariant deriva-

tive operator and found that it takes the form (now with the included identifications

from the theorem)

∇Xσ = dσ (X) + ωU (X) B σ . (1.73)

The second summand in (1.73) is actually two bijective identifications in the sense

of Theorem 1.11. First we choose a local section σ and take its G-equivariant pair.

We act on the pair with ωU (X) B and then the new G-equivariant function produces

(again using the bijective pairing) the final local section (which we denote ωU (X) B

σ).

It is worth mentioning that the properties of the operator depend on, generally, two

independent choices: on the choice of the connection ω and on the choice of the left

linear action B on F .

1.5.6.1 Geometry of GR - covariant derivative

Theorem 1.12. finishes our sequence of comments about geometry of GR in which

we apply results to the frame bundle (LM, π,M) and reproduce mathematical tools

used in GR. Namely, if for the left linear action on F (' Rd) we pick

(g B f)i := gijf
j , (1.74)

where gij are the components of g ∈ TeGL(d,R) in the standard basis of R, and if ωU

is like in the previous two comments (1.5.3.2 and 1.5.4.1), we obtain the covariant

derivative used in GR:

∀X ∈ TM : (∇Xσ)i = Xν∂νσ
i +Xν

(
ωU
)i
jνσ

j . (1.75)
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1.6 Classical Electrodynamics as a U(1) gauge theory

Throughout the first part of the chapter we have shown that GR can be rightfully

considered a GL(d,R) theory (with d = 4 in our universe, of course). Next, we

are going to construct a principal U(1) bundle from which it follows that Classical

Electrodynamics is a U(1) gauge theory.

1.6.1 Principal bundle for electrodynamics

Let (M × U(1), π1,M) be a trivial bundle where M is Minkowski spacetime with its

metric g. On this bundle we define the right Lie action as follows:

(xµ, g) C g′ := (xµ, gg′) (1.76)

which makes this bundle a principal U(1)-bundle because the action C in (1.76) is

obviously free, as discussed in 1.4.1.1. If we define a connection on M × U(1), we

can pull it back to M with a global section (which exists according to Theorem 1.4.

because (M × U(1), π1,M) is a trivial bundle) and obtain a global Yang-Mills field.

This is not surprising because in CE we often do have a global potential Aµ which we

have already planned to identify with a Yang-Mills field (it will turn to correspond to

a Yang-Mills field up to a factor).

1.6.2 Potential Aµ and connection

Now we are going to derive the transformation rule for the 4-potential under gauge

transformations. Let A1
µ be some Yang-Mills field on M obtained by pulling back the

connection with a global section

σ1 : m ∈M 7→
(
xµ, eiα(m)

)
. (1.77)

Let

σ2 : m ∈M 7→
(
xµ, eiβ(m)

)
(1.78)

be a second global section for the same functions xµ which pulls back the connection,

defining a Yang-Mills fields A2
µ. Then the gauge function Ω is given as

Ω(m) = eiχ(m) = ei(β(m)−α(m)) . (1.79)
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Repeating the same procedure (but now without the GL(d,R)) matrix indices) like

in the comment 1.5.3.2, we see that the second summand in Theorem 1.7. is

(Ω∗Ξ)m

((
∂

∂xµ

)
m

)
= Ω(m)−1∂µΩ(m) , (1.80)

while the first summand in Theorem 1.7. equals

(
AdΩ−1(m)

)
∗

(
A1
µ

)
= Ω−1(p)A1

µΩ(p) . (1.81)

All together, the connection between two gauge fixed Yang-Mills fields is:

A2
µ = Ω−1A1

µΩ + Ω−1∂µΩ . (1.82)

If we suppose that every Yang-Mills field Aµ defines one 4-vector potential Aµ as

Aµ = iqAµ, we get, by inserting the expression for Ω, the connection between elec-

tromagnetic potentials under gauge transformations:

A2
µ = e−iχA1

µe
iχ − i

q
e−iχ∂µe

iχ (1.83)

which is identical to the expression (1.6) from this chapter’s introduction. We con-

clude that electromagnetic potential is simply (up to a factor) a Yang-Mills field. If

we can not define a global section over the total manifold (e.g., in the case of Dirac

monopoles) we are forced to use local sections so the best we can do is obtain local

potentials and compare them on the intersections of their domains using Theorem

1.7.

1.6.3 Faraday tensor and connection curvature

Our next goal is to represent the Faraday tensor as the Yang-Mills field strength. IfAµ
is some U(1) Yang-Mills field, then the Yang-Mills field strength Fµν is by definition

equal to

F = dA+A ∧A . (1.84)

One has to take into accoung that the summand A ∧ A vanishes because U(1) is a

commutative group. All together, if we define the Faraday tensor as Fµν := 1
iq
Fµν , we
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obtain the famous expression

Fµν = ∂µAν − ∂νAµ . (1.85)

1.6.4 Covariant derivative

Given the principal U(1)-bundle (P, π1,M) (where P = M ×U(1)), we can define an

associated vector bundle (PC, πC,M). On its fiber, C, we define left Lie action as the

multiplication in complex numbers

g B z := g · z . (1.86)

By Theorem 1.12., the directional covariant derivative has the form

∇X = Xµ∂µ +XµAµ = Xµ∂µ + iq ·XµAµ = XµDµ . (1.87)

We can see that the directional (gauge) covariant derivative is in this case a contrac-

tion of vectors and the covariant derivative which we have defined in the introduction

1.1.2.

It is important to mention that this gauge covariant derivative can differentiate be-

tween functions which are gauge scalars and functions which are gauge vectors. For

example, the classical neutron field n is a scalar for the gauge covariant derivative so

the gauge covariant derivative reduces to partial derivatives, as it should.

∇Xn = Xµ∂µn+ iq ·XµAµn =

= [q = 0 for neutrons] =

= Xµ∂µn .

(1.88)

On the other hand, the classical electron field e is a gauge vector so the gauge covari-

ant derivative does not simply reduce to partial derivatives.

1.7 Spin Structure

In the previous section we have defined the objects from CE using the tools from

principal and associated bundle theory. We have done a similar thing, throughout

the whole chapter, with GR. With that said, we have explained the geometry of two
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classical theories and defined them as gauge theories. In order to geometrically de-

fine gauge boson fields, the mathematical tools up to this point are sufficient because

gauge bosons are of tensorial structure. Matter (fermion) fields, on the other hand,

are spinorial objects and require additional definitions. In this section we are going

to define spinor fields as sections of the spinor bundle, which will be defined as an

associated vector bundle to the principal Spin+(p, q)-bundle, which itself is closely

related to the orthogonal frame bundle OLM .

Finally, we are going to define Dirac forms; which will be used to define Dirac mass

terms, the spin covariant derivatives (twisted and twisted chiral) and the Dirac opera-

tor; which will be used to define kinetic and interaction terms.

1.7.1 Spinor bundle as an associated vector bundle

Just like we have used the frame bundle to define tensorial objects as sections of

associated vector bundles, we will use the spinor frame bundle to define spinorial

objects as sections of associated spinor bundles. Spinor frame bundle is defined using

the ortohognal frame bundle.

Definition 1.34. Let M be a smooth manifold with the metric gab (the definition

is analogous for metrics of Lorentz and Riemann type). Consider the subset of the

frame bundle LM , OLM , which is defined using sets OLpM

OLpM := {(e1, ..., edimM) : (e1, ..., edimM) is an orthonormal basis with respect to g}
(1.89)

which are taken into a disjoint union, just like in (1.27)

OLM :=
⊔
p∈M

OLpM . (1.90)

In the end, the space OLM should be endowed with a topology (see reference [4])

in order to finish the construction of the orthogonal frame bundle.

1.7.1.1 OLM as an SO+(p, q)-principal bundle

For a manifold with the metric of signature (p, q), (OLM,πOLM ,M) is an SO+(p, q)-

principal bundle6. The definition is completely analogous to 1.4.2.1. We define the

6SO+(p, q) is the orientation preserving subgroup of SO(p, q).
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projection

π : OLM →M

(e1, ..., edim M) ∈ OLpM 7→ p
(1.91)

and the right action J identically as in 1.4.2.1, but change the group to SO+(p, q).

Sometimes (OLM, πOLM ,M) is denoted as (SO+(M), πSO,M). We call a local section

e = (e1, ..., edim M) of SO+(M) a local vielbein or a local tetrad.

Next we are defining the spinor frame bundle as a Spin+(p, q)-principal bundle with

a special kind of double covering.

Definition 1.35. Spinor frame bundle (sometimes called the spin structure) is a

Spin+(p, q)-principal bundle (Spin+(M),πSpin,M) with a λ-equivariant function

Λ : Spin+(M)→ OLM (1.92)

such that the following diagram commutes:

Spin+(M)× Spin+(p, q) Spin+(M)

M

OLM × SO+(M) OLM

Λ×λ

π1

Λ

πSpin

π1

πOLM

where λ is a restriction of π, defined in Appendix A.2.8

λ = π|Spin+(p,q) : Spin+(p, q)→ SO+(p, q) (1.93)

and it is a double covering of SO+(p, q).

It can be proven (see, e.g. [7], Theorem 6.9.7) that the spin structure, if it exists7,

is unique up to a principal bundle isomorphism. Also, we call any manifold that can

have a spin structure defined on it a spin manifold. Associated bundles to spinor

frame bundles are called spinor bundles and are our next point of interest. Very
7The spin structure over M exists if and only if M is orientable (i.e. the first Stiefel-Whitney class

of M , w1(M), vanishes) and the second Stiefel-Whitney class of M , w2(M), vanishes, see [7].
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importantly, it can also be proven that all (Lorentzian) tensor bundles on M can be

recovered as associated bundles to the spinor frame bundle (see, e.g., [7]).

Definition 1.36. Let ∆ ≡ ∆n = CN be the vector space of Dirac spinors for some

n and let8

κ : Spin+(p, q)→ GL(∆) (1.94)

be a spinor representation. The (Dirac) spinor bundle is the associated bundle

S = Spin+(M)×κ ∆. Sections of S are called spinor fields or spinors. Also, if κ is a

nontrivial representation, S is called a charged spinor bundle.

1.7.2 Dirac form

In order to define Dirac forms, we need to define a product between Rp,q vectors

and Dirac vectors from ∆n. Dirac forms will be used in our intrinsic Lagrangian for-

mulation to replicate the spinor contractions from the fermionic Lagrangian sectors

defined in the Chapter 2.

Definition 1.37. The (mathematical9) Clifford multiplication is the bilinear map

Rp,q ×∆n −→ ∆n (1.95)

given as

(X,ψ) 7→ X · ψ := ρ(γ(X))ψ (1.96)

where ρ is the representation whose representation space is ∆n and γ is defined in

the Appendix A.2.4.

Definition 1.38. Let ∆ = ∆n be the complex spinor representation of Cl(p, q) =

Cl(Rp,q) and fix a constant δ = ±1. We call a non-degenerate bilinear form a Dirac

form

〈·, ·〉 : ∆×∆ −→ C (1.97)

if it satisfies:
8The connection between N and n is the result of the structure theorem for complex Clifford

algebras, see [7] Theorem 6.3.21. In this Thesis, n in ∆n will always equal the spacetime dimension
dimM .

9The physical multiplication is given as the mathematical times −i.
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1. ∀X ∈ Rp,q,∀ψ, φ ∈ ∆:

〈X · ψ, φ〉 = δ 〈ψ,X · φ〉

2. ∀ψ, φ ∈ ∆:

〈ψ, φ〉 = 〈φ, ψ〉∗

3. ∀ψ, φ ∈ ∆,∀c ∈ C:

〈ψ, cφ〉 = c 〈ψ, φ〉 .

We will sometimes denote 〈ψ, φ〉 as ψ̄φ.

For every Dirac form (1.97) there exists a matrix A such that

1. ∀ψ, φ ∈ ∆

〈φ, ψ〉 = ψ†Aφ

2. γ†a = δAγaA
−1

3. A = A†

where γa is the a-th mathematical gamma matrix, defined in Appendix A.2.4. Also,

the Dirac form is Spin+(p, q)-invariant so it, by Appendix A.3.2, generates an associ-

ated bundle metric on S, 〈·, ·〉S.

Now follows a theorem about spinor bundles that guarantees the well definedness

of the Clifford multiplication in spinor bundles and also defines Weyl spinor bundles

and their Clifford multiplication properties.

Theorem 1.13. Let S = Spin+(M) ×κ ∆n be the spinor bundle associated to the spin

structure on M . The following statements are true:

1. There exists a well defined Clifford multiplication on the level of bundles

· : TM × S → S

(X,ψ) 7→ X · ψ
(1.98)

which is obtained by Clifford multiplying at every point, i.e., (X · ψ)p = Xp · ψp.
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2. If the dimension n of M is even, then S splits into a direct sum of Weyl spinor

bundles S = S+ ⊕ S− defined as

S± = Spin+(M)×κ ∆±n (1.99)

Where ∆±n are defined in the Appendix A.2.6. In this case, Clifford multiplication

maps S± to S∓.

1.7.3 Spin covariant derivative

If given a Levi-Civita covariant derivative (often incorrectly called Levi-Civita connec-

tion) and a spin structure, one can uniquely determine the spin covariant derivative

which acts on sections of the spinor bundle S = Spin+(p, q)×κM . In this subsection,

we are going to define spin covariant derivatives which generalize into twisted spinor

covariant derivatives and twisted chiral spinor covariant derivatives, former of which

will be used to define the gauge covariant derivative for QCD and latter of which will

be used to define the gauge covariant derivative for the electroweak sector.

1.7.3.1 Spin covariant derivative and Clifford connection

Given a local vielbein (a local section of the OLM bundle) e = (e1, ..., edim M), one can

act on it using the Levi-Civita covariant derivative, since vectors ei are elements of

TM , and expand the derivative in the basis e:

∇Xea = ωab(X)ηbcec . (1.100)

The same procedure can be applied to any basis e of TM , but in the case when the

basis e is orthonormal with respect to the manifold metric, we call ω the Clifford

connection10 with respect to the (orthonormal) basis e.

We can convince ourselves that the Clifford connection is uniquely determined from

the Levi-Civita covariant derivative. Firstly, we can express ω in terms of anholon-

omy coefficients Ωab
c as

ωcab = ωab(ec) =
1

2
(Ωcab − Ωabc + Ωbca) (1.101)

10We call it a connection similarly to how people call ∇ the Levi-Civita connection.
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where Ωabc = Ωab
dηdc and

[ea, eb] = Ωab
cec . (1.102)

We can see that (1.102) completely determines the Clifford connection, but (1.102)

contains Levi-Civita covariant derivatives because it is known that for every two vec-

tor fields X, Y , their commutator is given as

[X, Y ] = ∇XY −∇YX . (1.103)

Now we will state the theorem which expresses the spin covariant derivative in local

coordinates on M .

Theorem 1.14. Let e be a local vielbein, p ∈M be an arbitrary point and xµ be a local

coordinate chart on an open set U 3 p.
For any spinor Ψ = [ε, ψ] ∈ Γ(S), where ε is a local gauge of the spinor frame bundle

such that11 Λ ◦ ε = e, and ψ : U → ∆, and any local vector field X ∈ Γ(TU), we can

express the spin covariant derivative ∇XΨ as

∇XΨ = [ε,∇Xψ] ,

where ∇Xψ equals

∇Xψ = dψ(X)− 1

4
ωab(X)Γabψ = Xµ∂µψ −Xc1

4
ωcabΓ

abψ. (1.104)

In (1.104), Xc are the components of X in the local vielbein e and Xµ the components

of X in the induced coordinate vector fields ∂µ.

Also, the spin covariant derivative is compatible with the Levi-Civita covariant derivative

in the sense that the following relation holds for every X, Y ∈ Γ(TU) and Ψ ∈ Γ(S):

∇X (Y ·Ψ) = (∇XY ) ·Ψ + Y · (∇XΨ) , (1.105)

where · is the mathematical Clifford multiplication defined in Definition 1.37. The proofs

of all the claims in this theorem can be found in [7], section 6.10.2.
11For every local vielbein e, there always exist exactly two local gauges ε± such that Λ ◦ ε± = e,

where Λ is the λ equivariant function from the Definition 1.35. The proof of this claim can be found
in [7], Lemma 6.9.11.
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1.7.3.2 Twisted spinor bundle and twisted spin covariant derivative

In this paragraph we are introducing twisted spinor bundles and twisted spin covari-

ant derivatives. They are a way to connect spin structure with principal G-bundles,

introducing interaction with gauge fields to spinors.

Let (P, π,M) be a principal G-bundle and ρ : G → GL(V ) a complex representation

defining an associated vector bundle E = P ×ρ V . Let S = Spin+(M) ×κ ∆ be the

spinor bundle associated to the spin structure on M .

Definition 1.39. We call the associated vector bundle S⊗E the twisted spinor bun-

dle or gauge multiplet bundle. For the definition of the fibre product, see Appendix

A.1.8.

The sections of the twisted spinor bundle are defined as follows. Let s : U → P

be a local gauge, we can then, using a map v : U → V , define a local section τ of E

as

τ(p) = [s(p), v(p)]. (1.106)

If we choose a basis v1, ..., vr for V , we can define a basis of local sections τi for E

(since fibers of E are vector spaces isomorphic to V ), this is analogous to how we

can define a basis for TM .

Similarly, if we take a local gauge ε : U → Spin+(M), then all local sections of S are

given as

[ε(p), f(p)] (1.107)

for functions12 f : M → ∆n.

Finally, from the definition of the tensor product bundle, any section Ψ ∈ Γ(S ⊗ E)

can be written as the tensor product of a section of S and a section of E. If we expand

the section of E in the basis τi, we obtain an expression for the section

Ψ =
r∑
i=1

Ψi ⊗ τi (1.108)

with Ψi ∈ Γ(S). Equivalently, the section Ψ can be expressed locally as

Ψ = [ε× s, ψ] (1.109)

12Local sections of associated bundles are in a 1 to 1 correspondence with functions from the base
manifold to the associated bundle’s fibre. To see this construction, see Appendix A.1.9.
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where ψ is a multiplet of the form

ψ =


ψ1

ψ2

...

ψr

 : U −→ ∆n ⊗ Cr (1.110)

and ψi are all maps to ∆n. It is worth noting that in (1.110) we have identified V

with Cr for the sake of conveniently writing ψ as a column vector.

Definition 1.40. Let A be a connection 1-form on the principal G-bundle P and let

s and ε be local gauges for P and Spin+(M) from U ⊆M .

We define the directional twisted spin covariant derivative ∇A
X locally on Ψ =

[s× ε, ψ] as

∇A
XΨ := [s× ε,∇A

Xψ] (1.111)

where ∇A
Xψ is defined as follows

∇A
Xψ = dψ(X)− 1

4
ωbc(X)Γbcψ +

(
ρ∗A

U(X)
)
ψ . (1.112)

In the previous equation, ρ∗AU is the push-forward of the Yang-Mills field AU .

1.7.3.3 Twisted chiral spin bundle and twisted chiral spinor covariant deriva-

tive

We are now defining twisted chiral bundles and twisted chiral covariant derivatives

which couple chiral spinors to gauge fields.

Suppose the spacetime M dimension is even. Then, in accordance with Theorem

1.13, the spinor bundle S = Spin+(M) ×κ ∆n splits into a direct sum of Weyl spinor

bundles S±. Let P →M be a principal G-bundle and

ρ± : G −→ GL(V±) (1.113)

be two (possibly distinct) complex representations of G on vector spaces V± and let

E± = P ×ρ± V± be the associated vector bundles.
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Definition 1.41. We call

(S ⊗ E)+ := (S+ ⊗ E+)⊕ (S− ⊗ E−) (1.114)

the twisted chiral spinor bundle. Sometimes, the bundle (S ⊗ E)− is also studied

and it is defined as follows:

(S ⊗ E)− := (S− ⊗ E+)⊕ (S+ ⊗ E−) . (1.115)

Sections of the twisted chiral spinor bundle are given as

Ψ = Ψ+ + Ψ− (1.116)

where Ψ± are sections of S± ⊗ E±.

Definition 1.42. Let A be a connection 1-form on the principal G-bundle P and let

s and ε be local gauges for P and Spin+(M) from U ⊆M .

The directional twisted chiral spin covariant derivative ∇A
X on the twisted chiral

spinor bundle is defined (analogously to the Definition 1.40) as

∇A
XΨ = [s× ε,∇A

Xψ] (1.117)

where ∇A
Xψ is defined as follows

∇A
Xψ = dψ(X)− 1

4
ωbcΓ

bcψ +
(
ρ+∗A

U
)
ψ +

(
ρ−∗A

U
)
ψ . (1.118)

1.7.4 Dirac operator

We are now defining Dirac operators which correspond to the /D = γµDµ operator

from QFT. We will define three types of Dirac operators, one acting on sections of

spinor bundles, one acting on sections of twisted spinor bundles and one acting on

sections of twisted chiral spinor bundles.

1.7.4.1 Spinor bundle case

Definition 1.43. The Dirac operator D : Γ(S) → Γ(S) is defined (using a local
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gauge ε : M → Spin+(M) and a local vielbein e) as

DΨ = [ε,Dψ] (1.119)

where Dψ equals

Dψ = γa∇eaψ = iΓa
(
dψ(ea)−

1

4
ωabcΓ

bcψ

)
. (1.120)

It is worth noting that the Dirac operator (all three versions) does not depend on the

choice of ε and e. The proof of this claim can be found in [7], section 6.10.3.

1.7.4.2 Twisted spinor bundle case

Definition 1.44. The Dirac operator on a twisted spinor bundle with a connection

1-form A (on the G-bundle P ), with local gauges s : U → P, ε : U → Spin+(M) and

a local vielbein e, is expressed locally as

DA : Γ(S ⊗ E) −→ Γ(S ⊗ E)

DAΨ = [s× ε,DAψ]
(1.121)

where DAψ equals

DAψ = iΓa
(
dψ(ea)−

1

4
ωabcΓ

bcψ +
(
ρ∗A

U
)
ψ

)
. (1.122)

1.7.4.3 Twisted chiral spinor bundle case

Definition 1.45. The Dirac operator on twisted chiral spinor bundles is given locally

(in terms of a local vielbein e, inducing a local gauge ε, and a local gauge s) as

DAΨ : Γ
(
(S ⊗ E)+

)
−→

(
(S ⊗ E)−

)
DAΨ = [s× ε, ψ] ,

(1.123)

where DAψ equals

DAψ = iΓa
(
dψ(ea)−

1

4
ωabcΓ

abψ +
(
ρ+∗A

Uψ+

)
+
(
ρ−∗A

Uψ−
))

. (1.124)
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One can also naturally decompose the Dirac operator into DA± : Γ (S± ⊗ E±) −→
Γ (S∓ ⊗ E±) defined by

DA±ψ± = iΓa
(
dψ±(ea)−

1

4
ωabcψ± +

(
ρ±∗A

U
)
ψ±

)
. (1.125)

This concludes our mathematical introduction to gauge theories. Using the tools

developed in this chapter and in the Appendices, we proceed to outline Standard

Model’s Lagrangian geometrically. In the next chapter we are going to somewhat

heuristically define SM’s Lagrangian and discuss all of its symmetries and historical

development.

44



2 The Standard Model

2.1 Introduction

The Standard Model (SM) is the best known and experimentally tested theory de-

scribing the fundamental interactions of elementary particles. It is also the most

rigorously tested physical theory, correctly predicting many physical quantities, the

most successful of which is the fine structure constant up to 12 significant digits [8].

However, it is agreed upon that the SM can not be a Theory Of Everything (TOE)

because, firstly, it does not describe gravitational interaction, and, secondly, there are

some open questions in physics, which aren’t known to be related to quantizing grav-

ity, that the SM apparently does not describe, e.g., neutrino masses or dark matter.

More precisely, the SM is a quantum field theory describing the electroweak, strong

and Higgs interactions of the three generations of quarks and leptons mediated by

the bosonic force carriers. The particle content of the SM can be seen on the Figure

2.1. In this chapter we are going to arrive at the Lagrangian of the SM and describe

its symmetries. But before doing so, we are going to define quantum field theory.

2.2 Quantum field theory

A quantum field theory is the application of quantum mechanical tools to systems

of quantum fields. Most commonly one arrives at QFTs by quantizing classical field

theories. The most common quantization methods are the canonical quantization

and path integral quantization. The canonical quantization is the most optimal for

the first encounters with quantum field theory while the path integral quantization

is much harder to rigorously define1 but is more suitable for our geometric approach

that we will employ in the third chapter. Since the mathematics developed in the

first chapter is only suitable for classical field theories, we will use it on the SM’s

Lagrangian to rigorously define the classical SM which can then be quantized using

the path integral approach. Historically, path integral quantization was discovered

after canonical quantization approach. The development of quantum field theory has

started with Paul Dirac’s discovery of the relativistic quantum mechanics and Dirac

equation. In the following three subsections we are going to derive the Dirac equation

1In fact, path integral quantization to this day still remains a heuristic approach in many cases,
even though it has been rigorously defined for some simple Lagrangians.
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Figure 2.1: The entire particle content in the SM including the masses, spins and
charges of particles. The diagram was made at the CERN Webfest [9].

and the Dirac Lagrangian and then we are going to explain how one quantizes the

theory defined with the Dirac’s Lagrangian using canonical quantization approach.

2.2.1 Dirac equation

In this subsection we are going to follow Dirac’s derivation of Dirac’s equation using

the canonical quantization approach, i.e., by promoting observables into hermitian

operators and then, after finding the Dirac equation, we will guess a Lagrangian that

has the Dirac equation as its equation of motion. The Dirac equation is a relativistic

quantum equation governing the dynamics of a free (massive spin 1
2
) fermion.
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2.2.2 Derivation of Dirac equation

In order for a theory to be a valid relativistic quantum theory, the momentum and

energy should satisfy the Einstein dispersion relation

E2 = ~p 2 +m2 . (2.1)

The simplest possible quantized model is arrived at by promoting the equation (2.1)

into an operator equation

Ê2ψ = ~̂p 2ψ +m2ψ (2.2)

where Ê and p̂ are the hermitian operators corresponding to the energy and momen-

tum observables. But, following the usual correspondence Ê = i ∂
∂t

and ~̂p = −i~∇ one

arrives at the Klein-Gordon equation

∂2ψ

∂t2
= ∇2ψ +m2ψ (2.3)

whose plane wave solutions have negative probability densities which are, of course,

not physical and mathematically undefined.

To circumvent the problem of negative energy and probability densities, Dirac tried a

more complicated equation of motion than (2.2) which will still reproduce the energy

momentum relation (2.1), namely

Êψ

(
= i

∂

∂t
ψ

)
= (~α · ~p+ βm)ψ =

(
−i~α · ~∇+ βm

)
ψ , (2.4)

where ~α and β are, for now, unknown mathematical objects which are yet to be

determined from physical conditions the theory should satisfy. Firstly, by squaring

the operator equation underlying (2.4), one should arrive back at the Klein-Gordon

equation. This condition is equivalent to the following set of conditions:

α2
x = α2

y = α2
z = β2 = 1

αiβ + βαi = 0

αiαj + αjαi = 0 (i 6= j) .

(2.5)

The simplest structure that can satisfy anticommutative relations (2.5) is the set of

matrices. From the cyclic properties of trace and the fact that α2
i = β2 = 1, we can
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deduce that all matrices αi and β are traceless

Tr(αi) = Tr(αiββ) = Tr(βαiβ) = −Tr(αiββ) = −Tr(αi) = 0 . (2.6)

It can also be shown (again using the property α2
i = β2 = 1) that all eigenvalues

of αi and β are ±1, meaning that they are even-dimensional matrices since they are

traceless.

Secondly, from the condition that the Dirac Hamiltonian, HD = −~α · ~∇+ βm, is her-

mitian we can deduce that αi and β are hermitian.

The last observation one needs to make is that two-dimensional square matrices do

not contain four (linearly independent) anticommuting traceless hermitian matrices

since there are only three linearly independent matrices, Pauli matrices σi, satisfying

all the desired properties. This means the next try should be in the set of 4×4 matri-

ces, and it turns out, it contains enough matrices with all the desired properties. In

order to make the Dirac equation (2.4) covariant, one can define the gamma matrices

γµ as

γ0 := β, γi := βαi (2.7)

which convert the Dirac equation into its most famous form

(iγµ∂µ −m)ψ = 0 (2.8)

and satisy the following relations

{γµ, γν} = 2ηµν(
γ0
)2

= −
(
γi
)2

= 1

γ0† = γ0 γi
†

= −γi .

(2.9)

It is also worth noting that the (four-component) object ψ is a spinor and that the

probability current jµ is given by

jµ = ψ†γ0γµψ ≡ ψ̄γµψ . (2.10)
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2.2.3 Dirac Lagrangian

The starting point of all Lagrangians describing the interactions of fermions is the

Dirac Lagrangian, which equals

L = ψ̄ (iγµ∂µ −m)ψ . (2.11)

The equations of motion for ψ̄ and ψ are the Dirac equation and the conjugate Dirac

equation respectively. The Lagrangian (2.11) is the minimal Lagrangian reproducing

the Dirac equation as the Euler-Lagrange equation of motion.

2.2.4 Quantizing the Dirac Lagrangian

We are now going to describe the process of applying canonical quantization to the

Dirac Lagrangian. As per usual procedure, we promote the fields and canonically con-

jugate fields in the Lagrangian into operators on the Hilbert space of quantum states.

This is done by imposing suitable equal-time (anti)commutation relations to the

fields and conjugate momenta which then give rise to suitable2 (anti)commutation

relations of the Fourier coefficients in the general expansion of the classical solu-

tion3. This is not very different to Dirac’s approach to deriving Dirac’s equation, with

the main difference being that the procedure we have just described can be used to

quantize general classical field theories, and not just theories for point-like particles.

Imposing the following anticommutation relations to the Dirac fields (the conjugate

momentum is proportional to ψ†, πψ = iψ†, so we do not need to list any other

anticommutation relations)

{ψa(x), ψ†b(y)}x0=y0 = δ3(~x− ~y)δab

{ψa(x), ψb(y)}x0=y0 = {ψa(x)†, ψb(y)†}x0=y0 = 0 .
(2.12)

2Depending on the statistics we want the quantum field to obey, we need to choose commutation or
anticommutation relations. For example, fermionic fields need to obey Pauli exclusion principle which
forces us to use anticommutation relations or the canonical Hamiltian will not be positive definite.

3The word classical is used because the solution we are referring to is of the classical field theory.
For the Dirac Lagrangian, the classical solution to the Dirac equation is a plane wave solution. See,
e.g., [10] 4.6. for the exact form of the solution
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and using the general expansion of the Dirac field

ψ(x) =

∫
d3p

(2π)3

1√
2E~p

1/2∑
s=−1/2

(
as~pu

s(p)e−ip·x + bs~p
†vs(p)eip·x

)
(2.13)

we obtain the following anticommutation relations of the Fourier coefficients (with

all other combinations equaling 0)

{
ar~p, a

s
~q
†} =

{
br~p, b

s
~q
†} = (2π)3δ3(~p− ~q)δrs , (2.14)

which concludes the quantization of the Dirac Lagrangian.

2.3 Quantum electrodynamics

Quantum electrodynamics (QED) was the first fundamental interaction fully described

in terms of quantum field theory. Its Lagrangian is invariant to U(1) transformations

and it is the result of the minimal modification to the Dirac’s Lagrangian that can

reproduce the invariance.

2.3.1 QED Lagrangian

The Lagrangian for the QED, as already mentioned in the Mathematical introduction

to gauge theories section 1.1.2, equals (without external currents Jµext):

LQED = ψ̄ (iγµDµ −m)ψ − 1

4
F µνFµν (2.15)

where Dµ = ∂µ + iqAµ is the gauge covariant derivative and Fµν = ∂µAν − ∂νAµ the

Faraday tensor. The Euler-Lagrange equations for this theory are the Dirac equation

and the Maxwell equations

δL
δψ̄
− ∂µ

δL
δ∂µψ̄

= 0 ⇐⇒ (iγµDµ −m)ψ = 0 ,

δL
δAν
− ∂µ

δL
δ∂µAν

= 0 ⇐⇒ ∂µF
νµ = eψ̄γµψ = ejν = Jν .

(2.16)

The first equation is the Dirac equation in the presence of an electromagnetic poten-

tial while the second Euler-Lagrange equation is the covariant form of Gauss-Ampere

law with the electric current being the probability current multiplied with the ele-
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mentary charge. The second two Maxwell equations in the covariant form are just

the Bianchi identity for Fµν

∂λFµν + ∂µFνλ + ∂νFλµ = 0 . (2.17)

.

2.3.2 U(1) symmetry

U(1) is a compact abelian Lie group generated by 1 ∈ R whose Lie algebra is u(1) =

T1U(1) = R. We say that a Lagrangian is invariant to U(1) gauge transformations

if, after applying a gauge transformation, the transformed Lagrangian differs the

starting Lagrangian up to a surface term4.

It is easy to see that, the U(1) transformations

ψ 7→ U(x)ψ = eiα(x)ψ

ψ̄ 7→ ψ̄U †(x) = e−iα(x)ψ̄

Aµ 7→ Aµ − ∂µα(x) ,

(2.18)

leave the QED Lagrangian invariant. With all that in mind (and as explained in

1.1.2), we can see that QED is, in some sense, a minimal U(1) theory originating from

Dirac Lagrangian. The condition for a theory to satisfy U(1) invariance is physical be-

cause it corresponds to local phase invariance which does not change the probability

density.

In the following sections, we are going to construct minimal gauge invariant theories

for other Lie groups, namely SU(3) and SU(2) for which there was also physical and

experimental motivation. As it turns out, the minimal Lagrangians corresponding to

the mentioned Lie groups will be the main components for constructing the entire

SM Lagrangian.

2.4 Quantum chromodynamics

Quantum chromodynamics (QCD) is the interaction also known as the strong nuclear

force and it is responsible for the interaction between quarks and gluons. Histori-

4A surface term is any function that can be represented as the 4-divergence of some vector field.
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cally, the development of the description of QCD heavily relied on symmetries. For

example, it was conjectured that the strong interaction does not distinguish between

neutrons and protons and that every difference between the two particles arises from

their difference in electric charge.

Trying to describe a force that did not distinguish protons and neutrons, Heisenberg

introduced the concept of isospin, a quality of a theoretical particle nucleon that is

mathematically analogous to spin 1/2 but its projections were interpreted as the pro-

ton state |p〉 and neutron state |n〉. The strong interaction then, not depending on the

projections of isospin, was conjectured as a force invariant under SU(2) transforma-

tions which would rotate a nucleon state around the |p〉 − |n〉 plane. Its mediators

were conjectured to be the pion particles π+, π− and π0.

After the discovery of constituent particles of the neutron and proton, up and down

(u and d) quarks, the idea of isospin was translated to the quarks. It turns out that

isospin is a very good approximation to low energy limit of QCD in which only up

and down quarks exist. But, after the discovery of the strange quark, the idea of

SU(2) symmetry was upgraded to the SU(3) flavor symmetry which was not as good

of an approximation for QCD at the strange quark energy scales, but it was a model

none the less. The idea of isospin and its generalisation slowly died out, but the Lie

group SU(3) returned as the proposed symmetry group of the three color charges

for the strong force, namely, r≡red, g≡green and b≡blue. Of course, only particles

that carry color charge couple to the force carriers of QCD, gluons. Nowadays, QCD

is regarded as the SU(3) invariant gauge theory of interactions between 6 flavors of

quarks and 8 gluons, in fact, a quark of any flavor has 3 colors and the strong inter-

action does not differ between flavors - in that sense strong interactions are always

between 3 colored quarks and 8 gluons and not dependent on flavor.

2.4.1 QCD Lagrangian

The QCD Lagrangian is very similar to the QED Lagrangian with a few modifications

which arise from the SU(3)’s non-abelian nature and the multitude of bosons and

quark flavors:

LQCD =
∑
q

ψ̄qi
(
iγµ(DQCD

µ )ij −mδij
)
ψqj −

1

4
GaµνGa

µν . (2.19)
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There are some clarifications to be made:

• (DQCD
µ )ij = ∂µ + igSG

a
µ(T a)ij is the gauge covariant derivative for SU(3), with

gS being the strong coupling constant.

• Functions Ga
µ(x), with 1 ≤ a ≤ 8, are the classical5 gluon fields. The index a

ranges over 8 values because the Lie group SU(3) has 8 generators.

• The matrices T a = 1
2
Λa are the 3×3 defining matrix representation of SU(3)

generators. For example, Gell-Mann representation Λa is an often used repre-

sentation in QCD. The structure constants fabc of the representations T and Λ

are defined as follows (for exact values, see, e.g. [11]):

[
T a, T b

]
= ifabcT c (2.20)

• Ga
µν = ∂µG

a
ν − ∂νGa

µ − gSfabcGb
µG

c
ν is the Yang-Mills field strength6 for the field

Ga
µ, or the generalised Faraday tensor.

• ψqi are the Dirac 4-component spinors, index q ranging over each of the six

quark flavors, while i is the color index (ranging between r,g and b).

2.4.2 SU(3) symmetry

Every SU(3) transformation can be represented as an exponential of an element of

the Lie algebra su(3). A general element of the Lie algebra is given as the linear

combination of generators, meaning that for every βa (1≤ a ≤ 8) we have

SU(3) 3 U = eigSβ
aTa =

(
eigSβ

aTa
)
ij
. (2.21)

This is easily promoted into a local transformation U(x) by allowing coefficients βa

to depend on spacetime coordinates x

U(x) = eigSβ
a(x)Ta . (2.22)

5It is important to remember that Lagrangians always contain classical fields. Only after establish-
ing a Lagrangian one can go to quantize it, preserving symmetries and other properties.

6Notice the similarity between this expression and expression (1.60)
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The SU(3) infinitesimal transformations on classical fields are then given by :

ψqi 7→ U(x)ijψqi

ψ̄qi 7→ ψ̄qiU
†(x)ij

Ga
µ(x) 7→ Ga

µ(x)− ∂µβa(x)− gsfabcβbGc
µ(x)

(2.23)

and it can be shown by direct calculation that the QCD Lagrangian (2.19) is invariant

to the transformation (2.23). Also, since in the SM, SU(3) is the symmetry group

acting on the color space, we will denote it as SU(3)C .

2.5 Electroweak interaction

Electroweak interaction is the unified interaction of the weak force and QED. In

the following subsections we are going to discuss the weak force and explain the

mechanism underlying the electroweak unification. We will start off with discrete

symmetries in field theory and explain the violation of parity symmetry in the weak

force (which was first experimentally confirmed in [12]).

2.5.1 Discrete symmetries of the Standard model

This subsection will be devoted to discrete symmetries of the SM.

As opposed to gauge symmetries, the groups underlying discrete symmetries are dis-

crete groups and thus they do not generate conserved charges. The discrete symme-

tries of classical physics (Newtonian gravity and classical electromagnetism) are the

charge conjugation C, parity P and time inversion T transformations which generate

the group of discrete symmetries.

2.5.1.1 Parity transformation P
Parity transformation is defined on the phase space as

xµ 7→ Pxµ = Pµνxν = (x0,−~x)

pµ 7→ Ppµ = Pµνpν = (p0,−~p)
(2.24)

and on Dirac spinors as

Pψ(x)P−1 = γ0ψ(Px) . (2.25)

54



QCD and QED are invariant under this transformation. On the other hand, experi-

mentally measured violation of parity symmetry in the processes involving the weak

force was one of the main constraints for the theoretical description of the weak in-

teraction.

It is worth noting that P is a linear7 and unitary operator.

2.5.1.2 Time inversion transformation T
Time inversion is another discrete transformation that is often studied in QFT. Its

action on the phase space is as follows

xµ 7→ T xµ = T µνxν = (−x0, ~x)

pµ 7→ T pµ = T µνpν = (−p0, ~p) ,
(2.26)

while its action on Dirac spinors is given as (in 3+1-dimensional spacetime8)

T ψ(x)T −1 = −iγ5γ
2γ0ψ(T x) . (2.27)

Time inversion is an antilinear and antiunitary transformation.

2.5.1.3 Charge conjugation transformation C
Charge conjugation operator C is defined on the Dirac spinors as follows:

Cψ = iγ2ψ∗ . (2.28)

It does not act at all on the phase space.

Even though some QFT-s violate C,P or T individually, every known local theory is

symmetric to their composition9, CPT .

7According to Wigner’s theorem, the only two options are linear unitary operator and antilinear
antiunitary operator.

8The exact from of the equation (2.27) depends on the spacetime dimension.
9This is a consequence of the CPT theorem which states that every quantum field theory with

Poincare symmetry necessarily remains invariant under CPT . See the proof in [13].
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2.5.2 Weak force

Historically, QCD and QED were unable to describe β decay process. A model was

devised whose interaction term (part of the covariant derivative) was as follows10:

Lint. =
−gW√

2
ūγµWµ

1

2
(1− γ5)d (2.29)

and it was capable of describing the β decay process.

In relativistic quantum mechanics, chirality projection operators are defined as

PL =
1

2
(1− γ5)

PR =
1

2
(1 + γ5)

(2.30)

which are used to define left and right chirality spinors (and bar spinors):

ψL = PLψ ψR = PRψ

ψ̄L = ψ̄PR ψ̄R = ψ̄PL .
(2.31)

With all that said, the interaction (2.29) can be written as follows

Lint. =
−gW√

2
ūLγ

µdLWµ (2.32)

and it can be seen that the W particle changes the flavor of quarks while only medi-

ating the interaction of left-chirality particles, violating parity symmetry. It turns out

that such an interaction can be arrived to from the vector-axial vector interaction11

and the gauge invariance principle for the Lie group SU(2).

2.5.3 SU(2) symmetry

Supported by interaction term (2.29) and our isospin discussion during the outline of

QCD, we are searching for an SU(2) invariant gauge theory because we can see that

10From here on in this chapter, we are going to be suppressing color indices whereever there is no
SU(3) generators mixing them. The interaction term (2.29) was devised by Fermi [10].

11Feynman and Gell-Mann first proposed this type of interaction as a candidate to describe Fermi
interaction (2.29) [14].
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β decay changes isospin states12. In analogy to QED and QCD, there will be three13

gauge bosons W 1,W 2,W 3. The following Lagrangian, with W i
µν being gauge bosons’

Yang-Mills field strength tensors,

L =
∑
D

D̄Lγ
µ

{
i∂µ −

g√
2

0 1

0 0

 1√
2

(
W 1
µ − iW 2

µ

)
− g√

2

0 0

1 0

 1√
2

(
W 1
µ + iW 2

µ

)
−

g

2

1 0

0 −1

W 3
µ

}
DL +

∑
fermions

ψ̄Riγ
µ∂µψR +

1

4
W iµνW i

µν ,

(2.33)

where D are weak isospin doublets and they range over quark doublets Q and lepton

doublets L

Q =

u
d

 ,

c
s

 ,

t
b


L =

νe
e−

 ,

νµ
µ−

 ,

ντ
τ−

 (2.34)

and where the components of doublets are Dirac spinors for the particles in the dou-

blets, is invariant to the following infinitesimal SU(2) transformations :

QL 7→ eigαi(x)τiQL

ψR 7→ ψR

W i
µ(x) 7→ W i

µ(x)− ∂µαi(x)− gεijkαj(x)W k
µ (x) .

(2.35)

It is important to mention that, even though left neutrinos constitute left lepton

doublets, we do not incorporate right neutrino spinors in any way whatsoever into

the theory.

There are some things physically wrong with the Lagrangian (2.33).

Firstly, even though the fields W 1
µ∓ iW 2

µ physically correctly correspond to W± boson

fields (up to a normalisation factor 1√
2
), the W 3 boson field can not be the measured

Z0 boson, because Z0 interacts with right-handed particles too.

12Today it is understood that u and d quarks form a weak isospin doublet pair, but there are 5 more
weak isospin pairs (see (2.34)).

13Corresponding to three basis vectors of su(2), τi = 1
2σi with the respective commutation relation

[τi, τj ] = iεijkτk
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Secondly, the Lagrangian does not contain any mass terms. That is because fermion

mass terms of the form

ψ̄mψ = ψ̄LmψR + ψ̄RmψL (2.36)

are, by themselves, not invariant to SU(2) transformations (2.35).

Thirdly, weak force’s gauge bosons are known to be massive, and yet there are no

mass terms of the form
1

2
m2W µWµ (2.37)

in the Lagrangian (2.33). That is because such mass terms alone are not invariant to

gauge transformations of the form (2.35), (2.23) or (2.18).

The first issue will be adressed in the next subsection with the introduction of the

electroweak unification of the weak force and QED. The second and third issue are

resolved later by the means of Higgs mechanism.

2.5.4 Unification with the QED

Electroweak unification is a gauge theory by Glaslow, Shalam and Weinberg [15]. It is

a gauge theory whose Lie group is SU(2)×U(1), more commonly written as SU(2)L×
U(1)Y , where SU(2)L reminds us that SU(2) acts nontrivially only on left doublets

and U(1)Y stands for the U(1) Lie group whose charge is the weak hypercharge14 Y,

i.e, it is generated by a single generator

Y = 2(Q− τ3) , (2.38)

where Q is the electric charge, and τ3 the weak isospin’s third component.

The gauge boson fields for SU(2)L×U(1)Y areW 1,2,3
µ (x) andBµ(x). As was previously

said, we will recognise

W±
µ (x) = W 1

µ(x)∓ iW 2
µ(x) (2.39)

which leaves us with W 3
µ and Bµ which we need to combine into the Z0 boson and

photon.

14Unlike the QED’s electric charge, Y is the hypercharge given as the difference of electric charge
and τ3 isospin projection, τ3 projection is 0 for SU(2)L singlets, i.e., for the right chirality particles.
τ3 = 1

2 for the upper particles in the doublet (2.34) and τ3 = − 1
2 for the lower particles in the doublet

(2.34).
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The neutral current sector of the electroweak Lagrangian, Lnc equals

Lnc =
∑
D

D̄Lγ
µ(−igτ3W

3
µ(x)− g′Y

2
Bµ)DL +

∑
fermions

ψ̄Rγ
µ(−g′Y

2
Bµ)ψR . (2.40)

While the charged-current sector equals

Lcc =
∑
D

D̄Lγ
µ

{
i∂µ −

g√
2

0 1

0 0

 1√
2
W+
µ −

g√
2

0 0

1 0

 1√
2
W−
µ

}
DL + .

∑
fermions

ψ̄Riγ
µ∂µψR .

(2.41)

From the condition for the theory to reproduce QED interaction sector, we can find

the coefficients for the general expansion of Aµ and Z0
µ in the basis W 3

µ and Bµ

Aµ(x) = cos(θW )Bµ(x) + sin(θW )W 3
µ(x)

Z0
µ(x) = − sin(θW )Bµ(x) + cos(θW )W 3

µ(x) .
(2.42)

The coefficients are then given as the solutions15 to:

eQ = g′
Y

2
cos(θW )

eQ = gτ3 sin(θW ) + g′
Y

2
cos(θW ) .

(2.43)

All in all, the electroweak Lagrangian is given as

LEW = Lcc + Lnc +
1

4
W iµνW i

µν +BµνBµν (2.44)

and it reproduces QED interaction terms while correctly describing interaction terms

for the weak force. What remains to be done to describe electroweak interaction

fully is finding a mechanism to include particle masses into the Lagrangian without

violating SU(2)L symmetry.

15Note that this is an operator equation, Q is an operator which assigns electric charge to left and
right spinors and τ3 is an operator which assigns weak isospin to left and right spinors, i.e., left and
right chirality spinors are eingevectors for Q and τ3. The parameter θW is the numerical coefficient
which satisfies (2.42) and is called the Weinberg angle. θW is a free parameter of the theory and is
measured experimentally, [16].
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2.6 Higgs interaction

The solution to including massive SU(2) gauge boson masses into the theory is to

add the following terms to the Lagrangian (2.44)

LHiggs =
(
DEW µφ

)† (
DEW
µ φ

)
−

µ2φ†φ+ λ
(
φ†φ
)2︸ ︷︷ ︸

V (φ)

 (µ2 < 0) (2.45)

where φ is an SU(2) doublet of a charged complex field φ+ and a chargeless complex

field φ0

φ =

φ+

φ0

 , φ† =
(

(φ+)
∗ ≡ φ− (φ0)

∗
(6= φ0)

)
(2.46)

and where DEW
µ is the gauge SU(2) covariant derivative, DEW

µ = ∂µ + igW i
µτi + ig′Bµ.

By direct expansion of the first term in (2.45) in the unitary SU(2) gauge (where v√
2

is the minimum of the function V (x))

φ′ = Uφ =
1√
2

 0

v + h(x)

 (2.47)

one obtains a summand

1

2
MabW

a
µW

bµ (a, b = 1, 2, 3, 4 and W 4
µ ≡ Bµ) . (2.48)

Eigenvalues of the matrix Mab are

mW+ = mW− =
1

2
gv

mZ0 =
1

2
v
√
g2 + g′2

mγ = 0

(2.49)

and its eigenvectors for Z0 and γ bosons are consistent with (2.43).

2.6.0.1 Spontaneous symmetry breaking

We will now explain the seeming loss of gauge SU(2) invariance in the theory. The

potential V (φ) (depicted in the Figure 2.2) regarded as a real function has a contin-

uous local minimum at the radius v√
2

= −µ2
2λ

.
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φ+
φ0

V (φ)

Figure 2.2: The potential V (φ) regarded as a real function of variable

φ+

φ0

. This

figure is a modification of the open source diagram [17].

Perturbations of the lowest energy state correspond to perturbations of the field

φ =
1√
2

0

v

 (2.50)

or of any field arrived to by SU(2) transformations of (2.50) in the φ+ − φ0 plane. In

nature, since there is a continuous degeneracy of the vacuum energy, a vacuum state

which is perturbed by h(x) is chosen at random. In the unitary gauge (2.47), three

degrees of freedom of the massless scalar φ are transformed into the third polarisa-

tion degree of freedom of (now massive) bosons W± and Z0 so the total number of

degrees of freedom is conserved16. The Lagrangian is still invariant to SU(2) gauge

transformations, unitary gauge is just the gauge that is the most naturally interpreted

in terms of measurements, but some other gauges are more appropriate for calcula-

tions, e.g. ’t Hooft-Feynman gauge is often used in one-loop calculations involving

electroweak force.
16This property is a special case of the Goldstone theorem which explains spontaneous symmetry

breaking in the unitary gauge for general gauge theories [18].
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2.6.1 Fermion masses

Now we are applying the Higgs mechanism to introduce fermion mass terms into the

Lagrangian.

As already explained in 2.5.3, mass terms for fermions equaling

ψ̄mψ = ψ̄LmψR + h.c. , (2.51)

are not SU(2)L invariant. That is because left spinors transform like vectors to

SU(2)L while right handed spinors transform like scalars. To define an SU(2) in-

variant quantity, we need an analogy to the scalar product ~a ·~b and not something of

the form a~b.

If we consider the following combination

−gdQ̄L · φ · dR + h.c. (2.52)

we will obtain a mass term for the down quark (and analogously for all the genera-

tions of electrons and down quarks) and an interaction term that couples two down

quarks (electrons or higher generations) and a Higgs boson

−gdv√
2
d̄LdR +

gd√
2
hd̄LdR . (2.53)

The mass of the down quark then equals

md =
gdv√

2
(2.54)

where gd is the Yukawa coupling for the down quark.

In order to obtain mass terms for the τ3 = +1
2

fermions, the following term will be

invariant to SU(2)L while generating appropriate mass term

−guQ̄L · φc · uR + h.c., φc = iσ2φ
∗ . (2.55)

In (2.55), gu is the Yukawa coupling for the up quark. The mass term is analogously

introduced for all other generations for the up quark. The neutrino mass17 can be

17The mass of neutrinos is thought to be very small, but non zero, because (experimentally con-
firmed) neutrino flavor oscillations can only be exibited by massive neutrinos. The neutrino oscil-
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generated in the same way, but this way of introducing neutrino mass gives no insight

to why the Yukawa coupling for neutrinos would be so small, i.e., why the neutrino

mass is so small.

All in all, since (2.52) and (2.55) are given as products of two SU(2)L doublets and

an SU(2)L singlet, the terms we introduced are invariant to SU(2)L gauge transfor-

mations. They generate appropriate mass terms but at the expense of introducing

mass terms by allowing a new type of interaction in the theory, an interaction be-

tween two fermions and a Higgs boson.

2.6.2 CKM matrix

One final phenomenon in the SM that remains to be described is the fermions’ tran-

sitioning between flavors. For example, there exist nonzero amplitudes for the tran-

sitions like

u↔ b, d↔ b, d↔ t, etc.. (2.56)

More specifically, quarks were observed to have nonzero transition amplitudes both

inside their doublet pairs and between generations. The most general Yukawa inter-

action term which mixes quark flavors is

LYuk = −g(d)
ij Q̄iLφdjR − g(u)

ij Q̄LφcujR + h.c. , (2.57)

where indices i, j range over quark generations. g
(d)
ij and g

(u)
ij are Yukawa coupling

matrices18 and we have suppressed color indices of quarks. Equation (2.57) translates

to mixed mass terms in the unitary gauge

LYuk ⊃ −g(d)
ij

v√
2
d̄′iLd

′
jR − g(u)

ij

v√
2
ū′iLu

′
jR + h.c. , (2.58)

where we have, for later aesthetic purposes, added primes to the spinor labels. It

is a known fact from linear algebra, that any arbitrary complex matrix A can be

diagonalized with two unitary matrices S(A) and T (A) such that D = S(A)† ·A ·T (A)

lations are encapsulated in the Langrangian if one introduces right chirality neutrino spinors and
neutrino Yukawa mass term. Then one can do analogous derivation as we will do for the CKM matrix
and obtain a formalism which can allow neutrino oscillations and the PMNS matrix.

18They are non-diagonal matrix generalizations of gd and gu which form two 3×3 diagonal matrices,
one for top quark generations and one for down quark generations. Yukawa coupling matrices are
introduced because we do not have a good reason to not include such a trivial generalization from
diagonal g(d) and g(u) matrices to non-diagonal ones.

63



where D is a diagonal matrix. Applying this to the matrices in (2.58), we can define

matrices

m(d) =
v√
2
V

(d)
L g(d)V

(d)†
R , m(u) =

v√
2
V

(u)
L g(u)V

(u)†
R (2.59)

and by renaming

V
(d)†
L ij d

′
jL → diL

V
(d)†
R ij d

′
jR → diR

(+ analogously for u quark)

(2.60)

we obtain a diagonalized mass part of the Lagrangian

LYuk ⊃
∑
i

diLmiidiR +
∑
i

uiLm
(u)
ii uiR + h.c. . (2.61)

Since (2.60) is a unitary transformation, the Lagrangian mostly keeps the same form:

• Every term that only has γµ matrices in between spinors is invariant to (2.60)

because

ψ̄γµψ ∼ ψ̄Rγ
µψR + ψ̄Lγ

µψL

and barred spinors transform with complex conjugate of (2.60). This leaves

entire LQCD intact. It also leaves the kinetic terms invariant for all fermions

(because kinetic terms come with γµ∂µ).

• The only part of the Lagrangian that transforms under this unitary redefini-

tion is Lcc
19. The transformed part (in terms of new, redefined d,u and lepton

spinors) is given by

Lcc =ū′iL

(
− g√

2
γµW+

µ

)
d′iL + h.c. + lepton part

=ūiLV
(u)
L ij

(
− g√

2
γµW+

µ

)
V

(d)†
R jkdkL + h.c. + lepton part .

(2.62)

If we define the matrix V CKM = V
(u)
L V

(d)†
R , we obtain the charged current sector

in the unitary transformed mass basis:

Lcc = ūiL

(
− g√

2
γµW+

µ

)
V CKM
ij djL + h.c. + lepton part . (2.63)

19Z0 and photon interaction terms are also unaffected
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The matrix V CKM is called the CKM matrix. Its non-diagonal elements give rise

to non-zero transition amplitudes between generations of quarks, unlike what

we first modeled in 2.5.4 where we only had transitions inside generations

mediated by W± bosons.

2.7 The Standard Model

So far in Chapter 2, we have outlined the building blocks for the SM. We have de-

veloped the QED and QCD sectors of the Lagrangian and then we have extended

QED into the electroweak interaction with its gauge group SU(2)L×U(1)Y . We have

successfully included massive gauge boson masses and reintroduced fermion masses

into the Lagrangian, without breaking gauge symmetry, by the means of Higgs mech-

anism. In the end, we have generalized Yukawa couplings to non-diagonal matrix

elements and then, via a unitary transformation, diagonalized the Yukawa coupling

matrix at the expense of losing diagonality in the Lcc sector.

2.7.1 The SM Lagrangian

The full SM Lagrangian is given by

LSM = LQCD + LEW + LHiggs + Lkin + LYuk . (2.64)

Because we have reintroduced fermion mass terms in LYuk, we are implicity excluding

them from LQCD and LEW.

Similarly, we group all fermionic kinetic terms in the Lkin Lagrangian sector. All in

all, the expanded Lagrangian sectors are given by

LQCD =
1

4
GaµνGa

µν

LEW =
1

4
W iµνW i

µν +
1

4
BµνBµν

LYuk =
∑

generations i

−1
(
g

(d)
ij Q̄iLφdjR + g

(u)
ij Q̄iLφcujR

)
+ h.c. + lepton part

LHiggs =
(
DEW µφ

)† (
DEW
µ φ

)
−
(
µ2φ†φ+ λ

(
φ†φ
)2
)

(µ2 < 0)

Lkin =
∑

quarks q

q̄i · iγµ
((
DQCD
µ

)
ij

+DEW
µ δij − ∂µδij

)
qj +

∑
leptons l

l̄
(
iγµDEW

µ

)
l

(2.65)

65



where DEW
µ and DQCD

µ are the electroweak (SU(2)L) and the QCD (SU(3)C) gauge

covariant derivatives. In the unitary gauge and the mass basis one can recover the

form of the Lagrangian which is physically interpreted in terms of known particles

and gauge bosons.

2.7.2 U(1)Y × SU(2)L × SU(3)C symmetry

The SM Lagrangian is, by construction, invariant to U(1)Y ×SU(2)L×SU(3)C , which

in the infinitesimal case reduce to

quarks q : qR 7→ eigSβ
a(x)TaqR

qL 7→ eigSβ
a(x)Ta+igαi(x)τi+ig

′γ(x)Y qL

leptons l : lR 7→ eigα3(x)τ3+ig′γ(x)Y lR

lL 7→ eigαi(x)τi+ig
′γ(x)Y lL

gluons Ga
µ(x) : Ga

µ(x) 7→ Ga
µ(x)− ∂µβa(x)− gsfabcβb(x)Gc

µ(x)

SU(2)L bosons W i
µ(x) : W i

µ(x) 7→ W i
µ(x)− ∂µαi(x)− gεijkαj(x)W k

µ (x)

U(1)Y boson Bµ(x) : Bµ(x) 7→ Bµ(x)− ∂µγ(x) ,

(2.66)

and this concludes our outline of SM Lagrangian’s symmetries and properties.
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3 Geometry of The Standard Model

3.1 Introduction

In this chapter we are applying the geometric objects developed in the Chapter 1 in

order to describe the Lagrangian from the Chapter 2. We are starting by defining the

gauge bosons as appropriate Yang-Mills fields. Then we are going to define spinor

bundles for all matter fields, we will define charge conjugation and antimatter bun-

dles followed by a Higgs bundle. After this we will use the defined fields, the Dirac

operator and Dirac forms in order to again define the SM’s Lagrangian which will be

invariant to G = U(1)Y × SU(2)L × SU(3)C .

3.2 Gauge boson fields

We are now defining principal G-bundles whose Yang-Mills fields will correspond to

gauge boson fields, which we will couple to fermion fields through Dirac operators

defined in 1.7.4.

3.2.1 SU(3)C gauge fields - gluons

As defined in the Chapter 1, connection 1-forms are Lie algebra valued forms on a

principal G-bundle P . In the case of gluons and QCD, the Lie group G is, as explained

in Chapter 2, SU(3)C .

3.2.1.1 Principal SU(3)-bundle

We can choose the trivial bundle P := M × SU(3), where M is spacetime with its

metric g, for our principal SU(3)-bundle’s total space. In order to make this trivial

bundle a principal SU(3)-bundle, we are defining the right SU(3)-action as follows:

(xµ, g) C g′ := (xµ, gg′) ∀g, g′ ∈ SU(3) (3.1)

while the projection π is defined obviously as

π(xµ, g) 7→ xµ. (3.2)
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3.2.1.2 SU(3)-bundle connection and gauge function

The principal SU(3)-bundle’s connection 1-form, expanded in the basis igST a of the

Lie algebra su(3) (i.e., the generators of SU(3)), is given as

Gµ(p) =
8∑

a=1

Gaµ(p)igST
a p ∈ P , (3.3)

where we identify each pullback σ∗
(
Gaµ(p)

)
≡ Ga

µ(x) with a gluon field. To confirm

the validity of our definition, we want to verify the transformation rule (2.66) for

gluons and the formula for the gluon field strength tensor Ga
µν from 2.4.1.

Choose two global sections (gauges) (analogously to how we defined the gauge

field Aµ for classical electrodynamics in 1.6.2) defined as

σ1 : m ∈M 7→ (xµ, eigSβ
a
1 (x)Ta)

σ2 : m ∈M 7→ (xµ, eigSβ
a
2 (x)Ta) ,

(3.4)

then the gauge function Ω (defined such that σ2 = σ1 C Ω) equals

Ω (x (m ∈M)) = e−igSβ
a
1 (x)TaeigSβ

a
2 (x)Ta . (3.5)

Following the derivation from 1.6.2, we obtain the following expression for the con-

nection between two Yang-Mills fields G(1,2) generated by sections σ1,2:

G(2)
µ = Ω−1G(1)

µ Ω + Ω−1 (∂µΩ) (3.6)

which in the infinitesimal case reduces (component igsT a wise) to the expression

(2.66) with βa(x) = βa1 (x) − βa2 (x). Also, after finding the commutator relation for

the basis igST a for su(3),
[
igST

a, igST
b
]

= −gSfabcigST c, we also obtain the correct

expression for the gluon field strength tensor Ga
µν as it was defined in 2.4.1.

3.2.2 SU(2)L gauge fields - W bosons

We are now defining SU(2)L bosons as Yang-Mills fields associated to a trivial SU(2)-

bundle.
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3.2.2.1 Principal SU(2)L-bundle

We define the principal SU(2)-bundle as the trivial SU(2)-bundle over M . The pro-

jection and right Lie actions are defined analogously as in the pricipal SU(3)-bundle

case 3.2.1.1.

3.2.2.2 SU(2)-bundle connection and gauge function

Again, the derivation analogously follows the QCD case. Expanded in the su(2) basis

igτi, a general su(2)-algebra valued 1-form on the pricipal SU(2)-bundle equals

Wµ(x) =
3∑
i=1

W i
µigτi (3.7)

and we define a W boson field as W i
µ = σ∗W i

µ, where σ is a local section

σ(m) = (xµ(m), eigαi(x)τi) (3.8)

on the SU(2)-bundle. Using the analogous gauge function to (3.5), we can reproduce

the infinitesimal transformation rule from 2.66 by renaming αi(x) = α1
i (x) − α2

i (x).

The proof of this is a straight forward expansion of the equality

W (2)
µ = Ω−1W (1)

µ Ω + Ω−1 (∂µΩ) (3.9)

and it relies on the commutation relation [igτi, igτj] = −gεijkigτk. Also, this definition

of W boson fields produces the same expression for the W boson field strength tensor

Wµν as in (2.35).

3.2.3 U(1)Y gauge field - B boson

Analogously to the definitions of W bosons and gluons, we define the B boson field

as the Yang-Mills field Bµ(x) = σ∗Bµ where B is an u(1) valued connection 1-form of

the principal U(1)-bundle. For the basis of u(1) we choose ig′ · 1.

3.2.4 Principal U(1)× SU(2)× SU(3)-bundle

Instead of defining seperate SU(3), SU(2) and U(1) bundles, we could have instead

defined an SU(3) × SU(2) × U(1) bundle. We can choose the trivial bundle with
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the right action defined as (xµ, g) C g′ = (xµ, gg′), and the projection being the

projection to the first variable, π1. Since the Lie group of G is su(3) ⊕ su(2) ⊕ u(1),

we can construct a basis for g using the discussed bases for su(3), su(2) and u(1). We

can choose two local sections σ1,2 defined using the exponential of general Lie group

elements

σ1(m) =
(
xµ(m), eigSα

a
1(x)Ta+igβ1

i (x)τi+ig
′γ1(x)1

)
σ2(m) =

(
xµ(m), eigSα

a
2(x)Ta+igβ2

i (x)τi+ig
′γ2(x)1

)
,

(3.10)

which will induce infinitesimal transformation rules that reproduce (2.66). Also, be-

cause generators of different Lie groups commute, there will be no mixing of bosons

from different gauge groups in the transformation rules, which is as expected. It

is also worth noting that for global transformations, gauge bosons transform in the

adjoint representation of G (see Appendix A.3.6 for the definition of the adjoint rep-

resentation) because the gauge function Ω then does not depend on x and as such

has vanishing derivative ∂µΩ.

3.3 Matter fields

As explained before, matter fields are spinor fields on the spacetime. In the next

subsection we are going to define the twisted chiral spinor bundles for each particle

and then find the associated vector bundle of the total fermionic content obtained as

the direct sum of associated vector bundles for each particle.

3.3.1 Matter field bundles

Let G = U(1)Y × SU(2)L × SU(3)C . Matter fields are sections of the twisted chiral

bundle

(S ⊗ E)+ = (S− ⊗ E−)⊕ (S+ ⊗ E+) ≡ (SL ⊗ FL)⊕ (SR ⊗ FR) , (3.11)

where SL and SR are left-handed and right-handed spinor bundles over the 4-dimensional

flat Minkowski spacetime, while FL and FR are associated vector bundles defined by

complex unitary representations (with their respective fibres/representation spaces

VL and VR) of the gauge group G.
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Since the transformation rules under the Lie group G are determined by its repre-

sentations on vector spaces, we are now stating the representations for all fermions.

We will, for each particle, use tensor products of three complex representations, one

for each constituent Lie group in the product for G, and then take direct sums for all

particles.

We will assume (both SU(3) and SU(2)) singlet representations from the represen-

tation space C. For SU(2) and SU(3) fundamental representations, we will be ex-

clusively using the representation spaces C2 and C3 respectively, while for the group

U(1)Y we will be using representations ρY defined in Appendix A.3.7 with their rep-

resentation spaces CY .

3.3.1.1 Left chirality quarks

We know that left quark doublets transform under the fundamental representation

for SU(3)C and SU(2)L. Their weak hypercharge Y equals 1/3, meaning that, for

each generation i = 1, 2, 3, their representation space is given as

Qi
L = C3 ⊗ C2 ⊗ C1/3 . (3.12)

This representation has the dimension equal to 6, for each generation, meaning that

left chirality quarks contribute 18 dimensions to the total SM’s fermionic representa-

tion. We can define the total left quark representation as the direct sum of left quark

representations and its representation space is given as

QL ≡ Q1
L ⊕Q2

L ⊕Q3
L . (3.13)

3.3.1.2 Right chirality quarks

Right quark singlets transform under the fundamental representation for SU(3).

Their right chirality, by definition, means that they transform under the trivial repre-

sentation for SU(2). Up quark generations have weak isospin Y = 4/3 while down

quark generations have Y = −2/3 which means that (ui, di) transforms under U(1)Y

as C4/3⊕C−2/3. All together, right chirality quarks transform under the representation

Qi
R =

(
C3 ⊗ C⊗ C4/3

)
⊕
(
C3 ⊗ C⊗ C−2/3

)
(3.14)
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This representation has the dimension equal to 6, meaning that right chirality quarks

contribute in total 18 dimensions to the total SM’s fermionic representation. The

total right quark representation space is defined as the direct sum

QR = Q1
R ⊕Q2

R ⊕Q3
R . (3.15)

3.3.1.3 Left chirality leptons

Leptons, unlike quarks, do not interact via the strong force, meaning that their repre-

sentation for SU(3) is trivial. On the other hand, left lepton doublets transform un-

der the nontrival fundamental SU(2) representation, while their weak hypercharge

equals Y = −1 (both in the case of electron and electron neutrino), meaning that

their U(1)Y representation is C−1. All together, for each generation i, the left leptons

transform under the total representation

LiL = C⊗ C2 ⊗ C−1 . (3.16)

This representation contributes 2 dimensions per generation to the total SM’s rep-

resentation space, 6 in total. The total left lepton representation space is the direct

sum over generations

LL = L1
L ⊕ L2

L ⊕ L3
L . (3.17)

3.3.1.4 Right chirality electrons

Unlike left chirality neutrinos, right chirality neutrinos are not included in the SM’s

Lagrangian. Electrons are singlets both for SU(3)C and SU(2)L, while their hyper-

charge is Y = −2. Translating these facts into the representation for G, we get for

each generation i

LiR = C⊗ C⊗ C−2 , (3.18)

where we have kept the convention LiR instead od using eiR, this is done purely for

aesthetic reasons. Electron and its higher generations each contribute 1 dimension to

the SM’s representation space, i.e, 3 in total. The total right electron representation

space is given as

LR = L1
R ⊕ L2

R ⊕ L3
R . (3.19)
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3.3.2 Charge conjugation

We know that every fermion (a consequence of the Dirac Lagrangian) has an an-

tiparticle. Antiparticles are sections of the complex conjugate bundle (defined in

Appendix A.1.10)

(S ⊗ E)+ = (SL ⊗ EL)⊕ (SR ⊗ ER) . (3.20)

There are isomorphisms

∆L
∼= ∆R

∆R
∼= ∆L

(3.21)

and if we set

V C
L ≡ VR

V C
R ≡ VL

(3.22)

and extend this notation to representations too, we can express (3.20) as

(S ⊗ E)+ =
(
SL ⊗ FC

L

)
⊕
(
SR ⊗ FC

R

)
. (3.23)

3.3.2.1 Antimatter represetations

The representations for left (right) antiparticles are arrived to from the right (left)

particles’ representations by changing fundamental representations to antifudnamen-

tal and by changing CY to C−Y . This means that, in total, antiparticles contribute the

same number of dimensions to the total representation space of the SM.

3.3.3 Higgs bundle

Higgs bundle is defined as the vector bundle

E = C⊗ E , (3.24)

where C is the trivial line-bundle coming from the trivial representation of the spin

group, while E is the associated vector bundle generated by the representation

C ⊗ C2 ⊗ C (which reflects the fact the Higgs field is an SU(2) doublet composed

of complex scalar fields).
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3.3.3.1 Total matter content bundle

The total particle content associated bundle is obtained by taking the direct sums of

all bundles defined from 3.3.1.1 up until 3.3.1.4 and the Higgs bundle. Every matter

field is then obtained as a section that has all components equal to 0 except for the

selected matter particle’s component. We are including the Higgs field in this bundle

because the Higgs field is not a gauge boson so it is natural to include it (also because

of its definition as a section of an associated bundle) in the matter content bundle.

3.4 Intrinsic formulation of the Standard Model’s Lagrangian

In this section we will again define the SM Lagrangian using the fields defined in 3.2

and 3.3.

We will individually study the main components of the SM’s Lagrangian through

subsections devoted to each of the components.

3.4.1 Yang-Mills-Dirac Lagrangian

We fix the following data:

• a connection 1-form A on a (trivial) principal G bundle P . Let FA be the curva-

ture 2-form associated to A which, according to Theorem 1.10, corresponds to

a form FAM ∈ Ω2(P,Ad(P )) with values in Ad(P ) and let FA be the Yang-Mills

field strength generated with a local section s : M → P

• a section of a twisted spinor bundle S ⊗ E with E = P ×ρ V .

• a Dirac form 〈·, ·〉 on ∆n which generates a spinor bundle metric 〈·, ·〉S

• An Ad-invariant scalar product 〈·, ·〉g on g which generates a bundle metric

〈·, ·〉Ad(P ) on Ad(P ).

3.4.1.1 Yang-Mills Lagrangian

The Yang-Mills Lagrangian which is invariant to G gauge transformation is defined

as follows

LYM [A] = −1

2

〈
FAM ,FAM

〉
Ad(P )

= −1

4

〈
FA
µν , F

Aµν
〉
g
, (3.25)

where the second equality holds locally. This Lagrangian is the generalization of

terms of the form Ga
µνG

aµν from the Chapter 2.
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It is worth noting that since FA is a Lie algebra valued form, it already contains all

of the field strength tensors Ga
µν for a = 1, ...,dimG since FA is given as a linear

combination of forms Ga multiplying basis vectors of g.

3.4.1.2 Dirac Lagrangian

The Dirac Lagrangian, which is invariant to Spin+(p, q) is defined as follows

LD[Ψ] = Re 〈Ψ, DΨ〉S −m 〈Ψ,Ψ〉S ≡ Re
(
Ψ̄DΨ

)
−mΨ̄Ψ (3.26)

where we have denoted 〈Ψ, DΨ〉S as Ψ̄DΨ and D is the Dirac operator for spinor

fields. Also, taking the real part is necessary in order to ensure that the Lagrangian

is real, even though it can be shown that the term Ψ̄DΨ is real up to a surface term

which doesn’t contribute to equations of motion.

3.4.1.3 Yang-Mills-Dirac Lagrangian

The Lagrangian that is important for the SM is the Yang-Mills-Dirac Lagrangian

which couples a gauge field to a fermion. It is defined as follows

LYMD = Re 〈Ψ, DAΨ〉S −mΨ̄Ψ− 1

2

〈
FAM ,FAM

〉
Ad(P )

, (3.27)

where DA is the Dirac operator for twisted spinor bundles. The first term in (3.27)

is called the kinetic term for fermions while the third term in (3.27) is called the

kinetic term for gauge bosons. The second term is called the fermionic mass term

and it will not be invariant to the SU(2)L subgroup ofG so we will include the masses

of fermions and SU(2) bosons via the Higgs mechanism.

3.4.2 Higgs Lagrangian

We fix the following data:

• a principal G-bundle P and a connection 1-form A on it

• a complex representation ρ : G → GL(W ) and an associated vector bundle

E = P ×ρ W , where ρ and W reflect the interaction of the Higgs with gauge

bosons (in the case of SM, W = C⊗ C2 ⊗ C as discussed in 3.3.3)
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• a G-invariant scalar product 〈·, ·〉W on W which induces an associated bundle

metric 〈·, ·〉E on E.

The spinor part of the twisted spinor Higgs bundle is an associated line bundle gen-

erated by the trivial representation of the spin group, as discussed in 3.3.3.

3.4.2.1 Higgs Lagrangian

The Higgs Lagrangian for a potential V : R→ R is given as

LH[Φ, A] = 〈dAΦ, dAΦ〉E − V (〈Φ,Φ〉E) . (3.28)

The Lagrangian (3.28) is invariant to G gauge transformations. The first term in

(3.28) is called the scalar field kinetic term. It is worth reminding ourselves that

dAΦ is the exterior covariant derivative of Φ with respect to the connection 1-form

A. Locally, 〈dAΦ, dAΦ〉E can be expressed using a local gauge of ε Spin+(M) and a

function φ : M → W (with Φ = [ε, φ]) as

〈dAΦ, dAΦ〉E =
〈
∇AµΦ,∇A

µΦ
〉
E

=
〈
∇Aµφ,∇A

µφ
〉
W
. (3.29)

3.4.3 Yukawa coupling

For representation spaces VL, VR and W of unitary representations we define the

Yukawa form as a map

τ : VL ×W × VR −→ C (3.30)

that is invariant under G actions on VL ×W × VR, complex antilinear in VL, complex

linear in W and complex linear in VR. For every real constant gY , Yukawa form

defines a Yukawa coupling as the G-invariant scalar

Y : (∆L ⊗ VL)×W × (∆R ⊗ VR) −→ R

Y (λL ⊗ vL, φ, λR ⊗ vR) := −2gY Re (〈λL, λR〉 · τ (vL, φ, vR)) ,
(3.31)

where 〈λL, λR〉 is the Dirac form of Dirac vectors λL ∈ ∆L ⊆ ∆n and λR ∈ ∆R ⊆ ∆n.

Since fermion fields and the Higgs field are sections of twisted spinor bundles which

are generated from the vector spaces ∆L⊗VL,∆R⊗VR and C⊗W , the equation (3.31)

uniquely determines a Yukawa coupling on sections of twisted spinor bundles.
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The map (3.31) generalized to spinor sections defines the Yukawa Lagrangian and

it is written for short as follows

LYuk[ΨL,Φ,ΨR] =Y (ΨL,Φ,ΨR) = −2gY Re
(
ΨLΦΨR

)
=

=− gY
(
ΨLΦΨR

)
− gY

(
ΨLΦΨR

)∗
.

(3.32)

3.4.3.1 Yukawa coupling of quarks

In the SM, the (G-invariant) Yukawa form for quarks is given as

τQ(qL, φ, qR) = g
(d)
ij q

†
Liφ · dRj + g

(u)
ij q

†
Liφc · uRj , (3.33)

where qL ∈ QL, φ ∈ W , qR ∈ QR and φc = iσ2φ
∗. Also, the scalar product over color

space C3 is implicit.

Matrices g(u) and g(d) are non-diagonal, but we can, as described in 2.6.2, diagonalize

them using pairs of unitary matrices V (u)
L , V

(u)
R and V (d)

L , V
(d)
R in order to obtain mass

term interpretation of Yukawa coupling. The matrices V (u/d)
L/R are defined such that

V
(u)
L g(u)V

(u)†
R = diag(gu, gc, gt)

V
(d)
L g(d)V

(d)†
R = diag(gd, gs, gb) .

(3.34)

Diagonalizing matrices g(u) and g(d) corresponds to finding quark masses in the uni-

tary gauge

mf =
1√
2
gfv f = u, d, c, s, t, b , (3.35)

and we recognize the mass eigenvectors as the physical quarks.

3.4.3.2 CKM matrix

The unitary transformations U (u/d)
L/R change the quark basis from one that is diagonal

in the electroweak sector to the one that is diagonal in the Yukawa sector. The latter

basis is easier to physically explain - we find the masses of quarks at the expense

of dealing with electroweak vertices that mix left quarks both inside and between

generations. The CKM matrix is defined as

V CKM = V
(u)
L V

(d)†
L (3.36)
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and it visibly affects the quark electroweak sector by changing the Lagrangian in

electroweak basis from

Lcc = ūiL

(
− g√

2
ΓµW+

µ

)
diL + h.c. (3.37)

to the Lagrangian that mixes mass basis generations

Lcc = ūiL

(
− g√

2
ΓµW+

µ

)
V CKM
ij djL + h.c. , (3.38)

both written locally with coordinate charts xµ. All the other Lagrangian sectors have

the same form as in the electroweak basis because only the SU(2) sector mixes up

and down quarks which transform with different unitary transformations.

3.4.3.3 Yukawa coupling for electrons

In the SM, we use the following Yukawa form in order to reproduce experimental

data:

τ iL : LiL ×W × LiR
(lLφ, lR) 7→ gil

†
LφlR ,

(3.39)

and it, in the unitary gauge, generates mass terms for generations of electrons

me =
1√
2
gev , mµ =

1√
2
gµv , mτ =

1√
2
gτv . (3.40)

3.4.3.4 Yukawa Lagrangian for the Standard Model

The total Yukawa Lagrangian for the SM is defined using τ iL and τQ and it equals,

using the shorter notation,

LYuk =
3∑

i,j=1

−
(
g

(d)
ij Q̄Li · φ dRj + g

(u)
ij Q̄Li · φc uRj

)
+

3∑
i=1

−gi
(
L̄Li · φ eRi

)
+h.c. , (3.41)

where QLi is the i-th generational component of the left quark doublet spinor bundle

and dRj and uRj are the j-th d and u generational components of the right quark

spinor bundle. φ is the section of the Higgs (spinor1) bundle.

1Higgs bundle is a spinor bundle but, as we have already mentioned, its spin group representation
is trivial.
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3.4.4 Lagrangian of the Standard Model

In this subsection we are stating the SM’s Lagrangian in terms of fields that are ar-

rived to from the bundle formalism. Since the Lagrangian sectors we defined in the

previous subsections are, by definition, coordinate free (and invariant to G), we will

have defined a Lagrangian that is defined purely using geometrical objects without

any use of coordinatization. We fix the following data:

• The trivial principal G-bundle (P, π,M), where G = SU(3)C × SU(2)L × U(1)Y

and M is the Minkowski spacetime with its Lorentizan metric of the signature

(1,3).

• A connection 1-form A = G +W +B with values in the Lie algebra g = su(3)⊕
su(2) ⊕ u(1) and its curvature 2-form FA associated to A (which generates a

form FAM with values in Ad(P )).

• An Ad-invariant scalar product on g which generates a bundle metric 〈·, ·〉Ad(P )

on Ad(P ).

• All the matter bundles from 3.3 with their appropriate G and Spin+(1, 3) repre-

sentations.

• A real function V : R→ R defined as

V (x) = µ2x+ λx2 (3.42)

where µ2 < 0.

3.4.4.1 Intrinsic Lagrangian for the Standard Model

The Lagrangian for the SM, defined using geometric objects and which is equivalent

in terms of phenomenology to the Lagrangian (2.65) is as follows

LSM = LYMD + LYuk + LH , (3.43)

where LYMD is the Yang-Mills-Dirac Lagrangian for massless fermions coupled to G

gauge bosons, LYuk is the Yukawa coupling sector and LH is the Higgs Lagrangian
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defined with the potential V (x) that we have fixed in (3.42):

LYMD =
∑

fermions f

Re 〈Ψf , DAΨf〉Sf −
1

2

〈
FAM ,FAM

〉
Ad(P )

LYuk =
3∑

i,j=1

−
(
g

(d)
ij Q̄Li · φ dRj + g

(u)
ij Q̄Li · φc uRj

)
+

3∑
i=1

−gi
(
L̄Li · φ eRi

)
+ h.c.

LH = 〈dAΦ, dAΦ〉EH
− V

(
〈Φ,Φ〉EH

)
.

(3.44)

3.5 Remarks

In this chapter we have applied the formalism from the Chapter 1 to the physics of

the SM summarized in Chapter 2. By doing so we have completely geometrically

described the SM’s Lagrangian, without invoking any coordinate frames or gauges.

Though, in order to completely understand the SM, it is necessary to fix an SU(2)L

gauge, but the Lagrangian itself is invariant under gauge transformations of the full

symmetry group SU(3)C × SU(2)L × U(1)Y .

The SM is described by fixing 18 parameters (fundamental constants) that have to

be determined in experiments, namely:

• the 3 coupling constants gs, g and g′

• the 2 parameters λ and µ of the Higgs potential, or equivelently, the mass of

the Higgs boson mH and the absolute value of v

• 3 Yukawa couplings for leptons and 6 Yukawa couplings for quarks, or equiva-

lently, the masses of 3 leptons and 6 quarks

• the 3 quark mixing angles and the KM phase δ characterizing the CKM matrix.
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4 Concluding remarks and perspectives

4.1 Summary

In the first Chapter, we have made a brief introduction to gauge theories and dif-

ferential geometry. Then we have started developing fiber bundle formalism and

illustrated it on the GR on multiple occasions (in comments 1.4.2.1, 1.4.4.2, 1.5.3.2,

1.5.4.1, 1.5.6.1). We have finished the development of the theory of principal and

associated bundles by studying CE as a U(1) gauge theory. The first Chapter was

finished with definitions of spinor bundles and constructions over them (Dirac forms,

etc.) which we needed to do in order to describe fermion fields as sections of spinor

bundles. It is also important to note that in the Chapter 1, our approach is valid for

a general smooth Manifold, only in the Chapter 3 have we considered the special

case of Minkowski spacetime. The approach presented here is applicable to curved

spacetime of arbitrary metric signature, as long as the spacetime manifold admits a

spin structure.

In the Chapter 2, we have studied the Standard Model with special focus on its

symmetries. We have defined all the parts of Standard Model’s Lagrangian, described

the Higgs Mechanism and Yukawa coupling which leads to the transitions between

generations of quarks. Note that one can analogously describe neutrino masses and

oscillations by introducing the PMNS matrix.

In the Chapter 3 we have defined gauge boson fields as Yang Mills fields for spe-

cific principal bundles and fermion fields as sections of specific twisted chiral spinor

bundles. We have also defined the Higgs field as a section of the spinor bundle with

the trivial spin group representation. After this, we have used the tools from the

Chapter 1 and fields from Chapter 2 in order to define all constituent parts of the

Standard Model’s Lagrangian. Summing the constituent parts, we have arrived at

the Standard Model’s Lagrangian in a coordinate free, geometric manner.

Our approach to studying gauge theories offers a very rigorous understanding of

every term in the Lagrangian. Just the rigor itself allowed us to discover similarities

between gauge theory nature of General Relativity and Standard Model. However,

there are some aspects of the Standard Model and geometry that are outside of the

scope of this Thesis and thus have not been mentioned at all so far. Namely, the

topological aspects of the Standard Model and the noncommutative approach to ge-
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ometry. We will now discuss them shortly.

4.2 Topological aspects of gauge theories

Gauge theories that have degenerate vacuum states have a chance to admit a topo-

logical defect which, depending on the type of the defect (which we will classify

later), are solutions to equations of motion which exhibit particle-like properties1

and exist purely because of topological properties of the gauge group. It can be

shown, e.g., in [20] and [21], that the existence of topological defects can be char-

acterized by the homotopy groups of G/H where G is the full symmetry group of the

gauge theory and H is the stabilizer subgroup of G arrived to by the spontaneous

symmetry breaking, i.e., it is the subgroup of G whose action preserves the vacuum

state φ0 after symmetry breaking.

More precisely, if the n-th homotopy group (defined in Appendix A.1.11) πn is non-

trivial, and we define d := s− 1−n, then the theory admits the following topological

defect cases :

• d = s− 1 domain wall

• d = s− 2 vortex/cosmic string

• d = s− 3 monopole

• d = s− 4 texture

where s is the number of spacial dimensions on the spacetime manifold, and we call d

the dimension of the defect. Topological defects are also called topological solitons

and they are important not only in gauge theory but also in solid state physics [21].

Some examples of solitons are skyrmions, instantons, magnetic monopoles etc.

4.2.1 Magnetic monopole

In [22], it was shown that in the case of a 3 + 1-dimensional SO(3) gauge theory

with 3-component Higgs fields, there exists a solution to the equations of motion

which, asymptotically, exhibits the properties of a magnetic monopole. This is re-

flected in the fact that, after symmetry breaking, the gauge group reduces to U(1)

1i.e., they are solutions whose non-vacuum excitations are stable and localised in (at least) some
space and/or time dimensions.
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and π2(SO(3)/U(1)) is non trivial. From this we can read n = 2, s = 3 (since the

theory is 3 + 1-dimensional) and we find that d = 3 − 1 − 2 = 3 − 3, i.e., the theory

admits a monopole solution. The monopole solution demonstrated in the book is

called the ’t Hooft-Polyakov monopole.

This property is interesting because the theory is formulated only using electric

charges, but still admits solutions which behave like magnetic charges.

Dirac showed an important fact that any electromagnetic theory that has non-zero

magnetic charge solutions necessarily implies that both magnetic and electric charges

are quantized, which means that finding a magnetic monopole in our universe would

explain the charge quantization. This can also be found in [22].

4.2.2 Topological defects in the Standard Model

In the Standard Model, Higgs mechanism breaks down the group

G = SU(3)C × SU(2)L × U(1)Y into SU(3)C × U(1)Q, where U(1)Q is the U(1) group

for electromagnetism. Finding the homotopy groups for this case proves that the

Standard Model does not admit any2 topological defects.

It is important to note that some Grand Unified Theory3 (GUT)4 models that sponta-

neously break down to the Standard Model do admit monopole defects, so finding

a magnetic monopole would provide a significant hint towards the validity of GUT

models whose characteristic energy scales are many orders of magnitude larger than

what is producable in particle collider experiments on Earth5.

4.3 Noncommutative geometry

Apart from the approach to geometry we have taken in this Thesis, which has its roots

in mathematical analysis, there is also an important algebraic generalization of ge-

ometry and it rests upon the Gelfand duality, which is a mathematical theorem that

gives rise to a duality between topological spaces and algebras. The noncommuta-

tive geometry formalism was first developed by A. Connes and he wrote an extensive

2Apart from, possibly, texture defects.
3A Grand Unified Theory is any theory that merges the electroweak and strong force, similarly to

how electroweak unification is the theory of unified weak and electromagnetic interaction.
4Namely, SU(5) or SO(10) gauge theories.
512 to be exact, highest energies achieved in CERN are of the or magnitude ΛCERN ≈ 104 GeV, while

the GUT scale is of the order of magnitute ΛGUT ≈ 1016 GeV, see [23]. This large gap in energy scales
where no new unknown interactions appear, is called the desert
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book [24] on its formalism with an application to the Standard Model at the end.

Noncommutative geometry presents itself as a promising approach to the physics be-

yond Standard Model because it predicts relations between coupling constants in the

case of Standard Model (just like GUTs do) and it automatically couples gauge the-

ories to Einstein’s gravity. It also naturally implements Higgs mechanism to theories

with spontaneous symmetry breaking. See references [25] and [26] for more infor-

mation on these claims.

In the following subsections we will display core ideas of noncommutative approach

to geometry and its application to the Standard Model.

4.3.1 Gelfand duality

Gelfand duality is a theorem which accomplishes a 1-to-1 correspondence between

topological spaces and spectral triples (A,H, D) where:

• A is a commutative ∗-algebra for finite topological spaces or a commutative

C∗-algebra for compact Hausdorff topological spaces,

• H is a Hilbert space (finite-dimensional for finite topological spaces and infinite-

dimensional for infinite compact Hausdorff spaces) that is a representation

space of an irreducible representation π : A→ L(H),

• D is a symmetric operator on H called the Dirac operator.

If the starting topological space is finite, or if we study a ∗-algebra with finite-

dimensional Hilbert space, we call the spectral triple a finite spectral triple.

It can be shown (e.g., [27]) that for every spin manifold M there exists a canoni-

cal spectral triple consisting of:

• A = C∞(M), the pointwise algebra (inherited from C) of smooth functions on

M ,

• H = L2(S), the Hilbert space of square-integrable sections of a spinor bundle

S →M ,

• D the Dirac operator on S associated to the Levi-Civita connection.

Since every spectral triple (A,H, D), with A a commutative C∗ algebra, corresponds

to a compact spin manifold (via a unitary equivalence with some canonical spectral
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triple), one can generalize the notion of spin manifolds to noncommutative spin

manifolds by studying spectral triples with noncommutative C∗ algebras. In the book

[27], the space of differential 1-forms (and much more) was developed for canonical

spectral triples and generalized to the noncommutative case. Also, the notion of

almost-commutative manifolds was defined as the spectral triple obtained by taking

the spectral triple product of a canonical spectral triple and a noncommutative finite

spectral triple, which is a generalization of finite spectral triples to noncommutative

∗-algebras.

4.3.2 The Standard Model in noncommutative geometry

In [27] similar work has been done to the work from our Chapter 3 but with non-

commutative geometry formalism. A suitable almost commutative manifold was con-

structed which contained6 G = SU(3)C×SU(2)L×U(1)Y as its gauge group and then

the Standard Model Lagrangian was constructed using objects in noncommutative

geometry.

6It was shown in [27] that the gauge group of an almost commutative manifold depends on the
choice of the finite spectral triple. Choosing an adequate finite spectral triple generates G for the
gauge group.
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Appendices

Appendix A Supplementary definitions

A.1 Topology and linear algebra

A.1.1 Topological manifold

Topological manifold of the dimension m, or topological m manifold for short, is

(see [3]) a Hausdorff topological space of dimension m ∈ N0 that is locally Euclidean

with a countable basis. A topological manifold is said to be a smooth manifold if it

is endowed with a globally defined differential structure (see [3]).

A.1.2 Diffeomorphism

A diffeomorphism (definition as in [3]) between smooth manifolds M (with an

atlas AM) and N (with an atlas AN) is a smooth homeomorphism f : M → N whose

inverse f−1 : N →M is also smooth.

A.1.3 General linear group

The General linear group over the vector space V is the set of all automorphisms

A : V → V and we denote it as GL(V ). If V = Rd (or Cd) it is customary to write

GL(d,R) (or GL(d,C)).

A.1.4 G-equivariant function

Let (P, π,M) be a principal G-bundle, (PF , πF ,M) an associated bundle and U ⊆ M

an open neighborhood. We say that φ : π−1(U) ⊆ P → F is a G-equivariant (see,

e.g., [19]) function if

∀g ∈ G : ∀p ∈ π−1(U) : φ(p C g) = g−1 B φ(p) (A.1)

where π−1(U) is the preimage of the open neighborhood U .
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A.1.5 Push-forward of vectors

Let M and N be smooth manifolds and F : M → N a smooth map. For every point

p ∈M we define the map

F∗p : TpM → TF (p)M

(F∗p(Xp)) (f) := Xp(f ◦ F ) ∀f ∈ c∞p (M).
(A.2)

(F∗p(Xp)) is called the push-forward of the tangent vectorXp. This definition follows

[3].

A.1.6 Pullback of differential 1-forms

Let M and N be smooth manifolds and F : M → N a smooth map. For every point

p ∈M we define the map

F ∗p : T ∗F (p)→ T ∗pM(
F ∗p (ωp)

)
(Xp) := ωF (p)(F∗Xp) ∀Xp ∈ TpM.

(A.3)

(
F ∗p (ωp)

)
is called the pullback of the 1-form ωp. This definition follows [3].

A.1.7 Module

A module is a quadruple (V,R, ·,+) where (V,+) is an abelian group and R is a ring

such that the following axioms hold (the definition as in [6]):

1. ∀r ∈ R, x, y ∈ V :

r · (x+ y) = r · x+ r · y (A.4)

2. ∀r, s ∈ R, x ∈ V :

(r + s) · x = r · x+ s · x (A.5)

3. ∀r, s ∈ R, x ∈ V :

(rs) · x = r · (s · x) (A.6)

4. ∀x ∈ V :

1 · x = x (A.7)
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We can see that the the only difference between vector spaces and modules is in the

fact that vector spaces are defined over fields, while modules are defined over the

weaker algebraic structure of rings.

A.1.8 Fiber product of associated vector bundles

The fiber product [19], sometimes called the spliced product, of a principal G-bundle

(P, πP ,M) and a principal H-bundle (Q, πQ,M) is the principal G×H-bundle P×MQ
defined as the set

P ×M Q := {(p, q) ∈ P ×Q : πP (p) = πQ(q)} , (A.8)

whose projection is canonically defined as π1 ◦ (πP × πQ). Specifically, the tensor

product of associated vector bundles P ×ρ V and Q ×σ W is an associated vector

bundle to the principal bundle P ×M Q with the standard fiber V ⊗W and the left

Lie-action defined as the product representation ρ ⊗ σ. One can also analogously

define the direct sum of associated bundles.

A.1.9 The bijection between local sections of associated bundles and maps to

the fiber

Let (P, π,M) be a principal G-bundle, E = P ×ρ V an associated vector bundle and

let s : U → P be a local gauge. Then there is a 1-to-1 relation between smooth

sections τ : U → E and smooth maps f : U → V given as

τ(x) = [s(x), f(x)] . (A.9)

A.1.10 Complex conjugate bundle

Let (P, π,M) be a principal G-bundle and E = P ×ρ V its associated vector bundle.

The complex conjugate bundle of the associated bundle E is defined as

E = P ×ρ̄ V , (A.10)

where ρ̄ is the complex conjugate representation with respect to ρ and V is the com-

plex conjugate vector space with respect to V .
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A.1.11 Homotopy groups πn

This definition follows [21].Let X be a smooth manifold. We say that an n-loop at

x0 ∈ X is a continuous map α : In → X such that

α (∂In) = {x0} , (A.11)

where In is the unit n-cube [0, 1]n. Two n-loops α and β are path-homotopic if there

exists a continuous F : In × I → X such that

F (s, 0) = α(s)

F (s, 1) = β(s)

F (s, t) = x0 ∀s ∈ ∂In, t ∈ I .

(A.12)

Path homotopy of n-loops is an equivalence relation. We also define the product of

n-loops as follows

(α ∗ β) (s1, ..., sn) =

α(2s1, s2, ..., sn), s1 ∈
[
0, 1

2

]
β(2s1 − 1, s2, ..., sn), s1 ∈

[
1
2
, 1
] (A.13)

and the inverse of an n-loop as follows

α−1(s1, ..., sn) = α(1− s1, s2, ..., sn) . (A.14)

Finally, the n-th homotopy group of X at x0, πn(X, x0) is the set of n-loop equiv-

alence classes (with respect to path homotopy relation) with the product ∗ and the

inverse −1. If X is path connected, then πn(X, x0) ∼= π(X, x1) for all x0, x1 ∈ X so we

just write πn(X).

A.2 Clifford algebras and spin structure

A.2.1 Double covering

Let G and H be Lie groups. We say that G is a double covering of the Lie group H

is there exists a Lie group homomorphism ρ : G→ H for which Ker(ρ) ' Z2.
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A.2.2 Clifford algebra

Let V be a finite dimensional vector space (with dimV = n) over F = R or C and let

B : V ×V → F be a non-degenerate (not necessarily a positive definite) bilinear form.

The Clifford algebra with respect to V and B, Cl(V,B), is defined as the quotient

Cl(V,B) = T (V )/I(V,B) (A.15)

where T (V ) is the tensor algebra of V

T (V ) = F⊕
∞⊕
n=1

V ⊗n (A.16)

and I(V,B) is the ideal7 in T (V ) generated by the set

{v ⊗ w + w ⊗ v − 2B(v, w)} . (A.17)

The multiplication in the Clifford algebra Cl(V,B) is given as

[a] · [b] = [a⊗ b] ∀a, b ∈ T (V ) (A.18)

If a Clifford algebra is over the field of complex numbers, we will denote it as

Cl(V,B).

A.2.3 Even and odd parts of the Clifford algebra

Given a vector space V with a bilinear form B, one can generate the Clifford algebra

Cl(V,B) as in A.2.2. Since Cl(V,B) is generated by products of up to n (with n =

dimV ) basis vectors ei (the same basis as in A.2.7), we can decompose Cl(V,B) into

a direct sum

Cl(V,B) = Cl0(V,B)⊕ Cl1(V,B) , (A.19)

where Cl0(V,B) and Cl1(V,B) are generated by products of even number and odd

number of basis vectors respectively. We call Cl0(V,B) the even part of the Clifford

Algebra, and Cl1(V,B) the odd part of the Clifford algebra.

7Ideals in rings are generalized naturally to ideals in algebras, so since T (V ) is an algebra, it is
possible to define its ideals.
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Clifford algebra Cl(V,B) has the structure of a Z2-graded Lie algebra, or in other

words, a graded Lie superalgebra because it satisfies

Cli(V,B) · Clj(V,B) ⊂ Cli+j mod 2(V,B) . (A.20)

A.2.4 Gamma matrices in Clifford algebras

We define the map γ : V → Cl(V,B) as the composition

γ = π ◦ i , (A.21)

where i is the canonical embedding

i : V → T (V )

i(v) = v (regarded as an element of T (V)) ,
(A.22)

and π is the canonical projection

π : T (V )→ Cl(V,B)

π(v) = [v] .
(A.23)

Now let (V,B) = Rp,q ≡ (Rp+q, η) with standard basis (e1, ..., ep+q) and suppose

ρ : Cl(V,B)→ End(Σ) (A.24)

is a representation of Cl(V,B) on an F-vector space Σ = FN . We define for a =

1, ..., N the mathematical gamma matrices

γa = ρ ◦ γ(ea) , (A.25)

and physical gamma matrices

Γa = (−i)γa . (A.26)
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The anticommutators of gamma matrices are given as

{γa, γb} = −2ηabIN

{Γa,Γb} = 2ηabIN

(A.27)

where IN is the N×N identity matrix, we can denote the commutators as

γab =
1

2
[γa, γb]

Γab =
1

2
[Γa,Γb] .

(A.28)

Also, we define gamma matrices with raised indices naturally

γa = ηabγb

Γa = ηabΓb .
(A.29)

A.2.5 Chirality element

For spaces (V,B) = Rp,q where p + q is even, we define the mathematical chirality

operator

γp+q+1 = −ip+qγ1...γp+q (A.30)

and the physical chirality operator

Γp+q+1 = −ip+qΓ1...Γp+q . (A.31)

The physical chirality operator is an arbitrary (even) dimensional analog to the γ5

matrix in the (p, q) = (1, 3) case that we have studied in Chapter 2.

A.2.6 Weyl spinors and chirality in even dimensions

Let Cl(Rn, η) be a complex Clifford algebra and let ρ : Cl(Rn, η) → End(∆n) be a

representation to the vector space od Dirac spinors (defined in Definition 1.36). If n

is even, the representation ρ splits into two irreducible represenations ρ± such that

ρ = ρ+ ⊕ ρ−
ρ+ : Cl(Nn, η)→ End(∆+

n )

ρ− : Cl(Nn, η)→ End(∆−n )

(A.32)

92



Where ∆±n are the (±1) eigenspaces of the physical chirality operator Γn+1. The proof

of this statement can be found in [7], Proposition 6.4.5.

We call the spaces ∆±n the vector spaces of right/left chirality Weyl spinors.

A.2.7 Pin group Pin(V)

If we are given an orthonormal basis (with respect to B), {e1, ..., en} for V , then

[ei] · [ej] = −[ej] · [ei] for i 6= j

[ei]
2 = 1

(A.33)

in Cl(V,B). This implies that Cl(V,B) is a 2n dimensional vector space because it is

spanned by products of basis vectors ei, but because of (A.33), any product contain-

ing more than n basis vectors ei necessarily reduces to a product of at most n basis

vectors. Relations (A.33) also imply that for every unit vector v, v2 = 1, because for

i 6= j

(αei + βej)
2 = α2e2

i + β2e2
j + α · β {ei, ej} = α2e2

i + β2e2
j = α2 + β2 , (A.34)

so we can see that the set of unit vectors in V defines a group in Cl(V,B) where every

unit vector is its own inverse. This group is denoted as Pin(V).

A.2.8 Spin group Spin(p,q)

It can be shown (see e.g., [7]) that for every v ∈ Pin(V ) and w ∈ V , vwv−1 is the

reflection of w across the orthogonal (with respect to B) complement of v in V .

Therefore, π(w) 7→ vwv−1 is an (surjective) orthogonal map and π induces a group

homomorphism

π : Pin(V )→ O(V,B) ⊃ SO(V,B) . (A.35)

It is a known fact that for every group endomorphism ρ : G→ H, if K ≤ H, then the

preimage ρ−1(K) ≤ G.

Applying this to π, we can define the group Spin(V,B) as the preimage π−1(SO(V,B)).

If V = Rp,q, then we denote Spin(V,B) as Spin(p,q). It is also possible to prove that

every element of Spin(V) is a product of an even number of unit vectors in Pin(V).
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A.2.9 Ortochronous spin group Spin+(p,q)

If η is the symmetric bilinear form for Rp,q, then we define the following subsets of

Rp,q

Sp,q− = {v ∈ Rp,q : η(v, v) = −1}

Sp,q+ = {v ∈ Rp,q : η(v, v) = +1}

Sp,q± = Sp,q− ∪ Sp,q+ .

(A.36)

The spin group Spin(p, q) can alternatively be defined as the set

Spin(p, q) = {v1, ..., v2r : vi ∈ Sp,q± , r ≥ 0} , (A.37)

while the ortochronous spin group Spin+(p, q) is defined as the set

{v1...v2nw1...w2m : vi ∈ Sp,q+ , wj ∈ Sp,q− ,m ≥ 0, n ≥ 0} . (A.38)

A.3 Representation theory of Lie groups

A.3.1 G-invariant scalar product

One very important property of Lie groups is that for every representation ρ : G →
GL(V ), there exists a G-invariant positive definite scalar product8 given as

〈v, w〉 =

∫
G

τv,wσ , (A.39)

where τv,w = 〈〈v, w〉〉 and 〈〈·, ·〉〉 is any scalar product on V (not necessarily G-

invariant), while σ is a dimG-form on G

σ = ω1 ∧ ... ∧ ωn , (A.40)

with ωi being a right-invariant basis of Ω(G, T ∗G). A right-invariant basis ωi is defined

as the dual basis to the basis of right-invariant tangent vectors Xi ∈ TeG, i.e., they

satisfy rg∗Xi = Xi for all i and right translation rg is defined as rg(h) = h · g.
8This is really a scalar product and not just a contraction with the metric on M .
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A.3.2 Associated bundle metric

Let (P, π,M) be a principal G-bundle, ρ : G → GL(V ) a representation of G and

E = P ×ρ V an associated vector bundle.

For every G-invariant scalar product on V , 〈·, ·〉V , there exists a bundle metric 〈·, ·〉E
on E given by

〈[p, v], [p, w]〉Ex := 〈v, w〉V (A.41)

and it is well defined, i.e., it does not depend on the choice of p ∈ Px for every x.

A.3.3 Ad-invariant scalar product

Let G be a compact Lie group. There exists a scalar product 〈·, ·〉g on the Lie group

g which is Ad-invariant and it is, up to a factor9, unique. The Ad-invariant scalar

product on g determines a bundle metric 〈·, ·〉Ad(P ) on Ad(P ) = P ×Ad g.

A.3.4 Fundamental representation of SU(N)

Lie groups GL(n,C) (analogously for real Lie groups) have canonical representations

on Cn given as the matrix multiplication on column vectors in the standard basis of

Cn. This type of representation is called the fundamental, defining or standard

representation and it is also valid for all subgroups of GL(n,C). Fundamental repre-

sentation of GL(n,C) (or any of its subgroups) is sometimes denoted as N or simply

Cn.

A.3.5 Antifundamental representation of SU(N)

The antifundamental representation of GL(n,C) is the complex conjugate of the

fundamental representation. Given a representation ρ : G → GL(V ), the complex

conjugate representation is a representation ρ̄ : G→ GL(n,C) whose representation

space is V , the complex conjugate vector space to V , and ρ̄(g) = ρ(g)∗ for all g ∈ G.

Antifundamental representation of GL(n,C) (or any of its subgroups) is sometimes

denoted as N̄ or simply C̄n.

9The factor connecting the chosen scalar product and the canonical scalar product on g is called
the coupling constant.
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A.3.6 Adjoint representation

Let cg = lg ◦ rg−1, i.e., cg(h) = g · h · g−1 be the group element conjugation.

The adjoint representation or adjoint action of the Lie group is defined as

Ad : G→ GL (g)

g 7→ Ad(g) = Adg = (cg)∗

(A.42)

and is sometimes denoted AdG instead of Ad.

A.3.7 U(1)Y representations CY

The U(1)Y representations used in the description of the Standard Model are repre-

sentations of the form

ρY : U(1) −→ CY

z 7→ e3Y z ,
(A.43)

where CY is just the field of complex numbers, with the added index Y to remind us

what representation CY is the representation space of.
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5 Prošireni sažetak

5.1 Matematički uvod u baždarne teorije

Ovo poglavlje se fokusiralo na matematičke alate iz teorije diferencijalne geometrije,

diferencijalne topologije i spinske strukture.

Prvo je u potpoglavlju 1.1 napravljena motivacija za matematičkim opisom baždarnih

teorija gdje su dani primjeri dviju baždarnih teorija. Klasična elektrodinamika i

kvantna elektrodinamika kao U(1) baždarne teorije.

Zatim je u potpoglavlju 1.2 napravljen uvod osnovnih pojmova iz diferencijalne

geometrije - tangentni vektori, 1-forme i tenzori.

U potpoglavlju 1.3 su definirani vlaknasti svežnjevi te je tangentni svežanj prikazan

kao primjer vlaknastog svežnja. Potpoglavlje je završeno definicijom morfizma vlak-

nastih svežnjeva i definicijom restrikcije svežnja.

Potpoglavlje 1.4 je uvelo Liejeva djelovanja koja se koriste za definiciju desnog i li-

jevog djelovanja u glavnim i pridruženim svežnjevima. Definirani su glavni svežnjevi

i morfizmi glavnih svežnjeva te je svežanj tetrada demonstriran kao primjer glavnog

svežnja koji se koristi u fizici. Definirani su i pridruženi svežnjevi te je tangenti

svežanj prikazan kao pridruženi svežanj svežnju tetrada.

Duž potpoglavlja 1.5 su konstruirane najvažnije geometrijske strukture na svežnjevima.

Definiran je pojam koneksije i koneksijske 1-fore te je iskazan teorem koji povezuje

ta dva objekta. Zatim je definirana lokalna reprezentacija koneksijse forme na baznoj

mnogostrukosti koja se ponekada zove i Yang-Mills polje. Christoffelovi simboli su

pokazani kao Yang-Mills polje, a Riemmanov tenzor kao lokalna reprezentacija za-

krivljenosti koneksije. Definirane su forme s vrijednostima u Ad(P ) te kovarijantna

derivacija.

U potpoglavlju 1.6 se klasična elektrodinamika prikazuje kao U(1) baždarna teorija

u formalizmu koji je razvijen kroz prijašnja potpoglavlja. Prvo se konstruira glavni

U(1)-svežanj za elektrodinamiku. Zatim se pokaže da je Aµ Yang-Mills polje, a Fara-

dayev tenzor lokalni prikaz zakrivljenosti koneksije. Potpoglavlje završava definici-

jom baždarne kovarijante derivacije za elektrodinamiku.

Prvo poglavlje završava potpoglavljem 1.7 koje uvodi spinsku strukturu. Poglavlja

do sada su dovoljna da se polja baždarnih bozona definiraju na geometrijski način,

ali budući da lagranžijan Standardnog modela sadrži i spinorna polja, potrebno je
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i njih definirati na geometrijski način. Potpoglavlje započinje nizom definicija koja

vode do definicije spinornog svežnja kao pridruženog vektorskog svežnja. Potom se

uvode Diracove forme, spinska kovarijantna derivacija i Diracov operator.

5.2 Standardni model

Drugo poglavlje diplomskog rada izlaže Standardni model na način poput na kolegi-

jima Fizika elementarnih čestica, odnosno bez korǐstenja diferencijalne geometrije i

svežnjeva.

Poglavlje započinje uvodnim potpoglavljem 2.1 o Standardnom modelu.

Potpoglavlje 2.1 je o kvantnoj teoriji polja. Izvede se Diracova jednadžba na način

kao što ju je povijesno izveo Dirac. Zatim se iskaže Diracov lagranžijan i kvantizira

ga se kanonskom kvantizacijom.

U potpoglavlju 2.3 se izlaže kvantna elektrodinamika (QED). Iskazuje se njezin

lagranžijan i njegove jednadžbe gibanja. Potpoglavlje završava diskusijom o U(1)

baždarnoj simetriji lagranžijana za kvantnu elektrodinamiku.

Nastavlja se potpoglavljem 2.4 o kvantnoj kromodinamici (QCD). Radi se povi-

jesni uvod u kojem se spominje SU(2) i SU(3) približna simetrija izospina. Zatim se

iskazuje lagranžijan kvantne kromodinamike i iskazuju se SU(3) baždarne transfor-

macije spinornih i gluonskih polja na koje je lagranžijan QCD-a invarijantan.

Potpoglavlje 2.5 je o elektroslaboj interakciji. Potpoglavlje započinje diskusijom

o diskretnim simetrijama Standardnog modela te se spominje CPT teorem. Radi

se uvod u slabu silu, njezin povijesni razvoj te se iskazuje SU(2) baždarna simetrija

slabe sile. Potpoglavlje završava diskusijom o elektroslabom ujedinjenju, uvodi se

Weinbergov kut θW i iskazuje se lagranžijan elektroslabe slike koji je invarijantan

na SU(2) baždarne transformacije. Navodi se da je potreban mehanizam koji uvodi

masu u lagranžijan elektroslabe sile bez narušenja SU(2)L simetrije.

Zatim slijedi potpoglavlje 2.6 o Higgsovoj interakciji. Uvodi se masa baždarnih bo-

zona slabe sile te se uvodi masa fermiona bez narušavanja SU(2)L baždarne simetrije.

Potpoglavlje završava izlaganjem CKM matrice.

Drugo poglavlje završava potpoglavljem 2.7 koje iskazuje cijeli lagranžijan Stan-

dardnog modela te zapisuje ukupnu baždarnu U(1)Y ×SU(2)L×SU(3)C transforma-

ciju na koju je lagranžijan Standardnog modela invarijantan.
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5.3 Geometrija Standardnog modela

Treće poglavlje diplomskog rada je o geometriji Standardnog modela. Alatima iz

poglavlja 1 se reproducira lagranžijan s kraja poglavlja 2.

Potpoglavlje 3.1 je uvod u poglavlje u kojem se najavljuje da će se rigorozno

definirati lagranžijan s kraja poglavlja 2.

Potpoglavlje 3.2 definira polja baždarnih bozona kao Yang-Mills polja posebnih

svežnjeva. Konstruira se glavni SU(3)C svežanj čija Yang-Mills polja odgovaraju glu-

onima, navodi se i da je izbor konvencija takav da potpuno reproducira sva tran-

formacijska svojstva i predznake iz poglavlja 2. Ponovi se postupak i za SU(2)L i

U(1)Y -svežnjeve i time se geometrijski definiraju polja W i B bozona. Potpoglavlje

završava konstrukcijom glavnog U(1) × SU(2) × SU(3)-svežnja čija Yang-Mills polja

su svi baždarni bozoni iz Standardnog modela.

Nastavlja se potpoglavljem 3.3 u kojem se definiraju materijska polja fermiona.

Definiraju se prikladne reprezentacije iz kojih se grade spinorni svežnjevi s trans-

formacijsim svojstvima koja reproduciraju pojedine fermione (npr, lijevi elektron,

desni kvarkovi itd.). Nastavlja se diskusijom o konjugaciji naboja koja se ostvaruje

pomoću kompleksno konjugiranog svežnja, a potpoglavlje završava svežnjem čiji pre-

rezi odgovaraju Higgsovom polju.

Potpoglavlje 3.4 geometrijski definira tri vrste lagranžijana koje u posebnim slučajevima

čine osnovne komponente lagranžijana Standardnog modela. Započinje se definici-

jom Yang-Mills-Dirac lagranžijana koji predstavlja kinetički član za fermione i kinetički

član za bozonska polja. Zatim se uvodi Higgsov lagranžijan te Yukawin lagranžijan

koji uvodi mase fermiona u lagranžijan Standardnog modela. Potpoglavlje završava

izlaganjem ukupnog lagranžijana Standarnog modela koji je definiran svežnjevima iz

potpoglavalja 3.2 i 3.3.

Poglavlje završava potpoglavljem o opaskama u kojem se navode fundamentalne

konstante koje fiksiraju Standardni model u onaj koji se opazuje u našem svemiru.

5.4 Završne opaske i perspektive

Posljednje poglavlje ovog diplomskog rada je o završnim opaskama i perspektivama.

Potpoglavlje 4.1 sumira što se napravilo u diplomskom radu.

U potpoglavlju 4.2 se govori o topološkim aspektima baždarnih teorija. Započinje
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se općenitom diskusijom o topološkim defektima u baždarnim teorijama koja se prim-

jenjuje na magnetske monopole. Potpoglavlje završava diskusijom da Standardni

model nema topoloških defekata, ali da neke GUT teorije dozvoljavaju njihovo pos-

tojanje.

Završno potpoglavlje 4.3 je o drugom pristupu geometriji, algebarskom. Uvodi

se Gelfandova dualnost i čitatelja se upućuje prema literaturi o nekomutativnoj ge-

ometriji i Gelfandovoj dualnosti. Potpoglavlje završava kratkom diskusijom o neko-

mutativnoj geometriji Standardnog modela u kojoj se čitatelja upućuje prema udžbeniku

koji formalizam nekomutativne geometrije koristi za konstrukciji lagranžijana Stan-

dardnog modela.

5.5 HR nazivi slika i tablica

Prijevodi opisa slika :

Slika 1.1: Möbiusova vrpca kao totalni prostor baznog prostora kružnice - tanke,

okomite sive linije su projicirane na crnu krivulju.

Slika 1.2: Orbite dviju točki iz R2 pod djelovanjem grupe SO(2).

Slika 2.1: Čestični sadržaj Standardnog modela koji uključuje mase, spinove i naboje

čestica. Ovaj dijagram je napravljem na CERN Webfest-u [9].

Slika 2.2: Potencijal V (φ) smatran realnom funkcijom varijable

φ+

φ0

. Ovaj graf je

modifikacija open source dijagrama [17].
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