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Fizički odsjek

Mateo Kruljac

HLAÐENJE I SAMOORGANIZACIJA
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Abstract

In this thesis I present the results of research on two topics in the field of cold atomic ensembles
interacting with laser light. In both cases we use a mode-locked femtosecond laser, whose
spectrum generates a frequency comb (FC), to induce light forces on the atoms.

In the first part of the thesis, we investigate the FC-induced force in dense ensembles of
cold atoms in free space. We report a modification of the light force compared to single-atom
physics, which is a signature of collective effects. We conclude that the dominant contribution
to the modification of the FC-induced force is the attenuation of beam intensity as it propagates
through the cloud, according to the Beer-Lambert law. We show that the models developed
for the interaction of cold atoms and continuous-wave (cw) lasers can be used to explain the
measured FC force. The understanding of FC-induced force is significant for experiments em-
ploying FC cooling of atoms, and for demonstration of multi-mode quantum memories.

In the second part of the thesis, I present the results of interaction of cold atoms inside
a high-finesse optical cavity, using cw and FC excitation in longitudinal geometry (pumping
through the cavity mirrors). For the case of cw pump, we measured a bimodal spatial distribu-
tion of atoms, a clear signature of the interaction of atoms with the intra-cavity optical potential.
To distinguish between cavity effects and the loading of atoms in a conservative lattice poten-
tial, we use numerical calculations, which simulate the experimental results very well. Using an
FC in longitudinal geometry, we report on the interaction of cold atoms with a multitude of off-
resonant FC modes, seen as enhancement or reduction of transmitted FC light due to dispersive
action of atoms. We also measured the effects of interaction in the spatial distribution of atoms,
pointing to the possibility of a cavity-enhanced cooling, heating or trapping of atoms using off-
resonant FC modes. In the final part, we present the results of transversal pumping geometry
using an FC. These results open a way to new research of developing and implementing cavity
cooling and trapping techniques using multi-mode excitation.

Keywords: optical frequency comb, cold atoms, dense atomic ensembles, optical cavity, cavity
cooling of atoms, collective light-atom interaction



Prošireni sažetak

U ovome doktorskom radu predstavljeni su rezultati istraživanja u Grupi za kvantne tehnologije
na Institutu za fiziku, pod mentorstvom dr. sc. Ticijane Ban. Istraživanje je započeto u sklopu
HrZZ projekta „Optomehanika uzrokovana frekventnim češljem“, a obuhvaća eksperimentalni
rad u području hladnih atoma nastalih u magneto-optičkoj stupici s ciljem istraživanja radija-
tivnih sila na hladne atome koje nastaju kao rezultat obasjavanja atoma laserskom svjetlošću
kontinuiranog i pulsnog zračenja. Doktorski rad podijeljen je tematski u dvije cjeline. U pr-
voj cjelini istražuje se radijativna sila uzrokovana optičkim frekventnim češljem na gusti oblak
hladnih atoma koji se nalazi u slobodnom prostoru. Cilj ovog istraživanja bio je proučavanje
utjecaja kolektivnih efekata na radijativnu silu uzrokovanu pulsnom pobudom. U drugoj cje-
lini atomi su smješteni unutar visoko-reflektirajućeg optičkog rezonatora te obasjani frekvent-
nim češljem u longitudinalnoj geometriji (pumpanjem kroz zrcala rezonatora) i transverzalnoj
geometriji. Cilj ovog istraživanja bio je ispitati utjecaj kompleksnog potencijala koji nastaje
vezanjem frekventnog češlja i modova optičkog rezonatora na hladne atome. Očekuje se da
takav potencijal dovodi do hlad̄enja i zarobljavanja atoma potpomognutih optičkim rezonato-
rom. U ovom doktorskom radu po prvi se put izgradio eksperiment koji omogućava proučavanje
dinamike hladnih atoma u kompleksnom optičkom potencijalu unutar multi-modnog optičkog
rezonatora i po prvi su put opaženi efekti interakcije hladnih atoma s poljem frekventnog češlja
unutar visoko-reflektirajućeg rezonatora. Navedena eksperimentalna istraživanja jedinstvena su
u dosadašnjoj literaturi i predstavljaju glavni rezultat ovog doktorskog rada.

Doktorski rad organiziran je na sljedeći način.
U Uvodu se obrazlažu područje i ciljevi istraživanja iz obje tematike rada, te sadržaj doktor-

skog rada.
U drugome poglavlju uvode se teorijski formalizam i osnovni pojmovi nužni za razumi-

jevanje tematike istraživanja. Teorijski dio obuhvaća opis radijativnih sila na atome, svojstva
optičkih rezonatora i frekventnog češlja, kao i kvantno-mehanički pristup interakcije atoma i
svjetlosti u rezonatoru, a koji daje uvid u nove efekte poput hlad̄enja i samo-organizacije atoma.

U trećem poglavlju istražuje se radijativna sila na atome inducirana frekventnim češljem

i



Prošireni sažetak

u gustom oblaku hladnih atoma u slobodnom prostoru. Opažena je promjena sile u odnosu
na rijetki oblak, što ukazuje na postojanje kolektivnih efekata. Ispitan je utjecaj koherentnih
i ne-koherentnih kolektivnih efekata te je zaključeno da je dominantan doprinos promjeni sile
u gustom oblaku atoma rezultat Beer-Lambertovog zakona koji opisuje atenuaciju svjetlosti
pri propagaciji kroz gusti medij, a rezultat je više-brojnog raspršenja svjetlosti unutar gustog
medija. Dodatno, pokazano je da se eksperimentalni rezultati mogu objasniti modelima koji su
razvijeni za slučaj med̄udjelovanja hladnih atoma i lasera kontinuiranog zračenja, što ukazuje
da, za dane eksperimentalne parametre, od mnoštva spektralnih modova optičkog frekventnog
češlja dominantno med̄udjelovanje s atomima dolazi prvenstveno od jednog moda i to onog
koji je najbliže atomskoj rezonanciji. Razumijevanje radijativne sile u gustim oblacima hladnih
atoma značajno je za eksperimente hlad̄enja atoma frekventnim češljem, kao i za eksperimente u
kojima se frekventni češalj planira koristiti za demonstraciju multi-modnih kvantnih memorija.

U četvrtom poglavlju prikazani su rezultati istraživanja koji su provedeni na sistemu hladnih
atoma smještenih unutar visoko-reflektirajućeg rezonatora, a koji su obasjavani laserom konti-
nuirane emisije i optičkim frekventnim češljem u longitudinalnoj geometriji (pumpanje kroz
zrcalo rezonatora). Cilj istraživanja bio je razumjeti efekte potaknute optičkim rezonatorom
kada se atomi obasjavaju izvorom svjetlosti kao što je optički frekventni češalj, koji omogućuje
istovremeno sprezanje nekoliko tisuća spektralnih modova s modovima optičkog rezonatora.
Pri tome, atomi smješteni unutar rezonatora ne vide klasični sinusni optički potencijal kao u
slučaju lasera kontinuiranog zračenja, već optički potencijal unutar rezonatora može poprimiti
kompleksnu strukturu što otvara vrata novim eksperimentima u području kvantnih simulatora
usmjerenih prema rješavanju problema optimizacije. Ispitivanje se prvo vršilo s laserom konti-
nuiranog zračenja kako bi se moglo nedvojbeno zaključiti o efektima koji su posljedica multi-
komponentnog optičkog frekventnog češlja. Eksperiment se provodio za različite uvjete veza-
nja svjelosti lasera i atoma, različite snage pumpnog lasera te za guste i rijetke oblake atoma s
temperaturama ispod i iznad Dopplerove temperature. U slučaju interakcije s laserom kontinu-
iranog zračenja, u specifičnim eksperimentalnim uvjetima uočena je bimodalna prostorna ras-
podjela atoma koja je ostala postojana i prilikom slobodne ekspanzije atoma mjerene tehnikom
vremena proleta (TOF). U svrhu razumijevanja opaženih rezultata, a prvenstveno da se razluče
efekti koji dolaze kao posljedica zarobljavanja atoma u potencijal optičke rešetke unutar rezona-
tora od onih koji su posljedica utjecaja rezonatora na dinamiku atoma, korišten je već razvijeni
numerički kod koji se prilagodio za dane eksperimentalne parametre. Pokazano je da se opaženi
efekt bimodalne distribucije u potpunosti može opisati zarobljavanjem atoma u sinusni optički
potencijal unutar rezonatora. Koristeći frekventni češalj za longitudinalnu pobudu, opažen je
efekt istovremene interakcije hladnih atoma smještenih unutar rezonatora i niza ne-rezonantnih
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modova frekventnog češlja u vidu povećanja i smanjenja intenziteta transmitirane svjetlosti
zbog disperzivnog utjecaja atoma na modove optičkog rezonatora. Ovi rezultati predstavljaju
prvu eksperimentalnu realizaciju multi-modnog pobud̄enja atoma unutar visoko-reflektirajućeg
rezonatora. Osim u transmisiji, potpis interakcije opaža se i u prostornoj distribuciji atoma mje-
renoj TOF tehnikom koja nam daje direktan uvid u brzinsku distribuciju atoma. Opaženi su
efekti smanjenja i povećanja širine distribucije brzine atoma kao posljedice njihovog pobud̄enja
s frekventnim češljem, što može ukazivati na mehanizme rezonatorom potpomognutog hlad̄e-
nja i grijanja atoma, ali i na mehanizme zarobljavanja u optički potencijal unutar rezonatora.
Kako bi se jasno razlučilo izmed̄u ova dva mehanizma, ispitana je i geometrija transverzalnog
pumpanja atoma u rezonatoru upotrebom optičkog frekventnog češlja, u kojoj ne postoji optički
potencijal unutar rezonatora koji je odgovoran za zarobljavanje atoma te se dominantan efekt
rezonatora očituje na dinamici atoma, tj. smanjenju ili povećanju kinetičke energije atoma unu-
tar rezonatora. Rezultati su prikazani na kraju doktorskog rada te otvaraju niz novih pitanja i
mogućnosti za daljnja istraživanja.

U petome poglavlju dan je zaključni pregled rezultata ovog doktorskog rada, kao i perspek-
tive za daljnja istraživanja i rješavanje pitanja koje je moj dosadašnji rad pokrenuo.

Ključne riječi: optički frekventni češalj, hladni atomi, gusti atomski ansambl, optički rezonator,
hlad̄enje atoma u rezonatoru, kolektivna interakcija atoma i svjetlosti
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Chapter 1

Introduction

1.1 Cold atoms and cavity quantum electrodynamics

Mechanical action of continuous wave (cw) laser radiation on atoms presents a central part of
research in atomic physics for the last few decades. Radiation pressure force is a foundation
of laser cooling and trapping of atoms, which allowed the creation of dense and cold atomic
samples [1], opening a way to a whole new and exciting field of research. The pioneers of
this field, S. Chu, W. D. Phillips and C. Cohen-Tannoudji won the Nobel prize in 1997 [2].
Cold atomic samples started the development and research of quantum sensors, optical atomic
clocks and quantum many-body simulation. Further cooling and trapping techniques allowed
the creation of new states of matter, like Bose-Einstein Condensate (BEC), degenerate Fermi
and Bose-Fermi gases, which set a foundation of a very prosperous and productive area of
modern science. For the realization of a BEC, the Nobel prize was awarded to W. Ketterle,
C. Wieman and E. A. Cornell in 2001 [3]. Cold samples with the temperature on the order
of ∼100 µK prepared in a magneto-optical trap (MOT) became a standard experimental setup
in many laboratories. These experiments are of high interest due to their controllability. The
cold samples are inside a high-vacuum chamber, so any external perturbations are removed.
Likewise, there are no losses due to collisions with surrounding gases. The low temperature
means the atoms are very slow and can be manipulated on time scales of dozens on miliseconds.
Low temperatures allow even the manipulation of single atoms with laser-generated forces.

The standard cooling technique in a MOT is called Doppler cooling. It is achieved by a
preferred absorption of photons from a laser beam counter-propagating to the atomic motion.
Momentum transferred from the photon to the atom through absorption is so weak that thou-
sands of cycles of absorption and emission (i.e. cooling cycles) are needed to slow down the
atom significantly. For this reason it is important for the excited atom to decay into the ground
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1.1. Cold atoms and cavity quantum electrodynamics Chapter 1. Introduction

energy state, that is, a closed cooling transition is needed. For atoms with a simple energy struc-
ture it is possible to meet this condition, which makes alkali metals the main samples for laser
cooling. Another important limitation is the availability of laser sources at wavelengths needed
for closed transitions. For example, hydrogen atoms have the simplest energy structure, but the
transition is in deep VUV region where generation of laser light is demanding. Due to these
limitations, only a handful of atomic species have been directly laser cooled, and are shown
in Fig. 1.1. Development of alternative cooling techniques that would be independent of the
internal structure would be of importance for direct laser cooling of molecules, which would be
of great interest to the scientific community.
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Figure 1.1: Elements that have been directly laser cooled are marked in blue. Taken from [4].

Cavity-optomechanical systems with one atom and a cold atomic ensemble are used to
demonstrate numerous phenomena [5], among which are cooling and self-organization of atoms
into regular structures. Cavity cooling of one atom, as well as an atomic ensemble, presents a
unique cooling technique which is independent of atomic energy structure. This technique is
based on energy conservation during the scattering of a photon on an atom, where the energy
of a scattered photon is higher than of an input photon, which is accompanied by a decrease of
atomic velocity. The scattering is enhanced if the atom is located in an optical resonator whose
mode frequency is higher than input radiation frequency. The cooling mechanism is based on
the loss of scattered photons from the optical resonator (as opposed to Doppler cooling where
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1.2. Frequency comb cooling Chapter 1. Introduction

spontaneous emission from an excited atomic state is the dissipation mechanism), and depends
on the resonator mirror reflectivity and on the detuning of input photon frequency from the cav-
ity mode frequency. The cooling process is independent of the detuning of the input light from
an atomic resonance (although it affects the cooling speed). This kind of cooling mechanism is
then applicable to all scatterers of light regardless of their internal structure, which makes it an
invaluable tool in laser cooling, and an area of great research interest for the past twenty years
[6]. Experimentally, cavity cooling [7, 8] and self-organization of cold atoms [9] and BEC [10]
have been demonstrated, as well as cooling of free silicon nanoparticles in high vacuum [11]
and levitating nanospheres [12]. The efficiency of cavity cooling increases with laser power
used for cooling, but only up to a certain point. Above a certain threshold power, the scattered
photons create potential wells deep enough for the atoms to self-organize into regular structures
and get trapped in the standing wave potential, which slows down the cooling and lowers its
efficiency [13]. Self-organization of atoms is an unwanted effect if the goal is higher cooling
efficiency compared to heating and diffusion effects, which is one of the main limitations in im-
plementing this technique for wider use. The final goal to realize a simple and efficient method
of cooling fully independent of the systems optical transition details, which would allow the
creation of large samples of ultracold complex molecules [14], still remains unrealized.

1.2 Frequency comb cooling

The limitation of availability of laser sources has been tackled on historically by discussing
the use of pulsed lasers instead of continuous wave (cw) lasers. The pulses have high peak
electric field strengths, which makes them suitable for nonlinear optics [15]. Pulsed sources can
produce higher frequency harmonics [16], which can broaden the pulse spectrum, stretching it
into UV and further. For this reason, the use of pulsed lasers for cooling has been explored
early on. However, since the pulses are short in the time domain, their frequency spectrum is
wide. For Doppler cooling, when the laser interacts with a single atomic resonance, most of the
power will be wasted or misplaced, since some frequencies will be below and some above the
atomic transition, making the Doppler cooling scheme inefficient or even impossible.

Using stabilized mode-locked lasers, that produce phase-stable train of pico- or femtosec-
ond pulses of high repetition rates, circumvents the mentioned problems. In frequency domain,
a mode-locked laser consists of a large number of equidistant narrow lines, hence the name
frequency comb. Due to their pulsed nature, mode-locked lasers can be stretched in frequency,
while preserving the regular comb structure. Now, each frequency in the spectrum is known
with high precision and for suitable configurations Doppler cooling scheme can readily be ap-
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1.3. Thesis outline Chapter 1. Introduction

plied, since only one comb mode will dominantly interact with the atoms. Using the frequency
comb effectively corresponds to using a large number of phase-coherent cw lasers, opening a
way to simultaneous multi-line excitation. Application of frequency comb cooling has been
demonstrated theoretically and experimentally [17, 18, 19]. Recently, our group has demon-
strated simultaneous two-species cooling using an optical frequency comb [20]. Other novel
frequency comb applications include multi-mode quantum memories [21, 22] and quantum
computing [23, 24]. The use of frequency combs has already revolutionized metrology by al-
lowing high-precision measurements of optical frequencies. For the development of frequency
combs, John L. Hall and Theodor W. Hänsch shared the Nobel prize in 2005 [25].

A novel application of frequency combs was recently predicted in a paper [26] in the context
of cavity cooling of atoms. Since the frequency comb consists of a large number of equally
spaced modes (over 100 000), all of them can be simultaneously coupled into different cavity
modes. Owing to the large number of different wavelengths, the standing wave of a pulsed
laser, and with it the potential seen by the atoms, becomes far more complex. Because of this
complex potential, self-organization threshold intensity moves to higher values, which should
allow a more efficient use of higher laser powers, and with it, more efficient cavity cooling.
Likewise, trapping of atoms in such potentials could be used to simulate various open systems,
manipulation of a BEC in a complex potential, and quantum annealing [27].

For all these applications, detailed understanding of the laser-atom interaction and the laser-
induced forces is necessary. In this thesis, we investigate the modification of the frequency-
induced free-space force when atomic samples of high density are considered. In the second
part of the thesis we investigate the collective dynamics of cold atoms situated inside an optical
cavity, while interacting with frequency comb light coupled with the cavity modes.

1.3 Thesis outline

This thesis is organized as follows.
In the Introduction, I present the field of cold atoms and the goals of my research.
In the second chapter, I introduce the theoretical formalism and basic concepts necessary

to understand the topics and results of this thesis. The theoretical chapter covers a description
of laser-induced forces on atoms, general properties of optical cavities and frequency combs,
as well as a fully quantum approach to light-atom-cavity interaction, which gives insight into
predictions of cavity-enhanced cooling and trapping of atoms.

In the third chapter I investigate the FC-induced radiation pressure force in dense atomic
ensembles in free space. We report on the modification of the FC force compared to single-atom
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physics, a signature of collective effects. We analyse contributions of different coherent and
incoherent effects and compare them to the experimental data, concluding that the progressive
attenuation of beam intensity as it propagates through the cloud, due to Beer-Lambert law, is
the dominant mechanism responsible for the modification of the FC-force.

In the fourth chapter, the atoms are in the center of a high-finesse resonator, interacting with
cw or FC pump in longitudinal geometry (pumping through the cavity mirrors). The chapter
is divided in two parts - cw pump and FC pump. For the case of cw pump, we conclude that
the measured bimodal spatial distribution of atoms is a consequence of loading of atoms in
the conservative optical lattice potential. For the case of the FC pump, we report on several
signatures of interaction of atoms with intra-cavity FC light, which is the first experimental re-
alization of multi-mode excitation of cold atoms inside a high-finesse optical cavity, and points
to a possibility of cavity-enhanced FC cooling and trapping of atoms.

In the last chapter, I summarize the results presented in this thesis and give an outlook on
the plans and future experiments.

5



Chapter 2

Theory

In this chapter I cover the theoretical treatment of different topics and phenomena introduced
through this thesis. These topics are covered in more detail in several books, from which we
borrow and expand upon. The basic quantum mechanic formalism of laser-atom interaction,
principles of laser cooling and trapping of atoms, as well as the details of magneto-optical traps
(MOTs) can be found in "Laser Cooling and Trapping" by H. J. Metcalf and P. van der Straten
[1]. Properties of optical cavities are described in most detail in "Laser Resonators and Beam
Propagation" by N. Hodgson and H. Webber [28]. The fully quantum mechanical treatment of
laser-atom interaction and the quantization of light can be found in "Quantum Optics" by M.
Scully [29]. A good description of pulsed lasers and frequency comb generation is presented
in "Quantum Electronics for Atomic Physics and Telecommunication" by W. Nagourney [30].
The last book also contains a good cover of optical cavities and light-atom interaction.

2.1 Light forces acting on atoms

2.1.1 Basic formalism and equations

We first consider a two-level atom interacting with a classical laser field in free space. Since the
laser field consists of a large number of photons, it is sufficient to describe it as a classical light
field:

E(x, t) =
1

2
ϵE0(x)e

−i(ωLt−ϕ(x)) + c.c, (2.1)

where ϕ(x) is a space-dependent phase, E0(x) space-dependent amplitude, ϵ the polarization
of the field, and c.c. denotes the complex conjugate of the written expression. Let us label
the energy states of the atom the ground state |g⟩ and the excited state |e⟩, and the transition
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frequency between them ω0. The Hamiltonian of this system can be written as:

Ĥ = ĤA + ĤI , (2.2)

where the first term,
ĤA = ℏω0 |e⟩ ⟨e| (2.3)

describes a free atom’s internal degrees of freedom, and the ground state energy is set to zero.
The interaction Hamiltonian HI can be described in the electric-dipole approximation:

ĤI = −d · E(x, t), (2.4)

where d is the dipole operator of the atom. In the dipole approximation we neglected the
spatial variation of the light field across the atom, which is justified since the wavelength is
large compared to the atom size, λ ≫ x. The dipole operator has only off-diagonal non-zero
elements, µ = ⟨e|d|g⟩ = ⟨g|d|e⟩, so it can be written as

d = µ (|e⟩ ⟨g|+ |g⟩ ⟨e|) = µ (σ+ + σ−) , (2.5)

where we’ve introduced the raising and lowering operators for the two-level system, σ+ =

|e⟩ ⟨g| and σ− = |g⟩ ⟨e|. For a laser field given by Eqn. (2.1), the interaction Hamiltonian is

ĤI = −ℏΩ(x)
2

[
e−i(ωLt−ϕ(x)) (σ+ + σ−) + c.c

]
, (2.6)

where we introduced the Rabi frequency ℏΩ(x) = µ · ϵE0(x).
If we choose a reference frame rotating with the frequency ω0 and switch into the interaction

picture, we find in the new ĤI terms evolving in two different time scales. The terms oscillating
at ∆a ≡ ωL − ω0 will evolve slower than the ones at ωL + ω0. Here we introduced the detuning
∆a of the laser frequency form the atomic transition frequency. For detunings smaller than the
optical frequencies, ∆a << |ωL + ω0| ≈ 2ωL, the rapidly oscillating terms can be neglected
as they average to zero. This is called the rotating-wave approximation (RWA) and is valid for
near-resonant excitation and optical frequencies. In the case of far-detuned dipole traps, RWA
does not hold.

To remove the explicit time dependence in ĤI , we switch into a frame rotating with ωL by
using a unitary transformation U = exp(iωLt |e⟩ ⟨e|). The new Hamiltonian becomes

Ĥ = −∆aσ+σ− − ℏΩ(x)
2

(
σ+e

−iϕ(x) + σ−e
iϕ(x)

)
(2.7)
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where the first term corresponds to the free atom Hamiltonian and the second to the interaction
Hamiltonian, and we used |e⟩ ⟨e| = σ+σ−. The solution of this system satisfies the time depen-
dent Schrödinger equation and can be expanded as a combination of eigenfunctions of the atom
Hamiltonian Ĥ0:

|ψ⟩ = cg |g⟩+ cee
−iω0t |e⟩ . (2.8)

In the RWA, new coefficients are chosen so that c̃g = cg and c̃e = cee
iωLt. Next we introduce

the density matrix corresponding to this new wavefunction

ρ = |ψ⟩ ⟨ψ| =
∑
ij

ρij =
∑
ij

c̃ic̃
∗
j , (2.9)

where diagonal terms correspond to the populations in each atomic state, and the off-diagonal
terms to the (slowly-rotating) coherences between the states. The time evolution of the density
matrix is given by the von Neumann equation

dρ

dt
=
i

ℏ
[ρ, Ĥ], (2.10)

To fully take into account the relaxation from the excited to ground state, the effect of
spontaneous emission has to be included. To describe the process of spontaneous emission,
quantization of the EM field is required. This relaxation is a consequence of the coupling of the
atom to the vacuum field. The atom can spontaneously emit into different vacuum modes with
different probabilities, resulting in a random and isotropic emission spectrum. Spontaneous
emission can therefore be seen as a dissipation channel and phenomenologically included in the
master equation. If the rate of spontaneous emission is Γ, the master equation for the evolution
of the density matrix becomes

dρ

dt
=
i

ℏ
[ρ, Ĥ] + Laρ, (2.11)

where Laρ = Γ (2σ−ρσ+ − {σ+σ−, ρ}) is a Liouvillian operator describing the losses. From
the master equation, time evolution of atomic populations and coherences can be calculated:

ρ̇ee = −Γρee +
iΩ

2

(
ρege

iϕ(x) − ρgee
−iϕ(x)

)
(2.12)

ρ̇ge = −
(
Γ

2
+ i∆a

)
ρgee

−iϕ(x) − iΩ

2
(ρee − ρgg) , (2.13)

where we’ve taken into account that ρge = ρ∗eg and ρgg + ρee = 1. These equations are called
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optical Bloch equations (OBE).
It is convenient to introduce three new variables u, v and w (which are the components of

the Bloch vector (u, v, w)):

u(t) = Re
[
ρge(t)e

−iϕ
]

(2.14a)

v(t) = Im
[
ρge(t)e

−iϕ
]

(2.14b)

w(t) = ρee −
1

2
, (2.14c)

so the stationary solution to OBEs (2.12-2.13) yields:

ust =
2Ω∆a

2Ω2 + 4∆2
a + Γ2

(2.15a)

vst =
2ΩΓ

2Ω2 + 4∆2
a + Γ2

(2.15b)

ρee =
Ω2

2Ω2 + 4∆2
a + Γ2

. (2.15c)

These solutions can be written in terms of the saturation parameter:

s =
2Ω2/Γ2

1 + 4∆2
a/Γ

2
=

s0
1 + 4∆2

a/Γ
2
, (2.16)

with s0 being the on-resonance saturation parameter:

s0 =
2Ω2

Γ2
=

I

Isat
, (2.17)

where I is the optical intensity of the laser beam and Isat is the saturation intensity of the atomic
transition. From here follows:

ust =
∆a

Ω

s

1 + s
(2.18a)

vst =
Γ

Ω

s

1 + s
(2.18b)

ρee =
1

2

s

1 + s
. (2.18c)

It is instructive to note that u has a dispersive shape and is, by definition, the real part of the
atomic susceptibility, while v has the absorptive Lorentzian shape and is the imaginary part
of the susceptibility, as is shown in Fig. 2.1. This can be seen by looking at the induced
polarization in the electric field P = ε0χE, where χ is linear susceptibility of the medium. On

9



2.1. Light forces acting on atoms Chapter 2. Theory

the other hand, polarization can be written as the expected value of the dipole moment operator
P = N⟨d⟩, with N being the concentration of atoms. Since the expected value of the operator
is given by ⟨A⟩ = Tr(ρA), we get P = Nµ(ρeg+ρge). We can see a direct connection between
susceptibility of a transition χij and the corresponding quantum-mechanical coherence ρij . The
index of refraction n and the absorption coefficient α are connected to the real and imaginary
part of the susceptibility, respectively. Hence, they can be connected to the coherence as well:
n ∝ Re(ρij) and α ∝ Im(ρij).

- 4 - 2 0 2 4
- 0 . 5

0 . 0

0 . 5

1 . 0

R e ( χ )  ~  - 1 / ∆ a

χ (
nor

m.
)

∆a  ( Γ)

 R e ( χ )
 I m ( χ )

I m ( χ )  ~  1 / ∆ 2
a

Figure 2.1: Real and imaginary values of atomic susceptibility and atomic quantum coherence near
the atomic resonance. The real part corresponds to the index of refraction, has a dispersive shape and
is responsible for lightshifts of atomic energy levels and for the dipole force. The imaginary part has a
Lorentzian shape that corresponds to absorption and resonant scattering, and is responsible for dissipative
forces that can lead to cooling or heating of atoms. Far from resonance, the dissipative term falls off faster
(1/∆2

a) than the dispersive one (1/∆a), which is why far detuned lasers are used to minimize dissipative
scattering and to trap the atoms in conservative potentials.

To determine the light-induced force, we use the Ehrenfest theorem and define the force as
the expectation value of its operator:

F = ⟨F̂⟩ = i

ℏ
⟨[Ĥ, p̂]⟩ = −⟨∇Ĥ⟩ = Tr[ρ∇Ĥ] (2.19)

Using the Hamiltonian (2.7) and Eqn. (2.18a) - (2.18c), we get
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F(x) = −ℏ (∇Ω(x)ust + Ω∇ϕ(x)vst) (2.20)

The first term is proportional to the gradient of the Rabi frequency, i.e. to the spatial change
of the light intensity. It has a dispersive shape (due to ust) and is called the dipole force. The
second term is proportional to the gradient of the phase, has a Lorentzian shape (due to vst) and
is called the radiation pressure force.

2.1.2 Radiation pressure force

Let us first investigate the case of a plane wave, for which the phase is ϕ(x) = −kx, where k is
the wave vector. Thus,

∇Ω(x) = 0

∇ϕ(x) = −k

The dipole force is zero for the plane wave illumination, and for the radiation pressure force we
get:

Fpr =
Γ

2

s

s+ 1
ℏk. (2.21)

As shown in Eqn. (2.18c) the excited state population ρee = 1
2

s
s+1

also has a Lorentzian shape
on atomic detuning. The radiation pressure force can be written as Fpr = Γspℏk which can be
easily understood due to momentum transfer of one recoil ℏk when a photon is absorbed, which
occurs at a rate Γsp = ρeeΓ. The force due to absorption is in direction of the propagating beam.
The force due to spontaneous emission is in random direction, so it does not contribute to the
mean force, averaged over many cycles. The expression for the force can also be written as:

Fpr =
ℏkΓ
2

s0/2

1 + s0 + 4∆2
a/Γ

2
(2.22)

It can be seen from this expression that for high saturation parameter, the amplitude of the force
saturates to the maximum value of Fmax = ℏkΓ/2, as shown in Fig. 2.2(b). The wings of the
Lorentzian curve saturate slower than the peak (see 2.2(a)), leading to the well known effect of
power broadening, where the linewidth increases as Γ′ = Γ

√
1 + s0.

Laser cooling and the Doppler temperature. The transfer of momentum due to radiation
pressure force is the mechanism of laser cooling of atoms. For atoms in motion, Doppler effect
has to be included since the atoms will see the laser frequency red- or blue-shifted depending
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(a) (b)

Δa

Figure 2.2: Radiation pressure force given in units of Fmax = ℏkΓ/2, which is the value to which the
force saturates for large intensities, s0 ≥ 1. (a) Dependence on detuning for three different saturation
parameters. (b) Dependence on saturation parameter (i.e. intensity) for ∆a = −Γ/2.

on their velocity. If we tune the laser frequency slightly below the atomic transition, ∆a <

0, the atoms moving towards the beam will preferentially absorb the photons since they will
be Doppler-shifted closer to the resonance. In many such cycles of preferred absorption and
randomly oriented spontaneous emission, it can be shown that atoms can be slowed down, i.e.
cooled. This technique is therefore called Doppler cooling.

To determine the cooling temperature limit, we need to include the heating force due to dif-
fusion, which limits the effect of the cooling force. This limit is called the Doppler temperature
and depends on the linewidth of the atomic transition:

kBTD =
ℏΓ
2
, (2.23)

It was shown however, first experimentally, then theoretically, that even sub-Doppler tem-
peratures can be achieved if polarization gradient of light is included, combined with atomic
magnetic states [31]. In these configurations, the atoms on average move up the potential more
than down the potential, effectively losing energy and temperature. This kind of cooling is
called Sisyphus cooling. In standard MOTs sub-Doppler temperatures are readily achieved,
since circularly polarized laser beams are used to cool and trap the atoms. The interference
of these counter-propagating beams creates a spatially dependent polarization, i.e. a spatially
dependent optical potential.

12
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2.1.3 Dipole force

Let us now investigate the case of a standing wave, for which the amplitude of the field and
hence the Rabi frequency vary as Ω(x) = Ω0 cos(kx), and the phase is constant. Thus,

∇Ω(x) = −kΩ0 sin(kx)

∇ϕ(x) = 0,

the radiation pressure force vanishes and only the dipole force remains. Using the expression
(2.18a) it can be written as:

Fdip = −ℏ∆a
∇Ω

Ω

s

1 + s
= −ℏ∆a

2

∇s

1 + s
. (2.24)

It can be seen that the dipole force can be derived from the following dipole potential:

Udip(r) =
ℏ∆a

2
ln(1 + s(r)). (2.25)

The dipole force is a conservative force. In the far off-resonance case, |∆a| ≫ Γ,Ω, the satura-
tion parameter is small and the logarithm can be expanded. The potential becomes:

Udip(r) =
ℏ∆a

2
s(r) =

ℏΓ2

8∆a

I(r)
Isat

, (2.26)

and is proportional to the local intensity. As mentioned, the dependence of the dipole force on
detuning has a dispersive shape and is related to the real part of the atomic polarizability.

The important note is that the dipole force changes sign for positive and negative detunings.
For a red detuned trap, ∆a < 0, the potential minima occur at the points of maximum intensity,
while for blue traps, ∆a > 0, the potential minima occur at intensity minima. Because of this,
atoms in red traps are high-field seekers and are attracted to intensity maxima, while in blue
traps they are low-field seekers, attracted to the field minima.

A great review of the dipole force, dipole traps and their application can be found in [32].
Conservative optical potentials can be realized by tightly focusing a laser beam or creating a
standing wave in one or more dimensions. A tightly focused Gaussan beam is usually called
a dipole trap and the atoms are pulled into the center of the beam waist. The trap created by
a standing wave is usually called an optical lattice. Optical lattices can be realized using both
red and blue detuned light, while the single-beam traps need to be red detuned unless some
higher order modes of the laser beam are used. As can be seen from Eqn. (2.26) and in Fig.
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2.3, red optical lattices create wells with negative potential energy, while blue lattices create
hills with positive energy. Some atoms can actually gain energy moving down the potential,
since the energy of the trap is added to the whole system and can be measured as an increase in
temperature of the atoms. Most experimental realizations use red-detuned traps, since they are
attractive and the atoms are pulled into the laser beam from the transverse directions, so longer
trapping times can be achieved.
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Figure 2.3: Spatial dependence of the optical lattice potential for (a) red and (b) blue detunings, and
the transversal Gaussian-shaped potential due to beam waist w for (c) red and (d) blue detunings. Red-
detuned potentials create wells with negative energy, while blue-detuned potentials create hills.

It should be noted that for large value of detuning, the radiation pressure force falls as 1/∆2
a,

while the dipole force falls as 1/∆a. For large detunings, the conservative dipole force domi-
nates the dynamics and resonant scattering can be neglected. In these far detuned conservative
traps, the saturation parameter is very low and atoms are mostly in the ground state, as there is
no resonant absorption and transfer of population. The atom can be seen as a polarizable par-
ticle with a changing index of refraction (the real part of the polarizability) due to interaction
with the light field.
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2.1.4 Interaction with quantized light - Jaynes-Cummings model

The discussion so far assumed the interaction of atoms with classical light, which gives accurate
results for free space excitation and high photon numbers of the pump laser. However, this
approach does not hold for light inside optical resonators made of high-reflectivity mirrors. In
this case, photons circulate a large number of times between the mirrors before they leak out
of the cavity, so back-action of intracavity atoms on cavity photons can’t be neglected. Optical
cavities can also operate in low photon number regime, where each individual photon matters.
This field of research is called cavity quantum electrodynamics (cQED) and usually investigates
single atoms interacting with single cavity photons.

The electric field of quantized light can be written similar to Eqn. (2.1)

E(x, t) = ϵE0(x)
(
a†eiωct + ae−iωct

)
, (2.27)

where ωc is the cavity photon frequency, E0 =
√

ℏω0

2ϵ0V
is the electric field corresponding to a

single photon in a cavity of mode volume V , and a+, a are photon creation and annihilation
operators, respectively. For simplicity we wrote the electric field at a specific point in space,
setting the additional term exp(iϕ(x)) = 1. Taking into account that a†a corresponds to the
photon number operator, Hamiltonian for the cavity field is

Ĥc = ℏωca
†a. (2.28)

Using the dipole and RWA approximations, the interaction Hamiltonian with the quantized field
has a similar form as Eqn. (2.7):

Ĥi = ℏg(x)
[
σ+a+ σ−a

†] , (2.29)

where

g = µ · ϵ
√

ℏωc

2ε0V
, (2.30)

is the single photon Rabi frequency, analogous to the Rabi frequency Ω introduced for classical
light. This interaction Hamiltonian can be easily understood through processes of absorption
and emission. The first term corresponds to the excitation of atom into the excited state by ab-
sorption (annihilation) of a photon, while the second term corresponds to the relaxation of atom
into the ground state by emitting (creating) a photon. The RWA approximation also becomes
more intuitive in this picture, because we’ve discarded the energy non-conserving terms σ+a†

15



2.2. Optical cavity Chapter 2. Theory

and σ−a. Switching into the interaction picture rotating with the pump laser frequency ωL, we
arrive at the Hamiltonian:

ĤJC/ℏ = −∆aσ+σ− −∆ca
†a+ g(σ+a+ σ−a

†), (2.31)

where we introduce the detuning of the pump laser from the cavity resonance ∆c = ωL − ωc.
The expression (2.31) is called the Jaynes-Cummings Hamiltonian.

We’ve shown how we phenomenologically introduce the atomic relaxation rate Γ into the
equations. Similarly, photons can leak through the cavity mirrors, and we denote this loss rate
as κ. This incoherent photon loss can be treated the same way as photon loss due to atoms. The
master equation then becomes:

ρ̇ =
i

ℏ
[ρ, ĤJC ] + (La + Lc) ρ, (2.32)

with included cavity loss term Lc = κ
(
2aρa† − {a†a, ρ}

)
.

Before going into more detail about this coupled dynamics, we first introduce some general
concepts about optical cavities to better understand the advantages of optical cavity and the
interaction of atoms with resonator light. We also introduce the optical frequency comb as a
source of multimode phase-coherent light used to simultaneously excite a multitude of cavity
modes, creating a complex intra-cavity potential.

2.2 Optical cavity

2.2.1 Spectral properties of the cavity fields

We start with the analysis of a Fabry-Perot interferometer, which consists of two parallel mirrors
of high reflectivity and flat surfaces. Let us consider first the case of perfectly reflecting mirrors.
Viewing the light inside the cavity as a standing wave, it is clear that only discreet wavelength
values are supported in the cavity, such that the nodes (zero light intensity) of the fields are
always at the mirror position. In a cavity of length L, for a standing wave of the shape f(x) =
sin(kx) this condition gives kL = qπ, with q = 0, 1, 2.... From this condition we find the
frequency difference between two cavity modes, called the free spectral range (FSR):

νq+1 − νq ≡ FSR =
c

2nL
, (2.33)
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where n is the index of refraction of the medium inside the cavity. We could arrive to the same
conclusion by treating the cavity light as a travelling photon bouncing back and forth between
the mirrors. In this picture, there can be a build-up of light in the cavity only if the phase change
during one round-trip, ϕ = 2kL, equals a multiple of 2π.

If the mirrors are not perfectly reflective, the cavity modes are not perfectly sharp delta
functions in frequency space, but have a finite linewidth. To describe this, we look at a Fabry-
Perot cavity made of mirrors with amplitudes of reflection rj , transmission tj , and losses lj . For
a mirror surface j the following relation holds

|rj|2 + |tj|2 + |lj|2 = Rj + Tj + Lj = 1. (2.34)

Let us look at the light transmitted from the cavity when we pump the input mirror with a field
Ei(t) = E0 exp(i2πνt), where E0 is the amplitude and ν the frequency of the field, as shown
in Fig. 2.4(a). The field transmitted through the first mirror, t1Ei, travels an optical path of
nL inside the cavity, gets reflected from the second mirror, r2t1Ei, again travels nL and gets
reflected from the first mirror, r1r2t1Ei. From that point the cycle continues, so during each
round trip the field is multiplied by a factor r1r2 exp(ik2nL) = r1r2 exp(i2πν/FSR), where
we used the same definition of the free spectral range, FSR = c/2nL. For each cycle, a fraction
t2 of the field is transmitted out of the cavity on the second mirror. Here we assume that no light
is lost in the intra-cavity medium. The transmitted field can be written as a geometric series:

Et(t) = t1t2Ei

∑
m

rm1 r
m
2 exp(i2πmν/FSR) =

t1t2
1− r1r2 exp(i2πν/FSR)

Ei (2.35)

Experimentally we measure the light intensity, and not the field, so it is more useful to look at
the transmitted intensity It ∝ |Et|2. Here we will assume a symmetric cavity with identical
mirrors (r1, t1, l1) = (r2, t2, l2) and, for simplicity, set all amplitudes to have real values. If, for
example, the reflection coefficient were a complex number, rj = |rj| exp(iϕj), the phase would
have to be included in Eqn (2.35), but it wouldn’t bring any new understanding of the concepts.
For the transmitted intensity we get

It =
T 2

(1−R)2 + 4R sin2
(

πν
FSR

)Ii (2.36)

To determine the linewidth of the cavity mode, we look at FWHM width of It. The maxi-
mum intensity occurs for sin2(πν/FSR) = 0, and at FWHM points It = Imax/2, for which
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4R sin2(πν/FSR) = (1−R)2. This gives:

sin2
(πνFWHM

FSR

)
=

( π

2F

)2

, (2.37)

where we introduced the cavity finesse:

F ≡ π
√
R

1−R
=

π
√
r1r2

1− r1r2
. (2.38)

The FWHM frequencies are then

νFWHM = ±FSR
π

arcsin
( π

2F

)
. (2.39)

High-finesse resonators are of most importance, and are used in most (F ≥ 1000) experiments,
so we can use the small angle approximation to get fFWHM ≈ ±FSR/(2F), from which
follows:

∆ν =
FSR

F
(2.40)

We emphasize here that only two quantities are needed to characterize the cavity parameters.
Cavity length determines the FSR and the mirror reflectivity determines the finesse, from which
the mode linewidth is calculated.

Is it useful to point out that the transmitted intensity is the part of the circulating intensity
that’s been coupled out through the second mirror. For a general cavity, this gives

Ic = It/t
2
2. (2.41)

For the case of identical mirrors and real amplitudes, we get

Ic =
T

(1−R)2 + 4R sin2
(

πν
FSR

)Ii (2.42)

With a similar derivation, we find the reflected intensity:

Ir =
4R sin2

(
πν

FSR

)
(1−R)2 + 4R sin2

(
πν

FSR

)Ii (2.43)

With the use of equations (2.36), (2.42) and (2.43), we can analyse the energy relations for
different cavity mirror parameters, shown in Fig. 2.4 (b), (c) and (d). For a high finesse, cavity
modes have a Lorentzian shape of linewidth ∆ν. We see that the buildup of the circulating
intensity is strongly dependent on the finesse, which determines the number of round trips for
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Figure 2.4: (a) A Fabry-Perot interferometer with two flat mirror surfaces. An incident electric field Ei

is party coupled into the cavity, followed by many roundtrips between the mirrors. At each mirror, some
light is coupled out and contributes to either transmitted field Et or reflected field Er due to constructive
or destructive interference. (b) Circulating intensity Ic inside the cavity. Different curves show frequency
dependent spectra for different mirror reflectivities and identical mirrors, calculated from Eqn. (2.42).
The spectra show Lorentzian-like peaks separated by cavity FSR. The reflectivities used are R =

|r1,2|2 = (0.4, 0.8, 0.95) with fixed loss coefficient L = 1 %. The highest reflectivity gives the highest
enhancement. (c) Transmitted intensity It calculated using Eqn. (2.36) for the listed mirror reflectivities.
For high finesse, losses are comparable to transmission and the transmitted intensity is reduced. (d)
Reflected intensity Ir calculated using Eqn. (2.43). It is not influenced by the losses since they occur
inside the cavity when the light is coupled in. Adapted from [33].

a photon before it leaks out of the cavity. If there were no mirror losses L, transmitted intensity
would equal the input intensity since the energy has to be conserved. However, for imperfect
mirrors, part of the circulating intensity is lost. This becomes significant for high-finesse mirrors
where the transmission coefficient becomes comparable to the loss coefficient. The photons
then circulate a large number of times before being transmitted so there’s a higher probability
of losses due to absorption on mirrors. In Fig. 2.4(d) we see that losses do not influence the
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reflected intensity, since they mostly occur inside the cavity.

Cavity ring-down time

If we abruptly turn off the input field, the transmitted intensity cannot fall instantly, but decays
at the time determined by the leakage rate κ of photons out of the cavity. If we look at the
change of circulating intensity in one round-trip ∆Ic(t) = (1 − R2)Ic(t) that occurs for the
round-trip time ∆t = 2L/c = 1/FSR, we get a differential equation:

İc(t) = −∆Ic
∆t

= −
[
(1−R2)FSR

]
Ic(t) = −κIc(t), (2.44)

with the solution
Ileak(t) = I0e

−κt = I0e
−t/τ , (2.45)

where we define the leakage time τ as the inverse of leakage rate, τ = 1/κ. Using Eqn. (2.33)
and (2.38), for high-finesse cavities R ≈ 1 we get

κ = 2π∆ν, (2.46)

which shows that the photon decay rate from the cavity is a direct measure of the cavity mode
linewidth. We note that this decay rate directly corresponds to the cavity photon loss κ intro-
duced in the Liouvillian losses of Jaynes-Cummings Hamiltonian.

2.2.2 Cavity stability and transverse modes

The discussion so far assumed an optical cavity formed with two plane mirrors. However, these
plane-parallel cavities are not practical since any relative tilt between the mirrors leads to a
walk-off of the light beam. A cavity of such geometry is called unstable. To make the cavity
more practical, we use spherical mirrors which provide spatial confinement to the photons as
they circulate. To describe the modes of a spherical resonator, we need to include not just the
longitudinal (standing wave) modes, but the transverse modes as well. An accurate description
of these modes can be acquired by solving the Helmholtz equation for the electric field in the
paraxial approximation. In this approximation, we assume the beam is propagating near to the
optical axis of the cavity, in the z direction, so the paraxial wave equation becomes(

∇2
T + 2ik

∂

∂z

)
E = 0 (2.47)
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The solution of this equation are usually written in two different orthogonal sets depending
on the assumed symmetry of the solution. For the case of a rectangular symmetry, the general
solution can be decomposed using Hermite-Gaussian modes, while for the cylindrical symmetry
Laguerre-Gaussian modes are used. These transverse modes are labelled TEMmn for the case
of Hermite-Gaussian modes, and TEMpl for the case of Laguerre-Gaussian modes. The spatial
intensity profile for different modes can be seen in Fig. 2.5. The fundamental mode TEM00 is
called a Gaussian mode (or a Gaussian beam), and has the same shape for both Hermite- and
Laguerre-Gaussian solutions. The modes for which (m,n) or (p, l) > 0 are called higher-order
transverse modes.

Let us now focus on the stability of spherical resonators. The condition for stability can
be evaluated using ABCD matrices, whose treatment can be found in textbooks [30]. For a
resonator of length L with mirrors of radius of curvature Rj , we define the parameter

g1,2 ≡ 1− L

R1,2

(2.48)

The condition of stability then becomes:

0 ≤ g1g2 ≤ 1. (2.49)

This can graphically be seen in Fig. 2.6, where the stable configurations are shaded in blue, and
some typical resonator realizations are shown. Resonance frequencies for spherical resonators
of different stable geometries are given by

νmnq =
c

2nL

(
q +

m+ n+ 1

π
arccos

√
g1g2

)
, (2.50)

for Hermite-Gaussian modes. For the case of Laguerre-Gaussian modes, we replace m+n with
2p + l in equation (2.50). The first term, with index q, corresponds to longitudinal modes, and
the second term to higher-order modes. It can be seen that for a general cavity geometry, these
modes have different frequencies. For the special case of parallel plane mirrors (g1 = g2 = 1),
there are no higher-order terms and we retrieve the longitudinal modes only.

For the Gaussian beam, which is a mode of most importance, the expression for the beam
waist w0 (the smallest size of the beam, see Fig. 2.7(b)) is given by (see [28]):

w2
0 =

λL

π

√
g1g2(1− g1g2)

|g1 + g2 − 2g1g2|
(2.51)
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Figure 2.5: Solutions of the paraxial Helmholtz equation decomposed into two possible sets.(a) Hermite-
Gaussian modes of order mn. Higher-order modes exibit rectangular symmetry. (b) Laguerre-Gaussian
modes of order pl. Higher-order modes exibit cylindrical symmetry.
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Figure 2.6: Stability diagram of optical resonators. Stable configurations are shaded in blue, according
to the stability condition Eqn. (2.49). Some typical stable (g1, g2) configurations are also presented.
Symmetric resonator geometries are located on the diagonal dashed line.

For a beam radius w(z) at different positions z along the cavity axis, we have

w(z) = w0

√
1 + (z/z0)2, (2.52)

where we introduced the Rayleigh length z0 = πw2
0/λ. For the radius of curvature of the beam

wavefront we have:
R(z) = z +

z20
z
. (2.53)

We note here that the curvature of the beam on the position of mirrors is equal to the radius of
curvature of the mirrors.

Geometry of most importance is the confocal resonator (g1 = g2 = 0) because of its sta-
bility. This can be seen in Fig. 2.7(a) where the input rays are shown to retrace itself after
two round trips regardless of tilt and displacement. As is shown in Fig. 2.7(b), the area of the
beam on the mirrors is just twice the area of the waist. This is a slowly diverging beam com-
pared to other cavity geometries, which is useful for mode-matching of the input laser beam to
the Gaussian mode of the cavity. Applying equation (2.50) to confocal geometry, we see that
higher-order modes are degenerate. As shown in Fig. 2.7(c), these frequencies are grouped
around the TEM00 modes or halfway between them (called half-axial modes), depending if
m+ n is even or odd.

Because of this mode spacing of the confocal geometry, examples in literature can be found
stating that the FSR of a confocal resonator is c/4L, which is in line with Fig. 2.7(a) where
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Figure 2.7: Geometry of confocal cavity. (a) Regardless of input position and tilt, rays retrace themselves
after two round trips. (b) The Gaussian mode of a confocal cavity is slowly diverging, so the beam area
on the mirrors is just twice the area at the mode waist w0. (c) Frequency spectrum of a confocal cavity.
Longitudinal modes are spaced by FSR, and higher modes are degenerate and fall within longitudinal
modes or halfway between them, depending on the sum of higher order modes m+ n.

the beam travels twice the cavity length to retrace itself. However, as will be shown in the
following paragraph, these half-axial modes are due to mismatches in displacement or tilt of the
input beam compared to the cavity axis, which couples the input light into different higher-order
cavity modes, effectively doubling the cavity length. To couple only the fundamental mode,
input light along the cavity axis is required. In this case, the beam only does one round-trip, and
the fundamental FSR of c/2L is restored.

2.2.3 Alignment of the optical cavities

The aforementioned discussion is treated with more detail in a paper by D. Anderson [34]. Here
we present the important result, shown in Fig. 2.8. There are four possible ways to mismatch
the input light compared to the cavity mode - displacement and tilt compared to the cavity axis
(Fig. 2.8(a) and (b)), and mismatch of the input beam waist size and position compared to
the cavity mode waist (Fig. 2.8(c) and (d)). It can be shown that even if the input light has a
pure Gaussian mode, the beam will couple into higher-order modes due to these mismatches.
Mismatch in axis displacement or tilt leads to coupling into Hermite-Gaussian modes, while
mismatch in waist size and position leads to coupling into Laguerre-Gaussian modes. This can
be easily understood - we break the cylindrical symmetry of the system by coupling the beam
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Figure 2.8: Mismatches in aligning the input beam to the cavity mode. (a) Displacement of the input
beam from the optical axis. (b) Tilt of the input beam propagation compared to the optical axis. (c)
Mismatch of the input beam waist size compared to the cavity mode waist. (d) Mismatch in position of
input beam and cavity mode waists. Adapted from [34]

off-axis, so the coupled modes can only have a rectangular shape. If the beam is aligned with
the cavity axis, the cylindrical symmetry is preserved and the higher-order modes are induced
due to waist mismatch. This is experimentally and practically a very useful result. If during
the alignment process we monitor the cavity transmission on a camera, we can see what higher-
order modes we’re coupling into. If we see rectangular modes, we can improve the alignment
by walking the input beam to better match the cavity axis. If only cylindrical modes remain, we
need to better match the beam waist to the cavity waist. This is done by using a lens or a set
of lenses on the input beam to shape it like the supported Gaussian mode of the cavity as much
as possible. For that, the use of equations (2.51)-(2.53) is needed to calculate the cavity waist
and radius of curvature. This is another advantage of the confocal geometry - since the beam is
slowly diverging and the waist isn’t focused too tightly, the mode matching can be simply done
using just a single lens.

2.3 Optical frequency combs and coupling with the cavity

2.3.1 Mode-locking

In contrast to the cw lasers that contain only a single frequency in their spectrum, pulsed fem-
tosecond lasers consist of a large number of phase-coherent modes. Like a standard optical
resonator, the resonator of the femtosecond laser supports a large number of modes. Generation
of ultrashort pulses in a femtosecond range in a laser resonator is based on mode-locking, which
assumes a constant phase difference between neighbouring resonator modes, ϕm = ϕ0 +mα,
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where the indexm denotes them-th longitudinal cavity mode. The number of cavity modes that
can be excited simultaneously depends on the spectral width of a gain medium in the laser, as
seen in Fig. 2.9. Frequency of them-th mode can be written as ωm = ωc+2πmfrep, where ωc is
the central frequency of the laser gain spectrum, and frep is the distance between the modes. It
is the same as FSR introduced in the last chapter, but in the case of pulsed lasers, this quantity
is called the repetition frequency. If M cavity modes can be excited within the gain spectrum,

frep = c/2nL

δνg

ν ν ν

(a) (b) (c)

Figure 2.9: a) Longitudinal modes of a laser cavity. b) Emission spectrum of a laser gain medium. c)
The number of cavity modes that can be simultaneously excited is determined by the spectral width of
the gain medium and the repetition rate.

we can write the total electric field at a specific point in space as:

E(t) =
∑
m

E0e
i(ωmt+ϕm) = E0e

i(ωct+ϕ0)

(M−1)/2∑
−(M−1)/2

ei(2mπfrept+mα), (2.54)

where we assumed the same amplitude for each mode. For simplicity, we set α = 0 since it is
only an additional constant phase. Using the geometric series relation for this sum, we get:

E(t) = E0
sin(Mπfrept)

sin(πfrept)
ei(ωct) (2.55)

For a large number of oscillating modes, this equation gives a train of short pulses separated in
time by Trep = 1/frep, called the repetition time. The duration of each pulse τp is given with
the number of excited modes τp = 1/(Mfrep). This is in line with the Heisenberg principle
that a short pulse in time domain has a wide spectrum in the frequency domain. The number
of excited modes is approximately equal to the ratio of gain profile width δνg and the mode
distance, M ≈ δνg/frep. The pulse duration can then be written as τp ≈ 1/δνg. Laser mediums
of a wide gain profile are therefore required for the realization of ultrashort pulses.

The basis of mode-locking is assuming a constant phase difference between neighbouring
modes, which creates a train of phase-coherent ultrashort pulses in the time domain. In practice,
mode-locking can be achieved using active or passive techniques. While active techniques use
some externally controlled active element, like an AOM, passive techniques rely on mechanisms
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such as saturable absorption, Kerr lensing or polarization rotation [30, 35].

I(f)

f

frep
f0

Frequency domain

Time domain(a)

(b)

E(t)

t

Δϕ 2Δϕ

2π f0=Δϕ frep

1/frep = τ

fn = n frep + f0

Figure 2.10: a) Time domain of a mode-locked laser consists of a train of ultrashort phase-coherent
pulses separated by τ . The phase between the carrier (solid blue line) and the envelope (dashed gray
line) changes from pulse to pulse by a fixed quantity, ∆ϕ. b) In the frequency domain a mode-locked
laser generates a frequency comb of equidistant narrow modes separated by frep = 1/τ . The relationship
of the phase term ∆ϕ and frequency f0 is indicated. Taken with permission from [4].

The connection between time and frequency domain of a femtosecond laser is shown in Fig.
2.10. The spectrum of a femtosecond laser consists of a large number of sharp spectal lines,
which is why it’s called a frequency comb (FC). The n-th mode of the FC can be written as:

fn = nfrep + f0, (2.56)

where f0 is the offset frequency. The important feature of the FC is that fn are in optical
frequency range, while frep and f0 in radio (rf) range, connected with a large mode number
n ∼ 106. This feature enabled a great progress in metrology and measurements of optical
frequencies, since most electronic counters can measure these rf frequencies with high precision
and the stability can be transferred into the optical domain.
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2.3.2 Comb-cavity coupling

Frequency combs have the same spectral structure as optical cavities, so it is natural to look
at the coupling of FCs light to external cavities. The former discussion about mode-matching
and beam shaping still holds for the FC beam as well, however to couple more than a few FC
modes into the cavity, it is necessary to tune frep and f0 so that FC modes match with the cavity
modes. This is shown in Fig. 2.11, where the matching condition is presented both in frequency
(2.11(a)) and time (2.11(b)) domain. If every comb mode is matched to the cavity, this situation

Tround trip

Trep

Trep = nTround trip
FSR

frep

FSR = nfrep

(a) (b)

Figure 2.11: Matching the FC modes to the cavity modes. (a) In frequency domain, every n-th comb
mode is matched with a cavity mode, so that frequency is coupled into the cavity. Other FC modes are
reflected. (b) In time domain, a pulse circulating inside the cavity makes n round-trips before a new FC
pulse enters the cavity.

is known as comb-cavity coupling. If every n-th comb mode is matched, it is known as comb
filtering, which effectively decreases the coupled power, but increases the repetition frequency
of the coupled light to match the cavity FSR. The FC-cavity coupling efficiency can be seen in
Fig. 2.12 as we scan the FSR (this corresponds to experimentally scanning the cavity length).
The coupling occurs when cavity modes in the optical domain shift by a value of frep, since
then them-th cavity mode matches the next FC mode. There is an optimal cavity mode spacing,
labelled FSR0 for which there is a perfect coupling with the FC modes - for each cavity mode
there is a resonant FC mode, i.e. the FC and cavity modes have the same central frequency.
As we increase (or decrease) FSR, coupling occurs with frep spacing, but it becomes less and
less efficient. This can be seen on the right picture in Fig. 2.12, where cavity transmission (i.e.
coupling efficiency) is shown as we scan the FSR. For even larger mismatch, the transmission
amplitude falls and broadens, since more and more FC modes sit in the wings of cavity modes
as we scan over them. The influence of f0 can easily be seen from the same figure, since it
would shift the whole FC spectrum, increasing or decreasing the coupling as the FC modes are
shifted across the cavity modes.

To use as much available FC power as possible, it is necessary to match the FC to the
cavity modes over the whole spectral range, for which the cavity dispersion has to be taken into
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FSR0 = n×frep
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Figure 2.12: Efficient matching of FC modes with the cavity modes. For FSR0 the matching is optimal
and the cavity transmission is the highest. For other FSR values, coupling efficiency falls and the
transmission signal is broadened since more FC modes sit in the wings of the cavity modes as we scan
over them. Coupling occurs every time the cavity modes in the optical domain shift by frep, since then
the m-th cavity mode matches the next FC mode.

account. The intracavity dispersion leads to a frequency-dependent phase shift ϕ(ω), which
makes the FSR frequency-dependent[36] :

FSR(ω) =
c

2L+ c ∂ϕ
∂ω
|ω0

. (2.57)

The dispersion term ∂ϕ/∂ω causes the cavity modes to walk-off from the FC modes as we
move away from the center frequency ω0. Dispersion thus limits the spectral bandwidth that
can simultaneously be coupled into the cavity. For practical applications where coupling of a
wide bandwidth is needed, low-dispersion mirrors are necessary.

The technique of coupling an FC into a cavity is the standard technique of a research field
called cavity-enhanced frequency comb spectroscopy (CE-FCS) [36]. For these experiments,
comb-cavity coupling is used to probe the molecular transitions of different samples inside the
cavity. Due to high number of cavity round-trips, the light-matter interaction length effectively
increases, and absorption of molecular samples is strongly enhanced. This method is used for
detection of weak traces in various hot and room-temperature samples. On the other hand,
coupling the FC with the cavity to probe cold atomic samples has not yet been reported in
literature, and is the focus of our experiment, opening a way towards cavity QED experiments
with multimode phase-coherent excitation.
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2.4 Cavity-enhanced cooling and trapping

2.4.1 Single atoms in cavities

We now turn to the exciting features predicted in systems where atoms are inside an optical
resonator and coupled to the intracavity light, while simultaneously excited with an external
laser pump. We note here that the pump can be used to excite the cavity modes directly through
the cavity mirrors, or by transversally interacting with the atoms, which then scatter light into
the cavity modes. Hamiltonian of the external pump can therefore be written as:

Hpump/ℏ = iη(a† − a) + iΩh(r) (σ+ − σ−) , (2.58)

where the first term corresponds to longitudinal driving of the cavity modes, and the second to
transversal excitation of atomic operators. Here, η is the amplitude of driving light, Ω is the
Rabi frequency, and h(r) is a spatial mode function of the transverse pump. In most cases we
pump the atoms in a standing wave, thus h(r) = cos(k · r⊥).

The theoretical results presented here were developed by the group of professor Helmut
Ritsch [6] and we summarize the important results in this chapter. In the limit when atomic
saturation effects are negligible, the atoms can be considered as linearly polarizable particles.
This is true for large pump detunings ∆a from the atomic resonance. A semiclassical approach
can be taken in the dispersive limit, resulting in stochastic differential equations corresponding
to atomic motion and cavity field. For a single atom moving in x direction along the axis of a
driven cavity with a mode function f(x) = cos(kx), we get:

ẋ =
p

m
(2.59a)

ṗ = −ℏU0|α|2
∂

∂x
f 2(x) (2.59b)

α̇ = η − i
[
U0f

2(x)−∆c

]
α−

[
κ+ Γ0f

2(x)
]
α, (2.59c)

where we have introduced the dispersive, U0, and dissipative, Γ0, effects due to atom-cavity
interaction:
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U0 =
g2∆a

∆2
a + Γ2

(2.60a)

Γ0 =
g2Γ

∆2
a + Γ2

, (2.60b)

where g is the single photon Rabi frequency introduced in the first chapter, and Γ is the decay
rate of the atomic excited state population. It is instructive to analyse this coupled atom-light
interaction more closely. The cavity field gives rise to an optical potential U0 felt by the atom,
inducing a Stark shift in atomic energy levels. Due to f(x), this potential is space-dependent
as the atom travels through the cavity and is responsible for the force acting on the atoms,
Eqn. (2.59b). This force is also proportional to the number of photons in the cavity, |α|2.
On the other hand, the presence of an atom (a dispersive medium) induces a lightshift of the
cavity mode frequency, shifting it by U0. This lightshift can be seen in the first parenthesis of
Eqn. (2.59c), and is also space dependent due to f(x). The second parenthesis in this equation
corresponds to losses of photons due to leakage through the mirrors with rate κ and due to free-
space scattering with rate Γ0 which effectively broadens the cavity resonance. The first term
in Eqn. (2.59c) corresponds to the cavity mode pumping strength. In the dispersive regime of
large atomic detunings, the free-space scattering can be neglected. Nevertheless, it is important
to note that the presence of dispersive media in the cavity both shifts and broadens the cavity
resonance.

Cavity cooling in the time picture Let us look at the mechanism of cavity cooling in an
example where the laser pump is tuned below the atomic resonance, ∆a < 0. From Eqn. (2.60a)
it follows that the lightshift is also negative U0 < 0, i.e. the cavity resonance is redshifted due
to interaction. Let us assume the pump laser is also below a bare cavity resonance, ∆c < 0,
so that only a few photons can couple into the empty cavity. When the atom is at the antinode
of the cavity field, the cavity mode will be redshifted toward the pump frequency due to atom-
light interaction, and more light will couple into the cavity. This positive feedback will cause
a matching of cavity and pump frequencies and induce a buildup of intracavity intensity. For
∆a < 0 the miminum of the optical potential corresponds to the maximum light intensity, i.e.
the atoms are high-field seekers. Lightshift and cavity buildup begin when the atom is at the
intensity maxima, which is the potential miminum. However, since almost no light was coupled
into the cavity at that point, the potential was very shallow. The atom now starts moving up
the potential slope while the cavity builds up light. It is important to note that cavity cannot
fill instantaneously, but does it with the rate κ. This means that the light keeps building up
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and the potential becomes deeper while the atom is climbing up that potential, so the atom is
losing energy. At the potential hill (intensity minimum), there is no atom-light coupling and the
cavity resonance shifts back to its bare value. This causes the leakage of light out of the cavity,
again at rate κ. During this time, the atom moves down the potential hill, however the potential
is getting shallower. This means that the atom is on average losing more energy moving up
the higher potential than going down the shallow potential. If the intracavity intensity could
adjust instantaneously to atomic motion, no cooling would occur. However, due to finite cavity
response time κ, the cavity loss is a dissipation channel responsible for cooling of the atom.
Turning the pump frequency to the blue of the cavity, ∆c > 0, would lead to atom heating.
However, for positive atomic detuning and lightshift, ∆a, U0 > 0 and positive cavity detuning
∆c ≥ 0 cooling can again be obtained with the similar explanation.

It should be noted that this example assumed a significant lightshift due to single atom in
the cavity. If a lightshift is less than the cavity linewidth, no significant modification occurs,
and this coupled dynamics can be investigated as a perturbation. To quantify the strength of the
coupling, we introduce a dimensionless cooperativity parameter describing the ratio between
atom-cavity coupling and losses:

C =
4g2

κΓ
. (2.61)

We call C ≥ 1 a strong coupling regime, and C < 1 a weak coupling regime. For the case
of strong coupling, even a single atom significantly modifies the cavity landscape. The single
atom physics becomes important, so the strong coupling regime is of most interest for cavity
QED. However, practical realization of strong coupling is not easy, since it requires cavities of
micrometer length to achieve small mode volume and large single photon Rabi frequency, as
well as high-finesse mirrors to decrease the losses as much as possible. As we will show, strong
coupling can be achieved by coupling an ensemble of atoms to the same cavity mode, leading
to a collective coupling strength scaling with the number of atoms.

Cavity cooling in the frequency picture Let us now look at the cavity cooling from a dif-
ferent perspective. For this, it is instructive to look at the second geometry we mentioned - the
transversal pumping of the atoms. Similar stochastic equations as (2.59) also hold for this case.
However, a different mode pumping amplitude has to be included, since the cavity mode isn’t
being pumped directly, but indirectly through scattering of atoms into the cavity mode. It can
be shown that the effective driving amplitude is ηeff = gΩ∆a/(∆

2
a + Γ2), where Ω is the Rabi

frequency.
Instead of looking at the atoms moving up and down potential, we focus on the frequency of

the scattered photons. This approach was developed in [37, 38] and works well in the regime of
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weak atom-photon coupling, as pointed out in [6]. The idea is based on the Purcell effect, where
atoms inside the cavity have an enhanced (suppressed) spontaneous emission rate depending on
whether the cavity mode frequency was near (far from) the atomic transition frequency. Sponta-
neous emission is a consequence of atom coupling to the multitude of vacuum modes; however
inside the cavity these modes are not continuous, but have discrete frequencies. Therefore, if the
cavity frequency doesn’t match the transition frequency, spontaneous emission is suppressed.
Similarly, if we transversally pump the atoms with a laser red-detuned from the cavity reso-
nance, the atoms can scatter lower and higher frequency photons due to their motion and the
Doppler effect. However, the cavity will enhance the scattering of higher frequency photons
since they are closer to the cavity resonance. The up-shift of photon energy comes at the cost
of atomic velocity, hence the atoms are cooled.

As presented in [6], a contour plot of cooling and heating regimes can be calculated from
Eqn. 2.59, and is presented in Fig. 2.13(a) for the case of weak coupling, and in Fig. 2.13(b)
for strong coupling.

Figure 2.13: Cooling and heating regions as a function of detunings from the atomic and cavity reso-
nances for (a) weak coupling and (b) strong coupling regime. Taken from [6].

Temperature limit It is important to know the efficiency of cavity cooling and the lowest
achievable temperature with this technique. Following the analysis presented in [6] which takes
into account heating due to diffusion, we arrive at the value for the temperature limit:

kBT ≈ ℏκ, (2.62)

which does not depend on the atomic properties, but only the cavity linewidth. For high finesse
cavities, this temperature can be much lower than the free-space Doppler limit. However, it
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should be noted that for atoms to be cooled in the cavity potential, they have to be slow enough
to be influenced by it. It can be shown that for the atoms to be cooled in the cavity potential,
their velocity needs to be less than kv < κ. Hence, there is a trade-off when choosing the cavity
finesse. High-finesse cavities will be able to cool the atoms to lower temperature, but at the cost
of the number of atoms in a thermal cloud that can be cooled. This means that pre-cooling of
atoms in a standard MOT is needed for them to be influenced by the cavity. Even though the
cavity cooling technique is insensitive to the internal structure of the particles, its practical use
is still limited to the samples that can be pre-cooled by other techniques.

2.4.2 Atomic ensembles in cavities

The analysis so far assumed a single atom inside the cavity. Interestingly, adding more atoms
does not just scale the same physical principles on a bigger scale, but also introduces new
phenomena. The effects observed in atom-cavity interaction are therefore collective effects as
they depend on the number of atoms. Formally, the Jaynes-Cummings Hamiltonian can easily
be extended to N atoms at different positions:

H/ℏ = −
∑
j

∆aσj+σj− −∆ca
†a+

∑
j

gf(rj)(σj+a+ σj−a
†). (2.63)

In the case of cavity pumping, it can be shown that the atoms collectively couple to the cavity
mode with an effective strength geff = g

√∑
j f

2(rj) ≤ g
√
N . This means that the collective

cooperativity C = 4g2eff/(κΓ) is N times stronger than for a single atom.
It was shown in [39] that cavity cooling scales unfavourably with the number of atoms for

longitudinal pumping. Since the collectively induced lightshift can be large, it is necessary to
detune the pump further away from the cavity resonance to cool the ensemble. However, the
theory shows that the cooling time increases linearly with the number of atoms, making it im-
practical for realization with large ensembles. Due to this theoretical prediction, only a few
experiments tested the longitudinal pumping scheme [40, 41]. In [40] optomechanical cooling
of a deeply trapped atoms in Lamb-Dicke regime was shown, where the center-of-mass op-
tomechanical cooling was demonstrated by monitoring the cavity transmission. In [41] only the
cavity-induced trapping of a MOT cloud was demonstrated by monitoring the cavity transmis-
sion. To the best of our knowledge, no investigation of spatial distribution of atoms in a MOT
in a longitudinal pumping geometry has been reported so far. In this thesis, we investigate the
influence of the longitudinally pumped cw cavity potential on the spatial and momentum distri-
bution of atoms by imaging the MOT cloud during a time of flight. The theoretical predictions
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were made for up to 100s of atoms which is far below usual atom numbers in standard MOTs,
which means that some collective effects could not be taken into account. The cooling possibili-
ties of the longitudinal geometry are therefore still not fully understood and different techniques
could be used to analyse the cloud-cavity interaction.

A surprising new phenomenon occurs when we pump the atoms transversally instead of
longitudinally. Now, the atoms primarily interact with the pump standing wave and scatter pho-
tons into free space and cavity modes. It is shown [42] that above a critical pump intensity, a
phase transition occurs. At first, the atoms are distributed isotropically and scatter into random
direction. Above threshold, the intracavity intensity induces back action onto the atomic mo-
tion, pushing them towards lattice positions in which scattering into the cavity increases. This
positive feedback forces the atoms to spontaneously organize into regular spatial patterns in
which scattering into the cavity is maximized compared to the free space scattering. This phase
transition is presented in Fig. 2.14 and it can be seen that the atoms occupy every second lattice
site. To quantify this self-organization, we introduce the order parameter:

Θ =
1

N

∑
j

sin(kxj). (2.64)

For an isotropic phase, Θ ≈ 0, and for a fully self-organized phase Θ = ±1. The sign of the
order parameter determines if the atoms localized into odd or even lattice sites. Which of the
sites the atoms occupy is determined by the fluctuations around the phase transition, i.e. the
sign of the order parameter is randomly determined. Self-organization has experimentally been
demonstrated for a MOT cloud [9] and a BEC [10].

Scattering into the cavity modes therefore cools the atoms, and the subsequent self-organization
traps them in checkerboard potential minima. Another important result is that cooling efficiency
increases with the transversal pump intensity, but only below the self-organization threshold in-
tensity. Above the threshold, the atoms become localized in the trap and the cooling efficiency
drops, making it impractical on a larger scale. For optimal cooling, it would therefore be useful
to increase the value of the threshold intensity, for which we introduce the frequency comb into
the atom-cavity dynamics.

2.4.3 Cavity cooling with a frequency comb

We have already mentioned that by using an FC we can couple a multitude of phase-coherent
modes simultaneously into the cavity. This creates an optical potential that is more complex
than a single standing wave. In fact, a pulse is created and is circling inside the cavity, with the
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Figure 2.14: Phase transition from the isotropic phase(a) to the self-organized phase (b) when an atomic
cloud is transversally pumped above the threshold intensity, η > ηc. Back action of intracavity intensity
pushes the atoms into a checkerboard pattern (c) which maximized scattering into the cavity mode. In
the isotropic phase, the order parameter Θ ≈ 0, while in the organized phase Θ → ±1. Taken from [43].

repetition rate of the pulses equal to the cavity FSR.
The dynamics of atoms in a cavity transversally pumped by an FC was theoreticaly analysed

and published in collaboration with the group of prof. Ritch [26]. It was shown in this paper
that the multimode threshold intensity is larger than for a single mode, since the atoms have
to be trapped and localized in a complex potential. Therefore, the total pump power can be
increased and the cooling time (and efficiency) improved. However, this comes at a cost of self-
organization efficiency, which optimally occurs for a single standing wave. Nevertheless, this
new multimode regime is still interesting from the trapping point of view since it can be used to
demonstrate the less predictable interaction of atoms with complex potentials, and applied for
the simulation of quantum annealing [27].

So far, no experiment has investigated the interaction of cold atoms with a frequency comb
coupled to the optical cavity, neither in longitudinal nor transversal geometry. Therefore, the
results presented in this thesis offer a new and original insight into laser-atom interaction and
the collective effects due to multimode excitation and complex light potentials.
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Collective effects in free space

The interaction of cold atoms with the frequency comb is the central idea of this thesis. Before
looking into the complex interaction inside the optical cavity, we first investigate the collective
effects that appear in free-space when the cold cloud interacts with the FC. Effects of high atom
numbers or densities that modify the atom-light interaction or influence the radiation pressure
force are of high importance for the applications of FC cooling or realization of multimode
quantum memories. It is therefore instructive to look into the modification of the FC-induced
radiation pressure force due to collective effects in cold samples of high density.

3.1 Radiation pressure force in dense clouds

3.1.1 Consideration of cw and FC excitation

It was shown in the theoretical section that the radiation pressure force and the subsequent
spontaneous scattering are responsible for the cooling and trapping of atoms in a MOT. This
approach is valid for single atoms, but does not hold for large ensembles. For samples of high
density a modification of light scattering occurs, compared to dilute and single-atom physics.
Cooperative scattering by an ensemble of resonant systems has been studied in detail by [44],
which led to understanding of super-radiance and collective level shifts. The atoms can behave
as coherently excited dipoles, enhancing the scattering in the forward direction compared to
transverse directions. Since the scattered intensity is directly mapped to the radiation pressure
force, a modification of cooling and trapping forces is well expected. Several experiments
studied the cw-induced radiation pressure force, showing that the observed effects may not
always be a signature of cooperativity, but a result of different mechanisms such as attenuation
of the probe light, multiple scattering, diffraction and refraction, etc. [45, 46].
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In contrast with the extensive studies using cw lasers, the investigations of light scattered
from en ensemble of cold atoms illuminated by a frequency comb are scarce in the literature.
We mentioned the potential of FC cooling, so it is necessary to understand the effects that
could modify the FC-induced force. When the excitation of atoms in considered, a single FC
mode will act as a cw laser. On the other hand, FC-atom interaction will generally be much
more complex, as many comb modes that are present in the comb spectrum can simultaneously
interact with the atoms [19]. In general, when atoms are excited by a train of phase-locked
ultrashort pulses, coherent accumulation of population and coherence will occur only in the
condition when the atomic relaxation rate (Γ) is slower than the pulse repetition rate (frep).
The coherent effects depend on the comb spectrum and the atomic energy levels, so it is not
trivial to make conclusions on the nature of the FC-atom interaction in specific applications.
The FC-induced force on single atoms can be calculated using the optical Bloch equations and
the Ehrenfest theorem, as described in [18] and outlined in the theoretical section. However,
this approach becomes increasingly complex in dense ensembles, where the radiation pressure
force starts to differ from the single-atom force.

3.1.2 Optical thickness and the Beer-Lambert law

We introduce the optical thickness of the sample as the main parameter describing the modifi-
cation of the radiation pressure force. The laser beam intensity is attenuated due to absorption
as it propagates through a medium along the x axis (the axis is chosen for consistency with the
experimental setup):

dI = −Iñ(x, y, z)σsc(ωL)dx, (3.1)

where I is the laser intensity, ñ(x, y, z) spatially-dependent concentration (number density)
of the medium, and σsc(ωL) the frequency-dependent scattering cross-section. This gives the
Beer-Lambert law:

I = I0e
−b, (3.2)

where we introduced the optical thickness

b(y, z;ωL) =

∫ ∞

−∞
ñ(x, y, z)dx = n(y, z)σsc(ωL). (3.3)

Here, n(y, z) is the column density of the medium, n(x, y) =
∫∞
−∞ ñ(x, y, z)dz. For cold atoms,

Doppler broadening can be neglected and the scattering cross-section is dominated by a single
resonance closest to the laser frequency, with the detuning ∆a = ωL − ω0. The scattering
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cross-section takes a simple form of a Lorentzian

σsc(∆a) =
σ0

1 + 4∆2
a/Γ

2 + I/Isat
. (3.4)

Here, σ0 in the on-resonance scattering cross-section [47]

σ0 =
ℏω0Γ

2Isat
(3.5)

The optical thickness therefore depends on the spatial distribution of atomic density and the de-
tuning of the probe beam from the atomic resonance. Atomic clouds in a MOT have a Gaussian
density distribution, so the optical thickness will also have a Gaussian shape. We will show
that the on-resonance optical thickness in the centre of the MOT cloud is the main parameter
describing the modification of the FC-induced radiation pressure force. It is also instructive to
note that the optical thickness of a sample can be determined by measuring the two light in-
tensities I and I0, with and without the absorbing sample, respectively. This is the idea behind
absorption imaging, a technique that allows the imaging of a MOT cloud and its properties. The
details of this technique will be given in the experimental section.

3.2 Experimental setup

In this section we give an overview of the experimental setup used for the preparation of a cold
87Rb cloud and its characterization using absorption imaging, as well as the setup for the FC
force measurements using fluorescence imaging. The experiment is controlled through a GUI,
written by my lab colleagues Danijel Buhin and Ivor Krešić. The control panel is shown in Fig.
3.1.

3.2.1 Preparation and imaging of a cold 87Rb cloud in a MOT

A cold 87Rb cloud is loaded from a background vapour in a stainless-steel vacuum chamber
using external cavity diode lasers (ECDL). The pressure level in the chamber is around 10−8

mbar. We cool and trap the Rb atoms using 780 nm light, which targets the D2 line (
∣∣5S1/2

〉
→∣∣5P3/2

〉
) of rubidium. The MOT is realized with the standard six-beam configuration, using a

cooling beam red-detuned from the
∣∣5S1/2;F = 2

〉
→

∣∣5P3/2;F
′ = 3

〉
and a repumping beam

near resonance with the
∣∣5S1/2;F = 1

〉
→

∣∣5P3/2;F
′ = 2

〉
transitions. Stabilization techniques

for the ECDL lasers can be found in the thesis of dr. Neven Šantić [4], who implemented most of
these techniques in our lab. Cooling laser is frequency stabilized to the cooling transition using
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Figure 3.1: A GUI used to run the experiment. Several panels are shown, which allow us a full control
of experimental parameters.

polarization spectroscopy, and detuned from the resonance using two acusto-optic modulators
(AOMs) in double-pass configuration. Repumper laser is stabilized using saturation absorption
spectroscopy (SAS) by modulating the laser current.

To achieve high densities needed in the experiment, the preparation of a cold cloud of a
given optical thickness is achieved in three consecutive stages: MOT loading, temporal dark
MOT, and repumping stage.

MOT loading stage This is the standard loading stage in which we load the MOT for 6 s, with
the cooling laser detuned -3.5 Γ from the F = 2 → F ′ = 3 transition, and the repumper laser in
resonance with the F = 1 → F ′ = 2. This generates a cloud of ≈ 4·107 atoms at a temperature
of around 50 µK and a 1/e2 radius of ≈0.8 mm. Here, Γ = 2π·6.07 MHz is the natural linewidth
of the

∣∣5S1/2

〉
→

∣∣5P3/2

〉
transition [47]. Here it is important to note that for a large number

of loaded atoms, multiple scattering of cooling/trapping light cannot be neglected and results in
an effective repulsive force between the atoms, thus limiting the achievable high densities. This
can even be seen during the MOT loading process. In the beginning of the loading cycle, the
size of the cloud is mostly fixed and determined by the cloud temperature, and the number of
atoms increases by increasing the cloud density. After a while, multiple scattering dominates
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the process and the density in the centre of the cloud cannot increase further. In this regime,
the number of atoms increases by increasing the size of the cloud, with the central density fixed
[48]. To further increase the density of the cloud, reduction of the repulsive force is needed.
For this, we introduce an additional stage in our preparation process, explained in more detail
in [49].

Temporal dark MOT In this stage we apply a 15 ms long temporal dark MOT where we
reduce the power of the repumper laser to 10 µW (1% of initial power) and the detuning of the
cooling laser to -2Γ, leaving other parameters unchanged. As a result, the atoms are optically
pumped into the F = 1 ground state. The atoms in this state do not interact with the cool-
ing/trapping light, hence the name dark state. This causes an increase of the cloud density and,
consequently, of the optical thickness. Since the atoms in the dark state are not trapped, the
dark MOT stage cannot last too long since the atoms will diffuse out of the cloud. Intuitively, it
would seem as a better approach to detune the cooling laser further away from the F ′ = 3 and
towards F ′ = 2 level to enhance the pumping into the F = 1 dark state. However, we change
the detuning of the cooling beam with an AOM and its efficiency drops for larger detuning.
With the available optical power, we find the transfer into the dark state for our experiment to
be more efficient by tuning the laser closer to the F ′ = 3 level and increasing the total pumping
probability.

Repumping stage After increasing the density in the dark MOT stage, it is necessary to re-
pump the atoms from the dark into the bright ground state F = 2 by increasing the power of the
repumper laser to 1.5 mW. We also tune the cooling laser to -7Γ in order to re-cool and com-
press the cloud into a spherical shape while pumping all the atoms back into the bright state.
The repumping stage lasts for 1 ms. It is important for the repumping stage to be as short as
possible since longer interaction times would again lead to repulsion due to multiple scattering.
The combination of these three stages allows us to prepare samples of optical thickness up to
21 in our experiment.

Absorption imaging To determine the optical thickness of the experimentally prepared cloud,
we use the Beer-Lambert law of beam attenuation. We illuminate the 87Rb cloud with a large
and weak imaging beam and record the beam spatial profile on a CMOS camera. The difference
in the beam intensity with and without the atomic cloud is due to optical thickness of the cloud.
For a probe propagating in the x direction, we label the beam intensity with no cloud present
as I0(y, z) and the intensity after passing through the cloud as I(y, z). The camera also picks
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some background intensity Ibg that has to be subtracted, and we calculate the optical thickness
as:

b(y, z) = − ln

[
I(y, z)− Ibg(y, z)

I0(y, z)− Ibg(y, z)

]
(3.6)

For an atomic cloud of Gaussian density distribution, b(y, z) will also have a Gaussian shape,
as shown in Fig. 3.2(a). By fitting a 2D Gaussian to the measured b(y, z), we extract the
size of the 87Rb cloud, as well as the optical thickness at the center of the cloud bpeak =

σsc(∆img)
∫∞
−∞ ñ(x; y = z = 0)dx = σsc(∆img)n(y = z = 0), where ∆img is the detuning

of the probe laser frequency used for absorption imaging. For a large and weak imaging probe
the effects of saturation can be neglected, I0/Isat ≪ 1, so the on-resonance optical thickness b0
is calculated using

b0 = bpeak ·
(
1 + 4∆2

img/Γ
2
)
. (3.7)

The on-resonance optical thickness is therefore defined as b0 = σ0
∫∞
−∞ ñ(x; y = z = 0)dx =

σ0n(y = z = 0). In most cases it is necessary to use a detuned imaging beam, ∆img ̸= 0,
i.e. to measure the off-resonance optical thickness. The reason for this is that for high optical
densities, the spatial profile of b(y, z) will no longer be a Gaussian, as seen in Fig. 3.2(b).
The flattening of the curve occurs at around b0 ≈ 3, so the optical densities above this value
need to be measured off-resonantly and subsequently calculated by knowing the detuning of the
imaging beam from the transition.
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Figure 3.2: Principle of absorption imaging of a MOT cloud. (a) After passing through a Gaussian shaped
atomic cloud, the absorbed fraction of a large laser beam will also have a Gaussian shape. Imaging
the shape of the beam without the cloud, I0(r) and after passing through the cloud I(r) allows us to
determine the optical thickness of the cloud. (b) Shape of the beam intensity I(r) after passing through a
cloud of high optical thickness. For large b0, the beam is fully absorbed even in the wings and flattening
of the curve occurs. To decrease b0, off-resonant imaging is used and the Gaussian shape is recovered.
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Along with the cloud size and optical thickness, we can determine the number of atoms in
the cloud N using absorption imaging:

N =

∫ ∫ ∫
ñ(x, y, z)dxdydz =

∫ ∫
n(y, z)dydz =

1

σsc(∆img)

∫ ∫
b(y, z)dydz. (3.8)

An example of a signal acquired by absorption imaging is shown in Fig. 3.3. In Fig. 3.3(a) a
profile of the imaging probe beam is shown and several diffraction pattern are visible, due to
specks of dust and impurities on optical elements. In 3.3(b) a part of the beam is absorbed as it
passes through the rubidium cloud. From these two signals, 3.3(c) is acquired, giving the optical
thickness of the prepared sample. We note here that most of the diffraction patterns are divided
out, so the beam does not have to be perfectly smooth for the technique to be successful. It is
also useful to have a large probe beam, as similar to the plane wave as possible since it allows a
better distinction between the beam profile and the cloud profile.

For a spherical cloud of radiusR and a Gaussian density distribution, ñ = n0e
−r2/(2R2), with

r2 = x2+y2+z2, integrating over the whole volume gives the number of atomsN = n0(2πR)
3.

Optical thickness in the center of a spherical cloud is b = σscn0

√
2πR. Combining these two

equations, we can write:

b =
σsc
2π

N

R2
. (3.9)

This expression intuitively shows that the optical thickness is effectively determined by the
number of atoms filling up the area of the cloud perpendicular to the beam propagation. For a
non-symmetric cloud, we need to use different radii (Rx, Ry, Rz).

Figure 3.3: Absorption imaging of a cold cloud on a camera. Intensity distribution of the large imaging
beam is shown (a) without the cold cloud and (b) after passing through the cloud. Several diffraction
patterns due to specks and impurities are seen. In (c) the image of the cloud is extracted from (a) and (b),
giving the spatial distribution of optical thickness of the cloud.
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3.2.2 Measurement procedure

A simplified scheme of the experimental setup for the preparation of a cold 87Rb cloud and
its characterization using absorption imaging as well as the setup for FC force measurement
using fluorescence imaging is shown in Fig. 3.4(a). The FC and the absorption imaging beam
are overlapped and both propagating in the x direction, so that the optical thickness measured
by the probe beam is the same as seen by the FC beam during force measurements. This
means that only one of the beams can be turned on simultaneously, since the FC beam would
strongly saturate or damage the absorption imaging camera. Thus, during the imaging (force
measurement) period, the FC beam (imaging beam) is blocked.
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Figure 3.4: (a) Simplified experimental scheme. Two pairs of MOT beams are shown, while the third
pair is propagating along the z axis. The absorption imaging beam and the FC beam are co-propagated
in the x axis. The optical thickness is measured using the absorption imaging camera, while the FC force
is measured using the fluorescence imaging camera. During the measurement of optical thickness, the
FC beam is blocked. M is a mirror; PBS is a polarizing beam splitter. (b) On-resonance optical thickness
(red circles) and cloud peak density (green triangles) as a function of the repumper laser power during
the MOT loading stage. Solid lines represent a guide for the eye.

Control of the optical thickness In order to vary the optical thickness of the cloud, we change
the power of the repumper laser in the MOT loading state, leaving the dark MOT and the
repumping state parameters unchanged. This change in the loading stage also affects other
cloud parameters, such as size, number of atoms, and temperature. This does not affect the
accuracy of optical thickness determination since it is measured directly by absorption imaging;
nevertheless, we made a detailed characterization of all cloud parameters. In Fig. 3.4(b), the
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peak density, n0 = n(x = y = z = 0), and on-resonance optical thickness, b0, are shown as a
function of the repumper laser power in the MOT loading stage. For the given range of powers,
the cloud temperature varies from 35 µK to 75 µK, measured using a standard (TOF) technique
[50].

FC force measurement The FC is generated by frequency doubling an Er:fiber mode-locked
femtosecond laser (TOPTICA FFS) operating at 1560 nm with a repetition rate of frep = 80.495
MHz. The frequency-doubled spectrum is centered around 780 nm with an FWHM of about 5
nm and a total output power of 76 mW. The optical frequency of the n-th comb mode is given
by Eqn. (2.56). The scheme of FC locking is shown in Fig. 3.5 and is presented in more
detail in Neven’s thesis [4]; here I briefly outline the procedure. To lock the FC, two degrees of
freedom need to be stabilized, and we lock frep and fn. The repetition frequency is measured
on a photodiode and referenced to a DDS with the stability of a Rb standard. The error signal
generated on a phase detector is fed to the PZT of the FC, which changes the cavity length and
stabilizes frep. The optical frequency is locked by first beating the FC with the Rb cooling laser,
which gives an rf frequency difference fbeat between the cooling laser and the closest FC mode.
We then reference the beat frequency with a DDS signal on a phase detector and feed the error
signal to the FC pump diode current, thus locking fn and, indirectly f0. The frequency of the
n-th comb mode is varied by scanning fbeat (and f0) while keeping frep fixed.
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Figure 3.5: Scheme of the optical and electronic setup for fully stabilizing the FC using an ECDL
reference. The left and right sections of the image show the scheme for stabilizing and fbeat, respectively.
PPLN: periodically poled lithium niobate crystal, PD - photodiode, λ/2 - half-wave plate, DDS - direct
digital synthesizer, OCXO - oven controlled crystal oscillator, ECDL - external cavity diode laser, BS -
beam splitter. Taken from [4].
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The complete experimental procedure is presented in Fig. 3.6, showing the cloud prepara-
tion stage, followed by either absorption imaging of the cloud to measure its optical thickness or
by the FC force measurement, since one of the beams has to be blocked, as already mentioned.
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Figure 3.6: Experimental sequence showing the cloud preparation, followed by either absorption imaging
or FC force measurement.

The FC force measurement sequence starts after the preparation of a cloud of a given optical
thickness and is similar to the one described in our papers and thesis [18, 20, 4]. At t = 0 we
turn off the MOT cooling beams and switch on the linearly polarized FC beam. The total power
of the FC beam on the atoms is 25 mW and the beam size (1/e2) is 4.5 mm, resulting in the
power and intensity per comb mode of about 75 µW and 9 µW/cm2, respectively. The MOT
repumper laser is left on to continuously pump the atoms out of the

∣∣5S1/2;F = 1
〉

ground level
and has no measurable mechanical effect. The quadrupole magnetic field is also left on. We let
the comb interact with the cold cloud for 0.5 ms. During this time, the center of mass (CM) of
the cloud accelerates in the FC beam direction (+x direction) due to the FC force. The FC and
repumper beams are then switched off, and the cloud expands freely for a variable time, after
which we switch on the MOT cooling beams for 0.15 ms and image the cloud’s fluorescence
with a camera to determine its CM displacement.

It is worth noting here that the approaches to change the optical thickness of the cloud by
changing the repumper laser power immediately after the dark MOT stage used in experiment
[51], and by changing the cloud’s expansion time before interaction as used in experiment [52],
are not applicable in our case of the FC excitation. In the first approach, only a fraction of
atoms are transferred from

∣∣5S1/2;F = 1
〉

to
∣∣5S1/2;F = 2

〉
ground level after the dark MOT

stage, depending on the repumper laser power. Atoms remaining in the |F = 1⟩ level and atoms
in |F = 2⟩ could be simultaneously excited by different comb modes, which would result in a

46



3.3. Results and discussion Chapter 3. Collective effects in free space

complex lineshape of the measured FC force. In the second approach, the size of the FC beam
should be bigger than the size of the expanding cloud to make sure the force is acting on the
whole cloud. This cannot be achieved in our setup due to the low available power per comb
mode, so no measurable mechanical effect could be detected.

3.3 Results and discussion

3.3.1 FC force as a function of cloud density

Hyperfine energy levels of 87Rb and the relevant optical transitions for the FC excitation are
shown in Fig.3.7(a). In Fig. 3.7(b), we show the measured FC force, FN

FC , as a function
of the FC detuning δ, which we define as the detuning of the n-th comb mode from the∣∣5S1/2;F = 2

〉
→

∣∣5P3/2;F
′ = 3

〉
transition, for different peak cloud densities, n0. Due to the

nature of the comb spectrum, the FC radiation pressure force is periodic with respect to the comb
detuning with a period equal to frep. Two distinct peaks appear in one frep scan, reflecting the
interaction with three comb modes, as explained in detail in our paper [18]. The peak at δ = 0

is due to the n-th comb mode being in resonance with the
∣∣5S1/2;F = 2

〉
→

∣∣5P3/2;F
′ = 3

〉
transition, whereas the peak at δ ≈ -25.5 MHz is due to the (n − 3)-rd mode being in reso-
nance with the

∣∣5S1/2;F = 2
〉
→

∣∣5P3/2;F = 2
〉

transition and the (n − 5)-th mode with the∣∣5S1/2;F = 2
〉
→

∣∣5P3/2;F = 1
〉

transition. For completeness, Fig. 3.7(c) shows the calcu-
lated FC force, F 1

FC , obtained by summing the contributions from three hyperfine transitions.
The FC force is calculated for a single atom using the optical Bloch equations and the Ehrenfest
theorem. The details of single-atom FC force calculation can be found in [18].

As the cloud density increases, broadening and reduction of both FC force peaks are ob-
served. However, these effects are not equally pronounced for both peaks, as can be seen from
the peak ratio of the peaks at δ = 0 and δ ≈ -25.5 MHz. The peak ratio decreases with increas-
ing density, as can be seen from the inset in Fig. 3.7(b). For applications of multi-line excitation
it is thus important to consider that, for a sample of fixed density, as is usually prepared in most
experiments, broadening and reduction of the FC radiation pressure force will vary for different
transitions. The peak ratio of 2.8 is expected when n0 approaches zero, as it reflects the ratio
of the |F = 2⟩ → |F ′ = 3⟩ and |F = 2⟩ → |F ′ = 2⟩ transition dipole moments [47]. This can
be easily understood given the well-known result that the force broadening and reduction due
to collective effects in many-atom ensembles depend on the optical thickness rather than the
density [53]. Since the optical thickness is defined through the scattering cross-section, with
the saturation intensity that depends on the dipole moment of the relevant transition [47], the
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Figure 3.7: (a) Hyperfine energy levels of 87Rb D2 line (780 nm) and the relevant optical transitions for
the FC excitation. (b) Measured FC force, FN

FC , as a function of the FC detuning δ, for different peak
densities n0. Inset shows the ratio of the FC peak forces at δ = 0 and δ ≈-25.5 MHz, where the symbols
are experimental data and the line represents a guide for the eye. Full circles correspond to averaged
multiple scans, as described in the experimental section. Empty circles correspond to peak ratios of the
scans shown in (b), which were taken without averaging and thus have larger errors. (c) Calculated FC
force, F 1

FC , as a function of the FC detuning δ. The total FC force (violet line) is obtained by summing
the force contributions from three

∣∣5S1/2;F = 2
〉
→

∣∣5P3/2;F
′ = 1, 2, 3

〉
hyperfine transitions.

two peaks have different optical densities for a given atomic density and therefore different fac-
tors of force reduction, which directly affects the peak ratio. In the following sections, we will
therefore present and analyze the dependence of the FC force on the optical thickness for each
force peak separately.

3.3.2 FC force as a function of cloud optical thickness

Fig. 3.8 shows the measured FC force FN
FC as a function of the FC detuning δ for different

on-resonance optical densities b0. In the case of |F = 2⟩ → |F ′ = 3⟩, b0 is measured directly
as described in the experimental section. Since the transition dipole moment for the |F = 2⟩ →
|F ′ = 2⟩ is 2.8 times smaller, we divide the measured b0 with this factor to obtain the relevant
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b0 for the |F = 2⟩ → |F ′ = 2⟩ transition. The largest optical thickness for our experiment is
b0 ≈ 21 measured on the |F = 2⟩ → |F ′ = 3⟩ transition, which corresponds to the maximum
of b0 ≈ 7.5 in the case of |F = 2⟩ → |F ′ = 2⟩ transition.
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Figure 3.8: Measured FC force (symbols) as a function of detuning δ for different optical densities b0.
(a) FC force is due to the n-th comb mode being in resonance with the |F = 2⟩ → |F ′ = 3⟩ transition.
(b) FC force is due to the (n− 3)-rd being in resonance with the |F = 2⟩ → |F ′ = 2⟩ transition and the
(n− 5)-th mode with the |F = 2⟩ → |F ′ = 1⟩ transition. For the |F = 2⟩ → |F ′ = 2⟩ transition, we fit
only to the data on the red side of the curve, where the influence of the |F = 2⟩ → |F ′ = 1⟩ transition is
negligible. A solid line shows a Lorentzian fit to the experimental data. The arrows show detunings that
were chosen to show dependences on b0 in Fig. 3.9.

The measured FC forces arising from the |F = 2⟩ → |F ′ = 3⟩ transition show a Lorentzian
lineshape in the whole range of measured b0, see Fig. 3.8(b). In the case of the |F = 2⟩ →
|F ′ = 2⟩ transition, the FC forces deviate from the Lorentzian shape, see Fig.3.8(a), due to the
|F = 2⟩ → |F ′ = 1⟩ force contribution positioned in the blue wing of the peak, as indicated in
Fig. 3.7(c).

For a given b0, a Lorentzian function is fitted to the experimental data. For the |F = 2⟩ →
|F ′ = 2⟩ transition, we fit only to the data on the red side of the curve, where the influence
of the |F = 2⟩ → |F ′ = 1⟩ transition is negligible. While the FC force offset should be zero,
experimentally we see a small offset due to inaccuracies in determination of the initial and final
position of the cloud’s CM, from which the force is determined. The value of this offset depends
on the optical thickness since the imaging signal-to noise depends on the cloud parameters.
However, the relative offset is around 10% of the peak force value (at δ = 0) for all optical
densities in the case of |F = 2⟩ → |F ′ = 3⟩ transition, and around 15% of the peak force value
(at δ ≈ -25.5 MHz) in the case of |F = 2⟩ → |F ′ = 2⟩ transition. The small FC force offset is
subtracted from all experimental data shown in Figs. 3.8 and 3.9. The FC force broadening and
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reduction are clearly observed for both peaks shown in Fig. 3.8 (a) and (b). These effects are
investigated in the following paragraph and presented in more detail in Fig. 3.9.

3.3.3 FC force broadening and reduction

Fig. 3.9(a) shows the measured (symbols) FC force linewidths, ΓN
FC , as a function of b0. For a

given b0, ΓN
FC is obtained from the fit of a Lorentzian function to the measured FC force spectra

as shown in Fig. 3.8. We observe an increase of the FC force linewidth with increasing b0.
For small b0 the increase is linear, while the curve starts to flatten as b0 increases. In the limit
b0 → 0, the FC linewidth Γ = 2π· 6.07 MHz is expected, as it reflects the natural linewidth of
the 87Rb

∣∣5S1/2

〉
→

∣∣5P3/2)

〉
transition. For the largest b0 = 20.8 achieved in the experiment,

the FC force linewidth of 2.5 Γ is measured.
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Figure 3.9: (a) Measured (symbols) and calculated FC force linewidth in the presence of shadow (solid
line) and cooperative (dashed line) effects, Eqn. (3.15) and (3.16) respectively, as a function of b0. (b)
Measured (symbols) and calculated (lines) FC force reduction as a function of b0 at δ = 0 and δ = −Γ

in the case of |F = 2⟩ → |F ′ = 3⟩ transition, and δ = −25.5 MHz and δ = −25.5 MHz −Γ in the case
of |F = 2⟩ → |F ′ = 2⟩ transition.

Fig. 3.9(b) shows the measured (symbols) reduction of the FC force, FN
FC(δ)/F

1
FC(δ), as a

function of b0. Same as the linewidths, FN
FC(δ) are obtained from the measured FC force spectra

as shown in Fig. 3.8(a) (for δ = 0 and δ = −Γ) in the case of |F = 2⟩ → |F ′ = 3⟩ transition,
and in Fig. 3.8(b) (for δ = −25.5 MHz and δ = −25.5− Γ) in the case of |F = 2⟩ → |F ′ = 2⟩
transition. The single-atom force F 1

FC(δ) is obtained by fitting Eqn. (3.15) derived from the
Beer-Lambert law (see the following paragraph for details). A reduction of the FC force with
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increasing optical thickness of observed. The force reduction is larger when the relevant comb
mode is resonant with a given transition, i.e. when the n-th comb mode is in resonance with
the |F = 2⟩ → |F ′ = 3⟩ transition (δ = 0), and when the (n − 3)-rd mode is in resonance
with the |F = 2⟩ → |F ′ = 2⟩ transition (δ ≈ -25.5 MHz). These data also show that both
transitions follow the same dependences on the optical thickness (both on- and off-resonance).
For the largest b0 = 20.8 achieved in the experiment, the FC force reduction of almost 90%
is measured. We will now turn to the theoretical models used to describe and fit the measured
data.

3.3.4 Theoretical analysis

In addition to the measured data, the calculated FC force linewidths and FC force reduction are
also shown in Fig. 3.9 by solid and dashed lines. The calculations are performed for our experi-
mental parameters using the theoretical models developed for the cw-induced radiation pressure
force [45]. By doing so, we considered a single-comb mode participating in the interaction as a
cw laser. This consideration is reasonable given that the FC pulse repetition rate, frep, is much
larger than the natural linewidth of the relevant transition, Γ; thus, the scattering rate of the
neighboring comb modes is strongly reduced due to the (frep/Γ)

2 dependence [18, 20, 17].
A detailed derivation of the average cw radiation pressure force resulting from the excitation

of N atoms by a resonant laser can be found in [54] and is given by

F =
hk0Γ

4πN

∫ 2π

0

dϕ

∫ π

0

dθ sin θ(1− cos θ)Is(θ, ϕ). (3.10)

Here, Is(θ, ϕ) is the far-field scattered intensity, and the angles determine the direction of the
scattered photons, with the zenith given by the wavevector of the incident beam. Eqn.(3.10)
shows that the angular pattern of the scattered intensity uniquely determines the radiation pres-
sure force. To understand the force, it is necessary to discuss different scattering mechanisms
relevant to our experimental conditions. Light scattering by an atomic cloud illuminated by a
resonant laser can be decomposed into several contributions [45]: (a) the background radiation
composed of diffuse scattering by all atoms, which is incoherent (in the sense that the phase
of the scattered wave is random from one to another realization of atomic positions); (b) a for-
ward lobe arising from diffraction of the incident beam from the cloud, i.e. Mie scattering in
the single scattering order. This contribution is coherent in the sense that the scattered wave
has a well-defined phase. (c) The coherent backscattering cone that arises from constructive
interference during multiple scattering.

A full microscopic model built on a set of equations of N coherently coupled dipoles (CD)
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can be used to calculate the scattering intensity [52, 53, 55]. This quantum model captures
incoherent and coherent contributions, including all scattering orders, and can be extended to
include atomic motion. However, due to computational complexity, the CD model is limited to
small samples and, as such, is not investigated here. Likewise, it is difficult to distinguish the
dominant effect, since all of them are taken into account in the computed result.

Another approach is to use semiclassical models to understand the different scattering con-
tributions and their influence on the radiation pressure force. To investigate these contributions,
we will follow the analysis developed in [45] for the cw-induced force. We will also extend this
analysis to our range of optical densities (b ≈ 20), since it has only been applied in the limit of
b < 1. Diffuse scattering has two contributions to the force. The first one is called the "shadow
effect" and comes as a result of progressive attenuation of light intensity through the cloud due
to diffuse scattering. It can be explained by the Beer–Lambert law, i.e., the exponential decrease
of the intensity results in broadening and reduction of the overall radiation pressure force. The
force reduction arising from the shadow effect can be calculated combining the Gaussian den-
sity distribution of the cloud with exponential intensity attenuation. For a beam propagating in
the x direction and passing through a spherically symmetrical Gaussian cloud, the transmitted
intensity is

T =
IT
I0

= exp

(
−σsc(δ)n0

∫
e−r2/(2R2)dz

)
= exp

(
−b(δ)e−r2⊥/(2R2)

)
, (3.11)

with r2⊥ = y2 + z2 and b(δ) = σsc(δ)n0. The scattered intensity is the one not transmitted, and
integrating over the transverse profile of the cloud gives the total scattering cross-section:

σBL =

∫
(1− T (r⊥)) d

2r⊥ = 2πR2Ein(b), (3.12)

where we used a change of variable u = be−r2⊥/(2R2) and d2r⊥ = 2πr⊥dr⊥, with the Ein
function given by

Ein(b) =
∫ b

0

1− e−u

u
du = b

[
1 +

∞∑
n=1

(−b)n

(n+ 1)(n+ 1)!

]
(3.13)

Using Eqn. (3.13) we can write the cross-section as

σBL = Nσsc ·
Ein(b)
b

. (3.14)

For b ≪ 1, we recover the single-atom physics where the total cross-section is just the sum of
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individual atoms, σN = Nσ. However, the total cross-section is reduced due to attenuation of
the beam as it passes through the cloud.

Combining this cross-section with Eqn. (3.10) to determine the correction to the radiation
pressure force due to shadow effect, we get

Fshadow

F1

=
Ein(b)
b

, (3.15)

where we assumed isotropic radiation, F1 is the single-atom radiation pressure force, and b =
b0/(1 + 4δ2/Γ2).

We calculate Fshadow spectra as a function of b0 for our experimental parameters, from which
we extract the Fshadow(δ) and linewidths. In order to obtain F 1

FC(δ) we fit Eqn. (3.15) to the
measured FC force data as a function of b0 for a given detuning FN

FC , with F 1
FC(δ) as a free

fitting parameter. Then the determined F 1
FC(δ) is used as a scaling factor for normalization

of all FN
FC(δ) forces shown in Fig. 3.9(b). The calculated force linewidth and reduction as a

function of b0 resulting from the shadow effect are shown in 3.9(a) and 3.9(b) with solid green
lines. We emphasize here that the normalizing amplitude is the only adjustable fitting factor.
The dependence on b0 is calculated as predicted by Eqn. (3.15). The calculated values show
good agreement with the measured data for both on- and off-resonant excitation.

The second contribution to the force due to diffuse scattering is a consequence of the first
one, i.e., since the light intensity is larger at the entrance of the cloud than at the exit, more
light is scattered in the backward than in the forward direction. This causes an anisotropy of
the emission pattern, which slightly increases the radiation pressure force. This anisotropy
can numerically be simulated using a random walk approach as done in [45] and becomes
significant only at large optical densities. Based on [56] we estimate that, for the largest b0 =

20.8 achieved in the experiment, the force including corrections due to anisotropy is around
10% larger than the Fshadow, i.e. Fdiffuse = Fshadow + Fanis ≈ 1.1Fshadow. This correction is
within the uncertainty of the experimental data. For lower b0, this effect is even less pronounced.

The contribution to the force due to diffraction of the incident beam can be calculated for
clouds of small optical thickness [57] employing the Mie scattering approach. As stated in
[58, 59], this contribution is significant for very small atomic clouds (kR ≈ 10) and for probe
lasers tuned far-off resonance; it is therefore negligible for condition used in our experiment
with a large cloud (kR > 1000) and on-resonant excitation. Here, k is the wave vector and R is
the radius of a cloud of a Gaussian density distribution.

The coherent backscattering contribution cannot be calculated using semiclassical models
but requires the full microscopic CD model [45, 53, 60, 61]. However, its contribution is also
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negligible for large clouds (kR > 1000) and on-resonant excitation such as in our experiment.
Because of its importance in the earlier experimental and theoretical papers [51, 62, 60, 45],

we also mention an alternative approach used to investigate the radiation pressure force. It de-
scribes the force reduction as a consequence of coherent collective (i.e. cooperative) scattering
of atomic dipoles. This cooperative contribution to the force can be calculated using a mean-
field approach inspired by the timed-Dicke state (TDS). This model assumes that all atoms are
driven by the unperturbed laser beam, i.e. the atoms acquire the phase of the laser, and all have
the same excitation probabilities. It neglects reabsorption of photons by other atoms and works
in conditions of small probe laser intensity or large detunings. The TDS approach has become
widely used in recent years, as it provides an explanation of experimental results on superra-
diance [44, 63], a hallmark of cooperative effects. Cooperative radiation pressure force, FTDS

was studied in detail in [51, 62] and can be calculated from

FTDS

F1

=
4δ2 + Γ2

4δ2 + (1 + b0/8)2Γ2

[
1 +

b0
16(kR)2

]
. (3.16)

We calculate FTDS spectra as a function of b0 for our experimental parameters, from which we
extract the FTDS(δ) and linewidths. The calculated force linewidth and reduction are shown in
3.9(a) and 3.9(b) with dashed violet lines.

The TDS force linewidth agrees with measured data for small b0 and coincides with the
shadow effect curve up to b0 ≈ 3. However, at larger optical densities, the TDS model predicts
a linear increase of the force linewidth, which is not supported by our experimental results, as it
does not include multiple scattering effects that can induce the flattening of the force linewidth
curve at large b0 [62].

On the other hand, the good agreement of the force reduction calculated from the shadow
and TDS models (see Fig. 3.9(b)) even for intermediate b0 explains why, in earlier studies [51],
the reduction of the force was attributed to atomic cooperativity. However, the results of the
force broadening given in Fig. 3.9(a) clearly indicate that this agreement can be misleading,
and point to the shadow effect as the dominant contribution to the force in dense atomic clouds.

In the conditions when the atoms are resonantly excited by the frequency comb, the beam
attenuation due to diffuse scattering is the dominant physical mechanism defining the radia-
tion pressure force, and the atomic cooperativity effects are negligible. This conclusion is in
good agreement with measurements of super-radiance, where super-radiant enhancement was
observed only for mid- to large detunings, while tuning the probe close to resonance results in
suppression of super-radiant (cooperative) behavior [63].
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Conclusion We have measured the frequency-comb-induced radiation pressure force acting
on a cold 87Rb cloud as a function of the optical thickness of the cloud and observed reduction
and broadening of the frequency comb force as the optical thickness increases. We discussed
different scattering mechanisms and their contributions to the force and showed that for our
experimental conditions a single scattering mechanism dominates the radiation pressure force.
It comes as a result of progressive attenuation of light intensity in the cloud due to diffuse
scattering of light, i.e., the shadow effect.

We also review the cooperative timed-Dicke state approach used in earlier experiments to
discuss and clarify the possible points of confusion due to historical reasons and previous re-
search. We used the theoretical models originally developed for cw radiation pressure force to
describe the measured frequency comb force. The measured and the calculated force broad-
ening and reduction arising as results of the shadow effect are in good agreement. The coop-
erative force agrees with measured data for small b0; however the behavior of force linewidth
and force reduction at larger optical densities is not supported by the experiment. These results
confirm the analogy between the cw and a single comb-mode interaction.The influence of the
off-resonance comb modes on the comb–atom interaction is minor and can be neglected even
in the case of increased cloud optical thickness, and models developed for cw excitation can be
readily applied.

For the applications of FC cooling in free-space, near-resonant excitation is needed, so our
results show that a semi-classical approach is sufficient to describe the FC-induced force up
to b0 ≈ 20 and no measurable cooperative effects occur. In order to observe the signature of
the cooperativity in the radiation pressure force, it would be necessary to work in the paramet-
ric regime where the beam attenuation due to diffuse scattering is negligible, such as in large
detunings from the atomic resonance.

The results presented in this thesis contribute to the understanding of scattering of the fre-
quency comb light by an ensemble of cold atoms in free space, thus paving the way toward novel
frequency comb applications in the field of cooling, quantum communication, and light–atom
interfaces based on structured and disordered atomic systems.
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Chapter 4

Collective effects inside an optical cavity

In the last chapter we investigated collective effects that occur when a cold and dense atomic
cloud is interacting with a probe laser beam. The light intensity is constant and steady state is
quickly achieved, where scattering of light into free-space modes dominates the losses.

On the other hand, dynamics inside an optical cavity becomes more complex and coupled.
The interaction of atoms with the intracavity light shifts the cavity resonance, thus changing the
intracavity intensity and, therefore, the interaction strength. Photon leakage through the cavity
mirrors appears as an additional dissipative mechanism, which can even be stronger than the
free space scattering. Here, detunings of the laser frequency from both the atomic and cavity
resonance, ∆a and ∆c, play a significant role in the coupled dynamics.

For an ensemble of atoms inside the cavity, each atom is coupled to the cavity mode. For a
large number of atoms, the collective coupling can become stronger than the losses (cooperativ-
ity C ≥ 1), bringing the dynamics from the weak- to the strong-coupling regime. The collective
dynamics shows new exciting effects, such as self-organization of atoms, not predicted by the
single-atom physics.

4.1 Design of the optical cavity

4.1.1 Initial design considerations

To increase the atom-cavity interaction as much as possible, a careful consideration of cavity
parameters is needed. High-finesse cavities are needed to minimize the losses through the
mirrors, κ. To maximize the single-photon Rabi frequency, g, cavities of short length are needed
to minimize the mode volume. In experiments working with single (or a few) atoms, special
micro-cavities can be built, and the system exhibits strong-coupling behavior even for a single
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atom [64].
In our experiment we use a 87Rb cloud loaded in a MOT, so enough space is needed for the

whole cloud to be loaded or transferred into the cavity. For this reason, micro-cavities are not a
practical option when working with large ensembles in a MOT.

The main goal of the experiment is interaction of atoms with a frequency comb coupled into
the cavity, so it is crucial to match the cavity length with the FC repetition frequency and to
couple as many FC modes into the cavity as possible. The repetition frequency of our FC is
frep = 80.5 MHz, so to couple every comb mode into the cavity, the cavity would have to be
almost 2 m long. The cavity needs to be mounted in the MOT vacuum chamber, so a cavity of
this length is not possible. Therefore, we can couple every m-th comb into the cavity, i.e. we’re
filtering the comb frequencies with our cavity. For a longer cavity, we can couple more FC
modes, but the cavity mode volume increases, and the single-photon Rabi frequency decreases.

Another consideration is the cavity geometry. We chose a confocal geometry due to it’s
stability and robustness. A concentric cavity of the same length would have a smaller mode
volume than a confocal one and a larger interaction strength; however the mode waist would be
smaller which limits the number of atoms coupled to the cavity mode. The confocal geometry
allows a better spatial overlap of the MOT cloud and the cavity mode.

From the available mirrors, we chose a pair broadband mirrors of radius of R = 7.5 cm
(Layertec 103953) and for the confocal geometry L = R is required. However, it is crucial to
match the length of the cavity to the multiple of FC repetition frequency, FSR = mfrep. For
a length L = 7.757 cm every 24-th comb mode is coupled into the cavity, FSR = 24frep, and
gives FSR = 1.932 GHz. This means that our cavity is near-confocal and the higher-order
cavity modes will not be degenerate. The deviation from confocality is large enough for the
modes to be fully resolved, with around 40 MHz separation between the modes. The Gaussian
mode waist is calculated to be w0 ≈ 100 µm and, with the effective Gaussian mode volume
V = w2

0πL/2, the single-photon Rabi frequency is g ≈ 2π · 138 kHz.

Mechanical design. The cavity assembly used in our experiment is shown in Fig. 4.1. The
cavity mirrors are glued onto the holders, which are tightened with screws to the main bridge.
While untightened, the holders can slide along the bridge, which allows adjusting the cavity
length to match it to the frequency comb. All the parts are made from stainless steel, and we
used a vacuum compatible glue (Loctite 9492) so it is safe during vacuum baking, after we
mounted the assembly into the MOT chamber. A piezo transducer ring (PZT) was glued to one
of the mirrors, which allows scanning the cavity length. The hole in the middle of the bridge
allows unobstructed propagation of the MOT beams.
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The maximum stroke of the PZT is 3 µm, which gives ∆FSR ≈ 75 kHz. For our laser
system, ∆frep ≈ 30 kHz, but since we couple every 24-th comb mode into the cavity, it gives
a tuning range of 720 kHz. Combined, this allows a mismatch of less than 1 MHz (relative to
1.9 GHz FSR) that we can compensate after assembling the cavity. This means that we had
to fix the mirror holders and the whole assembly to the precision of a dozen microns in length
(relative to L = 7.757 cm). Outside that compensation range, no efficient FC-cavity coupling
can be achieved. The cavity was therefore assembled by continuously coupling the FC into it
and monitoring the transmission, while making sure that tightening and fixing the parts does
not change the cavity length. The cavity was assembled in air, outside the vacuum chamber,
and the index of refraction of air had to be taken into account for the FC coupling. Due to index
of refraction, FSR in the air is around 500 kHz different than in vacuum. This falls within the
tolerance of the mismatch that can be compensated, but is still important to keep in mind for
comb-cavity coupling.

Figure 4.1: Design of the cavity assembly. Mirrors are glued to the holders using vacuum-compatible
epoxy. One of the mirrors is mounted on a piezoelectric transducer ring, which allows scanning the
cavity length. The mirror holders can slide along the main bridge and can be clamped to fix the cavity
length. The central hole in the bridge allows unobstructed propagation of the MOT beams. The bridge is
clamped to the grooves of the vacuum chamber at the viewports. The center of the cavity corresponds to
the center of the vacuum chamber.
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Probing the cavity mode structure. Before coupling the FC into the cavity, we first optimize
the mode matching and alignment using a cw laser. As we scan the cavity length, we monitor
the cavity transmission on a photodiode and on camera simultaneously. This is presented in
Fig. 4.2 where we show the mode structure of our cavity, and identify the various modes we can
excite in our geometry. We can clearly see the two highest peaks corresponding to the Gaussian
modes, with FSR being the frequency distance between them. We used a photodiode with a
slow response time, so the modes are broadened and wider than the natural linewidth, which
allows us to visually identify them more easily. We can also see several higher-order modes,
especially on camera (for the Gaussian mode the camera is highly saturated; the exposure was
increased to make all the other modes visible). We see several Laguerre-Gaussian modes, which
means our system exhibits a cylindrical symmetry. If we recall the discussion about alignment
of optical cavities, this means that we’ve optimally aligned the laser beam axis to the cavity
axis, but there’s a mismatch in waist size or position. We also note two groups of modes,
around the fundamental modes and halfway between them, which corresponds to the structure
of a confocal cavity as shown in 2.7(c). Since our cavity is not perfectly confocal, there is some
separation between the modes. The modes for which (2p + l) is even are centered around the
Gaussian modes, and (2p+ l) odd halfway between them. By choosing a better mode-matching
lens, we eliminated the higher-order modes, leaving only the Gaussian mode in the following
experiment.

4.1.2 Cavity stabilization and characterization

Pound-Drever-Hall technique. The most popular method of cavity stabilization is the Pound-
Drever-Hall (PDH) technique [65]. The idea is modulate the frequency of the input laser light
to create sidebands around the central frequency, and look at the light reflected off the cavity.
The reflected light is collected on a photodiode and this signal is demodulated with the same
frequency, but different phase compared to the modulation signal. This allows us to extract
the dispersive signal around the cavity resonance, which serves as an error signal for locking
electronics. Sidebands can be created by using an electro-optic modulator (EOM) to phase
modulate the beam, or by applying the modulation directly to the laser diode current. The error
obtained with the PDH technique is shown in Fig. 4.4(a) as an oscilloscope trace, together with
the cavity transmission. Sidebands at the modulation frequency are also visible.

Cavity ring-down time. To measure the decay time of the cavity, τ , i.e. the linewidth the
cavity mode, κ = 1/τ , we stabilize the cavity and abruptly switch off the laser beam with an
AOM, and monitor the exponential decay of the transmitted intensity on a photodiode. This is
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Figure 4.2: Cavity mode structure probed with a cw laser as we scan the cavity length. Light transmitted
from the cavity is collected simultaneously on a photodiode and a camera. Higher order Laguerre-
Gaussian modes are visible due to mismatch of waist size or position. The half-axial modes are visible
on camera due to high exposure time of the camera. The relative power between different modes is seen
on the photodiode signal. The modes are broadened compared to the 150 kHz linewidth due to slow
response time of the used photodetector, which makes it easier to visually identify the peaks.

shown in Fig. 4.3, with an exponential decay function, exp(−t/τ) fit to the data. We also show
that the intensity drop due to AOM switching and the photodiode response is a lot faster than
the cavity ring-down time, and does not influence the decay time measurement. This gives the
linewidth of the cavity mode κ = 2π∆ν = 2π· 150 kHz. Using Eqn. (2.40) we calculate the
cavity finesse F ≈ 12000.

Stability. The width of the linear slope of the PDH error corresponds to κ, the linewidth of the
cavity mode. Noise and fluctuations that fall within this frequency range can be fully covered
by the error signal, while the cavity response to higher frequencies falls off. This means that
the cavity behaves like a low-pass filter, with the cut-off frequency corresponding to the cavity
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Figure 4.3: Cavity ring-down signal. Transmitted light decays exponentially (orange trace) when the
input laser beam is abruptly switched off. The response of the AOM used to switch off the laser beam
and the photodetector is also shown (blue trace) and is considerably faster than the cavity decay, so it
does not influence the ring-down time measurement.

linewidth. For our cavity, the cut-off frequency is around 150 kHz and most acoustic and
mechanical vibrations that need to be compensated are well within this range.

Fluctuations and noise change the cavity length, and with it the frequency of the modes.
These include long-term temperature drifts as well as short term vibrations and noise. For high-
finesse cavities with narrow modes, most of the time no light will be coupled into the cavity due
to these fluctuations. It is therefore necessary to stabilize the cavity length and the frequency of
the coupled laser in the experiment. To stabilize the cavity length, feedback can be applied to
the piezo on one of the mirrors. It is necessary to know the transfer function (the response for
different frequencies) of the piezo. As mentioned, the transfer function of the cavity with PDH
error is a low-pass filter, and piezos behave like RLC circuits, meaning they have a resonance.
This can be seen in 4.4(b), where we show the piezo response to the driving signal as a fuction
of driving signal frequency. The piezo response can be measured by monitoring the cavity
transmission. We apply a sine signal to the piezo, which scans the cavity length. We then
measure the voltage needed for the scan to cover the main frequency and the sideband. Since
we know the modulation frequency at which the sidebands occus, we can measure the response,
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i.e. how much voltage is needed for a given frequency range. We then change the frequency
of the driving sine signal and repeat the procedure. We see in 4.4(b) that the PZT response is
flat until around 2 kHz, after which it falls off. A sharp peak occurs at 30 kHz, corresponding
to the PZT resonance. To stabilize the PZT length, bandwidth of the locking electronics should
not cover the resonance because a phase shift occurs on that frequency, so that noise is actually
amplified instead of suppressed, making the locking loop unstable. We note here that the PZT
ring itself has a resonance at higher frequencies, and the measured frequency is a consequence
of our specific designed assembly and the weight of the mirror that pulls on the ring.

-10 -5 0 5
0.0

0.4

0.8

1.2

1.6

tr
an
sm
is
si
on
(V
)

t (ms)

transmission
error

-0.3

-0.2

-0.1

0.0

0.1

er
ro
r
(V
)

101 102 103 104
0

100

200

300

re
sp
on
se
(M
H
z
/V
)

piezo transfer function

f (Hz)

(a) (b)

Figure 4.4: (a) Oscilloscope trace of light transmitted through the cavity (blue) and the PDH error signal
(red) as we scan the frequency over the cavity resonance. The main peak corresponds to the Gaussian
mode of the cavity, and sidebands are due to modulation of the laser frequency. (b) Transfer function of
the PZT in the cavity assembly. The response starts falling off at 2 kHz, and a 30 kHz strong resonance
is visible.

Feedback loop considerations. The PDH error signal can be used either to stabilize the laser
to the cavity, or the other way around. To lock the cavity length, the feedback signal is fed to
the cavity piezo which, as we’ve shown, has a low bandwidth, up to a few kHz. Diode laser
electronics usually has two feedback loops - a slow one for the laser resonator and the fast one
for the diode current, covering a larger bandwidth. In our experiment, cavity length fluctuations
due to vibrations were too large to tightly lock the cavity length to the diode laser by sending
the correction to the PZT on the mirrors. This is more pronounced for a high-finesse cavity of
a narrow mode linewidth, since even low amplitude vibrations can kick the cavity length more
than the linewidth away. For this reason, we instead lock the laser to the cavity, using both
feedback loops of the laser controller. The laser frequency is then stable compared to the cavity
mode frequency, but together they can drift and fluctuate compared to some atomic frequency.
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It is therefore necessary to also stabilize the cavity length, preferably using a wider (broader)
error signal. With broader error signal, frequency kicks due to noise and vibrations will still
keep the cavity frequency inside the linear slope of the error signal, allowing a more stable lock
of cavity length. For this, we use saturation absorption spectroscopy (SAS) signal generated in
a rubidium cell through which the probe laser propagates. SAS error signals are on the order
of the Rb transition linewidth, ≈ 6 MHz, which is significantly wider than the cavity mode of
150 kHz. Using the SAS signals also allows us to precisely lock the cavity resonance compared
to the rubidium transition. Different locking schemes will be presented in more detail for each
experimental setup in the following sections.

4.2 Continuous wave laser pump

Even though the theoretical proposals for cavity cooling have been developed 20 years ago,
the experimental realizations with ensembles of atoms are still scarce. Most of those exper-
iments work in the transversal pumping geometry [8], and in the regime that’s optimal for
self-organization of a Bose-Einstein condensate (BEC) [10]. Only a few experiments investi-
gated the collective coupling of a MOT cloud in a longitudinally pumped cavity. In [40] atoms
were loaded in a deep far off-resonant trap in a Lamb-Dicke regime. Optomechanical cooling
of the trapped ensemble was investigated by looking at the cavity transmission. Very recently,
an experimental group demonstrated a trapping effect on a free MOT cloud as it interacts with
the cavity light, also by looking at the cavity transmission [41].

To the best of our knowledge, no investigation of spatial distribution of atoms in a MOT
in a longitudinal pumping geometry has been analysed and reported so far. In our experiment,
we image the spatial and momentum distribution of atoms as they fall through the cavity. We
recall the effects of a dipole force and the loading of atoms into the optical lattice, analysing
the percentage and temperature of trapped atoms by looking at the time-of-flight images of the
atomic cloud, i.e. by investigating the cloud dynamics instead of the cavity light dynamics.

A photograph of a 87Rb MOT cloud loaded inside our optical cavity can be seen in Fig. 4.5.
The two cavity mirrors are also visible.

4.2.1 Experimental setup

Preparation of a MOT cloud Setup for the preparation of a cold 87Rb cloud in a standard
magneto-optical trap is similar to the one in the previously described experiment. Optical thick-
ness is not a crucial parameter for collective cavity-enhanced effects, so absorption imaging is
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Figure 4.5: Photograph of the MOT chamber with a loaded 87Rb cloud inside the optical cavity.

not needed and only fluorescence imaging is used to probe the cloud’s time-of-flight dynamics.
The cloud is prepared in a single loading stage (lasting up to a few seconds) and no dark MOT
stages are used. However, a short cooling stage of 3-5 ms can be used after the loading stage to
additionally cool or heat the loaded cloud. For this, we simply detune the cooling laser further
away (closer to) from the atomic resonance, cooling (heating) the loaded cloud. This allows us
to vary the temperature of the loaded cloud that interacts with the cavity light without changing
the number of loaded atoms or the cloud size.

Locking the cavity To stabilize the laser and the cavity, we use both rubidium isotopes and
their relative transitions. The locking scheme for the optical cavity is shown in Fig. 4.6(a)
and the used rubidium transitions used for stabilization of intracavity light are shown in 4.6(b)
compared to the rest of 85Rb and 87Rb D2 line transitions. For reference, cooling and repumper
laser are also shown. The cavity lock laser passes through a Rb spectroscopy vapour cell in
the polarization spectroscopy (PS) setup. Since the MOT cloud is loaded from 87Rb atoms, we
want to lock the cavity resonance as far as possible from this isotope’s resonances to minimize
the resonant influence of the intra-cavity light on the atoms. For this, we use a vapour cell that
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Figure 4.6: Locking scheme for different lasers (a) and their frequency values (b) compared to different
D2 line transitions in 85Rb and 87Rb atoms. The spectral lines are measured by saturation absorption
spectroscopy (SAS). PS - polarization spectroscopy, PDH - Pound-Drever-Hall, PZT - piezo transducer.

contains 85Rb atoms and use its transitions as a reference for cavity lock. In a MOT, atoms are
mostly in the F = 2 ground state, so we define the detuning of the cavity laser as compared to
the 87Rb F = 2 → F ′ = 3 cooling transition frequency, ∆a = 2π · (νL − ν872→3). In Fig. 4.6(b)
the relative frequency difference is shown between different transitions compared to the 87Rb
F = 2 → F ′ = 3 cooling transition. By locking the cavity laser on 85Rb F = 3 → F ′ = 4

transition, we are detuned ∆a ≈ 2π·1 GHz from the MOT cooling frequency. By locking on
85Rb F = 2 → F ′ = 3 transition, we are detuned ∆a ≈ 2π·4 GHz. We first lock the laser
to the cavity by feeding the PDH error signal back to the laser and acting on the laser diode
current and piezo to stabilize the laser frequency. The laser and the cavity are locked together
but drifting away from the spectroscopy resonance. We then feed the polarization spectroscopy
error to the cavity piezo, stabilizing the cavity length to match the cavity resonance to the atomic
resonance. This closed loop ensures that the lock laser is always on resonance with the cavity
mode, ∆c = 0, and we set the laser detuning from the atomic resonance to either ∆a = 1 GHz
or ∆a = 4 GHz. This means we are working with blue lattices in this experiment.

Measurement procedure We start the measurement by loading the MOT cloud slightly above
the cavity beam, shown in Fig. 4.7(a). This is achieved by changing the DC magnetic field and
the trap centre with the compensation coils around the vacuum chamber. This way we ensure
the cavity beam does not influence the loading dynamics and initial cloud parameters can be
determined. The initial cloud radius is around 150 µm, while the cavity beam waist is around
100 µm, so only a fraction of atoms will significantly interact with the cavity potential. At t = 0
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we turn off the MOT beams and let the cloud fall into the cavity beam due to gravity. During the
fall time the cloud also expands at a rate determined by its temperature. It takes about 5 ms for
the cloud to fall into the cavity waist, and we leave the cavity light on for additional 5 ms. At
t = 10 ms we turn off the cavity light and leave the cloud to expand freely for a variable amount
of time before we record the TOF signal on a camera by fluorescence imaging. We employ a
sample and hold protocol during the TOF times not to lose the lock while the cavity beam is
turned off. During the TOF time, we hold the locking control voltage at a constant, sampled
value, for both the PDH and the SAS error signals. After the TOF time, we stop holding the
control signals and the servos catch the error signal again. We can hold the signal up to 30 ms
before the error signals drift too much for the servos to catch and lock them again. This way
we can repeat the measurement cycles without having to re-lock the system. We then vary the
intensity of the laser coupled into the cavity and thus change the depth of the cavity potential.
Because we use a blue lattice, which is repulsive, there is no transverse spatial confinement of
atoms and they fall through the cavity beam due to gravity. strong confinement is only achieved
along the cavity axis.

4.2.2 Results and discussion

The measured TOF traces are shown in Figure 4.7(b) and (c). In 4.7(b) a spatial distribution of
atoms along the cavity axis is shown in the left picture, which was acquired by summing the
recorded 2D signal (in the right picture) along the vertical axis. The bimodal distribution of the
cloud is visible in both 1D and 2D traces, and is a clear signature of the interaction of atoms
with the cavity potential. The narrow Gaussian corresponds to atoms influenced or trapped by
the cavity potential, while the wide Gaussian corresponds to the rest of the atoms. Because no
true 3D trapping can be achieved in this blue lattice, we refer to trapping only as confinement
along the cavity axis, in one direction. To quantify this bimodal distribution, we fit a double
Gaussian function to the measured 1D data along the cavity axis. From the bimodal fit we can
extract the number of atoms interacting with the cavity by looking at the ratio of the area of the
narrow Gaussian and of the total distribution. During TOF the widths of both Gaussians evolve,
which allows us to determine the temperature of trapped and untrapped atoms. These results
are presented in Fig. 4.8 as a function of cavity lattice potential depth. The measurements were
done for two initial cloud temperatures, 60 µK and 160 µK. The fractions of trapped atoms
are shown for t = 15 ms and temperatures are calculated from measured Gaussian widths
from TOF images: σ2(tTOF ) = σ2

0 +
kBT
m
t2TOF . By using this expression, we assume that both

Gaussians in the bimodal distribution expand freely and independent. We assume that the atoms
contributing to the wide Gaussian distribution are those spatially outside the beam waist, or very

66



4.2. Continuous wave laser pump Chapter 4. Collective effects inside an optical cavity

0 2 4 6 8 10 12 14 16

0

100

200

300

400

data
bimodal fit
gauss 1
gauss 2

si
g
n
al
(a
rb
.)

300 500 700

300

500

700

2 4 6 8 10 12 14

0

100

200

300

2 4 6 8 10 12 14

0

100

200

300

2 4 6 8 10 12 14

0

100

200

300

400

cw laser

t = 0 ms

imaging

cam
t = 15 ms

cavity

axis

vertical

axis

cavity

axis

vertical

axis

cavity axis (mm)

cavity axis (mm) cavity axis (mm)cavity axis (mm)

T0 = 50 µK

Pin = 15 µW Pin = 65 µW Pin = 250 µW

si
g
n
al
(a
rb
.)

(a) (b) 1D trace (summer over vertical direction) 2D image of the cloud

(c)

Figure 4.7: (a) A 87Rb cloud is loaded above the cavity beam and at t = 0 MOT beams are turned
off. The cloud falls into the cavity beam and interacts with it. We image the cloud again during TOF
to record its spatial distribution. (b) Distribution of recorded atomic positions after interaction with the
cavity beam, at t = 15 ms. The left picture shows a distribution along a cavity axis, which is extracted
from a 2D image (on the right picture) captured by a camera during fluorescence imaging. The traces
show a bimodal spatial distribution, and a fit of two Gaussian functions on the data is shown. The narrow
Gaussian distribution corresponds to atoms influenced by the cavity potential, and the wide Gaussian to
the rest of the initial cloud. (c) Distribution of positions along the cavity axis for different powers of the
cavity beam, hence different cavity potential depths. For a deeper potential, a larger fraction of atoms is
influenced by the cavity.

weakly interacting with the cavity potential. This means they’ve been expanding freely since
the moment we turned the MOT beams off, at t = 0. So, for the wide distribution we take
tTOF,0 = 0. The narrow distribution has clearly been influenced by the cavity potential and has
started expanding freely only when we switched off the cavity beam at t = 10 ms; hence for
the narrow Gaussian tTOF,0 = 10 ms. We see in 4.8 that the fraction of trapped atoms and both
temperatures increase with the potential depth. A deeper trap can capture atoms with higher
velocities, hence trapping a larger percentage of atoms from the loaded cloud. This means that
the temperature of trapped atoms also increases, because the hotter atoms are trapped in the
potential as well as the colder atoms, and the potential depth becomes more significant even in
the Gaussian wings. Because the slower atoms are trapped in the potential, only the hot ones are
left to expand freely in the wide Gaussian distribution, effectively increasing its temperature.
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Figure 4.8: Time of flight measurements of the number of atoms trapped by the cavity potential and
temperatures of Gaussian distributions in the bimodal shape of the cloud, as a function of cavity lattice
potential depth. The number of atoms is shown for t = 15 ms and is expressed as a fraction of the area
of a narrow Gaussian compared to the total distribution area. Data is shown for two atomic detunings ∆a

and for two initial cloud temperatures: (a) 60 µK and (b) 150 µK.)

For deeper potentials, only the very fast atoms are not trapped by the potential, which leads
to the effective heating of the wide Gaussian distribution. We recall here that the initial RMS
size of the loaded cloud in t = 0 is around 150 µm and the calculated beam waist is around
100 µm, so only a fraction of atoms geometrically cross the cavity potential. When the cloud
is in the centre of the cavity waist, its size increases to ≈ 350 mum during TOF. The wide
Gaussian distribution is then a combination of these unperturbed atoms that do not cross the
cavity waist, and of those of high temperature that are not captured by the cavity potential. For
this reason, for low potential depths we measure the temperature of the wide Gaussian to be the
initial temperature of the loaded cloud. We note here that for our experimental parameters, the
induced intra-cavity potential is very deep, on the mK range, because we’re still working with
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fairly near-detuned beams (∆a ∼ GHz). This means we can achieve deep potential wells even
with low power diode lasers, due to high cavity enhancement factor.

The bimodal distribution as seen in Fig. 4.7(b) and (c) can lead to a conclusion that there’s
been a transfer of momentum between two distributions, hence cooling of a fraction of atoms.
This is because the spatial distribution in TOF images is a direct consequence of the momentum
distribution. It would be intuitive to conclude that the momentum space also exhibits a bimodal
distribution. This might not be true since we have to take into account that the wide Gaussian
has been expanding freely since t = 0 and the narrow Gaussian since t = 10 ms. This means
that the two spatial distributions could just have different expansion times since the narrow
distribution was trapped during that time. Therefore, the spatial bimodal distribution does not
give a straightforward answer about the momentum space. For this reason, we will look at
simulations of loading of atoms in an optical lattice in the following section, where trajectories
of atoms can be analysed as they move through the cavity potential.

We also compared the trapping of atoms in red and blue lattice conditions. As mentioned,
we stabilize to the blue of the 87Rb cooling transition by locking to 85Rb transitions. On the
red side there are no spectroscopy lines so we moved the laser and the cavity by hand to about
∆a ≈ −1 GHz. The important distinction was that the red lattice potential influenced the MOT
loading stage, even though the atoms were loaded above the cavity beam. This can be seen in
Fig. 4.9. Because the red lattice is attractive and atoms move towards the intensity maxima,
coupling with the field is strongly enhanced compared to a blue trap. This coupling induces
a lightshift in atomic energy levels, which hinders the efficiency of MOT loading stage. For
deeper potentials the lightshift is larger, and even less atoms can efficiently be loaded in a MOT
[66].

Even though the red lattice influences the loading stage, when we let the cloud fall into
the cavity waist, the effect is similar to the one we’ve seen for the blue trap. This is shown
in Fig. 4.10 where we compared the TOF images and the spatial distribution of atoms for the
same parameters, just changing the sign of the cavity potential. The bimodal distribution of
similar shape is seen for both detuning of the cavity potential. This means that the effect of
lattice trapping along the cavity axis is the same in both cases. However, red lattice should
pull the atoms from the transverse direction into the cavity waist, which should increase the
fraction of trapped atoms. Looking at Fig. 4.10, red lattice does seem to have a slightly more
pronounced narrow Gaussian for the same experimental parameters, however this is well within
the experimental error, so within the measurement certainty both red and blue cavity potentials
give very similar results. This is to be expected since the potential gradient due to standing wave
is larger than the gradient of the transverse Gaussian waist of the beam, so attraction/repulsion
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Figure 4.9: Time of flight image of the spatial distribution of a cold cloud right after the loading stage,
at t=0. The cloud was loaded above a red-detuned cavity lattice, with the detuning of ∆a ≈ −1 GHz
from the 87Rb cooling transition. The cavity potential influences the loading stage due to the induced
lightshift in atomic energy levels, which is seen as a reduction of the loaded number of atoms.

from transverse direction is expected to be small compared to longitudinal trapping effects.

4.2.3 Simulation analysis of atoms loaded in optical lattices

To investigate the dynamics of atoms loaded in an optical lattice, we use numerical simulation
that follow the time evolution of atomic trajectories. The original version of this Matlab code
was developed by Raymon Watson and dr. John McFerran and very recently published [67]. I
built upon their version of the code, upgrading it to include the analysis of atomic spatial and
momentum distribution as measured during TOF imaging. Gravity is also included, as well as
the vertical offset of the cloud, loaded above the cavity waist.

The code allows us to generate a cloud of atoms with a Gaussian spatial distribution with
rms radiusR. Every atom is randomly assigned a velocity according to the Maxwell-Boltzmann
distribution for the set temperature. At t=0, atomic cloud is generated above a standing wave
laser beam, into which it falls due to gravity as it freely expands - this way we simulate our
exact experimental situation. We can use both red and blue lattices in the simulation by simply
changing the sign of the optical potential, which includes the longitudinal standing wave de-
pendence, as well as transversal Gaussian dependence due to the cavity beam waist. The beam
waist can also be freely set as a simulation parameter, as well as the potential depth. Output of
the simulation are atomic trajectories, giving (x, y, z) positions as well as (vx, vy, vz) velocities
for each atom for different evolution times. From these values we can look at the spatial and
momentum distribution of atomic cloud by plotting histograms for these values.
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Figure 4.10: Time of flight images of a cold cloud passing through (a) red and (b) blue cavity lattice
potential at t = 15 ms, for two potential depths. The initial cloud temperature was 60 µK. In the case of
(a) the red lattice, detuning from the 87Rb cooling transition od ∆a ≈ −1 GHz was used, while for (b)
the blue lattice, ∆a ≈ +1 was used.
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To determine the temperature, we can use three approaches. The first one is the direct
copy of the experimental procedure - imaging the spatial distribution during TOF, and fitting
σ2(tTOF ) = σ2

0 +
kBTtof

m
t2TOF to calculate the temperature. The second approach is directly

looking at the momentum space. For a Maxwell-Boltzmann distribution, the width of the ve-
locity distribution is determined with the temperature, exp(−mv2/kBT ). By fitting a Gaussian
to the momentum distribution and determining its width σvel, we get the temperature Twidth:

Twidth = σ2
velm/kB. (4.1)

If the momentum distribution differs from the Maxwell-Boltzmann, the fit is not an accurate
approach. The best and most general approach is determining the temperature from the average
kinetic energy of the cloud. For a 1D approach (which is the case for movement along the cavity
axis in a standing wave), m < v2 > /2 = kBTavg/2. Hence, by averaging the velocity values
for all atoms, we arrive at the temperature:

Tavg =
m

kB

1

N

∑
i

v2i (4.2)

We investigate different approaches to temperature determination because, to the best of our
knowledge, no systematic study has so far been published about temperature measurements
for atoms trapped in optical lattices. This is important for many experiments using optical
lattices for many-body quantum simulation. In experiments, temperature is measured by TOF
technique, but its validity is questionable if the initial momentum distribution is no more purely
Gaussian. Likewise, heating of trapped atoms with increasing lattice depth is well known in the
community, but it is not clear what this measured temperature is the signature of. It is therefore
instructive to look at the full potential of atomic trajectories and investigate all properties of
atoms trapped and untrapped by the optical lattice.

Simulation of the experimental regime We first reproduce the experimentally observed bi-
modal distribution of atoms during TOF. The distribution of positions at t = 15 ms after the
beginning of simulation and falling into the beam is shown in Fig. 4.11. We show the distri-
bution of positions along the cavity axis (x-axis), and a 2D distribution along the cavity and
vertical (gravity) axis, as imaged by the camera in the experiment. In Fig. 4.11(a) we show
the results for a blue-detuned potential, and in Fig. 4.11(b) for a red-detuned potential. Except
the sign of the interaction, the other parameters are the same. For computation, we used our
experimental parameters for beam waist (w0 = 100 µm), cloud radius (R = 150 µm), verti-
cal displacement from the beam center z0 = 300 µm and initial cloud temperature (T0 = 60
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µK). We used N = 104 atoms for the simulations of this chapter. The numerical results repro-
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Figure 4.11: Numerical simulation of the spatial distribution of atoms during TOF after interaction with
a conservative lattice potential for (a) blue-detuned potential and (b) red-detuned potential. Left panels
show a distribution along the cavity axis, while the right panels show 2D distribution along the cavity
and vertical (gravity) axis. Distributions were taken at t = 15 ms TOF, with the potential depth U0 = 0.5

mK. Other simulation parameters: beam waist w0 = 100 µm, initial cloud radius R = 150 µm, vertical
displacement from the beam center z0 = 300 µm, initial cloud temperature T0 = 60 µK, number of
atoms N = 104.

duce the bimodal distribution and predict similar behaviour for red and blue lattices, which is
in agreement with experimental data (see Fig. 4.10) . The potential used in these simulations
is a conservative dipole potential, which means that any effects due to saturation and resonant
scattering (which induce cooling/heating of atoms) are neglected. The emergence of a bimodal
distribution measured in the experiment can be attributed to the conservative loading of atoms
into the cavity potential, and dissipative mechanisms don’t have to be included. The experi-
mental data show no clear signature of complex cavity-induced collective dynamics. Because
the locking laser is always locked to the cavity resonance, there is effectively no dispersive dy-
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namics and no effects due to light-shifts can be measured. In our experimental regime, when
the locking electronics is faster than the cavity-atom dynamics, this complex system effectively
acts as a standing wave conservative potential.

There is some discrepancy between the measured and simulated distributions for deeper
optical potentials. The results of Fig. 4.11 were acquired forU0 = 0.5 mK, and the experimental
results in Fig. 4.8 show that we achieve potential depths up to 10 mK. It is important to note that
the values of experimental potential depths are estimated and calculated. These calculations take
into account the power enhancement inside the cavity, which depends on several parameters, for
example the intracavity losses and the quality of the locking of the laser to the cavity. Noise
in frequency lock lowers the circulating optical power, and even induces heating of the trapped
sample [32]. For this reason, a perfect matching of numerical and experimental parameters is
not realistic, and only the qualitative behaviour is examined. Nevertheless, it is instructive to
look at the main difference between the red and blue trap for large potential depths. In Fig. 4.12
we show the simulated 2D spatial distributions of atoms in the transverse directions (y, z) for a
red and blue trap of depth U0 = 5 mK. The blue trap is repulsive, see Fig. 2.3, and for strong

Figure 4.12: Numerical simulation of transverse (y, z) spatial distribution of atoms during TOF for (a)
red and (b) blue detuned cavity potential. The parameters are the same as in Fig. 4.11, except for the
potential depth U0 = 5 mK.

potentials the atoms bounce off the transverse Gaussian potential and cannot even fall into the
cavity trap. A red trap is attractive and the atoms are pulled into the waist. A consequence of
the atoms "spilling over" the blue potential is that there is no bimodal distribution along the
cavity axis, since most atoms do not fall into it. However, we do not see this effect of "spilling
over" in our experiment, as we see a clear bimodal distribution for a blue potential as well. This
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means that the effective experimental values of cavity build-up and potential depth are lower
than calculated, as we’ve already discussed.

Influence of the lattice potential on the velocity distribution of atoms Even though the
dipole potential is conservative, some atoms can gain energy when they fall into the potential.
The condition that the atoms remain trapped in the potential can be simply expressed - if the
kinetic energy of the atom is smaller than the potential depth at the specific point in space
where the atom enters the potential, i.e. mv2/2 < U(x, y, z), the atom will remain trapped in
the potential. This expression gives a space-dependent capture velocity for the atoms to remain
trapped. The closer the atom initially is to the edge of the potential, the less kinetic energy it
needs to have to escape the well. However, if captured, the energy of the atom will increase
almost by the potential depth, therefore increasing its average velocity and temperature. It is
clear that the deep potentials will therefore spread the initial velocity distribution, however it is
not as clear if the final distribution keeps a Gaussian shape or attains a different one.

We start by analysing only the influence of the longitudinal, standing wave potential by
removing the transverse Gaussian profile and making the standing wave "pancakes" infinite in
the (y, z) directions, as shown in Fig. 4.13(a). We also remove the influence of gravity, and
the cloud is loaded in the center of the beam, so it expands symmetrically around the zero
coordinates. In Fig. 4.13(b) we show a spatial distribution of a cloud during TOF for t = 15

ms in such an infinite standing wave potential, simulated for potential depth of U0 = 1 mK.
This means that all velocity groups in the generated cloud of 60 µK can be captured by the
potential. Since the potential is deep, most atoms can only move along the pancake there were
loaded in, like along the walls of a tunnel, and do not have enough energy to cross between the
pancakes. Only some of the atoms have enough energy to climb the potential and get far away.
The velocity distribution of such an atomic sample is shown in Fig. 4.13(c) where we show
the initial Maxwell-Boltzmann distribution (T = 60 µK) of the initial cloud, and a broadened
and modified distribution due to interaction with the lattice potential. The modification of the
distribution occurs quickly (t = 5 ms was chosen for plot) and has a constant shape for longer
TOF times. The modification of the curve occurs on the time scale of the atoms falling into the
lattice potential.

We look into the velocity distribution in more detail in Fig. 4.14, where we compare the
temperatures acquired by fitting Gaussian curves and by calculating the average kinetic energy.
Strong heating along the standing wave direction is visible, with final temperatures of around
400 µK being far higher than the initial 60 µK. Distribution slightly deviates from the Gaussian
shape, as seen compared to the Gaussian fit in Fig. 4.14(a), however it is still a very good
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Figure 4.13: a) Standing wave "pancakes" of infinite transverse size used to simulate a pure 1D cavity
potential with no influence of transverse directions. For a deep potential, the atoms can only move along
the pancake they were loaded in, like along the walls of a tunnel. (b) Spatial density distribution during
TOF in an infinite standing wave pancake. Only some of the atoms have enough energy to climb the
potential, most atoms are confined. c) Velocity distribution along the cavity axis at t = 0 (when the cloud
is generated), shown with a blue curve, and at t = 5 ms, after falling into the cavity potential, shown
with an orange curve. The initial shape corresponds to a Maxwell-Boltzmann distribution (T = 60 µK).
Heating of the cloud and a modification of the velocity distribution due to standing wave potential is
clearly visible.
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Figure 4.14: a) Velocity distribution along the cavity axis and b) speed distribution (3D M-B) during
TOF, at t = 5 ms, corresponding to the simulation in Fig. 4.13. In a) a single Gaussian fit is shown, from
which we calculate the temperature, while in b) we fit the 3D M-B distribution with the temperature as
the only free parameter. Temperatures calculated through mean kinetic energy for a) 1D and b) 3D case
are also listed.
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approximation, and the temperature acquired from the width of the Gaussian is in very good
agreement with the temperature calculated through the mean kinetic energy. In Fig. 4.14(b)
a speed (3D Maxwell-Boltzmann) distribution is shown, with the corresponding temperature
as the only free parameter. The deviation from the speed distribution is only due to heating
and modification along the longitudinal axis, since transverse velocities and temperature are
unperturbed by the standing wave. Despite the deviation from the speed distribution, the fitted
temperature is in good agreement with the temperature corresponding to mean (3D) kinetic
energy. Therefore, even though there is heating along the cavity axis and the distribution does
not remain a pure Gaussian, it is still a very good approximation. For shallower potentials,
heating and deviation from a Gaussian are even less pronounced. Experimentally, generating a
potential of 1 mK depth is not easy, so it is justified to assume a Gaussian distribution of atoms
trapped in optical lattices.

Let us also look at the atoms that had enough energy to climb and cross the lattice potential,
as was seen in the spatial distribution of atoms in Fig. 4.13(a). If we look into the velocity
distribution along the cavity axis for these "free" atoms, which is presented in Fig. 4.15(a), we
see that these atoms have even higher energy and there are no atoms with very small velocities
among them. This is logical because the very slow atoms are either trapped in the "pancakes"
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Figure 4.15: a) Velocity distribution of atoms moving freely along the cavity axis during TOF, at t = 15

ms. b) Initial spatial distibution, at t = 0, of atoms that can move freely along the potential. The lattice
potential is also shown as a reference (orange curve). These atoms were loaded on top of the standing
wave, so they gain the most energy, but can also move freely through the standing wave.

or moving extremely slowly over the potential, during longer TOF times. For a velocity dis-
tribution such as this, the average kinetic energy is the only suitable method of calculating the
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temperature the atoms. It is also interesting to look at the "history" of these "free" atoms - what
was their position in regard to the cavity potential so that they managed to escape it. The initial
spatial distribution of these atoms is plotted for t = 0 in Fig. 4.15(b), together with the spatial
dependence of the lattice potential. It is clear that these atoms were loaded on the top of the
potential, which is why they can climb over the "pancakes" and stay "free". These atoms are
also the hottest since the full potential depth was added to their energy as they fall down into it.

Conclusion. We measured a bimodal spatial distribution of atoms during TOF as a conse-
quence of interaction of atoms inside the cavity with a cw laser in longitudinal pumping ge-
ometry. The narrow peak of the distribution corresponds to the fraction of atoms trapped in an
intra-cavity standing wave potential as the cloud expands and falls through the laser beam due
to gravity. We can capture up to 20% of atoms from the loaded cloud into the narrow peak,
with temperatures less than 10 µK, which is significantly below the initial cloud temperatures
of either 60 µK or 150 µK. We showed that the fraction of trapped atoms and their tempera-
ture increases with the potential depth, since more atoms from the initially loaded cloud can be
captured.

We compared the TOF images for red and blue detuned standing wave potentials, while
leaving the other experimental parameters unchanged. We measured the same bimodal distri-
bution in both regimes, concluding that the effect of the standing wave trap is the dominant one
and the same regardless of the atomic detuning. The red traps, however, influence the MOT
loading stage due to their attractive interaction, which results in a lower number of atoms in a
MOT after the loading. The blue trap showed no influence on the loading of the cloud.

Finally, we numerically simulated loading of atoms in a conservative standing wave poten-
tial. Using our experimental parameters, we reproduced the bimodal distribution for both red
and blue traps, as measured in the experiment. This means that for our experimental regime, the
results can be explained as a consequence of interaction of atoms with a conservative standing
wave potential, and collective cavity-enhanced effects are not necessary. Additionally, we show
that for deep optical lattices, the momentum distribution of atoms along the lattice axis does
not retain its initial Maxwell-Boltzmann distribution, but is broadened and modified. This is a
consequence of atoms gaining energy as they fall into the optical lattice and strong heating can
be observed along the lattice axis. Due to this longitudinal heating, the speed distribution also
deviates from the 3D M-B distribution. However, even though the new momentum distribu-
tions deviate from the M-B shape, the M-B distribution still gives a very good estimate for the
temperature of atoms. The deviation from M-B distribution becomes significant only for very
large potential depths (U0 ≈ 1 mK), which is usually above the typical experimental values.
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Therefore, for most experiments, assuming a Gaussian M-B distribution of atomic velocities is
a very good estimate for the temperature measurements.

4.3 Frequency comb laser pump

In the second part of this experiment, we replace the cw cavity beam with the frequency comb.
This, however was not as straightforward from the experimental point of view, because the
cavity still needs to be stabilized. As seen in the previous chapters, the coupled 780 nm laser
interacts strongly with the atomic cloud, and it would be hard to distinguish between cw- and
FC-induced cavity effects. Likewise, even for very low powers, the cw laser is still much
stronger than a single FC mode, so effectively the intracavity potential would still be dominated
by the cw standing wave. For this reason, we introduced a locking laser that operates at Ce-
sium cooling frequencies around 852 nm, instead of the 780 nm light used for Rubidium. This
way, the cavity can be stabilized to the Cesium laser which is far off-resonance for the Rubid-
ium atoms, and has no measurable effect on the cloud for low optical powers. Any detected
interaction can therefore be assigned solely to FC light.

4.3.1 FC-cavity coupling

We coupled the FC into the cavity by propagating it through the same PM fiber as for the
cw locking beam. This way we ensure the optimal overlap and mode-matching. To find the
matching between FSR and frep, we scan the cavity length while also manually changing frep
until cavity transmission can be observed on an oscilloscope. This can be seen in Fig. 4.16,
where an "envelope of coupling efficiency" can be on the transmission amplitude, as described
in the theoretical section (see Fig. 2.12). The transmission peaks occur every frep, which is
around 80.5 MHz. A zoomed in, smaller scan of FC transmission is shown in Fig. 4.16. There
are two interesting features visible. The first one is a "tail" on one side of the transmission peaks
that are otherwise expected to be symmetric. The second one is the large width of the envelope
of coupling efficiency, so it is hard to tell which transmission peak is the optimal, i.e. when we
perfectly matched FSR and frep. This is a consequence of high dispersion of cavity mirrors.

We analyse the cavity dispersion by looking at the FC spectrum transmitted through the
cavity. The full FC spectrum is shown in Fig. (4.17). The peak of the spectrum is at 780 nm,
and it covers (although weakly) wavelengths from 775 nm to 785 nm. If the mirrors had no dis-
persion, we could simultaneously couple this whole spectrum into the cavity. Due to dispersion
and the walk-off of the cavity modes, only a part of the spectrum is coupled, depending on the
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Figure 4.16: Transmission of the FC through the cavity as we scan the cavity length. Transmission peaks
occur every frep, which is around 80.5 MHz. The envelope of the coupling efficiency is seen on the
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exhibits asymmetric transmission peaks, a consequence of high dispersion of cavity mirrors.
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Figure 4.17: Spectrum of the frequency comb before coupling into the optical cavity.

local matching of FSR and frep around the optimal value of that wavelength. To look into that,
we match FSR and frep around a chosen specific transmission peak (Fig. 4.16) and stabilize
both the cavity and frequency comb independently to keep the FC-cavity coupling and the FC
transmission stable in time. Locking details are presented in more detail in the next section. For
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a stable coupling, transmission signal can be monitored on an optical spectrum analyser (OSA)
which measures the transmitted (i.e. coupled) FC spectrum. We can change the value of f0
for the FC with an AOM, which means we can shift the whole FC spectrum around the cavity
modes. By changing f0 we are effectively scanning over the single transmission peak, see Fig.
4.18(a). This way we can monitor which part of the spectrum is coupled on the top of the peak,
and which on the slowly-falling tail. The values of f0 for a given point on the transmission curve
as labelled with (i)-(iv) in Fig. 4.18(a) and their values are givin in the legend of Fig. 4.18(b),
where the transmitted spectrum is presented for each of the values, i.e. for different points of the
transmission peak. The point of maximum value is set to ∆fFC

0 = 0. An interesting behaviour
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Figure 4.18: (a) Single FC transmission peak as we scan over the cavity resonance. When the cavity and
FC are stabilized, we scan over this transmission curve by changing f0 of FC with an AOM. Different
transmission values correspond to different values of ∆fFC

0 , with ∆fFC
0 = 0 corresponding to the

maximum value of the transmission peak (labelled (ii)). (b) Spectrum of the transmitted FC light for
different points (i)-(iv) of the transmission peak. The values of ∆fFC

0 for these points are given in the
legend.

is seen for the transmitted spectrum. While on the steep side of the single transmission peak,
the spectrum consists of a single bump that increases in amplitude as we move from point (i)
towards (ii). After that, the bump splits into two parts that move away symmetrically from the
centrally coupled wavelength as we move from (ii) towards (iv). It should also be noted that
the centrally coupled wavelength is around 782.5 nm, and the center of the FC is around 780
nm. The spectrum around 782.5 nm is also much narrower than the original FC spectrum. This
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is due to the chosen single transmission peak in Fig. 4.18(a). For another transmission peak
under the wide coupling envelope (Fig. 4.16), we would locally match frep and FSR around
some other wavelength. The splitting of the spectrum would behave the same as shown in Fig.
4.18(b), just for another centrally coupled wavelength.

To understand why the spectrum splits symmetrically, we assume the cavity dispersion such
that the cavity FSR constantly increases with frequency. We assume a linear increase of ∆, so
that the distance between each consecutive two cavity modes is bigger for the value ∆. This
idea is presented in Fig. 4.19(a). We can optimally couple the FC into the cavity around a
certain wavelength, for which the optimal FSR is labelled FSR0. That part of the spectrum
is then maximally transmitted. By scanning ∆fFC

0 we move away from the originally coupled
spectrum, however we couple FC modes into the cavity modes on other wavelengths, that were
further away due to dispersion, symetrically around the central value. If we can measure the
wavelength of the spectrum that gets transmitted as we scan ∆fFC

0 , we can determine the dis-
persion value ∆. This is presented in Fig. 4.19(b) and (c). In 4.19(b) for a set value of ∆fFC

0

the spectrum is split into two peaks whole wavelength we can directly measure. Along with
the central spectrum, two sidebands can be seen around 790 nm and 770 nm. The sidebands
occur when the cavity modes are shifted due to dispersion by a whole frep, so that the matching
condition is again achieved. The sidebands hence behave like the central peak and the split as
we scan ∆fFC

0 . The measured wavelength values as a function of ∆fFC
0 are shown in 4.19(c)

and can be directly mapped to the behavior of 4.19(b) and4.18(b). For small values of ∆fFC
0

there is a single peak which increases in amplitude, then splits into two peaks.
To determine the dispersion term ∆, we look at the condition of FC and cavity matching

around a specific central frequency fc by finding the local optimal value FSR0. The frequency
of the comb mode will be matched with the cavity frequency, fFC

c = f cav
c , while n modes

away, frequency of the FC mode is fFC
n = fFC

c + nFSR0 and of the cavity mode f cav
n =

f cav
c +nFSR0 +n(n+1)∆/2. The term n(n+1)∆/2 is the arithmetic series that comes from

summing the frequency shift for each cavity mode up to the n-th mode (∆ + 2∆ + ... + n∆).
The n-th FC mode is matched with the n-th cavity mode when we shift the FC spectrum by
∆fFC

0 . The matching condition is therefore fFC
n +∆fFC

0 = f cav
n , or:

∆fFC
0 =

n(n+ 1)

2
∆. (4.3)

This equation shows that the modes further away walk off faster (with n2), which is in agreement
with the parabolic curve in Fig. 4.19(c). To determine n we calculate the number of cavity
modes spaced by FSR0 from the centrally coupled wavelength for ∆f = 0 and for peaks for
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Figure 4.19: (a) Due to cavity dispersion, FSR around a specific wavelength increases by a value ∆

with frequency. Optimum matching is locally achieved for a value labelled FSR0. As we scan ∆fFC
0 ,

the central wavelength is decoupled, but FC modes at different frequencies sit into the cavity modes,
symmetrically on both sides of the central frequency. (b) For a specific value ∆fFC

0 the transmitted
wavelengths can be measured by reading the value on the peaks. Beside the central spectrum, two
sidebands appear which occur when the shift due to dispersion equals frep, so the matching condition is
achieved again. (c)Wavelength of the transmitted spectrum as a function of ∆fFC

0 for the central peaks
and the sidebands.
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other ∆fFC
0 . By fitting a second order polynomial to equation (4.3) using the measured data

from Fig.4.19(c), we get ∆ = (18± 2) Hz.
An alternative approach to determine the dispersion term is by using Eq. (2.57). Dispersion

term is small compared to the value FSR0 = c/2L so we can expand the expression:

FSR(ω) =
c

2L+ c ∂ϕ
∂ω
|ω0

≈ FSR0

(
1− FSR0

∂ϕ

∂ω
|ω0

)
(4.4)

A frequency dependent phase can be expanded up to the second order ϕ(ω) = ϕ0+ϕ1ω+ϕ2ω
2,

so the dispersion term is ∂ϕ/∂ω = ϕ1+2ϕ2ω. The dispersion term ∆ was defined as a difference
between two neighbouring values of FSR, so ∆FSR = FSR(ω2) − FSR(ω1) = −FSR2

0 ·
2ϕ2(ω2−ω1) = −FSR2

0 · 2ϕ2 · 2πFSR0. According to the datasheet provided by Layertec, the
dispersion term around 780 nm is ϕ2 ≈ −200 fs2, which gives ∆FSR = ∆ ≈ 20 Hz, which is
in great agreement with the measured value.

We can simulate this kind of coupling by looking at the matching condition between the
cavity modes, which are Lorentzian functions of width κ, and FC modes which are delta func-
tions. By scanning the frep or FSR, we can simulate the coupling efficiency for experimental
parameters. The results are presented in Fig. 4.20, where we used N = 1300 cavity modes
and 24N FC modes coupled into them as we change frep. The number of modes was chosen
to cover the wavelength range from 778 nm to 783 nm, closely corresponding to the measured
spectrum of our frequency comb.

The FC spectrum envelope centered at 780 nm was also taken into account. In Fig. 4.20(a)
we show the results for the case of no cavity dispersion (red) and for dispersion term of ∆ = 18

Hz as measured for our experiment (blue). If there were no dispersion, we could easily identify
the optimal matching of FSR and frep, since it corresponds to the single highest peak. In this
case, the dependence on f0 also becomes important. However, with dispersion term included,
the coupling efficiency drops since only a part of the spectrum can be coupled at the same time.
The envelope is also much broader, since different wavelengths couple into the cavity as we
change frep. In Fig. 4.20(b) a zoomed in curve of a calculated single transmission peak is
shown, which shows the same shape as the experimentally measured traces. This shows ex-
cellent agreement between the measured values of dispersion and the corresponding calculated
coupling curves.
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Figure 4.20: (a) Calculated FC-cavity coupling efficiency as we scan frep. For the case of no disper-
sion (red) the optimal matching condition is visible as the highest peak. Including the experimentally
measured dispersion term ∆ = 18 Hz broadens the coupling envelope, and shifts it depending on the
local matching conditions around the specific wavelength. (b) Zoomed in single calculated transmission
peak exhibits the same shape as the experimentally measured one, indicating great agreement between
the theoretical model and experimentally determined cavity dispersion. For calculations, cavity modes
are Lorentzian functions of width κ = 2π · 150 kHz and FC modes are delta functions. The number of
cavity modes is N = 1300, covering a wavelength range from 778 nm to 783 nm, with 24N FC modes
coupling into them as frep is scanned.

4.3.2 Locking scheme

To remove the influence of the cavity locking beam on the atomic motion, we now use a weak
far-detuned 852 nm laser, referenced to the cesium cooling transition. This way we make sure
the atoms only interact with FC light inside the cavity. A simplified experimental setup is shown
in Fig. 4.21(a), and the overview of the locking scheme in Fig. 4.21(b). The cooling laser is
locked to the rubidium cooling transition via polarization spectroscopy and is also used as a
reference for optical locking of the frequency comb. A part of the beam can also be coupled
into the cavity using an AOM, to monitor the relative frequency between the rubidium transition
and the nearest cavity modes. The cesium laser (Moglabs CEL cateye laser) is used to stabilize
the cavity length. We directly modulate the laser frequency by applying a 10 MHz modulation
to the laser current. The part of the beam is split for the error signal generation using frequency-
modulated saturated absorption spectroscopy. The spectroscopy beam is modulated as it passes
through the cesium vapour cell, and the sub-Doppler peaks are visible on the photodiode. By
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Figure 4.21: (a) Experimental setup and (b) locking scheme for stabilization of different lasers. A part
of the cooling laser is also used as a reference for the FC lock, and another can be coupled into the
cavity to monitor the distance between cavity modes and the rubidium resonances. Cesium laser is used
to stabilize the cavity. It is frequency-modulated with a 10 MHz signal and coupled into the cavity to
generate the PDH error signal. A part of the beam is split for FM-SAS and the generation of an error
signal corresponding to cesium hyperfine transitions at 852 nm. The FC is locked by stabilizing two
degrees of freedom, as shown in Fig. 3.5. The repumper laser is locked as described in previous section,
using saturated absorption spectroscopy. BS - beam splitter, M - mirror, λ/2 (λ/4) - half (quarter)-wave
plate, PD - photodiode, AOM - acusto-optic modulator, DM - dichroic mirror, L - lens, GR - diffraction
grating, F - optical filter, BPF - bandpass optical filter

demodulating the phododiode signal, we extract the dispersive error signals for each peak, as
shown in Fig. 4.22. The rest of the beam is coupled into the cavity to generate the PDH error
signal. We use the same signal generator to modulate the laser current and to demodulate the
two photodiode signals for error generation. We lock the cesium laser to the cavity by applying
fast and slow feedback to the laser current and piezo, respectivelly. We then lock the cavity
frequency by stabilizing the cavity length using the FM-SAS error signal and applying the
feedback (Newfocus LB1005) to the cavity PZT.

Locking of the FC is the same as described in Chapter 3. The repetition frequency frep
is referenced to a DDS signal, and the error signal is fed to the FC cavity piezo. The optical
frequency fn is stabilized by locking the beat frequency fbeat between the Rb cooling laser and
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Figure 4.22: Error signal generated using frequency-modulated saturated absorption spectroscopy in a
cesium vapour cell. Each dispersive signal corresponds to a hyperfine transition (and the cross-over
peaks) in cesium D2 cooling line on 852 nm.

the FC mode fn, feeding the error signal to the pump diode current. The FC lock is therefore
independent from the cavity, so the FC light can be freely switched on/off and frequency-shifted
around the cavity modes. We manually adjust the DDS reference values for frep and fbeat so
that matching between the FC modes and cavity modes is achieved. Once we lock the FC,
fine-tuning with the cavity is achieved by changing the frequency on the AOM in a double-
pass configuration, effectively changing f0. The same could be achieved by changing the beat
frequency fbeat, but this means changing the locking points. AOM is a preferred option as it
doesn’t influence the FC locking stability.

4.3.3 Longitudinal pumping effects

Signature of the interaction in transmitted spectrum. We first look at the interaction of
FC with atoms in the cavity by continuously loading the MOT cloud in the center of the cavity
instead of letting it fall into it, while we scan the cavity FSR. The effect of the interaction are
dips in FC transmission, as seen in Fig. 4.23. The dips occur in every transmission peak as the
cavity length is scanned, meaning that the interaction exists for all matching conditions of frep
and FSR. This shows that the dips in transmission are not a consequence of the interaction of
atoms with a single, near-resonance FC mode, but with a multitude of FC modes. The depth of
the dips also depends on the number of loaded atoms in the cloud, which is a clear signature
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Figure 4.23: (a) Dips in FC transmission due to interaction with atoms loading in the center of the cavity,
as we scan the cavity length. Occurrence of dips for every transmission peak, i.e. for every frep − FSR

matching condition means that the interaction is not due to a single FC mode near atomic resonance, but
a collective lightshift of off-resonant FC modes. Zooming in on a single curve (b) shows that there’s
also an increase of transmission around the dips, as can be seen in (c) where the transmission baseline is
subtracted.

of collective interaction of atoms in the cavity with the FC light. Due to collective lightshift, a
group of cavity modes are pushed off-resonance, which leads to a decrease of coupled FC light.
However, as can be seen in Fig. 4.23(c), increase in transmission due to collective light-atom
interaction can also be visible. In this region, the collective interaction shifts the cavity modes
so that more FC light is coupled into the cavity.

It was also measured that the position of the dip relative to the corresponding transmission
peak changes as the cavity FSR is scanned, so the dips can be closer to the peak or further
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away in the wings (this is only slightly visible in Fig. 4.23(a), the shift is significant on a larger
scan range). To understand this, we look into the spectrum of the transmitted FC light, which
was discussed in the last subsection in the discussion about cavity dispersion, and shown in Fig.
4.18 and 4.19. In Fig. 4.18 we chose a transmission peak for which we locally matched frep and
FSR around 782 nm, and shifting the frequency f0 led to splitting into two spectra, one moving
toward lower wavelengths and the other toward higher. For the interaction dip located far on the
transmission wing, it means we locally coupled wavelengths away from 780.24 nm, where the
light is too far detuned from the resonance for the interaction to be visible. This is shown in Fig.
4.24(a). As we move f0, the spectrum closer to 780.24 nm starts coupling into the cavity, and
the interaction becomes significant, leading to collective coupling and increased transmission,
as marked with an arrow. The light of the cooling laser is also recorded on the optical spectrum
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Figure 4.24: Spectrum of the transmitted FC light during interaction with a continuously loaded MOT
cloud when the dip in transmission is in the tail of the transmission curve. (a) Centrally coupled spectrum
is around 782 nm and splits as we change ∆fFC

0 , bringing the peak closer to 780.24 nm, which results
in enhanced coupling and increase of transmission, marked by arrow. (b) Zoomed in spectrum around
780.24 nm for several values of ∆fFC

0 . A weak cw cooling light is recorded as a reference for the
resonant frequency of the atoms. Collective interaction induces lightshift that couples light red- or blue-
detuned from the the cavity, depending on the detuning from the atomic resonance.

analyser, serving as a reference of the atomic resonance frequency in Fig.4.24(b). We see that as
we scan ∆fFC

0 , the coupled spectrum moves from the red side of the atomic frequency towards
the blue. On the red side, the FC light is still red detuned from the near-resonant cavity modes
and the lightshift is negative so FC combs will couple into the cavity, increasing the overall
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transmission on the red side of the atomic resonance. On the blue side, the lightshift is positive
and the opposite happens. Since the FC modes are blue detuned from the cavity, only the cavity
modes on the blue side of the atomic resonance will be shifted, leading to increased coupling.
These are the two regimes for which increased coupling occurs, corresponding to the increase
of transmission around the dip seen in Fig. 4.23(c). For the values of ∆fFC

0 for which the
coupled spectrum is around 780.24 nm (which is between ∆fFC

0 = 2.8 MHz and ∆fFC
0 = 3.6

MHz in Fig. 4.24(b)), the collective interaction shifts all the coupled modes out of resonance,
leading only to a loss of coupling and the dip in transmission.

By choosing another matching of frep and FSR and coupling the spectrum closer to 780
nm, we bring the interaction dip closer to the transmission peak. This can be seen in Fig. 4.24,
where on the transmission peak, for ∆fFC

0 = 0, there is already a sharp cut-off of transmitted
spectrum around 780.24 nm, due to lightshift of the cavity modes out of resonance with the
cavity, leading to reduced transmission. For other values of ∆fFC

0 , the increase on the red or
blue side of the spectrum can be again achieved as explained. This means that by choosing a
local matching of frep and FSR we can select which part of the FC spectrum the atoms can
interact with and how much we need to shift the FC frequency to achieve a significant effect of
the interaction.

Signature of interaction in time-of-flight imaging of the cloud. In the results so far, the
atoms have been loading in the MOT continuously so that we can sample the transmitted light
on an optical spectrum analyser. Now, we look at the signature of the interaction during TOF, by
imaging the cloud’s spatial distribution. We load the cloud in the cavity, and turn off the MOT
beams. We then switch on the FC beam and let it interact with the cloud for 5 ms, after which we
turn off the beam and let the cloud expand freely during TOF. We identified two experimental
regimes, labelled "cooling" and "heating" regime, occuring when FC light around 780 nm is
coupled into the cavity. The images of the atomic cloud for these two regimes are shown in
Fig. 4.26, where we show the distribution along the cavity axis in and a 2D image of the cloud.
The two regimes are very distinct and have clear effects on atomic distribution during TOF.
The cooling regime occurs for blue detunings of the FC frequencies from the cavity resonances,
∆c > 0, and the atoms are compressed along the cavity axis, seen in both 1D and 2D images of
the cloud’s distribution. The heating regime occurs for red detunings, ∆c < 0, and the atoms are
stretched along the cavity axis. This is in contrast with the expected behavior, which predicts
cooling (heating) for red (blue) detunings. However, this prediction is valid for red-detuned
light from the atomic resonance, ∆a < 0. In the case of FC interaction, there can be modes on
both sides of atomic resonance. For example, for ∆a > 0, cooling can occur for ∆c ≥ 0. We
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Figure 4.25: Spectrum of the transmitted FC light during interaction with a continuously loaded MOT
cloud when the dip in transmission is near the peak of the transmission curve. (a) Centrally coupled
spectrum is around 781 nm and a part of it is already near atomic resonance, leading to a cut-off of
transmitted light on the transmission peak, for ∆fFC

0 = 0. (b) Zoomed in spectrum around 780.24
nm for several values of ∆fFC

0 . A weak cw cooling light is recorded as a reference for the resonant
frequency of the atoms.

checked the possibility that this effect is just a signature of interaction with a single resonant
FC mode. For this, we coupled the resonant 780 nm cw light into the cavity during the locking
procedure, so we know where the closest cavity modes are compared to the atomic resonance.
Since the cavity FSR is around 2 GHz, the largest ∆a is around 1 GHz, i.e. the closest FC modes
coupled into the cavity will be ±1 GHz detuned from the atomic resonance. By choosing other
locking points, we can bring the cavity modes closer to the atomic resonance on either red or
blue side. We concluded that the effects in Fig. 4.26 are not a signature of a single, nearest
FC mode. If a cavity mode is near resonance on either side, no cavity effects can be visible
and resonant absorption and scattering become significant. Therefore, the cooling and heating
regimes are not determined by the closest single cavity mode, and are a signature of dispersive
interaction of atoms with intra-cavity light, which occurs far from atomic resonance.

Identifying the relevant parameters and their values that determine between the cooling and
heating regimes requires further investigation. It is necessary to know which off-resonance FC
modes need to be light-shifted due to interaction, and how to eliminate the influence of the
unwanted modes. Nevertheless, the results presented in Fig. 4.26 are the first experimental
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Figure 4.26: Time-of-flight signature of the interaction of an FC with atoms in a cavity. Left panels show
1D distribution of atoms along the cavity axis, and the right panels show 2D images of the cloud. (a)
"Cooling" regime in which the atoms are compressed along the cavity axis. (b) In the "heating" regime
the atoms are stretched along the cavity axis.

demonstration of TOF results suggesting cavity-enhanced cooling and heating effects with off-
resonance FC light.

4.3.4 Transversal pumping effects

So far we pumped the atoms in the cavity longitudinally, so the atoms could feel the cavity
potential only if the pump light was near the cavity resonance, i.e. some light had to be coupled
into the cavity and was then strongly enhanced. By switching to the transversal pumping geom-
etry, we illuminate the atoms from the side, which loosens the requirement of cavity coupling.
To switch the geometry, we put a beam splitted on the FC beam, so that 90% of the power is
free-spaced onto the atoms in retro-reflected geometry, and 10% is coupled into the cavity so
that we can lock the FC relative to the cavity modes. In this geometry, the atoms can scatter on-
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and off-resonantly into free space or into the cavity. The ratio of cavity to free space scattering
is almost purely geometrical, corresponding to the solid angle covered by the cavity compared
to the full solid angle, and it can be shown [8] that it corresponds to the cooperativity parameter
C. However, if the scattered light is resonant with the cavity modes, scattering into the cavity
mode can be enhanced when the atoms are pumped above a certain threshold intensity.

For our experiment with an FC transversal pump, we are effectively pumping the atoms
with modes of 80.5 MHz repetition (frep), because now there is no 2 GHz filtering provided by
the cavity FSR. By inspecting at the FC-induced force in free-space (Fig. 3.7(b) and (c)), we
see that within one frep the FC modes are always near an atomic resonance, either |F = 2⟩ →
|F ′ = 3⟩ or |F = 2⟩ → |F ′ = 2⟩ transition. For this reason, the free space effects along the
transverse axis are dominating, and cavity effects could not be observed in any parameter range,
near or far from cavity resonance.

To circumvent this issue, we put a Rb glass cell on the FC beam path and heat it to around
70 ◦C, so that the near-resonant FC modes are attenuated. This way, we ensure only the off-
resonant modes pumping the atoms and resonant free-space effects can be suppressed. In this
regime, we observed no effects of interaction of atoms with FC light, neither in light scattering
nor in TOF images of the cloud. We tested this for different detunings of FC modes from cavity
modes, and measured no effects. This is due to low available power per comb mode in our
femtosecond laser system and in this geometry there is no strong intra-cavity enhancement as
in the longitudinal pumping geometry.

Conclusion Even though the atoms are transversally pumped with a multitude of FC modes
with a smaller frequency spacing compared to longitudinal geometry, we conclude that it is
still not enough power per FC mode to induce any measurable effect related to cavity-enhanced
cooling/heating or trapping of atoms. For future research in transverse FC pumping geometry,
an outlook and some upgrade ideas for the experiment are presented in the next chapter.
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Chapter 5

Thesis summary and outlook

5.1 Summary of this Thesis

In this thesis I presented the results of my research on two topics, both of which are connected
with the idea of investigation of radiative forces on cold atoms in a magneto-optical trap as a
result of interaction with continuous-wave and pulsed femtosecond lasers.

In the first part, we investigated the influence of collective effects on frequency-comb-
induced radiation pressure force on cold 87Rb atoms in free-space. We have observed reduction
and broadening of the FC force as the optical thickness of the atomic cloud increases. By dis-
cussing different scattering mechanisms and their contributions to the force, we showed that
for our experimental conditions a single scattering mechanism dominates the radiation pressure
force. It comes as a result of progressive attenuation of light intensity in the cloud due to dif-
fuse scattering of light, i.e., the shadow effect. The influence of the off-resonance FC modes
on the FC–atom interaction is minor and can be neglected even in the case of increased cloud
optical thickness, and models developed for cw excitation can be readily applied even for FC
interaction. For the applications of FC cooling in free-space and for near-resonant excitation,
our results show that a semi-classical approach based on the Beer-Lambert law is sufficient to
describe the FC-induced force up to b0 ≈ 20.

The results of this topic were published in a peer-reviewed paper where I am the first and the
corresponding author (see Publications). These results contribute to the understanding of scat-
tering of the FC light by an dense ensemble of cold atoms in free space, which is of importance
for FC applications in the field of cooling, quantum communication, and light–atom interfaces
based on structured and disordered atomic systems.

In the second part of my research, the atoms were located in the center of a high-finesse
optical cavity, and pumped longitudinally (through the cavity mirrors) or transversally with cw
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and FC light. Using a cw laser pump, we observed a bimodal spatial distribution of atoms during
time-of-flight (TOF) imaging as a consequence of interaction of atoms with a cavity standing
wave potential. The fraction and temperature of atoms captured in the standing wave increases
with the potential depth. We can capture up to 20% of atoms from the loaded MOT cloud,
with temperatures less than 10 µK, which is significantly below the initial cloud temperatures
of 60 µK and 150 µK. By comparing the TOF images for red- and blue-detuned standing wave
potentials, where we observed the same bimodal distribution in both cases, we showed that the
effect of the standing wave trap is the same regardless of the atomic detuning. Using numerical
simulations, we concluded that our experimental results using cw pump can be explained as
a consequence of interaction of atoms with a conservative standing wave potential, and the
inclusion of collective cavity-enhanced effects are not necessary. Additionally, we showed that
for deep optical lattices, the momentum distribution of atoms along the lattice axis does not
retain its initial Maxwell-Boltzmann (M-B) distribution. However, the M-B distribution still
gives a very good estimate for the temperature of atoms. The deviation from M-B distribution
becomes significant only for very large potential depths (U0 ≈ 1 mK), which is usually above
the typical experimental values. Therefore, for most experiments, assuming a Gaussian M-B
distribution of atomic velocities is a very good estimate for the temperature measurements.

By using an FC pump in the longitudinal geometry, we observed the signature of interaction
in FC transmission through the cavity and in TOF images. We showed that these effects are
not a consequence of a single, resonant FC mode, but of a dispersive interaction of a multitude
of FC modes with atoms inside the cavity. In light transmitted from the cavity, we observe
enhanced scattering due to dispersive interaction with atoms, which brings the cavity modes
on resonance with the FC modes. This dispersive interaction is in good agreement with theo-
retical expectations for both red and blue detunings of FC and cavity modes from the atomic
resonance. In TOF images of atomic distribution, we show signatures of cooling and heating,
corresponding to two different experimental regimes. These results present the first experimen-
tal demonstration suggesting cavity-enhanced cooling and heating effects with off-resonance
multi-mode FC light.

The results of this research topic are in preparation to be submitted as a publication.

5.2 Outlook

In the transverse FC pumping geometry, even though the atoms are pumped with a multitude of
FC modes, we saw no measurable effect related to cavity-enhanced cooling/heating or trapping
of atoms. To continue the research in transverse FC pumping geometry, a few upgrades of the
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experiment could be implemented. The most important one is to increase the available intensity
per FC mode. For this, an additional fiber amplifier could be bought and used to increase the
output power of our FC laser system. Likewise, the size of the FC beam could be focused
tightly at the position of atoms to increase the intensity even further. However, a small beam
means that we could interact with only a small fraction of atoms from the original MOT cloud,
so most of the atomic sample would just be a source of noise. To solve this, it would be useful
to implement a far off-resonance dipole trap (FORT) that would allow us to hold a small sample
of atoms trapped for a longer time (10s of miliseconds) in the center of the optical cavity. This
would allow not only that the focused FC beam interacts with the whole trapped sample, but
to also increase the interaction time during the whole trapping period. Usually, a small number
of atoms is trapped in a FORT compared to an initially loaded MOT, and for small samples the
absorption imaging technique is more sensitive compared to the fluorescence imaging. If future
experiments continue along the path of using a FORT with atoms in a cavity, it would be useful
to implement absorption imaging for TOF measurements. To implement absorption imaging,
some redesigning of the optical setup around the vacuum chamber is necessary, due to a limited
number of available viewports and optical paths on the vacuum chamber.

96



References

[1] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer-Verlag, New
York, 1999.

[2] C. Cohen-Tannoudji, S. Chu, and W. D. Phillips. The nobel prize in physics 1997. https:
//www.nobelprize.org/prizes/physics/1997/summary/.

[3] E. A. Cornell, W. Ketterle, and C. E. Wieman. The nobel prize in physics 2001. https:
//www.nobelprize.org/prizes/physics/2001/summary/.
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