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RELATIVISTIČKI SAMOSUGLASNI

MODELI ATOMSKIH JEZGARA IZVEDENI

IZ EMPIRIJSKIH GUSTOĆA
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Abstract
The solution of the inverse problem of Density Functional Theory (DFT), also known as the in-

verse Kohn-Sham (IKS) problem, is exploited to derive the functional form of the KS potential

starting from empirical neutron and proton densities. Two independent numerical routines to

calculate the KS potential are studied, encoded, and tested. The formalism for the density-to-

potential inversion is developed both in the non-relativistic and relativistic framework. Within

the relativistic formalism, starting from a relatively simple functional form, the piece of in-

formation encoded in the KS potentials is employed in the framework of Density Functional

Perturbation Theory (DFPT). A model is developed to improve a functional towards the exact,

unknown, relativistic nuclear energy density functional (NEDF).

Nuclear DFT, expressed through the formalism of NEDFs and self-consistent mean-fields,

is identified as the best tool to tackle the microscopic description of the nuclear fission process.

A numerical routine is developed to find continuous minimum energy paths (MEP) to eliminate

discontinuities on the potential energy surfaces. The capability of the numerical routine to pro-

duce smooth fission paths that are related to the correct properties is tested. To these purpose,

spontaneous fission lifetimes calculated along smoothed MEPs are compared to the results ob-

tained on the original discontinuous paths and to reference state-of-the-art values.

147 pages, 23 figures, 3 tables, 152 references.

Original language: English.

Thesis deposited in the library of Physics Department, Faculty of Science, University of Zagreb,
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Prošireni sažetak
Iako trenutno ne postoji teorijski okvir koji bi mogao opisati cjelokupnu fenomenologiju nuk-

learne fizike, dostupni su razni modeli za proučavanje pojedinih aspekata nuklearne strukture.

Modeli temeljeni na nuklearnim energijskim funkcionalima gustoće (NEDF) trenutno pred-

stavljaju najpotpuniji opis svojstava osnovnog stanja i kolektivnih pobud̄enja atomske jezgre.

Niti jedna druga metoda ne može postići usporedivu globalnu preciznost uz jednake računalne

resurse te tako omogućujem opis strukture atomskih jezgara preko cijele karte nuklida, počevši

od vrlo lakih sustava pa sve do super-teških elemenata, od doline beta-stabilnosti do linije

curenja nukleona.

Teorijski okvir nuklearnih energijskih funkcionala gustoće primijenjeni su u razvoju brojnih

mikroskopsih modela, primjerice relativističke aproksimacije slučajnih faza, modela med̄ud-

jelujućih bozona ili metode generatorskih koordinata koja omogućuje istraživanje niskoenergi-

jske spektroskopije i dinamike velikih amplituda.

Temeljna implementacija ovog teorijskog okvira odgovara samosuglasnom modelu sred-

njeg polja, uz korištenje efektivnog med̄udjelovanja i odred̄ene razine aproksimacije. Takav

model uključuje nuklearni energijski funkcional jednočestične matrice gustoće koja odgovara

Slaterovoj determinanti.

Samosuglasni modeli srednjeg polja temelje se na konceptu neovisnih čestica koje se nalaze

u srednjem polju. Iako jednostavna, slika neovisnih čestica je dosada potvrd̄ena mnogim eksper-

imentalnim opažanjima. Nukleoni u ovoj slici tvore jezgru kao samo-vezani sustav, a srednje

polje nastaje usrednjavanjem dvočestičnih med̄udjelovanja. Nadalje, srednje polje je statičko,

dok su dinamičke korekcije zanemarene.
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Ujedinjeni opis srednjeg polja atomske jezgre i korelacija sparivnaja može se postići u

okviru nerelativističkog Hartree-Fock-Bogoliubov pristupa ili relativističkog Hartree-Bogoliubov

pristupa. Da bi se očuvala slika neovisnih čestica, Bogoliubov transformacijom se prelazi s čes-

tica na kvazičestice. Ovaj pristup se pokazao uspješnim čak i u opisu vrlo egzotičnih jezgara

daleko od doline stabilnosti.

U atomskoj fizici je moguće izvesti energijske funkcionale gustoće visoke preciznosti po-

moću modela elektronskog plina. Nasuprot tome, u nuklearnoj fizici detalji nuklearne sile nisu

dobro poznati, pa se točan oblik efektivnog med̄udjelovanja može samo približno odrediti po-

moću mikroskopskih računa temeljenih na fundamentalnom nukleon-nukleon med̄udjelovanju.

Postoje i dodatne razlike u odnosu na atomsku fiziku, primjerice nuklearno med̄udjelovanje

bitno ovisi o spinu, izospinu i impulsu, a nemoguće je zanemariti i spin-orbit med̄udjelovanje,

tenzorske članove i tročestična med̄udjelovanja.

Posve fenomenološki nuklearni energijski funkcionali gustoće (Skyrme, Gogny, relativis-

tički funkcionali) uključuju relativno mali broj parametara, ali usprkos tome omogućuju zado-

voljavajuću preciznost kroz cijelu kartu nuklida. Dio parametara se može izvesti koristeći

poznata svojstva simetrične i asimetrične nuklearne materije u blizini saturacije, dok se ostale

parametre prilagod̄ava eksperimentalnim podacima, primjerice masama i radijusima atomskih

jezgara.

Med̄u dostupnim računalnim alatima za rješavanje Dirac-Hartree-Bogoliubov jednadžbi,

treba istaknuti DIRHB programski paket koji omogućuje rješavanje problema u sfernoj, cilin-

dričnoj i triaksijalnoj geometriji. Paket uključuje najnovije energijske funkcionale gustoće i

omogućava precizne proračune kroz cijelu kartu nuklida, a trenutna verzija je ograničena na

parno-parne atomske jezgre. Dirac-Hartree-Bogoliubov jednadžbe se rješavaju samosuglas-

nim iterativnim postupkom koji uključuje izračune gustoća i polja u koordinatnom prostoru

i dijagonalizaciju matrične Dirac-Hartree-Bogoliubov jednadžbe u konfiguracijskom prostoru

svojstvenih stanja harmoničkog oscilatora. Dijagonalizacija daje kvazičestične energije i valne

funkcije koje se koriste u izračunu matrice gustoće i tenzora sparivanja u konfiguracijskom

prostoru. U sljedećem koraku se računaju gustoće i polja u koordinatnom prostoru te se zatim

pomoću njih gradi Dirac-Hartree-Bogoliubov Hamiltonijan koji se dijagonalizira u sljedećoj it-

eraciji. Postupak se nastavlja dok razlika u poljima izmed̄u dva iterativna koraka nije manja od

neke unaprijed zadane male vrijednosti. U tom slučaju se kaže da je postupak konvergirao.

Osim traženja osnovnog stanja atomske jezgre, moguće je odrediti rješenje u kojem je fik-
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sirana očekivana vrijednost nekog zadanog operatora što se postiže metodom Lagrangeovih

multiplikatora. Vrlo uspješna implementacija ovog postupka je tzv. Multi-Linear Constraint

metoda opisana u appendixu B.

Teorija funkcionala gustoće (Density Functional Theory - DFT) predstavlja jedan od najus-

pješnijih teorijskih pristupa opisu mnogih višečestičnih sustava, npr elektronskih ili atomskoj

jezgri. U suštini, DFT govori da postoji jednoznačno mapiranje izmed̄u egzaktne gustoće os-

novnog stanja sustava i gustoće koja minimizira univerzalni i egzaktni funkcional gustoće. Orig-

inalna formulacija DFT-a, uspostavljena od strane Hohenberga i Kohna 1964. godine, temelji

se ne teoremima egzistencije egzaktnog energijskog funkcionala gustoće, ali ne pruža nikakve

smjernice kako konstruirati takav egzaktni funkcional.

Većina primjena DFT-a se stoga okreće Kohn-Sham (KS) shemi. Uvodi se pomoćni sus-

tav neovisnih čestica koji je jednoznačno definiran kada je gustoća jednaka onoj originalnog

sustava. Jednom kada je ova jednakost uspostavljena, minimum energijskog funkcionala gus-

toće pomoćnog sustava podudara se s minimum originalnog sustava. Time se pruža mogućnost

opisa svih svojstava osnovnog stanja originalnog sutava. Unutar KS formulacije DFT-a moguće

je razložiti energijski funkcional gustoće na član kinetičke energije, Hartree član i nepoznati

doprinos efektivnog potencijala izmjena i korelacija (exchange-correlation).

U proteklih nekoliko desetljeća napravljeni su brojni pokušaji poboljšanja preciznosti nuk-

learnih energijskih funkcionala gustoće, no zasada prediktivna moć teorijskih modela ostaje

daleko ispod preciznosti suvremenih mjerenja. Trenutni napori u izgradnji općenitijih funkcionala

su otežani nedostatkom strategije za sustavna poboljšanja. U tom smislu bi se trebalo istražiti

metode i strategije koje su se već pokazale kao obećavajuće izvan uskih okvira nuklearne fizike.

Jedan od takvih alternativnih pristupa je inverzni DFT problem koji se već pokazao usp-

ješnim u opisu elektronskih sustava. Inverzni DFT problem se sastoji u odred̄ivanju Kohn-

Sham potencijala iz poznate gustoće osnovnog stanja sustava. Time bi se empirijski odred̄ene

gustoće atomske jezgre mogle upotrijebiti za sustavna poboljšanja egzaktnog, ali nepoznatog,

nuklearnog energijskog funkcionala gustoće.

U ovom radu je razmotrena implementacija dva algoritma za rješavanje nerelativističkog

inverznog KS problema temeljena na različitim formulacijama DTF-a. Oba algoritma su se

dosada pokazala uspješnima u drugim granama fizike te su stoga prilagod̄ena opisu atomske

jezgre.

Metoda ograničenih varijacija (Constrained Variation Method) temelji se na minimizaciji
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kinetičke energije umjetnog KS sustava, čije orbitale su ograničene na način da i) reproduci-

raju zadanu gustoću sustava, ii) budu ortogonalne. Koristeći metodu Lagrangeovih multiplika-

tora, postupak ograničene minimizacije pretvara se u optimizaciju Lagrangiana bez ograničenja.

Minimizacija funkcionala odstupanja daje skup minimalnih KS orbitala. Funkcionalna forma

KS potencijala, po definiciji jednaka Lagrangeovim multiplikatorima povezanim s ograničen-

jem gustoće, se tada odred̄uje rješavanjem pridruženog skupa Euler-Lagrange jednadžbi. For-

malizam ove metode je vrlo općenit i moguće primjene bi trebale biti neovisne o geometriji

sustava. S druge strane, praktična implementacija ovog formalizma nije intuitivna niti jednos-

tavna.

Druga razmotrena metoda (van Leeuwen Baerends) sastoji se od invertiranja i iterativnog

rješavanja KS jednadžbi. U svakom koraku se ansatz za KS potencijal postupno prilagod̄ava

da bi se gustoća KS sustava približila ciljanoj gustoći egzaktnog sustava. Iako bi poopćenje

ove metode na razne geometrije ili sustave s otvorenim ljuskama moglo biti nešto složenije,

temeljna ideja je vrlo intuitivna, a implementacija za sferne sustave sa zatvorenim ljuskama nije

složena. Ipak, da bi se postigla konvergencija metode, potrebno je koristiti napredne numeričke

tehnike, npr. Borydenov postupak miješanja iterativnih rješenja.

Oba algoritma su implementirana i provjerena na nekoliko primjera teorijskih i empirijskih

gustoća atomskih jezgara sa zatvorenim ljuskama. Kohn-Sham potencijali, izvedeni iz empir-

ijskih protonskih gustoća jezgara 40Ca i 208Pb, kao i neutronske gustoće jezgre 208Pb, imaju

razumne vrijednosti kako u unutrašnjosti jezgre, tako i na njezinoj površini. Nasuprot tome,

parametrizacije empirijskih gustoća koje koriste sumu Gaussiana, vode na nefizikalne vrijed-

nosti Kohn-Sham potencijala za veće vrijednosti radijusa: u svim slučajevima je potvrd̄eno

divergentnoponašanje vezano uz asimptotsko ponašanje oscilatorskih valnih funkcija. Takvo

nefizikalno ponašanje Kohn-Sham potencijala počinje u području izvan radijusa vanjskog Gaus-

siana iskorištenog u parametrizaciji. Iz toga se može zaključiti da izvedeni Kohn-Sham potenci-

jal postaje nepouzdan u područjima gdje se empirijske gustoće ekstrapoliraju. Da bi se dodatno

provjerila ova interpretacija, inverzni Kohn-Sham algoritmi su provjereni tako da se umjesto

empirijskih gustoća kosite teorijske vrijednosti dobijene s Hartree-Fock računom pomoću SkX

Skyrme parametrizacije. U ovom slučaju je asimptotsko ponašanje gustoća korektno te Kohn-

Sham potencijali postaju imaju fizikalne vrijednosti za sve radijalne udaljenosti.

Suvremeni nuklearni energijski funkcionali gustoće ovise o spinskim gustoćama, kao i o

gradijentima gustoća koje se ne mogu odrediti eksperimentalno. Nadalje, eksperimentalni po-
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daci o neutronskim gustoćama su rijetki. Iako bi pokušaji proširivanja algoritama inverznog

Kohn-Shama na veći skup jezgara, uključujući deformirane jezgre, zasigurno bili zanimljivi,

razvidno je da su empirijske gustoće raspodjela neutrona i protona nedovoljne za izračun efek-

tivnog Kohn-Sham potencijala. Stoga je raspon primjena inverznog Kohn-Sham problema zasad

ograničen.

Iterativna van Leeuwen Baerends metoda je prilagod̄ena relativističkim nuklearnim en-

ergijskim funkcionalima gustoće. Jedan od glavnih argumenata za upotrebu relativističkih

funkcionala je prirodno pojavljivanje spin-orbit potencijala kao kombinacije skalarnog i vek-

torskog potencijala. Spin-orbit med̄udjelovanje je relativistički efekt koji uzrokuje cijepanje i

pomake energijskih nivoa atomske jezgre. Spin-orbit član u atomskoj jezgri je bitno veći od

spin-orbit člana u atomu, te odred̄uje strukturu ljusaka u atomskoj jezgri i posebno magične

brojeve. U nerelativističkim funkcionalima se spin-orbit član dodaje fenomenološki i ne može

biti odred̄en iz gustoća osnovnog stanja pomoću inverzne Kohn-Sham metode.

Relativističko poopćenje vLB algoritma je provjereno na nekoliko teorijskih skalarnih i vek-

torskih gustoća. Pokazana je visoka razina pouzdanosti u odred̄ivanju povezanih skalarnih i

vektorskih potencijala. Nedostatak ovog poopćenja je činjenica da skalarna gustoće nije eksper-

imentalna opservabla. Točni i sustavni podaci postoje samo za gustoću raspodjele naboja u

jezgri, dok konstrukcija Kohn-Sham potencijala podrazumijeva korištenje skalarnih gustoća i

vektorske izovektorske gustoće. Mogućnost nastavka istraživanja u ovom smjeru bilo bi ko-

rištenje jednadžbe stanja nuklearne materije za odred̄ivanje izoskalarnog-skalarnog i izovek-

torskog kanala Kohn-Sham potencijala.

Drugi problem primjene inverzne Kohn-Sham metode predstavlja ne sasvim jasna poveznica

Kohn-Sham potencijala i nuklearnog energijskog funkcionala gustoće. čak i ako bismo pron-

ašli jednoznačnu poveznicu, nuklearni energijski funkcional gusoće bi sadržavao informacije

o nekoliko specifičnih atomskih jezgara što je u suprotnosti s konceptom univerzalnog energi-

jskog funkcionala gustoće. Moguće rješenje je korištenje ab initio računa za provjeru inverzne

Kohn-Sham metode na sustavima koji imaju slična svojstva. Primjerice, neutronske kapljice

bi predstavljale idealan sustav za takav pokušaj. Nuklearni energijski funkcional gustoće bi se

tada mogao izvesti koristeći metode funkcionalne integracije.

U ovom radu smo se odlučili za upotrebu kombinacije računa smetnje i teorije funkcionala

gustoće budući da se ovakav pristup pokazao uspješnim u atomskoj fizici. Pomoću računa smet-

nje se može sustavno korigirati zadani nuklearni energijski funkcional gustoće kako bismo se
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približili nepoznatom egzaktnom funkcionalu. Stoga smo predložili model koji koristi empiri-

jske gustoće za izvod Kohn-Sham potencijala u nekoliko odabranih atomskih jezgara. Konkret-

nije, egzaktna vektorska i skalarna gustoća za mali broj jezgara sa zatvorenim ljuskama, zajedno

s energijskim nivoima izvedenih Kohn-Sham potencijala, predstavlja nužne ulazne podatke za

procjenu prvog reda korekcije početnog funkcionala prema egzaktnom funkcionalu. Pritom se

pretpostavlja da je razlika izmed̄u početnog i egzaktnog funkcionala dovoljno mala da bi se

mogao koristiti prvi red računa smetnje.

Predloženi model je provjeren na nekoliko ilustrativnih primjera pri čemu je kao egzaktni

ciljani funkcional pretpostavljen relativistički DD-PC1 funkcional. Račun je pokazao da se

model može upotrijebiti za popravak aproksimativnog funkcionala prema potpunom DD-PC1

funkcionalu. Prvi test je pokazao da se kao početni funkcional može pretpostaviti dio DD-

PC1 funkcionala s konstantnim vezanjima, a model će kao korekciju vratiti potpuni funkcional.

Drugi test je kao početni funkcional pretpostavio Ansatz u kojem se funkcional parametrizira

kvadratičnim polinomom gustoća. Model je i u ovom slučaju kao korigirani funkcional vratio

egzaktni DD-PC1 funkcional.

Drugi dio radnje se odnosi na praktične primjene samosuglasnih modela atomske jezgre.

Konkretnije, takvi modeli su primijenjeni u opisu procesa nuklearne fisije. Radi se o jednom od

najsloženijih procesa u nuklearnoj fizici u kojem se teška atomska jezgra cijepa u dva ili više

lakših fragmenata. Fisija može biti spontana ili inducirana.

Spontana fisija sastoji se od cijepanja jezgra u fragmente i promptnoj emisiji neutrona.

Prouzročena je natjecanjem izmed̄u Coulombovog odbijanja med̄u protonima u jezgri i jake

nuklearne sile koja veže nukleone u jezgru. Stoga do spontane fisije dolazi u teškim jezgrama s

velikim brojem protona, uglavnom u području aktinida i transaktinida. Spontana fisija je glavni

proces koji ograničava mogućnosti formiranja super-teških elemenata bogatih protonima. Fisija

takod̄er može biti inducirana nuklearnom reakcijom izmed̄u jezgre mete i laganom projektila

(neutron, proton, alpha-čestica, gamma-zračenje). Inducirana fisija ima ključnu ulogu u nuk-

leosintezi, posebno u okviru r-procesa gdje ciklusi fisije kontroliraju udjela jezgara bogatih

neutrona.

Tijekom procesa fisije oslobad̄a se velika količina energije, raspored̄ena na kinetičku en-

ergiju fragmenata i energiju pobud̄enja fragmenata. Proces fisije je često praćen emisijom neu-

trona i gamma zračenja. Zbog velike količine oslobod̄ene energije, proces fisije je jedan od

najvažnijih izvora električne energije.
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Temeljito poznavanje procesa fisije je ključno za dobivanje pouzdanih predikcije, posebno

u području karte nuklida gdje eksperimentalni podaci nisu dostupni ili su rijetki. Stoga pouz-

dani mikroskopski opis procesa fisije predstavlja jedan od najizazovnijih problema suvremene

nuklearne fizike. Problem je iznimno složen zbog velikog broja parametara i fizikalnih veličina

koje igraju važnu ulogu u procesu fisije, pri čemu su neki vezani na kolektivne stupnjeve slo-

bode atomske jezgre, a neki na stupnjeve slobode pojedinih nukleona koji čine jezgru. Stoga je

vrlo složeno uvoditi sustavne aproksimacije koje bi omogućile opis procesa fisije uz prihvatljivu

i prediktivnu razinu grešaka.

Modeli temeljeni na nuklearnim energijskim funkcionalima gustoće su identificirani kao

najbolji izbor za mikroskopski opis procesa fisije. Većina primjena se oslanja na adijabatsku

aproksimaciju, pri čemu se pretpostavlja da je vremenska skala kolektivnih stupnjeva slobode

atomske jezgre nekoliko redova veličine veća od vremenske skale intrinzičnih stupnjeva slo-

bode pojedinih nukleona. Stoga se može reći da su kolektivni i intrinzični stupnjevi slobode

savršeno razvezani što omogućuje mapiranje nuklearnog problema mnoštva čestica na kolek-

tivnu Schrödingerovu jednadžbu koja uključuje mali skup kolektivnih varijabli. U adijabatskom

modelu nije moguće jednoznačno odrediti točku pucanja atomske jezgre te se stoga koriste em-

pirijske definicije, najčešće povezane s brojem nukleona u području izmed̄u formiranih fisionih

fragmenata.

Jedan od problema koji se pojavljuju u realističnim simulacijama procesa fisije, temeljenim

na rješavanju kolektivne Schrödingerove jednadžbe, je pojava nefizikalnih diskontinuiteta na

energijskim plohama. Ograničena dostupnost računalnih resursa općenito onemogućava ko-

rištenje više od nekoliko kolektivnih koordinata, dok se preostale koordinate koje nisu ograničene

prilagod̄avaju u samosuglasnom postupku traženja globalnog minimuma energije. Stoga nema

nikakve garancije da će dobijena energijska ploha biti glatka. Prisutnost diskontinuiteta može

prouzročiti ozbiljne probleme u simulacijama procesa fisije, primjerice može prikriti pravu vis-

inu fisionih barijera.

U ovom radu smo pokušali definirati pouzdanu proceduru provjere prisutnosti diskontinu-

iteta na energijskoj plohi, kao i proceduru eliminacije diskontinuiteta pronalaženjem glatke

putanje koja minimizira energiju jezgre.

Provjera prisutnosti diskontinuiteta može se provesti izračunom preklopa izmed̄u susjednih

stanja na energijskoj plohi. S tim ciljem smo implementirali formalizam proračuna preklopa

koji rješava mnoga ograničenja tradicionalnih pristupa temeljenih na Onishi formuli i korištenju

xiii



Pfaffiana i omogućuje račune sa stanjima koja su dobijena u proizvoljnim bazama harmoničkog

oscilatora. Ovaj korak je bio ključan jer simulacije procesa fisije uključuju konfiguracije s ek-

stremnim vrijednostima deformacija pa je za konvergenciju računa nužno koristiti optimiziranu

bazu harmoničkog oscilatora s pažljivo odabranom deformacijom oscilatora i uključivanjem

samo onih stanja oscilatora koja su nužna za opis dane konfiguracije. Stoga se u računu prek-

lopa pojavljuju baze koje ne moraju nužno imati istu dimenziju, niti istu deformaciju oscila-

tora. Uvedeni formalizam omogućuje precizan izračun preklopa s takvim različitim bazama što

dosada nije bilo moguće.

Nadalje, razvijena je i testirana rutina temeljena na metodi dinamičkog programiranja (DPM).

Takva rutina se može koristiti za pronalaženje putanje minimalne energije preko malih dvodi-

menzionalnih energijskih ploha s ciljem uklanjanja diskontinuiteta koji postoje na jednodimen-

zionalnim energijskim plohama. DPM s optimiziranim breadth-first tree serach (BFS) algo-

ritmom je implementiran na diskretiziranoj energijskoj plohi s ciljem nalaženja glatke krivulje

minimalne energije. Optimizacije BFS algortima podrazumjeva proračun samo ograničenog

broja putanja u svakom koraku pretrage što bitno smanjuje zahtjeve na računalnu memoriju i

računalno vrijeme. Budući da ovi zahtjevi rastu eksponencijalno s veličinom prostora pretrage,

optimizacija je nužna za praktične primjene.

Glavna ideja izglad̄ivanja energijskih ploha je korištenje stablaste strukture dvodimenzion-

alnih energijskih ploha. Počevši od inicijalnog čvora, odabranog med̄u točkama ulazne energi-

jske plohe s diskontinuitetom, BFS algoritam istražuje sve čvorove energijske plohe i na kraju

pretrage odabire putanju s najmanjom vrijednosti integrirane energije. Nasuprot tome, DPM

uspored̄uje sve putanje koje završavaju u istom čvoru i odbacuje sve osim putanje s najman-

jom vrijednosti integrirane energije. Stoga DPM uspored̄uje bitno manji broj putanja čime se

smanjuju zahtjevi na računalne resurse.

Tijekom pretrage se mogu postaviti i dodatni zahtjevi na normu preklopa izmed̄u susjed-

nih stanja na energijskoj plohi, kao i na prihvatljivu vrijednost gradijenta energije. Iako ovi

zahtjevi u načelu mogu pridonijeti izglad̄ivanju plohe, oni istovremeno relaksiraju adijabatsku

hipotezu. Tako dobijena putanja neće nužno prolaziti kroz lokalne minimume zadane energijske

plohe, iako će integrirana energija biti minimalne. Nadalje, ovi zahtjevi ograničavaju prostor

pretraživanja algoritma što u nekim slučajevima može onemogućiti pronalaženje rješenja.

Konačno, provjerena je pouzdanost izglad̄enih energijskih ploha dobijenih DPM-om. Test

je napravljen izračunom fisionih vremena života. Spontana fisija je primjer procesa kvantnog
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tuneliranja čestice kroz energijsku barijeru. Tijekom fisije složene jezgre sustav mora savla-

dati dvije ili tri energijske barijere prije nego stigne do sedlene točke kada postaje nestabilna.

Vjerojatnost dogad̄anja fisije je u kompeticiji s drugim modovima raspada, odnosno vrijeme

potrebno za fisiju je vezano uz penetrabilnost jezgre kroz energijsku barijeru koja razdvaja os-

novno stanje od konfiguracija s ekstremnim deformacijama. Preciznije, u poluklasičnoj WKB

aproksimaciji, vrijeme života je proporcionalno eksponencijalnoj funkciji akcije izračunatoj na

fisionoj putanji. Iako se najpouzdaniji pristupi proračunu vremena života temelji na putanji koja

minimizira akciju, u literaturi je pokazano da putanje koje minimiziraju energiju takod̄er daju

prihvatljive rezultate te smo stoga koristili putanju minimalne energije.

Svi dobiveni rezultati su ispravnog reda veličine u odnosu na empirijske podatke pri čemu

treba naglasiti da vremena života poprimaju vrijednosti u vrlo širokom rasponu od približno

30 redova veličine. Relaksacija adijabatskog uvjeta koja se koristi u okviru DPM metode za

izglad̄ivanje plohe jer takod̄er provjerena i ne utječe negativno na izračunata vremena života.

Takod̄er je utvrd̄eno da izglad̄ivanje energijskih ploha sustavno poboljšava izračunate vrijed-

nosti vremena života u usporedbi s vrijednostima dobivenim na plohama koje pokazuju diskon-

tinuitete.

Predložene metode predstavljaju pouzdanu i ekonomičnu alternativu tradicionalnim pris-

tupima rješavanju problema diskontinuiteta na energijskim plohama koje podrazumijevaju povećanje

dimenzije kolektivnog prostora. Sljedeći korak je generalizacija predloženih metoda kako

bi se mogle izglad̄ivati dvodimenzionalne plohe s diskontinuitetima. Preliminarni proračuni

pokazuju da je takva generalizacije izvedljiva i predstavljala bi važan korak u daljnjim istraži-

vanjima statičkih i dinamičkih svojstava procesa fisije.
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Kohn-Sham metoda, inverzni Kohn-Sham problem,
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INTRODUCTION

A theoretical framework able to describe nuclear phenomenology in its entirety does not ex-

ist. Nonetheless, many models are available on the market for the study of different aspects of

nuclear structure. Among them, nuclear energy density functionals (NEDFs) currently provide

the most complete description of ground-state properties and collective excitations. No other

method achieves comparable global accuracy at the same computational cost, allowing for the

description of nuclear structure phenomena throughout the entire chart of nuclides, from light

systems to super heavy elements, from the valley of β-stability to the particle drip-lines. The

framework of NEDFs has been employed to develop several microscopic models, e.g., the ran-

dom phase approximation, the interacting boson model, and the generator coordinate method,

that allow to explore low-energy spectroscopy and large-amplitude dynamics.

The basic implementation of the framework corresponds to the self-consistent mean-field

(SCMF) model, specifically realized by means of an adopted effective interaction solved at a

certain level of approximation. It includes a NEDF built as a functional of one-body nucleon

density matrices corresponding to a single product state. SCMF models are based upon an

important concept supported by many phenomenological evidences: the independent particle

picture. Kept as a guidance for all attempts of systematic improvement, it considers nucle-

ons to be self-bound by the average of two-body interactions over the states occupied by the

other particles. The mean-field, created in a self-consistent way, is considered to be static, so

that dynamical corrections are, at least to some extent, neglected. A unified description of the

nuclear mean-field and of the strong pairing correlations can be achieved within the Hartree-

Fock-Bogoliubov (HFB) or the relativistic Hartree-Bogoliubov (RHB) approximations. In order

to preserve the independent particle picture, the focus of study is shifted from nucleons to quasi-

particles defined by the Bogoliubov transformation. The theory can then be successfully applied

even to the physics of exotic nuclei far from stability.

In atomic physics, energy density functionals of remarkable accuracy can be derived from
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the electron gas theory. In contrast, in nuclear physics, where the details of the nuclear force are

not well known, the specific form of the effective interaction might be at most motivated from

some microscopic calculation based on the underlying nucleon-nucleon interaction. Unlike

the atomic case, the nuclear interaction is strongly spin-, isospin- and momentum-dependent.

Spin-orbit and tensor terms, as well as three-body components, cannot be neglected. Fully

phenomenological NEDFs, such as Skyrme, Gogny, and relativistic ones, adopt a small number

of model parameters to reach satisfactory accuracy across the whole nuclear chart. Some of the

parameters of the functional can be derived, at least qualitatively, exploiting bulk properties of

symmetric and asymmetric infinite nuclear matter at saturation. The rest are usually fitted to

ground-state experimental data of finite nuclei, such as masses and charge radii.

Density Functional Theory (DFT) represents one of the most successful theoretical ap-

proaches to the study of both electronic and nuclear structure. The usage itself of a NEDF

for the description of nuclear systems finds a robust justification only when encapsulated within

this exact theory. Expressly, DFT states a one-to-one mapping between the correct ground-state

density of a fermion system and the minimum of a universal and exact energy density func-

tional. The original formulation of DFT is based on existence theorems of this exact energy

density functional but it does not point to any constructive method to get its form, which re-

mains basically unknown. Most applications of DFT for precise calculations resort therefore on

a mathematical reorganization of the energy density functional: the Kohn-Sham (KS) scheme.

An auxiliary non-interacting system is uniquely defined once its density is set equal to that of

the original system. Once this equality is established, the minimum of the energy density func-

tional of the fictitious system coincides with that of the original one. One gets thereby access

to all ground-state properties of the original system. Within the KS formulation of DFT one is

able to write down the terms that compose the NEDF, namely a non-interacting kinetic energy

term and a contribution given by an effective exchange-correlation KS potential coupled to the

density.

Across the last decades, many have been the attempts to improve the accuracy of NEDFs,

and yet the present predictive power of theoretical models remains far below the precision of

modern experimental results. Specifically, current efforts to build more general NEDFs are

hindered by the lack of a strategy for systematic improvement. In this context alternative ap-

proaches should be pursued, possibly gazing beyond the landscape of nuclear physics in search

of innovatory ideas. In this sense, the inverse DFT problem has already proved to be useful in
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the case of electronic systems. The problem consists in deducing the form of the Kohn-Sham

potential once the density function of a nucleus is given. The information encoded into empir-

ical nuclear densities might then be used to improve a given functional towards the exact but

unknown NEDF.

The first chapter of this thesis should be intended as a collection of useful concepts concern-

ing the nuclear many-body problem. After a quick overview about the main empirical features

of the nuclear force, theoretical methods commonly used to tackle the nuclear many-body prob-

lem are discussed. A special eye is constantly kept on the SCMF model. The incorporation of

pairing correlations within the SCMF model, the construction of NEDFs, and the idea of break-

ing symmetries in order to preserve the independent particle picture, are then discussed. DFT

is presented in its original formulation, together with the main issues related to that. Finally,

the well-celebrated KS scheme and the main concepts of the DFT inverse problem are treated.

A particular focus is given to the argument of inverse problems and how they require a more

careful treatment than direct ones.

The second chapter presents the first set of results obtained in the course of this work.

First, the implementation of two algorithms for the solution of the non-relativistic inverse KS

problem is discussed. The algorithms are tested using theoretical and empirical densities of

spherical, closed-shell nuclei. The obtained KS potentials are analyzed. In the rest of the

chapter, the main limitations associated with the solution of the inverse Kohn-Sham problem

are dealt with. The relativistic generalization of the inverse DFT problem is presented. A

model that manages to exploit the piece of information encoded in empirical densities and KS

potentials is designed and tested in the final part of the chapter. The model can be used to

improve a simple NEDF towards the unknown exact one, by developing a relativistic version of

Density Functional Perturbation Theory.

The nuclear fission process is a remarkable phenomenon whose microscopic description is

one of the most challenging tasks in the field. In fission, the quantal features of the many-

body problem are sharply intertwined to the complex dynamic collective evolution of a nuclear

compound. The framework provided by NEDFs is identified as the best for a fully microscopic

study of the process. The focus of the third chapter is then spontaneous fission, that is the

non-induced splitting of a parent nucleus into two fragments. The chapter begins with a brief

review of the process and discusses the techniques apt to calculate one of the main quantities

used to characterize it, namely the spontaneous fission lifetime. The second part of this work
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deals with one of the main problems that stem out in adiabatic simulations of fission based

on the SCMF model: the inevitable risk of appearance of artificial discontinuities on potential

energy surfaces (PESs). The presence of discontinuities on PESs creates several issues in the

calculation of fission properties, by, for instance, hiding the real height of the energy barriers.

A routine, based on the Dynamic Programming Method (DPM), is discussed. It quantifies the

quality of a given PES, and it stitches discontinuities eventually present on that. The final part of

the chapter is devoted to the calculation of fission lifetimes along the obtained smooth minimum

energy paths that lead the nuclei towards scission. The purpose of the calculation is to establish

if there is any impact of the stitching procedure on nuclear properties. Moreover, one would

like to quantify the level of improvement brought by the smoothing process in comparison to

the original, discontinuous, potential energy surface.
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Chapter 1

NUCLEAR MANY-BODY PROBLEM

Nuclei are quantum many-body systems composed by self-bound protons and neutrons. To-

gether, these two types of fermions are called nucleons; in fact, the charge independence of the

nucleon-nucleon interaction, namely the equality Vnp = Vpp = Vnn, allows to see them as two

isospin projections of one same entity. Nuclei are kept bound by the nuclear forces, a general set

of interactions comprising nucleon-nucleon, pionic and heavy mesons interactions. A standard

feature of the interactions of the many-body nuclear problem is that the forces acting between

each pair of fermions involve the complicated interplay of all hadrons, at least to some extent.

Depending on the scale of energy at which the phenomena of interest happen, there is a different

probability of producing a variety of strongly interacting particles.

A historical challenge of theoretical nuclear physics is the comprehension of the proper-

ties of atomic nuclei in terms of the bare interactions between pairs of nucleons. Undertaking

this task proves to be daunting and requires an incredible amount of computional resources.

Moreover, the underlying theory of strong interactions, QCD, shows that the nucleon-nucleon

interaction is not a fundamental one. Thankfully, a number of sharp observations come in aid

in this regard, justifying the assumption of several useful approximations for the study of the

nuclear many-body problem:

• The distance between nucleons in nuclei is large enough for the strong repulsive core of

the interaction not to be felt at full by nucleons. Instead, the particles composing nuclei

mostly experience the softer tail of the interaction. To this purpose, it is noteworthy to

consider the energy scale for removing a nucleon from a nucleus, S(n,p) ≈ 10 MeV, or

the average kinetic energy of nucleons in nuclei, T ≈ 40 MeV, in comparison to the rest

mass of a single nucleon, m(n,p)c
2 ≈ 1 GeV, and the one of the lightest existing hadron,
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the pion, mπc
2 ≈ 137 MeV. A reasonable first approximation is therefore to account

for the exchange of mesons between nucleons with the action of effective forces. In this

sense the full complexity of the nuclear forces does not come into play.

• In addition to the nuclear interactions, the influence of other weaker forces cannot be

neglected. Protons feel and generate electromagnetic fields. The presence of weak inter-

actions manifests itself in important processes, such as β-decays. Although taking into

consideration these minor forces is not strictly required in order to establish main bulk

properties of nuclear structure, they indeed play a key role in determining the stability of

bound states.

• Because of the short range of the nuclear forces, all nuclei are characterized, in their

interior, by an approximately constant saturation density, with value %sat = 0.16 fm−3,

and by a volume that grows in proportion with the mass number A. The density typically

decays to zero in proximity of the nuclear surface over a distance of about 2 fm. The

surface thickness of nuclei is thus rather small if compared to their radial extent, defined

as the distance at which the density has become half of its interior value %sat. An empirical

value for this quantity is given by R = r0A
1/3, where r0 = 1.2 fm can be determined

by electron elastic scattering data. The experimental data available for nuclear matter

distributions almost entirely consists of proton densities [1], even if the neutron density

of few isotopes of lead and tin has been obtained via proton scattering [2]. In heavy

nuclei, the excess of neutrons with respect to protons gives rise to differences between

the densities of the two types of nucleons.

• Another important feature of nuclei is the value of the mean free path for the collision

between the constituent nucleons. Many are the evidences that this quantity is large in

comparison with the size of the nucleus. A long mean free path of the nucleons in nuclei

entails that the interactions result in a smooth average potential, in which the particles

move independent one of each other.

A simple yet effective way to understand the main trends that characterize nuclear structure

is to analyze the well-celebrated semi-empirical Weizsäcker expression [3] for the total nuclear

binding energy (Figure 1.1). This quantity, defined as the difference between the observed total

6



Theoretical Models For The Study Of Nuclear Structure

nuclear energy in the ground-state and the rest masses of the separated nucleons, reads

B = bvolA− b2/3
sur − bsym

(N − Z)2

2A
− 3(Ze)2

5Rc

. (1.1)

The first term is the main, volume energy term. It represents the limit of the binding energy for

heavy symmetric (N = Z) nuclei, in the absence of Coulomb forces. The bulk binding energy

of a nucleus is proportional to A, and not to A(A−1)
2

, due to the short range of the interaction.

Each nucleon interacts with its neighbors, only. The second term is the surface energy. This

is a contribution typical of finite systems, reflecting the fact that particles are less bound at

the surface, where they have less neighbors. The third term takes into account the fact that

symmetric configurations of nuclei are energetically preferred. The Pauli principle enforces

protons and neutrons to occupy energy levels with increasing energy. An unbalance of any type

of fermion over the other implies higher energy levels to be occupied. The last term represents

the Coulomb energy of a uniform sphere with radius RC. It is responsible for the gradual

decrease of the binding energy per particle that can be observed in heavy nuclei. Also, it causes

an excess of neutrons in heavy stable nuclear systems.

The Weizsäcker formula, purely qualitative and not taking into account important pairing

correlations or quantum phenomena, is a noteworthy example of how many different effects,

some weighting more than others, do interplay in nuclear systems. From the observed binding

energies, one can deduce the order of magnitude of the average potential energy that a single

nucleon feels in a nucleus. The energy required to remove a neutron from a nucleus, namely

the neutron separation energy, is B(N,Z) − B(N − 1, Z) ≈ −(Vn + εF ) ≈ 10 MeV. Since

εF ≈ 40 MeV, the average potential felt by a single nucleon has a depth of |Vn| ≈ 50 MeV.

1.1 Theoretical Models For The Study Of Nuclear Structure
As well as the Nuclear Shell Model, the self-consistent mean-field (SCMF) approach presents

a compromise between ab initio methods and macroscopic (mic-mac) models. The first kind of

approaches, that start from a given nucleon-nucleon potential, are very effective in reproducing

nucleon-nucleon scattering data, yet fail in predicting quantitatively the saturation point [4] if

three-body interactions are not accounted for. Moreover, issues stem out when one tries to apply

them in describing many-body systems. In contrast, mic-mac models can reproduce quite well

some average trends, but are highly based on the phenomenology.

The next sections are dedicated to a brief overview of ab initio methods, mic-mac models,
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Icons

3.
a\ ,

Figure 1.1: © 2012 Encycloplædia Britannica, Inc.
The average binding energy per nucleus as a function of the mass number.
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and the Nuclear Shell Model, since several concepts discussed there might result instructive for

the upcoming detailed exposition of the SCMF framework.

1.1.1 Ab initio methods

Ab initio methods accept few compromises to tackle the nuclear many-body problem. They

look at nuclei as pure collections of nucleons that interact through realistic two- and three-body

potentials, e.g., the Argonne [5] or the Bonn potentials [6]. These realistic interactions are

extremely effective at describing nucleon-nucleon scattering data and phase shifts. Of course,

the price to be paid is the extremely high computational cost, which severely limits the range of

applicability of the models only to light or, more recently, medium-sized nuclei.

The first mandatory step of any kind of ab initio method consists in specifying the Hamil-

tonian of the nuclear system as the sum of the non-relativistic kinetic energy, a two-body (NN)

and a three-body (NNN) potential:

H =
∑
i

Ki +
∑
i<j

Vij +
∑
i<j<k

Vijk . (1.2)

At this point, different theoretical approaches are employed to solve the Schrödinger equa-

tion forA nucleons with spin si = ±1
2

and isospin ti = ±1
2

(proton or neutron). The many-body

Schrödinger equation

HΨ(~r1, ~r2, . . . , ~rA; s1, s2, . . . , sA; t1, t2, . . . , tA) =

EΨ(~r1, ~r2, . . . , ~rA; s1, s2, . . . , sA; t1, t2, . . . , tA) , (1.3)

is a set of 2A
(
A
Z

)
complex coupled equations in 3A − 3 variables. Its approximate solution

enables the calculation of basic features of finite nuclei: binding energies, excitation spectra,

densities, systematic trends of charge radii in isotopic chains [7, 8], and so on. Three main

methods exist to deal with the solution of Equation (1.3):

• Quantum Monte Carlo Methods [9] are used to perform a variation of the parameters of

a wisely chosen trial wave function, in order to minimize the expectation value of the

nuclear Hamiltonian

ET =
〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉

≥ E0 . (1.4)

To obtain accurate enough results, Green’s Function Monte Carlo techniques [10] are
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needed to project the exact eigenfunction out of the trial wave funtion.

• The No-Core Shell Model [11, 12] interprets nuclei as systems of A point-like nucleons

bound by realistic two- and three-body interactions. All nucleons are considered active

(no-core), in contrast to what happens in standard shell model calculations (section 1.1.3).

A large but finite harmonic oscillator (HO) basis, truncated by a total harmonic oscillator

energy, is used to generate a model space. Thanks to this choice, one is able to use

single-nucleon coordinates and wave functions

φnlm(~r;b) = Rnl(~r; b)Ylm(r̂) , (1.5)

where Rnl are the radial HO wave function, equations (1.17 - 1.21), and b is the harmonic

oscillator length, related to the harmonic oscillator by the relation frequency,

b =

√
~
mΩ

. (1.6)

Second-quantization formalism is enabled, and the translational symmetry is never bro-

ken. On the other hand, the non-physical asymptotic behavior of the harmonic oscillator

potential must be dealt with. The method considers an Hamiltonian of the type (1.2), but

the inter-nucleon interaction, which acts on the full space, is renormalized via a similarity

transformation to the reduced harmonic oscillator model space. The process generates an

effective Hamiltonian which contains many-body terms. The renormalization is neces-

sary to make the calculations as close as possible to the full space exact results, but also

to improve the convergence rate.

• Chiral Effective Field Theory (χ-EFT) [13–15] recently became very popular, especially

for precision calculations of light nuclei. The nuclear forces are derived as kernels of

dynamical equations, order by order, within an EFT expansion [16]. Starting from a

nucleon-pion system and the spontaneous breaking of chirality, the strong interaction La-

grangian is expanded in terms of small momenta. The model is based on solving the

Hamiltonian with interactions between nucleons that are derived from QCD via symme-

tries. The approach has the advantage of explaining the hierarchy of many-body forces,

estimating well theoretical uncertainties.

High performance computing, many-body methods with polynomial scaling, and ideas from
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EFT are pushing the frontier of ab initio computations of nuclei. Recently, bulk properties of

medium-mass and neutron-rich nuclei became accessible by using reference states that break

rotational symmetry and keeping axial symmetry [17, 18].

Although NEDFs derived from effective forces obtained with ab initio calculations may

never arrive to incorporate all the correlations necessary for a fine-tuning of the binding en-

ergies, several attempts are being done on this line of research, see [19] and references cited

therein.

1.1.2 Macroscopic approaches

Mic-mac models try to obtain generic trends and nuclear features in an up-to-bottom philos-

ophy. They claim that the available precise experimental knowledge represents a source of

information that must be exploited as much as possible for predictive purposes. They begin

with a simple framework inspired to the liquid drop model, and add a posteriori quantum, pair-

ing, compressibility and finite-range effects. This allows to define very efficient models for a

wisely chosen set of macroscopic features, and of course to keep the computational resources

under control in favor of practical results.

The Strutinsky theorem [20,21] establishes that the ground-state energy of a nucleus can be

decomposed into the sum of two terms:

E = Ē + δE (1.7)

δE =
∑
α

εα −
∫ ∞
−∞

∑
α

g(ε− εα) . (1.8)

The major term, Ē, smoothly varies with mass and atomic numbers, and can be accounted by

the traditional liquid drop formula, Equation (1.1). The second term, δE, is instead built with a

Gaussian smoothing function adjusted to the contributions related to the shell correction energy

and to particle-particle correlations. The single-particle energies εα are computed by adopting

a modified harmonic oscillator potential or a Woods-Saxon potential [22]. The key idea of

mic-mac models is to parameterize Ē, the smooth background energy, with the highest possible

accuracy. The most important set of quantities used to this purpose is made of the degrees

of freedom that describe the shape of the nuclear surface. The set of choices available in the

literature for this parameterization is remarkably extended [23].

Mic-mac models, keeping macroscopic and microscopic effects well separated, have some
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very clear practical advantages. For example, the estimation of zero-point energies can be

directly fitted in the models. Different parametrizations can be used, devised and customized to

deal with a specific problem. Relatively easy to be understood and programmed, they can also

be very instructive with a view to SCMF approaches. In fact, a semi-classical approximation

such as the Thomas-Fermi model [24, 25], possibly containing gradient corrections, can be

used to get an estimate of the macroscopic energy (1.7) starting from a SCMF calculation. In

general, the long history and the great number of interesting theoretical ideas present in mic-

mac approaches should be constantly taken into account for possible future developments of

SCMF approaches.

1.1.3 Nuclear Shell Model

The Nuclear Shell Model must be discussed, as it shares several key ideas with the SCMF

framework. The approach is based on an independent particle picture, where nucleons are

considered to be self-bound by the average of the two-body interactions over the states occupied

by all other particles. The mean-field is static: dynamical corrections are neglected.

The average potential, denoted here U(~r), is usually taken as a standard phenomenological

single-particle potential, and the shell model Hamiltonian reads

H =
A∑
i=1

(Ki + Ui) +
1

2

( A∑
i,j=1

Vij −
A∑
i=1

Ui

)
(1.9)

=
A∑
i=1

h0(i) +HRES . (1.10)

At the roughest approximation the single-nucleon average potential may be a square-well po-

tential or an harmonic oscillator potential, in spherical symmetry; In the former case,

U(r) =

U0 if |r| < R

+∞ if |r| ≥ R ,

(1.11)

and the corresponding eigenfunctions of the Schrödinger equation are

Ψnlm(~r) = Nnljl(knlr)Ylm(θ, φ) , (1.12)

where Nnl is a normalization constant, jl are Bessel functions, while Ylm are the spherical
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harmonics built via the associated Legendre polynomials Pm
l (x),

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (1.13)

Pm
l (x) =

(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l . (1.14)

The eigenfunctions must vanish at the boundary R of the square-well potential, condition lead-

ing to the requirement that knlR = Xnl must be the n-th zero of the l-th Bessel function. The

corresponding eigenenergies,

εnl =
~2

2m
knl − U0 , (1.15)

determine the nuclear energy levels.

If the average potential is taken as a three-dimensional spherical harmonic oscillator,

U(r) =
1

2
mω2

0r
2 , (1.16)

one starts from the Ansatz

Ψnlm(~r) =
unl(r)

r
Ylm(θ, φ) . (1.17)

The resulting Schrödinger equation reads

[
− ~2

2m

d2

dr2
+ U(r) +

~2l(l + 1)

2mr2
− (εnl + U0)

]
, (1.18)

which is solved by

unl(r) = Nnlq
l+1e−q

2/2L
l+1/2
n−1 (q2) (1.19)

Lap(z) =
Γ(a+ p+ 1)ez

Γ(p+ 1)za
dp

dzp
za+pe−z (1.20)

Nnl =
2(n− 1)!

b[Γ(n+ l + 1
2
)]3

, (1.21)

where Lap(z) are the generalized Laguerre polynomials, b =
√

~
mω0

is the harmonic oscillator

length, and q = r
b
. Finally, the energy levels

εnl = ~ω0(N +
3

2
)− U0 , (1.22)
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with N = 2(n− 1) + l, are the equally spaced oscillator shells. A semi-empirical value for the

level spacing is ~ω0 = 41A−
1
3 MeV, estimated to fit mean-square radii of nuclei.

Even if a realistic average nuclear single-particle potential should have a finite depth, the two

previous approximations yield acceptable predictions of low-lying energy levels. The square-

well potential tends to predict stronger bindings than the harmonic oscillator potential. Having

defined the shell configuration of nucleons, one finds that a special stability is reached for

closed-shell configurations. In particular, the highest stability is found in correspondence of

numbers of protons or neutrons equal to 2, 8, 20, 28, 50, 82, 126. Nuclei with such number of

each type of fermions are called magic, and they are characterized by spherical symmetry and

absence of pairing effects. Unfortunately, both the harmonic oscillator and the square-well shell

model correctly predict only the first three shell-closures.

It was then proposed [26] to add a spin-orbit term ζ(r)(~l · ~s) to the average single-nucleon

potential. The spin-orbit correlation is an intrinsically relativistic effect that provokes a splitting

and shifting of the energy levels, and allows to explain the observed nuclear magic numbers.

The term is way more relevant that in the atomic case, and its presence leads to the appearance

of a splitting of levels characterized by different total angular momentum ~j = ~l+ ~s. In the case

of nuclear bindings the spin-orbit levels with higher j for a given orbital momentum l are found

to lie lower in energy. To account for this evidence, the spin-orbit interaction must be attractive,

meaning that the coupling constant ζ(r) must be negative. The best choice for the quantum

numbers to treat the spin-orbit term is the coupled basis,
∣∣nl 1

2
jmj

〉
. The first-order splitting is

equal to

εl− 1
2
− εl+ 1

2
= −ζnl2l + 1

2
(1.23)

where ζnl =
∫
dr u2

nl(r)ζ(r).

In practical calculations one considers an Hamiltonian composed of an inert closed-shell

core and a separated band of valence nucleons around the Fermi energy. The core properties

are described by a single-particle average potential U(r), such as the two previously discussed.

Then, one performs a configuration-mixing calculation that involves all many-body states that

can be constructed within the model space used to describe the valence band [27]. The Nuclear

Shell Model has the ability to describe simultaneously all spectroscopic properties of low-lying

states with very different structure within a nucleus. On the other hand, the effective interactions

strongly depend on the choice of the active shells and on the truncation scheme. Shell model

calculations of nuclei very far from stability are therefore unreliable, since numerical costs grow
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explosively with the model space size.

1.2 Self-Consistent Mean-Field Model
In the same fashion of the Nuclear Shell Model, the Self-Consistent Mean-Field approach [28]

is based on the independent particle picture. The resulting mean-field is however generated

in a self-consistent way, after a global effective interaction, suitable to the study of all nuclei,

has been adopted. Once this effective interaction is defined, the nuclear many-body problem is

solved at a certain level of approximation, e.g., the Hartree-Fock or Hartree-Fock-Bogoliubov

approximation.

The approach enables a description of the nuclear many-body problem in terms of a uni-

versal nuclear energy density functional (NEDF). The term universal means that the functional

has the same form for all nuclei through the chart of nuclides. An important class of them

are relativistic NEDFs, whose applications have reached an accuracy level comparable to their

non-relativistic counterparts, based on Skyrme or Gogny effective interactions.

It is also necessary to extend the framework to include correlations originating from the

restoration of broken symmetries (translational, rotational, particle number) and from fluctua-

tions of the collective coordinates. Such collective correlations cannot be included in a universal

NEDF, because of their high sensitivity to shell effects and pronounced variations with particle

number. Hence, a second level of the NEDF framework considers collective correlations via

the restoration of broken symmetries and configuration mixing of symmetry-breaking product

states. The NEDF is then constructed as a functional of all transition density matrices that can

be obtained from the chosen set of product states. This set is chosen with the purpose of restor-

ing symmetries and/or to perform mixing of configurations corresponding to specific collective

modes, e.g., QRPA [29], GCM [30], collective Hamiltonian model [31].

The upcoming sections are devoted to a detailed exposition of the framework: the Hartree-

Fock-Bogoliubov and relativistic Hartree-Bogoliubov formalism, the construction of the NEDF

with the possible choices for the effective force, and a final brief overlook to the landscape of

beyond-mean-field approaches.

1.2.1 Pairing correlations

The staggering trend that characterizes the one-neutron separation energies [32] shows that

even-even nuclei are significantly more bound than their odd-A neighbors. The energy gap

∆ ≈ 2 MeV between the ground-state and the lowest single-particle excitation of even-even
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nuclei can be explained by the presence of a residual bond between pairs formed within the

last shell. These are some of the many empirical evidences that point to the existence of a

strong, short-range, attractive particle-particle residual nuclear force: the pairing force. In the

framework of nuclear physics, pairing correlations cannot be treated in a perturbative way as

it is done in atomic physics. Pairing even arrives to impact dynamical properties, such as the

value of nuclear momenta of inertia [33].

The relevance of pairing for nuclear structure makes the Hartree-Fock (HF) level of approx-

imation highly inadequate. Specifically, properties of open-shell and deformed nuclei cannot

be properly reproduced without taking it into account. To obtain solid results, it is necessary,

at the very least, to add pairing effects on top of the results provided by the HF approxima-

tion. This can be done by means of the BCS1 theory: the BCS equations are solved starting

from a set of solutions of the HF problem. This level of approximation is valid in the case of

time-reversal-invariant systems, namely for even-even nuclei. A Kramers energy degeneracy

of time-conjugated single-particle states, εn = εn̄, is then present. Because of this, within the

HF+BCS approximation, the pairing field ∆ is diagonal in the same basis that diagonalizes the

mean-field h.

The inclusion of pairing a posteriori may have an impact on the HF mean-field potential,

for example by shifting the energy minimum to become less deformed than it actually is. The

HF+BCS level of approximation holds very well for the description of spherical and deformed

nuclei not too far from stability. In fact, usually the constant-gap approximation is adopted: den-

sities are calculated using BCS occupation factors with the gap parameter ∆ being determined

from empirical mass differences. However, for exotic nuclei far from the valley of stability,

masses are often unknown, and, most important, the BCS model only provides a poor approxi-

mation. In such a case, the BCS treatment gives completely wrong predictions for observables

related to the nucleon density. For instance, it predicts a dramatic increase of neutron radii for

neutron-rich open-shell nuclei.

A more robust and elegant way to consider pairing correlations consists in incorporating a

pairing field in the Hamiltonian of the system, treating the pairing interaction and the mean-field

on an equal footing. This unified description can be achieved at the level of the Hartree-Fock-

Bogoliubov (HFB) approximation [34, 35], or, in the relativistic case, the relativistic Hartree-

Bogoliubov (RHB) approximation [36,37]. Both will be discussed in the next section. An ample

1Bardeen-Cooper-Schrieffer
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exposition of the nuclear BCS theory can instead be found in [38] and in references therein.

1.2.2 Hartree-Fock-Bogoliubov and relativistic Hartree-Bogoliubov

formalism

Let the single-nucleon wave functions be denoted by ψi(~x), ~x = (~r, si, ti), with i = 1, . . . , Nwf

and Nwf ≥ A. Consider the creation operator a†i of a nucleon in the state ψi(~x).

The HF method considers the total wave function of the nucleus, |Φ〉, to be a Slater deter-

minant of the single-nucleon states ψi. Occupied states satisfy a†i |Φ〉 = 0 for i = 1, . . . , A, and

ai |Φ〉 = 0 for i > A.

The Hartree-Fock-Bogoliubov (HFB) formalism incorporates instead particle-particle cor-

relations with the will of sticking to the independent particle picture of the nucleus. This can

be done by shifting the object of study from particles to quasiparticles, whose creation opera-

tors are defined by the Bogoliubov transformation as a general linear superposition of particles

operators:

b†n =
∑
i

Uina
†
i + Vinai . (1.24)

The Bogoliubov transformation connects the single-nucleon states to the quasiparticle states. In

the matrix notation, Equation (1.24) reads b

b†

 =W†
 a
a†

 , (1.25)

where the Bogoliubov matrix

W =

U V ∗

V U∗

 (1.26)

is unitary2. The nuclear ground-state is given by the quasiparticle vacuum condition,

bn |Φ〉 = 0 (1.27)

for all n.

Treating the mean-field and the pairing correlations at the same level means that the energy

2The unitary condition of the Bogoliubov matrix implies U†U+V †V = 0, UU†+V ∗V ᵀ = 0, UᵀV +V ᵀU =
0, and UU† + V ∗Uᵀ = 0.
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functional must not depend only on the single-particle density matrix, the normal density

%ij =
〈

Φ
∣∣∣ a†jai ∣∣∣Φ〉 = %∗ji , (1.28)

but also on the pairing tensor, the abnormal density

κij = 〈Φ | ajai |Φ〉 = −κji . (1.29)

In terms of the Hartree-Fock-Bogoliubov matrices, they read

% = V ∗V T (1.30)

κ = V ∗UT . (1.31)

The density matrix and the pairing tensor can be combined to build the generalized density

matrix

R =

 % κ

−κ∗ 1− %∗

 , (1.32)

which is Hermitian, R† = R, idempotent, R2 = R, and has eigenvalues equal to either 0 or

1. Thanks to this definition, most of the formalism and rules originally developed within the

Hartree-Fock scheme can be generalized to the Hartree-Fock-Bogoliubov framework by simply

working with the generalized density and the Bogoliubov matrices in place of the normal density

and single-nucleon wave functions. As a first useful application of this concept, the equation of

motion for the matrixR (1.32) reads

i∂tR(t) = [H,R(t)] , (1.33)

where the generalized Hamiltonian H is calculated as the functional derivative of the energy

with respect to the generalized density:

H =
δE

δR
. (1.34)

The ground-state of an open-shell even-even (time-reversal invariant) nucleus is then described

18



Self-Consistent Mean-Field Model

by the stationary limit of Equation (1.33),

[H,R] = 0 . (1.35)

The nuclear ground-state |Φ〉 can be calculated by minimizing the total energy

E = 〈Ψ |H |Ψ〉 = E[%, κ] , (1.36)

with a constraint on the proton and neutron numbers Nt. It will be clear below, within the

more general framework of Density Functional Theory, that not only the energy, but all one-

body operators, can be expressed in terms of one-body densities, only. The minimization of the

Routhian

E[λ] = E − λt 〈Ψ | Nt |Ψ〉 (1.37)

leads to the HFB equations, expressed in terms of the matrices U and V

H

Un
Vn

 = En

Un
Vn

 (1.38)

H =

 h− λt ∆

−∆∗ − h+ λt

 , (1.39)

The Hamiltonian is composed of three ingredients: the self-consistent mean-field h, responsible

for long-range particle-hole interactions, the pairing field ∆, accounting for particle-particle

short-range correlations, and the chemical potentials λt, the Lagrange multipliers associated to

the constraint that the expectation values of the particle number operators Nt equal the number

of protons and neutrons. The mean-field and the pairing field are respectively defined by

hij =
δE

δ%ji
= h∗ji (1.40)

∆ij =
δE

δκ∗ij
= −∆ji . (1.41)

The quasiparticle energies En can also be viewed as Lagrange multipliers that enforce the or-

thonormality of the quasiparticle states. This concept will be developed and clarified in the

implementation of the Constrained Variation method for the solution of the inverse Kohn-Sham

problem, section 2.1.2.
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Given a Hamiltonian H = T + V , V being a two-body effective interaction composed by

a particle-hole channel V (ph) and a particle-particle channel V (pp), the definitions above lead to

the following expression for the mean-field,

hij = Tij +
∑
kl

V
(ph)
ijkl %lk , (1.42)

and for the pairing field

∆ij =
1

2

∑
kl

V
(pp)
ijkl κkl . (1.43)

Different bases may be used to express the solution of the HFB equation:

• The quasiparticle basis that diagonalizes the generalized densityR.

• The canonical basis diagonalizes the density operator % and sets the pairing tensor κ in its

canonical form, obtained thanks to the fact that the U matrix becomes diagonal and the V

matrix gets decomposed into 2× 2 anti-diagonal sub-matrices. The transformation to the

canonical basis determines the energies and occupation probabilities of single-nucleon

states. The localization of the canonical basis enables the description of the bound states

and the single-particle continuum [39].

• The HF basis is the one in which the mean-field h is diagonal.

At this point is indeed worth mentioning the HFBTHO code [40], able to solve the HFB

problem with Skyrme and Gogny forces by expanding the nuclear states on the harmonic oscil-

lator basis in cylindrical coordinates. Advanced symmetry restoration techniques (section 1.2.4)

for particle number, reflection and rotational symmetry are implemented. The software can be

also used to calculate several nuclear fission related properties (refer to chapter 3), such as

the nuclear collective inertia, the fission fragment charge, mass and deformations based on the

determination of the fission neck.

The relativistic generalization of the HFB formalism, leading to the relativistic Hartree-

Bogoliubov (RHB) equations, is straightforward. Again, the relativistic mean-field energy

functional is extended to include the pairing tensor in addition to the density matrix and the

meson fields φm. This is accomplished by adding the pairing energy

Epair[κ̂] =
1

4
Tr
[
κ∗V (pp)κ

]
(1.44)
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to the NEDF:

E[%, κ, φm] = ERMF [%, φm] + Epair[κ] . (1.45)

The generalized Hamiltonian is defined in the same way as Equation (1.34), with the Dirac

mean-field relacing the mean-field h. The Dirac mean-field and the pairing field are, again,

integral operators with the kernels of equations (1.42) and (1.43), but the indexes now denote

quantum numbers that specify the Dirac indexes of the spinors. The RHB equations are solved

via the diagonalization of the generalized Hamiltonian H, as in Equation (1.38). The general-

ized density matrixR is constructed from the eigenvectors ofH.

The dimension of the HFB (RHB) matrix equation is twice that of the corresponding Schrödinger

(Dirac) equation. For each eigenvector (Un, Vn) with positive quasiparticle energy En > 0,

there exists an eigenvector (V ∗k , U
∗
k ) with opposite quasiparticle energy. However, the quasi-

particle operators must satisfy fermion commutation relations, and the levels ±En cannot be

occupied simultaneously. For the solution that corresponds to the ground-state of a nucleus

with even particle number, one commonly chooses the eigenvectors with positive eigenvalues

En.

Among the available codes able to solve the relativistic Hartree-Bogoliubov (RHB) equa-

tions it is worth mentioning the DIRHB code [41], able to solve the relativistic equations for

spherical, cylindrical, and triaxial systems. State-of-the-art relativistic nuclear energy density

funtionals are implemented in the suite, enabling precise calculations throughout the whole nu-

clear chart. The routine calculates the mean-field solution of the nuclear many-body problem

for even-even open-shell nuclei. The relativistic RHB equations are solved in a self-consistent

iteration scheme. The method combines the coordinate space and the harmonic oscillator con-

figuration representations. The diagonalization of the RHB matrix, Equation (1.38), gives ac-

cess to the RHB amplitudes Un and Vn and to the single-quasiparticle energies En. The normal

and abnormal densities built from the wave functions are first calculated in the configurational

harmonic oscillator space and afterwards transformed to the coordinate space. The density and

the pairing tensor in the coordinate space are used to calculate the potentials used in the next

iteration of the routine. It is possible to constrain the solution to reproduce the desired value of

some operators. This can be done by following the the method of the Lagrange multiplier. A

remarkable example of this procedure is the Multiple Constraint Method, implemented in this

work and discussed in appendix B.
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1.2.3 Nuclear energy density functionals

The specific functional form of the NEDF used within the HFB or RHB formalism is obtained

by adopting an effective interaction. There exist mainly three possible choices for the form

of the effective interaction, but several hundreds of different parameterizations of them are

available on the market. Effective interactions may differ for the choice of the nuclear data they

are fitted to, as well as for the level of empiricity of the techniques with whom they are derived.

The most straightforward choice for the effective interaction, justified by the short range

of the nuclear forces and by the long wavelength of the single-nucleon states, consists of an

expansion in terms of zero-range, delta-shaped, contact forces. Following this idea, one obtains

the so-called Skyrme-type interactions [42]. A simplified version of state-of-the-art Skyrme

energy density functionals, useful to catch the idea that lies behind all of them, is the following:

Vpseudo-Skyrme(|~r1 − ~r2|) = t0δ(|~r1 − ~r2|)(1 + x0Ps)

+
t3
6
δ(|~r1 − ~r2|)(1 + x3Ps)%

α

(
~r1 + ~r2

2

)
, (1.46)

where t0, t3, x0, x3, and α are the above mentioned fit parameters of the interaction, whereas

Ps = 1+s1·s2
2

is the spin exchange operator. The interaction explicitly depends on the density: at

this point of the exposition, this is just a semi-empirical necessity based on the fact that several

nuclear properties, such as the incompressibility and the effective mass, cannot be reproduced

without a density-dependence of the effective force. In section 1.3, the framework of Density

Functional Theory will provide a solid theoretical background to this feature. State-of-the-art

functionals may as well contain terms proportional to gradients of the density up to a given

order, effectively making the interaction velocity-dependent [43].

A different possible choice for the effective interaction, first proposed in [44], is the follow-

ing:

VBrink-Boeker(|~r1 − ~r2|) =
∑
i=1,2

Si(1−mi +miPM)e
− |~r1−~r2|

2

µ2
i , (1.47)

where Si, mi, µi are parameters, and PM is the Majorana operator that exchanges the coordi-

nates of two interacting nucleons. Later on, this simple interaction has been refined [45] by

adding new terms and parameters and including density-dependencies and a spin-orbit term.

Named Gogny-type interaction, it relies on finite-range, Gaussian-shaped forces. One of the

main advantages of the Gogny interaction is the possibility of using it both in the particle-hole
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and in the particle-particle channels. In fact, finite-range interactions avoid the divergence prob-

lem that affects zero-range forces in the pp-channel of the interaction.

Finally, a last important class is that of the relativistic nuclear energy density functionals,

developed to make up for the empirical assumptions of their non-relativistic counterparts. As

an example, the necessity of Skyrme and Gogny interactions to include a spin-orbit term ad

hoc. The starting point is a covariant Lagrangian that contains the nucleonic degrees of free-

dom. Relativistic mean-field (RMF) models [46–48] use coupling constants as parameters to

be fitted to data of nuclear matter or finite nuclei. In this framework, one usually neglects

exchange-correlation (Fock) potentials, as they are absorbed by the phenomenological fit of the

coupling constants, as well as the contribution of the antiparticles to the mesonic fields (no-sea

approximation). While non-relativistic NEDFs treat the spin-orbit potential as a completely

phenomenological addition, relativistic NEDFs automatically incorporate spin and the spin-

orbit potential terms with the proper strength, via the constructive combination of the scalar

long-range attractive field and the vector short-range repulsive field. In fact, as already men-

tioned in section 1.1.3, the energy spacing between spin-orbit partner states can become as large

as the gaps between major shells, and the strong coupling between the orbital angular momen-

tum and nucleon spin is fundamental to obtain correct magic numbers and shell gaps. RMF

are thus calculated from the nucleonic wave-functions, now four-components Dirac spinors, by

iteratively solving the RHB equations. RMF models can reproduce binding energies and charge

radii across the nuclear table, as well as density distributions comparable with those obtained

in electron scattering experiments [49]. One of the main issues of the model, the inability to re-

produce nuclear matter incompressibility, can be solved by including nonlinear self-coupling of

the sigma-field [50]. Several other ground-state properties have been calculated, such as single-

particle spectra of adjacent odd-mass nuclei, magnetic moments [51], and excited collective

states [52]. In general one chooses between effective point-coupling (PC) zero-range forces and

effective finite-range interactions based on meson-exchange (ME). A remarkable example of a

relativistic energy density functional is the DD-PC1 [53], Equation (2.85), in which only nu-

cleon degrees of freedom are explicitly used for the construction of effective interaction terms.

A phenomenological form for the density-dependence is also present. The set of parameters of

the functional is adjusted in a χ2-fit to the experimental masses of sixty-four axially deformed

nuclei in the mass regions A ≈ 150 − 180 and A ≈ 230 − 250. The resulting functional is

further tested in calculations of binding energies, charge radii, deformation parameters, neutron
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skin thickness, and excitation energies of giant monopole and dipole resonances. During the last

decade the functional DD-PC1 has successfully been applied in a number of studies of various

nuclear phenomena, from ground-state properties to the description of collective spectra, giant

resonances, shape-phase transitions and the dynamics of nuclear fission.

For the pp-channel, both in the case of Skyrme and relativistic EDF, a phenomenological

non-relativistic pairing interaction is adopted. In the RMF case, the pairing field ∆ can be

written in the form

∆ =

 ∆++ ∆+−

∆−+ ∆−−

 (1.48)

by separating the large and the small components of the quasiparticle wave functions. Calcula-

tions of finite nuclei [54] show that the off-diagonal blocks ∆−+ and ∆+−, which couple large

and small components, are considerably smaller than the matrix elements of the corresponding

off-diagonal term of the Dirac mean-field hD. Moreover, as the pairing properties are deter-

mined in an energy window of a few MeV in proximity of the Fermi surface, also ∆−− plays no

relevant role on pairing in finite nuclei. Thus, in the RHB equations, one uses a non-relativistic

potential in the calculation of the field ∆++. To avoid divergence problems that would require

introducing an additional energy cut-off parameter, it was suggested [55] that the pairing part

of the Gogny force [56] could be employed in the RHB model.

1.2.4 Beyond mean-field methods

The leitmotiv of all extensions of the SCMF model is the desire to stick to the independent

particle picture. This is the idea that leads to the definition of linear combination of single-

nucleon states, that is to the concept of quasiparticle. This way, the independent particle picture

manages to thoroughly account for pairing effects without waiving the possibility of describing

the total ground-state wave function in the form of a Slater determinant. The advantage of this

representation is the straightforward implementation of the anti-symmetrization principle for

identical particles, as well as the applicability of the Wick’s theorem used for the evaluation of

the matrix elements of many-body operators.

Of course there is a price that has to be paid in exchange. On one hand, the linear many-

body Schrödinger equation becomes a set of non-linear, density-dependent one-body mean-field

equations. The numerical methods used to solve them are therefore conceptually more advanced

and require the implementation of iterative-based routines and smart mixing procedures. On the

other hand, the independent particle picture is preserved at the expense of breaking several sym-
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metries of the underlying Hamiltonian. In particular, consider the HFB equations, summed up

by the synthetic condition (1.35) of commutation between the Hamiltonian and the generalized

density. Given a symmetry S, consider the transformation

H[R̄] = SH[R]S† ; (1.49)

the symmetry is broken if [H,S] 6= 0, which implies R̄ 6= R.

In the HFB and RHB models, the translational, rotational, particle number, and reflection

symmetries are broken. Nonetheless, breaking symmetries is a price worth paying, since corre-

lations between nucleons might have not been taken into account while requiring, at the same

time, for the mean-field and wave functions to respect the symmetries of the underlying Hamil-

tonian. For instance, the desire to stick to translational-invariant, product-type, wave functions,

would force one to make use of plane waves, definitely inadequate to seize a fine-size cluster of

nucleons. This means that constraining the symmetries a priori actually reduces the flexibility

of the model. The answer to the symmetry dilemma, namely choosing between lower-energy

states that break symmetries or good quantum numbers that bring along higher energies, is

obvious.

If the concept of symmetry-breaking enables a description of dynamical correlations on

top of simple product-type states, on the other hand, the mean-field wave functions cannot be

labeled anymore by good quantum numbers, and, most important, cannot be used as they are to

calculate quantities comparable to experimental data. Another drawback is the sharp transitions

between symmetry-conserving and symmetry-breaking solutions that may appear as a function

of parameters of the Hamiltonian. This is the case, for instance, of the phenomenon of pairing

collapse of the nuclear momentum of inertia at high angular momentum [57].

There exist several techniques apt to restore broken symmetries, based on the linear super-

position of the degenerate deformed HFB or RHB wave functions to project out components

with good quantum numbers. These procedures lower the energy of the mean-field solution

by lifting its degeneracy and represent a step beyond the mean-field approximation. Symmetry

restoration [58] may be applied after the HFB or RHB variation has been carried out. This

is a relatively simple method to implement it at the cost of loosing the warranty that the pro-

jected energy corresponds to a minimum of the projected potential energy surface. Otherwise,

one projects the HFB or RHB equation before the minimization process. This way, intrinsic

states for each quantum number of the restored symmetry are obtained. The cost of the latter
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procedure is unfortunately much higher and can be applied only to medium-sized nuclei. This

computational challenge led to the development of several approximate methods for symmetry

restoration, useful to deal with systems characterized by triaxiality or weak symmetry break-

ing3. In particular, the Lipkin [59], the Lipkin-Nogami [60], and the Kamlah [61] methods are

all based on the idea of approximating the kernels of operators between deformed states, giving

access to the matrix elements of symmetry-projected states.

1.3 Density Functional Theory
At this point, the important role played by nuclear energy density functionals in the study of

nuclear matter should be clear. Since the very first works on NEDFs, it has been noticed that

a density-dependence of the effective potentials is necessary to the aim of reproducing basic

many-body properties of nuclear structure. This semi-empirical feature has a sound explanation

within the framework of nuclear Density Functional Theory. The charm of the theory lies

in the possibility of predicting, in principle exactly, the ground-state properties of the system

under investigation. Moreover, the computational cost that must be paid is surprisingly low.

The advantage of dealing with the density, a function of three space variables, in place of the

cumbersome many-variable total wave function, is evident. DFT, given the knowledge of the

nuclear density of the physical system of interest, gives then access to the study of systems that

can be very large in the sense of their degrees of freedom.

The nuclear density is defined as the number of nucleons per unit of volume in a given state

Ψ,

%(~r1) = A

∫
· · ·
∫

ds1d~x2 . . . d~xA|Ψ(~x1, . . . , ~xA)| , (1.50)

and it integrates up to the total number of nucleons in the system, that is

∫
d~r1 %(~r1) = A . (1.51)

For a more general definition of the nuclear density, the reader may refer to appendix A.

1.3.1 Hohenberg-Kohn theorems

The Thomas-Fermi model was the first to suggest the possibility of determining the energy

of an electronic system as an approximate functional of the density, only. For decades, the

3In this case, a large number of eigenstates of the symmetry generators are mixed up in the broken-symmetry
state, increasing the computational resources required.
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Thomas-Fermi model has been thought to be oversimplified, because of its very limited predic-

tive power mainly due to its strong assumptions. The idea of treating the properties of a system

as functionals of the density alone was later developed by Hohenberg and Kohn. In [62], they

provided three fundamental theorems, that showed that the Thomas-Fermi model might be as

well thought as an approximation of a many-body exact theory: Density Functional Theory.

The determination of the ground-state energy and wave function of a given fermion system

requires both the knowledge of the number A of the particles composing the system, and that

of the external potential v(~r) to which the system is subject. The first Hohenberg-Kohn (HK)

theorem justifies the usage of the local density %(~r) as a basic variable, in place of A and v(~r).

It is evident that the density uniquely determines the number A of particles in the system. Way

more remarkable is the fact that also the external potential v(~r) can be identified, up to an

arbitrary constant, by the information encoded in the density. The inter-particle interaction and

the kinetic term are instead fixed once one considers a specific type and number of fermions.

These are some of the consequences of the HK theorems:

HK1 Given a system of A interacting particles, described by the Hamiltonian

H = T + V +W = −
A∑
i=1

∇2
i

2mi

+
A∑
i=1

v(~ri) +
A∑
i6=j

w(~ri, ~rj) , (1.52)

the A-body wave function Ψ, and the corresponding density calculated according to Equa-

tion (1.50), the non-degenerate ground-state wave function is a unique functional of the

ground-state density:

Ψ0(~r1, . . . , ~rA) = Ψ[%0(~r)] . (1.53)

As a consequence, the ground-state expectation value of each observable is a functional

of the nuclear density, alone.

Proof. The density trivially determines A by quadrature. The fact that the expectation

value of each observable is a functional of the nuclear density is shown in appendix A.

It is then just necessary to demonstrate that the density determines v(~r). Suppose there

were two external potentials, v and v′, differing by more than just an arbitrary constant,

related to the same ground-state density %(~r), solution of the Schrödinger equation. Then,

two different Hamiltonians H and H′ would exist, their ground-state densities being the

same, and yet the normalized wave functions Ψ and Ψ′ would be different. Let Ψ′ be a
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trial wave function for theH problem and vice versa:

E0 < 〈Ψ′ |H |Ψ′〉 = 〈Ψ′ |H′ |Ψ′〉+ 〈Ψ′ |H −H′ |Ψ′〉 =

= E ′0 +

∫
d~r %(~r)(v(~r)− v′(~r)) (1.54)

E ′0 < 〈Ψ |H′ |Ψ〉 = 〈Ψ |H |Ψ〉+ 〈Ψ |H′ −H |Ψ〉 =

= E0 +

∫
d~r %(~r)(v′(~r)− v(~r)) . (1.55)

This leads to an absurd. There cannot be two different potentials v providing the same

ground-state density %.

HK2 For a given external potential v(~r) to which the system is subject, there exists a universal

functional F [%], such that the total energy density functional reads

Ev[%] = F [%] + V [%] = T [%] +W [%] + V [%]. (1.56)

The HK functional F [%] is universal for a given particle-particle interaction and for a

given number of particles in the system, since it does not depend on the external potential

v(~r).

HK3 For a given density %̃(~r) such that

%̃(~r) ≥ 0 (1.57)∫
%̃(~r) = A (1.58)

The ground-state energy is a global minumum of the total energy:

E0 = Ev[%] ≤ Ev[%̃]. (1.59)

Proof. Because of the first HK theorem, %̃(~r) determines the potential ṽ up to an arbitraty

constant and the total wave function Ψ̃ up to a phase factor. Consider Ψ̃ as a trial wave

function of theH problem

〈
Ψ̃
∣∣∣H ∣∣∣ Ψ̃〉 = F [%̃] +

∫
d~r %̃(~r)v(~r) = Ev[%̃] ≥ Ev[%] (1.60)

If Ev[n] is differentiable, the third HK theorem can be written in the same fashion of the
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method of Lagrange multipliers,

δ

[
Ev[%]− µ

(∫
d~r %(~r)− A

)]
= 0, (1.61)

where µ is the chemical potential

µ =
δEv[%]

δ%
=
δF [%]

δ%
+ v(~r). (1.62)

The attractive possibility of having an exact theory has led to attempts to determine the

exact, or at least a properly approximate, structure of the universal functional F [%]. In fact,

once its explicit form were available, it would be possible to apply DFT to all nuclear systems.

Unfortunately, this reveals to be a terribly difficult task. The reason is of course that all of

the complications contained in the many-variable wave function of the system could not have

disappeared at once by moving to the usage of the simpler density function as the basic variable

of the many-body problem. Most of the attempts to provide an approximate form of the exact

universal functionals rely on drastic assumptions, but it is still very remarkable that one has

a well-defined procedure for finding the ground-state properties of a possibly huge amount of

systems.

1.3.2 Levy-Lieb constrained-search formulation

The ground-state wave function of a system described by a Hamiltonian determines uniquely the

ground-state density. The HK theorems define then a one-to-one mapping between the density

function and the external potential v(~r), up to an arbitrary constant. If one were able to provide

a form of the universal functional F [%], the correct ground-state density then would determine

uniquely the ground-state energy.

A density is called v-representable if it is related to the antisymmetric ground-state wave

function of an Hamiltonian of the type (1.52). It is important then to give a more precise

formulation of the first HK theorem: There exists a one-to-one map between the ground-state

wave function of a many-body quantum system and its v-representable density. Energy density

functionals are at this point defined for v-representable densities, only. A major complication is

associated to v-representable densities: there does not exist any condition for a trial density to

be v-representable. In fact, many densities have been shown to be not v-representable [63].
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Here it comes the relevance of a new formulation of DFT, in terms of densities that satisfy

a weaker condition, namely the N -representability condition. A density is N -representable

if it can be obtained from an anti-symmetric wave function. This condition is satisfied by

any reasonable one-body local density and it is a necessary condition for v-representability.

By reasonable density one means that a density is N -representable if it satisfies the Gilbert

conditions, equations (1.57), (1.58), and

∫
d~r
∣∣∣∇√%(~r)

∣∣∣2 <∞ , (1.63)

a smoothness requirement for the functional form of the density. For instance, wild oscillations

of the density preclude N -representability. In other words, a N -representable density can be

written in terms of N orthonormal orbitals, that generate %(~r) from a Slater determinant wave

function.

By definition, there exists an infinite number of anti-symmetric wave functions that repro-

duce the same correct ground-state density; thereby, one could ask how to distinguish the true

ground-state wave function Ψ0 from any Ψ%0 which also integrates to the correct ground-state

density %0. In other words, the question is how to identify, among all the N -representable den-

sities, the one v-representable density coming from the true ground-state wave function of the

Hamiltonian. This critical theoretical issue of the HK formulation of DFT can be solved by

extending the domain of the energy density functional Ev[%] from v-representable densities to

the larger set ofN -representable densities. The idea is to exploit the minimum energy principle,

that uniquely identifies the true ground-state wave function,

〈Ψ%0 |H |Ψ%0〉 ≥ 〈Ψ0 |H |Ψ0〉 = E0 . (1.64)

This expression is given by the sum of the expectation value of the universal functional

F [%0] = 〈Ψ%0 | T +W |Ψ%0〉 = min
Ψ→%0

〈Ψ | T +W |Ψ〉 , (1.65)

defined for any v-representable density, and that of the external potential term, which is one-to-

one coupled to the density. The Levy-Lieb (LL) formulation rewrites the minimum energy prin-

ciple in order to make explicit the fact that the variational search is constrained: the trial space

for the wave functions is restricted only to those that reproduce the requested v-representable
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density %0 by quadrature. Using this clever reorganization, one extends the domain of the uni-

versal functional to N -representable densities:

FLL[%] = min
Ψ→%
〈Ψ | T +W |Ψ〉 , (1.66)

with FLL[%0] = FHK [%0].

A double-hierarchy minimization for the ground-state energy calculation stems out:

E0 = min
Ψ
〈Ψ | T +W |Ψ〉

= min
%

[
min
Ψ→%
〈Ψ | T +W |Ψ〉

]
= min

%

[
FLL[%] +

∫
d~r %(~r)v(~r)

]
. (1.67)

The existence of the minimum has been proved by Lieb in [64]. The LL constrained-search for-

mulation of DFT removes the original issues associated to v-representability. The optimization

proceeds in two different steps; first one search the optimal wave function which reproduce a

given density. The trial space of densities is explored, and at the end of the first minimization

one has in its hands a set of local minima. The sense of the second minimization is simply to

identify the global minimum among those.

1.3.3 Kohn-Sham scheme

The Kohn-Sham (KS) scheme gives an insight on the HK theorems and on the structure of

the universal functional F [%]. In [65] Kohn and Sham, by mathematical reorganizing the EDF,

reformulated DFT, turning a theory highly difficult to be handled into a practical tool for precise

calculations. A set of effective single-particle KS equations are introduced for an auxiliary

KS system of N non-interacting particles, described by the Hamiltonian HKS = TKS + VKS .

Exploiting the first HK theorem, one asserts that for any interacting system there exists a unique,

local, single-particle potential vKS(~r), such that the exact ground-state density of the interacting

system equals that of the non-interacting KS reference system:

%(~r) = %KS(~r) =
N∑
i=1

|φi(~r)|2 . (1.68)
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The total ground-state wave function of this fictitious system is fully determinantal,

ΦKS =
1

N !
det[φ1 . . . φN ] , (1.69)

and the single-particle wave functions φi, also unique functionals of the density, can be found

as the lowest-energy eigenstates of the single-particle Hamiltonian,

HKSφi(~r) = εiφi(~r) . (1.70)

The energy functional of the original system, that reads

E[%] = F [%] +

∫
d3r %(~r)v(~r) (1.71)

= T [%] +W [%] +

∫
d3r %(~r)v(~r) , (1.72)

is equal to the energy density functional of the auxiliary KS system,

EKS[%] = TKS[%] +

∫
d3r %(~r)vKS(~r) (1.73)

= − ~2

2m

∑
i

〈
φi
∣∣∇2

i

∣∣φi〉+

∫
d3r %(~r)vKS(~r) . (1.74)

The KS EDF is minimized by the ground-state density associated to HKS . This scheme entails

that the universal functional splits into

F [%] = TKS[%] + U [%] + Exc[%] (1.75)

where the first term is the non-interacting kinetic energy, the second is the local Hartree term,

while the exchange-correlation term is formally defined by the previous equations as

Exc[%] = T [%] +W [%]− U [%]− TKS[%], (1.76)

and it captures all dynamical quantum many-body effects. Thereby, one has a structure for the

Kohn-Sham potential,

vKS[%] = vH[%] + vxc[%], (1.77)
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where the exchange-correlation potential reads

vxc[%] =
δExc

δ%
(1.78)

The Kohn-Sham formulation of Density Functional Theory has the advantage of being fully

local. Its accuracy depends only on the approximation of the unknown exchange-correlation

energy, which is nevertheless universal. The first level of approximation, consisting in fully

neglecting Exc, delivers the Hartree equations. Still, the scheme goes far beyond the Hartree

mean-field approximation, even only because it takes into account all the correlation effects,

and it is, at least in principle, exact. Another possible approximation scheme is the local den-

sity approximation (LDA), in which the exchange-correlation term is taken equal to that of an

infinite uniform system:

Exc =

∫
d~r %(~r)εxc[n] (1.79)

Among the state-of-the-art beyond-LDA approximation schemes, the most relevant is the generalized-

gradient-approximation (GGA). See [66] for more details.

1.4 Inverse Problems

The definition of inverse problem comes in opposition to that of direct, or forward, problem.

A direct problem deals with the calculation of a quantity, for instance the density of some

system or its evolution in time, as a function of its causes, say the interaction between the

constituent particles of the system or the equation of motion. Direct problems can usually

be expressed through a system of differential equations that fully determine their evolution.

On the other hand, inverse problems typically arise whenever one tries to perform the indirect

observation of some quantity of interest. Here, the knowledge of some observable is given

and one aims to derive the causes that have resulted in that. It is a matter of fact that inverse

problems often present features of non-locality and non-causality. Those features contributes

generating instabilities of the solution of the problem [67]. Consider the inverse heat equation

problem, namely the attempt of estimating an initial temperature distribution, based on the

measurement of the temperature distribution at some final time. An infinity of different initial

conditions may have ended up into the same final state; small changes in the initial temperature

could have smeared out in time. On the contrary, however complex the system might be, the

corresponding forward problem is local and casual: it is guided by the heat equation. Another
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example is given by the calculation of the gravitational field of the Earth, given the knowledge

of its density (direct problem) versus the estimate of the density the Earth given the knowledge

of the generated gravitational field (inverse problem). In the case of the inverse problem, one

must incorporate all available information about the initial data that one may had prior to the

measurement.

1.4.1 Ill-posed problems

The mathematical definition of well-posed problems was first stated in [68]. Any mathematical

model apt to describe a physical system should respect the three Hadamard criteria:

HC1 The existence of a solution of the problem.

HC2 The uniqueness of the solution of the problem.

HC3 The continuous and smooth dependence of the solution of the problem as function of its

initial conditions.

A problem is well-posed when the above three conditions are fulfilled, while it is said to be an

ill-posed problem if any of those is defective.

Forward problems are, in most of the cases, well-posed. Because of that there is a good

chance of being able to implement stable algorithms to produce solutions. On the other hand,

inverse problems are often ill-posed. The existence of an analytic solution is not guaranteed. It

is then necessary to implement numerical methods to obtain results. When an inverse problem

is formulated within a continuous space which gets discretized for computational purposes,

discretization errors may appear. Finite precision easily leads to numerical instabilities and to

unexpected, possibly non-physical, behaviors. Among those, numerical methods, because of

their intrinsic rounding and approximations, might make inverse problems less ill-posed than

they actually are, and produce solutions that contain more information than that actually carried

by the input. To ignore the discretization errors results in overly optimistic expectations about

the performance of the inversion method [69]. In those cases, one says that the model is over-

fitting to the input data. A wrong model is reproducing the data too well in comparison to the

factual knowledge given by the input data. This type of behaviors of inversion methods go

under the name of inverse crimes.
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1.4.2 Inverse Kohn-Sham problem

The inverse Kohn-Sham (IKS) problem consists in deducing the form of the KS potential, Equa-

tion (1.77), given the knowledge of the density of a nuclear system. The solution of the inverse

problem in DFT may reveal useful to benchmark the approximate EDFs available on the market.

In this sense, it can represent an independent strategy to fine-tune theoretical models employed

to describe nuclear structure.

The direct problem in the KS scheme of DFT, namely the potential-to-density problem,

is widely considered to be well-posed, above all thanks to the HK theorems and to the LL

constrained-search formulation already discussed above. On the other hand, although the IKS

problem can also be well-posed for some specific discretized systems [70], in most of the cases

errors and lack of detailed information about the input density make the problem ill-posed.

The nuclear density determines a set of single-particle wave functions, up to an overall phase

factor; also, unitary transformations of the KS orbitals wind up in generating the same density.

The orbitals in turn identify the form of the KS potential, up to an arbitrary constant, via the KS

equations. Special attention must be paid then in developing an inversion method that converges

to the true solution of the inverse problem, because non-uniqueness features are a matter of fact.

In general, both the direct and inverse KS problems share the same set of equations: the

Kohn-Sham equations. Yet, there are some differences that imply developing completely in-

dependent algorithms to solve them. For a closed-shell, spin-saturated system of neutrons and

protons, the KS equations read:

[
− ~2

2m
∇2 + vKS(n(~r))

]
φi(~r) = εiφi(~r) (1.80)

n(~r) = 2

Norb∑
i=1

|φi(~r)|2 (1.81)

vKS[n] = vH[n] + vxc[n] , (1.82)

where the orbitals are considered to be orthonormal and the external potential is absent in the

nuclear case. In the case of the direct problem, the unknowns are the set of the wave functions

and the density, while for the inverse problem the unknowns are the Kohn-Sham potential and

the wave functions. In the forward problem one must deal with a non-linear eigenvalue prob-

lem, since assumptions for vKS may contain powers of %,∇%, and so on; instead, in the inverse

problem the eigenvalue problem is fully linear, and non-linearity features are encoded in the
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definition of the density. It is such subtle difference that entails the necessity of using differ-

ent methods for the solutions of the two problems. Moreover, the inverse problem is highly

constrained, while the forward problem is free. In fact, in the former case the knowledge of

the density defines several constraints to be respected by the Kohn- Sham orbitals. Those for-

mal constraints will be made explicit in the next chapter, in the definition of the Constrained

Variation inversion algorithm, section 2.1.2.
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Chapter 2

SOLUTION AND APPLICATIONS OF

THE INVERSE KOHN-SHAM

PROBLEM

A general nuclear energy density functional should be a functional of isoscalar, isovector and

spin densities, as well as corresponding currents. The systematic construction of all possible

densities and their gradients has been described in [71], while a classification of all possible

terms that should compose a NEDF has been treated in [72]. These terms are all the scalar

quantities that can be built out of densities and that are invariant under parity, time-reversal,

rotational, translational and isospin transformations. The number of such terms easily becomes

very large, making the EDF fitting procedure rather prohibitive. During the last decade, many

groups took up the quest of building more general energy density functionals, in which one

starts from density-dependent terms, and progressively incorporates other terms that depend

on density gradients [73, 74]. Others have tried to derive the nuclear EDFs from fundamental

approaches [75].

Current efforts to build a nuclear EDF are hindered by the lack of a clear strategy for sys-

tematic improvement. The solution of the inverse Kohn-Sham problem, scarcely discussed in

nuclear physics literature, may be a road worth trying to undertake. As already discussed in sec-

tion 1.3.3 of this manuscript, the Kohn-Sham scheme for the formulation of Density Functional

Theory represents one of the most successful theoretical approaches to the study of both elec-

tronic and nuclear structure. The possibility of obtaining an exact solution of a well-established

theory in physics always represents a source of knowledge that one should investigate. This is
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especially true in nuclear physics, where most theoretical models are highly dependent on the

phenomenology and heavily lean on experimental data. The construction of exact Kohn-Sham

potentials from nuclear empirical densities is promising and pioneering, since it may provide

a reliable benchmark against which approximate energy density functional can be tested. In

the present chapter, the practical methods for the solution of this inverse problem, presented in

section 1.4.2, is addressed. To this end, different algorithms have been proposed across the last

thirty years, in atomic and condensed-matter physics, as well as in quantum chemistry. They

all emerge from alternative formulations of the inverse problem; some of them are based on the

optimization of a functional, whereas others are iterative.

The solution of the inverse problem can be addressed both to finite and extended systems,

once appropriate boundary conditions are applied. The main issue is however that one generally

lacks the exact boundary conditions that must be applied a priori to the potential. Only some

phenomenological knowledge of the expected asymptotic behaviors is available. Given that the

density structure fixes the sum of the squared orbitals at boundaries, if any boundary condition

were imposed, it should be in total agreement with the density constraints. An alternative idea

is to let the inversion method define the boundaries of the orbitals to agree with the density

constraints. That is the so-called no-boundaries density-constrained strategy. This strategy

is applied, e.g., in the van Leeuwen and Baerends (vLB) method discussed in section 2.1.1.

Although no detailed knowledge of the boundaries is needed, it is quite common to stumble

upon inverse crimes. In that case, the boundary values of the potential may have to be discarded

a posteriori, to respect of the actual piece of information carried by the input density.

In the forward, well-posed, Kohn-Sham problem, the KS equations can be solved relatively

easily by, for instance, a self-consistent routine. The errors in the resulting density then mainly

depend on the specific algorithm’s numerical discretization, on the choice of the convergence

conditions, and on the quality of the input potential. In the corresponding inverse problem, of

course the discretization choice fairly impacts on the precision of the results, but the quality

of the input density represents a very fundamental limit on the possibility of successfully per-

forming the inversion. In fact, if the numerical error of a given density is not properly taken

into account, the inversion can produce over-fitting issues or lead to non-physical features of

the output potential. In the framework of the direct problem, the assumed potential is known

everywhere at the same level of detail; in contrast, the density of many systems is known in

some radial intervals and extrapolated elsewhere according to more or less sound assumptions.

38



Algorithms For The Solution Of The Inverse Kohn-Sham Problem

In the practical applications presented in this manuscript, results are mainly positive when one

tests the algorithm with analytic formulas of the target density, for which one already knows

the expected potential. On the other hand, when one deals with empirical densities and treats

more-than-one-dimensional systems, much higher attention must be paid.

The non-relativistic framework for the solution of the inverse Kohn-Sham problem disre-

gards the contribution of the spin-orbit potential, a term which is normally added ad hoc, not

being encoded into the empirical nuclear density distributions from which the Kohn-Sham po-

tentials are derived. The relevance of the spin-orbit term for solid predictions of nuclear struc-

ture properties has already been discussed in section 1.1.3 and 1.2.3. Since the spin-orbit po-

tential is a completely phenomenological addition to the non-relativistic KS potential, it cannot

be determined from the ground-state density using the IKS method. Therefore, it is natural to

extend the methods for the inverse Kohn-Sham problem to relativistic nuclear EDFs, where the

spin-orbit potential, is automatically incorporated in the formalism.

In this chapter, two inversion algorithm are presented and applied to the solution of the

IKS problem for doubly-magic nuclei. Afterwads, the formalism of the density-to-potential

inversion is generalized to the relativistic framework. In the particular case of relativistic EDFs

considered here, the functional depends also on the Lorentz scalar single-nucleon density, which

is not an observable. Finally, the information on the KS potential obtained in this new and

pioneering way from empirical densities is employed to improve a given functional towards the

exact, unknown, EDF, starting from a relatively simple functional form, in the framework of the

Density Functional Perturbation Theory [76]. The idea is to consider as a first-order perturbation

the difference, supposedly small, between the known functional and the exact EDF.

2.1 Algorithms For The Solution Of The Inverse Kohn-Sham

Problem

This section presents two algorithms for the density-to-potential inversion in the non-relativistic

framework. Both methods are discussed in great detail in [77]. A necessary assumption is that

the effective KS potential that compose the EDF is only position-dependent. That is, non-local

effects and the spin-orbit potential are not taken into account. The possibility of including the

latter is addressed below, section 2.3.

The first inversion method, based on the van Leeuwen and Baerends (vLB) algorithm, con-

sists of an iterative procedure, whereas the second, the Constrained Variational (CV) method,
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in a constrained minimization of the kinetic energy of the auxiliary Kohn-Sham system.

2.1.1 Van Leeuwen and Baerends method

The method consists in iteratively adjusting the calculated density of the system to mimic the

input target density. To this purpose, starting from an initial guess for the effective Kohn-

Sham potential U [%], the algorithm updates the former at each step until convergence is reached.

Consider the KS equation in spherical symmetry,

(
− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ U(r)

)
ui(r) = εiui(r) , (2.1)

where ui(r) are the reduced radial wave functions and U(r) = U [%(r)] is the effective Kohn-

Sham potential; in the case of spherical nuclei i = {n, l, j}, respectively, the principal quantum

number, the orbital and the total angular momentum. The full single-nucleon wave function

reads

ψi(~r) =
unlj(r)

r
[Yl(θ, φ)⊗ χ1/2]jm , (2.2)

where m is the projection of the total angular momentum j on the z-axis. The boundary condi-

tions associated to the Kohn-Sham Equation (2.2) are

lim
r→0

u(r) = rl+1 (2.3)

lim
r→0

u′(r) = (l + 1)rl , (2.4)

and they are enough to solve the equation directly, which means to calculate the density starting

from a given Kohn-Sham potential, by means of, e.g., a shooting algorithm. The solution of the

eigenvalue problem gives access to the nuclear density, which, in spherical symmetry, reads

%(r) =
1

4πr2

Norb∑
i=0

(2j + 1)u2
i (r) . (2.5)

The factor (2j + 1) accounts for the fact that only closed-shell nuclei are here considered. In

absence of a spin-orbit potential, working with the uncoupled l and s or with the coupled total

angular momentum j = l + s is fully equivalent.
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An algebraic manipulation of Equation (2.2) is performed to isolate the KS potential,

U(r) =
1

4πr2%(r)

Norb∑
i=0

[
(2j + 1)ui(r)

(
~2

2m

d2

dr2
− Ul

)
ui(r) + εi(2j + 1)ui(r)

]
, (2.6)

where Ul is a shorthand for the centrifugal potential. Out of Equation (2.6) an inverse routine

can be devised by substituting the density in the denominator with the input target density %̃.

Comparing with Equation (2.2), and given the definition of the density (2.5), one obtains:

U (k+1)(r) =
%(k)(r)

%̃(r)
U (k)(r) . (2.7)

The latter equation has an intuitive significance: if at any coordinate the iterated density be-

comes larger (smaller) than the target density, the absolute value of the KS potential is increased

(decreased) in the successive iteration. While such behavior works fine in the case of repulsive

potentials, in the case of attractive potentials the opposite should happen. Moreover, the routine

does not allow the potential to change sign in the iterative process, leading to possible problems

in proximity of U(r) = 0. Equivalently, it forces to careful choose the arbitrary energy shift

of the potential. As suggested in [77], both problems can be solved at once by adopting the

following reformulation of the iterative rule (2.7):

U (k+1)(r) = U (k)(r) + γ
%(k)(r)− %̃(r)

%̃(r)
; (2.8)

in practical applications the prefactor can be safely set to γ = 1 MeV.

To sum up, the flow chart for the implementation of the vLB method reads

1. An initial guess of the average potential must be assumed. Usually, a Woods-Saxon

potential1 is appropriate;

2. Equation 2.2 must be solved in order to get the KS energy levels εi and the eigenfunctions

ui(r);

3. The k-th nuclear density is calculated according to Equation 2.5;

4. The potential is adjourned by means of Equation 2.7 or Equation 2.8;

1The Woods-Saxon potential is defined VWS = V0
[1±κ(N−Z)/(N+Z)]
1+exp[(r−R0)/a]

; a is the diffuseness of the nuclear
surface, the plus (minus) sign holds for protons (neutrons), κ = 0.86 and V0 = −51 MeV

41



Algorithms For The Solution Of The Inverse Kohn-Sham Problem

5. The procedure is repeated until the absolute variation of the potential is everywhere

smaller than a user-chosen quantity α:

∆U (k) = max
r

∣∣U (k+1)(r)− U (k)(r)
∣∣ ≤ α. (2.9)

The method is remarkably robust, leading to convergence despite of the choice of the starting

guess of the potential. The main drawback consists in the algorithm’s inability to adjust the tail

of the potential, where the nuclear densities are infinitesimally small. In any case, the empirical

densities are absolutely unreliable for what regards their tails, as discussed in section 2.2.1

below.

2.1.2 Constrained Variation method

If one looks at the KS scheme as an energy optimization problem, the Constrained Variation

(CV) method can be devised as a recipe for a routine able to solve the inverse Kohn-Sham prob-

lem avoiding the solution of an eigenvalue problem. Note that within many density-to-potential

inversion algorithms, the diagonalization of the Hamiltonian becomes the main computational

limit as soon as the size of the system increases. Through the CV method, one obtains a set of

optimal wave functions that do reproduce the right target density, and yet are a unitary trans-

formation away from the system’s eigenfunctions. The method does not begin with any direct

information on the potential structure, but rather with a guess on the functional structure of the

Kohn-Sham orbitals. The main advantage is to deal with quantities that are formally closer to

the known input, that is a nuclear density.

The method of the Lagrange multipliers is used to perform the minimization of the expec-

tation value of the total kinetic energy of the auxiliary non-interacting system,

〈Φ |TKS |Φ〉 =
~2

2m

∫
d3r

N∑
j=1

|∇ϕj(~r)|2 , (2.10)

with respect to the Kohn-Sham orbitals ϕj(~r). Two types of constraints ci = 0 are imposed:

c0(~r) =
N∑
j=1

|ϕj(~r)|2 − %̃(~r) = 0 , (2.11)

cjk = 〈ϕj |ϕk〉 − δjk =

∫
d3r′ ϕ∗j(~r

′)ϕk(~r
′)− δjk = 0 , (2.12)
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j = 1, . . . , N and k = j, . . . , N being a set of good quantum numbers. Specifically, the

orbitals must integrate up to the correct target density, and they must obey orthonormality, in

order to produce a N -representable density (section 1.3.2). The Hohenberg-Kohn theorems,

section 1.3.1, ensure that the ground-state properties of the non-interacting auxiliary system,

subject to the effective Kohn-Sham potential, will be the same as those of the real interacting

system.

The Lagrangian of the system must be built; since time derivatives in the Schrödinger equa-

tion appear only linearly, in general one should consider complex fields or wave functions [78].

These are obtained as the superposition of two independent real fields,

ψ =
ψ1 + iψ2√

2
, (2.13)

ψ† =
ψ1 − iψ2√

2
. (2.14)

The Lagrangian density of a Schrödinger field reads

L = iψ†ψ̇ − ~2

2m
∇ψ† · ∇ψ − ψ†V (~r, t)ψ , (2.15)

whence the Euler-Lagrange equations

δL
δψ
−∇ · δL

δ∇ψ
=
(δL
δψ
−∇ · δL

δ∇ψ

)†
= 0 , (2.16)

return the Schrödinger equation and its complex conjugate

− ~2

2m
∇2ψ† + V ψ† = −iψ̇† , (2.17)

− ~2

2m
∇2ψ + V ψ = iψ̇ . (2.18)

The conjugate variables to the fields are

π =
δL
δψ̇

= iψ†,

πT =
δL
δψ̇†

= 0 , (2.19)
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so that the Hamiltonian density reads

H = πψ̇ + πT ψ̇† − L = −i ~
2

2m
∇π · ∇ψ − iπV ψ . (2.20)

The Hamiltonian of the Schrödinger field is then just an integration away,

H =

∫
Ω

d~r H =

∫
Ω

d~r ψ†
[
− ~2

2m
∇2 + V

]
ψ . (2.21)

If the fields ψ are time-independent, ψ̇ = 0, the right-hand sides of the Schrödinger equa-

tions (2.17) and (2.18) vanish, and the adjoint equation becomes trivial. Therefore, in the

present case, one can consider real wave functions to define the non-interacting kinetic energy

and the constraints, without any loss of generality.

The auxiliary Lagrangian,

L =
~2

2m

N∑
j=1

|∇ϕj(~r)|2 + U(~r)
( N∑
j=1

|ϕj(~r)|2 − %̃(~r)
)

+

+
N∑
j=1

N∑
k=j

εjk

(∫
d3r′ ϕj(~r

′)ϕk(~r
′)− δjk

)
, (2.22)

is build accordingly to the prescriptions of the method of the Lagrange multipliers: the con-

strained minimization is transformed into a free one with respect to the set of the orbitals and to

the Lagrange multipliers. Since Lagrange multipliers in the KS auxiliary system are formally

defined as

λi =
δ

δci
〈Φ |TKS |Φ〉 , (2.23)

the zeroth multiplier, λ0, which is associated to condition (2.11), is by definition the Kohn-Sham

potential

U(~r) =
δ

δ%
〈Φ |TKS |Φ〉 , (2.24)

that connects the auxiliary non-interacting system to the real interacting system, and enforces

the density to be the same in both of them. In contrast, the multipliers of the constraints (2.12)

have no plain physical meaning: they compose a symmetric matrix, whose elements are related

to the opposite of those of a unitary transformation of the matrix containing the energies of the

Kohn-Sham orbitals.

A this point, a cost functionalJ is defined as the space integral of the auxiliary Lagrangian (2.22),
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and one may proceed to perform its minimization. This final step recalls the optimization of

the action functional in mechanical system, equivalent to the solution of the Euler-Lagrange

equation. The main advantage is that one can deal with the optimization of a functional rather

than that of a multidimensional function. The cost functional reads

J
[
{ϕj}Nj=1, U(~r), {εjk}

]
=

~2

2m

∫
d3r

N∑
j=1

|∇ϕj(~r)|2+

+

∫
d3r U(~r)

( N∑
j=1

|ϕj(~r)|2 − %̃(~r)
)

+

+

∫
d3r

N∑
j=1

N∑
k=j

εjk

(∫
d3r′ ϕj(~r

′)ϕk(~r
′)− δjk

)
. (2.25)

In spherical symmetry, the same has the following form:

Jsph

[
{uj}Nj=1 , vKS(r), {εij}

]
=Tsph [{uj}] + 4π

∫ ∞
0

dr U(r)%(r)r2

−
N∑
i=1

i∑
j=1

εijδliljδjijj

∫ ∞
0

dr ui(r)uj(r) (2.26)

where Tsph is a shorthand notation for the spherical form of the kinetic energy. The derivation

of Equation (2.26) from Equation (2.25) is exposed in great detail in [79]. The minimum of

the kinetic energy plus the constraints coincides with the minimum of the functional, and the

minimum energy principle ensures the existence of a global minimum of the functional J . A

necessary condition for the presence of an extremum of a functional is that the Lagrangian sat-

isfies the Euler-Lagrange equations (2.16). The derivation of the kinetic term is straightforward,

( δ

δϕα
−∇ · δ

δ∇ϕα

) ~2

2m

N∑
j=1

[
(∇ϕj(~r))2

]
= −~2

m
∇2ϕα(~r), (2.27)
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while the derivation of the other two terms is slightly more cumbersome,

( δ

δϕα
−∇ · δ

δ∇ϕα

){
U(~r)

[ N∑
j=1

(
ϕj(~r)ϕj(~r)

)
− %̃(~r)

]
+

+
N∑
j=1

N∑
k=j

εjk

(∫
d3r′ ϕj(~r

′)ϕk(~r
′)− δjk

)}

= 2U(~r)ϕα(~r) +
[ α∑
j=1

ϕj(~r)εjα +
N∑
k=α

εαkϕk(~r)
]
. (2.28)

In the derivation of the second term one has to deal with the fact that only the upper triangular

part of the symmetric matrix εjk is defined. Thus, the sum in this second term proceeds in the

following way, 

ε11 ε1α
. . . ↓

εtwice
αα → εαN

. . .

εNN


(2.29)

with a double-counting of the diagonal elements. Equations (2.27) and (2.28) sum up to zero;

the minimum of the cost functional (2.25) is then identified by the following set of Euler-

Lagrange equations, obtained by artificially introducing ϕβ(~r) and integrating,

~2

m

∫
d3r ϕβ(~r)∇2ϕα(~r) = 2

∫
d3r

[
ϕβ(~r)U(~r)ϕα(~r)

]
+

+

∫
d3r ϕβ(~r)

[ α∑
j=1

ϕj(~r)εjα +
N∑
k=α

εαkϕk(~r)
]
, (2.30)

where α = 1, . . . , N and ,β ≥ α. At the end of the minimization process, once the KS orbitals

have been calculated, a manipulation of Equation (2.30) allows to isolate and calculate the KS

potential, as well as the multipliers εjk,.

In the practical implementation one works with a discrete mesh for the coordinate space,

which is divided into nr equally distant points. The minimization process deals with Nnr and
N(N+1)

2
+ nr unknowns for the orbitals and for the Lagrange multipliers, respectively. Together
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with the N2nr linear equations (2.30), the nr constraints

c0(~r) =
N∑
j=1

|ϕj(~r)|2 − %̃(~r) = 0 , (2.31)

and the N(N+1)
2

equations provided by

∫
d3r′ ϕj(~r

′)ϕk(~r
′)− δjk = 0 , (2.32)

it is possible to solve the problem, at least in principle.

In order to avoid rounding errors in the regions where the kinetic energy is small due to the

exponential decay of the wave functions, the latter are rescaled accordingly to

ϕj(~r) =
√
%̃(~r)fj(~r) , (2.33)

to make the terms in the sum of the kinetic energy (2.10) all of the same, unitary, order of

magnitude.

Two conditions determine the convergence of the algorithm:

1. The relative tolerance on the violation of the constraints; at each step of the optimization,

there is a test of the condition

max
i
|gi − ci

gi
| < ε , (2.34)

where the quantities subject to the constraints are gi, and the requested constraint is ci.

2. The tolerance on the value of the scaled orbitals fi defined in Equation (2.33); the algo-

rithm stops if the change in value of the scaled orbitals between two successive iterations

is smaller than a given tolerance δ, namely, if

max
i
|f (k)
i − f

(k−1)
i | < δ , (2.35)

where k is the iteration number.

In the present work, the optimization of the cost functional, Equation (2.25), as been carried out

by employing the IPOPT library [80], whereas for the solution of the Euler-Lagrange equations
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the EIGEN library2 has been used.

As one can see in Figure 2.5, it is clear that the convergence criteria for the CV and vLB

methods are completely different. While the orthonormal condition is exactly fulfilled by the

vLB method by construction, the CV method allows for some overlap of the wave functions,

controlled by the quantity ε in Equation (2.34). On the other side, the CV method checks for

the self-consistency of the orbitals, while the convergence criteria of the vLB method, Equa-

tion (2.9), is based only on the change of the KS potential.

2.2 Tests Of The Inversion Algorithms

2.2.1 Empirical nuclear densities

The KS potential is calculated for the experimental proton densities of 40Ca and 208Pb, and

for the neutron density of 208Pb. The first two are obtained from electron scattering data [1],

whereas the latter by means of proton scattering measurements [2]. Following the prescriptions

given in [81], the experimental electromagnetic charge and neutron densities are parameterized

with a sum of Gaussian function, Equation (2.36) below. The main purpose of this parameter-

ization is to describe the scattering data on top of a basis of well-behaved functions, without

using model distributions. On the other hand, this model leads to a non-physical functional

behavior of the tail of the densities, as discussed and shown by the results obtained at the end

of the present section.

The Sum of Gaussian (SoG) parameterization used for the empirical densities reads

%charge(r) =
∑
i

A
(charge)
i

(
e−( r−Riγ )

2

+ e−( r+Riγ )
2
)
, (2.36)

and the coefficients A(charge)
i are given by

A
(charge)
i =

ZeQi

2π
3
2γ3
(

1 +
2R2

i

γ2

) , (2.37)

where Qi is the fraction of total charge that is associated with the integral of the ith Gaussian.

Accordingly, the normalization condition
∑

iQi = 1 must hold. The two Gaussians are cen-

tered at different points Ri, whereas their widths are characterized by a common value γ. The

value of γ is tuned to be close to the width of the narrowest peak that one finds when inspecting

2https://eigen.tuxfamily.org/
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the square of typical Hartree-Fock or Woods-Saxon wave functions for the nucleus under study.

If the sum contains enough terms, the SoG parameterization, Equation (2.36), corresponds to

a model-independent representation of the data points. In principle, that would require a very

large number of Gaussian terms if the experimental data covers the full momentum transfer

range. Experimentally this is not possible, and about ten terms proved to be robust against

small changes. The representation may indeed break down whenever experimental data is too

scarce or if it does not cover a wide enough range of projectile energies and scattering angles.

In order to calculate the proton densities from the charge densities, the effects of the spin-

orbit and the neutron electromagnetic finite size [82] has been neglected; the proton densities

are extracted according to

%charge(~r) =

∫
d3r′ f(~r′)%p(~r − ~r′) . (2.38)

Using the approximate electric proton form factor,

f(~r) =
e

π3/2
e
−
(
r2

α

)2

, (2.39)

where α =
√

2/3Rp, and the r.m.s. proton radius is Rp = 0.87 fm. The deconvolution that

leads to the proton density is performed in the Fourier space. Due to the properties of the

Gaussian functions, the result in coordinate space can be written analytically assuming spherical

symmetry,

%p(r) =
∑
i

γ3Ai
eβr

[(
r −Ri

β2
+
Ri

γ2

)
e−( r−Riβ )

2

+

(
r +Ri

β2
− Ri

γ2

)
e−( r+Riβ )

2
]
, (2.40)

where β =
√
γ2 − α2.

In the case of neutron densities, the previous procedure is not needed. Reference [2] pro-

vides the neutron density in the form of Equation (2.36) directly. In fact, protons interact via

the strong interaction with both neutrons and protons. So, if the proton density is known, one

can derive a neutron density compatible with the experimental cross section. At variance with

the case of the determination of the electromagnetic charge density, this procedure is not fully

model-independent. In fact, even if the proton-nucleus interaction at intermediate incident en-

ergy is well-known, it still has some uncertainty.

The two algorithms have been applied to the nuclear empirical densities. Good agreement
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between those and the densities calculated solving the KS equations with the obtained KS po-

tential has been found in all cases. This is clearly visible in the left panels of Figure 2.1 for 40Ca,

and Figure 2.2 for 208Pb. The relative differences found for the densities are of the same order

of those found for theoretical densities in the following section, although in the case of the vLB

procedure for 40Ca the error can reach 0.025% in the outermost region of the nucleus (table 2.1).

Since the differences between the vLB and CV densities and the target densities are not visible

in detail from the figures, the maximum and the average of the absolute value of the differences

are reported in Table 2.1. The Kohn-Sham potentials, shifted by using the experimental neutron

and proton separation energies, and obtained with the vLB and CV methods, are shown in the

right panel of Figure 2.1 for 40Ca, and Figure 2.2 for 208Pb.

The agreement between the two inversion methods is again remarkable, see the right pan-

els of figures 2.1 and 2.2. However, while the potentials in the inner part of the nuclei look

physically reasonable, they oscillate and then diverge in the asymptotic region. Of course, the

asymptotic behavior of the KS potentials at large distances is not the expected Fermi-like one,

namely

Un(r →∞)→ 0 (2.41)

for neutrons, and

Up + UCoul.(r →∞)→ UCoul. =
(Z − 1)e2

r
(2.42)

for protons. The cause of this behavior is to be found in the Gaussian tail of the parameteriza-

tion of the empirical densities, which the algorithms somehow correctly turn into a quadratic,

harmonic oscillator-like, potential. To support this explanation, the regions corresponding to

r larger than the radius of the outermost (second outermost) Gaussian in the case of the 208Pb

(40Ca) density are shown as shadowed areas in figures 2.1 and 2.2, respectively. The borders of

these regions are evidently correlated to the change in slope of the potentials. As a consequence,

the results for the KS potentials derived from experimental densities are not reliable in the tail

of the potential. The employed procedures remain robust when experimental SoG densities

are used, and provide reliable information about the potential up to the average position of the

nuclear surface.

2.2.2 Theoretical nuclear densities

The two algorithms have been tested furthermore on the theoretical densities of the doubly-

magic nuclei 40Ca and 208Pb, shown in Figure 2.4. This helps corroborating the explanation for
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Figure 2.1: The proton density for the case of 40Ca is displayed as a function of the radial
coordinate, on a linear scale (top left panel) and on a logarithmic scale (bottom left panel).
The target experimental density [1], labeled SoG, (black solid lines), is compared with those
obtained with the inversion methods vLB (red dashed lines) and CV (blue dot-dashed lines). In
the bottom right panel, the Kohn-Sham potentials obtained within the two inversion methods
are compared, and in the top right panel their difference is shown.

Table 2.1: Maximum (Max.) and average (Aver.) differences between the target experimental
(SoG) and KS neutron (n) and proton (p) densities from the two inversion methods for the case
of 40Ca and 208Pb. Numerical values are all in 10−6 fm−3.

Nucleus vLB CV
Max. Aver. Max. Aver.

40Ca (p) 248. 4.07 0.918 0.16
208Pb (p) 8.40 0.70 0.409 0.11
208Pb (n) 15.4 0.99 0.147 3.61
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Figure 2.2: (left figure) The neutron and proton densities for the case of 208Pb are displayed
as a function of the radial coordinate, on a linear scale (top panels) and on a logarithmic scale
(bottom panels). The target experimental densities [1, 2], labeled as SoG (black solid lines),
are compared with those obtained with the inversion methods vLB (red dashed lines) and CV
(blue dot-dashed lines). (right figure) The Kohn-Sham potentials calculated for neutrons and
protons with the inversion methods vLB (red dashed lines) and CV (blue dot-dashed lines) are
shown. In the top panels, the corresponding differences between the Kohn-Sham potentials are
displayed.

the non-physical behaviors obtained in the previous section. The test shows that, when the input

density are characterized by the correct asymptotic behavior, the derived Kohn-Sham potential

is reliable everywhere.

The target densities are obtained by means of Hartree-Fock calculations that use the Skyrme

interaction SkX [83]. The interaction contains a spin-orbit potential and an effective mass

m∗(r)3. However, for the specific interaction, these non-local features are almost negligible

(< 8%). The logarithmic scale used in the lower panels of Figure 2.4 is crucial to expose

the asymptotic behavior of the densities. The test of the inversion algorithms ensures that the

obtained results are reliable: the direct KS equations (2.2) are solved, using the obtained KS

potentials, to get back the input densities.

Figure 2.4 illustrates a great agreement with the target densities, also visible in table 2.2.

Even if both methods satisfactorily reproduce the target densities, the CV method requires much

more stringent convergence criteria. Figure 2.4 depicts the KS potentials obtained by the two

algorithms. Potentials are defined up to an arbitrary constant, and they have been shifted using

3The effective mass is the mass that nucleons that move inside the mean field would have if they were freely
moving particles, but with an effective mass m∗. In fact, it is calculated by computing the Fourier transformation
of the Schrödinger equation of the system, and by setting it equal to the Fourier transformation of the Schrodinger
equation of a freely moving, m∗-massive, particle:

~2k2

2m
+ U(k) =

~2k2

2m∗
(2.43)
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Figure 2.3: The neutron density and proton density of 40Ca (left) and 208Pb (right), in linear
(upper panels) and logarithmic scale (lower panels). The target densities obtained from HF
calculations (black solid line) are compared with the densities resulting from the two inversion
method, vLB (red dashed line) and CV (blue dot-dashed line).

the last occupied eigenvalue obtained with the HF calculations. The absolute value of the differ-

ence with respect to the HF potentials is always smaller than 2.5 MeV, a quite good agreement

considered the premises mentioned above.

The two algorithms, although they provide analogue results, arrive to convergence in a

wildly different way. Figure 2.5 illustrates the evolution of the maximum absolute difference

of the KS potential at different steps of the algorithms, in the case of 208Pb, in linear and loga-

rithmic scales. The convergence of the vLB method (red diamonds) is characterized by a brief

initial oscillation, up to about five-hundred iterations, after which the difference between the

potentials at two successive iterations goes to zero monotonically, at a decreasing rate. Keep-

ing in mind that the CV method does not use the difference between potentials at successive

steps as a convergence criterion, but rather attempts to minimize the value of the kinetic energy

taking at same time into account the tolerance with which constraints are fulfilled, the points

corresponding to different iterations do not decrease with a monotonic trend. Because of this,

the convergence of the CV method (blue circles in Figure 2.5) shows an oscillatory behavior,

which is particularly clear in the logarithmic scale. Nevertheless, one can see that the trend

goes towards smaller values as the iteration proceeds, and eventually the values become small

enough to conclude that the final result for the potential is reliable.

2.3 Relativistic Inverse Kohn-Sham Problem

The generalization of the formalism for the solution of the inverse Kohn-Sham problem to the

relativistic mean-field framework is presented below. The choice for the inversion algorithm

fell on the vLB method, section 2.1.1, simpler to implement and yet guaranteeing a good con-

vergence behavior for closed-shell nuclei.
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Figure 2.4: The Kohn-Sham potentials obtained with the vLB (red dashed lines) and CV (blue
dot-dashed lines) inversion methods for 40Ca (left figure) and 208Pb (right figure). The bench-
mark HF calculations based on the SkX functional [83] are shown (black solid lines). In the
upper panels, the differences between the vLB and CV potential, and the HF potential are
shown.

Table 2.2: Maximum (Max.) and average (Aver.) differences between the target HF (SkX) and
KS neutron (n) and proton (p) densities from the two inversion methods for the case of 40Ca and
208Pb. Numerical values are all in 10−6 fm−3.

Nucleus vLB CV
Max. Aver. Max. Aver.

40Ca (p) 56.5 1.95 0.97 0.176
40Ca (n) 65.7 2.17 1.03 0.186

208Pb (p) 27.6 0.69 0.44 0.116
208Pb (n) 55.2 4.02 7.5 2.13
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Figure 2.5: The absolute difference (2.9) between the neutron Kohn-Sham potentials for 208Pb
calculated at successive iterations is shown at different iteration steps on a linear (left panel) and
on a logarithmic (right panel) scale. Results of the inversion method vLB and CV are shown by
red diamonds and blue circles, respectively.
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One starts from the single-nucleon Dirac Kohn-Sham equation,

[αααppp+ β(m+ S(r) + V (r)]ψj = Ejψj, (2.44)

with the scalar and vector Kohn-Sham (KS) potentials, respectively

S(r) =
δE[%V , %S]

δ%S

∣∣∣∣
%V,gs,%S,gs

, (2.45)

V (r) =
δE[%V , %S]

δ%V

∣∣∣∣
%V,gs,%S,gs

. (2.46)

The corresponding scalar and vector ground-state densities,

%S,gs =
∑
j∈occ

ψ†jβψj , (2.47)

%V,gs =
∑
j∈occ

ψ†jψj , (2.48)

are obtained from the solutions of the single-nucleon Dirac KS equation in the no-sea approxi-

mation, that omits explicit contributions of negative-energy states to densities and currents [37].

Thus, the sums run only over occupied positive-energy single-nucleon orbitals.

The KS potentials are rewritten according to

V+(rrr) = V (rrr) + S(rrr) (2.49)

V−(rrr) = V (rrr)− S(rrr) , (2.50)

so that Equation (2.44) takes the form

[
αααppp+

1

2
(β − 11) (m− V−(rrr)) +

1

2
(β + 11)(m+ V+(rrr))

]
ψj = Ejψj . (2.51)

By multiplying Equation (2.51) with ψ†j from the left, and summing over the occupied positive-

energy states, one obtains:

∑
j∈occ

ψ†j(αααppp− Ej)ψj +
1

2
(m− V−)

∑
j∈occ

ψ†j(β − 11)ψj+

+
1

2
(m+ V+)

∑
j∈occ

ψ†j(β + 11)ψj = 0 . (2.52)
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The vector and scalar densities that appear in this expression can be recombined according to

%+ = %V + %S , %− = %V − %S , and are inserted into Equation (2.52):

∑
j∈occ

ψ†j(αααppp− Ej)ψj −
1

2
(m− V−) %− +

1

2
(m+ V+) %+ = 0 . (2.53)

If Equation (2.51) is multiplied by ψ̄j , the following expression is obtained:

∑
j∈occ

ψ̄j(αααppp− Ej)ψj +
1

2
(m− V−) %− +

1

2
(m+ V+) %+ = 0. (2.54)

Finally, by adding and subtracting equations (2.53) and (2.54):

∑
j∈occ

(ψ†j + ψ̄j)(αααppp− Ej)ψj + (m+ V+)%+ = 0 , (2.55)

∑
j∈occ

(ψ†j − ψ̄j)(αααppp− Ej)ψj + (V− −m)%− = 0 . (2.56)

From the previous two equations, the Kohn-Sham potentials V+ and V− are expressed by:

V+ = −m− 1

%+

∑
j∈occ

(ψ†j + ψ̄j)(αααppp− Ej)ψj , (2.57)

V− = m− 1

%−

∑
j∈occ

(ψ†j − ψ̄j)(αααppp− Ej)ψj . (2.58)

The set of IKS equations (2.57) and (2.58) can be solved iteratively. In the philosophy

the vLB method, one takes the densities in the denominator as the target densities, and use

equations (2.55) and (2.56) in the numerator to define the densities and the potentials at the k-th

step. The resulting potentials at the (k + 1)-th step read

V
(k+1)

+ =
%

(k)
+

%+

V
(k)

+ +m
%

(k)
+ − %+

%+

, (2.59)

V
(k+1)
− =

%
(k)
−

%−
V

(k)
− −m

%
(k)
− − %−
%−

. (2.60)

As explained in section 2.1.1, the iterative rules of equations (2.59) and (2.60) are modified in
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the following way,

V
(k)

+ = V
(k−1)

+ + γ+
%

(k)
+ − %+

%+

, (2.61)

V
(k)
− = V

(k−1)
− + γ−

%
(k)
− − %−
%−

, (2.62)

where γ± = 1 MeV

In actual calculations some stability issues have been encountered for large values of the

radial coordinate, due to the small values of the denominators in equations (2.61) and (2.62),

beyond the nuclear radius. This problem can be solved by introducing a cut-off radius rcut, and

setting the potentials to zero for r > rcut. For the initial KS potential a realistic Woods-Saxon

potential is used, and the Broyden mixing procedure [84] is employed to solve equations (2.61)

and (2.62). The convergence criterion used to terminate the iterative IKS algorithm is the same

of the vLB method, Equation (2.9), but now applied to the scalar and vector KS potentials,

separately:

∆V
(k)
± ≡ max

r
[V

(k+1)
± (r)− V (k)

± (r)] < α± . (2.63)

2.4 DFPT+IKS Model

The method originally presented in [85] has been adopted to the nuclear relativistic mean-field

framework and applied to improve a relativistic NEDF, starting from given empirical ground-

state densities. From here on, the model will be denoted as DFPT+IKS model. It is assumed that

the interaction, the unknown yet exact Hartree-exchange-correlation functional, can be written

in the following form:

Eint[%] = E
(0)
int[%] + λE

(1)
int[%] +O(λ2) , (2.64)

where E(0)
int[%] denotes the known functional whose accuracy one wishes to improve, and λ is

a small parameter. The main assumption of the method is then that the difference between

the exact functional E[%] and the initial functional E(0)[%] is small enough for a first-order

perturbative treatment. The correction is determined by the exact ground-state density via the

information extracted from the inverse Kohn-Sham (IKS) approach.

The exact Dirac spinors, that is, the solutions of Equation (2.44) for the exact energy density
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functional, can also be expanded to the first order in λ,

ψ(r) = ψ(0)(r) + λψ(1)(r) +O(λ2) , (2.65)

and one assumes that the first-order correction is orthogonal to the zeroth-order spinor,

∫
ψ(0)†(r)ψ(1)(r)dr = 0 . (2.66)

The corresponding exact ground-state densities

%V,gs(r) =
∑
j∈occ

ψ
(0)†
j (r)ψ

(0)
j (r)+

+ λ

(∑
j∈occ

ψ
(1)†
j (r)ψ

(0)
j (r) +

∑
j∈occ

ψ
(0)†
j (r)ψ

(1)
j (r)

)
+O(λ2) , (2.67)

%S,gs(r) =
∑
j∈occ

ψ
(0)†
j (r)βψ

(0)
j (r)+

+ λ

(∑
j∈occ

ψ
(1)†
j (r)βψ

(0)
j (r) +

∑
j∈occ

ψ
(0)†
j (r)βψ

(1)
j (r)

)
+O(λ2) , (2.68)

take the form:

%V (S),gs(r) = %
(0)
V (S)(r) + λ%

(1)
V (S)(r) +O(λ2) , (2.69)

where the first term on the right-hand side denotes the densities that correspond to the known

functional. It is assumed that, given the exact densities %V (S),gs(r), one can use the IKS method

to calculate the exact Dirac spinors ψj(r) and single-nucleon energies εj .

The ground-state energy can be decomposed as follows:

Egs = Ekin[%gs] + E
(0)
int[%gs] + λE

(1)
int[%gs] , (2.70)

where the relativistic Kohn-Sham kinetic energy reads

Ekin[%gs] =
∑
j∈occ

∫
ψ†j(r)t̂ψj(r)dr , (2.71)

and t̂ = αααp + βm. By expanding the Dirac spinors as in Equation (2.65) and retaining only
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those terms that are linear in λ, the following expression for the kinetic energy is obtained:

Ekin[%gs] =
∑
j∈occ

∫
ψ

(0)†
j (r)t̂ψ

(0)
j (r)dr

+ λ
∑
j∈occ

∫
ψ

(1)†
j (r)t̂ψ

(0)
j (r)dr

+ λ
∑
j∈occ

∫
ψ

(0)†
j (r)t̂ψ

(1)
j (r)dr +O(λ2). (2.72)

The second and third term on the right-hand side of Equation (2.70) denote the interaction

(Hartree exchange-correlation) contribution to the total energy. Using the expansion of Equa-

tion (2.69) for the ground-state densities, up to terms linear in λ, one derives:

E
(0)
int[%V,gs, %S,gs] = E

(0)
int[%

(0)
V,gs, %

(0)
S,gs] + λ

∫
δE

(0)
int

δ%V

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

%
(1)
V,gs dr

+ λ

∫
δE

(0)
int

δ%S

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

%
(1)
S,gs dr +O(λ2), (2.73)

λE
(1)
int[%V,gs, %S,gs] = λE

(1)
int[%

(0)
V,gs, %

(0)
S,gs] +O(λ2) . (2.74)

Inserting expressions (2.67) and (2.68) for the first-order density corrections %(1)
V,gs and %(1)

S,gs,

respectively, into the expansion for the interaction energy, equations (2.73) and (2.74), together

with the expression for the kinetic energy, Equation (2.72), the ground-state energy reads:

Egs = E
(0)
kin + E

(0)
int[%

(0)
V,gs, %

(0)
S,gs]

+ λ
∑
j∈occ

∫
ψ

(1)†
j (r)

t̂+
δE

(0)
int

δ%V

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

+ β
δE

(0)
int

δ%S

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

ψ(0)
j (r)dr

+ λ
∑
j∈occ

∫
ψ

(0)†
j (r)

t̂+
δE

(0)
int

δ%V

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

+ β
δE

(0)
int

δ%S

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

ψ(1)
j (r)dr

+ λE
(1)
int[%

(0)
V,gs, %

(0)
S,gs] +O(λ2) . (2.75)

The expression in square brackets represent the zeroth-order (unperturbed) Dirac Hamiltonian,

that is t̂+
δE

(0)
int

δ%V

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

+ β
δE

(0)
int

δ%S

∣∣∣∣∣
%
(0)
V,gs,%

(0)
S,gs

ψ(0)
j = ε

(0)
j ψ

(0)
j . (2.76)
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The orthogonality relation (2.66) ensures that the corresponding terms in Equation (2.75) van-

ish, and the following relation for the ground-state energy is obtained:

Egs = E
(0)
kin + E

(0)
int[%

(0)
V,gs, %

(0)
S,gs] + λE

(1)
int[%

(0)
V,gs, %

(0)
S,gs] +O(λ2) . (2.77)

On the other hand, the ground-state energy Egs = Ekin[%gs] + Eint[%gs], can be also written in

the following form:

Egs =
∑
j∈occ

εj + Eint[%V,gs, %S,gs]

−
∫

δEint
δ%V

∣∣∣∣
gs

%V,gs(r)dr−
∫

δEint
δ%S

∣∣∣∣
gs

%S,gs(r)dr , (2.78)

where the Dirac Kohn-Sham equation has been used to eliminate the explicit contribution of the

kinetic energy term, and εj are the exact single-particle energies summed over occupied states.

If one separates zeroth-order terms from the first-order terms of the exact interaction functional

Eint[%gs], then

Egs =
∑
j∈occ

εj + E
(0)
int[%V,gs, %S,gs]

−
∫

δE
(0)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr−
∫

δE
(0)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr

+ λE
(1)
int[%V,gs, %S,gs]

− λ
∫

δE
(1)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr− λ
∫

δE
(1)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr . (2.79)

Using Equation (2.77), one can express the first-order correction to the interaction energy as a

function of the zeroth-order ground-state densities,

λE
(1)
int[%

(0)
V,gs, %

(0)
S,gs] = Egs − E(0)

kin − E
(0)
int[%

(0)
V,gs, %

(0)
S,gs] = Egs − E(0)

gs , (2.80)

where E(0)
gs denotes the ground-state energy calculated from the known functional.

Next, Equation (2.79) is inserted into the previous expression, and the following relation is
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obtained:

λE
(1)
int[%

(0)
V,gs, %

(0)
S,gs] =

∑
j∈occ

εj + E
(0)
int[%V,gs, %S,gs]

−
∫

δE
(0)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr−
∫

δE
(0)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr

− E(0)
gs + λE

(1)
int[%V,gs, %S,gs]

− λ
∫

δE
(1)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr− λ
∫

δE
(1)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr . (2.81)

Equation (2.81) gets rearranged so that all terms linear in λ (first-order corrections to the inter-

action functional) wind up on the left-hand side,

λE
(1)
int[%

(0)
V,gs, %

(0)
S,gs]− λE

(1)
int[%V,gs, %S,gs]

+λ

∫
δE

(1)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr + λ

∫
δE

(1)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr

=
∑
j∈occ

εj + E
(0)
int[%V,gs, %S,gs]− E(0)

gs

−
∫

δE
(0)
int

δ%V

∣∣∣∣∣
gs

%V,gs(r)dr−
∫

δE
(0)
int

δ%S

∣∣∣∣∣
gs

%S,gs(r)dr . (2.82)

The right-hand side of the last equation depends only on the exact ground-state densities and

the known functional E(0)
int . Given the scalar and vector ground-state empirical densities one

can calculate all terms on the right-hand side, except for the first term, sum of the exact single-

particle energies. The energies are implicit functionals of the exact ground-state densities. To

this end, one uses the KS energy levels obtained with the relativistic IKS method exposed in the

previous section.

In practical applications, one should assume a certain Ansatz for the functional E(1)
int[%], that

will also include parameters to be determined from Equation (2.82) for a choice of empirical

ground-state densities. There is no guarantee, especially in the case of several undetermined

parameters for the first-order correction, that the improved functional will reproduce the exact

densities to a desired level of accuracy. The solution is a self-consistent procedure in which the

functional improved in one iteration is considered as the known functional for the successive
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iteration step:

E
(k)
int [%] = E

(0)
int[%] +

k∑
n=1

λE
(1),(n)
int [%] ; (2.83)

the procedure is repeated until the exact densities are reproduced by the solutions of the resulting

kth iteration Dirac KS equation up to a desired accuracy.

Two tests of the method, used to improve an approximate EDF towards the exact one, are

presented below for N = Z systems without Coulomb interaction. An existing relativistic EDF

is used as the exact target functional, and the method is applied to improve different approximate

functionals towards it. In real nuclei the exact functional is unknown, and ground-state data is

not sufficient to determine the functional dependence on various nuclear densities.

2.4.1 First test of the model

As a target NEDF, the relativistic functional DD-PC1 [53] has been used. The single-nucleon

Hamiltonian reads

ĥ = αp+ β[m+ S(r)] + V0(r) + ΣR(r) , (2.84)

where the scalar potential, vector potential, and rearrangement terms are respectively defined as

S = αS(%)%S + δS4%S ,

V = αV (%)%V + αTV (%)~%TV · ~τ + e
1− τ3

2
A0 ,

ΣR =
1

2

∂αS
∂%

%2
S +

1

2

∂αV
∂%

%2
V +

1

2

∂αTV
∂%

%2
TV ; (2.85)

m is the nucleon mass, αS(%), αV (%), and αTV (%) are density-dependent couplings for differ-

ent space-isospace channels, δS is the coupling constant of the derivative term, e is the elec-

tric charge, %S the single-nucleon scalar-isoscalar density, %V the time-like component of the

isoscalar current, and %TV the time-like component of the isovector current. In addition to the

contributions from the isoscalar-vector four-fermion interaction and the electromagnetic inter-

action, the isoscalar-vector self-energy includes the rearrangement terms in ΣR, that arise from

the variation of the vertex functionals αS , αV , and αTV with respect to the nucleon fields in the

vector density operator %V . Guided by the microscopic density-dependence of the vector and

scalar self-energies, the following practical Ansatz for the functional form of the couplings was

63



DFPT+IKS Model

adopted in [53]:

αS(%) = as + (bs + csx)e−dsx ,

αV (%) = av + bve
−dvx , (2.86)

αTV (%) = btve
−dtvx ,

with x = %/%sat, %sat denoting the nucleon density at saturation in symmetric nuclear matter.

In the simplified case of N = Z doubly closed-shell nuclei without Coulomb interaction,

there is no contribution of the isovector channel. Four N = Z systems, 16O, 40Ca, 56Ni and
100Sn, have been used to improve, starting from the exact ground-state densities, approximate

zeroth-order functionals towards DD-PC1. The accuracy of the IKS scheme in determining the

Kohn-Sham potentials for given scalar and vector densities is discussed for the N = Z = 8

system. The densities-to-potentials inversion enables the calculation of the single-particle en-

ergies that appear on the right-hand side of Equation (2.82). Figure 2.6 compares the densities

obtained in the inverse Kohn-Sham scheme to the target DD-PC1 densities. Without Coulomb

interaction the proton densities are, of course, completely identical to the neutron ones. In all

four panels the dash-dotted green curves denote the target densities calculated with the DD-PC1

functional, the dashed red curves are the initial densities that correspond to Woods-Saxon po-

tentials and, finally, the solid black curves represent the final densities obtained by the inversion

method. The KS potentials are shown in Figure 2.7. The result is that the target and final IKS

densities and potentials are indistinguishable. The latter can, therefore, be used to calculate the

single-particle energies that are needed for the application of the model based on DFPT.

In the first test of the model the initial functional E(0)
int[%] is taken as a simple functional, that

is actually a part of the DD-PC1 functional itself:

E
(0)
int[%V , %S] =

1

2
α(0)
s %2

S +
1

2
α(0)
v %2

V + δs%s4%s . (2.87)

The values for the a(0)
s and a(0)

v constants are the same used in the DD-PC1 functional, namely

a
(0)
s = as = −10.4602 fm−2 and a(0)

v = av = 5.9195 fm−2. The same choice is made for the

derivative term, δs = −0.8149. The first two terms of the functional coincide with the simple

Walečka mean-field model which, by means of two parameters only, manages to produces a

realistic equation of state of symmetric nuclear matter. Such a model, in fact, corresponds to a

local density approximation (LDA) for the DD-PC1 energy density functional. The derivative
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Figure 2.6: (a): The sum of neutron vector and scalar densities in the N = Z = 8 system as
a function of the radial coordinate. The target density obtained using the DD-PC1 functional
(dashed green curve) is compared to the the density calculated in the initial step of the inversion
method (dot-dashed red) with a Woods-Saxon potential, and to the final IKS density (solid
black). (b): Same as in panel (a) but for the difference between the neutron vector and scalar
densities. (c): Same as in panel (a) but for the neutron vector density. (d): Same as panel in (a)
but for the neutron scalar density.
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Figure 2.7: (a): The sum of neutron vector and scalar potentials in the N = Z = 8 system
as a function of the radial coordinate. The target DD-PC1 Kohn-Sham potential (dashed green
curve) is compared to the initial Woods-Saxon potential (dot-dashed red), and to the final IKS
potential (solid black). (b): Same as in panel (a) but for the difference between the neutron
vector and scalar potentials. (c): Same as in panel (a) but for the neutron vector potential. (d):
Same as panel in (a) but for the neutron scalar potential.
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term is used to model finite systems, and takes into account the rapid variations of the density

at the surface region. The strength parameter of this term can be determined qualitatively from

microscopic calculations of non-homogeneous nuclear matter.

The remaining, unknown, part of the functional, that is E(1)
int[%], is chosen in the following

way:

E
(1)
int[%V , %S] =

1

2
α(1)
s (%V )%2

S +
1

2
α(1)
v (%V )%2

V , (2.88)

where α(1)
s (%V ) and α

(1)
v (%V ) have the functional form of the density-dependent parts of the

DD-PC1 couplings,

α(1)
s (%V ) =

(
b(1)
s + c(1)

s x
)
e−dsx (2.89)

α(1)
v (%V ) = b(1)

v e−dvx , (2.90)

with x = %v/%sat, and %sat = 0.152 fm−3. The first test of the method consists in determining

the parameters of E(1)
int[%] by using density functional perturbation theory in combination with

the information given by the solution of the inverse Kohn-Sham scheme, using Equation (2.82).

Since the right-hand side of this equation is just a number that can be evaluated once the the

exact single-particle energies are provided, and the vector and scalar densities are known, a

different finite system is needed to calculate each parameter of the unknown functional. Three

N = Z systems are employed to this end: 16O, 56Ni and 100Sn to determine the constants b(1)
s ,

c
(1)
s and b(1)

v , while ds and dv are left fixed to their DD-PC1 values. Albeit the problem has been

simplified up to a certain extent, the test is far from being trivial: only three artificial systems

are used to reproduce the values of parameters that were originally adjusted to the experimental

masses of a large number of nuclei. Moreover, since the choice for the unperturbed functional

is not close to the exact target functional, it is far from obvious that a first order perturbation

method will determine the unknown parameters with sufficient accuracy. Hence, the calculation

is repeated in several iterative steps, as described in the previous section, and at each step the

values of b(1)
s , c(1)

s and b(1)
v are improved. Figure 2.8 displays the values of (b

(1)
s )i, (c

(1)
s )i and

(b
(1)
v )i at each iteration step. Assuming that nothing is known about these parameters, one starts

from zero values. After some initial oscillations in the first few steps, especially between c(1)
s

and b(1)
v , the parameters converge to the values corresponding to the DD-PC1 target functional,

denoted by the horizontal lines in Figure 2.8. The results of this first test demonstrate the

feasibility of the model for nuclear densities, as well as the convergence and accuracy of the
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Figure 2.8: Values of the constants (b
(1)
s )i, (c

(1)
s )i and (b

(1)
v )i at different iteration steps. The

dashed lines denote the target values that correspond to the functional DD-PC1.

iteration scheme.

2.4.2 Second test of the model

In the second test of the model the DD-PC1 EDF has been again used as the target functional,

and the corresponding exact single-particle energies appearing on the right-hand side of Equa-

tion (2.82) are obtained by the inverse Kohn-Sham method as described in section 2.3. For the

known functional E(0)
int[%], the simple LDA form of Equation (2.87) has been adopted again with

the DD-PC1 values of the three parameters. Instead, for the remaining unknown part of the

functional,

E
(1)
int[%V , %S] =

1

2
α(1)
s (%V )%2

S +
1

2
α(1)
v (%V )%2

V ,
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a polynomial density-dependence is now chosen for the coupling parameters α(1)
s (%V ) and

α
(1)
v (%V ),

α(1)
s (%V ) = b(1)

s (x− 1) + c(1)
s (x− 1)2 (2.91)

α(1)
v (%V ) = b(1)

v (x− 1) + c(1)
v (x− 1)2 , (2.92)

with x = %v/%sat, and %sat = 0.152 fm−3.

The values of four parameters have to be determined, and Equation (2.82) requires the input

from four finite systems. 16O, 40Ca,56Ni and 100Sn are chosen. In Figure 2.9, the parameters

(b
(1)
s )i, (c

(1)
s )i, (b

(1)
v )i and (c

(1)
v )i are shown at each iteration step of the procedure. They are

compared to the parameters of the linear and quadratic term in the Taylor expansion of the

DD-PC1 couplings,

%sat
dαDD−PC1

s,v

d%V

∣∣∣∣∣
%V =%sat

, (2.93)

1

2
%2
sat

d2αDD−PC1
s,v

d%2
V

∣∣∣∣∣
%V =%sat

. (2.94)

Starting from vanishing values, after only a few iterations the parameters of the linear and

quadratic couplings of the unknown functional reach values that are very close to the corre-

sponding parameters of the Taylor expansion of the target DD-PC1 couplings. Using the final

values of the parameters, the total scalar and vector couplings αS(%V ) and αV (%V ) are calcu-

lated as functions of the vector density, and compared with the corresponding couplings of the

functional DD-PC1 (Figure 2.10). While the couplings of the unknown functional E(1)
int have

been approximated by simple quadratic functions of the vector density, nevertheless the final

scalar and vector couplings accurately reproduce the DD-PC1 target couplings over a broad

range of densities.

Finally, in Figure 2.11 the vector densities of the four symmetric systems, N = Z = 8,

N = Z = 20, N = Z = 28, and N = Z = 50, calculated with the DFPT+IKS method, are

compared to the theoretical densities obtained with an RHB calculation that adopts the target

functional DD-PC1. Even when the unknown part of the functional is approximated by the

simple expressions of Equation (2.92), the DFPT+IKS method produces ground-state densities

that are virtually identical to the target densities.
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Figure 2.9: Values of the constants (b
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compared to the corresponding DD-PC1 target coupling functions.
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Figure 2.11: The vector densities of the four symmetric systems: N = Z = 8, N = Z = 20,
N = Z = 28, and N = Z = 50. The dash-dotted green curves are the densities corresponding
to the unperturbed initial functional E(0)

int , Equation (2.87). The solid black and dashed red
curves denote the densities obtained with the target functional DD-PC1 and the final results of
the DFPT+IKS calculation, respectively.
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Chapter 3

STITCHING DISCONTINUITIES ON

POTENTIAL ENERGY SURFACES:

EFFECT ON NUCLEAR FISSION

PROPERTIES

Nuclear fission involves the spontaneous or induced splitting of a heavy atomic nucleus into

two or more fragments. It is often accompanied by the prompt emission of neutrons and γ-rays.

Spontaneous fission consists of the non-induced splitting of the nucleus into fragments. It

emerges from the competition of the Coulomb forces felt by protons with the nuclear surface

tension caused by the attractive forces between nucleons. It occurs therefore in heavy nuclei

with a large number of protons, e.g., in the actinide or transactinide region. It is characterized

by the fission half-life, namely the time in which half of the nuclei in a sample undergo fission.

Spontaneous fission is the main process that limits the formation of super heavy proton-rich

elements [86]; in fact, the empirical nuclear fissility parameter [87]

x ≈ Z2

A− 1.7826 (N−Z)2

A

, (3.1)

which encodes the possibility of a nucleus to undergo fission, grows as the square of the number

of protons Z.

Nuclear fission can also be induced by the reaction between a target compound nucleus and

incoming light projectiles, such as neutrons, protons, alpha particles, or γ-rays. Induced fission
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plays a key role in nucleo-synthesis, especially within the r-process [88], where fission cycling

controls the abundances of neutron-rich nuclei [89].

The energy released during one fission event, distributed between the kinetic and the exci-

tation energy of the fragments, is remarkably high (about 200 MeV) especially if compared to

other energy sources. The physics behind fission has been applied for more than seventy years

to the development of technologies used for energy production. Achieving a deeper theoretical

microscopic comprehension of the fission process is thereby crucial to get robust predictions,

especially in those nuclear regions where experimental data are not available.

Designing a reliable microscopic framework for the description of fission represents one

of the most challenging tasks of modern studies of nuclear physics. Many parameters and

quantities, some of them related to nuclear collective degrees of freedom, whereas others char-

acterizing the individual motion of nucleons, play an important role in the process. It is thus

complicated to introduce systematic approximations allowing a feasible treatment of the fission

process with controllable errors.

At present, most theoretical approaches rely on the adiabatic approximation [90], namely

the assumption that the timescale of the collective motion driving the nucleus towards scission

is several orders of magnitude larger than the one that characterizes the internal motion of the

nucleons. In this case one can consider the the two types of motion as perfectly decoupled. The

nuclear many-body problem is then mapped onto a collective Schrödinger-like equation (CSE),

governed by only a few collective variables [91].

Albeit being adopted in most applications, some advanced microscopic simulations of the

fission process do not support the assumption of adiabaticity for the large amplitude collective

motion in fission, especially for trajectories from the outer saddle to the scission configuration

[92]. In fact, at this stage of the nuclear deformation, quasiparticle excitations, dissipation, and

memory effects [93,94] become decisive for the outcome of the process. However, whether one

uses the adiabatic approximation or not, the most promising theoretical framework for a micro-

scopic description of the fission process is based on Density Functional Theory (section 1.3)

and nuclear energy density functionals.

During the last decades, several NEDF-based lines of research on the nuclear fission pro-

cess have been pursued to describe both the spontaneous and the induced fission process. Some

of them, often adopting the adiabatic approximation, rely on the time-dependent generator co-

ordinate method (TDGCM) [95]. Others use time-dependent (TD) HF+BCS approaches (sec-
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tion 1.2.1 and [96]) or, in a few cases, the full-fledged TDHFB approximation [97]. Each

approach presents advantages and drawbacks in determining the dynamical evolution of the

compound nucleus. In [98], a successful microscopic DFT-based approach to the calculation of

charge and mass of the yields in spontaneous fission has been presented. In [97], a super fluid

non-adiabatic extension of TDDFT has been employed to calculate the time-evolution of the

nucleus from the last saddle point before scission to the point at which the fragments are well-

separated. The Zagreb group, in collaboration with J. Zhao and Z. Li [99,100], used TDGCM to

investigate properties of the induced fission of several nuclides at finite-temperature: low-energy

bands, octupole deformations, transition rates, charge and mass distributions, and the coupling

between collective and pairing degrees of freedom. Further details about the nuclear fission pro-

cess and state-of-the-art works related to it can be found in the topical reviews [90–92,101,102]

and in references cited therein.

3.1 Static And Dynamical Aspects Of Fission

The point at which the fragments that result from fission are physically well-separated is denoted

as scission point. Such definition is currently doomed to remain very much related to the intu-

itive picture of the nucleus provided by the liquid drop model: a progressively deformed nuclear

compound winds up in forming a neck that finally ruptures, producing fission fragments. This

classical understanding of the process ignores that the wave functions, calculated by solving the

SCMF equations, are apt to describe the nucleus as a whole. The single-nucleon wave functions

may, and do, spread across the fragments, which in turn become inevitably highly entangled.

Unfortunately, if one tries to incorporate these strictly quantum effects within the definition of

scission point, several issues stem out, for instance regarding the calculation of the fragment

properties [101]; there are nonetheless examples of attempts made in this line of research, e.g.,

[103, 104]. The scission point is therefore commonly defined in a rather phenomenological

way, that involves counting the number of particles in the neck region that separates the nascent

fragments. In alternative, it can be defined as the nuclear configuration in which the nuclear

interaction energy between the pre-fragments is surpassed by the Coulomb repulsion.

Adiabatic models often rely on pre-calculated potential energy surfaces (PESs) of the par-

ent nucleus, that do not contain any piece of information about fission fragments. Thus, the

scission point must be explicitly defined. A physical discontinuity between fission and fusion

valleys usually appears to signal the transition of the nucleus to the fission region. In this frame-
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work, adopted in this manuscript as well, the specific definition of the scission point is rather

ambiguous, since there is no dynamical mechanism to simulate the evolution of the system;

semi-empirical definitions must be employed. Thus, if the adiabatic approximation is adopted

no unique definition of the scission point is available. The description of the nuclear fission

process then presents some sort of dependence on the method used to define it. In contrast,

non-adiabatic approaches, e.g., TDHF+BCS and TDHFB, produce scission naturally and con-

tinuously, as the system is being time-evolved from a starting state after the last fission barrier.

The solution of the constrained HFB or RHB equations provides, at least in principle, the

global minimum energy for a nuclear configuration subject to a number of constrained variables.

This enables, given the adoption of the adiabatic approximation, the usage of a chosen set of

collective degrees of freedom, commonly but not necessarily related to the geometrical shape of

the nucleus, as parameters to navigate potential energy surfaces E(q1, . . . , qN). It is clear then

that the availability of numerical routines able to incorporate a relatively large number of con-

straints in the simulation may play a crucial role. Constraints can be incorporated into the HFB

or RHB formalism in the same fashion of the method of the Lagrange Multipliers, for instance

through the implementation of the Multiple Constraint method discussed in appendix B.

In a variety of applications, nuclear multipole moments, e.g., quadrupole and octupole, are

routinely used as constraints in the SCMF equations. The definition of multipole moments

reads:

Q̂lm =

√
1

1 + δm0

(M̂lm + rm(−1)mM̂l−m), (3.2)

with rm = ±1 respectively valid for m ≥ 0 and m < 0, and

M̂lm =

√
16π

2l + 1
rl Ylm(θ, φ), (3.3)

Ylm(θ, ϕ) being the spherical harmonics already defined in Equation (1.13). The choice of

these collective parameters is justified by the experimental observation of low-energy vibra-

tional modes, that usually display multipole character.

Once PESs are generated by means of a SCMF solver, one can search and find on them

static minimum energy paths (MEP) or dynamic, more quantal, least action paths (LAP). These

paths, constituting the static ingredients for fission studies, lead nuclei towards scission and are

sufficient to calculate some of the properties that characterize the process, such as spontaneous

fission half-lives.
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Finally, the PES together with the densities and wave functions corresponding to each com-

puted nuclear configuration can be plugged into a time-evolution framework, e.g., TDGCM, to

obtain the dynamical quantities of interest, such as mass and charge yields, or the kinetic and

excitation energies of the fragments. Since the study of the dynamical aspects of fission goes

beyond the scope of the present manuscript, the reader may refer, for instance, to [105], as well

as to the reviews cited in the chapter’s introduction.

3.1.1 Spontaneous fission lifetime

Spontaneous fission is a remarkable example of the quantum tunneling phenomenon. To un-

dergo spontaneous fission, the parent nucleus must overcome two or three energy barriers be-

fore reaching a saddle point after which it becomes unstable against fission. Figure 3.3, depicts

the typical topology of a PES associated to a nucleus that may undergo spontaneous fission.

The probability that fission happens in competition with other decay modes, or equivalently a

measure of the time that it takes for fission to take place, is fundamentally related to the prob-

ability of the nucleus to tunnel through the energy barriers that separate the ground-state from

highly deformed configurations.

The main quantity that one aims to theoretically estimate while exploring the static aspects

of spontaneous fission is the fission lifetime, denoted TSF in this manuscript. Equivalently, the

half-life is obtained as τ 1/2
SF = ln 2 TSF. Given the possibility of a direct comparison of the cal-

culated lifetimes with experimental measurements, this quantity has a particular importance in

fission studies. Note that, while the implementation of the formalism for its calculation is rather

straightforward, the value of the fission lifetime of nuclei ranges between about thirty orders of

magnitude [23], making it a sensitive and complicated quantity both to robustly estimate and

measure. The fission lifetime is calculated assuming that the nuclear ground-state is stationary,

ignoring other open channels through which the nucleus might decay. This assumption is ac-

ceptable, because alternative decay modes also proceed through classically forbidden regions

characterized by very small transmission coefficients.

Calculation of the action in the WKB approximation

The semi-classical WKB1 approximation [106, 107] is employed to estimate transmission co-

efficients, and specifically the penetrability of a nucleus through an energy barrier. In the

1The Wentzel-Kramers-Brillouin approximation is used to solve linear differential equations by finding ap-
proximate solutions with varying coefficients. In quantum physics, the wave function usually takes the form of an
exponential function, whose amplitude and phase are assumed to vary slowly.
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one-dimensional fully classical case one substitutes the expression of the classical momentum

p =
√

2m(E − V (x)) into the equation of motion of a free particle,

d2Ψ(x)

dx2
+
p2

~2
Ψ(x) = 0 . (3.4)

A plane wave Ansatz is assumed, namely

Ψ(x) = A(x)eiϕ(x) ; (3.5)

once this is plugged into Equation (3.4), it leads to the following expression for the amplitude

A(x) and the phase ϕ(x):

A(x) =
C√
p(x)

, (3.6)

ϕ(x) = ±1

~

∫ ∞
x

dy p(y) . (3.7)

The expressions above are valid only in classical regions, where V (x) ≤ E. They can be

nonetheless extended to classically-forbidden regions by introducing a complex momentum

p(x); Equation (3.5) transforms into an exponential, and yields the following expression for the

solution Ψ(x) at V (x) > E:

Ψ(x) =
C±√
p(x)

exp
[
±1

~

∫ ∞
x

dx
√

2m(V (x)− E)

]
. (3.8)

The non-physical solution with positive sign is discarded. The resulting penetrability coefficient

reads

P =
|Ψ(b)|2

|Ψ(a)|2
= exp

[
−2

~

∫ b

a

dx
√

2m(V (x)− E)

]
, (3.9)

where a and b are the inner and outer turning points at the barrier, corresponding to the energies

V (a) = E and V (b) = E that make the integrand vanish.

The extension of these concepts to the study of the nuclear fission process is justified by

the assumption of adiabaticity of the collective nuclear motion, which enables using a restricted

number of variables to govern the CSE. The effective collective inertia tensor B[s], calculated

along the fission path, and the constrained SCMF total energy replace, respectively, the mass

of the particle and the potential energy in Equation (3.9). In most advanced applications, the
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nuclear path along which the fission lifetime is calculated is the LAP, that minimize the action

S[s] =

∫ b

a

ds
√

2B[s](Veff(s)− E0) , (3.10)

that appears in the exponent of (3.9). It is worth noticing, as it will be discussed in more detail in

section 3.6, that it is also possible to justify a calculation of the action on static minimum energy

paths. In the previous expression Veff(s) is the total collective energy of the nucleus with respect

to the ground-state, minus the spurious zero-point energy EZPE(Q20). E0 is a ground-state zero-

point energy correction. Some applications, such as [108,109], take E0 = 1 MeV. Others [110]

fine-tune it accordingly to the quadrupole deformation of the nucleus in its ground-state, E0 =

0.7 EZPE(Qg.s.
20 ). EZPE(Q20) is obtained using the Gaussian overlap approximation [111], as

shown in [112, 113].

Finally, albeit not employed in this work, one should mention that more advanced techniques

have been proposed in the literature [114] for the calculation of the transmission coefficient P

across a double-hump barrier with two closely-situated classical turning points.

Calculation of the nuclear collective inertia

In adiabatic models the nuclear collective inertia can be seen as the mass of the collective wave-

packet, as it incorporates the response of the nucleus to small variations of the constrained

collective variables qi(s) . It can be calculated along the fission path in the following way:

B(s) =
∑
ij

Mij
dqi
ds

dqj
ds

, (3.11)

where s parameterizes the path, while Mij is the collective inertia tensor. The collective inertia

tensor appearing in the previous equation can be calculated by means of the Generator Coor-

dinate Method (GCM) [115] or within the adiabatic time-dependent Hartree-Fock-Bogoliubov

(ATDHFB) approximation [116]. A direct comparison of the results with the two approaches

can be found in [117]. The GCM approach unfortunately leads to a systematic underestimation

of the collective inertia [91]. As a consequence, this work adopted the ATDHFB formalism.

The ATDHFB approximation consists of a small-momentum expansion of the full time-

dependent generalized density of TDHFB equation of motion, Equation (1.33). The expansion
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of the generalized density is performed through the unitary transformation

R(t) = e−iχ(t)R0(t)eiχ(t) . (3.12)

By expanding the TDHFB equation of motion up to the second order in the parameter χ(t),

one obtains a collective Schrödinger equation. The time-dependence of the generalized density

R0(t) is mapped onto the collective space spanned by a set of variables qi(t),

∂R0(t)

∂t
=
∑
i

∂R0

∂qi

∂qi
∂t

. (3.13)

The kinetic energy then becomes

K =
1

2

∑
ij

Mij
dqi
dt

dqj
dt
, (3.14)

and the collective inertia tensor takes the form

Mij =
∂R0

∂qi
M−1∂R0

∂qi
. (3.15)

The inversion of the linear response matrix M relies on the assumption of the perturbative

cranking approximation, in the same fashion of the derivation presented in appendix B. A di-

agonal approximation of the matrix is assumed, with two quasiparticle energies as diagonal

elements. The partial derivatives of the generalized matrix are obtained in a similar way, by

applying the cranking approximation to them as well. This results [116] in the ATDHFB ap-

proximation of the collective inertia that enters Equation (3.11):

M ≈MATDHFB = ~2[M(−1)]−1M−3[M(−1)]−1 , (3.16)

M
(−n)
ij =

∑
µ<ν

〈Φ| Q̂†i |µν〉 〈µν| Q̂j |Φ〉
(Eµ + Eν)n

. (3.17)

The state |Φ〉 is the quasiparticle vacuum already defined in (1.27), while |µν〉 = β†µβ
†
ν |Φ〉 is a

two-quasiparticle excitation built on top of it. Such classical approximation neglects the pres-

ence of a zero-point energy correction to the collective potential; nonetheless, several authors

suggested to use it anyway in its GCM form [110, 118, 119].
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Calculation of the fission lifetime

Provided the condition S � ~, which in fact must hold to justify the application of the WKB

approximation itself, the fission lifetime is inversely proportional to the transmission coefficient

of Equation (3.9), according to the relation [120]

TSF = 1/νP ; (3.18)

The proportionality coefficient ν = 1020.38 s−1 is the number of assaults of the nucleus to the

fission barrier per time unit, calculated for a system vibration that leads to fission equal to

~ω = 1 MeV [121]. With these premises, the spontaneous fission lifetime reads

TSF[s] =
1

ν
exp
[

2S[s]

~

]
, (3.19)

where the action S[s] is defined by Equation (3.10).

3.2 Appearance Of Discontinuities On Self-Consistent

Potential Energy Surfaces
An important drawback characterizes fission simulations that adopt the adiabatic approxima-

tion: the factual necessity to limit, due to computational resources, the number of constrained

collective variables to a small, finite set. All other unconstrained variables are instead deter-

mined self-consistently, adjusted by the solver of the mean-field equations to seek the global

minimum of the underlying unconstrained PES. Since it is not guaranteed for the unconstrained

variables to evolve continuously, a key problem emerges in relation to saddle points, which

might be missing on an equivalent trajectory restricted to a smaller dimension, or might not be

real saddle points on the same PES with additional dimensions. These two types of problematic

saddle points are respectively called missing and fake saddle points.

The mentioned issues with saddle points, discussed in great detail in [122], are in fact caused

by the presence of an artificial discontinuity on the investigated potential energy surface. A

discontinuity may appear because of two reasons:

1. In practical calculations, different starting guesses for the single-nucleon wave func-

tions might lead the iterative process to converge to different results. Because of this,

hysteresis-like fission paths might be found.
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2. A sudden, discontinuous, non-physical jump of the nucleus from one configuration to

another may happen. For instance, when one only constraints the mass quadrupole mo-

ment, the nucleus may jump from a symmetric configuration to one characterized by

non-vanishing octupole deformation, disregarding the complex topology of the ridge that

divides them.

While the first type of scenario, connected to the specific implementation of the solver’s nu-

merical routine, can be ideally avoided by carefully selecting an appropriate Ansatz for the

single-nucleon wave functions, the second type of discontinuity is intrinsically related to the

adopted theoretical framework.

Figures 3.3 and 3.6 illustrate a typical example of the latter type of discontinuity. The

solver, constrained to produce a desired value of the quadrupole moment, finds successive local

minima in the symmetric valley, where the nucleus is reflection-symmetric. At a certain point,

during the progressive adiabatic deformation of the nucleus, the routine, which is in general

allowed to break parity, winds up exploring an asymmetric valley. Within this set of pear-

shaped configurations with non-vanishing octupole moment, states that are energetically more

advantageous are found. In fact, the code have lingered too long in one of the valleys, finding

there successive local minima but ignoring the real global minima actually present on the other

side of the ridge, at the same quadrupole deformation but at different octupole deformations.

The problem is delicate, especially considering that a discontinuity might not even appear

visible to the eye in the plot of the total binding energy of the deforming nucleus. This of course

happens if two energy valleys are very close in energy. An example of this is shown in the first

discontinuity of Figure 3.5, not clearly noticeable from the energy plot of Figure 3.3.

A discontinuity on the fission path precludes the correct calculation of physical properties

of fission, for example by hiding the real height of an energy barrier. At this point, one must

deal with two different but strictly connected tasks:

• A way to quantitatively assess the quality of a calculated PES must be found.

• Methods and routines to stitch discontinuities must be researched.

These are the main subjects of the second part of this doctoral work, and are discussed in the

upcoming sections.
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3.3 Assessment Of The Presence Of A Discontinuity On A

Potential Energy Surface

The presence of a discontinuity can be quantified by computing the density distance or the

norm overlap between adjacent points on the PES. In particular, consider the densities %0, %1,

and the wave functions |ϕ0〉, |ϕ1〉, associated with the pair of points ~q0 and ~q1 on a given PES.

A discontinuity is identified if the quantities

D%0%1 =

∫
d3r |%0(~r)− %1(~r)| , (3.20)

N01 = 〈ϕ0|ϕ1〉 , (3.21)

are, respectively, large and far below the unit.

The calculation of the latter quantity certainly demands larger computational resources than

those required by the former. In fact, the norm overlap is obtained from the HFB or RHB

amplitudes Ui and Vi (i = 0, 1) of the two states by following the procedure described in the

next subsection. The Ui and Vi matrices are calculated in terms of a chosen basis, such as

the harmonic, possibly deformed, oscillator basis. In contrast, the computation of the density

distance only makes use of two nuclear densities defined on top of a discretized coordinate

space. The computation of Equation (3.20) thus requires the calculation of a rather simple

integral in the coordinate space. On the other hand, the estimation of norm overlaps can easily

become cumbersome, technically and computationally. In the case of heavy nuclei, a robust

expansion of the nuclear total wave function may require the usage of harmonic oscillator bases

with up about thirty major shells, corresponding to several thousands of states. Thus, it may

involve the construction and multiplication of extremely large matrices, precise ordering of

their states, calculation of determinants; smart implementations to keep memory usage and

computational time under control become fundamental.

For these reasons, several authors, such as [122–124], decided to stick to the usage of den-

sity distances to establish the quality of potential energy surfaces. Nonetheless, the norm over-

lap (3.21) is a superior indicator, able to detect discontinuities stemming from a wider range of

sources, such as those related to the pairing properties. In addition, one should always factor

out the artificial contribution brought by the specific discretization of the PES. The norm over-

lap performs better also from this point of view. Accordingly to the calculations carried out
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in this work, when a PES is continuous, the norm overlap takes values between 1 and about

0.5, while a discontinuity is characterized by values that are many orders of magnitude smaller,

often down to 10−7. Figure 3.4 confirms this. On the other hand, the density distance may take

values between 0 and 10 for a continuous PES, and between 15 and 50 in presence of a dis-

continuity. It is then clear that choosing a critical value for Dmax, above which the PES should

be considered discontinuous, is more complicated than making a analogue choice for Nmin.

Finally, considering that the calculation of norm overlaps (3.21) is a crucial step of the model

presented in section 3.4.1, in this work it was decided to implement the most robust formalism

available for it on the market.

3.3.1 Calculation of norm overlaps

The calculation of the overlap of an operator O between two different many-body states |φ0〉

and |φ1〉,

〈φ0 |O |φ1〉, (3.22)

is an operation that one commonly encounters, e.g., in calculations based on GCM or in sym-

metry restoration. In the case of this manuscript, the operator is Ô = 1̂, since one would like

to obtain the norm overlap among two adjacent states on a PES, expressed by Equation (3.21).

A thorough calculation of Equation (3.22) can become a complicated task, depending on the

specifics of the two states and of the bases in which they are expanded.

If the two states |φ0〉 and |φ1〉 are built via an expansion on a common spherical basis, as

it may be the one formed by the eigenfunctions of a spherical harmonic oscillator potential,

the well-known Onishi formula [125,126] or the equivalent [127] Pfaffian formula [128] can be

safely adopted. However, simulations of the fission process are characterized by the progressive

deformation of the nucleus, which explores wildly different shapes. Thus, smart optimizations

and reductions of the bases are unavoidable in order to keep numerical resources under control.

A first type of basis optimization, in which one assumes that the nucleus under investigation

is axially symmetric, consists in expanding the single-nucleon wave functions in the basis of a

deformed harmonic oscillator potential,

U(z, r⊥) =
1

2
m(ω2

zz
2 + ω2

⊥r
2) . (3.23)

When this expression is compared to the spherical harmonic oscillator potential (1.16), the
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imposition of volume conservation entails ω3
0 = ωzω

2
⊥, and the two frequencies ~ωz and ~ω⊥

can then be defined in terms of a deformation parameter β0:

~ωz =~ω0e
−
√

5
4π
β0 ,

~ω⊥ =~ω0e
√

5
16π

β0 . (3.24)

The corresponding cylindrical oscillator lengths are defined by

bz =

√
~

mωz
,

b⊥ =

√
~

mω⊥
, (3.25)

and the basis is thus uniquely determined by the two constants ~ω0 and β0. The eigenfunctions

of the cylindrical harmonic oscillator (3.23),

Φα(~r, s) = ϕnz(z, bz)ϕn⊥,ml(r, b⊥)
eimlφ√

2π
χ(s) , (3.26)

are composed of the product of a one-dimensional axial wave function and a two-dimensional

radial wave function, that respectively read

ϕnz(z, bz) = b
− 1

2
z φnz(ξ) = b

− 1
2

z NnzHnz(ξ)e
− ξ

2

2 , (3.27)

ϕn⊥,ml(r, b⊥) = b−1
⊥ φn⊥,ml(η) = b−1

⊥ Nn⊥,mlL
|ml|
n⊥

(η)
√

2η|ml|/2e−η
2

, (3.28)

where ξ = z/bz, η = r2/b2
⊥, Nnz = (

√
π2nznz!)

−1/2 and Nn⊥,ml = (n⊥!/(n⊥ + |ml|)!)1/2,

while Hnz(ξ) and L|ml|n⊥ (η) are the Hermite and the associated Laguerre polynomials.

If the bases in which the states |φ0〉 and |φ1〉 are expanded are characterized by non-vanishing

deformation parameters, they are not closed under rotations, and the Wick’s theorem cannot be

applied in its original formulation [129]; In [130], an extension of the Wick’s theorem was

proposed that enables the calculation of overlaps between states expanded in bases that are not

closed under the canonical transformation relating them. This formalism has been implemented

for the first time only recently, in the latest version of the HFB solver HFBTHO [40,131]. Here,

the formula for the calculation of the overlaps has been used to restore the angular momentum

of HFB states, considering the specific case in which the state |φ1〉 is a rotation of the state

|φ0〉. However, this implementation still does not represent the most general application of the
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framework, since the two states are expanded in the same, albeit deformed, bases.

As already mentioned, state-of-the-art routines for fission simulations optimize the har-

monic oscillator basis deformation for each configuration. In the calculation of a PES, which is

the first step of many fission simulations based on the SCMF framework, the oscillator lengths

bz and b⊥ are separately optimized for each HFB state, to mimic the nuclear quadrupole de-

formation associated to it. Figure 3.1 illustrates this: the increased deformation of the basis

tightly follows the progressive deformation of the nucleus. This entails growing deformation

parameters and axial oscillator lengths that increase linearly. In contrast, the radial component

of the oscillator lengths remains roughly constant on the same interval.

The size of each basis is often reduced: an energy cut-off mechanism limits the number

of harmonic oscillator levels that are actually considered. Thus, one would like to be able to

calculate overlaps between states built on the most general bases, characterized by different

number of states, oscillator lengths and deformations. Only very recently, the formalism pre-

sented in [132,133] enabled this possibility, by far the best and most useful option in the case of

the study of the nuclear fission process. Other than the tests of the formalism that accompanied

its publication, no other attempt to implement it has been yet done. This formalism, whose

salient features are exposed in appendix C, has been adopted, implemented and tested in this

manuscript. For the first time, it was applied to calculate overlaps between states expanded in

bases with different dimensions.

The basic feature of the adopted formalism for the calculation of the overlaps consists in

accounting for the effect of the most generic unitary transformation that connects the two bases

used for the expansion of the single-nucleon wave functions. The more distant and different are

the two states, and consequently the bases optimized for their description, the more the overlap

will diverge from the one calculated with the traditional formulas, possibly arriving to differ

few orders of magnitudes.

In general, trying to apply traditional formulas, e.g., Equation (C.10), for the calculation of

overlaps between states corresponding to different configurations and built in different bases,

over-estimates the correct results that are be obtained with Equation (C.18). Regarding the

assessment of discontinuities, this means that the condition for a PES to be continuous becomes

more stringent. This feature is visible is Figure 3.4.
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Figure 3.1: The evolution of the axial and radial oscillator lengths of the deformed harmonic
oscillator basis in a typical fission simulation.
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3.4 Methods For Stitching Discontinuities

A first naive solution to smooth a fission path is to brute-force recalculate the PES including the

degree of freedom in which a discontinuity appeared. Unfortunately, computational resources

generally hinder the further addition of collective variables.

In [134, 135], an alternative set of geometrical collective variables, not based on mass mul-

tipole moments, have been adopted. The goal here is to address the inadequacy of a few multi-

pole moments to describe highly deformed nuclear shapes, specifically from the last saddle to

the scission point. Two sides of the nucleus can be defined with respect to a plane z = z0. Then,

in place of the quadrupole moment, the distance between the centers of mass of the two sides

of the nucleus can be used. Of course, the idea is that, at the end of the process, these will co-

incide with the centers of mass of the fragments. The octupole moment can be replaced by the

mass difference between the sides of the nucleus. The hexadecupole moment, apt to describe

deformations that lead to the formation of a neck that separates the two nascent fragments, can

be substituted with a neck operator. This accounts for the density or for the number of particles

inside the neck region. These operators are indeed more adequate to describe highly deformed

configurations and pre-fragments. The idea of a hybrid description based on multipole mo-

ments at low-deformations and other collective variables elsewhere is intriguing. However, this

approach must deal with the introduction of new parameters in the model. Moreover, the dis-

crete substructure of nuclei makes the above definition of sides of a nucleus, or that of the neck

region, rather ambiguous.

3.4.1 DPM-DK routine

The present section discusses an alternative approach to the two mentioned above to solve a

discontinuity that appears on a PES. The numerical routine developed here is to be thought of

as an add-on to the HFBTHO solver [40], whence it takes as inputs the nuclear PES, together

with its corresponding densities and wave functions. It is nonetheless straightforward to readopt

the implementation to any other HFB or RHB solver.

The routine, from here on denoted as DPM-DK, aims to quantify and efficiently stitch dis-

continuities that may appear on a nuclear PES. The idea is to patch the discontinuity with a

relatively small higher-dimension PES, and to find a new smooth minimum energy path across

it. Unlike the original work of [136], the robust calculation of the overlaps expressed by Equa-

tion (C.18) and presented in appendix C has been implemented. The ability to calculate reliable
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overlaps is crucial for the stitching procedure, since these quantities are employed to quantita-

tively establish the smoothness of the path.

In order to quantify the actual usefulness of the software and its applicability to realistic

applications, fission lifetimes have been calculated along the smoothed MEPs, and compared to

reference values available in the literature. The calculation also has the goal of verifying that

the procedure does not have any negative impact on nuclear fission properties. Following the

presentation of the DPM-DK routine, some illustrative applications are discussed, together with

the results obtained calculating the fission lifetimes along smoothed paths.

The presence of a discontinuity on an input 1D-PES is established by calculating the norm

overlaps (3.21) between adjacent points. Afterwards, a 2D-PES that includes the degrees of

freedom in which the discontinuity was found is generated to patch it. The HFBTHO program

has been employed to this purpose. It is worth pointing out that the generated PES should be

neither too large nor too small. It is evident that a big patching two-dimensional PES would go

against the philosophy of the model, intended as a cheaper alternative to other options. On the

other hand, a patching PES that is too small would graft a model-dependency in the search of

the MEP, forcing it to pass across a narrow set of collective variables arbitrarily picked by the

user.

The Dynamic Programming Method (DPM) [137, 138], inspired to a breadth-first search

(BFS) algorithm [139], has been implemented on the mesh that discretizes the patching two-

dimensional PES with the purpose of finding a smooth minimum energy path across it. It im-

proves the BFS algorithm in the sense that it calculates only a limited number of paths at each

step of the search, thus taming exponential memory and time requirements. In fact, the main

drawback of the BFS algorithm is its memory and time cost, growing exponentially with the

size of the search space. During its search, a BFS algorithm stores all the MN paths generated

between the source and the solution node. The DPM algorithm has demonstrated a great effi-

ciency thanks to its many applications to the search of least action paths, commonly employed

to calculate spontaneous fission lifetimes. For instance, in [140], a few grid-based methods used

for the search of LAPs across PESs have been compared to a method based on the solution of

the Euler-Lagrange equations and to a new model, called Nudged Elastic Band (NEB) method,

in which the LAP is found by continuously shifting the pathway to the closest minimum action

path. In this comparison, the DPM algorithm came out as a top performer; it was even used

to initiate the presented NEB method, which, given its higher complexity, produces of course
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slightly lower action integrals.

The minimum energy path is computed in the DPM-DK routine by thinking the patching

two-dimensional PES as a tree-data structure, with an horizontal size of N points, and a vertical

size of M points. The search starts from an initial source node, chosen by the user among the

points of the input discontinuous PES, with coordinates (xI, yI). The variable x denotes the

collective variable describing the input one-dimentional PES, while y is the second degree of

freedom that constitutes the patching two-dimensional PES. A BFS algorithm would explore

all the nodes of the MN -sized patching PES at each depth, that is at a given quadrupole defor-

mation, before moving on to the nodes of the successive depth level. A queue would be built

to keep track of the nodes that have been visited but not yet explored. The BFS algorithm is

guaranteed to find the solution node, if it exists. In the present case, the solution node is an-

other user-chosen point of the input PES, denoted by the coordinates (xF, yF). At the end of

the search, all the paths are compared, and the one characterized by the smallest value of the

path-integrated energy,

E[P ] =
N∑
i=1

E(xi, yi) , (3.29)

is selected as the minimum energy path.

Here, an example of pseudo-code that implements the BFS algorithm is shown:

1 Q = [ ] i s an empty queue

2 The s o u r c e node ’ s o u r c e ’ i s l a b e l e d as e x p l o r e d .

3 Q. append ( ’ s o u r c e ’ )

4 i f Q i s not empty , pop out i t s f i r s t e l e m e n t

5 v = Q. pop [ 0 ]

6 i f t h e node v i s t h e s o l u t i o n , re turn v

7 e l s e

8 f o r a l l edges [ v ,w] s t a r t i n g from v

9 i f w i s not l a b e l e d as e x p l o r e d then

10 l a b e l w as e x p l o r e d

11 Q. append (w)

The DPM, implemented in the DPM-DK routine, tries to deal with the exponential require-

ments of the BFS algorithm by limiting the amount of stored paths. Specifically, at each depth

level of the search, all the paths P that wind up in a same successive intermediate node k are

compared by calculating their path energy,

Ek[P ] =

Nk∑
i=1

E(xi, yi) , (3.30)
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Figure 3.2: At each step of the DPM search all the successor paths are calculated (light blue
segments). Among multiple paths that share the same tip, only the one with the least integrated
energy, Equation (3.30), is not discarded (blue segments). At the end of the algorithm, the path
with the minimum integrated energy (3.29) is selected among the stored candidates.

where E(xi, yi) is the energy associated to the point (xi, yi) of the patching PES. All non-

minimal paths are discarded, reducing the final number of stored paths to MN . The procedure

is sketched in Figure 3.2. At the code level, this means that before proceeding to the successive

depth level, that is when the queue of the pseudo-code 3.4.1 is emptied, a number of edges are

removed from the structure in which they were stored. When the solution node is found, the

number of paths to be compared is therefore sensitively reduced.

The additional requirement of a minimum norm overlap between neighboring connecting

points, and that of a maximum acceptable gradient of the path, can be added. Of course, while

these conditions favor the smoothness of the final path, they relax the adiabatic hypothesis.

The path calculated by DPM-DK is not guaranteed to pass from local minima of the PES, as

long as the total energy integrated on the path, Equation (3.29), is minimized. Moreover, these

requirements limit the space spanned by the algorithm, disrupting the warranty of existence of a

solution. In the present work, the maximum number of vertical steps between each segment of

the path has been set to ∆max = 1, while the minimum requested norm overlap, effectively used

to establish the continuity of a PES, has been set equal to Nmin = 0.3. The setting ∆max = 2

was also investigated, but it was noticed that this condition would produce the same solution as

∆max = 1 for equal Nmin, since most of the additionally considered paths were not continuous.
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3.5 Tests Of The DPM-DK Routine

252Cf

The DPM-DK routine has been first applied to the one-dimensional PES of 252Cf, constrained

by the quadrupole moment. The PES2 is shown in Figure 3.3 as a blue dotted line. The calcu-

lation of adjacent norm overlaps, Figure 3.4, reveals the presence of two discontinuities: one at

Q20 = 60 b in the hexadecupole moment, Figure 3.5, and the other at Q20 = 172 b in the oc-

tupole moment, Figure 3.6. The latter discontinuity is a clear example of the above mentioned

issue related to self-consistent based calculation of PES. A sharp non-physical transition from

the symmetric to the asymmetric valley is present in the original path. The HFB solver ignored

the presence of a set of lower-lying energy minima across the ridge that divides the two valleys.

Because of this, the height of the second barrier is increased. Two patching PESs are generated,

defined by Q20 = (40, 72) b, Q40 = (3.2, 10.4) b2 and Q20 = (128, 192) b, Q30 = (0, 16) b
3
2 .

The DPM-DK routine produces new smooth MEPs, as the discontinuities get stitched one by

one (Figure 3.3, dashed red and solid black lines). The evolution of the third and fourth multi-

pole moments are as well visibly smoother at the end procedure, see Figures 3.6 and 3.5. The

obtained minimum energy path reflects the complexity of the ridge that divides the symmet-

ric and asymmetric valleys, showing the structured climb of the nucleus across it. Needless to

say, due to the fact that a connecting point is added to the stitching path only if it satisfies the

conditions of a minimum overlap Nmin with its neighbors, the obtained path is continuous by

definition.

As mentioned above, the stitching path differs from the adiabatic path that one would ob-

tain on a fully two-dimensional PES. This adiabatic path, locally crossing points of minimum

energy, may on the other hand remain discontinuous even after increasing the dimension of the

PES, due to the specific discretization of the PES. Even if, locally, each point of the DPM-DK

path is not minimal as the condition of adiabaticity is relaxed, globally this is the path charac-

terized by the smallest integrated energy, Equation (3.29).

2The PESs of 252Cf have been calculated using HFBTHO. The D1S Gogny interaction has been adopted.
The calculations used 30 major shells for the HO basis in which the single-nucleon states were expanded. The
calculation considered a reduction of the basis corresponding to 1700 states, while the basis deformation has been
optimized as a function of the nuclear deformation.
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Figure 3.3: The potential energy surface of 252Cf. The dotted blue line is the original, dis-
continuous, PES. The dashed red line is the PES obtained after stitching the octupole moment
discontinuity, while the black solid line is the final DPM-DK path.
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Figure 3.4: Norm overlaps, Equation (3.21), calculated between adjacent configurations of the
PES of 252Cf, Figure 3.3. Two discontinuities are identified within the first and third region of
the figure, at Q20 = 60 b and Q20 = 172 b, respectively. In the first and third regions of the plot,
0 < Q20 < 64 and 168 < Q20 < 232, all adjacent overlaps are shown. The mesh step of these
regions is 4 b. In the second region of the plot, where no discontinuities have been found and
N01 > 0.7, only a limited sample of adjacent norm overlaps is represented. All values lower
than 0.01 have been set to 0.01.
(dotted line): overlaps calculated using Equation (C.10). While the traditional formulas for the
calculation of norm overlaps should be inapplicable to the case in which states are expanded in
arbitrary bases, this approach has been nonetheless adopted in reference [136]. (dotted line):
overlaps calculated with the correct formalism, Equation (C.18).

94



Tests Of The DPM-DK Routine

40 45 50 55 60 65 70 75
Q20 [b]

3

4

5

6

7

8

9

10

Q
40

 [b
^(

2)
]

Disc. path
Q30 disc. stitched

Figure 3.5: The hexadecupole moment of 252Cf in proximity of the first discontinuity of Fig-
ure 3.3. In dotted blue, the original evolution of the hexadecupole moment, in solid black the
hexadecupole moment on the DPM-DK path.
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Figure 3.6: The octupole moment of 252Cf in proximity of the second discontinuity of Fig-
ure 3.3. In dotted blue, the original evolution of the octupole moment, in solid black the oc-
tupole moment on the DPM-DK path.
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284Fl

A second application of the DPM-DK routine treated the case of 284Fl, a super heavy element

characterized by a rather low first barrier, EA = 5.32 MeV, and therefore prone to undergo

spontaneous fission with high probability. Again, a discontinuity was found in relation to the

presence of lower-lying energy levels in the asymmetric valley. The original and the stitched

PESs3 are visible in Figure 3.7. Here, it is evident that the obtained path ignores the presence

of locally favorable energy configurations with the purpose of minimizing the total energy in-

tegrated on the path. In fact, the DPM-DK path is characterized by locally higher energies

in correspondence of the isomer state, at deformations within the quadrupole moment range

(65, 80) b. Nonetheless, the effect of crossing the ridge smoothly is that the height of the sec-

ond barrier is considerably lowered.

294Fl

A third application considered the nucleus 294Fl, an isotope of the previous nucleus, character-

ized by a fission lifetime which is rather long for a super heavy element. The original potential

energy surface is shown in Figure 3.8. Stitching of a discontinuity in the octupole moment,

found in proximity of the second saddle point, has a remarkable impact on the height on the

second barrier. In view of the calculation of the spontaneous fission lifetime along the path,

Equation (3.19), the lowering of the second barrier caused by the smoothing procedure is com-

pensated by increased values of the collective inertia, see Figure 3.6. The value of the fission

lifetime is therefore not expected to be drastically modified.

3.6 Fission Lifetimes From Stitched Minimum Energy Paths

In order to establish quantitatively the actual usefulness of the DPM-DK routine for realistic

calculations, fission lifetimes were calculated along stitched minimum energy paths, and com-

pared to the result given by the discontinuous PESs. This is a test of the method that verifies

if the new MEP is properly associated to the correct physical properties. This is an important

conceptual step, as the smoothness of the path, while being a necessary condition for a path to

be physically reliable, is not sufficient to guarantee it will be such. This is especially true con-

3The PESs of 284Fl and 294Fl have been calculated using HFBTHO. The SKM* Skyrme interaction has been
adopted. The pairing strengths were adjusted: Vn0 = −268.9 MeV fm3 and Vp0 = −332.5 MeV fm3. The calcu-
lations used 26 major shells for the HO basis in which the single-nucleon states were expanded. The calculation
considered a reduction of the basis corresponding to 1140 states, while the basis deformation has been optimized
as a function of the nuclear deformation.
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Figure 3.7: The potential energy surface of 284Fl. The dotted blue line is the original, discon-
tinuous, PES. The black solid line is the final DPM-DK path.
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Figure 3.8: The potential energy surface of 294Fl. The dotted blue line is the original, discon-
tinuous, PES. The black solid line is the final DPM-DK path.
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sidering the local failing of the adiabaticity condition of the stitched paths. The specific choice

of the fission lifetime as quantity to calculate for this test is explained by the relatively straight-

forward techniques available to compute it. Moreover, no dynamical features are involved in its

calculation.

In advanced applications, the fission lifetime is calculated by integrating the action on top of

the least action path. Fission lifetimes calculated on MEPs are generally larger than those cal-

culated on LAP. In our case, considering the purposes of the calculation, it has been considered

a fair approximation to use static MEPs in place of LAPs. This is justified by reference [140],

that provides a necessary condition for a MEP to be a LAP, and in particular shows that, when

only shape-related degrees of freedom are considered, the static (minimum energy) calculation

is equivalent to the dynamical and more quantal (least action) description. On the other hand,

reference [141] shows that a direct comparison of the action (3.10) obtained using the two types

of paths may differ up to a factor three when the particle number fluctuation degree of free-

dom is considered. This entails dramatic differences in the calculated lifetimes. In fact, since

the collective inertia decreases as the square of the inverse pairing gap [142, 143], whereas the

energy increases as the square of the pairing gap, the minimum of the action differs from the

minimum of the energy. This means that pairing is indeed a fundamental ingredient for an accu-

rate description of fission dynamics. As this goes beyond the scopes of the present manuscript,

the reader is directed to [144] for further details. Finally, triaxiality features sometimes play

an important role in determining the correct height of the second barrier [110, 145]. The PESs

of this work are generated with HFBTHO, that allows to consider only axially symmetric de-

formations. With these premises in mind, it is not expected that the calculations performed on

the MEP will be in full agreement with state-of-the-art results or experiments. Rather, they are

expected to yield values of the more or less correct order of magnitude.

Finally, before moving on to discuss the obtained results, it is worth specifying that in all

cases of study the calculated action S was found to be at least ten times larger than the squared

reduced Plank constant, ~2. As already mentioned, failing this condition would jeopardize the

validity of the adoption of the semi-classical WKB approximation, and therefore the entire for-

malism presented in section 3.1.1 used for the calculation of fission lifetimes, Equation (3.19).

Indeed, the operation of stitching has a relevant impact on several physical properties of the

nucleus. Figure 3.9 shows the evolution of the collective inertia of 252Cf, calculated in accord

to (3.16). The collective inertia is visibly diminished on the DPM-DK path in proximity of
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Table 3.1: Spontaneous fission lifetime calculated on the discontinuous and DPM-DK smoothed
path(s) for quadrupole-moment-constrained PES, compared to the state-of-the-art results.

Nucleus Discontinuous path DPM-DK path Reference value
252Cf 11.78 y 7.23 y, 6.43 y 2.65 y [146]
284Fl 1.05 10−10 s 4.00 10−10 s 4.57 10−10 s [110]
294Fl 1292 s 663 s 741 s [110]
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Figure 3.9: The ATDHFB collective inertia of 252Cf as a function of the quadrupole deformation
of the nucleus. In dotted blue, the original evolution of the collective inertia, in dashed red and
solid black, the collective inertia on the DPM path.
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the first barrier. Moreover, its trend is modified around the saddle point before the scission,

where the stitching procedure has a large impact on the height of the second barrier. Consid-

ering the exponential dependence of Equation (3.19) on both the height of the energy barriers

and the collective inertia, even small changes in these quantities may produce sensitive effects

in the resulting fission lifetime. Nonetheless, a small but sensitive improvement of the life-

times calculated along the smoothed trajectories is visible in the results illustrated in table 3.1.

In the case of 252Cf, where two discontinuities were found, one can see that the progressive

stitching steadily improves the value of the fission lifetime towards the reference value. The

same happens for the super heavy element 284Fl, whose PES is characterized by a very low first

energy barrier, and for which therefore a very short lifetime is obtained. In the case of 294Fl,

characterized by a first barrier of 7.39 MeV, the α-decay lifetime, equal to 10−0.08 s, is larger

than the spontaneous fission lifetime. Since this contradicts the discussed assumptions for the

adoption of the WKB approximation, the result obtained from (3.19) should not be considered

physically trustworthy. Nonetheless, the fission lifetimes calculated on the discontinuous and

stitched paths are in rough agreement with the reference results, as visible in table 3.1. More-

over, the energy gain for moving in a continuous way to the asymmetric valley entails a lower

calculated spontaneous fission lifetime.
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Figure 3.10: The ATDHFB collective inertia of 284Fl as a function of the quadrupole deforma-
tion of the nucleus. In dotted blue, the original evolution of the collective inertia, in solid black
the collective inertia on the DPM path.
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Figure 3.11: The collective inertia as a function of the quadrupole moment for 294Fl. The dotted
blue line is the inertia calculated on the original, discontinuous, PES. The black solid line is the
calculated on the DPM path.
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SUMMARY AND CONCLUSIONS

The first part of this work, reported in [147, 148], investigated for the first time in nuclear

physics the inverse problem of Density Functional Theory. A formalism for its solution has

been derived both in the non-relativistic and relativistic frameworks. Two inversion procedures,

that already proved to be successful in other fields of physics, have been adapted to the nuclear

case. They have been subsequently implemented and tested on a number of theoretical and

empirical densities of closed-shell nuclei.

The inversion algorithms have been specifically chosen to be very different one from an-

other. One of them, the Constrained Variation method, consists in the minimization of the

kinetic energy of the fictitious Kohn-Sham system, whose orbitals are constrained to reproduce

a given target density and to be orthonormal. The functional form of the Kohn-Sham potential

is then extracted by solving a set of Euler-Lagrange equations. The formalism of this method

is very general, and its eventual application to densities of deformed nuclei should be rather

straightforward. On the other hand, its understanding and implementation are not particularly

intuitive. Moreover, the results obtained in the case of spherical closed-shell nuclei are not ex-

ceptionally better than those of other simpler algorithms. The second method (vLB) consists in

the inversion and iterative solution of the Kohn-Sham equations. At each step, the Ansatz for

the Kohn-Sham potential is steadily adjusted in order to make the density of the Kohn-Sham

system closer to the target density. While a generalization of this method for non-spherical or

open-shell nuclear systems might prove to be cumbersome, the underlying idea is very intuitive

and its implementation for closed-shell nuclei is not complex. Nonetheless, advanced comput-

ing techniques, such as the Broyden mixing procedure, must be employed to consistently reach

convergence.

Both algorithms proved to be robust and in remarkable agreement one with the other. The

Kohn-Sham potentials extracted from the empirical proton densities of 40Ca and 208Pb and

from the neutron density of 208Pb are physically reasonable in the interior and at the surface
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of the nucleus. Conversely, the sum of Gaussians parameterization commonly employed for

experimental densities leads to issues for the tail of the KS potentials: a divergent harmonic-

oscillator-like asymptotic trend is found in all cases. In particular, it was verified that the non-

physical behavior of the KS potentials begins at radii larger than the radius of the outermost

or second-outermost Gaussian used in the parameterization. One can deduce that when the

empirical densities are not properly backed up by data points, the derived KS potentials become

unreliable. To furthermore corroborate this explanation, the inversion algorithms have been

tested using as input theoretical densities calculated by means of HF calculations. In this case,

where the asymptotic behavior of the densities is physically correct, the KS potential is reliable

everywhere.

Realistic nuclear energy density functionals depend on spin densities and gradients of den-

sities that cannot be measured experimentally. Despite the fact that trying to extend the imple-

mented algorithms to tackle a larger set of nuclei, including deformed ones, might be interesting,

it is evident that the sole information about empirical neutron and proton densities is insufficient

to deduce an effective KS potential. Thus, the range of application of the inverse Kohn-Sham

problem results limited. To partially address this issue, the iterative vLB method was extended

and generalized to the relativistic framework. The most important reason to consider relativistic

functionals is that within this formalism the spin-orbit potential emerges naturally, as a con-

structive combination of the scalar and vector nucleon potentials.

The relativistic generalization of the vLB algorithm has been tested on several theoreti-

cal scalar and vector nuclear densities. It proved to be reliable in calculating the scalar and

vector potentials associated to them. Unfortunately, this generalization does not provide a di-

rect solution to the fact that the scalar density is not an experimental observable. Accurate

and well-assorted data exists only for charge proton densities, whereas the construction of the

Kohn-Sham potential requires not only the isoscalar and scalar densities, but also the isovector

ones. To further proceed in this line of research, one may try to exploit the equations of state

of state of isospin symmetric and asymmetric nuclear matter. Data on proton vector densities

could be combined with the equation of state of nuclear matter to determine the isoscalar-scalar

and isovector channels of the KS potential.

A second problem associated to the application of the IKS procedure is that it is not com-

pletely clear how to employ the extracted KS potentials to build an actual NEDF. Even when

a recipe for such a task had been found, the implementation of the NEDF would still depend
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on the exact densities of a few specific and unrelated systems; it would not provide any direct

information on the universal EDF. The idea of exploiting ab initio calculations for testing the

IKS method on systems that are very close one to another in terms of their density would in-

deed be an intriguing continuation of this line of research. For instance, neutron drops would

represent an ideal playground for such attempts. In that case, it could be possible to obtain a

NEDF with a functional integration on a path of densities. This work proceeded instead to adapt

the IKS+DFPT model to the field of nuclear physics. By using density functional perturbation

theory, one can improve the form of a given NEDF towards the exact, unknown one. A model

has been therefore proposed to make use of the piece of information encoded in the empirical

densities and the derived Kohn-Sham potentials of a few finite systems. Specifically, the cor-

rect ground-state scalar and vector densities of a small number of finite closed-shell systems,

together with the energy levels of the KS potentials derived from them, provided the ingredients

necessary to estimate the first-order correction to a starting functional towards a target EDF.

The IKS+DFPT model has been tested in a few illustrative cases. The relativistic functional

DD-PC1 has been taken as the exact target functional. The presented model has been employed

to improve the local density approximation of the DD-PC1 functional towards the complete

functional. To this purpose, the implemented routine returned the value of a number of param-

eters contained in the starting guess for the first-order correction of the zeroth-order EDF. A

first test used as initial guess for the first-order correction the remaining part of the DD-PC1

functional. A second test started instead from an Ansatz given by a quadratic polynomial of

the densities. In both cases the model accurately reproduced the density-dependent coupling

functions.

The focus of the second part of this work has been an inherent limitation that accompa-

nies fission simulations made within adiabatic SCMF models: the unavoidable appearance of

artificial discontinuities on potential energy surfaces. The present manuscript addressed two

tasks: a reliable procedure to assess the presence of a discontinuity on a PES was defined, and

a routine to stitch a discontinuity by finding a smooth fission path across it was provided. The

calculation of norm overlaps between states corresponding to adjacent points on a PES was

identified as the quantity of interest to assess the presence of a discontinuity. The formalism

presented in [132, 133] has been successfully extended and implemented. This implementa-

tion allows to overcome the limitations of traditional formulas. It provides a framework within

which one can consistently consider states that are expanded in arbitrary harmonic oscillator
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bases with different dimensions. Next, the DPM-DK routine, based on the Dynamic Program-

ming Method, has been developed and tested. It can be used to find a smooth minimum energy

path across a relatively small two-dimensional PES generated to patch a discontinuity found on

a one-dimensional PES.

The physical reliability of the stitching paths that were obtained with the DPM-DK routine

was verified. This has been done by calculating along them the most relevant quantity used

to characterize spontaneous nuclear fission: the lifetime. In particular, the relaxation of the

adiabaticity condition, exploited within the method in order to obtain smoother paths, has been

verified not to have any negative effect on the calculated lifetimes. All the calculated lifetimes

have been shown to be in agreement, up to an order of magnitude, with the corresponding

reference values. A systematic improvement of the lifetimes calculated on the stitched paths

was also found in comparison to the results obtained on the original, discontinuous, potential

energy surfaces. The designed routine provides a valid and economic alternative to traditional

approaches used to deal with the appearance of discontinuities on potential energy surfaces

obtained with adiabatic self-consistent calculations.

An extension of the method to stitch discontinuities appearing on two-dimensional potential

energy surfaces is under preparation. Such routine will allow to further corroborate the physical

reliability of the obtained smoothed paths by investigating the response of other nuclear prop-

erties, possibly dynamical, to the stitching procedure. In this sense, the aim is to design a tool

of wide usage for static and dynamic studies of the fission process.
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THE NUCLEAR DENSITY

In this appendix a general definition of the nuclear density function is given, based on density

operators. Stating from the quantity,

ΨA(~x1, . . . , ~xA)Ψ∗A(~x1, . . . , ~xA) , (A.1)

that represents the probability distribution associated with a specific solution of the Schrödinger

equation, one can define the elements

γA = ΨA(~x′1, . . . , ~x
′
A)Ψ∗A(~x1, . . . , ~xA) (A.2)

of the density matrix. The diagonal entries of this matrix are (A.1). The elements γA can be

thought as the representation, in the coordinates basis, of the density operator

γ̂A = |ΨA〉 〈ΨA| . (A.3)

The operator γ̂A is an hermitian projection, and

tr(γ̂A) =

∫
dA~x

∫
dA~x′ ΨA(~x′1, . . . , ~x

′
A)Ψ∗A(~x1, . . . , ~xA) = 1 (A.4)

if |ΨA〉 is a normalized wave function.

The expectation value of an observable Ô reads

〈
Ô
〉

= tr(γ̂AÔ) . (A.5)
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The previous equation establishes a one-to-one mapping between the density operator and each

observable of the system under investigation. In fact, by comparison with

〈
Ô
〉

=

∫
d~x Ψ∗Ô Ψ∫
d~x Ψ∗Ψ

=
〈Ψ| Ô |Ψ〉
〈Ψ|Ψ〉

, (A.6)

one notices that the density operator carries the same piece of information as any A-nucleon

wave function |ΨA〉. Furthermore, while |ΨA〉 is defined up to an arbitrary phase factor, γ̂A is

unique. This operator-like description becomes essential whenever the system under investiga-

tion is part of some environment which is not isolated from it. In this case, the system does not

have a complete Hamiltonian that contains all its degrees of freedom. The system is then open

and any possibility of a wave function-based description is precluded [149].

Recalling the anti-symmetricity of the total wave function of a fermion system, one can sim-

plify the density matrix and define a so-called reduced density matrix. Call γA, Equation (A.2),

Ath-order density matrix. One then defines a reduced pth-order density matrix

γp(~x
′
1, . . . , ~x

′
p; ~x1, . . . , ~xp) =

=

(
A

p

)∫
d~xp+1· · ·

∫
d~xA γA(~x′1, . . . , ~x

′
A; ~x1, . . . , ~xA) . (A.7)

Specifically, being mainly interested in one- and two-body operators, one focuses on the 2nd-

order density matrix

γ2(~x′1, ~x
′
2; ~x1, ~x2) =

=
A(A− 1)

2

∫
d~x3 · · ·

∫
d~xAγA(~x′1, . . . , ~x

′
A; ~x1, . . . , ~xA) , (A.8)

and the 1st-order density matrix

γ1(~x′1; ~x1) =

= A

∫
d~x2 · · ·

∫
d~xAγA(~x′1, . . . , ~x

′
A; ~x1, . . . , ~xA) , (A.9)

All these operators are positive, semi-definite and hermitian. Also, antisimmetry requires that

the interchange of two primed or two non-primed indices brings along a change of the sign of

the density operators.

It is natural, whenever the quantities of interest do not involve the spin coordinate, to further
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simplify the density matrices by a summation over the spin si. The 1st-order and the 2nd-order

spinless density matrices read

%1(~r′1;~r1) =

∫
ds1 γ1(~x′1; ~x1) (A.10)

%2(~r′1, ~r
′
2;~r1, ~r2) =

∫
ds1

∫
ds2 γ2(~x′1, ~x

′
2; ~x1, ~x2) , (A.11)

and they are linked by the relation:

%1(~r′1;~r1) =
2

A− 1

∫
d~r2 %2(~r′1, ~r

′
2;~r1, ~r2) . (A.12)

The diagonal entries of (A.10) provide the originally defined nuclear density, Equation (1.50).

It is also possible to write an energy formula, a generalized energy density functional

E[%] =

∫
d~r

[
− ~2

2m
∇2
~r %(~r′;~r)

]
~r′=~r

+

∫
d~r v(~r)%1(~r)+ (A.13)

+

∫
d~r1

∫
d~r2w(~r1, ~r2)%2(~r1, ~r2) ; (A.14)

the three terms represent the kinetic term, the external potential energy, and the nucleon-nucleon

interaction energy, respectively. The advantage of the formula is that it involves only a function

of three coordinates, n1(~r), and two functions of six coordinates, n1(~r′, ~r) and n2(~r1, ~r2).
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MULTIPLE CONSTRAINT METHOD

In [150], a linear-variation method to impose one or more constraints within an optimiza-

tion routine was first presented. In this work, the method has been implemented within the

RHB solver DIRHB [41]. With respect to other types of constraining procedures, such as the

quadratic-constraint method [34,151], this approach should be more stable. Moreover, whereas

other methods allow constraining up to only two or three operators before getting overwhelm-

ingly time consuming, in the so-called Multiple Constraints Method the computing time scales

much slower with the number of constraints.

The constrained operators are embedded into the optimization process in the same fashion

of the Lagrange multiplier method, that is by substituting the Hamiltonian of the system with

the Routhian

H(R, {λ}i) = H(R)−
∑
i

λiF̂i. (B.1)

In agreement with the HFB and RHB formalism presented in section 1.2.2, each operator F̂i
stands for

F̂i =

F̂i 0

0 −F̂ ∗i

(ph)

(B.2)

in the particle-hole canonical basis. Note that, since the generalized matrix is obtained through

the diagonalization of the Routhian operator, it will also depend on the Lagrange multipliers:

R = R({λ}i) . (B.3)

The main idea of the procedure is to finely adjust the Lagrange multipliers {λ}i at each iteration
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of the routine, to make the expectation values of the constrained operators

〈
F̂i
〉

=
1

2
trF̂i +

1

2
TrF̂iR

= fi , (B.4)

equal to those desired. In the previous formula Tr(·) is intended as a super-trace [152], whereas

tr(·) is the common trace operation. The following calculation of TrF̂iR should clarify the

difference:

TrF̂iR = Tr

F̂i 0

0 −F̂ ∗i

 ρ̂ −κ̂

κ̂∗ 1− ρ̂∗


= Tr

 F̂iρ̂ −F̂iκ̂

−F̂ ∗i κ̂∗ −F̂ ∗i + F̂ ∗i ρ̂
∗


= trF̂iρ̂− trF̂i + trF̂iρ̂

= 2fi − tr(Fi) . (B.5)

Given the set {λ}i of Lagrange multipliers, the corrections {δλ}i necessary to yield the

desired constraints {f}i can be obtained by imposing that the newly defined problem,

[H(R({λ+ δλ}i), {λ}i),R({λ+ δλ}i)] = 0 , (B.6)

is solved at the same time of the original problem,

[H(R({λ}i), {λ}i),R({λ}i)] = 0 ; (B.7)

both equations lead to solutions of the HFB/RHB problem, but only the former yields the desired

expectation values fi.

Consider the variation induced on the generalized density by the small, linear correction to

the Lagrange multipliers:

R({λ+ δλ}i) = (0)R+ (1)R , (B.8)

where

R({λ}i) = (0)R (B.9)
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is diagonal in the quasi-particle basis and it is idempotent. In fact, a necessary condition for a

generalized matrix to solve the HFB/RHB problem is to be idempotent. This condition is then

applied to (B.8). Up to linear terms in δλi,

((0)R+ (1)R)2 = (0)R+ (1)R0 0

0 1

(1)R11 (1)R12

(1)R21 (1)R22

+

(1)R11 (1)R12

(1)R21 (1)R22

0 0

0 1

 = (1)R

 0 (1)R12

(1)R21 2(1)R22

 =

(1)R11 (1)R12

(1)R21 (1)R22

 . (B.10)

As a consequence, Equation (B.10) is verified only if

(1)Rii = 0 . (B.11)

Equation (B.6) is linearized exploiting Equation (B.7) and the property just derived, Equa-

tion (B.11):

[H(R({λ+ δλ}i), {λ+ δλ}i),R({λ+ δλ}i)] = 0[
H(R) + ∂H

∂R
δR−

∑
i

F̂iδλi, (0)R+ (1)R

]
= 0

∑
i

δλi

[
Fi, (0)R

]
=
[
H(R({λ}i), {λ}i), (1)R

]
+

[
∂H
∂R

δR, (0)R
]

∑
i

δλi

F11
i F12

i

F21
i F22

i

0 0

0 1

−
0 0

0 1

F11
i F12

i

F21
i F22

i


=

 εα H12

H21 −εβ

 0 (1)R12

(1)R21 0

−
 0 (1)R12

(1)R21 0

 εα H12

H21 −εβ


+

∂H∂RδR11 ∂H
∂RδR

12

∂H
∂RδR

21 ∂H
∂RδR

22

0 0

0 1

−
0 0

0 1

∂H∂RδR11 ∂H
∂RδR

12

∂H
∂RδR

21 ∂H
∂RδR

22


∑
i

δλi

 0 F12
i

−F21
i 0

 =

 0 (εα + εβ)
(1)R12 + ∂2E

∂R2
αβ
δR12

αβ

−(εα + εβ)
(1)R21 − ∂2E

∂R2
αβ
δR21

αβ 0


∑
i

δλi

 0 F12
i

−F21
i 0

 =M (1)R . (B.12)
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In the last step, the QRPA (linear response) matrixM has been introduced. Equation (B.12) is

manipulated to obtain the formula for the calculation of the first-order correction to the gener-

alized density:
(1)Rpq

αβ =
∑
i

δλiM
−1
αβF

pq
αβ;i . (B.13)

with p 6= q.

The assumption of the cranking approximation [117] enables a great simplification of the

previous expression:
(1)Rpq

αβ =
∑
i

δλi(εα + εβ)−1Fpqαβ;i . (B.14)

The cranking approximation fundamentally consists in neglecting the residual interaction be-

tween quasi-particles. Then, the inverse of the QRPA matrixM becomes:

M−1
αβ =

(εµ + εν)
−1δµαδνβ 0

0 (εµ + εν)
−1δµαδνβ

 ; (B.15)

Note that this approximation is also equivalent to fully neglect any effect of variation of the

Hamiltonian with respect to the Lagrange multipliers. The resulting matrix is diagonal, with

eigenvalues given by pairs of quasiparticle energies.

Denote ~Fi = (F12
i ,F21

i )t and allow a similar notation for the generalized matrix. The differ-

ences δfi between the expectation values obtained with the solutions to the two problems (B.7)

and (B.6) depend on the adjustments δλi, according to:

δfi = fi(λi + δλi)− fi(λi)

=
1

2
TrF̂iR({λi + δλi})−

1

2
TrF̂iR({λi})

=
1

2
TrF̂i(1)R (B.16)

=
1

2
~F †i ·(1) ~R (B.17)

=
1

2

∑
j

~F †i ·M−1 ~Fjδλj

= Tijδλj ; (B.18)

the matrix of the correlations among the constraints, T , has been defined. Finally, one finds the
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inverse relation

δλj =
∑
i

(
1

2
~F †j · M−1 ~Fi)−1δfi = T −1

ji δfi. (B.19)

The formulas that prescribe how to update the Lagrange multipliers and the generalized den-

sity matrix, Equations (B.19) and (B.14), have been derived in the quasiparticle basis. There-

fore, one makes use of the following rule to move from the particle-hole to the quasi-particle

basis,

F (qp) =W†F (ph)W =

U †FU − V †F ∗V U †FV ∗ − V †F ∗U∗

V tFU − U tF ∗V V tFV ∗ − U tF ∗U∗

 . (B.20)

together with F12 = F21∗. The matrix T is expressed in terms of the operators in the particle-

hole representation:

Tij =
1

2
[(V tF †U − U tF tV )iαM

−1
αβ (U †FV ∗ − V †F ∗U∗)βj + h.c]

=
1

2
[(V tF †UM−1U †FV ∗ − U tF tVM−1U †FV ∗+

− V tF †UM−1V †F ∗U∗ + U tF tVM−1V †F ∗U∗) + h.c] (B.21)

For instance, the particle number operator in oscillator basis is represented by the identity ma-

trix:

N̂q =
∑
νν′

δνν′a
†
νaν′ . (B.22)

where |ν〉 = |nznrΛms〉 in cylindrical coordinates.

For the quadrupole moment operator, one starts from its representation in the coordinate basis,

Q̂20 =

∫
r drdzdφ ρ(r, ϕ, z)(2z2 − r2)

=

∫
r drdzdφ (2z2 − r2)∑

νν′

∑
σ

∫
r′ dr′dz′dφ′ ϕ∗ν(r

′, z′, φ′, σ)ϕν′(r
′, z′, φ′, σ)δ(~r − ~r′)a†νaν′ , (B.23)
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and from this expression one reads out the matrix representation:

q
(20)
νν′ =

∑
σ

∫
r drdzdφ ϕ∗ν(r, z, φ, σ)ϕν′(r

′, z′, φ′, σ)(2z2 − r2)

=

∫
r drdzdφ ϕ∗nz(z, bz)ϕ

∗
nr,Λ(r, br)

eiΛφ√
2π
ϕ∗n′z(z, bz)ϕ

∗
n′r,Λ

′(r, br)
eiΛ
′φ

√
2π

(2z2 − r2)
∑
σ

χms(σ)χm′s(σ)

=δmsm′sδΛΛ′

∫
dξdη NnzNn′zNnr,ΛNn′r,Λ

′Hnz(ξ)Hn′z(ξ)e
−ξ2

Lnr,Λ(η)Ln′r,Λ′(η)η(|Λ|+|Λ′|)/2e−η(2ξ2b2
z − η2b2

r),

where ξ = z/bz, η = r2/b2
r , Lnr,Λ(η) are Laguerre polynomials, and Hn′z(ξ) are Hermite

polynomials.
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B.0.1 Implementation

Here, some relevant sections of the implementation of the Multiple Constraint method are dis-

cussed, in the cases of the constraints to the particle number and quadrupole moment operators.

The first step consists of building the constrained operators in the harmonic oscillator (canon-

ical) basis. In fact, the Routhian is defined in such basis. This is done within the subroutine

"cstrgognyQ":

do nnn = 1 ,3 ! l oop over c o n s t r a i n t

i f ( nnn . l e . 2 ) then

! b u i l d number s o p e r a t o r ( n e u t r o n s / p r o t o n s )

do i b = 1 , nb

nf = i d ( ib , 1 )

do n2 = 1 ,NFX ! NFX i s t h e maximal d i m e n s i o n o f any K− p a r i t y b l o c k ;

do n1 = n2 ,NFX ! t hus , a l l d i a g o n a l b l o c k s are s qua re m a t r i c e s NFX*NFX .

i f ( ( n1 . ne . n2 ) . or . n1 . gt . n f ) then ! n f i s t h e d i m e n s i o n o f non−z e r o K−b l o c k s .

q0sh ( n1 , n2 , ib , nnn ) = z e r o

q0sh ( n2 , n1 , ib , nnn ) = q0sh ( n1 , n2 , ib , nnn )

c y c l e

e n d i f

q0sh ( n1 , n2 , ib , nnn ) = one

enddo ! n1

enddo ! n2

enddo ! i b

e l s e ! b u i l d q u a d r u p o l e moment m a t r i x

do i b = 1 , nb

n0f = i a ( ib , 1 )

n f = i d ( ib , 1 )

nh = i d ( ib , 1 ) + i d ( ib , 2 )

k1 = ka ( ib , i t )

ke = ka ( ib , i t ) + kd ( ib , i t )

do n2 = 1 ,NFX

nz2 = nz ( n2+ n0f )

n r2 = nr ( n2+ n0f )

ml2 = ml ( n2+ n0f )

ms2 = ms ( n2+ n0f )

do n1 = n2 ,NFX

nz1 = nz ( n1+ n0f )

n r1 = nr ( n1+ n0f )

ml1 = ml ( n1+ n0f )

ms1 = ms ( n1+ n0f )
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i f ( ( n1 . gt . n f ) . or . ( ml1 . ne . ml2 ) . or . ( ms1 . ne . ms2 ) ) then

! use d e l t a s

q0sh ( n1 , n2 , ib , nnn ) = z e r o

q0sh ( n2 , n1 , ib , nnn ) = q0sh ( n1 , n2 , ib , nnn )

c y c l e

e l s e ! I n t e g r a l ove r mesh p o i n t s

t = z e r o

do i l = 0 ,NGL

r r p = rb ( i l )**2

s = z e r o

do i h = 0 ,NGH

zz = zb ( i h )**2

s = s + ( two* zz − r r p )*

qh ( nz1 , i h )* qh ( nz2 , i h )

enddo ! i h

t = t + s * q l ( nr1 , ml1 , i l )* q l ( nr2 , ml2 , i l )

enddo ! i l

q0sh ( n1 , n2 , ib , nnn ) = t

q0sh ( n2 , n1 , ib , nnn ) = q0sh ( n1 , n2 , ib , nnn )

e n d i f

enddo ! n1

enddo ! n2

enddo ! i b

e n d i f

enddo ! nnn
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At each iteration, the code transforms these matrices into the quasiparticle representation,

according to Equation (B.20). This is done within the subroutine cstrgogny. The matrix mul-

tiplications are performed with the aid of the LAPAK1 method DGEMM. Note that, because

of time-reversal symmetry, the matrices can be taken real. Also, the constrained operators are

symmetric matrix.

do i t = 1 ,2

do i b = 1 , nb

nf = i d ( ib , 1 )

nh = i d ( ib , 1 ) + i d ( ib , 2 )

k1 = ka ( ib , i t )

ke = ka ( ib , i t ) + kd ( ib , i t )

c

do n2 = 1 ,NFX

do n1 = 1 ,NFX

i f ( ( n1 . l e . n f ) . and . ( n2 . l e . n f ) ) then

Ufg ( n1 , n2 , ib , i t ) = fguv ( n1 , k1+n2 , i t ) ! U

Vfg ( n1 , n2 , ib , i t ) = fguv ( n1+nh , k1+n2 , i t ) ! V

e l s e

Ufg ( n1 , n2 , ib , i t ) = z e r o

Vfg ( n1 , n2 , ib , i t ) = z e r o

e n d i f

enddo ! n1

enddo ! n2

enddo ! i b

enddo ! i t

c

do nn =1 , n o _ c s t r

do i t = 1 ,2

do i b = 1 , nb

c a l l DGEMM( ’ t ’ , ’ n ’ ,NFX, NFX, NFX, one , Vfg ( : , : , ib , i t ) ,NFX, ! V^ { t } f

& q0sh ( : , : , ib , nn ) ,NFX, zero , Vf ( : , : , ib , i t , nn ) ,NFX)

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , Vf ( : , : , ib , i t , nn ) ,NFX, ! V^ { t } fU

& Ufg ( : , : , ib , i t ) ,NFX, zero , VfU ( : , : , ib , i t , nn ) ,NFX)

c a l l DGEMM( ’ t ’ , ’ n ’ ,NFX, NFX, NFX, one , Ufg ( : , : , ib , i t ) ,NFX, ! U^ { t } f

& q0sh ( : , : , ib , nn ) ,NFX, zero , Uf ( : , : , ib , i t , nn ) ,NFX)

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , Uf ( : , : , ib , i t , nn ) ,NFX, ! U^ { t } fV

& Vfg ( : , : , ib , i t ) ,NFX, zero , UfV ( : , : , ib , i t , nn ) ,NFX)

enddo ! i b

enddo ! i t

enddo ! nn

c

do nn2 = 1 , n o _ c s t r

do nn1 = 1 , n o _ c s t r

do i t =1 ,2

do i t 1 = 1 ,2

do i b = 1 , nb

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , ! VfUUfV

& VfU ( : , : , ib , i t 1 , nn1 ) ,NFX,

& UfV ( : , : , ib , i t , nn2 ) ,NFX, zero ,

& VfUUfV ( : , : , ib , i t 1 , i t , nn1 , nn2 ) ,NFX)

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , ! UfVVfU ( i t 1 . i t 2 . nn1 . nn2 )

& UfV ( : , : , ib , i t 1 , nn1 ) ,NFX,

& VfU ( : , : , ib , i t , nn2 ) ,NFX, zero ,

& UfVVfU ( : , : , ib , i t 1 , i t , nn1 , nn2 ) ,NFX)

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , ! VfUVfU

1https://netlib.org/lapack/
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& VfU ( : , : , ib , i t 1 , nn1 ) ,NFX,

& VfU ( : , : , ib , i t , nn2 ) ,NFX, zero ,

& VfUVfU ( : , : , ib , i t 1 , i t , nn1 , nn2 ) ,NFX)

c a l l DGEMM( ’ n ’ , ’ n ’ ,NFX, NFX, NFX, one , ! UfVUfV

& UfV ( : , : , ib , i t 1 , nn1 ) ,NFX,

& UfV ( : , : , ib , i t , nn2 ) ,NFX, zero ,

& UfVUfV ( : , : , ib , i t 1 , i t , nn1 , nn2 ) ,NFX)

enddo ! i b

enddo ! i t 1

enddo ! i t 2

enddo ! nn1

enddo ! nn2

Within the same routine, the correlation matrix T and its inverse are calculated. This matrix

is used for the calculation of the adjustments to the Lagrange multipliers. Because of time-

reversal symmetry, one gets an extra factor two in the definition of the correlation matrix; in

fact, at the code level, one does not distinguish among terms of the type U †FV ∗V tF ∗U and

U tF ∗V V †FU∗. Another extra factor two in the definition of the correlation matrix is due to the

fact that the code stores only one half of the matrices

U =

u 0

0 u∗

 (B.24)

and

V =

0 −v∗

v 0

 , (B.25)

that is, only the u and v matrices. This also implies that one needs to correct some signs with

respect to the formula (B.21). In fact, only the upper part of the matrix (B.2) is stored, and

the signs of those terms containing an odd number of contributions from the lower part of such

matrix must be switched. In particular, these are the second and third terms in Equation (B.21).

do i t =1 , no_ { c s t r }

do i t 1 = 1 , no_ { c s t r }

i f ( i t 1 . l e . 2 . and . i t . l e . 2 ) then ! c a l c u l a t e s c o r r e l a t i o n s

do i b = 1 , nb

nf = i d ( ib , 1 )

nh = i d ( ib , 1 ) + i d ( ib , 2 )

k 1 l = ka ( ib , i t 1 )

k1r = ka ( ib , i t )

do n2 = 1 ,NFX

do n1 = 1 ,NFX

i f ( ( n1 . l e . n f ) . and . ( n2 . l e . n f ) ) then

TCorr ( i t 1 , i t ) = TCorr ( i t 1 , i t ) + 8 . d0

& *( VfUUfV ( n1 , n2 , ib , i t 1 , i t , i t 1 , i t )

& + UfVVfU ( n1 , n2 , ib , i t 1 , i t , i t 1 , i t )

& + UfVUfV ( n1 , n2 , ib , i t 1 , i t , i t 1 , i t ) ! s i g n i s s w i t c h e d
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& + VfUVfU ( n1 , n2 , ib , i t 1 , i t , i t 1 , i t ) ) ! s i g n i s s w i t c h e d

& / ( equ ( k 1 l +n1 , i t 1 )

& + equ ( k1r +n2 , i t ) )

e n d i f

enddo ! n1

enddo ! n2

c

enddo ! i b

e n d i f

i f ( i t 1 . gt . 2 . or . i t . gt . 2 . and . i c s t r . gt . 0 ) then ! c a l c u l a t e s c o r r e l a t i o n s

c

do i b = 1 , nb

nf = i d ( ib , 1 )

nh = i d ( ib , 1 ) + i d ( ib , 2 )

do n2 = 1 ,NFX

do n1 = 1 ,NFX

i f ( ( n1 . l e . n f ) . and . ( n2 . l e . n f ) ) then

do i t 4 = 1 ,2

i f ( i t 1 . eq . i t ) then

do i t 3 =1 ,2

TCorr ( i t 1 , i t ) = TCorr ( i t 1 , i t ) + 8 . d0*

& ( VfUUfV ( n1 , n2 , ib , i t 3 , i t 4 , i t 1 , i t )

& + UfVVfU ( n1 , n2 , ib , i t 3 , i t 4 , i t 1 , i t )

& + UfVUfV ( n1 , n2 , ib , i t 3 , i t 4 , i t 1 , i t ) ! s i g n i s s w i t c h e d

& + VfUVfU ( n1 , n2 , ib , i t 3 , i t 4 , i t 1 , i t ) ) ! s i g n i s s w i t c h e d

& / ( equ ( ka ( ib , i t 3 )+ n1 , i t 3 ) ! QRPA m a t r i x

& + equ ( ka ( ib , i t 4 )+ n2 , i t 4 ) )

enddo ! i t 3

e n d i f

i f ( i t 1 . gt . i t ) then

c

TCorr ( i t 1 , i t ) = TCorr ( i t 1 , i t ) + 8 . d0

& *( VfUUfV ( n1 , n2 , ib , i t 4 , i t , i t 1 , i t )

& + UfVVfU ( n1 , n2 , ib , i t 4 , i t , i t 1 , i t )

& + UfVUfV ( n1 , n2 , ib , i t 4 , i t , i t 1 , i t ) ! s i g n i s s w i t c h e d

& + VfUVfU ( n1 , n2 , ib , i t 4 , i t , i t 1 , i t ) ) ! s i g n i s s w i t c h e d

& / ( equ ( ka ( ib , i t 4 )+ n1 , i t 4 )

& + equ ( ka ( ib , i t )+ n2 , i t ) )

c

e n d i f

i f ( i t . gt . i t 1 ) then

TCorr ( i t 1 , i t ) = TCorr ( i t 1 , i t ) + 8 . d0

& *( VfUUfV ( n1 , n2 , ib , i t 1 , i t 4 , i t 1 , i t )

& + UfVVfU ( n1 , n2 , ib , i t 1 , i t 4 , i t 1 , i t )

& + UfVUfV ( n1 , n2 , ib , i t 1 , i t 4 , i t 1 , i t ) ! s i g n i s s w i t c h e d

& + VfUVfU ( n1 , n2 , ib , i t 1 , i t 4 , i t 1 , i t ) ) ! s i g n i s s w i t c h e d

& / ( equ ( ka ( ib , 1 ) + n1 , i t 1 )

& + equ ( ka ( ib , i t 4 )+ n2 , i t 4 ) )

e n d i f

enddo ! i t 4

e n d i f

enddo ! n1

enddo ! n2

c

enddo ! i b

e n d i f

c

enddo ! i t 1

enddo ! i t

c−−−−− I n v e r t m a t r i x T

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c a l l DGETRF( n o _ c s t r , n o _ c s t r , TCorr , 3 , i p i v , i e r r o r )
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c a l l DGETRI ( n o _ c s t r , TCorr , 3 , i p i v , workk , 3 , i e r r o r )

c−−−−− C a l c u l a t e s c o r r e c t i o n s to t h e Lagrange m u l t i p l i e r s

c a l l DGEMV( ’ n ’ , 3 , 3 , two , TCorr , 3 , ddf , 1 , ze ro , da l , 1 )

Finally one calculate the correction to the generalized matrix, which leads to the desired

expectation values for the constraint operators. Again, some signs needs to be changed; in this

case those of the second terms in the off-diagonal elements of matrix (B.20).

c−−−−− A d j u s t G e n e r a l i z e d D e n s i t y

do i t =1 ,2

i l = 0

do i b = 1 , nb ! l oop over t h e b l o c k s

k1 = ka ( ib , i t )

ke = ka ( ib , i t ) + kd ( ib , i t )

k f = kd ( ib , i t )

c

do k l = 1 , k f

do kr = kl , k f

i l = i l + 1

ddR ( i l , i t ) = d a l ( i t ) * 4 . d0 * ( VfU ( kl , kr , ib , i t , i t ) ! s i g n i s s w i t c h e d

& + UfV ( kl , kr , ib , i t , i t ) ) /

& ( equ ( k1 + kl , i t )+ equ ( k1 + kr , i t ) )

i f ( i c s t r . gt . 0 ) then

ddR ( i l , i t ) = ddR ( i l , i t )

& + d a l ( 3 ) * 4 . d0 *( VfU ( kl , kr , ib , i t , 3 ) ! s i g n i s s w i t c h e d

& + UfV ( kl , kr , ib , i t , 3 ) ) /

& ( equ ( k1 + kl , i t )+ equ ( k1 + kr , i t ) )

e n d i f

aka ( i l , i t ) = aka ( i l , i t ) + xmi*ddR ( i l , i t )

enddo ! k l

enddo ! k r

c

enddo ! i b

enddo
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NORM OVERLAPS IN ARBITRARY

HARMONIC OSCILLATOR BASES

The following presentation follows the method discussed in [132, 133] and extends the formal-

ism to consider bases with different dimensions.

Let the two states |φ0〉 and |φ1〉 be respectively expanded in the bases B0 = {c†0,k}
N0
k=0 and

B1 = {c†1,k}
N1
k=0, where each set of creation operators separately satisfies the canonical anti-

commutation relations. The Bogoliubov transformation introduced in Equation (1.24) defines

the quasiparticle creation operators c†0,k. In matrix representation, these are described in terms

of the Bogoliubov block-structure matrices Vi and Ui:

Vi =

vi 0

0 0

 , (C.1)

Ui =

ui 0

0 di

 , (C.2)

where the index takes value i = 0, 1. The blocks vi and ui are the Ni × Ni matrices that

characterize the states |φi〉, whereas the di are arbitrary unitary matrices.

A unitary block matrix,

R =

R S

T U

 , (C.3)

connects the complete bases B0 ∪ B̄0 and B1 ∪ B̄1. Specifically, R is the matrix representation

of the operator T̂01 defined by the relation T̂01c
†
0,kT̂

†
01 = c†1,k, and the upper-left block R is the
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restriction of such operator to the truncated bases B0 and B1. It is by incorporating the effect of

the basis transformation on the overlap that this formalism go beyond the traditional formulas,

which in contrast are strictly valid only when the matrixR is the identity.

The calculation of the overlap (3.22) starts by writing the operator Ô in its second quantiza-

tion form,

O =
∑
kl

O01
kl c
†
0,kc1,l , (C.4)

O01
kl = 0 〈k |O | l〉1 , (C.5)

where the indexes k and l run over the compete Hilbert spaces. The following contraction,

%01
lk =


〈φ0 | c†0,kc1,l |φ1〉

〈φ0 |φ1〉 = [v∗1A
−1vᵀ0 ] if k ∈ B0 and l ∈ B1

0 otherwise
, (C.6)

A = uᵀ0(Rᵀ)−1u∗1 + vᵀ0Rv∗1 , (C.7)

calculated with the Wick’s theorem, is used for the calculations of the overlap

〈φ0 |O |φ1〉
〈φ0 |φ1〉

= tr
[
O01%01

]
. (C.8)

In the case of interest of this manuscript, Equation (C.8) becomes

〈φ0 |φ1〉 =
√

detA detR , (C.9)

whereas the traditional Onishi formula would read

〈φ0 |φ1〉 =
√

detAtrad (C.10)

Atrad = uᵀ0u
∗
1 + vᵀ0v

∗
1 (C.11)

Furthermore, the matrixR can be decomposed according to

R = L∗0L
ᵀ
1 , (C.12)

where the Li matrices are lower-triangular. The decomposition (C.12) suggests the definition
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of the transformations

ũ0 = (L∗0)−1u0L
†
0 , (C.13)

ṽ0 = L†0v0L
†
0 , (C.14)

ũ1 = (L∗1)−1u1L
†
1 , (C.15)

ṽ1 = L†1v1L
†
1 , (C.16)

that allows to define

Ã = ũᵀ0(Rᵀ)−1ũ∗1 + ṽᵀ0Rṽ∗1 , (C.17)

and to rewrite (C.8) in the following way:

〈φ0 |φ1〉 =
√

det Ã . (C.18)

Finally, consider the application of the formalism to the case in which the bases Bi are two

truncated deformed HO bases, composed by states of the type (3.26) connected one to the other

by

Φα(~r, b0) =
α∑
β=0

Lαβ(q01)Φβ(~r, b1) , (C.19)

Lαβ = LnzmzL(n⊥ml),(n
′
⊥m
′
l)
, (C.20)

where α = (nz, nr,ml,ms), β = (n′z, n
′
r,m

′
l,m

′
s) and q01 = b1/b0. Dropping some indexes,

the explicit form of the one-dimensional matrices Lnm is given by

Lnm(q) = ∆nm

√
n!
m!

2
n−m

2

(
n−m

2

)
!
(q2 − 1)

n−m
2 qm+ 1

2 (C.21)

∆mn =
1

2
[1 + (−1)n+m] ; (C.22)

The matrices are lower-triangular: Lnm = 0 if m > n. In fact, the matrix Lnm(q) is triangular

only if the standard ordering of the HO basis is taken. If the condition is not fulfilled, the inverse

matrices L−1
nm(q) cannot be calculated analytically. In the present case ~α = (nz, nr,ml,ms) is

the set of good quantum numbers for the axially symmetric HO basis (3.27, 3.28). The standard

ordering consists in ms = 0, 1, ml = Ω− 1
2
−ms, nz = 0, . . . , Nz−ml, nr = 0, . . . , Nz−nz−ml

2
,
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where Ω = K − 1
2

and K is the largest possible value of the total angular momentum, equal to

the number of major shells that define the truncated HO basis. With these premises, the inverse

of the matrix Lnm(q) reads

L−1
mr(q) = ∆mr

(−)
m−r

2

√
m!
r!

2
m−r

2

(
m−r

2

)
!
(q2 − 1)

m−r
2 q−m−

1
2 (C.23)

The generalization of the previous formulas to the two-dimensional case reads

L(N,m),(N ′,m′)(q) = δmm′
1(

N−N ′
2

)
!

( N±m
2

N ′±m′
2

) 1
2

(1− q2)
N−N′

2 qN
′+1 (C.24)

L−1
(N,m),(N ′,m′)(q) = δmm′

(−)
N−N′

2(
N−N ′

2

)
!

( N±m
2

N ′±m′
2

) 1
2

(1− q2)
N−N′

2 q−N−1 (C.25)(
N ±m

2

)
=

(
N +m

2

)(
N −m

2

)
(C.26)

where N = 2n⊥ + |m|.

In the implementation of this formalism of this work, the non-trivial problem of extending

the formalism to include bases with different dimensionality was considered. Specifically, the

DPM-DK routine, section 3.4.1, receives the wavefunctions, specifically the matrices ui and

vi, as an output of HFBTHO, which is treated like a black box. Therefore, there is no specific

information about the way in which the HO oscillator basis was built, or about the ordering of

the corresponding energy levels.

If two bases have the same dimensionality and, most important, contain the same states,

namely

B0 ∩ B1 = B0 = B1, (C.27)

then the condition of respecting the standard ordering is sufficient to properly calculate the over-

laps within the discussed formalism, taking into account that the two bases may have different

oscillator length bi and deformation β0,i. If this is not the case, some adjustments are required.

In particular, consider an harmonic oscillator basis characterized by a total number of states

N = (n0+1)(n0+2)(n0+3)
6

, where n0 is the number of major shells that truncates the basis in prac-

tical applications. When a basis has a non-vanishing deformation, bz 6= b⊥ and β0 6= 0, it can

happen that states from upper shells intrude lower shells, and vice versa. One may then consider

a cut-off state with energyEcut-off < EN . The corresponding number of stateNcut-off is then used
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in place of N , to reduce the size of the basis without neglecting highly deformed but low-lying

levels. It is easy to understand that bases with different dimensionality and/or deformation can

wind up differing for a certain amount of states. In fact, the energy of a HO state is

En =
~2

2m

[
1

b2
z

(2nz + 1) +
2

b2
⊥

(nr + 1)

]
, (C.28)

where bz, br are functions of b0, β0 according to Equations (3.24) and (3.25).

To be able to apply Equation (C.18) to this general case, a first simple idea is to extend the

smaller basis, say B0, to have the same dimensionality of the larger one. One then marks the

added states as unoccupied in the U , V matrices, namely vij = 0 and uij = δij . Unfortunately,

this idea works fine only if

B0 ∪ B1 = B1. (C.29)

In the most general case,

B0 = {c1, . . . , cM , β1, . . . , βX} (C.30)

B1 = {c1, . . . , cM , γ1, . . . , γY }, (C.31)

and one must extent both bases to

B′0 = B0 ∪ {γi}Yi=1 (C.32)

B′1 = B1 ∪ {βi}Xi=1. (C.33)

To be able to use the analytic expressions of the L-matrices, both bases must be reordered

according to the standard ordering. The simplest way to do so when one does not know the

original level ordering of the two bases is to rebuild them from scratch, and to add, in the

process, the states {γi}Yi=1 and {βi}Xi=1 as prescribed in the previous two equations. Those

states would be otherwise discarded, since

E({γi}Yi=1}) > Ecut-off(B0) (C.34)

E({βi}Xi=1}) > Ecut-off(B1) . (C.35)

In the process of building the two bases B′0 and B′1, the indexes of the added states must be also

stored, that is, one needs to know at which point of the standard ordering of the set they were
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created. Finally, one can modify the corresponding rows and columns of the U and V matrices

coming from HFBTHO. The matrices are square, with size M + X and M + Y respectively.

One must transform them into matrices of size M + X + Y by adding a row and a column at

each stored index of the added states, so that the standard ordering is respected.
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