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The quadrupole-octupole coupling and the related spectroscopic properties have been studied for the even-
even light actinides 218–238Ra and 220–240Th. The Hartree-Fock-Bogoliubov approximation, based on the Gogny-
D1M energy density functional, has been employed as a microscopic input, i.e., to obtain (axially symmetric)
mean-field potential energy surfaces as functions of the quadrupole and octupole deformation parameters. The
mean-field potential energy surfaces have been mapped onto the corresponding bosonic potential energy surfaces
using the expectation value of the sdf interacting boson model (IBM) Hamiltonian in the boson condensate
state. The strength parameters of the sdf IBM Hamiltonian have been determined via this mapping procedure.
The diagonalization of the mapped IBM Hamiltonian provides energies for positive- and negative-parity states
as well as wave functions which are employed to obtain transitional strengths. The results of the calculations
compare well with available data from Coulomb excitation experiments and point towards a pronounced octupole
collectivity around 224Ra and 226Th.

DOI: 10.1103/PhysRevC.102.064326

I. INTRODUCTION

It is a well-known fact that just a handful of nuclei exhibit
reflection-asymmetric ground states with nonzero octupole
deformation. Reflection-asymmetric shapes are favored in
some very specific regions of the nuclear chart with neutron
N and/or proton Z numbers around 34, 56, 88, 136, . . . [1,2].
However, dynamical octupole correlations have attracted con-
siderable attention in recent years as they play a relevant role
in the description of many negative-parity collective states like
the low-lying 1− states in the spectra of even-even nuclei that
are usually considered fingerprints of octupole correlations
[3,4]. In the common situation where the ground state of those
nuclei is quadrupole deformed, there exists a 3− state member
of the corresponding negative-parity rotational band, which
decays through fast E3 transitions to the 0+ ground state.
However, the decay of the 1− to the ground state proceeds
via E1 transitions. The study of these as well as other fea-
tures associated with octupole correlations, like the existence
of alternating-parity rotational bands, has become an active
research field with several experiments planned or already
operational at state-of-the-art radioactive-ion beam facilities
around the world. Within this context, evidence of octupolar-
ity has been found in the case of the light actinides (220Rn,

*knomura@phy.hr

224Ra, and 222,228Ra [5,6]) and lanthanides (144,146Ba [7,8]).
The study of octupole correlations also has a potential impact
on other research fields. Indeed, the presence of static (and
dynamic) nuclear octupole correlations enhances the finger-
prints of the existence of a nonzero electric dipole moment of
elementary particles. The existence of such an effect would
imply the violation of the CP symmetry, implying the exis-
tence of new physics beyond the standard model of particle
physics [9].

From a theoretical point of view, both relativistic [10,11]
and nonrelativistic [12,13] approaches rooted in the nuclear
energy density functional (EDF) framework [12] have been
extensively employed to describe intrinsic nuclear shapes
and the related spectroscopic properties. In particular, the
static and dynamic aspects associated with the spontaneous
breaking of reflection symmetry have been studied using the
self-consistent mean-field (SCMF) approximation based on a
given nonrelativistic or relativistic EDF [3,4,14–39]. Dynami-
cal beyond-mean-field correlations, stemming from symmetry
restoration and/or fluctuations in the relevant collective defor-
mations, have been considered within configuration mixing
approaches in the spirit of the generator coordinate method
(GCM) [12,13,40].

On the one hand, beyond-mean-field configuration-mixing
approaches are required to access spectroscopic properties
such as the excitation energies of negative-parity states as well
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as B(E1) and B(E3) reduced transition probabilities. On the
other hand, beyond-mean-field approaches become compu-
tationally expensive in medium and heavy nuclei, especially
when several collective coordinates are to be included in the
GCM ansatz. This drawback of the GCM justifies the in-
troduction of computationally less expensive approaches like
the interacting boson model (IBM) mapping procedures intro-
duced in Refs. [41,42]. In this approach, the SCMF potential
energy surfaces (PESs) are mapped onto the corresponding
(bosonic) IBM PESs as to determine some of the strength
parameters of the corresponding IBM Hamiltonian, which is
subsequently used to compute excitation spectra and transi-
tion probabilities. The method has been employed to study
octupole-related effects like the surveys of octupole-related
properties in the rare-earth and actinide regions [43–45] or
the description of octupole bands in neutron-rich odd-mass
nuclei [46]. The SCMF PESs have been computed using the
relativistic density-dependent point coupling (DD-PC1) [47]
or the nonrelativistic Gogny-D1M [48,49] EDFs.

Due to the renewed experimental interest in the light
actinide region, we consider in this work the evolution of
the octupole shapes and the resulting spectroscopic proper-
ties in a wide range of actinide nuclei including 218–238Ra
and 220–240Th. To this end, the quadrupole-octupole SCMF
PESs, obtained within the (axially symmetric) Hartree-Fock-
Bogoliubov (HFB) approximation based on the parametriza-
tion D1M [49] of the Gogny EDF [48], are mapped onto
the expectation value of the interacting-boson Hamiltonian
in the condensate state consisting of the monopole L = 0+
(s), quadrupole 2+ (d), and octupole 3− ( f ) bosons [50,51].
The mapping procedure, employed to obtain the IBM PESs
from the SCMF PESs, completely determines the considered
quadrupole-octupole sdf IBM Hamiltonian and its diago-
nalization provides wave functions which are subsequently
used to compute positive- and negative-parity spectra as well
as transition strengths. Furthermore, by comparing with our
previous spectroscopic calculations based on the relativistic
EDF DD-PC1 [43,44], we demonstrate the robustness of the
SCMF-to-IBM mapping procedure. At a qualitative (and often
quantitative) level the main results and conclusions obtained
in the paper remain the same regardless of whether a rela-
tivistic or nonrelativistic energy density functional is taken
as the microscopic input. Likely, this is a consequence of
both DD-PC1 and D1M being fitted to binding energies of
finite nuclei. In addition, the present analysis not only covers
those nuclei considered in Refs. [43,44], but also explores
even heavier isotopes toward the neutron number N = 150,
in which experimental information is not yet available. In the
present study we also discuss some quantities not covered in
Refs. [43,44].

The paper is organized as follows. The Gogny-D1M
quadrupole-octupole SCMF PESs, i.e., the microscopic build-
ing blocks of the calculations, are discussed in Sec. II. The
mapping procedure to obtain the IBM Hamiltonian is il-
lustrated in Sec. III. The results obtained for low-energy
excitation spectra, electric quadrupole, octupole and dipole
transition strengths, as well as for the transition quadrupole
and octupole moments are discussed in Sec. IV. Finally,
Sec. V is devoted to the concluding remarks and work per-
spectives.

II. SCMF GOGNY-D1M CALCULATIONS

To obtain the quadrupole-octupole SCMF PESs, the HFB
equation has been solved with constraints on the axi-
ally symmetric quadrupole Q̂20 and octupole Q̂30 operators
[29,45]:

Q̂20 = z2 − 1
2 (x2 + y2),

Q̂30 = z3 − 3
2 z(x2 + y2). (1)

The mean values 〈�HFB|Q̂20|�HFB〉 = Q20 and
〈�HFB|Q̂30|�HFB〉 = Q30 also define the quadrupole and
octupole deformation parameters β20 and β30:

βλ0 =
√

4π (2λ + 1)

3Rλ
0A

Qλ0, (2)

where R0 = 1.2A1/3 fm. In the following, the subscript zero in
βλ0’s and Qλ0’s (λ = 2, 3) is omitted, unless otherwise speci-
fied. The center of mass is fixed at the origin to avoid spurious
effects associated with its motion [29,30]. The HFB quasi-
particle operators [40] have been expanded in a deformed
(axially symmetric) harmonic oscillator (HO) basis containing
17 major shells to grant convergence for the studied physical
quantities.

The constrained calculations provide a set of HFB states
|�HFB(β2, β3)〉 labeled by their static deformation parameters
β2 and β3. The HFB energies EHFB(β2, β3) associated with
those HFB states define the contour plots referred to as SCMF
PESs in this work. As the HFB energies satisfy the property
EHFB(β2, β3) = EHFB(β2,−β3), only positive β3 values are
considered when plotting the SCMF PESs.

The SCMF PESs obtained for 218−238Ra and 220−240Th are
depicted in Fig. 1. Along the β2 direction there is a shape
and/or phase transition from spherical or weakly deformed
ground states in the lightest isotopes (218Ra and 220Th) to
well quadrupole deformed ground states in heavier nuclei.
On the other hand, the SCMF PESs are rather soft along
the β3 direction. A global octupole deformed minimum with
β3 ≈ 0.1 already emerges for N ≈ 132 (220Ra and 222Th).
This minimum becomes deeper as one approaches the neu-
tron number N = 136 (224Ra and 226Th). In our calculations
the most pronounced octupole deformation effects are found
around this neutron number with β3 ≈ 0.15 for 224Ra and
226Th, in good agreement with the experiment [1]. Beyond
this neutron number, as one moves towards N = 150, the
corresponding β3 values decrease and reflection-symmetric
HFB ground states are obtained for the heaviest isotopes in
both chains.

Previous SCMF calculations including the quadrupole and
octupole constraints simultaneously can be found in the litera-
ture for nuclei in this region of the nuclear chart. For example,
calculations were carried out in Ref. [44] for 218–228Ra and
220–232Th using the relativistic DD-PC1 EDF [47]. The over-
all systematics of the quadrupole and octupole deformations
associated with the DD-PC1 SCMF PESs is similar to that
obtained in the present study with the Gogny-D1M EDF.
However, in the case of the DD-PC1 EDF, the N = 132 iso-
topes (220Ra and 222Th) exhibit a reflection-symmetric SCMF
ground state while those nuclei are predicted to be octupole
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FIG. 1. SCMF-PESs computed with the Gogny-D1M EDF for the nuclei 218–238Ra and 220–240Th. The color code indicates the total HFB
energies in MeV units, plotted up to 10 MeV with respect to the global minimum. For each nucleus, the global minimum is indicated by a solid
circle. For more details, see the main text.

deformed in the Gogny-D1M calculations. Pronounced oc-
tupole deformation effects are predicted by both EDFs for
224Ra and 226Th though deeper global minima are found in
the relativistic approach. The quadrupole-octupole coupling
was studied for Rn, Ra, and Th nuclei in Ref. [30]. A com-
parison of several relativistic EDFs in a survey of octupole
correlations can be found in Ref. [32]. A thorough account

over a large set of even-even nuclei of observables associated
to octupole correlations was presented in Refs. [3,4] using
the Gogny-HFB approach, parity projection, and octupole
configuration mixing. Octupole deformations have also been
studied for Ra isotopes [26] using the HFB approach based on
the Barcelona-Catania-Paris (BCP) [26] and Gogny-D1S [52]
EDFs.
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III. MAPPING ONTO THE BOSON SYSTEM

Having the (fermionic) Gogny-D1M SCMF PESs at hand,
we map them onto the corresponding (bosonic) IBM PESs
using the methods developed in Refs. [41–43]. To account
for negative-parity states, the IBM space includes, in addition
to the positive-parity monopole s (L = 0+) and quadrupole
d (L = 2+) bosons, the negative-parity f (L = 3−) boson.
Within the IBM framework, bosons represent collective pairs
of valence nucleons [53]. In particular, the f boson can be
viewed as formed by coupling the normal and unique parity
orbitals π (i13/2 ⊗ f7/2)(3− ) and ν( j15/2 ⊗ g9/2)(3− ) in the light
actinides with Z ≈ 88 and N ≈ 136. In the usual sdf -IBM
phenomenology, the number of f bosons involved in the IBM
space is limited to one or, at most, three. In the present work,
we do not assume any such truncation for the f -boson number.
Thus, the numbers ns, nd , and n f of s, d , and f bosons are
arbitrary and satisfy the condition that the total boson number
NB = ns + nd + n f is conserved for a given nucleus.

The mapping of the Gogny-D1M (β2, β3) PESs onto the
IBM ones is achieved by introducing the intrinsic state for the
boson system [54]:

|φ〉 = 1√
NB!

(b†
c )NB |0〉 , (3)

where NB and |0〉 denote the number of bosons and the boson
vacuum, respectively. The condensate boson operator b†

c is
given by

b†
c = (

1 + α2
2 + α2

3

)−1/2
(s† + α2d†

0 + α3 f †
0 ), (4)

with amplitudes α2 and α3. The doubly-magic nucleus 208Pb is
taken as a boson vacuum. Therefore, NB runs from 5 to 15 (6
to 16) for 218–238Ra (220–240Th). The amplitudes α2 and α3 can
be related to the deformation parameters β2 and β3 as α2 =
C2β2 and α3 = C3β3 [44,45,54], where C2 and C3 represent
dimensionless parameters.

The IBM PES is obtained analytically, by taking the ex-
pectation value of the sdf -IBM Hamiltonian in the boson
condensate state [Eq. (3)]. The sdf -IBM Hamiltonian is the
sum of the Hamiltonians for the sd and f boson spaces plus a
coupling Ĥsdf between them:

Ĥ = Ĥsd + Ĥf + Ĥsdf . (5)

The sd-boson Hamiltonian reads

Ĥsd = εd n̂d + κsd Q̂sd · Q̂sd + κ ′
sd L̂d · L̂d , (6)

where the first term represents the number operator for the
d bosons with εd being the single d-boson energy relative to
the s-boson one. The second term represents the quadrupole-
quadrupole interaction with strength κsd and the quadrupole
operator Q̂sd = s†d̃ + d†s̃ + χdd [d† × d̃](2). The third term in
Eq. (6) is the rotational term with the angular momentum
operator L̂d = √

10[d† × d̃](1).
The Hamiltonian for the f -boson space reads

Ĥf = ε f n̂ f + κ f Q̂ f · Q̂ f + κ ′
f L̂ f · L̂ f , (7)

with the f -boson quadrupole operator Q̂ f and angular
momentum operator L̂ f being Q̂ f = [ f † × f̃ ](2) and L̂ f =√

28[ f † × f̃ ](1), respectively.
The sdf Hamiltonian employed here takes the following

form:

Ĥsdf = κ ′
sdf Q̂sd · Q̂ f + κsdf Ô · Ô. (8)

The last term in Eq. (8) is the octupole-octupole interaction
with the strength parameter κsdf . The octupole operator takes
the form

Ô = s† f̃ + f †s̃ + χdf [d† × f̃ + f † × d̃](3), (9)

with χdf being a parameter.
For convenience, we introduce a new parameter χ f f so that

κ ′
sdf = 2κsdχ f f , and κ f = κsdχ

2
f f , and we assume κ ′

f = κ ′
sd .

The independent parameters of the Hamiltonian are, there-
fore, εd , ε f , κsd , κ ′

sd , χdd , χ f f , κsdf , and χdf as well as the
coefficients C2 and C3 for the β2 and β3 deformations. These
parameters are determined via the mapping procedure. The
Hamiltonian in Eq. (5) is similar to the one employed in our
previous study in the rare-earth region [45], except for the
L̂ f · L̂ f term considered in this work. This rotational correc-
tion term is considered because a good amount of f -boson
components is present in the calculated yrast states for both
parities and the inclusion of this term has a sizable effect on
the moments of inertia obtained for the positive- and negative-
parity yrast bands. A more detailed account of the other terms
as well as the analytical form of the IBM PES as a function of
the β2 and β3 deformations can be found in Ref. [45].

The strength parameters of the sdf -IBM Hamiltonian in
Eq. (5) are determined so that the IBM PES reproduces the
topology of the Gogny-D1M SCMF PES around the global
minimum. Since the Hamiltonian (5) contains a large num-
ber of parameters, an unconstrained fitting can land in local
minima far away from the physical solution. Therefore, it is
always convenient to fit the parameters in a controlled, phys-
ically inspired way by using the following procedure: First,
the strength parameters of the sd-boson space Hamiltonian
Ĥsd [Eq. (6)] (εd , κsd , χdd , and C2) are fixed by carrying out
the mapping along the β3 = 0 axis in such a way that the cur-
vature in β2 around the absolute (prolate) minimum, the depth
of the potential well, and the energy difference between the
prolate and oblate minima are reproduced. Only the parameter
κ ′

sd for the L̂d · L̂d term in Eq. (6) is determined independently
in such a way that the bosonic cranking moment of inertia
(see Ref. [55] for details) at the absolute minimum along the
β3 = 0 axis matches the Thouless-Valatin [56] moment of in-
ertia for the 2+

1 state computed with the reflection-symmetric
SCMF cranking model. Second, the strength parameters re-
lated to the f -boson space Hamiltonian Ĥf [Eq. (7)] and the
ones related to the coupling between sd- and f -boson spaces
Ĥsdf [Eq. (8)] (ε f , χ f f , κsdf , χdf , and C3) are determined in
such a way that the following features of the SCMF PES
in the (β2, β3) space are reproduced as closely as possible:
curvatures along the β2 and β3 directions around the global
minimum, location of the minimum, and steepness of the
potential both in β2 and β3 directions.
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FIG. 2. IBM PESs computed with the mapped sdf IBM Hamiltonian [Eq. (5)] for the nuclei 218–238Ra and 220–240Th. For more details, see
the main text.

To uniquely determine the parameters, the following con-
straints are also considered, so as to be more or less consistent
with our previous results [43–45] and earlier phenomeno-
logical studies within the sdf -IBM framework on the same
mass region (e.g., Refs. [57,58]): (i) each parameter should
evolve gradually with boson number; (ii) since most of the
considered nuclei are strongly quadrupole deformed, the pa-
rameter χdd should take a value close to the one in the SU(3)

limit of the IBM, χdd = −1.32 [50]; (iii) d-boson energy
εd should decrease with boson number; (iv) εd should be
lower in magnitude than the f -boson energy ε f , except for
the strongly octupole deformed nuclei around N = 136; and
(v) the strengths κsd and κsdf should decrease in magnitude as
the boson number increases.

The mapped sdf -IBM PESs are depicted in Fig. 2 for the
studied nuclei. As expected, the original Gogny-D1M (β2, β3)
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PESs are nicely reproduced around the global minimum. The
IBM PESs are, however, much flatter far away from this mini-
mum. This is a common feature found in previous IBM studies
and can be attributed to the size of the IBM space [41,54].
The boson configuration space consists of only valence nucle-
ons while all the nucleons are involved in the Gogny-HFB
calculation. The resulting sdf -IBM Hamiltonian, with the
strength parameters determined via the mapping procedure, is
then diagonalized to obtain excitation energies and transition
strengths for a given nucleus.

The strength parameters obtained for the sdf -IBM Hamil-
tonian are plotted in Figs. 3(a)–3(j) as functions of the neutron
boson number Nν , which equals NB − (Z − 82)/2. The boson-
number dependence of the parameters along an isotopic chain
reflects the corresponding structural changes. Most of the
parameters are smooth functions of Nν . However, some of
the parameters for the interaction terms involving f bosons,
e.g., ε f and χdf , display abrupt changes around N = 136. This
results from the difference in the topology of the SCMF PESs
corresponding to neighboring isotopes in this transitional re-
gion (see Fig. 1).

IV. SPECTROSCOPIC PROPERTIES

A. Systematic of excitation spectra

The low-energy excitation spectra corresponding to even-
spin positive- and odd-spin negative-parity yrast states are
plotted in Fig. 4 as functions of the mass number A. Those
states are assumed to be members of the Kπ = 0+

1 and 0−
1

bands. The excitation energies of the positive-parity states de-
crease with increasing neutron number. This reflects the onset
of pronounced quadrupole deformation effects with increas-
ing neutron number (see Figs. 1 and 2) and the corresponding
transition from vibrational to well-developed rotational bands.
For both isotopic chains, the predicted positive-parity spectra
agree reasonably well with the experimental ones also in-
cluded in the figure.

The excitation energies of the negative-parity states exhibit
a parabolic behavior as functions of the neutron number. The
lowest excitation energies correspond to N ≈ 136 isotopes.
Around this neutron number the predicted negative-parity
band lies quite close in energy to the positive-parity band. This
situation corresponds to an alternating-parity rotational band
(see Sec. IV B) that is a neat fingerprint of permanent octupole
deformation [1]. For larger neutron numbers, the negative-
parity band is higher in energy and completely decoupled
from the positive-parity band; i.e., the octupole vibrational
regime, associated with the β3 softness of the potential, sets in.
The predicted excitation energies of the negative-parity states
are also in good agreement with the experimental data though
the former somewhat overestimates the latter, in particular
around N = 136. In the case of the lightest isotopes 218Ra
and 220Th, the predicted excitation energies for both parities
are too high. This may be a consequence of the reduced
IBM space employed in the calculations, which is is not large
enough to account for the low-lying structures of those nuclei
close to the N = 126 neutron shell closure. Note also that
for 218,220Ra and 220,222Th the 1− energy level is predicted
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FIG. 3. The strength parameters of (a–h) the sdf IBM Hamil-
tonian [Eqs. (6)–(9)], (i, j) the coefficients Cλ for the deformation
parameters, and (k, l) the boson effective charges e(λ)

B [Eqs. (14) and
(15)] are plotted as functions of the neutron boson number Nν for
218–238Ra and 220–240Th.

above the 3− level. In the case of 220Ra this contradicts the
experiment. This inversion could be, once more, the result of
the limited IBM space employed in the calculations.

The present mapped sdf -IBM calculations, which are
based on the Gogny-D1M EDF, are able to reproduce the
observed positive- and negative-parity excitation spectra as
nicely as our previous calculations [43,44] employing the
relativistic DD-PC1 functional. The same is true for transition
strength properties. This agreement confirms the robust-
ness of the SCMF-to-IBM mapping procedure: results and
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FIG. 4. Low-energy even-spin positive- and odd-spin negative-
parity excitation spectra of yrast states for 218–238Ra and 220–240Th
computed with the sdf -IBM Hamiltonian [Eq. (5)]. Experimental
data are taken from Ref. [59].

conclusions do not differ at the qualitative (and most of the
time, quantitative) level, regardless of whether a relativistic or
nonrelativistic energy density functional is employed as the
microscopic input.

The probability amplitudes of the f -boson components in
the IBM wave functions corresponding to even-spin positive-
parity and odd-spin negative-parity yrast states in 218–238Ra
and 220–240Th are plotted in Fig. 5 as functions of the spin I .
The amplitudes are computed as expectation values 〈n̂ f 〉 of
the f -boson number operator n̂ f [Eq. (7)] in the IBM wave
functions. For all the studied isotopes, at low spins Iπ � 4+,
the fraction of the f bosons in the positive-parity states is
rather low. However, for spins Iπ � 6+ the contribution from
the f -boson components increases in nuclei with neutron
numbers 130 � N � 136. A similar observation applies to
negative-parity states. As can be seen from Figs. 5(c) and 5(d),
the f -boson contributions become significant for Iπ > 7−. For
both parities and isotopic chains, the f bosons play a major

FIG. 5. The f -boson contents in the wave functions of the (a,
b) even-spin positive-parity and (c, d) odd-spin negative-parity yrast
states in 218–238Ra and 220–240Th, obtained as the expectation value
〈n̂ f 〉 in a given state, are plotted as functions of the spin I . Different
symbols denote the calculated quantities 〈n̂ f 〉 for the considered
nuclei (their neutron numbers are indicated in the legend on the top)
and are connected by lines.

role up to N ≈ 140 even at low spins; i.e., the average value
〈n̂ f 〉 tends to be larger for lighter isotopes and becomes much
smaller without significant changes for heavier isotopes. For
the lighter isotopes the mixing of different configurations in
the sdf -IBM states is pronounced.

B. Possible alternating-parity band structure

As a more quantitative measure of the extent to which
the predicted positive- and negative-parity bands resemble
alternating-parity bands, we have considered the quantity

S(I ) = E (I + 1) + E (I − 1) − 2E (I ), (10)

where E (I ) represents the excitation energy of the I = 0+,
1−, 2+, . . . yrast states. In the limit of an ideal alternating-
parity band, this quantity goes to zero. The quantity S(I )
is depicted in Fig. 6 as a function of the spin I . For most
of the isotopes in both chains, the S(I ) values exhibit an
odd-even staggering pattern. This staggering pattern is less
pronounced for N ≈ 136, reflecting that the negative-parity
band becomes particularly low in energy and forms an ap-
proximate alternating-parity structure with the positive-parity
ground-state band. For N � 138, the staggering is even more
pronounced indicating that the positive- and negative-parity
bands are decoupled from each other, a typical octupole vibra-
tional feature associated with the β3 softness of the potential.
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FIG. 6. The relative energy splitting between positive- and
negative-parity yrast bands S(I ) [Eq. (10)], obtained for 218–238Ra and
220–240Th, is plotted as a function of the spin I . The legend on the top
indicates the neutron numbers for those nuclei that are plotted in each
panel.

C. Transition strength properties

For the computation of the reduced transition probabilities,
we employed the quadrupole and octupole transition opera-
tors:

T̂ E2 = e(2)
B Q̂2, T̂ E3 = e(3)

B Q̂3, (11)

where e(λ)
B ’s are effective charges and

Q̂2 = s†d̃ + d†s + χ ′
dd [d† × d̃](2) + χ ′

f f [ f † × f̃ ](2), (12)

Q̂3 = s† f̃ + f †s + χ ′
df [d† × f̃ + f † × d̃](3). (13)

The quadrupole and octupole transition operators in Eqs. (11)
have the same form as the ones in the Hamiltonian equa-
tions (6)–(8) but with new parameters χ ′

dd , χ ′
f f , and χ ′

df .

The effective charges e(λ)
B are determined so that the intrinsic

quadrupole (octupole) moment in the IBM, obtained as the
expectation value of the operator T̂ Eλ in the coherent state at
the minimum of the PES [50], is equal to the Gogny-HFB one.
Introducing the bosonic deformation parameters β̄λ = Cλβλ,
corresponding to the minimum of the PES, we obtain the
following equations:

e(2)
B

NB
(
2β̄2 −

√
2
7χ ′

dd β̄
2
2 − 2√

21
χ ′

f f β̄
2
3

)
1 + β̄2

2 + β̄2
3

= Qmin
20 (14)

e(3)
B

NBβ̄3
(
1 − 2√

15
χ ′

df β̄2
)

1 + β̄2
2 + β̄2

3

= Qmin
30 . (15)

For the parameter χ ′
dd we have adopted the value χ ′

dd =
−√

7/2 obtained in the SU(3) limit [50]. However, we have
taken the averages χ ′

f f = 1.5 and χ ′
df = −1.6 of the χ f f

and χdf values employed for the Hamiltonian, respectively.
The effective charges e(2)

B and e(3)
B have been further mul-

tiplied by the scale factors s1 and s2, respectively. The
scale factor s1 is assumed to take the form s1 = 1.55/(9.3 −
0.3NB), in order to reproduce the experimental systematic
of the B(E2; 2+

1 → 0+
1 ) values. The boson-number depen-

dence in the denominator of s1 was introduced so that the
computed B(E2; 2+

1 → 0+
1 ) is not too large for N = 150 iso-

topes (close to the neutron mid-shell N = 154). However, we
considered s2 = 0.33 so that an overall agreement with the
systematics of the experimental B(E3; 3−

1 → 0+
1 ) values is

obtained.
The effective charges e(2)

B and e(3)
B (in

√
W.u. units),

Eqs. (14) and (15), are plotted in Figs. 3(k) and 3(l) as func-
tions of the neutron boson number Nν . The effective charge
e(2)

B increases smoothly with the neutron number while e(3)
B

exhibits a parabolic behavior with a maximum at Nν ≈ 5 that
corresponds to neutron numbers N ≈ 136 at which the most
pronounced octupole deformations are found.

The electric dipole (E1) mode is yet another characteristic
property of pear-shaped nuclei. In the sdf -IBM framework,
the E1 operator reads

T̂ E1 = e(1)
B (d† × f̃ + f † × d̃ )(1), (16)

with the E1 effective charge e(1)
B . We have taken e(1)

B = 0.0277
e b1/2 in order to reproduce the experimental B(E1; 1−

1 → 0+
1 )

value for 222Ra.
The predicted B(E2; 2+

1 → 0+
1 ), B(E3; 3−

1 → 0+
1 ), and

B(E1; 1−
1 → 0+

1 ) transition rates are compared in Fig. 7 with
the available experimental data. The increase in the B(E2)
values [Figs. 7(a) and 7(b)] correlates well with the increase in
quadrupole collectivity along the studied isotopic chains. The
B(E3) strengths [Figs. 7(c) and 7(d)] display a parabolic be-
havior, similar to the one obtained for the excitation energies
of negative-parity states, with a maximum around the neutron
number N = 136.

The B(E1; 1−
1 → 0+

1 ) strengths [Figs. 7(e) and 7(f)] in-
crease smoothly. The predicted B(E1) values reproduce
reasonably well the experimental ones for 218–222Ra and
220–226Th. However, the calculations are not able to account
for the experimental B(E1) values in 224Ra and 228,230Th.
Here, one should keep in mind that E1 transitions are less
collective in nature and very sensitive to the occupancy of
high- j orbitals around the Fermi surface [20,22]. Due to this
sensitivity to single particle properties, specific details of E1
transitions may be, at least for some nuclear systems, out of
reach for the IBM description (based on collective nucleon
pairs) employed in this study. Phenomenological IBM studies
(see, for example, Refs. [57,58,60,61]) have often considered
the dipole L = 1− (p) boson to effectively describe E1 tran-
sitions. However, such a boson has not been included in this
work since its microscopic origin is less clear than for the s,
d , and f bosons.
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FIG. 7. Reduced transition probabilities (a, b) B(E2; 2+
1 → 0+

1 ),
(c, d)B(E3; 3−

1 → 0+
1 ), and (e, f) B(E1; 1−

1 → 0+
1 ) for 218–238Ra and

220–240Th. Theoretical values are represented by filled symbols con-
nected by lines. Experimental data were taken from Refs. [5,6,59].
They are represented by open symbols with error bars. The B(E2)
and B(E3) rates are in Weisskopf units while the B(E1) rates in e2 b
units are plotted using a logarithmic scale.

D. Transition quadrupole and octupole moments

The quadrupole Q2(I → I − 2) as well as the octupole
Q3(I → I − 3) and Q3(I → I − 1) moments, obtained from
the reduced matrix elements 〈I − 2‖T̂ E2‖I〉, 〈I − 3‖T̂ E3‖I〉,
and 〈I − 1‖T̂ E3‖I〉, are often considered signatures of
quadrupole and octupole collectivity. Those transition multi-
pole (λ = 2, 3) moments can be expressed as

√
2I + 1

√
2λ + 1

16π
(Iλ00|I ′0)Qλ(I → I ′) = 〈I ′‖T̂ Eλ‖I〉 ,

(17)

where (Iλ00|I ′0) denotes a Clebsch-Gordan coefficient.
These quantities were computed for the in-band E2 transitions
within Kπ = 0+ and Kπ = 0− bands with |I − I ′| = �I = 2,
and for the �I = 3 and �I = 1 E3 transitions between the
Kπ = 0+ and Kπ = 0− states. They were computed up to the
spin Iπ = 8+.

The transition quadrupole and octupole moments, ob-
tained for 218–238Ra and 220–240Th, are shown in Fig. 8 as

functions of the spin I . The quadrupole moments [Figs. 8(a)
and 8(b)] remain rather constant with spin although a certain
staggering pattern is observed. In the case of the octupole mo-
ments, depicted in Figs. 8(c)–8(f), the lightest isotopes display
rather irregular patterns with spin. However, the amplitudes
of the oscillations become smaller for 130 � N � 136, i.e.,
as one approaches stable octupole deformation. On average
the computed Q3 moments, for both the �I = 1 and �I = 3
transitions, are around 2000 e fm3.

E. Low-energy excitation spectra, reduced transition
probabilities, and reduced matrix elements

for selected Ra isotopes

In what follows, the low-energy excitation spectra pre-
dicted for 224,226Ra are discussed in detail to further examine
the predicted power of the employed IBM framework based
on the Gogny-D1M EDF. The energy spectrum obtained for
224Ra is compared with the experimental one [5] in the top
panel of Fig. 9. The ground-state Kπ = 0+ band is reproduced
reasonably well by the calculations up to Iπ = 6+. However,
for Iπ � 8+ the predicted band looks stretched as compared
with the experiment. As can be seen from Fig. 5, in the case
of 224Ra, the f -boson content of states with Iπ � 8+ is 〈n̂ f 〉 ≈
0.7 while for Iπ � 10+ the f -boson content turns out to be
〈n̂ f 〉 ≈ 1.5. For the Kπ = 0− band, the 1−

1 (bandhead) state is
higher in energy than the experimental one, although features
such as the moment of inertia and energy spacing agree well
with the experiment. Up to Iπ = 7− the f -boson content of
the band is 〈n̂ f 〉 ≈ 1.4 while for Iπ = 9− more f bosons start
to play a role, i.e., 〈n̂ f 〉 ≈ 3.0. Alternating-parity doublets are
visible, in both the theoretical and experimental spectra, from
Iπ = 5−. The predicted nonyrast 0+

2 and 2+
2 states (above

1 MeV) have also been included in the figure. These states
have a double octupole phonon nature with 〈n̂ f 〉 ≈ 2. In the
bottom panel of Fig. 9, we also plotted the energy spectrum
obtained for 226Ra. This spectrum compares slightly better
with the experiment than in the case of 224Ra. Here, the change
in the structure of states in the Kπ = 0+ (Kπ = 0−) band is
less pronounced with 〈n̂ f 〉 ≈ 0.8–0.9 (〈n̂ f 〉 ≈ 1.5–1.9) up to
Iπ = 16+ (Iπ = 11−). Similar results are found for 226,228Th.

The B(E2) and B(E3) transition rates obtained for 224Ra
are shown in Table I. We observe a very reasonable agree-
ment with the corresponding experimental values. The only
exceptions are the B(E2; 5− → 3−) and B(E3; 1− → 2+)
transitions which are underestimated by a factor of 2 to 3. In
addition, we also included in the table results from previous
IBM calculations based on the relativistic DD-PC1 EDF [44].
As can be seen, both (mapped) IBM calculations provide
rather similar predictions for the B(E2) and B(E3) rates.
The B(E1; 1− → 2+) values obtained in the present study
compare slightly better with the experiment. However, other
E1 transition strengths are larger than the ones obtained in
Ref. [44] typically by one order of magnitude and overesti-
mate the experiment [5] by a factor from 102 to 103.

Finally, let us have a look at the reduced matrix elements
| 〈I − 2‖T̂ E2‖I〉 |, | 〈I − 3‖T̂ E3‖I〉 |, and | 〈I − 1‖T̂ E3‖I〉 | in
the case of 222–228Ra for which experimental data are available
[5,6,62]. They are depicted in Fig. 10 as functions of I . The
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FIG. 8. The transition quadrupole and octupole moments (in e fmλ units) obtained for 218–238Ra and 220–240Th are plotted as functions of
the spin I . Different symbols represent the calculated quadrupole and octupole moments for the considered nuclei (their neutron numbers are
indicated in the legend on the right) and are connected by lines. For more details, see the main text.

predicted E2 matrix elements [Figs. 10(a1)–10(a4)] increase
with spin and agree reasonably well with the experimental
ones. For some of the studied nuclei, the E2 matrix elements
are almost zero at high spins (for example, at I = 12+ for
224Ra and at I = 15− for 226Ra). This is probably due to band
mixing effects occurring in the high-spin regime, as can be ex-
pected from the structural changes in the corresponding wave
functions (see Fig. 5). The | 〈I − 3‖T̂ E3‖I〉 | [Figs. 10(b1)–
10(b4)] and | 〈I − 1‖T̂ E3‖I〉 | [Figs. 10(c1)–10(c4)] matrix
elements also increase as functions of I . However, they exhibit
a pronounced staggering even at low spin that contradicts
the pattern observed in the available experimental data. A
similar staggering was also obtained in previous IBM studies
[44,57]. It has been concluded, within the framework of the
phenomenological spdf IBM model [57], that at least 3p f
bosons (np + n f = 3) are required to account for the exper-
imental systematics of the reduced E1 matrix elements that
linearly increase with spin. It would be interesting to exam-
ine whether the inclusion of the p-boson degree of freedom

can also improve the systematics of the E3 transitions in
the (mapped) IBM framework. Another possible remedy for
the staggering problem observed in the E3 and E1 transition
matrix elements within the sdf IBM framework could be to
consider higher-order terms in the corresponding transition
operators [63] [see Eqs. (13) and (16)].

V. SUMMARY

In this paper, we considered the quadrupole-octupole cou-
pling and collective excitations in the even-even actinides
218–238Ra and 220–240Th due to the renewed experimental inter-
est in the region. The constrained Gogny-D1M HFB approach
was employed to obtain (axially symmetric) quadrupole-
octupole SCMF PESs. The SCMF PESs were mapped onto
the corresponding IBM PESs using the expectation value
of the sdf IBM Hamiltonian in the boson condensate state.
The strength parameters of the bosonic Hamiltonian were
determined via this mapping procedure. The wave functions
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resulting from the diagonalization of the (mapped) sdf IBM
Hamiltonian were used to compute octupole-related quanti-
ties such as, for example, both positive- and negative-parity
excitation spectra and transition strengths.

The SCMF PESs are rather soft along the β3 direction. A
global mean-field reflection-asymmetric minimum emerges at
N = 132 (i.e., for 220Ra and 222Th). For both isotopic chains,
the most pronounced octupole deformation effects are found
at N = 136 (i.e., for 224Ra and 226Th). This agrees well with
the experimental findings of stable pearlike shapes for this
particular neutron number. The octupole deformed minimum
becomes less prominent with increasing neutron number and
disappears from N = 142 (i.e., for 230Ra and 232Th) onward.
These features are also found in the mapped sdf IBM PESs
which nicely reproduce the basic topology of the fermionic
PESs around the global minima.

The spectroscopic properties, resulting from the diagonal-
ization of the sdf IBM Hamiltonian, were studied in detail.
Within this context a parabolic behavior, centered around
the nuclei 224Ra and 226Th, was found for the low-lying
negative-parity spectra and the B(E3; 3+

1 → 0+
1 ) reduced tran-

sition probabilities. For isotopes in the neighborhood of N =
136, an approximate alternating-parity band structure was
found. Octupole-related properties were analyzed in detail for
222,224,226,228Ra. The calculations reproduce reasonably well
the trends observed in the data available from Coulomb ex-

0.0

0.5

1.0

1.5

2.0

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

1
-

6
+

1
-4

+

2
+

0
+

8
+

3
-

5
-

10
+

7
-

9
-

10
+

2
+

0
+

2
+

4
+

6
+

8
+

224
Ra

0
+

2
+

Theo.Expt.

3
-

5
-

7
-

9
-

0.0

0.5

1.0

1.5

2.0

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

1
-

6
+

1
-

4
+

2
+

0
+

8
+

3
-

5
-

10
+

7
-

9
-10

+ 2
+

0
+

2
+

4
+

6
+

8
+

226
Ra

0
+

2
+

Theo.Expt.

3
-

5
-

7
-

9
-

12
+

11
-

0
+

FIG. 9. The energy spectra obtained for 224Ra (top) and 226Ra
(bottom) are compared with the experimental ones [5].

TABLE I. Theoretical and experimental B(E2), B(E3), and
B(E1) transition rates (in Weisskopf units) for 224Ra. Experimental
values are taken from Ref. [5]. For comparison, results based on
the relativistic DD-PC1 EDF [44] are also included in the table. All
transitions, with the exception of B(E2; 2+

2 → 0+), are between yrast
states.

Experiment Theory Ref. [44]

B(E2; 2+ → 0+) 98 ± 3 109 109
B(E2; 3− → 1−) 93 ± 9 81 71
B(E2; 4+ → 2+) 137 ± 5 151 152
B(E2; 5− → 3−) 190 ± 60 103 97
B(E2; 6+ → 4+) 156 ± 12 154 159
B(E2; 8+ → 6+) 180 ± 60 138 153
B(E2; 2+

2 → 0+) 1.3 ± 0.5 4.9 0
B(E3; 3− → 0+) 42 ± 3 50 42
B(E3; 1− → 2+) 210 ± 40 86 85
B(E3; 3− → 2+) <600 57 46
B(E3; 5− → 2+) 61 ± 17 85 61
B(E1; 1− → 0+) <5 × 10−5 4.8×10−3 2.0×10−3

B(E1; 1− → 2+) <1.3 × 10−4 5.9×10−4 1.1 × 10−3

B(E1; 3− → 2+) 3.9+1.7
−1.4 × 10−5 1.4×10−2 3.7×10−3

B(E1; 5− → 4+) 4+3
−2 × 10−5 2.4×10−2 5.0×10−3

B(E1; 7− → 6+) <3 × 10−4 3.5×10−2 5.8 × 10−3

citation experiments. However, the fact that the calculations
cannot account for the correct systematics of the B(E1; 1+

1 →
0+

1 ) rates and/or the E3 transition matrix elements suggests
that improvements, such as the inclusion of dipole p bosons,
are still required in the employed mapping procedure.

From the comparison of the results obtained in this work
with the available experimental data as well as with pre-
vious (mapped) IBM calculations based on the relativistic
mean-field approximation [43,44], we conclude that the trends
predicted for the studied nuclei are independent of the un-
derlying microscopic input; i.e., they are robust. Given the
predictive power and computational advantages of the map-
ping procedure together with the IBM, studies of octupolarity
in odd-mass actinides and heavier nuclear systems appear as
our next plausible steps.
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FIG. 10. Reduced matrix elements | 〈I − 2‖T̂ E2‖I〉 |, | 〈I − 3‖T̂ E3‖I〉 |, and | 〈I − 1‖T̂ E3‖I〉 | for 222,224,226,228Ra. Experimental data are
taken from Refs. [6] (222,228Ra), [5] (224Ra), and [62] (226Ra). Theoretical values are represented by filled symbols connected by lines.
Experimental data are shown as open symbols with error bars. Experimental values without error bars represent upper limits [5,62].
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