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Abstract
The Quasiparticle Random-Phase Approximation (QRPA) based on the nuclear

energy density functionals (EDF) is one of the most widely used theoretical frame-
works for describing collective excitations in deformed atomic nuclei. Since the
configurational space of quasiparticle excitations can become very large, especially
for heavy deformed nuclei, the standard matrix eigendecomposition solution of the
QRPA equation is often prohibitive in terms of computational resources. Recently,
the Finite Amplitude Method (FAM) with its quasiparticle adaptation (QFAM)
has been proposed as a feasible method for solving the QRPA equation. Within
this doctoral research, a highly efficient implementation of the QFAM solver based
on the relativistic nuclear energy density functionals has been developed, namely
the DIRQFAM solver in a form of a program package. Due to its efficiency, the de-
veloped DIRQFAM solver is suitable for describing collective excitations in axially
symmetric atomic nuclei with quadrupole deformed ground states. Even heavy
systems and systematic large-scale calculations are within reach.

In this dissertation, the implementation of QFAM solver is presented and dis-
cussed, together with a new proposed method called the Kernel Polynomial Method
(KPM). The KPM method is built on top of QFAM solver and uses QFAM iter-
ations as a means to find the expansion coefficients of the QRPA response func-
tion which is expanded in terms of kernel-adjusted Chebyshev polynomials. It is
shown that for non-relativistic EDF, the KPM method significantly outperforms
the conventional QFAM approach in terms of computational complexity. Two ap-
plications of the developed QFAM solver are covered: i) exploration of low-energy
response function on multipole excitations in light α-conjugate N = Z nuclei,
and ii) description of quasiparticle-vibration coupling in deformed systems where
QFAM is used to provide the phonon degrees of freedom for Dyson equation.

Keywords: Energy density functional, Relativistic mean-field theory, Hartree-
Bogoliubov, Relativistic Hartree-Bogoliubov, Quasiparticle Random Phase Ap-
proximation, Finite Amplitude Method, Nuclear cluster vibrations, Quasiparticle
vibration coupling, Kernel Polynomial Method

Keywords (in Croatian): Energijski funkctional gustoće, Relativistička teorija
srednjeg polja, Hartree-Bogoliubov, Relativistički Hartree-Bogoliubov, Kvazičestična
aproksimacija slučajnih faza, Metoda konačnih amplituda, Vibracije nukleonskih
grozdova, Kvazičestica-fonon vezanje, Kernel Polynomial metoda
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Chapter 1

Introduction

Modern theory of quantum chromodynamics (QCD) is capable to successfully
describe and experimentally validate the inter-nucleon strong nuclear interaction
and thus nuclear physics can be naively classified as a specific subbranch of QCD
theory. However, it turns out that such fully ab-initio calculations starting from
the most fundamental principles are far from feasible in nuclear physics. Even
the simplest nuclear systems are challenging to tackle owed to the tremendous
complexity of nuclear force. Today, complex medium-heavy and heavy nuclear
systems can be studied almost exclusively within the framework of effective models
which use fundamental theory as a microscopic guide when constructing effective
interaction models. The most successful approach in that direction is the well
established Energy density functional theory (EDF) used in various branches of
physics where quantum many-body problem is encountered.

One of the most challenging problems of modern theoretical nuclear physics
is construction and parameterization of effective energy density functional which
would reproduce the experimental data with high degree of accuracy across the
entire chart of nuclides. Such universal EDF could then be credibly utilized in var-
ious researches and applications where experimental data are not available, such
as problem of element synthesis within stars in nuclear astrophysics, or theoret-
ical predictions of exotic excitation modes which would then guide experiments
towards experimental validation.

Response of the nucleus when subjected to external perturbation can reveal
significant information about its structure. Once the EDF is constructed and fully
defined, one should in principle be able to calculate such response theoretically.
For theoretical study of such collective excitations in atomic nuclei one often uses
the Random Phase Approximation (RPA) extended to the Hartree-Bogoliubov
framework. The main goal of this dissertation is to present and discuss the imple-
mentation of such RPA solver together with the results of some of its applications.

This dissertation is logically divided into six parts. In the first part, theoretical
background regarding the EDF and RPA framwework is reviewed. Second part
presents in detail the implementation of RPA solver based on the Finite Ampli-
tude Method (FAM) in form of DIRQFAM software package. Third part, which can
be read independently from other parts, presents the Kernel Polynomial Method
(KPM), a novel method which starts from existing FAM implementation and uses
it to calculate the full RPA response function by expanding it in terms of kernel-
adjusted Chebyshev polynomials. The performance and efficiency of KPM com-

1



CHAPTER 1. INTRODUCTION 2

pared to conventional QFAM approach is evaluated and discussed. Fourth part
presents and discusses the results obtained using the DIRQFAM solver when applied
on calculating the multipole response of light α-conjugated N = Z nuclei, where
significant modes residing in low-energy region are linked to α cluster vibrations.
Fifth part contains the formalism and application of DIRQFAM code for extraction
of phonon vertex functions used to construct the quasiparticle-vibration coupling
(qPVC) self-energy. After solving the associated Dyson equation, obtained frag-
mentation of quasiparticle spectra and spectroscopic factors are calculated for
selected light and super-heavy deformed nuclei. Finally, the last part concludes
the dissertation and contains the technical details regarding the DIRQFAM solver
and KPM method in a form of extensive appendix.



Chapter 2

Theoretical framework

In this Chapter, first the covariant density functionals based on point-coupling and
meson-exchange interaction are introduced together with the relativistic Hartree-
Bogoliubov framework used to theoretically describe the nuclear ground state. Re-
garding the theoretical introduction, Ref. [1] is followed. On top of that, Quasi-
particle Random Phase Approximation is introduced with Quasiparticle Finite
Amplitude Method (QFAM) as a viable method for solving the QRPA equation.

2.1 Covariant density functional theory
Energy density functional (EDF) provide an accurate description of ground-state
properties and collective excitations of atomic nuclei, from relatively light systems
to superheavy nuclei, and from the valley of β stability to the particle drip-lines.
The basic implementation of EDF is in terms of self-consistent mean-field models
in which an EDF is constructed as a functional of one-body nucleon density matri-
ces. This approach is analogous to Kohn-Sham density functional theory (DFT),
that enables a description of complex quantum many-body system in terms of a
universal EDF. Self-consistent mean-field models effectively map the many-body
problem onto a one-body problem, and the exact EDF (which exists according to
the Kohn-Sham theorem) is approximated and modelled by simple functionals of
powers and gradients of ground-state nucleon densities and currents [3, 4, 5, 6].

A particular class of self-consistent mean-field models are those based on rel-
ativistic (covariant) energy density functionals. These models have been success-
fully applied to the analyses of a variety of nuclear structure phenomena and the
level of accuracy against experimental data has reached a level comparable to the
state-of-the-art non-relativistic Hartree-Fock-Bogoliubov (HFB) approach based
on popular Skyrme functionals or Gogny effective interactions. In this work, we
focus only on even-even open-shell nuclei with axially symmetric and parity pre-
served shape, and with possible quadrupole deformation.

In conventional quantum hadronodynamics, a nucleus is desribed as a system
of Dirac nucleons coupled to exchange mesons through an effective Lagrangian.
The isoscalar-scalar σ meson, the isoscalar-vector ω meson and the isovector-vector
ρ meson build the minimal set of meson fields that is necessary for a description
of bulk and single-particle nuclear properties.

An isoscalar-scalar field σ mediates the medium-range attraction between nu-
cleons. It is an effective field whose origin lies in many complex effects, for example

3



CHAPTER 2. THEORETICAL FRAMEWORK 4

two-pion resonances and QCD combinations of quark-antiquark pairs and gluons.
An isoscalar-vector field ω is introduced to model the short range repulsion. And
finally the isospin dependence of the nuclear force is taken into account by a
isovector-vector field ρ. In principle one should also include one-pion exchange
in the formulation of the Lagrangian, as it is the basic ingredient of the nuclear
force. However it does not enter at the classical Hartree level because it leads to a
parity-breaking field, which has not been observed in nuclei. However, as already
stated, two-pion exchange is included in a phenomenological way within the σ
field. The electromagnetic interaction is also taken into account by including the
photon field. In following subsection, the meson-exchange formalism is introduced.

2.1.1 Meson-exchange models

The meson-exchange model is defined by the Lagrangian density L given by:

L = LN + Lm + Lint. (2.1)

LN denotes the Lagrangian of the free nucleon:

LN = ψ̄(iγµ∂µ −m)ψ, (2.2)

where m is the bare nucleon mass and ψ denotes the Dirac spinor. Lm is the
Lagrangian of the free meson fields and electromagnetic field:

(2.3)
Lm = −1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 − 1

2
ΩµνΩ

µν +
1

2
m2

ωωµω
µ

− 1

4

−→
R µν ·

−→
R

µν
+

1

2
m2

ρ
−→ρ µ · −→ρ

µ − 1

4
FµνF

µν ,

with the corresponding meson masses mσ,mω,mρ and Ωµν ,
−→
R

µν
, F µν are field ten-

sors:
(2.4)Ωµν = ∂µων − ∂νωµ,

(2.5)
−→
R

µν
= ∂µ−→ρ ν − ∂ν−→ρ µ

,

(2.6)F µν = ∂µAν − ∂νAµ.

Arrows denote isovectors and boldface symbols are used for vectors in ordinary
space. The minimal set of interaction terms is constrained in Lint:

(2.7)Lint = −gσψ̄ψσ − gωψ̄γµψωµ − gρψ̄−→τ γµψ · −→ρ µ − e
1 + τ3

2
ψ̄γµψAµ,

with the couplings gσ, gω, gρ and e.
From the Lagrangian density, one can easily obtain the Hamiltonian density

(for details see Ref. [7]) which for the static case reads:

H(r) =
A∑
i

ψ†
i (α · p+ βm)ψi

+
1

2

[
|∇σ|2 +m2

σσ
2
]
− 1

2

[
|∇ω|2 +m2

ωω
2
]
− 1

2

[
|∇ρ|2 +m2

ρρ
2
]
− 1

2
|∇A|2

+
[
gσρsσ + gωjµω

µ + gρ
−→
j µ · −→ρ

µ
+ ejµpAµ

]
.

(2.8)
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We also introduce the isoscalar-scalar density, the isoscalar-vector current, the
isovector-vector current and the electromagnetic current:

ρs(r) =
A∑
i=1

ψ̄i(r)ψi(r), (2.9)

jµ(r) =
A∑
i=1

ψ̄i(r)γ
µψi(r), (2.10)

−→
j

µ
(r) =

A∑
i=1

ψ̄i(r)
−→τ γµψi(r), (2.11)

jµp (r) =
Z∑
i=1

ψ̄i(r)γ
µψi(r), (2.12)

where the summation is performed only over occupied obrits in the Fermi sea
of positive energy states, i.e. the no-sea approximation is used. By integrating
the Hamiltonian density (2.8) over the r-space, we obtain the total energy which
depends on the Dirac spinors and the meson fields:

ERMF [ψ, ψ̄, σ, ω
µ,−→ρ µ

, Aµ] =

∫
drH(r). (2.13)

Already in the earliest applications of the relativistic mean-field framework, it
was realized, however, that this simple model with interaction terms only linear in
the meson fields does not provide a quantitative description of the complex nuclear
system. Therefore, an effective density dependence was introduced by replacing
the quadratic σ-potential with a quartic one [8]. Of course, implementation of the
covariant density functional with non-linear meson coupling has no direct physical
meaning. Therefore, it seems more natural to follow the idea of Brockmann and
Toki [9] and use density-dependent couplings. Coupling constants gσ, gω and gρ
are assumed to be vertex functions of Lorentz-scalar bilinear forms of the nucleon
operators. In most applications the meson-nucleon couplings are functions of the
vector density ρv = j0. Brockmann and Toki derived the density dependence of
the coupling constants in an ab-initio calculation from the relativistic Brueckner-
Hartree-Fock calculation in the infinite nuclear matter. Since there are no free
parameters in this model, the results of such calculation are not very precise.
Therefore, a phenomenological ansatz is introduced for the density-dependence of
the couplings with parameters adjusted to the experimental data in finite nuclei
[10, 11, 12, 13].

The single-nucleon Dirac equation is derived by variation of the energy density
functional (2.13) with respect to ψ̄:

ĥDψi = ϵiψi, (2.14)

with the Dirac Hamiltonian:

ĥD =

[
Σ0 + Σ0

R + (Σs +m) σ · (p−Σ)
σ · (p−Σ) Σ0 + Σ0

R − (Σs +m)

]
. (2.15)
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The nucleon self-energies are defined by the following expressions:

Σs = gσ(ρv)σ, (2.16)

Σµ = gω(ρv)ω
µ + gρ(ρv)

−→τ · −→ρ µ
+ e

1 + τ3
2

Aµ. (2.17)

The density dependece of the vertex functions gσ(ρv), gω(ρv) and gρ(ρv) produces
the rearrangement contribution to the vector self-energy:

Σ0
R = g′σ(ρv)ρsσ + g′ω(ρv)ρvω

0 + g′ρ(ρv)
−→
j0 ·
−→
ρ0 . (2.18)

The variation of the energy density functional (2.13) with respect to the meson
fields leads to the Helmholtz equation for the meson fields:[

−△+m2
σ

]
σ = −gσ(ρv)ρs, (2.19)[

−△+m2
ω

]
ωµ = gω(ρv)j

µ, (2.20)[
−△+m2

ρ

]−→
ρµ = gρ(ρv)

−→
jµ , (2.21)

and to the Poisson equation for the electromagnetic field:

−△Aµ = ejµp . (2.22)

Because of the charge conservation, only the third component of the isovector ρ-
meson contributes. In the ground-state solution for an even-even nucleus, there are
no currents (time-reversal invariance) and the corresponding spatial components
of the meson-fields vanish Σ = 0. The Dirac equation takes a simple form that
includes only the vector potential V (r) and the effective mass M∗(r) = m +
gσ(ρv)σ:

{−iα ·∇+ βM∗(r) + V (r)}ψi(r) = ϵiψi(r). (2.23)

The vector potential reads:

V (r) = gω(ρv)ω
0 + τ3gρ(ρv)ρ

0 + e
1 + τ3

2
A0 + Σ0

R, (2.24)

and the rearrangement contribution is:

Σ0
R = g′σ(ρv)ρsσ + g′ω(ρv)ω

0 + g′ρ(ρv)ρtvρ
0. (2.25)

ρtv denotes the isovector density, i.e. the difference between the proton and neutron
vector density.

The density depedence of the meson-nucleon couplings is parameterized in a
phenomenological way. The coupling of the σ-meson and ω-meson to the nucleon
field reads:

gi(ρv) = gi(ρsat)fi(x), for i = σ, ω, (2.26)

where the functions fi(x) are defined as:

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
, for x = ρv/ρsat. (2.27)
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Table 2.1: DD-ME2 parameter set for the density-dependent meson-exchange rel-
ativistic energy functional.

DD-ME2 parameter set
Parameter Value Unit

mσ 550.1238 [MeV/c2]
mω 783.0000 [MeV/c2]
mρ 763.000 [MeV/c2]

gσ(ρsat) 10.5396
gω(ρsat) 13.0189
gρ(ρsat) 3.6836
aσ 1.3881
bσ 1.0943
cσ 1.7057
dσ 0.4421
aω 1.3893
bω 0.9240
cω 1.4620
dω 0.4775
aρ 0.5647
ρsat 0.1520 [fm−3]

ρsat denotes the baryon density at saturation in symmetric nuclear matter. The
eight real parameters in Eq. (2.27) are not independent. The five constraints:

fi(1) = 1, f ′′
σ (1) = f ′′

ω(1), f ′′
i (0) = 0, (2.28)

reduce the number of independent parameters to three. Three additional param-
eters in the isoscalar channel are: gσ(ρsat), gω(ρsat) and the mσ-the mass of the
phenomenological σ-meson. For the ρ-meson coupling, the functional form of the
density dependence is suggested by a Dirac-Brueckner calculation of asymmetric
nuclear matter [14]:

gρ(ρv) = gρ(ρsat)e
−aρ(x−1). (2.29)

The isovector channel is parameterized by gρ(ρv) and aρ. For the masses of the ω
and ρ mesons the free values are used. The eight independent parameters (seven
coupling parameters and the mass of the σ meson) are adjusted to reproduce em-
pirical properties of symmetric and asymmetric nuclear matter, binding energies,
charge radii and neutron radii of spherical nuclei. In this work, the very successful
density-dependent meson-exchange relativistic energy density functional DD-ME2
is used [13]. In Table 2.1 we list all the parameters which fully define the DD-ME2
meson-exchange functional.

We notice that since the meson masses are relatively large compared to the
energy scale encountered in nuclear interactions, by expanding the finite range
meson propagators into a zero-range coupling plus gradient corrections we can
approximate the meson-exchange model by a point-coupling one. In the following
subsection such point-coupling models are introduced.
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2.1.2 Point-coupling models

Point-coupling models represent an alternative formulation of the self-consistent
relativistic mean-field framework [15, 16, 17, 18, 19]. Similar to the finite range rel-
ativistic density functional approach, the density-dependent point-coupling (DD-
PC) functionals consider an effective Lagrangian for nuclear mean-field calcula-
tions at the Hartree level with no-sea approximation. Instead of modelling the
interaction by the exchange of mesons, in DD-PC the model consists in four, six
and eight fermion point couplings (contact interactions) together with derivative
terms representing, respectively, two, three and four-body forces and the finite
ranges of the corresponding mesonic interactions. In many applications, however,
the three and four-body forces can be modelled by density dependent two-body
coupling constants whose dependence is given by ansatz. In fact, DD-PC func-
tionals are closely related to finite range relativistic functionals. Expanding the
finite range meson propagators into a zero-range coupling plus gradient corrections
we can link both. For example, for the σ-meson the corresponding vertex can be
approximated by:

g2σ
−△+m2

σ

ρs ≈
g2σ
m2

σ

ρs +
g2σ
m4

σ

△ρs, (2.30)

where the differential operator −△ + m2
σ originates from mesonic Klein-Gordon

equation.
An effective Lagrangian that includes the isoscalar-scalar, isoscalar-vector and

isovector-vector four-fermion contact interactions reads:

(2.31)

L = ψ̄(iγµ∂
µ −m)ψ − 1

2
αS(ρv)(ψ̄ψ)(ψ̄ψ)

− 1

2
αV (ρv)(ψ̄γ

µψ)(ψ̄γµψ)−
1

2
αTV (ρv)(ψ̄

−→τ γµψ)(ψ̄−→τ γµψ)

− 1

2
δS(∂νψ̄ψ)(∂

νψ̄ψ)− e1 + τ3
2

ψ̄γµAµψ +
1

4
F µνFµν .

The derivative term in Eq. (2.31) accounts for leading effects of finite-range inter-
actions that are crucial for a quantitative description of nuclear density distribu-
tion, e.g. nuclear radii. Similar interactions can be included in each isospace-space
channel, but in practice data only constrain a single derivative term, for instance:
δS(∂νψ̄ψ)(∂

νψ̄ψ). Similar to DD-ME Lagrangian (2.3), the couplings αS, αV and
αTV of the interaction terms in Eq. (2.31) are functions of isovector density
ρv = j0. Lagrangian density (2.31) yields the Hamiltonian density and the EDF
for the point-coupling model:

(2.32)

ERMF [ψ, ψ̄, A
µ] =

∫
drH(r)

=
A∑
i=1

∫
drψ†

i (α · p+ βm)ψi +
1

2

∫
drjµpAµ

+
1

2

∫
dr
[
αSρ

2
s + αV jµj

µ + αTV
−→
jµ ·
−→
jµ + δSρs△ρs

]
.

Again, the variation of the EDF ERMF [ψ, ψ̄, A
µ] with respect to the Dirac spinors

ψ̄ leads to the Dirac equation with single-particle Hamiltonian ĥD having the same
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form as in Eq. (2.15):

ĥD =

[
Σ0 + Σ0

R + (Σs +m) σ · (p−Σ)
σ · (p−Σ) Σ0 + Σ0

R − (Σs +m)

]
. (2.33)

Variation with respect to photon field Aµ yields Poisson equation (2.22). The
nucleon self-energies are defined by the following expressions:

Σs = αS(ρv)ρs + δS△ρs, (2.34)

Σµ = αV (ρv)j
µ + αTV (ρv)

−→τ ·
−→
jµ + e

1 + τ3
2

Aµ. (2.35)

The density dependence of the vertex function αS, αV and αTV produces the re-
arrangement contribution to the vector self-energy:

Σ0
R =

1

2

(
α′
S(ρv)ρ

2
s + α′

V (ρv)ρ
2
v + α′

TV (ρv)ρ
2
tv

)
. (2.36)

In this work, a specific parameterization ansatz for the functional form of the
coupling vertex functions:

αS(ρv) = aS + (bS + cSx)e
−dSx, (2.37)

αV (ρv) = aV + bV e
−dV x, (2.38)

αTV (ρv) = bTV e
−dTV x, (2.39)

with x = ρv/ρsat, where ρsat denotes the nucleon density at saturation in symmetric
nuclear matter.

Recently developed parameter set of the point-coupling interaction DD-PC1
[18] is used in this work. In Table 2.2 we list all the parameters which fully define
the DD-PC1 point-coupling functional. The DD-PC1 parameters were adjusted
simultaneously to infinite and semi-infinite nuclear matter properties and to the
binding energies of 64 axially symmetric deformed nuclei in the mass region A ≈
150−180 and A ≈ 230−250. The resulting energy density functional DD-PC1 has
been further tested in calculations of binding energies, charge radii, deformation
parameters, neutron skin thickness, and excitation energies of giant monopole and
dipole resonances in Ref. [18].

2.2 Relativistic EDF theory with pairing
Relativistic energy density functionals have successfully been employed in studies
of properties of ground and excited states in spherical and deformed nuclei. For
a quantitative analysis of open-shell nuclei it is necessary to consider also pairing
correlations. Pairing has often been taken into account in a very phenomeno-
logical way in the Bardeen–Cooper–Schrieffer (BCS) model with the monopole
pairing force, adjusted to the experimental odd–even mass differences. In many
cases, however, this approach presents only a poor approximation. The physics of
weakly-bound nuclei, in particular, necessitates a unified and self-consistent treat-
ment of mean-field and pairing correlations. This has led to the formulation and
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DD-PC1 parameter set
Parameter Value Unit

aS −10.0462 [fm2]
bS −9.1504 [fm2]
cS +6.4273 [fm2]
dS +1.3724
aV +5.9195 [fm2]
bV +8.8637 [fm2]
dV +0.6584
bTV +1.8360 [fm2]
dTV +0.6403
δS −0.8149 [fm4]
ρsat +0.1520 [fm−3]

Table 2.2: DD-PC1 parameter set for the density-dependent point-coupling rela-
tivistic energy functional.

development of the relativistic Hartree–Bogoliubov (RHB) model [7, 20], which
represents a relativistic extension of the conventional Hartree–Fock–Bogoliubov
framework.

2.2.1 Relativistic Hartree-Bogoliubov model

The RHB model provides a unified description of particle-hole (ph) and particle-
particle (pp) correlations on a mean-field level by using two average potentials:
the self-consistent mean field ĥ that encloses all the long range ph correlations,
and a pairing field ∆̂ which sums up the pp-correlations.

The ground state of a nucleus is described by a generalized Slater determinant
|Φ⟩ that represents the vacuum with respect to independent quasiparticles. The
quasiparticle operators α̂µ, α̂

†
µ are defined by the unitary Bogoliubov transforma-

tion of the single-nucleon creation and annihilation operators:

α̂†
µ =

∑
k

(
Uk,µĉ

†
k + Vk,µĉk

)
, (2.40)

where the index k refers to the original basis (configurational space), e.g. an os-
cillator basis or the coordinates (r, s, τ) in space, spin and isospin. In addition,
for the relativistic case, the index d ∈ {f, g} will denote the large and small com-
ponents of the corresponding Dirac spinor respectively. Columns of Bogoliubov
matrices U and V are the Hartree-Bogoliubov wave functions determined by the
variational principle. In the presence of pairing, the single-particle density matrix
is generalized by two densities [21]: the normal density ρ̂ matrix and the pairing
tensor κ̂ defined as:

ρ̂k,k′ = ⟨Φ|ĉ†k′ ĉk|Φ⟩, (2.41)

κ̂k,k′ = ⟨Φ|ĉk′ ĉk|Φ⟩. (2.42)

The RHB energy density functional thus depends on both densities:

ERHB[ρ̂, κ̂] = ERMF [ρ̂] + Epair[κ̂], (2.43)
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where ERMF [ρ̂] is the RMF-functional defined by Eq. (2.13) or (2.32), and the
pairing part of the RHB functional reads:

Epair[κ̂] =
1

4

∑
k1,k′1

∑
k2,k′2

κ̂∗k1,k′1⟨k1, k
′
1|V pp|k2, k′2⟩aκ̂k2,k′2 . (2.44)

⟨k1, k′1|V pp|k2, k′2⟩a are the (antisymmetrized) matrix elements of the two-body
pairing interaction:

⟨k1, k′1|V pp|k2, k′2⟩a = ⟨k1, k′1|V pp|k2, k′2⟩ − ⟨k1, k′1|V pp|k′2, k2⟩. (2.45)

The columns of Bogoliubov matrices Uµ, Vµ are obtained by the variational prin-
ciple of ERHB which yields the RHB eigenvalue equation:[

ĥD −m− λ ∆̂

−∆̂∗ −ĥ∗D +m+ λ

] [
Uµ

Vµ

]
= Eµ

[
Uµ

Vµ

]
. (2.46)

In the relativistic case, the self-consistent mean-field corresponds to the single-
nucleon Dirac Hamiltonian ĥD of Eqs. (2.15) or (2.33). m is the nucleon mass,
and the chemical potential λ is determined as a Lagrange multiplier by the particle
number subsidiary condition such that the expected value of the particle number
operator in the ground state equals the given number of nucleons. The pairing
field reads:

∆̂k1,k′1
=

1

2

∑
k2,k′2

⟨k1, k′1|V pp|k2, k′2⟩aκ̂k2,k′2 . (2.47)

The colum vectors in the eigenvalue problem Eq. (2.46) denote the quasi-
particle wave functions, and Eµ are the quasiparticle energies. The dimension of
the RHB matrix equation is two times the dimension of the corresponding Dirac
eigenvalue matrix equation (2.14). Therefore, for each eigenvector (Uµ, Vµ) with
positive quasiparticle energy Eµ > 0, there exists an eigenvector (V ∗

µ , U
∗
µ with neg-

ative quasiparticle energy −Eµ. Since the baryon quasiparticle operators satisfy
fermion commutation relations, the levels Eµ and −Eµ cannot be occupied simul-
taneously, that is, one chooses either the positive or the negative eigenvalue and
the corresponding eigenvector.

In the Hartree–Fock case, the choice of positive or negative value of the quasi-
particle energy means that the level is either occupied or empty. For the non-
relativistic HFB the ground state represents the minimum of the energy surface
and, to form a vacuum with respect to all quasiparticles, one chooses only the
positive quasiparticle energies, which defines the quasiparticle vacuum |Φ⟩:

α̂µ|Φ⟩ = 0, for Eµ > 0. (2.48)

The single-particle density ρ̂ and pairing tensor κ̂ that correspond to this state
can be expressed in terms of the quasiparticle wave functions:

ρ̂k,k′ =
∑
Eµ>0

V ∗
k,µVk′,µ, (2.49)
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κ̂k,k′ =
∑
Eµ>0

V ∗
k,µUk′,µ. (2.50)

In the relativistic case one finds solutions in the Dirac sea (usually called negative
energy solutions and denoted by the index a - antiparticles), and solutions above
the Dirac sea (usually called positive energy solutions and denoted by the index p
- particles). In the Dirac equation without pairing they can easily be distinguished
by the sign of the corresponding eigenvalues. For the RHB equations (2.46) this
is no longer the case but, because of the large gap between the Dirac sea and the
Fermi sea (by at least 1000 MeV), one can easily distinguish the levels in the Dirac
sea |Ea|> 1200 MeV, from those above the Dirac sea. The no-sea approximation
here means that we have to choose solutions with positive quasiparticle energies
Ep > 0 for the states above the Dirac sea, and solutions with negative quasiparticle
energies Ea < 0 for all levels in the Dirac sea.

2.2.2 Separable pairing interaction

Pairing correlations in nuclei are restricted to an energy window of a few MeV
around the Fermi level, and their scale is well separated from the scale of binding
energies, that are in the range from several hundred to thousand MeV. There
is no empirical evidence for any relativistic effect in the nuclear pairing field ∆̂
and, therefore, a hybrid RHB model with a non-relativistic pairing interaction
can be formulated. For a general two-body interaction, the matrix elements of the
relativistic pairing field read:

∆̂k1d1,k′1d
′
1
=

1

2

∑
k1d1,k′1d

′
1

⟨k1d1, k′1d′1|V pp|k2d2, k′2d′2⟩aκ̂k2d2,k′2d′2 . (2.51)

The indices d1, d′1, d2, d′2 refer to the large and small components of the quasipar-
ticle Dirac spinor:

Uµ =

[
f
(U)
µ

ig
(U)
µ

]
, Vµ =

[
f
(V )
µ

ig
(V )
µ

]
. (2.52)

In practical application of the RHB model, only the large components of the
spinors Uµ and Vµ are used to build the pairing tensor κ̂. The resulting pairing
field reads:

∆̂k1f1,k′1f
′
1
=

1

2

∑
k1f1,k′1f

′
1

⟨k1f1, k′1f ′
1|V pp|k2f2, k′2f ′

2⟩aκ̂k2f2,k′2f ′
2
. (2.53)

Other components: ∆̂fg, ∆̂gf and ∆̂gg can be safely omitted [22].
In order to reduce the computational effort, a separable form of the pairing

force has been introduced for RHB calculations in spherical and deformed nuclei
[23, 24, 25]. The force is separable in momentum space, and is completely deter-
mined by two parameters that are adjusted to reproduce the pairing gap of the
Gogny force in symmetric nuclear matter. The gap equation in the 1S0 channel
reads:

∆(k) = −
∫ ∞

0

k′2dk′

2π2
⟨k|V 1S0 |k′⟩ ∆(k′)

2E(k′)
, (2.54)
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and the pairing force is separable in momentum space:

⟨k|V 1S0|k′⟩ = −Gp(k)p(k′). (2.55)

By assuming a simple Gaussian ansatz p(k) = e−a2k2 , the two parameters G
and a have been adjusted to reproduce the density dependence of the gap at the
Fermi surface, calculated with a Gogny force. For the D1S parameterization [26]
of the Gogny force, the following values were determined: G = 728 MeV fm3

and a = 0.6442 fm. When the pairing force equation (2.55) is transformed from
momentum to coordinate space, it takes the form:

V pp(r1, r2, r
′
1r

′
2) = −G ·

1

2
(1− P̂σ) · δ3(R−R′) · P (r)P (r′), (2.56)

where 1
2
(1 − P̂σ) is the spin exchange term, R = 1

2
(r1 + r2) and r = r1 − r2

denote the center-of-mass and the relative coordinates respectively, and P (r) is
the Fourier transform of the p(k) function:

P (r) =
1

(4πa2)3/2
e−r2/4a2 . (2.57)

The pairing force has a finite range and, because of the presence of the factor
δ3(R−R′), it preserves translational invariance. Even though δ3(R−R′) implies
that this force is not completely separable in coordinate space, the corresponding
antisymmetrized pp matrix elements ⟨k1k2|V pp|k′1k′2⟩a can be represented as a sum
of a finite number of separable terms in the harmonic oscillator basis. Details are
given in [23, 24, 25].

2.2.3 Numerical implementation of the RHB model

For nuclei with spherical symmetry the RHB equation in coordinate space reduces
to a simple set of radial integro-differential equations. In the case of deformed
nuclei, however, the solution of integro-differential equations in coordinate space
presents a numerically intensive and time-consuming task. For an efficient imple-
mentation of the RHB model in this work a method proposed by Vautherin [27]
is used, that combines the configurational and coordinate space representations.

The RHB equation is solved in the configurational space of harmonic oscillator
wave functions with appropriate symmetry, whereas the densities are computed
in coordinate space. The method can be applied to spherical, axially and non-
axially deformed nuclei. The RHB eigenvalue problem in configurational space of
harmonic oscillator reads [17]:

A− λI B ∆ff 0
BT C − λI 0 0
∆ff 0 −A+ λI −B
0 0 −BT −C + λI



f (U)

g(U)

f (V )

g(V )

 = E


f (U)

g(U)

f (V )

g(V )

 . (2.58)

The diagonalization of the RHB matrix equation yields the wave functionals in
configurational space. The resulting density matrix is computed in configurational
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space: [
ρ̂k,k′ ρ̂k,k̃′
ρ̂k̃,k′ ρ̂k̃,k̃′

]
=

[ ∑
µ f

(Vµ)∗
k f

(Vµ)
k′ i

∑
µ f

(Vµ)∗
k g

(Vµ)

k̃′

−i
∑

µ g
(Vµ)∗
k̃

f
(Vµ)
k′

∑
µ g

(Vµ)∗
k̃

g
(Vµ)

k̃′

]
, (2.59)

where k and k̃ denote the indices of an expansion of the large and small components
of the Dirac spinor in the oscillator basis. The density matrix is then transformed
to the coordinate space, and the resulting vector and scalar densities are used to
calculate the potentials.

The map of the energy surface as a function of quadrupole deformation parame-
ters is obtained by solving the RHB equation with constraints on mass quadrupole
moments of a given nucleus. The method of quadratic constraints uses an unre-
stricted variation of the function:

⟨Ĥ⟩+ c2(⟨Q̂2⟩ − q2)2, (2.60)

where ⟨Ĥ⟩ is the total energy and ⟨Q̂2⟩ denotes the expectation value of the mass
quadrupole moment operator. q2 is the constrained value of the multipole moment
and c2 is the corresponding stiffness constant. Augmented Lagrangian method [28]
is used to push the system in a state with constrained value of quadrupole moment.

In this work, we focus exclusively on axially deformed nuclei with constrained
quadrupole moment. We introduce a convenient dimensionless deformation pa-
rameter β which uniquely defines the quadrupole deformation of axially symmetric
nucleus ρv(r) = ρv(r⊥, z) as:

β =
4π

3

1

AR2
0

∫
ρv(r)|r|2Y20(θ, φ)dr, (2.61)

for R0 = 1.2A1/3 fm. For illustration, β ∼ 0 corresponds to nearly spherical nuclei,
β ∼ 0.2 − 0.5 correspond to typical deformation encountered in ground state of
nuclei, while β ∼ 1 correspond to very deformed configurations. Parameter β will
be used throughout this work as a quantitative measure of quadrupole deformation
in axially symmetric systems.

RHB solver DIRHB [1] implements DD-PC1 and DD-ME2 energy density func-
tionals and separable pairing interaction for axially deformed systems with a pos-
sible constraint of quadrupole deformaton. In the iterative procedure that leads
to the self-consistent solution, the intermediate solutions are combined by using
the Broyden’s mixing procedure [29]. DIRHB solver is used as a starting point of
this work since it calculates the ground state properties on top of which collective
excitations can be studied. In the following section, a theoretical framework for
calculating the nuclear response in presence of a weak external perturbation is
presented as an extension of the RHB model.

2.3 Quasiparticle Finite Amplitude Method
In the formalism of supermatrices introduced by Valatin [30], the RHB functions
are determined by the Bogoliubov transformation which relates the original basis
of particle creation and annihilation operators ck, c†k (e.g. an oscillator basis) to
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the quasiparticle basis αµ, α†
µ
1:(

c
c†

)
=W

(
α
α†

)
with W =

(
U V ∗

V U∗

)
, (2.62)

where W denotes the matrix of unitary Bogoliubov transformation. In this nota-
tion a single-particle operator can be represented in a matrix form:

F =
1

2

(
α† α

)
F
(

α
α†

)
+ const, (2.63)

with:

F =

(
F 11 F 20

−F 02 −(F 11)
T

)
. (2.64)

In particular, for the generalized density R:

R =W†
(

ρ κ
−κ∗ 1− ρ∗

)
W , (2.65)

where the density matrix and pairing tensor read: ρ = V ∗V T and κ = V ∗UT . The
RHB Hamiltonian is given by a functional derivative of a given energy density
functional with respect to the generalized density:

H =
δE[R]
δR

=W†
(

h ∆
−∆∗ −h∗

)
︸ ︷︷ ︸

H

W . (2.66)

The evolution of the quasiparticle operator αµ(t) subject to time-dependent
external perturbation F (t) is determined by the equation:

i∂tαµ(t) = [H(t) + F (t), αµ(t)] . (2.67)

For a weak harmonic external field:

F (t) = η(F (ω)e−iωt + F †(ω)e+iωt), (2.68)

characterized by the small real parameter η, the F (ω) operator reads:

F (ω) =
1

2

∑
µν

F 20
µνα

†
µα

†
ν + F 02

µναναµ. (2.69)

The F 11
µν term that would appear in the previous equation does not contribute in

linear response and thus can be safely omitted. The external harmonic field F (t)
induces a small-amplitude oscillations of the αµ(t) operator around the ground-
state solution with the same energy:

αµ(t) = (αµ + δαµ(t)) e
iEµt. (2.70)

1In the following, the Roman alphabet characters will denote the particle basis states, while
the Greek will denote the quasiparticle basis states.
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Eµ denotes the quasiparticle energies (as introduced in Section 2.2.1). The oscil-
lating part of the αµ(t) operator is expanded in terms of quasiparticle creation
operators2:

δαµ(t) = η
∑
ν

α†
ν

(
Xνµ(ω)e

−iωt + Y ∗
νµ(ω)e

+iωt
)
. (2.71)

Coefficients Xµν(ω) and Yµν(ω) are referred to as the forward and backward QRPA
amplitudes respectively. The oscillations of the density matrix and the pairing
tensor produce the induced oscillating fields in the single-particle Hamiltonian
h(t) = h0 + δh(t) and the pairing field ∆(t) = ∆0 + δ∆(t). h0 and ∆0 denote the
ground state values. The Hamiltonian H(t) can also be decomposed into static
and oscillating terms:

H(t) = H0 + δH(t) = H0 + η
[
δH(ω)e−iωt + δH†(ω)e+iωt

]
. (2.72)

The δH(ω) operator is decomposed in quasiparticle basis as:

δH(ω) =
1

2

∑
µν

δH20
µν(ω)α

†
µα

†
ν + δH02

µν(ω)αναµ. (2.73)

By inserting Eqs. (2.70-2.73) into the equation of motion Eq. (2.67), and retaining
only linear terms in η, we obtain the QFAM equations:

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω) = −F 20

µν , (2.74)
(Eµ + Eν + ω)Yµν(ω) + δH02

µν(ω) = −F 02
µν . (2.75)

We notice that δH20
µν(ω) and δH02

µν(ω) depend on the induced fields δh(ω), δ∆(ω),
which in turn depend on the induced densities, i.e., on the amplitudes Xµν(ω) and
Yµν(ω). Therefore, Eqs. (2.74-2.75) represent a set of non-linear equations that
can be solved self-consistently. The expansion of δH20

µν(ω) and δH02
µν(ω) in terms

of Xµν(ω) and Yµν(ω):

δH20
µν(ω) = −(Eµ + Eν)Xµν(ω) +

∑
µ′<ν′

Aµν,µ′ν′Xµ′ν′(ω) +Bµν,µ′ν′Yµ′ν′(ω), (2.76)

δH02
µν(ω) = −(Eµ + Eν)Yµν(ω) +

∑
µ′<ν′

B∗
µν,µ′ν′Xµ′ν′(ω) + A∗

µν,µ′ν′Yµ′ν′(ω), (2.77)

leads to the conventional QRPA equation:([
A B
B∗ A

]
− ω

[
I 0
0 −I

] [
X(ω)
Y (ω)

])
= −

[
F 20

F 02

]
. (2.78)

where the vectorized matrix notation is used. In order to prevent that the QRPA
solutions diverge in the vicinity of the QRPA eigenfrequency, one adds a small
imaginary part γ to the excitation energy ω → ω + iγ.

These equations contain second derivatives (A and B matrices) of the density
functional E[R] with respect to R as matrix elements. For deformed nuclei in

2We notice that including the annihilation operators in the expansion would not alter the
density matrix or the pairing tensor.
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particular, the number of two-quasiparticle configurations (µ, ν), i.e. the size of
matrices A and B, can become very large and the evaluation of matrix elements
requires a considerable, and in many cases prohibitive, numerical effort. Even if
the matrix elements are calculated, the direct solution of the QRPA equation by
matrix diagonalization is even more prohibitive in terms of computational cost. In
many cases this has prevented systematic applications of the conventional QRPA
method to studies of the multipole response of medium-heavy and heavy deformed
nuclei.

In order to use the stationary RHB code as a starting point for the evaluation
of the H(R), the generalized density should be transformed back to the original
single-particle basis by using the Bogoliubov transformation:

αµ(t) =
∑
k

(
U∗
kµ(t)ck + V ∗

kµ(t)c
†
k

)
. (2.79)

Eqs. (2.70) and (2.71) lead to the following expressions for the U(t) and V (t)
coefficients:

Ukµ(t) = Ukµe
−iEµt + ηe−iEµt

∑
ν

(
V ∗
kνYνµ(ω)e

−iωt + V ∗
kνX

∗
νµ(ω)e

+iωt
)
, (2.80)

Vkµ(t) = Vkµe
−iEµt + ηe−iEµt

∑
ν

(
U∗
kνYνµ(ω)e

−iωt + U∗
kνX

∗
νµ(ω)e

+iωt
)
. (2.81)

Vkµ and Ukµ denote the stationary Bogoliubov coefficients. The induced density
matrix ρ(t) = V ∗(t)V T (t) reads:

ρ(t) = V ∗V T + η
(
δρ(ω)e−iωt + δρ†(ω)e+iωt

)
, (2.82)

with:
δρ(ω) = UX(ω)V T + V ∗Y T (ω)U †. (2.83)

The induced pairing tensor κ(t) = V ∗(t)UT (t) reads:

κ(t) = V ∗UT + η
(
δκ(+)(ω)e−iωt + δκ(−)(ω)e+iωt

)
, (2.84)

with:
δκ(+)(ω) = UX(ω)UT + V ∗Y T (ω)V † (2.85)

and
δκ(−)(ω) = V ∗X†(ω)V † + UY ∗(ω)UT . (2.86)

It should be noted that although δρ(ω) matrix is not necessarily hermitian, the
matrices δκ(+)(ω) and δκ(−)(ω) are still antisymmetric. The induced single-particle
Hamiltonian:

δh(t) = η
(
δh(ω)e−iωt + δh†(ω)e+iωt

)
, (2.87)

is linearized explicitly in the coordinate space, while the induced pairing field
reads:

δ∆(t) = η
(
δ∆(+)(ω)e−iωt + δ∆(−)(ω)e+iωt

)
, (2.88)
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with
δ∆

(±)
lm (ω) =

1

2

∑
pq

v̄lmpqδκ
(±)
pq (ω). (2.89)

v̄lmpq are the antisymmetrized matrix elements of the pairing interaction intro-
duced earlier in Section 2.2.1.

The induced Hamiltonian components in quaiparticle basis δH20(ω) and δH02(ω)
are calculated by transforming back to the quasiparticle basis via unitary Bogoli-
ubov transformation:

δH(ω) =W†
(

δh(ω) δ∆(+)(ω)
−δ∆(−)(ω)∗ −δhT (ω)

)
W . (2.90)

The explicit expressions for δH20(ω) and δH02(ω) read:

δH20(ω) = + U †δh(ω)V ∗ − V †δhT (ω)U∗

+ U †δ∆(+)(ω)U∗ − V †[δ∆(−)(ω)]∗V ∗, (2.91)
δH02(ω) =− V T δh(ω)U + UT δhT (ω)V

− V T δ∆(+)(ω)V + UT [δ∆(−)(ω)]∗U. (2.92)

The transition strength function S(f, ω) is defined as:

S(f, ω) =
∑
µ<ν

F 20
µν(ω)

∗Xµν(ω) + F 02
µν(ω)

∗Yµν(ω), (2.93)

while the response function is defined as:

dB

dω
(f, ω) = − 1

π
ImS(f, ω). (2.94)

One can show that one can alternatively calculate the response function as:

dB

dω
(f, ω) = − 1

π
Im
[
f †δρ(ω)

]
, (2.95)

where δρ(ω) denotes the induced density matrix and fkl are the matrix elements
of the operator F (ω) in the single-particle basis:

F (ω) =
∑
kl

fklc
†
kcl. (2.96)



Chapter 3

QFAM implementation

In this Chapter, a QFAM implementation is presented for a specific choice of
energy density functionals, pairing interaction, configurational basis, imposed axial
symmetry and for a certain class of excitation operators. Ref. [2] is followed. In
conjunction with this section, Appendix A is referenced as an extensive supplement
throughout the Chapter for technical details.

3.1 QFAM solver - DIRQFAM

3.1.1 Harmonic oscillator simplex-y basis

In this section we first briefly describe the single-particle basis of eigenfunctions of a
single-particle Hamiltonian for an axially symmetric deformed harmonic oscillator
(HO) potential:

Vosc(z, r⊥) =
1

2
mω2

zz
2 +

1

2
mω2

⊥r
2
⊥, (3.1)

used in the ground-state calculations. (z, r⊥, φ) denote the standard cylindrical
coordinates:

x = r⊥ cosφ, y = r⊥ sinφ, z = z. (3.2)

Imposing volume conservation, the two oscillator frequencies h̄ωz and h̄ω⊥ can be
expressed in terms of a deformation parameter β0:

h̄ωz = h̄ω0e
−
√

5
4π

β0 , h̄ω⊥ = h̄ω0e
1
2

√
5
4π

β0 . (3.3)

The corresponding oscillator length parameters are:

bz =

√
h̄

mωz

, b⊥ =

√
h̄

mω⊥
. (3.4)

b2⊥bz = b30 because of the volume conservation. The basis is now determined by
the two constants h̄ω0 and β0. Current implementation uses the following esti-
mate for the HO frequency: h̄ω0 = 41A1/3 MeV originating from classical nuclear
shell-model. The eigenfunctions of the deformed harmonic oscillator potential are
labeled by the set of quantum numbers:

|α⟩ = |nznrΛms⟩, (3.5)

19
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where nz, nr ∈ N0, are the number of nodes in the z and r⊥ directions, respectively.
Λ ∈ Z and ms ∈ {±1

2
} are projections of the orbital angular momentum and spin

on the intrinsic z-axis, respectively. Making use of the dimensionless variables:

ξ = z/bz, η = r2⊥/b
2
⊥, (3.6)

the harmonic oscillator eigenvectors read:

|α⟩ = |nznrΛms⟩ = ϕnz(z, bz)ϕ
Λ
nr
(r⊥, b⊥)

eiΛφ√
2π
χms(s), (3.7)

where:

ϕnz(z, bz) = b−1/2
z NnzHnz(ξ)e

−ξ2/2, (3.8)

ϕΛ
nr
(r⊥, b⊥) = b−1

⊥ N
Λ
nr

√
2η|Λ|/2L|Λ|

nr
(η)e−η/2. (3.9)

Hnz(ξ) and L
|Λ|
nr (η) denote the Hermite and associated Laguerre polynomials, re-

spectively. The normalization factors are:

Nnz = (
√
π2nznz! )

−1/2 and N Λ
nr

= (nr! /(nr + |Λ|)! )1/2. (3.10)

The large and small components of a Dirac spinor are expanded independently
in terms of the oscillator eigenfunctions:

fµ(r,ms, tz) =
∑

Shell(α)≤Nshells
Ω=Λ+ms>0

f (µ)
α |α⟩χtz(t), (3.11)

gµ(r,ms, tz) =
∑

Shell(α̃)≤Nshells+1

Ω̃=Λ̃+m̃s>0

g
(µ)
α̃ |α̃⟩χtz(t). (3.12)

To avoid the appearance of spurious states, the quantum numbers α and α̃ are
chosen in such a way that the corresponding shell they belong to: Shell(α) =
nz + 2nr + |Λ| and Shell(α̃) = ñz + 2ñr + |Λ̃|, are not larger than Nshells and
Nshells+1 for the large and small components, respectively. Due to the time-reversal
symmetry of the ground state solution, only positive eigenvalues Ω = Λ+ms > 0 of
the Jz symmetry operator are retained in the expansion. Notice that the size of the
truncated HO basis basis, i.e. the total number of vectors used in the expansion
(and consequently the size of matrices in RHB equation (2.46)), depend only on
the number of shells Nshells.

The HO basis states are used to build the eigenfunctions of the simplex-y
operator Sy = Pe−iπJy , where P denotes the parity operator1. One can easily
verify that the following combinations are eigenstates of the Sy operator with

1Recall that the parity operator acting on Dirac spinors is given by γ0 matrix.
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eigenvalues s = +i and s = −i:

|nznrΛ; s = +i⟩ = 1√
2
(i|nzn⊥Λ ↑⟩+ |nznr − Λ ↓⟩) , (3.13)

|nznrΛ; s = −i⟩ =
1√
2
(|nzn⊥Λ ↑⟩+ i|nznr − Λ ↓⟩) . (3.14)

Furthermore, these states are related by the time-reversal operator T :

T |nznrΛ; s = ±i⟩ = ∓|nznrΛ; s = ∓i⟩. (3.15)

Due to the time-reversal symmetry of the ground state solution, for each solu-
tion with Ω > 0, there is a degenerate time-reversed solution with Ω < 0. These
two states can be used to construct the eigenstates of the RHB Hamiltonian that
are simultaneously also the eigenfunctions of the simplex-y operator. The HO
basis states used to expand the ground state quasiparticle spinors are ordered in
the following way: basis states with Ω > 0 are listed first followed by their time-
reversed pairs. The simplex-y HO basis states used in the QFAM calculations are
ordered into two blocks: basis states with s = +i are listed first followed by the
s = −i pairs of states. By ordering the single-quasiparticle states in the same
manner, the Bogoliubov matrices U and V acquire the following block structure:

U =

(
u 0
0 u∗

)
, V =

(
0 −v∗
v 0

)
. (3.16)

Appendix A.1 provides the transformation formula of Bogoliubov U and V matri-
ces obtained from ground state solution in HO basis to the HO simplex-y basis.

3.1.2 QFAM iteration

In order to solve QFAM Eqs. (2.74) and (2.75), the QFAM amplitudes are ex-
panded in a basis of the eigenstates of the axially symmetric harmonic oscillator
and the simplex-y operator. In the following we will refer to this basis as the
simplex-y harmonic oscillator (simplex-y HO) basis.

First let us assume that we have the induced single-particle Hamiltonian δh(ω)
and pairing fields δ∆(±)(ω). Then, following Eq. (2.90) we can directly compute
the induced Hamiltonian δH20

µν(ω) and δH02
µν(ω). After that, the QFAM equations

(2.74) and (2.75) yield the QFAM amplitudes Xµν(ω) and Yµν(ω) if the excitation
operator is specified, i.e. F 20

µν(ω) and F 02
µν(ω) are known. Once the QFAM aplitudes

are computed, Eq. (2.83), (2.85) and (2.86) yield the induced density matrix
δρ(ω) and pairing tensor δκ(±)(ω) in HO simplex-y basis. As will be shown in the
following sections, induced density matrix can be used to calculate the induced
densities and currents in coordinate space which will define the induced potentials
of the used EDF. These induced potentials, on the other hand, can be used to find
the induced single-particle Hamiltonian δh(ω) by numerical integration. Also, the
induced pairing tensor can be used to directly compute the induced pairing fields
δ∆(±)(ω).

This completes a full circle, which is referred to as the QFAM iteration. In
the end of QFAM iteration, we want to obtain the same induced single-particle
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Hamiltonian δh(ω) and pairing fields δ∆(±)(ω) from the beginning of the QFAM
iteration, up to a certain numerical accuracy. In that case, we have found the self-
cosistent solution which satisfies the QFAM equations and can easily calculate
the response function dB

dω
(F, ω) for that specific energy ω and specific external

perturbation F . By repeating the process for many ω, we obtain the response
function profile point-wise. In the following sections, we will describe in detail
how each step in QFAM iteration is calculated.

Notice however that unlike the conventional matrix QRPA approach where
once the QRPA matrix is diagonalized, one can readily find the response function
of an arbitrary external perturbation F , here in QFAM one has to predefine the
operator F . The current version of the DIRQFAM solver supports the electric
isoscalar and isovector multipole operators, defined as:

f IS
JK =

A∑
i=1

fJK(ri), f IV
JK =

Z∑
i=1

fJK(ri)−
N∑
i=1

fJK(ri). (3.17)

The summations in the expression for the f IV
JK operator run over protons and

neutrons, respectively. In general, the operator fJK(r) is given by:

fJK(r) = |r|JYJK(θ, φ). (3.18)

However, for the monopole excitations, the operator is defined as f00(r) = |r|2,
while for the isovector dipole excitation (DK = rY1K , K = 0,±1), the following
definition is employed:

DK = e
NZ

A

[
1

Z

Z∑
i=1

DK(ri)−
1

N

N∑
i=1

DK(ri)

]
. (3.19)

Since for an even-even axially symmetric nucleus the operators fJK and fJ−K

produce identical strength functions, in the code we employ the operator:

f
(+)
JK =

fJK + (−1)KfJ−K√
2 + 2δK,0

(3.20)

and assumeK ≥ 0. DIRQFAM supports operators up to 0 ≤ J ≤ 5 and 0 ≤ K ≤ J .

3.1.3 Induced single-particle Hamiltonian and pairing field

The induced single-particle Dirac Hamiltonian is obtained by calculating the func-
tional derivative of the Dirac Hamiltonian hD with respect to the density. For
DD-PC1 single-particle Hamiltonian given in Eq. (2.33), the functional derivative
reads:

δhD =

(
δV + δS −σ · δΣ
−σ · δΣ δV − δS

)
, (3.21)

where δS = δΣs, δV = δΣ0+δΣ0
R and δΣ denote the induced scalar, time-like and

space-like components of the induced vector potential, respectively. The detailed
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expressions for δΣs, δΣ0, δΣ0
R and δΣ are listed below.

δΣs =
{
α′
S(ρ

0
v)ρ

0
s

}
δρv +

{
αS(ρ

0
v)
}
δρs + δS△δρs, (3.22)

δΣ0 =
{
α′
V (ρ

0
v)ρ

0
v + αV (ρ

0
v) + τ3α

′
TV (ρ

0
v)ρ

0
tv

}
δρv (3.23)

+
{
τ3αTV (ρ

0
v)
}
δρtv +

1 + τ3
2

δVC , (3.24)

δΣ0
R =

1

2

{
α′′
S(ρ

0
v)(ρ

0
s)

2 + α′′
V (ρ

0
v)(ρ

0
v)

2 + α′′
TV (ρ

0
v)(ρ

0
tv)

2
}
δρv

+
{
α′
S(ρ

0
v)ρ

0
s

}
δρs +

{
α′
V (ρ

0
v)ρ

0
v

}
δρv +

{
α′
TV (ρ

0
v)ρ

0
tv

}
δρtv, (3.25)

δΣ =
{
αV (ρ

0
v)
}
δjv +

{
τ3αTV (ρ

0
v)
}
δjtv +

1 + τ3
2

δVC . (3.26)

ρ0s, ρ0v and ρ0tv denote the isoscalar-scalar, isoscalar-vector and isovector-vector
ground state densities. We notice that the expression for δΣ is simplified consid-
erably due to the fact that the single-nucleon currents vanish in the time-reversal
invariant ground-state.

In the case of DD-ME2 single-particle Hamiltonian hD given in Eq. (2.15), the
induced potentials are listed below.

δΣs = [gσ(ρv)]gs δσ + [g′σ(ρv)σ]gs δρv, (3.27)

δΣ0 = [gω(ρv)]gs δω
0 +

[
g′ω(ρv)ω

0
]
gs
δρv + τ3 [gρ(ρv)]gs δρ

0

+ τ3
[
g′ρ(ρv)ρ

0
]
gs
δρv +

1 + τ3
2

δVC , (3.28)

δΣ0
R =

(
[g′′σ(ρv)ρsσ]gs ++

[
g′′ω(ρv)ρvω

0
]
gs
+
[
g′′ρ(ρv)ρtvρ

0
]
gs

)
δρv

+ [g′σ(ρv)σ]gs δρs +
[
g′ω(ρv)ω

0
]
gs
δρv +

[
g′ρ(ρv)ρ

0
]
gs
δρtv

+ [g′σ(ρv)ρs]gs δσ + [g′ω(ρv)ρv]gs δω
0 +

[
g′ρ(ρv)ρtv

]
gs
δρ0, (3.29)

δΣ = [gω(ρv)]gs δω + τ3 [gρ(ρv)]gs δρ+
1 + τ3

2
δVC . (3.30)

The value of function given in bracket [·]gs denotes the ground state value of that
function. The induced meson fields are obtained by solving the Klein-Gordon
equations: [

−△+m2
σ

]
δσ = − [gσ(ρv)]gs δρs − [g′σ(ρv)ρs]gs δρv, (3.31)[

−△+m2
ω

]
δω0 = [gω(ρv)]gs δρv + [g′ω(ρv)ρv]gs δρv, (3.32)[

−△+m2
ρ

]
δρ0 = [gρ(ρv)]gs δρtv +

[
g′ρ(ρv)ρtv

]
gs
δρv, (3.33)[

−△+m2
ω

]
δω = [gω(ρv)]gs δj, (3.34)[

−△+m2
ρ

]
δρ = [gρ(ρv)]gs δjtv. (3.35)

The time-like and space-like components of the induced Coulomb fields are calcu-
lated by solving the Poisson equation:

−△δVC = e2δρp and −△δVC = e2δjp, (3.36)



CHAPTER 3. QFAM IMPLEMENTATION 24

where δρp and δjp denote the induced proton density and current. The procedure
of solving the Klein-Gordon and the Poisson equations in cylindrical coordinates
is described in Appendix A.2, Appendix A.3 and Appendix A.4.

In conclusion, if the induced densities and currents are known in coordinate
space, one can easily evaluate the induced potentials defining the induced single-
particle Hamiltonian δh(ω). However, we need the matrix δh(ω) in HO simplex-
y configurational space, rather than in coordinate space. Regarding that step,
Appendix A.5 contains the technical details of obtaining δh(ω) in configurational
space from coordinate representation.

For completeness, in Appendix A.6 we provide technical details regarding the
calculation of the induced pairing field δ∆(±)(ω) once the induced pairing tensor
δκ(±)(ω) is known.

Now that we have shown how to obtain δh(ω) and δ∆(±)(ω) once the induced
currents and densities as well as induced pairing tensor are known, in Appendix
A.8 we show how to calculate the QFAM amplitudes Xµν(ω), Yµν(ω) and then,
using the QFAM Eqs. (2.74) and (2.75) how to find the induced density matrix
δρ(ω) and induced pairing tensor.

3.1.4 Induced currents and densities

In this section we explain the method used for calculating the induced densities
and currents, acting as the source terms for the induced potentials, using the
induced density matrix δρ(ω). In Appendix A.9 we provide a detailed list of
the expressions for induced densities and currents calculated in the simplex-y
harmonic oscillator (HO) basis. For example, the induced isoscalar-vector density
δρv(r, ω) in coordinate space is given as δρv(r, ω) = δρv(z, r⊥, ω) cosKφ, where
the separated angular part is given by:

δρv(z, r⊥, ω) =
1

2π

∑
α1,α2

|Λ1−Λ2|=K
d1=d2

(δρ1(ω) + δρ2(ω))α1,α2
ϕnz1

(z)ϕnz2
(z)ϕ|Λ1|

nr1
(r⊥)ϕ

|Λ2|
nr2

(r⊥).

(3.37)
Notice that (after symmetrization) all induced densities and currents in coordinate
space can be written as:

δS(z, r⊥, ω) =
∑
α1,α2

Aα1,α2(ω)ϕnz1
(z)ϕnz2

(z)ϕ|Λ1|
nr1

(r⊥)ϕ
|Λ2|
nr2

(r⊥), (3.38)

where Aα1,α2(ω) is block upper triangular matrix. Detailed definition of the index
α = (d, nz, nr,Λ) can be found in Appendix A.9. Block structure of the Aα1,α2(ω)
matrix depends on the excitation multipolarityK, e.g. forK = 0 one obtains block
diagonal matrix. For higher values of the multipolarity K, the block structure of
the Aα1,α2(ω) matrix is more complicated, but one can always deduce it thus
making the multiplication with matrix Aα1,α2(ω) much less time consuming. This
block structure in simplex-y basis originates from the ground state solution in
which the RHB equation can be split in independent angular momentum Ω = Λ+
ms and parity π blocks since the nuclear interactions don’t connect two states from
different Ωπ blocks. One can show that this block structure can be inherited in
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QFAM part of the calculation even in simplex-y basis. DIRQFAM solver essentially
addresses only the non-trivial Ωπ blocks.

The source terms δS(ziGH , riGL
⊥ , ω) should be evaluated on the Gaussian quadra-

ture grid points riG = (ziGH , riGL
⊥ ). This is because we actually need them only

to evaluate the induced potentials (as described in Section 3.1.3) which are then
used to evaluate the induced single-particle Hamiltonian δh(ω) by means of nu-
merical integration (as explained in Appendix A.5). Thus, it suffices to find
δS(ziGH , riGL

⊥ , ω).
In principle, one could implement the sum in Eq. (3.38) directly by arranging

the loops in some convenient order. However, it is more efficient to define the
matrix:

Φ(α,iG) = ϕnz(z
iGH )ϕ|Λ|

nr
(riGL

⊥ ), (3.39)

which is unchanged throughout QFAM iterations. Then the Eq. (3.38) can be
written as:

δS(riG , ω) = diag
[
ΦTA(ω)Φ

]
, (3.40)

where diag[·] denotes the diagonal of a matrix. Since the HO basis functions
ϕnz(z) and ϕ|Λ|

nr (r⊥) contain Hermite and Laguerre polynomials, which both satisfy
recursive relations, rows of the matrix Φ are linearly dependent. Consequently,
the rank of the matrix Φ is relatively low in comparison to its full rank.

For example, if HO simplex-y basis with Nshells = 16 is used, matrix Φ has
1 ≤ α ≤ 2109 rows, while the rank of Φ is only 171. Therefore, if 1 ≤ iG ≤ 3200
quadrature points are used, Φ can be preprocessed via singular value decomposi-
tion and be written as a product:

Φ = UΦVΦ, (3.41)

where UΦ is 2109× 171 matrix, while VΦ is 171× 3200 matrix. Matrices UΦ,VΦ

are calculated and stored in the QFAM initialization phase, and are used during
the QFAM iterations as a means to find the source terms on a Gaussian quadrature
grid:

δS(riG , ω) = diag
[
V T

Φ

(
UT

ΦA(ω)UΦ

)
VΦ

]
. (3.42)

A(ω)UΦ is a product of a block-matrix A(ω) and tall-and-skinny matrix UΦ, while
UT

ΦA(ω)UΦ turns out to be a relatively small matrix, in our example 171 × 171
matrix. Then if we select the iGth column of a matrix VΦ, i.e. the vector viG =
VΦ(:, iG), the value δS(riG , ω) is calculated as a bilinear form with a small matrix
UT

ΦA(ω)UΦ for each quadrature point as:

δS(riG , ω) = vTiG
(
UT

ΦA(ω)UΦ

)
viG . (3.43)

Thus, utilizing the low-rank property of the matrix Φ, we have managed to
write Eq. (3.38) in terms of basic linear algebra matrix operations. Taking advan-
tage of a highly optimized libraries which provide basic linear algebra operations,
the proposed method proved to be more efficient as compared to the straightfor-
ward loop implementation.
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3.1.5 Generalized minimal residual method

In previous sections we have show how to perform a single QFAM iteration start-
ing from the induced single-particle Hamiltonian δh(ω) and induced pairing field
δ∆(±)(ω). At the end of QFAM iteration, we want to obtain the same values of
δh(ω) and δ∆(±)(ω) as the ones we have started with, i.e. we want to obtain self-
consistency of QFAM Eqs. (2.74,2.75), and in this section we explain the method
used to achieve it.

Method description and convergence

The generalized minimal residual method (GMRES) is an iterative method for
numerical solution of an indefinite non-Hermitian system of m linear equations
Ax = b with invertible A, where only mapping x 7→ Ax is required. It is assumed
that the dimensionm of matrix A is huge leading to massive memory requirements.
In the nth iteration, GMRES approximates the solution xn by a vector in a Krylov
subspace with minimal residual norm. The Arnoldi iteration is used to find this
vector xn. More precisely, for the initial guess x0 and initial residual r0 = b−Ax0,
the nth Krylov subspace for this problem is:

Kn = span
{
r0, Ar0, A

2r0, . . . , A
n−1r0

}
. (3.44)

The Arnoldi iteration is used to find orthonormal vectors Qn = [q1, q2, . . . , qn]
which form a basis for Kn, where the first Arnoldi vector is q1 = r0/∥r0∥. GMRES
searches the vectors xn ∈ Kn in the Krylov spaces and thus it can be written as
xn = x0 + Qnyn, for yn ∈ Cn, which is found by minimizing the residual norm
(Euclidean norm is assumed ∥x∥=

√
x†x):

∥rn∥= ∥b− Axn∥= ∥b− Ax0 − AQnyn∥= ∥r0 − AQnyn∥. (3.45)

The Arnoldi process also produces an (n + 1) × n upper Hessenberg matrix Hn

such that AQn = Qn+1Hn. Using that, Eq. (3.45) can be written as:

∥rn∥= ∥∥r0∥q1 −Qn+1Hnyn∥ = ∥Qn+1(∥r0∥e1−Hnyn)∥= ∥∥r0∥e1−Hnyn∥, (3.46)

where we used that fact that the Euclidean norm is unitary invariant. Therefore,
minimizing ∥rn∥ is a linear least squares problem with (n+1)× n matrix Hn and
vector ∥r0∥e1 ∈ Cn+1. To summarize, GMRES method performs the following
steps in the nth iteration:

1. Using Hn−1 and Qn−1, calculate Hn and Qn = [Qn−1, qn] with the Arnoldi
iteration.

2. Find yn which minimizes the residual norm ∥rn∥.

3. If the relative residual error ∥b−Axn∥
∥b∥ = ∥rn∥

∥b∥ is below the desired tolerance,
calculate xn = x0 +Qnyn. Otherwise, continue with the described process.

Notice that we need only the mapping x 7→ Ax in order to perform Arnoldi iter-
ations. The GMRES method relies on the assumption that after a small number
of iterations (small in comparison to the to matrix dimension m), the vector xn is
already a good approximation of the solution x.
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Suppose that matrix A can be diagonalized A = V diag [λ]λ∈σ(A) V
−1. Then

one can prove the following relation [31]:

∥rn∥
∥r0∥

≤ κ2(V ) inf
p∈Pn

max
λ∈σ(A)

|p(λ)|, (3.47)

where Pn is a set of polynomials of a maximal degree n with p(0) = 1, and κ2(V )
is the condition number of V . This suggests that if the matrix A is close to
normality (κ2(V ) ∼ 1), and the spectrum σ(A) is localized, we can expect fast
convergence of the GMRES method. More details on the GMRES method and its
implementation can be found in Ref. [31].

Illustrative example

We will now show a typical case of matrix spectrum σ(A), where one obtains fast
convergence of the GMRES method. In Fig. 3.1 we plot the spectrum σ(A) of the

-2 -1 0 1 2 3 4
-3
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0

1

2
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Figure 3.1: Spectrum σ(A) of the matrix A with large cluster of eigenvalues con-
tained within a circle |λ − 1|≤ 1

2
, and few eigenvalues located far away from the

cluster.

matrix A with large cluster of eigenvalues contained within a circle |λ − 1|≤ 1
2
,

and few eigenvalues (λ1 = 3− 2i, λ2 = 1+ 2i, λ3 = −1− i) located far away from
the cluster. For n ≥ 3, let us consider the following polynomials:

pn(λ) = (1− λ)n−3 (λ1 − λ)(λ2 − λ)(λ3 − λ)
λ1λ2λ3

. (3.48)
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One can easily verify that pn ∈ Pn, i.e. pn(0) = 1. Let us define a constant
Cλ1,λ2,λ3 as follows:

Cλ1,λ2,λ3 = max
|λ−1|≤ 1

2

∣∣∣∣(λ1 − λ)(λ2 − λ)(λ3 − λ)λ1λ2λ3

∣∣∣∣ . (3.49)

Then the following relation holds:

max
λ∈σ(A)

|pn(λ)|≤ max
|λ−1|≤ 1

2

|pn(λ)|≤ Cλ1,λ2,λ3 max
|λ−1|≤ 1

2

|1− λ|n−3≤ Cλ1,λ2,λ3

2n−3
. (3.50)

If the initial guess vector x0 is simply set to a null vector x0 = 0, then according to
Eq. (3.47), the rate of decay of the relative residual error is at least exponentially
fast:

∥rn∥
∥b∥

∼ 1

2n
. (3.51)

In practice, one usually obtains even faster convergence rate as compared to the
rate that we have just estimated theoretically. One can repeat the same argument
given here for a spectrum σ(A) which is mostly contained a circle |λ− 1|≤ 1

2
but

now for the case of a spectrum σ(A) mostly contained within an ellipse centered
at 1 which doesn’t contain the origin. Again, one can show [31] that even then
the convergence is exponential.

Application of the GMRES method for solving the QFAM equations

Recall that we are solving the QFAM equations:

(Eµ + Eν − ωγ)Xµν(ωγ) = −
(
F 20
µν(ωγ) + δH20

µν(ωγ)
)
, (3.52)

(Eµ + Eν + ωγ)Yµν(ωγ) = −
(
F 02
µν(ωγ) + δH02

µν(ωγ)
)
, (3.53)

for a given complex frequency ωγ = ω + iγ. F 20
µν(ωγ) and F 02

µν(ωγ) correspond
to the external field, while H20

µν(ωγ) and H02
µν(ωγ) depend on the induced single-

particle Hamiltonian δhkl(ωγ) and pairing fields δ∆(+)
kl (ωγ),

(
δ∆

(−)
kl (ωγ)

)∗
which

in turn depend on the induced densities, i.e., on the QFAM amplitudes Xµν(ωγ)
and Yµν(ωγ). We denote the induced single-particle Hamiltonian and the pairing
field by the symbol x(ωγ), i.e.,

x(ωγ) =
{
δhkl(ωγ), δ∆

(+)
kl (ωγ),

(
δ∆

(−)
kl (ωγ)

)∗}
. (3.54)

Furthermore, xi(ωγ) denotes the value calculated in the ith QFAM iteration. The
goal is to obtain the same self-consistent value xi(ωγ) = xi+1(ωγ) in two consecu-
tive iterations, up to the given error tolerance.

The input for the ith QFAM iteration are the values induced single-particle
Hamiltonian and pairing field from the previous iteration and the following trans-
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formations are performed:

xi(ωγ)
1.−→
{
δH20

µν(ωγ), δH
02
µν(ωγ)

} 2.−→ {Xµν(ωγ), Yµν(ωγ)}
3.−→{

δρkl(ωγ), δκ
(±)
kl (ωγ)

} 4.−→
{
δρ(r, ωγ), δj(r, ωγ), P

(±)
Nz ,Nr

(ωγ)
} 5.−→ xi+1(ωγ). (3.55)

Notice that steps 1., 3., 4. and 5. are linear transformations. For example, step
1. is a linear transformation performed by multiplying with Bogoliubov unitary
matrix W , while the numerical integration in step 5. can also be written as a
linear transformation. Only step 2. is affine transformation which is actually the
QFAM equation:

Xµν(ωγ) = −
(
F 20
µν(ωγ) + δH20

µν(ωγ)
)
/(Eµ + Eν − ωγ), (3.56)

Yµν(ωγ) = −
(
F 02
µν(ωγ) + δH02

µν(ωγ)
)
/(Eµ + Eν + ωγ). (3.57)

If we set the residual interaction to zero, i.e., δH20
µν(ωγ) = δH02

µν(ωγ) = 0, and
perform steps 2., 3., 4., and 5., we obtain the free response value xfree(ωγ). Hence,
the QFAM iteration (3.55) can be written as:

xi+1(ωγ) = T(ωγ)xi(ωγ) + xfree(ωγ), (3.58)

where T(ωγ) is a matrix describing the linear transformation induced by residual
interaction which is ignored in free response. Size of the vector x(ωγ), and conse-
quently the order of matrix T(ωγ), tends to be extremely large as the dimension
of the configuration space increases. E.g. with only Nshells = 10 oscillator shells
used in the expansion of the Dirac spinors, the size of the vector x(ωγ) is ≈ 105,
while for Nshells = 20 oscillator shells the size is ≈ 2 × 106. Despite its size, the
vector xfree(ωγ) is easy to calculate, while the calculation of the matrix T(ωγ) can
be prohibitively time consuming. However, the QFAM iteration (3.58) can be
recognized as a means of calculating the mapping x 7→ (I− T(ωγ))x, for finding
the self-consistent solution:

(I− T(ωγ))x(ωγ) = xfree(ωγ). (3.59)

It turns out that the spectrum of the residual interaction matrix T(ωγ) contains
relatively small number of eigenvalues far from zero. This is because, for a given
excitation operator, the residual interaction tends to excite only a mall subset of
particle-hole pairs. Hence, the eigenvalues of the matrix I − T(ωγ) are clustered
around 1, with relatively small number of the eigenvalues scattered around the
complex plane away from 1. Motivated by the illustrative example shown previ-
ously, this situation is well suited for the GMRES method. In Appendix A.10 we
include details regarding the performance and convergence benchmark of GMRES
on realistic examples when compared to conventionally used Broyden’s method
[29].

3.1.6 Nucleon localization function

In this section we give a detailed derivation of the nucleon localization function
firstly introduced in Ref. [32]. We start with a Hermitian density matrix ρ̂ = ρ̂†
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and define2:

ρqσ,σ′(x,x
′) =

∑
α1,α2

ρ̂qα1,α2
(σ, σ′)ϕ∗

α2
(x′, σ′)ϕα1(x, σ), (3.60)

together with:
ρqσ(x) = ρqσ,σ(x,x), (3.61)

where σ denotes the spin index. Notice that, because ρ̂ is hermitian, ρqσ(x) is real.
The probability of finding two nucleons with the same spin σ and isospin q at
spatial locations x and x′ is given by:

P q
σ(x,x

′) = ρqσ(x)ρ
q
σ(x

′)−
∣∣ρqσ,σ(x,x′)

∣∣2 . (3.62)

On the other hand, the conditional probability of finding a nucleon with spin σ
and isospin q at point x′ when we know that another nucleon with the same spin
and isospin is located at point x is given by the following expression:

Rq
σ(x,x

′) =
P q
σ(x,x

′)

ρqσ(x)
= ρqσ(x

′)−
∣∣ρqσ,σ(x,x′)

∣∣2
ρqσ(x)

. (3.63)

We fix the isospin value q and for simplicity omit the corresponding index in
the following discussion. Because we are interested in the localization aspects,
it is sufficient to consider only the local short-range behavior of the conditional
probability, which one can obtain by performing a spherical averaging of Pσ(x,x

′)
over a shell of radius δ about the point x:

⟨Pσ(x,x
′)⟩AVG(x,δ) =

1

4πδ2

∫
S(x,δ)

Pσ(x,x
′)dSx′ . (3.64)

We seek the limiting case δ → 0+. First we consider a Taylor expansion over
variable x′ around x:

|ρσ,σ(x,x′)|2 = ρσ(x)
2 +

3∑
i=1

∂
′

i |ρσ,σ(x,x′)|2
∣∣∣
x′=x

(x′i − xi)+

+
1

2

3∑
i,j=1

∂
′

i∂
′

j |ρσ,σ(x,x′)|2
∣∣∣
x′=x

(x′i − xi)(x′j − xj) +O(||x′ − x||3).
(3.65)

One can trivially calculate the following spherical averages:

⟨(x′i − xi)⟩AVG(x,δ) = 0 and
〈
(x′i − xi)(x′j − xj)

〉
AVG(x,δ)

= δi,j
δ2

3
. (3.66)

Using that, we obtain:〈
|ρσ,σ(x,x′)|2

〉
AVG(x,δ)

= ρσ(x)
2 +

δ2

6
∇2

x′ |ρσ,σ(x,x′)|2
∣∣∣
x′=x

+O(δ3), (3.67)

2See Appendix D, Eq. (D.8) of Ref. [21].
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and similarly:

⟨ρσ(x′)⟩AVG(x,δ) = ρσ(x) +
δ2

6
∇2

x′ρσ(x
′)
∣∣
x′=x

+O(δ3). (3.68)

Using the Hermitian property of the density matrix ρ̂ and formula ∇2(fg) =
g∇2f + f∇2g + 2∇f · ∇g, it is straightforward to obtain:

∇2
x′ |ρσ,σ(x,x′)|2

∣∣∣
x′=x

= ρσ(x)

(
∇2ρσ(x)− 2

∑
α1,α2

ρ̂α1,α2(σ, σ)∇ϕ∗
α2
(x, σ) · ∇ϕα1(x, σ)

)

+ 2

∣∣∣∣∣∑
α1,α2

ρ̂α1,α2(σ, σ)ϕα1(x, σ)∇ϕ∗
α2
(x, σ)

∣∣∣∣∣
2

,

(3.69)

where the norm of a complex vector in the last term is |v|2= |v1|2+|v2|2+|v3|2.
Inserting Eqs. (3.67), (3.68) and (3.69) into the spherical average of Eq. (3.62)
and dividing by ρσ(x), we obtain:

⟨Rσ(x,x
′)⟩AVG(x,δ) = Dσ(x)

δ2

3
+O(δ3), (3.70)

where Dσ(x) is defined as:

Dσ(x) =
∑
α1,α2

ρ̂α1,α2(σ, σ)∇ϕ∗
α2
(x, σ) · ∇ϕα1(x, σ)

− 1

ρσ(x)

∣∣∣∣∣∑
α1,α2

ρ̂α1,α2(σ, σ)ϕ
∗
α2
(x, σ)∇ϕα1(x, σ)

∣∣∣∣∣
2

,

(3.71)

and ρσ(x) reads:

ρσ(x) =
∑
α1,α2

ρ̂α1,α2(σ, σ)ϕ
∗
α2
(x, σ)ϕα1(x, σ). (3.72)

Notice that Dσ(x) is real. In particular, if we insert ρ̂α1,α2(σ, σ) = δα1,α2 into Eq.
(3.71), we obtain the same result as given in Eq. (4) of Ref. [32]. Finally, we
define the nucleon localization function as:

Cσ(x) =

[
1 +

(
Dσ(x)

τσTF(x)

)2
]−1

, (3.73)

where the Thomas-Fermi kinetic energy density:

τσTF(x) =
3

5
(6π)2/3ρ5/3σ (x), (3.74)

acts as a natural scaling. The extreme case of ideal metallic bonding is realized
for homogeneous matter where Cσ(x) ∼ 1/2 , a value that signals a region with
a nearly homogeneous Fermi gas as is typical for metal electrons, nuclear matter,
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or neutron stars. The opposite regime is space regions where exactly one single-
particle wave function contributes. Such a situation yields Dσ(x) ∼ 0, as it is not
possible to find another spin-like state in the vicinity, and consequently Cσ(x) ∼ 1,
which signals localization.

In our case, the induced density matrix is block diagonal and each block cor-
responds to the simplex-y quantum number s = ±i:

ρ̂(t) =

 vv†︸︷︷︸
ρ0

0

0 (vv†)T


+ ηe−iωt

[
δρ1(ω) 0

0 δρ2(ω)

]
+ ηe+iωt

[
δρ†1(ω) 0

0 δρ†2(ω)

]
+O(η2). (3.75)

Thus, up to the linear order in η, the density matrix ρ̂†(t) = ρ̂(t) is indeed Her-
mitian. Simplex-y is conserved quantum number with values s = ±i, and thus
instead of the spin index σ in previous equations, we use the simplex-y index s.
Since we are not interested in states with specific values of the simplex-y quantum
number, we perform averaging over the simplex-y quantum number when inserting
the simplex-y blocks from Eq. (3.75):

ρ̂(s = +i, s = +i) = ρ0 + ηe−iωtδρ1(ω) + ηe+iωtδρ†1(ω) +O(η2),
ρ̂(s = −i, s = −i) = ρT0 + ηe−iωtδρ2(ω) + ηe+iωtδρ†2(ω) +O(η2),

(3.76)

into the Eq. (3.71). Further details regarding the implementation of C(x) function
are given in Appendix A.11. To summarize, the nucleon localization function (after
the simplex averaging) can be written as:

C(x, t) = C0(z, r⊥) + 2ηRe
[
e−iωtδC(z, r⊥, ω)

]
cosKφ+O(η2), (3.77)

where C0(x) = C0(z, r⊥) is the ground state nucleon localization function.

3.1.7 Contour integration techniques

Although QFAM approach represents a very economical approach to the standard
QRPA problem, it does not provide direct access to the QRPA eigenfrequencies Ωi.
However, in Ref. [33] a method based on the contour integration in the complex
plane has been proposed that allows one to extract the QRPA transition matrix
elements and eigenfrequencies from the QFAM calculation. In this section we
provide only a brief overview and for detailed derivation we refer the reader to
Ref. [33]. The starting point is the explicit connection between the QFAM strength
function (2.93) and the smeared QRPA strength function derived in [34]:

S(f̂ , ωγ) = −
∑
i

(
|⟨i|F̂ |0⟩|2

Ωi − (ω + γi)
+
|⟨0|F̂ |i⟩|2

Ωi + (ω + γi)

)
, (3.78)

where ⟨i|F̂ |0⟩ and ⟨0|F̂ |i⟩ are transition matrix elements. They are equal for
Hermitian external perturbation F̂ , which is often the case. Similar connection
can be established for the response (2.94) function, which can be written as a
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weighted sum of Lorentzians folded with smearing parameter γ and centered at
QRPA eigenfrequencies Ωi:

dB(f̂ , ωγ)

dω
= − 1

π
ImS(f̂ , ωγ)

=
γ

π

∑
i

(
|⟨i|F̂ |0⟩|2

(ω − Ωi)2 + γ2
− |⟨0|F̂ |i⟩|2

(ω + Ωi)2 + γ2

)
. (3.79)

The discrete QRPA transition strength can be calculated by employing the Cauchy
integral formula:

|⟨i|F̂ |0⟩|2= 1

2πi

∮
Ci

S(f̂ , ωγ)dωγ, (3.80)

where Ci is a closed positively-oriented simple loop in complex plane that only
encloses the ith positive first-order QRPA pole Ωi. On the other hand, if the
contour C in its interior IntC has other poles, the following relation holds:∑

Ωi∈IntC

|⟨i|F̂ |0⟩|2= 1

2πi

∮
C

S(f̂ , ωγ)dωγ. (3.81)

As a first step one should run the QFAM calculation for sufficiently small smearing
γ, and obtain a response profile dB(f̂ ,ωγ)

dω
providing a fair estimate for the locations

of the QRPA poles Ωi with significant transition probabilities |⟨i|F̂ |0⟩|2. After
that, a contour integration of the strength function (3.81) with carefully selected
contour Ci can be used to obtain the desired transition matrix elements. In prin-
ciple, we can select any closed simple loop Ci, but for practical reasons we use a
circle:

ωγ(φ) = ω0 + ωRe
iφ, (3.82)

centered at ω = ω0 with radius ωR. The center and radius of the contour can
easily be estimated from the response function profile in order that the contour
encircles the desired pole Ωi. Integral in Eq. (3.81) is numerically evaluated using
a simple Newton-Cotes second order formula (Simpson’s rule) with a given number
of quadrature points.

The presented method of extracting the QRPA transition matrix elements
and eigenfrequencies can be validated by comparing the calculated value with the
results obtained by using the QRPA code that explicitly constructs and diagonal-
izes the QRPA matrix. As an example, we select spherical 16O isotope because
the available QRPA code [35] works for nuclei with spherically symmetric ground
state. For the excitation operator we use the isoscalar octupole operator r3Y3,0.
The calculation is performed by using the DD-ME2 energy density functional and
large (small) components of the Dirac spinors are expanded in Nshells = 6(7) oscil-
lator shells. In Fig. 3.2 we show the QFAM response function calculated by using
γ = 0.05 MeV smearing parameter. Approximate positions of the QRPA eigen-
frequencies Ωi are evident and red circles denote the choices for the integration
contours.

In Tab. 3.1 we show the results of the contour integration. First two columns
are the QRPA eigenfrequencies and transition probabilities obtained by explicitly
diagonalizing the QRPA matrix. Third column contains the results of the QFAM
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Figure 3.2: Isoscalar octupole response of 16O, using DD-ME2 parameterization
and Nshells = 6 oscillator shells for spinor expansion. Smearing γ = 0.05 MeV is
used. Approximate positions of dominant eigenfrequencies Ωi are evident. Circles
schematically illustrate possible countours for integration.

contour integration with 20 quadrature points while in the fourth column we list
the results of contour integration with 50 quadrature points. The GMRES solver
tolerance is set very low ε = 10−9 in order to unambiguously check the conver-
gence with respect to the number of quadrature points along the contour. We
notice an excellent agreement between the direct QRPA approach and the QFAM
calculation, especially since these calculations are entirely different. Furthermore,
third and fourth column demonstrate that 20 quadrature points are enough for
sufficient precision. Notice that QFAM transition probabilities have to be multi-
plied by the factor 2J + 1, because spherical systems have the same response for
all |K|≤ J .

For illustration of the contour C containing several eigenfrequencies, we used a
circle centered at 43.1 MeV with radius of 0.5 MeV. There are two eigenfrequencies
contained in that circle, namely Ωi = 42.82 MeV and Ωi = 43.38 MeV with tran-
sition matrix elements |⟨i|F̂ |0⟩|2= 402.9829 [fm6] and |⟨i|F̂ |0⟩|2= 511.1528 [fm6]
respectively. The QFAM contour integration method (with 50 quadrature points)
gives 1

2πi

∮
C
S(f̂ , ωγ)dωγ = 914.3587 [fm6] compared to 402.9829 + 511.1528 =

914.1357 [fm6], which is consistent with Eq. (3.81).
There are methods [33] which can be used to calculate the QRPA eigenfrequen-

cies Ωi via contour integration. However, in practice, once we have the transition
matrix element |⟨i|F̂ |0⟩|2, the corresponding eigenfrequency Ωi can be well es-
timated by fitting the Lorentz curve to the corresponding part of the response
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Table 3.1: Comparions of transition matrix elements |⟨i|F̂ |0⟩|2 [fm6] correspond-
ing to Fig. 3.2 calculated by direct QRPA approach (second column) and QFAM
contour integration method (third and fourth column). In third(fourth) column
20(50) quadrature points are used. First column contains the QRPA eigenfrequen-
cies Ωi [MeV].

Ωi QRPA |⟨i|F̂ |0⟩|2 QFAM |⟨i|F̂ |0⟩|2 QFAM |⟨i|F̂ |0⟩|2
6.99207 3792.643 3786.191892 3786.190079
11.44044 4.025732 4.027805908 4.027805187
16.00261 1411.010 1410.827509 1410.823246
18.07308 18.13698 18.16427984 18.16384591
20.17490 695.1176 695.7697558 695.7685455
24.84325 2.073040 2.124316957 2.076412219
33.47279 290.0444 290.0960090 290.0886744
35.46012 18.41065 18.51968657 18.43513546
39.13158 2410.897 2410.598750 2410.565647
41.22860 253.4163 269.2637591 269.2620168
42.13009 2.739089 2.749169122 2.748494819

function since in the vicinity of the Ωi pole we have:

dB(f̂ , ωγ)

dω
≈ |⟨i|F̂ |0⟩|2 γ/π

(ω − Ωi)2 + γ2
. (3.83)

We have validated this approach in practice. Also, one can show [33] that countour
integrals of QFAM amplitudes Xµν(ωγ) and Yµν(ωγ) can also yield the QRPA
eigenamplitudes X i

µν and Y i
µν corresponding to QRPA eigenfrequency Ωi as:

X i
µν = ⟨i|F̂ |0⟩−1 1

2πi

∮
Ci

Xµν(ωγ)dωγ, (3.84)

Y i
µν = ⟨i|F̂ |0⟩−1 1

2πi

∮
Ci

Yµν(ωγ)dωγ, (3.85)

where we assumed that the excitation operator F̂ is Hermitian. Thus, in conclu-
sion, even though QFAM approach doesn’t have direct access to the eigenvalues Ωi

and eigenvectors X i
µν , Y

i
µν of the QRPA matrix, one can circumvent this problem

and obtain them even with QFAM approach by utilizing the described contour
integration techniques.

3.1.8 Elimination of the translational spurious mode

In the QRPA calculations, sometimes one encounters zero-energy modes known
as the Nambu-Goldstone (NG) modes. The NG modes originate from the broken
symmetries on the mean-field level of the calculation: translational symmetry,
rotational symmetry and particle-number (gauge) symmetry. Since the NG modes
do not represent physical excitations, they are also referred to as spurious modes.

Although the zero-energy modes and the physical modes should be decoupled
exactly within the random phase approximation, in practice there is always some
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mixing mostly due to the finite size of the oscillator basis used in the calculation.
Other numerical inaccuracies also contribute to the mixing of the spurious and
physical modes, but their contribution is less pronounced in comparison to the
finite size of the basis. For example, the finite size of the harmonic oscillator
basis certainly violates the translational invariance thus causing admixtures of the
zero-energy mode within the physical modes.

The method proposed in [36] to separate the spurious response related to the
breaking of the translation symmetry from the physical response is implemented in
DIRQFAM solver. We have verified that the method proposed in Ref. [36] removes
such unphysical admixtures. For completeness, here the implementation of the
method for elimination of the translational spurious mode is described.

The phonon operator is given by:

Ô† =
1

2

∑
µ,ν

Xµνα̂
†
µα̂

†
ν − Yµνα̂να̂µ, (3.86)

while the center of mass and total momentum operators in quasiparticle basis
read:

R̂ =
1

2

∑
µ,ν

R20
µνα̂

†
µα̂

†
ν +R02

µνα̂να̂µ, (3.87)

P̂ =
1

2

∑
µ,ν

P 20
µν α̂

†
µα̂

†
ν + P 02

µν α̂να̂µ. (3.88)

Because the operators αµ and αν anticommute, the X and Y matrices are anti-
symmetric: XT = −X and Y T = −Y . Furthermore, since the operators R̂ and
P̂ are Hermitian, the following relations hold: R02 = (R20)

∗
, P 02 = (P 20)

∗. The
self-consistent solution Ô†

(calc) contains both the physical solution Ô†
(phys) as well

as the admixtures of the spurious modes:

Ô†
(calc) = Ô†

(phys) + λRR̂ + λP P̂ . (3.89)

Since the physical modes should be orthogonal to the spurious mode, we require:

⟨Φ|
[
Ô†

(phys), R̂
]
|Φ⟩ = 0 and ⟨Φ|

[
Ô†

(phys), P̂
]
|Φ⟩ = 0. (3.90)

Previous equations allow us to calculate the λR and λP coefficients:

λR = +
⟨Φ|
[
Ô†

(calc), P̂
]
|Φ⟩

⟨Φ|
[
R̂, P̂

]
|Φ⟩

and λP = −
⟨Φ|
[
Ô†

(calc), R̂
]
|Φ⟩

⟨Φ|
[
R̂, P̂

]
|Φ⟩

. (3.91)

Using the anticommutation relation
{
α†
µ, αν

}
= δµν , one can easily evaluate:

⟨Φ|
[
Ô†

(calc), R̂
]
|Φ⟩ = 1

2
Tr
[
X(calc) (R20

)∗
+ Y (calc)R20

]
, (3.92)

⟨Φ|
[
Ô†

(calc), P̂
]
|Φ⟩ = 1

2
Tr
[
X(calc) (P 20

)∗
+ Y (calc)P 20

]
, (3.93)
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⟨Φ|
[
R̂, P̂

]
|Φ⟩ = i Im

[
Tr

[
(R20)†

1

2

(
P 20 −

(
P 20
)T)]]

. (3.94)

Notice that if we used a complete harmonic oscillator basis, the following relation
would hold: ⟨Φ|

[
R̂, P̂

]
|Φ⟩ = i. However, in practical calculations harmonic oscil-

lator basis is truncated which yields a correction term in Eq. (3.94). Of course, as
one increases the number of oscillator shells in the basis, the value of ⟨Φ|

[
R̂, P̂

]
|Φ⟩

approaches i. Once the scalars λR and λP are evaluated, Eq. (3.89) yields the
corrected values for QFAM amplitudes:

X(phys)
µν = X(calc)

µν − λRR20
µν − λPP 20

µν , (3.95)

Y (phys)
µν = Y (calc)

µν + λR
(
R20

µν

)∗
+ λP

(
P 20
µν

)∗
. (3.96)

In Appendix A.12 further technical details regarding the implementation of the
translational spurious mode removal in DIRQFAM solver is described.

3.2 Structure of the DIRQFAM code
The programming language of the DIRQFAM code is Fortran and the user should
provide an implementation of the BLAS [37] and LAPACK [38] (version 3.1. or
higher) linear algebra libraries. The main program calls various subroutines that
read the data and perform the computation. The execution essentially consists
of three parts. The first part starts the program, initializes and generates all the
relevant information and allocate the arrays. The second part of the code carries
out the self-consistent ground-state computation [1]. The third part of the code
performs the computation of the multipole response built upon the ground state.
Most of the subroutines related to this part of the code are specified in details in
Ref. [2]. The current version of the code is DIRQFAM v2.0.0, and the latest
tested version is always available at GitHub repository:

https://github.com/abjelcic/DIRQFAM.

The program offers a simple interface via input text file dirqfam.dat and out-
puts the calculated values in output text files. In the following, we describe the
input and output parameters.

3.2.1 Input data

The input data can be divided into two parts: i) input related to the ground state
calculation, ii) input related to the QFAM calculation. The input data needed by
the ground state part of the code includes:

• Number of oscillator shells used in the expansion of nucleon spinors (n0f).
In the current implementation of the code n0f should be even.

• Number of Gauss-Hermite nodes (NGH).

• Number of Gauss-Laguerre nodes (NGL).

https://github.com/abjelcic/DIRQFAM
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• β-deformation parameter of the harmonic oscillator basis (beta0). We rec-
ommend that the user chooses the value that is close to the actual deforma-
tion of the considered atomic nucleus.

• β-deformation parameter for the initial Woods-Saxon potentials (betai).
We recommend that the user chooses the value that is close to the actual
deformation of the considered atomic nucleus.

• The starting parameter for the potentials (inin). If the parameter inin is
set to 1, the code starts from a default Woods-Saxon potentials predefined
in the code. If the parameter inin is set to 0, the initial potentials are read
from the file dirhb.wel.

• The starting parameter for the pairing field (inink). If inink is set to 1,
the code starts with the diagonal pairing field with equal matrix elements
delta0. If inink is set to 0, the initial pairing matrix elements are read
from the file dirhb.del.

• The nuclide to be computed: the element name (nucnam) followed by the
mass number (nama). If the element name has only one character, it should
begin with an underscore, e.g. _C 12 _O 16, _U 238.

• Neutron and proton initial pairing gaps (delta0).

• Acronym of the parameter set of the selected energy density functional
(parname). Current implementation of the code supports DD-PC1 effective
interaction.

• The quadrupole constraint control parameter icstr. If icstr is set to 0,
the quadrupole constraint is not included, and the parameters betac and
cqad are not used. If icstr is set to 1, then betac denotes the constrained
value of the quadrupole deformation.

• Constrained value of the β-deformation parameter (betac).

• Stiffness constant for the quadrupole constraint (cqad). The default value
is 0.1, but if the iteration starts diverging it should be reduced.

The input parameters used to calculate multipole response include:

• Calculation type (calculation_type) flag. Value 0: Free response is
calculated for a given range of energies. Value 1: Self-consistent response is
calculated for a given range of energies. Value 2: Self-consistent response is
calculated for a given energy and various data are printed. Value 3: Self-
consistent solution is calculated along a circular contour and the contour
integral is calculated.

• Coulomb interaction flag (include_coulomb). If set to 0/1, the Coulomb
interaction is omitted/included in both the ground state and the QFAM
calculation.
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• Pairing interaction flag (include_pairing). If set to 0/1, the pairing
interaction is omitted/included in both the ground state and the QFAM
calculation.

• Number of Gauss-Hermite (NGH) nodes in the z > 0 direction and number
of Gauss-Laguerre (NGL) nodes in the r⊥ direction. One should use at least:

NGH ≥ max
{
Nshells + 1, N

(mesons)
shells

}
,NGL ≥ max

{
2(Nshells + 1), N

(mesons)
shells

}
,

(3.97)
where Nshells is the number of HO shells (n0f) used for Dirac spinor expan-
sion and N (mesons)

shells is the number of HO shells (n0b) used for the expansion
of meson fields. We recommend fixing these values to NGH=25 and NGL=50,
since one rarely uses more than n0f=24 and n0b=50 shells.

• The smearing width γ (in MeV) used in the QFAM calculation (gamma_smear).

• Solver tolerance (selfConsistencyTolerance). Relative residual error
tolerance ε for GMRES solver. We recommend using the value of 1.e-6,
which has shown to give the strength function accurate up to 5 most signif-
icant digits.

• Maximum number of Arnoldi vectors (NoArnoldiVectors) used by the
GMRES solver. This is the limit on the number of QFAM solver steps.
We recommend using the value of 70. If the GMRES solver fails to satisfy
the relative residual error tolerance, we recommend increasing this value,
however keep in mind that this means larger memory consumption of the
program.

• J (J_multipole) and K (K_multipole) multipolarity values that define
the multipole excitation operator f̂J,K . In the current implementation of the
code their values are restricted to 0 ≤ J ≤ 5, 0 ≤ K ≤ J .

• The isospin (Isospin) value that determines whether the excitation is
isoscalar (value 0) or isovector (value 1).

• Parameters that control the starting point (omega_start), the ending
point (omega_end) and the increment (delta_omega) of the energy range
over which the response is calculated. Relevant only if the calculation type
flag is set to 0 or 1.

• The energy (omega_print) for which the self-consistent solution is calcu-
lated if the calculation type is set to 2.

• Parameters for the contour integration if the calculation type is set to 3.
The contour is a circle centered at omega_center (in MeV) with radius
omega_radius (in MeV). Number of integration points used for contour
integration is determined by the NoContourPoints parameter.
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3.2.2 Output data

The output is divided into two parts. Output file dirhb.out, located in the
output/GS_output folder contains the information related to the ground state
calculation (detailed description can be found in Ref. [1]). The output files relevant
for the QFAM calculation are located in the output/QFAM_output folder. The
calculated strength function is written to the strength.out file.

If the calculation type flag is set to 2, several additional output files are gen-
erated. Files rhov_neut.out and rhov_prot.out contain the ground state
neutron/proton vector density and the induced neutron/proton vector density
for the selected energy value omega_print. The values printed in these files,
ρ0v(z, r⊥) and δρv(z, r⊥, ω), are suitable for visualisation of the time dependent
density:

ρv(r, t) = ρ0v(z, r⊥) + 2ηRe
[
e−iωtδρv(z, r⊥, ω)

]
cosKφ+O(η2), (3.98)

where superscript 0 denotes the ground state density. η denotes small real pa-
rameter quantifying deviation of the system from the ground state imposed by
external perturbation (for precise definition see Eq. (2.68)). Files jr_neut.out,
jr_prot.out, jz_neut.out, jz_prot.out, jphi_neut.out and
jphi_prot.out contain the r⊥, z and φ components of the induced neuron/proton
current for the selected energy value ω (omega_print). The values printed in
these files, δjz(z, r⊥, ω), δj⊥(z, r⊥, ω), δjφ(z, r⊥, ω), are suitable for visualisation
of the time dependent currents:

jz(r, t) = 2ηRe
[
e−iωtδjz(z, r⊥, ω)

]
cosKφ+O(η2), (3.99)

j⊥(r, t) = 2ηRe
[
e−iωtδj⊥(z, r⊥, ω)

]
cosKφ+O(η2), (3.100)

jφ(r, t) = 2ηRe
[
e−iωtδjφ(z, r⊥, ω)

]
sinKφ+O(η2). (3.101)

Furthermore, nucleon localization functions for neutrons and protons are printed
into files nuclocfunc_neut.out and nuclocfunc_prot.out. More pre-
cisely, the printed values C0(z, r⊥) and δC(z, r⊥, ω), allow one to reconstruct the
time-dependent localtization function as defined in Eq. (3.77). Finally, QFAM
quantities in configurational space are also printed out. Files U_neut.out,
U_prot.out, V_neut.out and V_prot.out contain the ground state Bo-
goliubov U and V matrices in simplex-y HO basis for neutrons and protons, while
files qpenergy_neut.out and qpenergy_prot.out contain the ground state
quasiparticle energies Eµ for neutrons and protons. QFAM amplitudes Xµν(ω)
and Yµν(ω) are printed in files X_neut.out, X_prot.out, Y_neut.out and
Y_prot.out. The matrix elements of the induced Hamiltonian in the quasipar-
ticle basis δH20

µν(ω), δH
02
µν(ω) and δH11

µν(ω) are printed in files dH20_neut.out,
dH20_prot.out, dH02_neut.out and dH02_prot.out, dH11_neut.out
and dH11_prot.out. Detailed description of the simplex-y HO basis is provided
in the file basis.out.

If the calculation type flag is set to 3, the file strength.out contains
strength function and the result of the contour integration.
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Table 3.2: Memory consumption of the DIRQFAM program and the execution time
per QFAM iteration for a given number of shells in HO basis.

Nshells Memory [GB] Time [s]
10 0.42 0.24
12 0.68 0.49
14 1.11 0.99
16 1.77 1.82
18 2.83 3.23
20 4.40 5.52
22 6.65 8.97
24 11.1 14.1

3.2.3 Performance benchmark

We present the results of a benchmark calculation performed on Intel® Xeon®

Platinum 8280 @ 2.70 GHz machine. BLAS and LAPACK are provided via Intel®
oneAPI Math Kernel Library and the benchmark is performed on a single thread.
We select the isoscalar J = 2, K = 2 excitation with Gaussian quadrature grid:
NGH = 25, NGL = 50. The DD-PC1 parameterization of the Lagrangian is used
and 70 Arnoldi vectors stored in the memory are used by the GMRES solver. In
Table 3.2 we give the memory consumption of the program and the execution time
per QFAM iteration for a given number of shells Nshells in HO basis.

In order to estimate the total time needed to calculate the response function,
we need an estimate of number of QFAM iterations for GMRES solver to find the
self-consistent solution of QFAM equations for each energy ω, and the number of
energies at which the response function is sampled. If we estimate the number
of QFAM iterations needed to solve the QFAM equations for single energy to be
around ≈ 50, and take around ≈ 200 energies ω, total CPU time required for a
heavy nucleus with Nshells = 20 shells is around: 50 × 200 × 5.52 s = 15.3 hours.
When properly parallelized on e.g. 6 independent computing cores, we see that
one can obtain the response function of heavy deformed nucleus within around 3
hours, even when personal desktop computer is used. This efficiency opens the
door for a possible large-scale systematic calculations.

3.3 Illustrative calculations

3.3.1 Spherical test

We perform the fully self-consistent calculation of the J = 2, (K = 0, K = 1,
K = 2) response built on top of the spherically constrained β = 0 configuration
of the 84Zr isotope. Due to the Wigner-Eckart theorem, spherical nuclei should
exhibit the strength function response invariant to the quantum number K for
the fixed value of the angular momentum J . In Tab. 3.3 we display the results
of this calculation thus demonstrating the agreement within 7 most significant
digits in the strength response function. Same result is obtained for other values
of J . We have confirmed that for spherical nuclei and for 1 ≤ J ≤ 5, all responses
0 ≤ K ≤ J are equal up to 7 most significant digits. We notice that if the
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Table 3.3: Isoscalar quadrupole response in the spherical configuration of the 84Zr
atomic nucleus. Calculation was performed in a space of Nshells = 10 harmonic
oscillator shells with dense Gaussian mesh: NGH = 48, NGL = 48. The GMRES
tolerance parameter was decreased to ε = 10−8 in order to improve the level of
agreement between various K quantum numbers.

Energy [MeV] S(f, ω) [fm4MeV−1]
K = 0 K = 1 K = 2

5 31.5919694917 31.5919710786 31.5919715257
10 24.7155886321 24.7155875415 24.7155892845
15 107.0087945746 107.0087760979 107.0087950602
20 39.757498943 39.7574764571 39.7574725327
25 8.9181104468 8.9181111725 8.9181102475
30 3.184910253 3.1849106081 3.1849102773
35 1.3344283637 1.3344283202 1.3344282347
40 0.78188853950 0.7818886118 . 0.7818885252

Coulomb interaction is ignored, one can obtain even better agreement because
Coulomb interaction is notoriously difficult to integrate very accurately due to the
logarithmic singularity of the Coulomb potential.

3.3.2 Response of heavy deformed nucleus

For illustration, we select heavy deformed open-shell 240Pu nucleus with ground
state deformation β = 0.28 and calculate its isovector quadrupole J = 2 response
show in Fig. 3.3. DD-PC1 parameterization is used and the Dirac spinors are
expanded in basis of Nshells = 20 oscillator shells. This large number of oscillator
shells is sufficient to achieve reasonable convergence even with such large system.
We notice that since the isotope has prolate ellipsoidal shapes (β > 0), isovector
giant resonance peak is shifted to higher energies as K increases. Also, we notice
a strong peak in K = 1 response which can be traced back to the corresponding
spurious rotational mode.

The full response was obtained within 12 hours using personal desktop com-
puter. Such performance is order(s) of magnitude better than direct matrix ap-
proach. E.g. in Refs. [39, 40, 41], matrix approach to QRPA is implemented for
axially symmetric deformed systems using the same relativistic EDF as in this
work. However, such J = 2 calculation of 240Pu nucleus would be simply too time
consuming. Thus, the DIRQFAM solver opens a door for systematic study even for
heavy deformed nuclei.

3.3.3 Response dependence on deformation

In this illustrative calculation, we select 20Ne isotope with deformed ground state
β = 0.55 and calculate its octupole J = 3, K = 0 response with DD-ME2 pa-
rameterization of EDF. Ground state of 20Ne is well studied [103] and its density
exhibits cluster structures at the outer end of the symmetry axis with density
peaks of 0.2 fm−3 and an oblate deformed core, reminiscent of a quasimolecular
α−12C−α structure. As deformation β increases, the α clusters in density become
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Figure 3.3: Isovector quadrupole J = 2 response of heavy deformed open-shell
240Pu nucleus with ground state deformation β = 0.28. In calculations, DD-PC1
EDF is used, smearing γ = 0.5 MeV and the Dirac spinors are expanded in basis
of Nshells = 20 oscillator shells. Strong K = 1 peak at approximately zero energy
correspond to spurious rotational mode.

Figure 3.4: Isoscalar octupole J = 3, K = 0 response of 20Ne nucleus, for various
constrained deformation β. Calculation is performed using Nshells = 16 oscillator
shells, DD-ME2 parameterization of EDF and smearing γ = 0.5 MeV. As defor-
mation increases, the most significant peak increases in amplitude and shifts to
lower energies.
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Figure 3.5: Density projection on x−z plane of deformed β = 0.65 configuration of
20Ne isotope for octupole excitation of energy ω = 6 MeV. Left figure shows density
at quarter-period moment T/4, where T = 2π/ω is the period of oscillation, and
the right figure shows the density at half-period moment T/2.

Figure 3.6: Same as Fig. 3.5 but with deformation β = 0.45 and ω = 9.5 MeV.

even more distinct. In Fig. 3.4 we show octupole J = 3, K = 0 response of 20Ne
when deformation is increased from β = 0.4 to β = 0.7. We expect, as calculations
confirm in Fig. 3.4, that increased deformation yield stronger octupole response.

If we select a slightly more deformed β = 0.65 configuration compared to its
ground state β = 0.55, and calculate its time-dependent density ρv(r, t) (see Eq.
(3.98)) at peak excitation energy of ω = 6 MeV, we obtain the density profile
shown in Fig. 3.5. On the other hand, if we repeat the same procedure, but for
a slightly less deformed β = 0.45 configuration and at peak excitation energy of
ω = 9.5 MeV, the obtained density profile is shown in Fig. 3.6. We conjecture
that the increased deformation makes α particle more distinct and the oscillation
resembles to α particle oscillating between a 16O core. Therefore, from this naive
picture where we only consider the visual resemblance of density oscillation, this
low-energy octupole peak is probably linked to cluster oscillation in a form of
α − 16O. Similar result is obtained for monopole J = 0 oscillation, but now with
cluster substructure resembling α− 12C−α. Microscopic study of this phenomena
is covered in Chapter 5.



Chapter 4

Kernel Polynomial Method

In this Chapter, which can be read independently of others, we present an im-
plementation of the algorithm based on the expansion of the response function
in terms of the Chebyshev polynomials in conjunction with the Kernel Polyno-
mial Method (KPM) for very efficient calculation of the QRPA response function.
Several test calculations are performed in order to asses the applicability and
feasibility of this algorithm. We follow Ref. [34].

4.1 Quasiparticle Random Phase Approximation
The Xµν(ω) and Yµν(ω) QRPA amplitudes are calculated by solving the linear
response QRPA equation:([

A B
B∗ A∗

]
− ω

[
I 0
0 −I

])[
X(ω)
Y (ω)

]
= −

[
F 20(ω)
F 02(ω)

]
, (4.1)

where X(ω), Y (ω), F 20(ω), F 02(ω) are the corresponding vectorized matrices. Fur-
thermore, the left-hand side of Eq. (4.1) leads to the QRPA eigenvalue equation
when the right-hand side is set to zero:[

A B
B∗ A∗

] [
X i

Y i

]
= Ωi

[
I 0
0 −I

] [
X i

Y i

]
. (4.2)

The QRPA matrices A and B are calculated from second variational derivative
of the energy density functional E with respect to the density matrix and pairing
tensor. The matrix formulation of the QRPA problem becomes computationally
very demanding, especially for applications to deformed atomic nuclei. The rea-
son is the large number of quasiparticle states involved in the calculations which
makes the dimension of the QRPA matrix rather large. This means that one first
has to calculate large number of matrix elements and subsequently diagonalize
huge QRPA matrix. Since neither of these two tasks is feasible in large-scale cal-
culations involving deformed nuclei, a number of efficient methods to solve the
QRPA problem have been formulated [42, 43]. Among them the finite-amplitude
method (FAM), first proposed in Ref. [36], has proved very successful in numerous
applications [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Within the framework of the
finite-amplitude method, one can avoid explicit construction and diagonalization

45
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of the QRPA matrix and instead iteratively solve the linear response problem:

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω) = −F 20

µν(ω), (4.3)
(Eµ + Eν + ω)Yµν(ω) + δH02

µν(ω) = −F 02
µν(ω). (4.4)

δH20
µν(ω) and δH02

µν(ω) are the matrix elements of the induced HFB Hamiltonian
in the quasiparticle basis. In principle, by expanding the δH20

µν(ω) and δH02
µν(ω)

in terms of the amplitudes Xµν(ω) and Yµν(ω), one could show that Eqs. (4.1)
and (4.3-4.4) are equivalent. In order to avoid divergencies at the positions of the
QRPA poles Ωi, the frequency in Eqs. (4.3-4.4) is set complex, i.e., ω → ω + iγ.
Small imaginary part γ corresponds to the smearing width. By employing the
Xµν(ω) and Yµν(ω) amplitudes, we can calculate the response function:

dB(F̂ , ω)

dω
= − 1

π
ImS(F̂ , ω), (4.5)

with strength function defined as:

S(ω, F̂ ) =
∑
µ<ν

(
F 20
µν(ω)

∗Xµν(ω) + F 02
µν(ω)

∗Yµν(ω)
)
. (4.6)

For a more complete description of the finite amplitude method for solving the
quasiparticle random phase approximation we refer the reader to Ref. [46] and ref-
erences cited therein. Furthermore, in this work we will assume that the excitation
operators F 20

µν(ω), F
02
µν(ω) do not depend on the frequency ω, i.e. F 20

µν(ω) = F 20
µν

and F 02
µν(ω) = F 02

µν . In practical calculations this assumption is virtually always
fulfilled.

4.1.1 Properties of the QRPA matrix

Before we formally state the problem, we would like to collect some well known
technical results related to the properties of the QRPA matrices [21, 54]. If the

QRPA matrix
[
A B
B∗ A∗

]
is positive-definite, which corresponds to a minimum in

the energy surface of the HFB solution, then there exist positive eigenfrequencies
Ωi > 0 and QRPA amplitudes X i, Y i ∈ Cn which are the generalized eigenpair of
the QRPA matrix: [

A B
B∗ A∗

] [
X i

Y i

]
= Ωi

[
X i

−Y i

]
, (4.7)

with generalized normalization and closure relations:

n∑
µ=1

(X i
µ)

∗Xj
µ − (Y i

µ)
∗Y j

µ = δi,j and
n∑

i=1

X i
µ(X

i
ν)

∗ − (Y i
µ)

∗Y i
ν = δµ,ν . (4.8)

The detailed proof of the previous statement is included in the Appendix B.1 as
Proposition 1. Next, we give a straightforward but useful result related to the poly-

nomial P ∈ C[x] with complex coefficients evaluated at a matrix:
[
I 0
0 −I

] [
A B
B∗ A∗

]
.
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Lemma 1. Let
[
A B
B∗ A∗

]
∈ C2n×2n be a positive-definite QRPA matrix and

X, Y ∈ Cn×n QRPA amplitudes matrices. Furthermore, let Ω ∈ Rn×n be a di-
agonal matrix containing the QRPA eigenfrequencies. Then for any polynomial
P ∈ C[x] the following equation holds:

P

([
I 0
0 −I

] [
A B
B∗ A∗

])
=

[
X Y ∗

Y X∗

] [
P (+Ω) 0

0 P (−Ω)

] [
X Y ∗

Y X∗

]−1

. (4.9)

Proof. Equation (B.5) shows that the matrix
[
X Y ∗

Y X∗

]
is invertible. Therefore,

Eq. (B.4) can be written as:[
I 0
0 −I

] [
A B
B∗ A∗

]
=

[
X Y ∗

Y X∗

] [
+Ω 0
0 −Ω

] [
X Y ∗

Y X∗

]−1

, (4.10)

which immediately yields Eq. (4.9).

Finally, we recall two elementary facts which will be useful.

Lemma 2. Let A ∈ Cn×n be a complex symmetric matrix, i.e. AT = A. Then for
any x ∈ Cn there holds:

Im
[
x†Ax

]
= x† Im[A]x. (4.11)

Proof. Writing A = Ar + Aii, for Ar, Ai ∈ Rn×n real symmetric and x = xr + xii
for xr, xi ∈ Rn, one trivially sees:

Im
[
x†Ax

]
= xTr Aixr + xTi Aixi + xTr Arxi − xTi Arxr, (4.12)

x† Im[A]x = x†Aix = xTr Aixr + xTi Aixi +
(
xTr Aixi − xTi Aixr

)
i. (4.13)

Since AT
r = Ar and AT

i = Ai, there holds: xTr Arxi = xTi Arxr and xTr Aixi =
xTi Aixr, which yields Eq. (4.11).

Lemma 3. Let f : [−1,+1] → R be continuous function, a > 0 and let Ω ∈
⟨−a,+a⟩. Then there holds:

lim
γ→0+

∫ +a

−a

f (ω/a)
γ/π

(ω − Ω)2 + γ2
dω = f (Ω/a) . (4.14)

Proof. Follows from a restricted version of δ(x) = limγ→0+
γ/π

x2+γ2 to [−a,+a] do-
main.

4.1.2 Problem statement

Next, we give a detailed description of the problem that we would like to solve in
this paper. Suppose we have A,B ∈ CNp×Np satisfying A† = A, BT = B, such
that the QRPA matrix: [

A B
B∗ A∗

]
∈ C2Np×2Np , (4.15)
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is positive-definite. Furthermore, let us suppose that two vectors F 20, F 02 ∈ CNp

are given. For ω ∈ R and γ > 0 we denote the complex frequency ωγ = ω + γi in
the upper complex plane. Let the vectors X(ωγ), Y (ωγ) ∈ CNp be the solution of
the following linear system:([

A B
B∗ A∗

]
− ωγ

[
I 0
0 −I

])[
X(ωγ)
Y (ωγ)

]
= −

[
F 20

F 02

]
. (4.16)

We define the strength function S : R+ R+i→ C as:

S(ωγ) :=

[
F 20

F 02

]† [
X(ωγ)
Y (ωγ)

]
. (4.17)

Our task is to calculate the response function dB
dω

: R→ R defined as:

dB(ω)

dω
:= lim

γ→0+

−1
π

Im[S(ωγ)]. (4.18)

First, we will show that the strength is well defined, i.e. that a matrix in Eq.
(4.16) is invertible for any ωγ. Later, it will be clear that the limit in Eq. (4.18)
exists in the weak-∗ topology as a limit of sequence of distributions. According to
the Proposition 1, there exist X, Y ∈ CNp×Np and Ω = diag[Ωi]

Np

i=1 ∈ RNp×Np such
that Ωi > 0 for all i = 1, . . . , Np and:[

I 0
0 −I

] [
A B
B∗ A∗

]
=

[
X Y ∗

Y X∗

] [
+Ω 0
0 −Ω

] [
X Y ∗

Y X∗

]−1

, (4.19)

[
X Y ∗

Y X∗

]−1

=

[
I 0
0 −I

] [
X Y ∗

Y X∗

]† [
I 0
0 −I

]
. (4.20)

Thus, one can easily see that for any ωγ in the upper complex plane, the matrix:[
A B
B∗ A∗

]
− ωγ

[
I 0
0 −I

]
=

[
I 0
0 −I

] [
X Y ∗

Y X∗

]
×

×
[
+Ω− ωγI 0

0 −Ω− ωγI

] [
X Y ∗

Y X∗

]−1

(4.21)

is invertible, rendering S(ωγ) well defined with formula:

S(ωγ) = −

([
X Y ∗

Y X∗

]† [
F 20

F 02

])† [
(Ω− ωγI)

−1 0

0 (Ω + ωγI)
−1

]
×

×

([
X Y ∗

Y X∗

]† [
F 20

F 02

])
. (4.22)
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According to Lemma 2, one immediately obtains:

− 1

π
Im[S(ωγ)] =

([
X Y ∗

Y X∗

]† [
F 20

F 02

])† [ γ/π
(ω−Ω)2+γ2 0

0 −γ/π
(ω+Ω)2+γ2

]
×

×

([
X Y ∗

Y X∗

]† [
F 20

F 02

])
, (4.23)

where it is now clear that the limit of distributions in Eq. (4.18) exists, i.e. the
response function dB(ω)

dω
is well defined distribution on R.

In direct implementations, the QRPA matrix is constructed explicitly and sub-
sequently diagonalized by solving Eq. (4.19). The resulting matrices X, Y and Ω
are used to calculate the strength according to Eq. (4.22) for arbitrary smearing
parameter γ > 0. The main advantage of this approach is that one can use the cal-
culated matrices X, Y and Ω to find the response for arbitrary excitation operator
F̂ . This is analogous to solving the linear system of equations Ax = b, in the case
when we know the spectral decomposition: A = SΛS−1. Then for any right-hand
side vector b, one can easily find the solution: x = SΛ−1S−1b. However, because
this approach is computationally prohibitive for deformed atomic nuclei due to
the large dimension of the QRPA matrix (4.15), in practice one often solves the
system of linear equations (4.16) for preselected excitation operator F̂ and smear-
ing parameter γ > 0. In this case, one only obtains the shape profile (ω, S (ωγ))
of the strength function S(ωγ), but for most applications this is quite satisfactory.

A very successful approach for solving the linear response problem is the finite
amplitude method, described at the beginning of this section. When solving the
linear system Eq. (4.16) for fixed frequency ωγ, one usually uses an iterative solver
which does not require the access to the full QRPA matrix, but rather only requires
the access to the linear mapping:[

x
y

]
7→
[
A B
B∗ A∗

] [
x
y

]
, for given x, y ∈ CNp . (4.24)

This mapping, equivalent to the FAM equations (4.3-4.4), can actually be con-
structed without explicit calculation of the residual nuclear interaction (i.e. with-
out explicit construction of A and B matrices), which makes the FAM method
convenient in practical implementations. Since the main goal of this paper is to
improve the performance of the existing FAM solvers, we will only assume the
access to the mapping (4.24). We will show that one can obtain an accurate ap-
proximation to the response function dB(ω)

dω
in fewer number of FAM iterations.

The proposed method is easy to implement in the existing FAM solvers with min-
imum additional effort.
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4.2 Implementation of the kernel polynomial method
for calculating the QRPA response function

4.2.1 Chebyshev expansion

First, we assume that all QRPA eigenfrequencies (±Ωi)
Np

i=1 are contained in the
finite interval ⟨−Ωb,+Ωb⟩. The parameter Ωb > 0 is referred to as the bounding
frequency. Next, we fix the smearing parameter γ > 0, and since the set of
Chebyshev polynomials:

Tn(x) = cos(n arccos(x)), x ∈ [−1,+1], n ∈ N0, (4.25)

form an orthonormal basis, we expand the function −1
π
Im[S(ωγ)] for ω ∈ ⟨−Ωb,+Ωb⟩

as the following Chebyshev series:

−1
π

Im[S(ωγ)] =
2/π√
Ω2

b − ω2

+∞∑
n=0

µ(γ)
n Tn

(
ω

Ωb

)
, (4.26)

where µ
(γ)
n ∈ R are the expansion coefficients. Using the orthogonality of the

Chebyshev polynomials:∫ +1

−1

Tn(x)Tm(x)√
1− x2

dx =
π

2
(1 + δn,0)δm,n, m, n ∈ N0, (4.27)

one easily obtains the formula for the expansion coefficients:

µ(γ)
n =

1

1 + δn,0

∫ +Ωb

−Ωb

−1
π

Im[S(ωγ)]Tn

(
ω

Ωb

)
dω. (4.28)

From Eq. (4.23) and using (4.20) we easily see:

− 1

π
Im[S(ωγ)] =

[
F 20

F 02

]† [
X Y ∗

Y X∗

] [ γ/π
(ω−Ω)2+γ2 0

0 γ/π
(ω+Ω)2+γ2

]
×

×
[
X Y ∗

Y X∗

]−1 [
F 20

−F 02

]
, (4.29)

and thus, according to Lemma 3, the following equation holds:

lim
γ→0+

µ(γ)
n =

1

1 + δn,0

[
F 20

F 02

]† [
X Y ∗

Y X∗

]Tn (+ Ω
Ωb

)
0

0 Tn

(
− Ω

Ωb

)×
×
[
X Y ∗

Y X∗

]−1 [
F 20

−F 02

]
, (4.30)
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which after using Lemma 1 transforms to:

µn := lim
γ→0+

µ(γ)
n

=
1

1 + δn,0

[
F 20

F 02

]†
Tn

(
1

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

])[
I 0
0 −I

] [
F 20

F 02

]
. (4.31)

If we truncate the series (4.26) up to 2Nit + 1 ∈ N coefficients, after taking the
limit γ → 0+, one obtains the approximate expression for the response function:

dB(ω)

dω
≈ 2/π√

Ω2
b − ω2

2Nit∑
n=0

µnTn

(
ω

Ωb

)
, for ω ∈ ⟨−Ωb,+Ωb⟩, (4.32)

where the coefficients µn ∈ R are defined in Eq. (4.31). Notice that µn ∈ R are
indeed real because one can easily see that matrices:

Tn

(
1

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

])[
I 0
0 −I

]
∈ C2Np×2Np , (4.33)

are Hermitian. Let us define a sequence of vectors (|αn⟩)n∈N0 ⊆ C2Np as:

|αn⟩ := Tn

(
1

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

])[
I 0
0 −I

] [
F 20

F 02

]
. (4.34)

Using T0(x) = 1 and T1(x) = x, the first two terms |α0⟩, |α1⟩ ∈ C2Np are equal to:

|α0⟩ :=
[
F 20

−F 02

]
and |α1⟩ :=

1

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

] [
F 20

−F 02

]
, (4.35)

while the Chebyshev recursion: Tn(x) = 2xTn−1(x) − Tn−2(x), for n ≥ 2, can be
used to find other terms |αn⟩ for n ≥ 2, recursively:

|αn⟩ =
2

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

]
|αn−1⟩ − |αn−2⟩. (4.36)

Since there holds:

µn =
1

1 + δn,0

[
F 20

F 02

]†
|αn⟩, for n ∈ N0, (4.37)

we can initialize the coefficients µ0, µ1 and use recursion (4.36) to find the higher
coefficients µn, n ≥ 2, i.e. as we calculate the nth vector |αn⟩, we can calculate
the nth coefficient µn. However, we can do better utilizing two identities:

T2n(x) = 2Tn(x)Tn(x)− 1 and T2n−1(x) = 2Tn−1(x)Tn(x)− x. (4.38)

Then, one can easily show using Hermitian property of matrices (4.33) that there
holds:

µ2n−1 = 2⟨αn−1|
[
I 0
0 −I

]
|αn⟩ − µ1, n ∈ N, (4.39)
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µ2n = 2⟨αn|
[
I 0
0 −I

]
|αn⟩ − 2µ0, n ∈ N. (4.40)

Thus, if we initialize |α0⟩, |α1⟩ ∈ C2Np and µ0, µ1 ∈ R, during the recursion (4.36)
for each new |αn⟩ we can obtain two coefficients µ2n−1 and µ2n. Notice that for
calculation of |α0⟩, |α1⟩, . . . , |αNit⟩, we need to evaluate the mapping:[

x
y

]
7→
[
A B
B∗ A∗

] [
x
y

]
, (4.41)

exactly Nit times, which will yield the coefficients µ0, µ1, . . . , µ2Nit required in the
expansion (4.32).

4.2.2 Kernel polynomial method

It is well known and can be seen from Eq. (4.29) that the response function dB(ω)
dω

can be written as a sum of weighted delta functions centered at eigenfrequencies
±Ωi. Experience shows that a simple truncation of Chebyshev series (4.32) leads
to poor precision and oscillatory behaviour, also known as Gibbs oscillations, near
points where the expanded function is singular or discontinuous which in this case
is near QRPA poles ±Ωi. This problem has been studied in details [55] and a
common procedure to damp Gibbs oscillations relies on the modification of the
coefficients in the Chebyshev expansion:

f(x) ≈ 2/π√
1− x2

N−1∑
n=0

µnTn(x), x ∈ ⟨−1,+1⟩, (4.42)

with a simple transformation of expansion coefficients: µn → µng
(N)
n , for an ap-

propriate coefficients: g(N)
0 , g

(N)
1 , . . . , g

(N)
N−1, called the kernel coefficients. One can

represent this transformation as a convolution of f(x) with an appropriate kernel
KN(x, y). Details can be found in Ref. [55] and here we only introduce three
kernels which are most relevant for our work.

First we would like to present the Jackson kernel, designed to minimize the
kernels root mean square (RMS) width. The Jackson kernel is defined as:

g(N)
n (Jackson) :=

(N − n+ 1) cos
(

πn
N+1

)
+ sin

(
πn

N+1

)
cot
(

π
N+1

)
N + 1

. (4.43)

One can show that if one expands the delta function δ(x) in Chebyshev series
(4.42), i.e. calculates the coefficients µn corresponding to f(x) = δ(x), followed
by modifying the coefficients µn with Jackson kernel: µn → µng

(N)
n (Jackson),

then the obtained kernel-modified Chebyshev approximation (RHS of Eq. (4.42))

visually resembles to a Gaussian 1√
2πσ

e−
x2

2σ2 of width σ = π
N

. In Figure 4.1, we plot
a Gaussan of width σ = π

N
, for N = 64, together with Jackson kernel-modified

Chebyshev approximation of delta function of order N = 64. We also plot the
kernel-unmodified Chebyshev approximation of delta function as a reference. We
can see that KPM reduces the Gibbs oscillations, and the Jackson kernel-modified
approximation resembles to a Gaussian of an appropriate width.
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Figure 4.1: Gaussian function of width σ = π/N , for N = 64 (red circles) com-
pared to Jackson kernel-modified Chebyshev approximation of delta function of
order N = 64 (blue solid curve). For reference, kernel-unmodified Chebyshev ap-
proximation of delta function of order N = 64 is also shown (black dashed curve).
Figure taken from Ref. [34].

Second kernel that we present is the Lorentz kernel defined as:

g(N)
n (Lorentz) :=

sinh (λ(1− n/N))

sinh (λ)
, (4.44)

where the value of the free parameter λ > 0 should be chosen to ensure a satisfac-
tory compromise between good resolution (small values of the parameter λ) and
sufficient damping (large values of the parameter λ). Depending on the applica-
tion, the value of the λ parameter is usually chosen between values 1 and 5. In
this case, if one expands the delta function as in Eq. (4.42), i.e. calculates the co-
efficients µn corresponding to f(x) = δ(x), followed by modifying the coefficients
µn with Lorentz kernel: µn → µng

(N)
n (Lorentz), then the obtained kernel-modified

Chebyshev approximation visually resembles to a Lorentzian γ/π
x2+γ2 with smearing

parameter γ = λ
N

. For example, if one selects λ = 5, the two functions: the
Lorentzian having width γ = λ

N
and a Chebyshev expanded delta function with

kernel-modified expansion coefficients, are virtually identical. In Figure 4.2 we
fix N = 64, and show Lorentzians of width γ = λ

N
together with Lorentz kernel-

modified Chebyshev approximations of delta function of order N , as parameter
λ is swept through the values λ = 1, 2, 3, 4, 5. We notice that larger value of λ
gives better damping of the Gibbs oscillations and gives better resemblance to an
approriate Lorentzian, however, for a fixed Chebyshev approximation order N ,
smaller values of λ yield higher peaks and better resolution in terms of width.
Thus, the value λ = 1.5 seems like a good compromise between the two. In Figure
4.3, we fix λ = 1.5 parameter, and show Lorentzians of width γ = λ

N
together with

Lorentz kernel-modified Chebyshev approximations of delta function of order N ,
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Figure 4.2: Lorentzians of width γ = λ
N

(red circles) together with Lorentz kernel-
modified Chebyshev approximations od delta function of order N (blue solid
curves), for a fixed value of N = 64 when the parameter λ is swept from val-
ues λ = 1 to λ = 5. Figure taken from Ref. [34].

as the order parameter N is swept through the values N = 16, 32, 64, 128, 256.
Thus, for values of λ parameter below λ < 4 the resemblance with Lorentzian is
less pronounced, however the relation γ = λ

N
still approximatelly holds, but has to

be taken only indicatively. Important remark to notice is that once the Chebyshev
expansion coefficients µn are obtained (as explained in the previous subsection)
one can easily choose and experiment with various kernel coefficients since they
are selected a posteriori.

Notice that trivial transformation: µn → 1 ·µn, can also be viewed as an action
of constant kernel:

g(N)
n (Dirichlet) := 1, (4.45)

which is usually called the Dirichlet kernel.
In conclusion, the main goal is to damp Gibbs oscillations encountered when

expanding a delta function in Chebyshev series (4.42), by simply multiplying the
expansion coefficients µn with the kernel coefficient g(N)

n , where the choice of the
coefficients g(N)

n depends on the particular application. For example, if we want a
rapidly decreasing expansion, a good choice is to use the Jackson kernel. On the
other hand, if the expanded function displays the Breit-Wigner shape, such as the
response function dB(ω)

dω
, one should use the Lorentz kernel.

4.2.3 Evaluation of Chebyshev series

Suppose we have calculated the coefficients µ0, µ1, . . . , µ2Nit in Eq. (4.32) and mul-
tiplied them with an appropriate kernel coefficients g(2Nit+1)

n . We wish to evaluate
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Figure 4.3: Lorentzians of width γ = λ
N

(red circles) together with Lorentz
kernel-modified Chebyshev approximations of delta function of order N (blue solid
curves), for a fixed value of kernel parameter λ = 1.5 when the order N is swept
through the values N = 16, 32, 64, 128, 256. Figure taken from Ref. [34].

the series (4.32) on a frequency grid (ωk)
Ne
k=1 ⊆ ⟨−Ωb,+Ωb⟩ having Ne points for

e.g. plotting or numerical integration purpose. We can use the well known Clen-
shaw algorithm [56], but if we do not insist on a specific frequency grid such as
uniform grid, it is better to use the Chebyshev nodes:

ωk = Ωb cos

(
π

Ne

(
k − 1

2

))
, k = 1, 2, . . . , Ne. (4.46)

Let us assume that Ne > Nit, which is in practice always true since we usually
evaluate the series on a very dense grid Ne ≫ Nit. In that case we can write:

dB(ω)

dω
=

2/π√
Ω2

b − ω2

2Ne∑
n=1

µn−1Tn−1

(
ω

Ωb

)
, (4.47)

where the higher order coefficients: µ2Nit+1, . . . , µ2Ne−1, are set to zero. Then there
holds:

dB(ωk)

dω
=

2/π

Ωb sin
(

π
Ne

(
k − 1

2

)) Re

[
2Ne∑
n=1

(
µn−1e

−πi
(n−1)
2Ne

)
e−2πi

(n−1)(k−1)
2Ne

]
. (4.48)

Previous summations can be efficiently evaluated using fast Fourier transform, e.g.
freely available FFTW library [57] provides a procedure which for input sequence
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x1, x2, . . . , xN ∈ C calculates X1, X2, . . . , XN ∈ C defined as:

Xk =
N∑

n=1

xne
−2πi

(n−1)(k−1)
N . (4.49)

Therefore, after the coefficients µ0, µ1, . . . , µ2Nit are calculated and kernel-readjusted,
one can quickly evaluate the series (4.32) on a dense Chebyshev frequency grid for
plotting or numerical integration purpose.

4.2.4 Bounding frequency

In this subsection we would like to emphasize that the bounding frequency Ωb

has to fulfill the following condition: ±Ωi ∈ ⟨−Ωb,+Ωb⟩, for all i = 1, . . . , Np.
Otherwise, the diagonal elements Tn

(
Ωi

Ωb

)
in Eq. (4.30) are simply not defined. If

the sequence of functions Tn(x) is calculated recursively on R as T0(x) = 1, T1(x) =
x and Tn(x) = 2xTn−1(x)− Tn−2(x), then the following equation holds:

Tn(x) =
1

2

((
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n)
, for |x|≥ 1. (4.50)

Therefore, if the bounding frequency Ωb does not satisfy ±Ωi ∈ ⟨−Ωb,+Ωb⟩ (i.e.,
if Ωi/Ωb ≥ 1), we expect that the recursive procedure (4.36) which generates the
sequence of vectors |αn⟩ ∈ C2Np will quickly diverge. In practice, we can often
provide a heuristic physical estimate of the upper bound for max(Ωi)

Np

i=1, and
thus guess the value of Ωb. During the recursive procedure (4.36), we can notice
immediately if the bounding frequency is underestimated due to the divergent
behaviour of the µn coefficients. On the other hand, a more pedantic approach
is to calculate the maxium eigenfrequency Ωmax = max(Ωi)

Np

i=1 as an extremal
eigenvalue:[

I 0
0 −I

] [
A B
B∗ A∗

] [
Xmax

Y max

]
= Ωmax

[
Xmax

Y max

]
, Xmax, Y max ∈ CNp . (4.51)

Previous equation can be solved efficiently by employing one of the many existing
iterative Krylov-space methods or power methods. The bounding frequency is
then defined as Ωb = Ωmax + ε for some small value of ε, e.g. ε = 0.01Ωmax. We
recommend a heuristic approach for estimating Ωb if the solver is supervised man-
ually, although even then one can easily detect divergent behaviour automatically
and readjust Ωb accordingly. For a large-scale calculations it is better to use the
latter pedantic approach.

4.2.5 Method summary

The steps of the proposed method are summarized in Algorithm 1. We empha-
size that the method is not memory intensive, since we do not need to store
vectors (|αn⟩)Nit

n=0 in the computer memory. Keeping track of only three vectors
|αnew⟩, |αold⟩, |αtmp⟩ ∈ CNp will suffice to go through the recursion (4.36). Also,
when we reach n = Nit, the algorithm stops and yields coefficients (µn)

2Nit
n=0, but
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Algorithm 1: QRPA Chebyshev kernel polynomial method
Input:

• QRPA matrix-vector mapping: [ xy ] ∈ C2Np 7→ [ A B
B∗ A∗ ] [ xy ] ∈ C2Np , with

Hermitian positive-definite QRPA matrix.

• Vectors F 20, F 02 ∈ CNp .

• Bounding frequency Ωb > 0 satisfying (±Ωi)
Np

i=1 ⊂ ⟨−Ωb,+Ωb⟩.

• Number of iterations Nit, i.e. the number of matrix-vector products and
number of Chebyshev nodes Ne > Nit for evaluation of dB(ω)

dω
.

• Kernel coefficients g(2Nit+1)
n , n = 0, 1, . . . , 2Nit.

• Initialize |αold⟩ ← |α0⟩, |αnew⟩ ← |α1⟩ according to Eq. (4.35):

|αold⟩ ←
[

F 20

−F 02

]
and |αnew⟩ ←

1

Ωb

[
I 0
0 −I

]
[ A B
B∗ A∗ ]

[
F 20

−F 02

]
. (4.52)

• Initialize µ0 and µ1 according to Eq. (4.37):

µ0 ←
1

2

[
F 20

F 02

]† |αold⟩ and µ1 ←
[
F 20

F 02

]† |αnew⟩. (4.53)

for n = 1, 2, . . . , Nit do
// Now there holds: |αnew⟩ = |αn⟩ and |αold⟩ = |αn−1⟩.
• Calculate µ2n−1 and µ2n according to Eq. (4.39) and (4.40):

• µ2n−1 ← 2⟨αold|
[
I 0
0 −I

]
|αnew⟩ − µ1,

• µ2n ← 2⟨αnew|
[
I 0
0 −I

]
|αnew⟩ − 2µ0.

• If µ2n−1, µ2n start to diverge, Ωb is too small, restart with new Ωb!
• If n < Nit, update vectors |αnew⟩, |αold⟩ according to Eq. (4.36):

• |αtmp⟩ ← |αnew⟩,

• |αnew⟩ ← 2
Ωb

[
I 0
0 −I

]
[ A B
B∗ A∗ ] |αnew⟩ − |αold⟩,

• |αold⟩ ← |αtmp⟩.

end
• Apply kernel transformation µn ← g

(2Nit+1)
n µn, for n = 0, 1, . . . , 2Nit.

• Evaluate dB(ωk)
dω

on Chebyshev nodes (ωk)
Ne

k=1 using Eq. (4.48) via FFT.
Output: Truncated Chebyshev expansion of the response function dB(ω)

dω

as in Eq. (4.32) evaluated on Chebyshev frequency nodes (4.46).
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if the last two vectors |αNit−2⟩, |αNit−1⟩ are stored on drive, we can later continue
calculating higher coefficients µn for n > 2Nit.

4.3 Numerical results
To validate our implementation of the KPM for calculating the QRPA response
function, as described in Algorithm 1, we have performed several test calculations.
All tests are available at the public GitHub repository:

https://github.com/abjelcic/ChebyshevQRPA,

in a form of MATLAB scripts, tested on the MATLAB releases R2018a and
R2021a. We have also verified that scripts are running with GNU Octave 5.2.0
as a publicly available alternative which is mostly compatible with MATLAB. We
notice that for some calculations Octave is considerably slower in comparison to
MATLAB. To reduce the computation time, we have included the recommended
values of numerical parameters to be used with Octave in the scripts that would
otherwise be time consuming.

4.3.1 Test 1: Synthetic model

For our first test case we use synthetically generated QRPA matrices A, B and vec-
tors F 20, F 02 by employing the procedure described in B.2. The matrix dimension
and the bounding frequency are set to Np = 1000 and Ωb = 250 MeV, respectively.
500 random eigenfrequencies Ωi are generated uniformly in range from 0 MeV to
200 MeV and combined with another 500 random eigenfrequencies Ωi generated
uniformly in range from 0 MeV to 50 MeV. The resulting QRPA spectrum will
obviously be more dense in the low energy region. Next, we generate random
sequence of values θ1, . . . , θNp ≥ 0 and two unitary matrices C,D ∈ CNp×Np as Q
factors in the QR decomposition of two random Np ×Np complex matrices. The
X and Y matrices are constructed as:

X = D diag[cosh θi]
Np

i=1C and Y = D∗ diag[sinh θi]
Np

i=1C, (4.54)

and used to generate the A and B matrices:

A = +
[
XΩX† +

(
Y ΩY †)∗] and B = −

[
XΩY † +

(
XΩY †)T] , (4.55)

as explained in Remark 1.
Notice that from Eq. (4.23) the response function dB(ω)

dω
can be written as:

dB(ω)

dω
=

Np∑
i=1

|⟨i|F̂ |0⟩|2δ(ω − Ωi)−
Np∑
i=1

|⟨0|F̂ |i⟩|2δ(ω + Ωi), (4.56)

where vectors (⟨i|F̂ |0⟩)Np

i=1 ∈ CNp and (⟨i|F̂ |0⟩)Np

i=1 ∈ CNp are defined as:[
(⟨i|F̂ |0⟩)Np

i=1

(⟨0|F̂ |i⟩)Np

i=1

]
=

[
X Y ∗

Y X∗

]† [
F 20

F 02

]
. (4.57)

https://github.com/abjelcic/ChebyshevQRPA
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Figure 4.4: Synthetically generated response function dB(ω)
dω

calculated by using
Eq. (4.56). The positions of the vertical lines are given by the eigenfrequencies
Ωi, while the heights are equal to |⟨i|F̂ |0⟩|2. Figure taken from Ref. [34].

The real and imaginary parts of the matrix elements ⟨i|F̂ |0⟩ are generated from
the standard normal distribution and since we assume that the operator F̂ is
Hermitian. we set: ⟨0|F̂ |i⟩ = ⟨i|F̂ |0⟩∗.

Finally, we construct vectors F 20, F 02 ∈ CNp so that Eq. (4.57) is satisfied:[
F 20

F 02

]
=

[
I 0
0 −I

] [
X Y ∗

Y X∗

] [
I 0
0 −I

][
(⟨i|F̂ |0⟩)Np

i=1

(⟨0|F̂ |i⟩)Np

i=1

]
. (4.58)

In Fig. 4.4 we display the response function Eq. (4.56) calculated on the interval
⟨−Ωb,+Ωb⟩ for one such generated example. Next, we will try to reproduce this
response function by employing the KPM. We select the allowed number of the
QRPA matrix-vector multiplications Nit and perform steps of Algorithm 1, using
the Lorentz kernel with parameter λ = 1.5. The results are shown in Fig. 4.5 on
the low-energy interval from 0 MeV to 50 MeV, where we increase Nit from 200 up
to 6400 iterations, each time doubling the value of Nit. Since the Lorentz kernel
approximates delta functions in eq. (4.56) with Lorentzian distributions of width:

γKPM = Ωb
λ

2Nit + 1
, (4.59)

we expect that doubling the number of iterations Nit in Algorithm 1 will yield the
sum of two times narrower Lorentzians. For comparison, we also plotted in Fig.
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Figure 4.5: True response function (solid red curve) folded with Lorentzian of
width γ = 0.05 MeV in comparison to the response function calculated by using
Algorithm 1 (dot-dashed blue curve) as the number of QRPA matrix-vector mul-
tiplications Nit increases from 200 to 6400. We plot only the low-energy region
from 0 MeV to 50 MeV. Figure taken from Ref. [34].
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Figure 4.6: Zoom of the response function displayed in Fig. 4.5 for frequency in
range from 0 MeV to 10 MeV. The number of iterations used is Nit = 6400. Figure
taken from Ref. [34].

4.5 a true response function folded with a Lorentzian of width γ = 0.05 MeV:

dB(ω)

dω

∣∣∣
γ
=

Np∑
i=1

|⟨i|F̂ |0⟩|2 γ/π

(ω − Ωi)2 + γ2
−

Np∑
i=1

|⟨0|F̂ |i⟩|2 γ/π

(ω + Ωi)2 + γ2
. (4.60)

In Fig. 4.6 we show a zoom of the response function for frequency in range
from 0 MeV to 10 MeV and Nit = 6400. We notice that some artefacts of the
Gibbs oscillations are still present and although they could be further damped by
increasing the Lorentz kernel parameter λ, this would require more iterations Nit

in Algorithm 1 according to Eq. (4.59) in order to obtain the same γKPM. We have
found that λ ≈ 1.5 provides a good compromise between speed and accuracy of the
KPM calculation. From Eq. (4.59) it follows that one should select the smallest
possible bounding frequency Ωb (but still larger than the largest eigenfrequency
Ωmax) in order to minimize the necessary number of iterations Nit for the targeted
smearing width γKPM, assuming fixed λ parameter.

We can conclude that the proposed implementation of the KPM to calculate
the QRPA response function successfully reproduces the results obtained by direct
diagonalization of synthetically generated QRPA matrix. We have also verified
that the same results are obtained if linear response equations (4.16) are solved
for a range of frequencies ω with fixed γ = 0.05 MeV.
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4.3.2 Test 2: Matrix RPA solver

In this test, we would like to validate the KPM implementation for calculating the
RPA response function when applied to a realistic RPA solver. For this purpose
we have selected publicly available RPA solver skyrme_rpa [58]. This solver is
implemented for closed shell spherical nuclei with Skyrme-type interactions. The
Hartree-Fock equations are solved on a radial mesh using the box boundary con-
dition and the RPA matrix is explicitly constructed and diagonalized for a given
value of total angular momentum and parity Jπ. The output of the skyrme_rpa
solver contains calculated eigenfrequencies and transition strengths for isoscalar
and isovector multipole operators F̂ IS/IV

Jπ . Also, the isoscalar and isovector re-
sponse functions (4.60) folded with Lorentzian functions of selected width γ are
provided.

We have modified the skyrme_rpa code and extracted the RPA matrices A
and B and vectors F 20, F 02 for the 120Sn isotope and Jπ = 5− isovector operator.
Calculation was performed by employing the SLy5 Skyrme interaction [63] in a 20
fm radius box with 0.1 fm radial step and 100 MeV cutoff energy1. The resulting
2Np × 2Np RPA matrix is of order Np = 1310. Based on the value of the cutoff
energy Ec, we do not expect that the particle-hole energies will be larger than
≈ 250 MeV, therefore we set the value of the bounding frequency to Ωb = 250
MeV. Indeed, we have verified that the largest calculated RPA eigenfrequency is
Ωmax = 156 MeV. In order to damp Gibbs oscillations, Lorentzian kernel with
parameter λ = 1.5 was used. Figure 4.7 displays the response function obtained
by the original skyrme_rpa code folded with the Lorentzian function of width
γ = 0.05 MeV in comparison to the results obtained using the KPM with Nit =
6400 iterations. It is worth noting that the necessary number of iterations Nit

could be reduced by choosing the bounding frequency Ωb closer to the largest
RPA eigenfrequency Ωmax.

In Fig. 4.8 we display a zoom of the response functions shown in Fig. 4.7
for frequency in range from 20 MeV to 30 MeV. The two response functions are
virtually identical although there are still some Gibbs oscillation effects visible in
the response function calculated by the KPM.

4.3.3 Test 3: Quasiparticle Finite Amplitude Method solver

Next, we would like to validate the KPM implementation for calculating the QRPA
response function when applied in conjunction with a realistic QFAM solver. Simi-
lar to the previous test, we have selected publicly available finite amplitude method
solver DIRQFAM [2]. The DIRQFAM code calculates the QRPA multipole response
of even–even open-shell nuclei with axially deformed ground state using the finite
amplitude method, based on the relativistic self-consistent mean-field models. The
QFAM amplitudes are expanded in the basis of the eigenfunctions of the axially
symmetric harmonic oscillator with simplex-y symmetry imposed. The DIRQFAM

1Cutoff energy Ec denotes maximum energy of the unoccupied single-particle states included
in the RPA model space. The maximum particle–hole energy is thus Ec − ϵh, where ϵh is the
deepest hole energy. For the chosen value Ec = 100 MeV, rough estimate of the maximum
particle-hole energy is ≈ 150 MeV.
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Figure 4.7: Comparison of the response functions obtained by using the original
skyrme_rpa code (red curve) and the KPM (blue curve) for the 120Sn isotope
and isovector Jπ = 5− excitation. Figure taken from Ref. [34].

Figure 4.8: Zoom of the response function displayed in Fig. 4.7 for energy in range
from 20 MeV to 30 MeV. Figure taken from Ref. [34].
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code iteratively solves the QFAM equations for a given frequency ωγ:

(Eµ + Eν − ωγ)Xµν(ωγ) + δH20
µν(ωγ) = −F 20

µν , (4.61)

(Eµ + Eν + ωγ)Yµν(ωγ) + δH02
µν(ωγ) = −F 02

µν . (4.62)

It should be emphasized that the QFAM calculations can be performed very ef-
ficiently by using the self-consistent symmetries of the ground state 2, together
with the structure of the excitation operator F̂ . For initial guess of the QFAM
amplitudes we usually choose:

Xµν(ωγ) = Yµν(ωγ) = 0, (4.63)

and during the iterations QFAM equations preserve the symmetry of the excitation
operator. For example, if the excitation operator proportional to the spherical
harmonic YJK(θ, ϕ) is used, all matrices involved in the calculations turn out to
have block structure and the induced densities and currents have simple cos(Kϕ)
or sin(Kϕ) angular dependence. By utilizing these properties, the computational
cost of the QFAM calculations is reduced drastically.

At the core of any QFAM solver is the implementation of the linear mapping:[
Xµν

Yµν

]
7→
[
δH20

µν

δH02
µν

]
=

[
−(Eµ + Eν)Xµν +

∑
µ′<ν′ Aµν,µ′ν′Xµ′ν′ +Bµν,µ′ν′Yµ′ν′

−(Eµ + Eν)Yµν +
∑

µ′<ν′ B
∗
µν,µ′ν′Xµ′ν′ + A∗

µν,µ′ν′Yµ′ν′

]
, (4.64)

which together with the QFAM equations (4.61) and (4.62) is used to solve these
equations iteratively. However, the DIRQFAM solver does not implement the full
mapping (4.64) for arbitrary amplitudes Xµν , Yµν , but rather only for those be-
longing to the linear subspace defined by the self-consistent symmetries of the
ground state and structure of the excitation operator. Therefore, it seems that
we might encounter problems implementing the KPM since the DIRQFAM code
actually has no access to the full mapping:[

x
y

]
∈ C2Np 7→

[
A B
B∗ A∗

] [
x
y

]
∈ C2Np , (4.65)

required by the Algorithm 1. However, the algorithm initializes vectors |αold⟩,
|αnew⟩ as in Eq. (4.52) which are consistent with the selection rules of the ex-
citation operator and all selection rules are preserved throughout the recursion
in Algorithm 1. This means that the KPM for calculating the QRPA response
function does not require the full mapping (4.65), but only restricted mapping
on vectors consistent with the selection rules of the particular excitation opera-
tor. This point is very important in practical calculations because virtually every
QFAM solver assumes some form of symmetry in order to reduce the computa-
tional complexity.

For the purpose of this test, we have selected the 100Zr nucleus with deformed
2In the DIRQFAM code one assumes the axial symmetry, parity and time-reversal invariance

in the ground state.
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ground state (β ≈ 0.485), subjected to the isovector octupole J = 3, K = 3
excitation. In the particle-hole channel we employ the DD-PC1 effective interac-
tion, while the particle-particle channel is described by a separable finite-range
force. Dirac spinors are expanded in the basis of the eigenfunctions of the axi-
ally symmetric harmonic oscillator with 14 major shells for large and 15 major
shells for small components. First, for comparison purpose, we have performed
the QFAM calculation sweeping through frequencies from 0 MeV to 50 MeV and
using the smearing γ = 0.05 MeV. Then, we employ Algorithm 1 with Lorentz
kernel with parameter λ = 1.5. In order to obtain an assessment of the bounding
frequency, we need a rough approximation of the QRPA eigenfrequencies (Ωi)

Np

i=1.
As a starting point, we can ignore the residual interaction δH20

µν = δH02
µν = 0 in

QFAM equations (4.61) and (4.62) (often refereed to as the free response) which
yields the lowest order approximation value of the largest QRPA eigenfrequency:

Ωmax ≈ maxµν |Eµ + Eν | ≤ 2maxµ|Eµ|. (4.66)

Since DIRQFAM solver relies on the relativistic EDFs, configuration space includes,
not only the Fermi sea, but also the Dirac sea of negative energy states. In addition
to the configurations built from two-quasiparticle states of positive energy, the
configuration space must also contain pair-configurations formed from the fully or
partially occupied states of positive energy and the empty negative-energy states
from the Dirac sea. The inclusion of configurations built from occupied positive-
energy states and empty negative-energy states is essential for current conservation
and the decoupling of spurious states [59]. Since the energies of the states in
Dirac sea reach typical values of Eµ ≈ −2000 MeV, the value of the maximal
QRPA eigenfrequency is very large and thus we have to use a comparable value
of the bounding frequency Ωb. In this particular test we use the value Ωb = 4500
MeV. Indeed, the Algorithm 1 diverges quickly if one tries to reduce the bounding
frequency below 4000 MeV. This behavior suggest that the KPM in not well suited
for calculations based on the relativistic EDFs, because according to the Eq. (4.59)
we would have to perform a large number of iterations Nit in order to obtain
a reasonably sharp resolution γKPM of the KPM approximation of the response
function. Nevertheless, since DIRQFAM code is the only publicly available QFAM
solver at this time, for demonstration purpose we have implemented the KPM in
conjunction with this solver. In Fig. 4.9 we show the response function for the
J = 3, K = 3 excitation built on top of the deformed ground state in the 100Zr.
Results obtained with the DIRQFAM code (solid red line) are compared with those
obtained by the KPM implementation (dotted blue line). A large number of
iterations Nit = 100000 was used in the KPM calculation due to the effects of
the Dirac sea. In Fig. 4.10 we show a zoom of the response function displayed
in Fig. 4.9 for frequencies in range from 20 MeV to 40 MeV. If we estimate that
one typically requires 50 QFAM iterations to find the QFAM response at any
given frequency ωγ, in 100000 QFAM iterations we would have obtained 2000

points
(
ωγ,

dB(ω)
dω

∣∣∣
γ

)
which is more than enough to display a good approximation

of the response function on energy interval 0-50 MeV even for a small smearing
γ. In the QRPA calculations, sometimes one encounters zero-energy modes
known as the Nambu-Goldstone (NG) modes. The NG modes originate from
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Figure 4.9: Comparison of the response functions obtained using the original
DIRQFAM code and the proposed method for deformed (β ≈ 0.485) isotope 100Zr
subjected to isovector J = 3, K = 3 excitation. Figure taken from Ref. [34].

Figure 4.10: Zoom of the response function displayed in Fig. 4.9 for frequencies
in range from 20 MeV to 40 MeV. Figure taken from Ref. [34].
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Figure 4.11: Comparison of the response functions obtained using the original
DIRQFAM code and the KPM for deformed 100Zr isotope subjected to the isoscalar
J = 2, K = 1 excitation. Figure taken from Ref. [34].

the broken symmetries on the mean-field level of the calculation: translational
symmetry, rotational symmetry and particle-number gauge symmetry. Since the
NG modes do not represent physical excitations within the intrinsic frame, they are
also referred to as spurious modes. So far, we have used the XY representation
of the QRPA and assumed that the QRPA matrix is positive definite, yielding
Ωi > 0. The XY representation is not adequate to treat the zero-energy NG
modes because they are not normalizable in this representation and, in principle,
one should switch to the PQ representation (for extensive discussion see Ref. [60]
and references cited therein). However, due to the various numerical inaccuracies
in practical calculations (e.g. single-particle states are expanded in the finite
harmonic oscillator basis or in the coordinate lattice of a finite box), the frequency
of the NG modes is small but still finite. Hence, such states can still be safely
treated in the XY representation. Nevertheless, one can show that KPM method
works even in PQ representation of QRPA. For completeness, in Appendix B.3 we
include the derivation of KPM method for QRPA problem in PQ representation.

To illustrate this, we analyze the Kπ = 1+ spurious mode originating from
broken rotational symmetry. In Fig. 4.11 we display the response functions for
the J = 2, K = 1 excitation operator built on top of the deformed ground state
of the 100Zr isotope. A zoom of Fig. 4.11 is shown in Fig. 4.12 with smaller span
on the vertical axis. Indeed we observe one dominant spurious mode originating
from the broken rotational symmetry and again we find an excellent agreement
between the DIRQFAM and KPM response. We have also verified that the KPM
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Figure 4.12: Zoom of the response function displayed in Fig. 4.11 with smaller
span on the vertical axis. Figure taken from Ref. [34].

method successfully reproduces the DIRQFAM Kπ = 0+ response to the particle
number operator. In this case, only the NG mode is present and the KPM is still
applicable. We notice that the DIRQFAM solver separates the spurious center of
mass Kπ = 1− mode from physical modes by using a method described in Ref.
[36].

Finally, we would like to emphasize that in the presence of imaginary QRPA
eigenfrequency 3 the KPM calculation diverges. Essentially, the KPM deals with
the Chebyshev polynomials evaluated at the eigenfrequencies: Tn

(
Ωi

Ωb

)
, as can be

seen from Eq. (4.30). Since Tn(ix) diverges as n increases for x > 0, one can easily
see that the existence of eigenfrequency with significant imaginary part yields a
fast divergence of the KPM method. On the other hand, such a fast divergence
can be used as a clear indicator that one is performing calculation based on the
stability matrix which is not positive definite.

In conclusion, we have demonstrated as a proof-of-concept that Algorithm 1
can be rapidly integrated into an existing QFAM solver (e.g. additional ≈ 300 lines
of code in the DIRQFAM solver). However, the method is not well suited for models
based on the relativistic energy density functionals because of the contributions
from the states in the Dirac sea, and it diverges if the calculated ground state does
not correspond to the HFB minimum.

3E.g. if one tries to perform the spherical Jπ = 2+ QRPA calculation on a nucleus with
deformed ground state. In this case the constrained spherical configuration on top of which the
QRPA calculation is performed does not correspond to the HFB minimum and therefore the
HFB stability matrix, i.e., the QRPA matrix, is not positive definite.
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4.3.4 Test 4: Moments of the response function

It is well known that the sum rules represent a very important tool in studies of
collective excitation, especially giant resonances [21]. Although sum rules provide
less detailed description of the response function in comparison to the full QRPA
calculation, they are still very useful for calculating the global properties of the
response function. In this section we show how the Chebyshev expansion of the
response function Eq. (4.32) can be used to calculate the moments defined as:

mk =

Np∑
i=1

Ωk
i |⟨i|F̂ |0⟩|2, for k ∈ Z. (4.67)

From Eq. (4.56) one easily sees:

mk =

∫ +∞

0

ωk dB(ω)

dω
dω. (4.68)

We assume that the excitation operator F̂ is Hermitian giving ⟨0|F̂ |i⟩ = ⟨i|F̂ |0⟩∗
and consequently (F 02)

∗
= F 20. First we focus on the odd moments k ∈ Z since

they can be efficiently calculated directly [61]. Recall the Lemma 1 and equation:[
I 0
0 −I

] [
A B
B∗ A∗

]
=

[
X Y ∗

Y X∗

] [
+Ω 0
0 −Ω

] [
X Y ∗

Y X∗

]−1

. (4.69)

Notice that for any k ∈ Z (even for negative) the following equation holds:([
I 0
0 −I

] [
A B
B∗ A∗

])k

=

[
X Y ∗

Y X∗

] [
(+Ω)k 0

0 (−Ω)k
] [
X Y ∗

Y X∗

]−1

. (4.70)

By using Eqs. (4.20) and (4.58), one can easily show:[
F 20

F 02

]† ([
I 0
0 −I

] [
A B
B∗ A∗

])k [
I 0
0 −I

] [
F 20

F 02

]
=

=

Np∑
i=1

(+Ωi)
k|⟨i|F̂ |0⟩|2−

Np∑
i=1

(−Ωi)
k|⟨0|F̂ |i⟩|2. (4.71)

Using the fact that k ∈ Z is odd integer and ⟨0|F̂ |i⟩ = ⟨i|F̂ |0⟩∗ we finally obtain:

mk =

Np∑
i=1

Ωk
i |⟨i|F̂ |0⟩|2

=
1

2

[
F 20

F 02

]†([
I 0
0 −I

] [
A B
B∗ A∗

])k [
I 0
0 −I

] [
F 20

F 02

]
. (4.72)

Notice that mk is indeed a real number. If k > 0, Eq. (4.72) can be used to
evaluate mk by applying the mapping Eq. (4.65) k times. On the other hand, if
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k < 0, one has to solve the linear system k times with invertible matrix:[
I 0
0 −I

] [
A B
B∗ A∗

]
. (4.73)

This is exactly what the QFAM solver does when finding the QFAM amplitudes
Xµν(ωγ), Yµν(ωγ) for fixed frequency ωγ, i.e. when solving the linear equation
(4.16) having only access to the mapping (4.65). In conclusion, if k ∈ Z is odd,
QFAM solver can use equation (4.72) to efficiently calculate the odd moments mk

directly. We have validated Eq. (4.72) on synthetically generated examples used
in Sec. 4.3.1 and on realistic example used in Sec. 4.3.2.

Now we turn to a more difficult case, where k ∈ Z is an even integer. Also,
we assume that k ≥ 0. Since all the eigenfrequencies are located in an interval
⟨−Ωb,+Ωb⟩, when inserting the expansion (4.32) into Eq. (4.68), we obtain:

mk =

∫ Ωb

0

ωk dB(ω)

dω
dω ≈ m

(Chebyshev)
k = Ωk

b

2Nit∑
n=0

µnI
(k)
n , (4.74)

with integrals I(k)n defined as:

I(k)n =
2

π

∫ 1

0

xk
Tn(x)√
1− x2

dx. (4.75)

For x ∈ [−1,+1] and even k ∈ N0, the following expression holds:

xk =
1

2k−1

k/2∑
j=0

1

1 + δj,0

(
k

k
2
− j

)
Tj(x). (4.76)

Combined with the identity:

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x), (4.77)

one can easily calculate:

I(k)n =

k/2∑
j=0

1

1 + δj,0

1

2k

(
k

k
2
− j

)(
sinc

(π
2
(n+ j)

)
+ sinc

(π
2
|n− j|

))
, (4.78)

where sinc(x) = sinx/x. If we precalculate and store the integrals I(k)n , the moment
m

(Chebyshev)
k for even k ≥ 0 is, according to Eq. (4.74), given by a simple scalar

product of the (µn)
2Nit
n=0 coefficients with the integrals

(
I
(k)
n

)2Nit

n=0
. In the case of

even but negative values of k, we cannot follow the same procedure of integrating
term-by-term in Eq. (4.74) because for negative k, the integrals I(k)n diverge in
general. Therefore, because we have the response function evaluated on Chebyshev
frequency nodes:(

dB(ωi)

dω

)Ne

i=1

,

(
ωi = Ωb cos

(
π

Ne

(
i− 1

2

)))Ne

i=1

, (4.79)
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Figure 4.13: Convergence of even k ≥ 0 moments as number of iterations Nit is
increased. For k = 0 moment, Jackson kernel is used, while for k > 0 moments,
Dirichlet kernel is used. Notice the logarithmic scales. Figure taken from Ref.
[34].

we can try using the Gauss-Chebyshev integration formula:∫ 1

0

f(x)dx ≈ π

n

n∑
i=⌈n+1

2 ⌉
f(xi)

√
1− x2i , xi = cos

(
π

n

(
i− 1

2

))
, (4.80)

and obtain an approximate value of the moment mk:

mk ≈
π

Ne

Ne∑
i=⌈Ne+1

2 ⌉
ωk
i

dB(ωi)

dω

√
Ω2

b − ω2
i . (4.81)

However, it turns out that this approximation is poor and the method is not suited
for calculating the moments with k < 0 due to the ωk factor that appears in the
integrand of Eq. (4.68).

In order to test the method for even k ≥ 0, we have again generated synthetic
QRPA matrices A and B and vectors F 20 and F 02, as in Sec. 4.3.1. After ex-
perimenting with various kernels, we have found that for the k = 0 moment, the
best results (in a sense of convergence speed with increasing Nit) are obtained
with Jackson kernel, while for other even k > 0 moments, Dirichlet kernel yields
fastest convergence. In Fig. 4.13 we display the difference between the true value
of the moment mk, for even k ≥ 0, and the value calculated by using the KPM
as a function of the number of iterations Nit. We notice that convergence rate
increases with k and for the k = 0 moment m0 the convergence rate is very slow.
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This behaviour can easily be explained by the structure of the response function
Eq. (4.56). The delta functions δ(ω ± Ωi) are smeared when approximated by
the Chebyshev series and by increasing the number of iterations Nit they become
more narrow. For instance, if Lorentz kernel is used, the smearing is given by
γKPM in Eq. (4.59). For small QRPA eigenfrequencies and insufficient number of
iterations (i.e. too large smearing), approximations of delta functions are smeared
outside the integration interval Eq. (4.68). This problem is less pronounced for
k > 0 because the ωk factor reduces the value of the integrand for small values
of ω. Hence, the convergence will be faster for larger k values and very slow for
k = 0, in accordance with results shown in Fig. 4.13.

We have also verified that moments are calculated correctly if realistic RPA
matrices A and B and vectors F 20, F 02, generated by the skyrme_rpa code, are
used.

In this section we have shown how to efficiently calculate the moments of the
response functionmk for k ≥ −1. We notice that we could generalize our approach,
e.g. to calculate the integrals that include product of the Fermi integral function
fFI(E) and the response function, appearing in the beta-decay rates formulas:

λ =
ln 2

κ

∫ +∞

0

fFI(ω)
dB(ω)

dω
dω =

ln 2

κ

Np∑
i=1

fFI(Ωi)|⟨i|F̂ |0⟩|2. (4.82)

The only difference is that instead of the integrals I(k)n in Eq. (4.75), we would
calculate:

2

π

∫ 1

0

fFI (Ωbx)
Tn(x)√
1− x2

dx. (4.83)

Because the Fermi integral function fFI(E) in the low-energy region is relatively
small, we expect fast convergence in the same way we obtained fast convergence
for even k > 0 moments. Approach using the contour integration of the QFAM
strength function has already been applied on beta-decay rates calculations [62]
and it would be interesting to compare the efficiency of the two approaches on
realistic examples.

4.4 Summary and outlook
In this paper we have proposed an implementation of the kernel polynomial
method, already successfully employed in the solid state physics [55, 64], adapted
for efficient calculation of the QRPA response function. The method is based on
the expansion of the QRPA response function in an orthonormal basis of Cheby-
shev polynomials thus reducing the problem to the evaluation of the expansion
coefficients. In practical calculations the expansion has to be truncated and be-
cause the QRPA response function is essentially a sum of weighted delta functions
one encounters the problem of Gibbs oscillations. Standard procedure to damp
the Gibbs oscillations and improve the precision of the Chebyshev series expansion
is to convolute the response function with various damping kernels, e.g. Jackson
or Lorentz kernel.

The proposed implementation of the KPM has been benchmarked and tested
by comparing the QRPA response function with the one calculated by direct di-
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agonalization of the QRPA matrices or by solving the QFAM equations. Our
results demonstrate that the KPM can reproduce the QRPA and QFAM results
to a high numerical accuracy. However, the efficiency of implementing the KPM
depends significantly on the range of the eigenvalues of the QRPA matrix, i.e.,
broad range of eigenvalues requires a large number of iterations within the KPM
implementation. In the following, we list the main advantages and drawbacks of
implementing the KPM in calculating the QRPA response function.

Advantages of the KPM include:

• The KPM provides the response function on the entire frequency interval
⟨−Ωb,+Ωb⟩4 compared to QFAM which calculates the response for a discrete
set of frequencies.

• If one performs QFAM calculation with very small value of smearing width
γ and frequency ω close to the pole, the linear system (4.1) is ill-conditioned
requiring a large number of iterations to be solved, e.g. by the Broyden
method which is often used for that purpose in QFAM solvers. The proposed
implementation of the KPM circumvents this problem.

• The KPM can be implemented into any available QFAM solver with mini-
mum programming effort.

• If the bounding frequency Ωb is small, i.e. if the eigenfrequencies Ωi are
bounded in a relatively small interval, the method can locate the QRPA poles
with large transition strength much quicker in comparison to the QFAM
approach which can be crucial for many applications.

• The resolution of the standard QFAM calculation is determined by the
smearing γ, i.e., in order to increase the resolution of the response one has
to repeat the entire calculation with smaller value of γ. On the contrary, the
Chebyshev KPM approach requires only larger number of iterations Nit to
obtain a response function with better resolution in terms of smearing γKPM

and there is no need to repeat the entire calculation.

Drawbacks of the KPM include:

• Appearance of the Gibbs oscillations. This problem can be addressed by
introducing damping kernel, e.g. Lorentz kernel. The damping is controlled
by the λ parameter in Eq. (4.44) with large values (e.g. λ ≈ 5) leading to
negligible effects of the Gibbs oscillations. However, according to Eq. (4.59),
increasing the value of the λ parameter requires larger number of iterations
Nit in order to obtain targeted resolution γKPM. Hence, one has to choose
a value of the λ parameter that presents a satisfactory compromise between
sufficient damping of Gibbs oscillations and convergence speed in terms of
resolution γKPM.

• If the poles of the response function Ωi are distributed across large energy
region, i.e. if the bounding frequency Ωb has to be relatively large in order
to include all the poles in the interval ⟨−Ωb,+Ωb⟩, the KPM requires a large
number of iterations Nit in order to produce a satisfactory resolution γKPM.

4Once we calculate the coefficients in the Chebyshev expansion, we can easily evaluate the
approximation of the response function for any given frequency.
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• The KPM cannot be used to calculate the response function in a localized
energy region of interest (e.g. low-energy region up to 20 MeV), but rather
globally on the entire ⟨−Ωb,+Ωb⟩ interval.

• The KPM can not be parallelized since recursion (4.36) operates sequentially.
On the contrary, QFAM calculation can be easily parallelized because the
response for each frequency is calculated independently.

• The KPM calculation diverges in the presence of the imaginary QRPA eigen-
frequency, thus it should be applied only if the ground state corresponds to
the HFB minimum.

Overall, the KPM is better suited for models based on the nonrelativistic EDFs
because in models based on relativistic EDFs the appearance of the Dirac sea
necessitates large values of the bounding frequency. When applied to the models
based on the nonrelativistic EDFs, we believe that the method can significantly
speed up the process of finding the response function with high resolution in terms
of smearing.



Chapter 5

Low-energy cluster modes in N = Z
nuclei

Significant transition strength in light α-conjugate nuclei at low energy, typically
below 10 MeV, has been observed in many experiments. In this Chapter, we
follow Ref. [65] and explore the isoscalar low-energy response of N = Z nuclei.
Depending on the multipolarity of the excitation and the equilibrium deformation
of a particular isotope, the low-energy QRPA strength functions display prominent
peaks attributed to cluster mode structures: α + 12C + α and α + 16O in 20Ne,
12C + 12C in 24Mg. Such cluster modes are favored in light nuclei with large
deformation.

5.1 Background
A number of experiments have observed a significant increase of the E0 strength
at excitation energies below the giant monopole resonance in relatively light nuclei
[66, 67, 68, 69, 70, 71]. Theoretical studies using, e.g., the cluster model [72, 73,
74, 75, 76, 77, 78, 79, 80], or the antisymmetrized molecular dynamics (generally
combined with generator coordinate method (GCM)) [81, 82, 83, 84, 85], consis-
tently interpret these observations as excitations of cluster structures. Cluster
excitations can also occur with higher multipoles [68, 86, 87, 88, 89]. For instance,
a low-energy E1 excitation has been associated with a reflection-asymmetric vi-
bration of an α cluster against the 16O core in 20Ne [80, 83], with a strength that
is enhanced in comparison to similar excitations contributing in the E0 and E2
response.

Valuable information about the structure of a nucleus can be obtained by
analyzing how the system responds to an external perturbation with a given mul-
tipolarity (see, for instance, [90, 91]). A useful theoretical framework for such
studies is provided by RPA and the QRPA which extends the former to super-
fluid systems. QRPA calculations on top of reference mean-field states computed
using EDF, have demonstrated the capacity to describe excitation modes ranging
from tens of keV to tens of MeV [92, 93]. The method has also been extended to
charge-exchange modes [94, 95, 96].

QFAM as a method for solving QRPA problem has been implemented for
Skyrme interactions and relativistic functionals [97, 98]. The Skyrme-based FAM
has been applied to photoabsorption cross sections [99], higher multipole excita-

75
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tion modes [100], giant dipole resonances in heavy nuclei [101], and β-decay stud-
ies [102]. Relativistic EDFs have successfully been used to describe both liquid
and cluster-like nuclear properties [103, 104, 105], starting from nucleonic degrees
of freedom. Recently the multireference implementation of the GCM based on
relativistic EDFs has been employed in the analysis of spectroscopic properties
(energies of excited states, elastic and inelastic form factors) of nuclei with cluster
structures [106, 107]. A QFAM approach based on relativistic EDF is hence ex-
pected to provide an alternative consistent and microscopic description of cluster
modes in nuclei.

Here we perform a systematic calculation of isoscalar multipole (J = 0, 1, 2, 3)
strength in α-conjugate nuclei from 12C to 32S, and analyze the low-energy struc-
ture of the strength functions. The calculations are based on the DD-PC1 parametriza-
tion. The first nucleus to be analyzed is 20Ne whose large equilibrium deformation
favors clusterization, and hence cluster modes are expected to occur at low energy
[16]. It will be shown that the lowest modes correspond to reflection-symmetric
α − 12C − α and reflection-asymmetric α − 16O configurations oscillating around
the axially symmetric deformed equilibrium. The study of 20Ne is extended to
other α-conjugate nuclei, and the evolution of the strength function is analyzed
when the quadrupole moment deformation β of the mean-field reference state is
varied from oblate β < 0 to prolate β > 0 deformations.

5.2 Isoscalar vibrations in 20Ne

5.2.1 Ground state and convergence

We begin our analysis with the isotope 20Ne. The left panel of Fig. 5.1 displays
the prolate deformed β = 0.525 ground-state intrinsic density of 20Ne obtained ob-
tained with the DD-PC1 parametrization. The density exhibits cluster structures
at the outer ends of the symmetry axis with density peaks of 0.2 fm−3, and an
oblate deformed core, reminiscent of a quasimolecular α− 12C−α structure. The
spatial localization and cluster formation in atomic nuclei can also be quantified
by using the localization function C(r), defined in Section 3.1.6. Recall that a
value of the localization measure close to 0.5 signals that nucleons are delocalized,
while a value close to one corresponds to a localized α-like structure at point r
in an even-even N = Z nucleus. The localization function for 20Ne is plotted
in the right panel of Fig. 5.1, and consistently confirms the α-like nature of the
localized structures appearing in the density. Although the normalization of the
localization function is to a certain extent arbitrary [108, 109], there are several
methods that address this issue. Because of the kinetic term, the localization func-
tion usually exhibits a larger spatial extension compared to the density, especially
for lighter nuclei. To enable a more direct comparison, the spatial extension of the
localization function is here rescaled to that of the corresponding intrinsic density.

The isoscalar strength function of the monopole operator
∑A

i=1|ri|2 for 20Ne is
analyzed using the DIRQFAM solver. The calculation has been performed in the
harmonic oscillator basis with Nshells = 10, 12, 14, 16 and 18 oscillator shells. In
Fig. 5.2 we compare the strength functions of the isoscalar monopole operator
for 20Ne, calculated with increasing Nshells from 12 to 18. The low-energy part
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Figure 5.1: The self-consistent equilibrium density of 20Ne (left panel) and lo-
calication function C(r) (right panel) obtained using the RHB model with the
DD-PC1 parameterization of the EDF. Figure taken from Ref. [65].

of the strength function is fully converged even for relatively small values of the
Nshells. However, for higher energies, the strength function displays a pronounced
dependence on the dimension of the harmonic oscillator basis, essentially because
these excitations involve states in the continuum. Therefore, the high-energy
part of the strength function is strongly affected by the details of single-particle
configurations. We note, however, that the centroids of the strength distribution
in the high energy region are much less sensitive to the basis dimension, as shown
in Table 5.1. Since this study is focused on the properties of low-lying states, all
subsequent calculations are performed by using Nshells = 14 oscillator shells.

Table 5.1: Centroids of the monopole strength function (see. Fig. 5.2) defined as
the ratio of moments m1/m0. The moments of the strength function are mk =∫
EkS(E)dE. The Ēlow and Ēhigh centroids are calculated in the energy intervals

10 MeV ≤ E ≤ 22.5 MeV and 22.5 MeV ≤ E ≤ 35 MeV.

Nshells Ēlow Ēhigh

10 18.4 27.0
12 18.1 27.0
14 18.1 27.3
16 18.0 27.6
18 18.1 28.0
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Figure 5.2: Evolution of the monopole strength function in 20Ne with the size of
the harmonic oscillator basis. Figure taken from Ref. [65].

5.2.2 Isoscalar response and density vibrations

Figure 5.3 displays the strength functions for the QFAM response to the isoscalar
monopole [panel (a)], isoscalar dipole [panel (b)], isoscalar quadrupole [panel (c)],
and isoscalar octupole [panel (d)] operator. In addition to the K = 0 compo-
nents, for the multipoles J = 1, 2, 3 we also plot the contributions of the higher-
K projections separately, as well as the total strengths. For the quadrupole
K = 1+ strength distribution one notices the appearance of the spurious state
related to the breaking of rotational symmetry, and also the ordering of the
K = 0+, K = 1+, K = 2+ peaks in the high energy region above 15 MeV is
consistent with the prolate deformed ground state of 20Ne. Although all strength
distributions exhibit pronounced fragmentation in the E ≥ 10 MeV region, a
sizable portion of strength is located at E ≈ 7 MeV. We have verified that for
all multipoles these low-energy peaks are stable with respect to the number of
oscillator shells used in the basis expansion.

The nature of the low-energy excitations can be analyzed by considering the
corresponding transitions densities. Recall the time-dependent density (see Eq.
(3.98)) reads:

ρv(r, t) = ρ0v(z, r⊥) + 2ηRe
[
e−iωtδρv(z, r⊥, ω)

]
cosKφ, (5.1)

where ρ0v(z, r⊥) denotes the axially symmetric ground-state density and δρv(z, r⊥, ω)
is the transition density at a given excitation energy ω. Recall that η corresponds
to the small parameter used in the QFAM linearization (see Eq. (2.68)). We note
that for the K = 0 modes, the time-dependent densities are axially symmetric
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Figure 5.3: 20Ne strength distribution functions for the QFAM response to the
isoscalar monopole (a), isoscalar dipole (b), isoscalar quadrupole (c), and isoscalar
octupole (d) operator. For J > 0 multipoles, the correspondingK = 0 (solid blue),
K = 1 (dashed red), K = 2 (dot-dashed green), and K = 3 (dotted orange) are
potted separately. The thin dashed curves denote the total strength. Figure taken
from Ref. [65].
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Figure 5.4: Snapshots of the 20Ne density and localization function at energy
ω = 6.75 MeV induced by monopole perturbation. Time increases from top to
bottom. The horizontal black lines represent the position of the center of mass of
the cluster in the ground state. Figure taken from Ref. [65].

Figure 5.5: Same as Fig. 5.4 but for the octupole perturbation (K = 0 component)
at energy ω = 7.65 MeV. Figure taken from Ref. [65].
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ρv(r, t) = ρv(z, r⊥, t), hence it is sufficient to study their behavior in the xz plane.
Figures 5.4 and 5.4 display the snapshots of the time-dependent density in the xz
plane for the low-energy modes induced by monopole and octupole (K = 0) com-
ponent. Time increases from the top to the bottom, with the time step ∆t = T/4,
where T = 2π/ω is the period of oscillations. For visualization purposes, the pa-
rameter η equals 0.05 for the monopole and 0.005 for the octupole perturbation,
respectively. The large value of the intrinsic equilibrium deformation of 20Ne leads
to cluster formation already in its ground state, and one finds that clusters present
at the initial time step move towards the center where they are diluted with re-
spect to the core density, before being reformed as a cluster for both modes shown
in Figs. 5.4 and 5.5. Furthermore, two different types of modes are observed: i)
the two α clusters against the 12C core for the J = 0 reflection-symmetric mode,
ii) an α cluster oscillates against the 16O core for the J = 3 reflection-asymmetric
mode. To make these modes more explicit and emphasize the cluster aspect of the
excitation, recall the time dependant localization [108] function computed using
the QFAM approach (see Eq. (3.77)):

C(r, t) = C0(z, r⊥) + 2ηRe
[
e−iωtδC(z, r⊥, ω)

]
cosKφ+O(η2), (5.2)

where C0(z, r⊥) denotes the ground state localization function shown in Fig. 5.1 for
20Ne and δC(z, r⊥, ω) the transition localization. The snapshots of the localization
are plotted on the right hand-side of each panel of Figs. 5.4 and 5.5. For the
monopole excitation illustrated in Fig. 5.4, the two α-like structures, characterized
by a value of the localization close to one, are clearly concentrated at the poles, and
one follows their oscillations against the core. In the case of octupole vibrations
shown in Fig. 5.5, only one α-like cluster [white area with C(r, t) ≈ 1] can be
traced during the oscillation period. In general, however, this excitation will also
contain isoscalar dipole admixtures.

The two-dimensional intrinsic transition densities δρ(z, r⊥, ω) can be projected
onto good angular momentum to yield the transition densities in the laboratory
frame of reference. For a particular value of the angular momentum J ≥ K, the
two-dimensional projected transition density can be approximated using its radial
part by:

δρJtr(r) = δρJtr(r)YJ,K(Ω), (5.3)

with the radial part defined as:

δρJtr(r) =

∫
dΩδρ(z, r⊥, ω)Y

∗
J,K(Ω). (5.4)

Figure 5.6 compares the radial parts of the angular-momentum-projected transi-
tion densities δρJ=0

tr (r), δρJ=2
tr (r) and δρJ=4

tr (r) that correspond the the low-energy
peak of the isoscalar monopole response in 20Ne. The real and imaginary parts of
the transition density are displayed in the left and right panels, respectively. For
the real parts we note the characteristic node of the transition density close to the
position of the rms radius. The radial parts of the angular-momentum-projected
transition densities δρJ=1

tr (r), δρJ=3
tr (r) and δρJ=5

tr (r) that correspond the the low-
energy peak of the isoscalar octupole response are shown in Fig. 5.7. In contrast
to the volume monopole mode, the isoscalar octupole transition densities exhibit
the predominantly surface nature of the octupole mode.
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Figure 5.6: Radial parts of the angular-momentum projected transition densities
that correspond to the low-energy peak of the isoscalar monopole response of 20Ne.
The real and imaginary parts of the transition density are shown in the left and
right panels, respectively. The ground state rms radius is indicated by the vertical
dashed line. Figure taken from Ref. [65].

Figure 5.7: Same as Fig. 5.6 but for the isoscalar octupole response (K = 0
component). Figure taken from Ref. [65].
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5.2.3 Two-quasiparticle contributions

It is instructive to decompose the excitation modes in terms of two-quasiparticle
(2-qp) contributions [110]. This can be achieved by using the contour integra-
tion procedure introduced in Section 3.1.7. Recall that the individual QRPA
eigenamplitudes X i

µν and Y i
µν corresponding to the excitation mode with QRPA

eigenfrequency Ωi are calculated as:

X i
µν = e−iθi|⟨i|F̂ |0⟩|−1 1

2πi

∮
Ci

Xµν(ωγ)dωγ, (5.5)

Y i
µν = e−iθi|⟨i|F̂ |0⟩|−1 1

2πi

∮
Ci

Yµν(ωγ)dωγ, (5.6)

where Ci is the contour in the complex energy plane that encloses the first-order
pole on the real axis at ωγ = Ωi. We note that the common phase eiθi remains
arbitrary. The individual 2-qp contributions to some particular excitation mode i
can be quantified by the following quantity:

ξi2qp = |X i
2qp|2−|Y i

2qp|2. (5.7)

The difference in previous norm originates from QRPA natural metrics given by

matrix
[
I 0
0 −I

]
.

Figure 5.8 displays in a schematic way the most important neutron 2-qp contri-
butions to the isoscalar monopole excitation at energy ω = 6.7 MeV. The single-
particle levels correspond to the diagonal matrix elements of the single-particle
Hamiltonian in the canonical basis, and the occupation numbers are the eigen-
values of the density matrix. We have obtained almost identical results for the
proton contributions. Obviously this excitation is only very weakly collective with
just a few relevant 2-qp contributions. Among them, by far the most significant is
the transition from the almost fully occupied 1/2+ state that originates from the
spherical 1d5/2 shell, to the unoccupied 1/2+ state based on the spherical 2s1/2
shell. Such a 2-qp excitation can be considered in the context of spontaneous
breaking of rotational symmetry which captures in an economic way nontrivial
correlations as the source of collective behavior of the nucleus. This spontaneous
breaking of rotational symmetry leads to the appearance of new excitation modes
commonly referred to as a density wave [111]. Density waves are related to the
variation of the modulus of the order parameter of the broken symmetry.

5.2.4 Deformation effects

Large deformations favor the formation of clusters [112, 113] and the previous
discussion also suggests that there is a close link between cluster modes and nuclear
deformation. The evolution of the low-energy cluster modes with deformation can
be studied in more detail by performing a deformation-constrained calculation. In
Fig. 5.9 we display the isoscalar monopole strength in 20Ne for several values of
the axial quadrupole constraint, from β = 0.275 to β = 0.625. The dashed curve
(β = 0.525) corresponds to the strength distribution built on top of the mean-field
equilibrium deformation. Significant strength in the region ω ≈ 5− 7 MeV begins
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Figure 5.8: Schematic illustration of the most important neutron 2-qp contribu-
tions to the isoscalar monopole excitation at energy ω = 6.7 MeV in 20Ne. The
area and the number below represent the fraction of the total ξi2qp (see Eq. (5.7))
for this particular excitation. The Ωπ quantum numbers are listed on the right of
the figure. The associated partial densities are also plotted for each of the config-
urations as well as the total density in the background. The Fermi level is shown
as a red dash-dotted line. Occupation number of each state is color coded, notice
the logarithmic scale. Figure taken from Ref. [65].

to appear at β ≈ 0.2 and, with increasing deformation, the fragmented strength
evolves towards a single peak at slightly higher energy.

The appearance of cluster modes can be related to the structure of single-
nucleon levels in the canonical basis. In the upper panel of Fig. 5.10 we display
the two largest neutron 2-qp contributions to the low-lying cluster mode at the
energy corresponding to a given constrained deformation (see also caption to Fig.
5.8). The lower panels show the evolution of the single-particle energies and oc-
cupation probabilities in the canonical basis. As the deformation increases the
1d5/2 spherical shell splits into three levels: 1/2+ , 3/2+ , and 5/2+. In particular,
the occupation probability for the 1/2+ level increases with deformation thus en-
abling hole-particle excitations to the 1/2+ states originating from the spherical
2s1/2 and 1d3/2 shells. We note that the occupation of the 1/2+ level based on the
1d5/2 spherical shell is, of course, also responsible for the formation of clusters in
the ground state of 20Ne. As shown in Fig. 5.10, the lowest deformation for which
the low-energy monopole excitation is obtained is β ≈ 0.2, which coincides with
the intersection of the 1/2+[400] level and the Fermi level. A further increase of
deformation between β = 0.4 and β = 0.5 leads to a rearrangement of the con-
tribution of the levels 1/2+[110] and 1/2+[301] to the QFAM transition strength.
The contribution of these levels to the total strength increases from 25% to more
than 40%.

The very low-energy excitation at ω ≈ 2 MeV (see Fig. 5.3) can also be
understood from the 1d5/2 splitting. It turns out that this excitation can be
attributed to a pure pairing effect due to the partial filling of the 1/2+[400] and
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Figure 5.9: The low-energy isoscalar monopole strength distribution in 20Ne iso-
tope. The QFAM response is calculated for several constrained values of the axial
quadrupole deformation β, and the dashed curve corresponds to the equilibrium
deformation β = 0.525. Figure taken from Ref. [65].

3/2+[301] levels. They are competing between β = 0 and β = 0.5, at which
deformation the 1/2+[400] becomes fully occupied. Between these deformations,
and because these levels are very close to the Fermi energy, pairing excitations can
occur, depending on the pairing gap as well as the quasiparticle energies.

5.3 Monopole response of 24Mg, 28Si and 32S
In this section we extend the analysis of low-lying isoscalar monopole QFAM
response to 24Mg, 28Si and 32S. Figure 5.11 displays the corresponding isoscalar
monopole strength functions for several values of the axial quadrupole constraint
β. One notices the appearance of the low-energy and large prolate deformation
peak of the strength distribution for all isotopes shown in Fig. 5.11, similar to
the results obtained for 20Ne in the previous section. We have also performed
corresponding calculations for other light and medium-heavy N = Z nuclei, from
12C to 56Ni. The appearance of low-energy strength is much less pronounced for
isotopes in the vicinity of doubly closed shells.

The structure of the strength distributions can be analyzed by considering the
principal 2-qp contributions, displayed in Fig. 5.12. We have selected several
low-energy peaks in 24Mg, 28Si, and 32S, and the results again indicate that these
low-energy excitations are primarily determined by a single 2-qp excitation. In
24Mg we obtain two peaks, one at ≈ 7 MeV and a second one at ≈ 10 MeV,
that have already been observed in experiment [114]. Similar to the case of 20Ne,
the lower state in 24Mg (first column of Fig. 5.12) is mainly determined by the
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Figure 5.10: Evolution of the leading neutron 2-qp contributions to the low-energy
monopole mode with constrained deformation (upper panel). The lower panel
shows the evolution of the single-particle energies (left) and occupation number
(right) in the canonical basis with deformation. The vertical black lines denote
the transitions that correspond to the prinicipal 2-qp contribution shown in the
upper panel. The thick black curve denotes the Fermi level. Figure taken from
Ref. [65].

transition between the 1/2+ states originating from the 1d5/2 spherical shell (hole-
like) and 2s1/2 spherical shell (particle-like). The addition of two neutron and two
protons leads to the appearance of the second mode at excitation energy ω = 10.03
MeV (second column of Fig. 5.12). This excitation, involving two large clusters
(12C + 12C), is determined by the transition between the 3/2+ states originating
from the 1d5/2 spherical shell (hole-like) and 1d3/2 spherical shell (particle-like).
While for 20Ne the 3/2+[301] state was not occupied, two more particles in 24Mg
start filling the 3/2+[301] state with the occupation probability approaching 1 for
β ≈ 0.7. Hence, the mechanism that drives the low-energy excitations in 24Mg
isotope is generally the same as for 20Ne. The splitting of the spherical 1d5/2
and 1d3/2 levels with deformation allows now for two transitions, one between
Ωπ = 1/2+ states, and another between Ωπ = 3/2+ states. Similar arguments
apply to other low-energy excitations shown in Fig. 5.12.



CHAPTER 5. LOW-ENERGY CLUSTER MODES 87

Figure 5.11: Low-energy isoscalar monopole strength distribution in N = Z nu-
clei: 24Mg, 28Si and 32S. The QFAM response is calculated for several values of
constrained axial quadrupole deformation β, and the dashed curves correspond to
the equilibrium deformation for each nucleus. Figure taken from Ref. [65].

Figure 5.12: Upper panel: leading neutron 2-qp contributions to the low-energy
monopole modes in 24Mg, 28Si and 32S isotopes. Lower panel: snapshots of the
corresponding density. Figure taken from Ref. [65].



Chapter 6

Quasiparticle-vibration coupling in
deformed nuclei

Starting from a general many-body fermionic Hamiltonian, the resulting equa-
tion of motion of the Dyson type can be formulated for nucleonic propagators in
a superfluid systems via the basis of Bogoliubov’s quasiparticles. As the lead-
ing contributions to the dynamical kernel of this equation of motion in strongly-
coupled regimes contain phonon degrees of freedom in various channels, an efficient
method for calculating phonon’s characteristics is required to successfully model
these kernels. The traditional quasiparticle random phase approximation solvers
are typically used for this purpose in nuclear structure calculations, however, they
become very prohibitive in nonspherical geometries.

By linking the notion of the quasiparticle-vibration coupling (qPVC) vertex to
the variation of the Bogoliubov’s Hamiltonian, we show that the DIRQFAM solver
can be efficiently employed to compute the vertices within the QFAM approach.
The workflow for calculating the qPVC contribution is depicted in Fig. 6.1. In
the first step the deformed ground-state calculation is performed within the RHB
framework using axially symmetric DIRHB solver [1]. On top of that deformed
ground-state, in the second step the DIRQFAM solver [2] is used to find the QRPA
response function of phonons with various multipolarity J and 0 ≤ K ≤ J . The
most significant phonon spectrum is localized and the qPVC vertices are extracted.
In the final third step, the Dyson equation is constructed using the data obtained
in the first two steps. Solution of the Dyson equation yields the fragmentation of
quasiparticle spectra and spectroscopic factors.

qPVC calculation was performed in collaboration with nuclear physics group
from Michigan. We provided the first two parts (RHB+QRPA) of the workflow,
while the Michigan group dealed with the third step and interpretation of the final
results. In this chapter, we briefly summarize the qPVC formalism and present the
results from Ref. [115]. To illustrate the validity of qPVC method, calculations
based on the relativistic density-dependent point-coupling DD-PC1 Lagrangian
are performed for the single-nucleon states in heavy and medium-heavy nuclei
with axial deformations. Here the case of 38Si is presented and discussed. Details
regarding the formalism for the fermionic quasiparticle propagator in a superfluid
fermionic system can be found in Ref. [116].
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Figure 6.1: Workflow for calculating the qPVC. First the deformed ground state
calculation is performed within the RHB framework. On top of that RHB ground
state, QFAM is used to find the QRPA response function of phonons with various
multipolarity J,K. Most significant phonon spectrum is localized and the coupling
vertices are extracted. Finally, the Dyson equation is constructed and solved which
yields the spectra and spectroscopic factors.

6.1 Introduction
Theoretical description of nuclear shell structure and response remain challeng-
ing aspects of nuclear physics for decades. The nuclear shell model pioneered by
M. Goeppert-Mayer [117] and J.H.D. Jensen [118] and later promoted by them
to the inclusion of nuclear pairing has provided the essential building blocks for
understanding the fermionic motion in medium-mass and heavy nuclei. The
paradigm of the mean-field dominating higher-rank fermionic correlations was
developed throughout further decades into the sophisticated microscopic self-
consistent mean-fields linked to the density functional theory [119, 120], which
are capable of reproducing the experimentally established nuclear shells, both
spherical and deformed, reasonably well.

With the advent of the radioactive beam facilities, the concept of firm nuclear
shells and well-defined magic numbers associated with the enhanced stability of
closed-shell nuclei started to change. It turned out, in particular, that the unsta-
ble systems with exotic neutron-to-proton ratios may exhibit the magic numbers,
which are different from those in stable nuclei. This phenomenon is studied exten-
sively, both experimentally and theoretically, and there are indications that it can
be associated with the enhanced role of beyond-mean-field correlations in exotic
nuclear systems. Although the criteria of magicity are not unambiguously defined
and can be associated with the shell gaps, the peculiarities in the systematic be-
havior of the lowest quadrupole states or charge radii, the idea of violation of
magic numbers in nuclei with extreme neutron-to-proton ratios is widely accepted
[121].

As the most successful density functionals are based on a considerably reduced
effective nucleon mass, as compared to its bare values, they typically underes-
timate the fermionic level densities and overestimate the respective occupation
probabilities. The inclusion of correlations beyond the mean-field helps resolving
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these deficiencies and can be done by taking into account the dynamical part of
the nucleonic self-energy, which arises from the model-independent equations of
motion for the in-medium fermionic propagator [122] and which is neglected in the
DFT. This leads to the fragmentation of the mean-field states and the densifying
of the single-particle spectra [123, 124, 125, 126, 127, 128].

The important ingredients for the dynamical selfenergy in the leading approx-
imation are the particle-vibration coupling (PVC) vertices and the frequencies of
the vibrational modes (phonons). In the EDF-based self-consistent approaches
they can be calculated within the QRPA approach. This strategy based on the
traditional QRPA diagonalization solvers works reasonably well for spherically-
symmetric nuclear systems, however, it becomes very prohibitive for calculations
in non-spherical geometries. This fact limited the existing applications of the
EDF-PVC method to only spherical nuclei.

Here we present the first results of the approach designed to overcome this
limitation. We employ the QFAM method to solve the relativistic QRPA equations
in the deformed Dirac-Hartree-Bogoliubov basis for the variations of the fermionic
density and extract the qPVC vertices by linking these solutions to the fermionic
dynamical self-energy.

6.2 Formalism
To accurately account for the superfluid pairing correlations, we start from gen-
erating the equation of motion for the single-quasiparticle in-medium propagator.
After proceeding for the anomalous fermionic Green functions analogously to that
for the normal ones as in Ref. [122], we obtain the Dyson equation in the quasi-
particle basis:

G(η)
µν (ε) = G̃(η)

µν (η)(ε) +
∑
µ′ν′

G̃
(η)
µµ′(ε)Σ

e(η)
µ′ν′(ε)G

(η)
ν′ν(ε), (6.1)

where the basis states |µ⟩ and |ν⟩ are the eigenstates of the Dirac-Hartree-Bogoliubov
Hamiltonian and the upper index η = ±1 stands for the upper and lower compo-
nents in the Nambu space. The uncorrelated G̃(η) and the correlated G(η) quasi-
particle propagators in Eq. (6.1) are, respectively:

G̃(η)
µν (ε) =

δµν
ε− η(Eµ − iγ)

, (6.2)

G(η)
µν (ε) =

∑
n

S
(η)n
µν

ε− η(En − iγ)
, (6.3)

where Eµ are the quasiparticle energies and En are the energies of the final corre-
lated quasiparticle states |n⟩. As the solutions of Eq. (6.1) for η = ±1 lead to the
same En and S

(+)n
µν = S

(−)n
µν , solving one of the two equations (6.1) is sufficient.

Focusing on the component η = +1, we need to specify the dynamical self-energy
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Σe(+) which, in the leading approximation for the strong coupling regime, reads:

Σe(+)
µν (ε) =

∑
µ′,i

 Γ
(11)i
µµ′

(
Γ
(11)i
νµ′

)∗
ε− Eµ′ − Ωi + iγ

+

(
Γ
(02)i
µµ′

)∗
Γ
(02)i
νµ′

ε+ Eµ′ + Ωi − iγ

 , (6.4)

where the vertices Γ(11),Γ(02) are related to the components of the variation of the
single-quasiparticle Hamiltonian in the external field as:

Γ(11)i
µν = lim

γ→0

√
γ

πS(Ωi + iγ)
Im
[
δH(11)

µν (Ωi + iγ)
]
, (6.5)

Γ(02)i
µν = lim

γ→0

√
γ

πS(Ωi + iγ)
Im
[
δH(02)

µν (Ωi + iγ)
]
. (6.6)

Variation of the induced Hamiltonian, defined within QFAM in Eq. (2.73), is taken
at the QRPA eigenfrequencies Ωi. Further details are provided in Ref. [116].

6.3 Calculation details
The numerical implementation of the approach described above is based on the
QFAM solver DIRQFAM, which is employed to generate the quasiparticle-phonon
model space in axial geometry. The RHB equations for the stationary fermionic
basis states resulting from the relativistic point-coupling Lagrangian were solved
by expanding the Dirac spinors in terms of eigenfunctions of an axially symmet-
ric harmonic oscillator potential. Ten major oscillator shells were used in the
calculations. The density-dependent point-coupling interaction DD-PC1 and the
finite-range pairing force with D1S parametrization in the separable form were
employed in the calculations. The imaginary part γ = 0.1 MeV of the frequency
argument ω was employed to eliminate the divergencies of the subsequently com-
puted strength distribution S(ω+iγ) at the QRPA eigenfrequencies Ωi. This value
of γ is sufficiently small for the extraction of the qPVC vertices by Eqs. (6.5) and
(6.6) with a reasonable accuracy. Both normal and pairing phonon modes with
Jπ = 2+, 3−, 4+, 5− and 0 ≤ K ≤ J were included in the quasiparticle dynamical
self-energy (6.4). Although it is technically difficult to extend the calculations
beyond J = 5 at this point, we have found gradually decreasing contributions
from large-J phonons, similarly to the spherical case. Contributions from the
Jπ = 0+ and Jπ = 1− were found negligible. The dynamical self-energy (6.4) was
treated in the diagonal approximation |µ⟩ = |ν⟩, which was found quite accurate
in the calculations for spherical nuclei. It is expected to be a good approxima-
tion also for deformed systems because of destructive interference between the
non-diagonal terms. The phonon frequency cutoff Ωmax = 15 MeV was adopted
for. The phonon modes within each {Jπ, K} family were selected by their reduced
transition probabilities of the electric multipole transitions. The phonons with
the reduced transition probabilities equal or exceeding 10% of the maximal one
were kept in the model space. The quasiparticle intermediate states |µ′⟩ with the
energy differences |Eµ − Eµ′ |≤ 60 MeV were included in the summation of Eq.
(6.4), that ensured its convergence. This calculation scheme allowed us to include
the leading contributions to Eq. (6.4) and it is justified by the preceding qPVC
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Figure 6.2: The Jπ = 2+ and Jπ = 3− low-energy isoscalar strength functions
for varying quadrupole deformation in 38Si computed with DIRQFAM solver. The
smearing parameter γ = 0.1 MeV was used in the calculations. Figure taken from
Ref. [115].

calculations for medium-heavy spherical nuclei [126, 127, 128].
Figure 6.2 displays the QFAM response to isoscalar Jπ = 2+ and Jπ = 3−

in 38Si, illustrating their evolution with quadrupole deformation parameter β. In
the approaches based on effective nucleon-nucleon interactions, QRPA provides a
reasonable description of both low-energy and high-energy collective states. Al-
though the observed response indicates that correlations of higher complexity than
those of QRPA are needed to describe the excitation spectra [129, 130], QRPA
phonons are sufficient to capture the leading qPVC effects in both the one-fermion
and two-fermion self-energies. This point was investigated and confirmed explic-
itly in Ref. [131] in beyond-QRPA calculations based on the Skyrme EDF. In ab
initio frameworks based on the bare nucleon-nucleon interaction QRPA, however,
produces too unrealistic results for the nuclear response and, thus, for the phonon
modes, so that higher-complexity approaches beyond QRPA should be employed
[132, 133, 134]. Fully ab initio solutions for fermionic equation of motion, remain
tasks for future research.

After obtaining the spectra of quasiparticles and phonons, the matrix elements
δH(11) and δH(02) were retrieved at the energies corresponding to the QRPA eigen-
frequencies. Subsequently, the qPVC vertices were extracted with the aid of Eqs.
(6.5) and (6.6) for the selected phonon modes. This information was then used
for constructing the dynamical self-energy of Eq. (6.4). With this input, the
Dyson equation (6.1) was solved by the ordinary diagonalization procedure. In
this work we focused on the quasiparticle states located within ±10 MeV energy
window around the Fermi energy, and Eq. (6.1) was solved separately for each of
these states. The spectroscopic factors were determined via the derivatives of the
dynamical self-energy at the poles of the resulting quasiparticle propagator:

S(η)n
µν =

[
δµν −

dΣ
e(η)
µν (ε)

dε

∣∣∣
ε=ηEn

]−1

. (6.7)
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Figure 6.3: Single-particle energies (SPE) and strength of the neutron states in
the axially deformed 38Si obtained in the RHB+qPVC calculations (thick bars) in
comparison with the RHB reference states (thin bars). The vertical dash-dotted
line denotes the RHB Fermi energy. Figure taken from Ref. [115].

6.4 Results
Figure 6.3 displays the correlated neutron quasiparticle states obtained in the
RHB-qPVC calculations for the neutron-rich nucleus 38Si with the self-consistent
prolate deformation β = 0.31. The thick bars represent the fragments of the
final quasiparticle states located at λ ± En, i.e., above (below) the RHB Fermi
energy λ if their RHB occupancies are smaller (greater) than 0.5. Their heights
correspond to the spectroscopic factors of these states in the canonical basis. The
RHB reference states at energies λ±Eµ are given by the thin bars with the unity
hight. The comparison between the thin and thick bars reveals the effects of the
qPVC in the nucleonic dynamical self-energy on the quasiparticles. One can see
that a remarkable fragmentation occurs already at the Fermi surface indicated by
the dash-dotted line. The analytic structure of the dynamical self-energy Σ

e(η)
µµ′ (ε)

implies that each RHB basis state |µ⟩ splits into a large number of fragments
corresponding to the number of terms in Eq. (6.4). The first, forward-going,
term is responsible for the main qPVC effect and the second, backward going
one, is the counter term famously associated with the ground state correlations,
which reduce the qPVC. As a result, the major part of the obtained correlated
quasiparticle states are represented by a few competing fragments as, for instance,
the states 1/2+[010], 1/2−[110], 3/2+[002] and 3/2−[201]. These states are charac-
terized by the presence of two or three fragment with comparable spectroscopic
factors S(±)n

µµ of the order of 0.1-0.2 units. This is a new feature as compared to
the previously studied spherical nuclei, where typically a dominant fragment with
large spectroscopic factor can be extracted for the states at the Fermi energy, with
the most pronounced dominance in closed-shell systems. The axial deformation,
together with the superfluid pairing correlations in deformed open-shell nuclei,
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Figure 6.4: The Nilsson diagram for 38Si extracted from the RHB calculations
(top) and from the RHB-qPVC calculations (bottom). Figure taken from Ref.
[115].

induce a considerably stronger fragmentation, which can be linked to the fact that
these two effects stipulate the formation of the collective phonon modes at lower
energies. The overall trend is, however, similar to that found for spherical nuclei:
the center of gravity of the major fragments is moving toward the Fermi energy,
with respect to the reference RHB quasiparticle states.

In order to illuminate the effect of deformation, we performed similar calcula-
tions with different values of the deformation parameter −0.5 ≤ β ≤ 0.8, spanning
a wide range from prolate to oblate deformations with the step of ∆β = 0.05. The
results for the dominant fragments, i.e., the fragments with the largest spectro-
scopic factors and with the energies En of the correlated neutron quasiparticle
states are displayed in the bottom panel of Fig. 6.4. Their energies are plotted as
functions of the deformation parameter β and compared to the RHB Nilsson dia-
gram shown in the top panel. The finite width of each color band is proportional
to the value of v2µS

(η)n
µµ and (1− v2µ)S

(η)n
µµ , with v2µ being the RHB occupancies, for

the states below and above the Fermi energy, respectively, as these products rep-
resent the resulting single-particle spectroscopic factors. The noticeably thinner
bands in the case of the RHB-qPVC states indicate the considerable reduction of
the occupancies with respect to the pure RHB calculations, if only one dominant
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fragment is taken into account.
One can see in Fig. 6.4 that both the energies and the occupancies of the dom-

inant fragments show notable variations with the deformation parameter. First of
all, we emphasize that for the vanishing deformation parameter the calculations in
the axial symmetry yield the correct limit, which is verified by the degeneracy of
the quasiparticle states at β = 0 reproduced with good accuracy. The occupancies
of the dominant fragments are maximized at the spherical shape. The next ob-
servation is the additional oscillations of the positions of the dominant fragments
on the energy scale with respect to the relatively smooth evolution of the RHB
states with the deformation. Such oscillations are attributed to the evolution of
the low-energy collective phonon modes, which play the major role in the qPVC,
with deformations. The corresponding isoscalar strength functions for Jπ = 2+

and Jπ = 3− in 38Si shown in Fig 6.2 illustrate this evolution. We observe, for
instance, the disappearance of the J = 2 low-lying states with K = 0 and the
simultaneous appearance of the J = 2 and J = 3 low-energy modes with K = 1 as
well as the J = 2, K = 2 one in the interval 0.3 ≤ β ≤ 0.6, while the J = 2, K = 0
mode reappears again at β = 5.5. Similar irregularities are observed in J = 4 and
J = 5 channels. The non-smooth behavior of quite a few dominant quasiparticle
states in this interval is a direct consequence of these irregularities in the phonon
spectra. Remarkably, this effect gives rise to the formation of the new shell closure
with the neutron number N = 12 at β ≥ 0.5.



Chapter 7

Summary and future work

In the presented work the Quasiparticle Random Phase Approximation built on
top of the basis of a relativistic Hartree-Bogoliubov model has been formulated.
The RHB model provides a unified description of mean field and pairing correla-
tions, making it an ideal tool for the study of nuclei over the entire nuclear chart.
The RHB+QRPA model employed in this work is fully self-consistent. For the
interaction in the particle-hole channel two different energy density functionals
were used, the RMF functional DD-ME2 with density-dependent meson-nucleon
coupling constants and the RMF functional DD-PC1 with density dependent point
couplings. Pairing correlations are described by a force separable in momentum
space.

Described RHB+QRPA solver has been implemented in a form of DIRQFAM
software package which calculates the multipole response of even–even axially sym-
metric deformed nuclei by using the Quasiparticle Finite Amplitude Method built
on top of the self-consistent mean-field ground state with constrained quadrupole
deformation. The presented DIRQFAM solver solves the QFAM equations by ex-
panding the QFAM amplitudes in a basis of eigenstates of axially symmetric har-
monic oscillator and the simplex-y operator. The exceptional performance of the
solver allows systematic studies of collective model even in medium-heavy and
heavy deformed nuclei. Applicability of the developed DIRQFAM solver has been
demonstrated in this work on two case studies.

First is the systematic analysis of low-lying multipole response in deformed
N = Z nuclei. It has been shown that the low-energy modes correspond to
cluster modes for all considered isoscalar multipole operators. In particular, in
20Ne the monopole and quadrupole operators induce two α-cluster modes around
the 12C core, while the dipole and octupole operators induce an α-cluster mode
with respect to the 16O core. The appearance of cluster modes is closely related
to the structure of single-nucleon levels in the canonical basis and, in particular,
to the splitting of the 1d5/2 spherical shell. The monopole response is governed
predominantly by the transition from the 1/2+ state originating from the spherical
1d5/2 shell to the 1/2+ state that corresponds to the spherical 2s1/2 shell.

In second application, we approximated the superfluid phonons by the rel-
ativistic QRPA, that provides efficient computation of the phonon frequencies
and the quasiparticle-vibration coupling vertices, which are incorporated into the
Dyson equation for the nucleonic propagator. The approach is formulated in the
basis of Dirac-Hartree-Bogoliubov quasiparticles and implemented for open-shell
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nuclei with axial deformations. The analysis of the solution obtained for the
medium-light neutron-rich nucleus 38Si reveals a significant fragmentation of the
quasiparticle states around the Fermi level and an increase of the level densities in
both neutron and proton subsystems. This improves considerably the agreement
with experimental data for axially-deformed nuclei as compared to the mean-field
approximation.

In addition to QFAM implementation and its applications we presented a new
KPM method to calculate the QRPA response by expanding the response function
in Chebyshev series. The coefficient for the Chebyshev series can be evaluated ef-
ficiently by utilizing the same module used in any QFAM solver. To avoid the
Gibbs oscillation phenomenon when truncating the Chebyshev series, the coeffi-
cients of the series are adjusted by multiplying with the kernel coefficient. The
bounding frequency is one of the input parameters of the KPM method, and
all the QRPA eigenfrequencies have to be below the bounding frequency. The
bounding frequency has to be larger for the relativistic EDFs than for the non-
relativistic EDFs because the QRPA includes the excitation from the Dirac sea. It
was demonstrated that KPM method can significantly reduce the computational
cost for finding the QRPA response function especially for the non-relativistic
EDFs.

Lessons learned regarding the QFAM implementation for axially symmetric nuclei
presented in this work will provide valuable insight for future efforts. For exam-
ple, microscopic description of spontaneous fission is one of the most challenging
subjects in nuclear physics. It is necessary to evaluate the collective potential and
the collective inertia along a fission path for a description of quantum tunneling
in spontaneous or low-energy fission. In past studies of the fission dynamics based
on nuclear EDF theory, the collective inertia has been evaluated with the crank-
ing approximation, which neglects dynamical residual effects. The QRPA is used
to evaluate the collective inertia along a fission path obtained by the deformation
constrained Hartree-Bogoliubov method with dynamical residual effects taken into
account. The QFAM method with a contour integration techniques enables us to
efficiently compute the collective inertia in a large model space. In a recent study
[135] the QFAM-QRPA collective inertia has been evaluated along a symmetric
fission path in 240Pu and 256Fm. The QFAM-QRPA inertia is significantly larger
than the one of the cranking approximation and shows pronounced peaks around
the ground state and the fission isomer. This is due to dynamical residual effects.
Ref. [135] is a starting point for a systematic study of fission dynamics in heavy
and superheavy nuclei with microscopical descrption of nuclear large-amplitude
collective motions. Future efforts accompanying this work would ideally follow
that same pattern, i.e. an implementation of triaxially deformed extension of
DIRQFAM solver would be the first relativistic solver to calculate the collective
inertia parameters.
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function are mk =

∫
EkS(E)dE. The Ēlow and Ēhigh centroids are

calculated in the energy intervals 10 MeV ≤ E ≤ 22.5 MeV and
22.5 MeV ≤ E ≤ 35 MeV. . . . . . . . . . . . . . . . . . . . . . . . 77
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Appendix A

QFAM Appendix

A.1 Transformation to simplex-y basis
The following transformation between the quasiparticle spinors in HO basis (used
for solving the RHB model in ground state) and simplex-y HO basis (used to solve
the QFAM equations) hold:

f
(uµ)

(nz ,nr,+Ω− 1
2)

= +1× f (Uµ)

(nz ,nr,Ω− 1
2
,ms=+ 1

2)

f
(uµ)

(nz ,nr,−Ω− 1
2)

= +i× f (Uµ)

(nz ,nr,Ω+ 1
2
,ms=− 1

2)

g
(uµ)

(nz ,nr,+Ω− 1
2)

= +i× g(Uµ)

(nz ,nr,Ω− 1
2
,ms=+ 1

2)

g
(uµ)

(nz ,nr,−Ω− 1
2)

= +1× g(Uµ)

(nz ,nr,Ω+ 1
2
,ms=− 1

2)

, (A.1)

f
(vµ)

(nz ,nr,+Ω− 1
2)

= −1× f (Vµ)

(nz ,nr,Ω− 1
2
,ms=+ 1

2)

f
(vµ)

(nz ,nr,−Ω− 1
2)

= −i× f (Vµ)

(nz ,nr,Ω+ 1
2
,ms=− 1

2)

g
(vµ)

(nz ,nr,+Ω− 1
2)

= −i× g(Vµ)

(nz ,nr,Ω− 1
2
,ms=+ 1

2)

g
(vµ)

(nz ,nr,−Ω− 1
2)

= −1× g(Vµ)

(nz ,nr,Ω+ 1
2
,ms=− 1

2)

. (A.2)

The wave functions on the left-hand side of eqs. (A.1) and (A.2) are expanded
in the basis defined in Eqs. (3.13-3.14), while those on the right-hand side are
expanded in the HO basis. Therefore, one can easily construct the U and V
matrices in the HO simplex-y basis from the ground-state solution represented
in HO basis. We emphasise that the large and small components of the Dirac
spinors in particular simplex block are expanded in the simplex-y eigenfunctions
of opposite eigenvalues.
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A.2 Klein-Gordon equation in cylindrical coordi-
nates

The Klein-Gordon equation for the scalar field and the time-like components of
the vector fields reads: [

−△+m2
ϕ

]
δΦ0(r, ω) = δS0(r, ω), (A.3)

where δΦ0(r, ω) and δS0(r, ω) denote the induced field and the source term, re-
spectively (see Eqs. (3.31-3.33)). The angular dependence of each source terms
originates from the angular dependence of the induced vector or scalar density1

which corresponds to the cosKφ function, i.e.,

δS0(r, ω) = δS0(z, r⊥, ω) cosKφ. (A.4)

One can show that the induced fields inherit the same angular dependence:

δΦ0(r, ω) = δΦ0(z, r⊥, ω) cosKφ. (A.5)

The remaining part of the solution Φ0(z, r⊥, ω) is calculated by solving the equa-
tion: [

−△z,r⊥,K +m2
ϕ

]
δΦ0(z, r⊥, ω) = δS0(z, r⊥, ω). (A.6)

For the space-like components (see Eqs. (3.34-3.35)) of the vector fields, the
Klein-Gordon equation reads:[

−△+m2
ϕ

]
δΦ(r, ω) = δS(r, ω). (A.7)

The angular dependence of the space-like components of the source term includes
both the cosKφ and the sinKφ functions:

δS(r, ω) = δSz(z, r⊥, ω) cosKφ ez + δS⊥(z, r⊥, ω) cosKφ e⊥

+ δSφ(z, r⊥, ω) sinKφ eφ. (A.8)

We express the e⊥ and eφ unit vectors in terms of the Cartesian unit vectors ex

and ey:
e⊥ = cosφ ex + sinφ ey, eφ = − sinφ ex + cosφ ey, (A.9)

thus obtaining:

δS(r, ω) =
1√
2
[+δS1(z, r⊥, ω) cos (K − 1)φ+ δS2(z, r⊥, ω) cos (K + 1)φ] ex

+
1√
2
[−δS1(z, r⊥, ω) sin (K − 1)φ+ δS2(z, r⊥, ω) sin (K + 1)φ] ey

+ δS3(z, r⊥, ω) cosKφez, (A.10)

1Notice that the ground state densities are axially symmetric.
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where we have defined the following quantities:

δS1(z, r⊥, ω) =
1√
2
[+δS⊥(z, r⊥, ω)− δSφ(z, r⊥, ω)] , (A.11)

δS2(z, r⊥, ω) =
1√
2
[+δS⊥(z, r⊥, ω) + δSφ(z, r⊥, ω)] , (A.12)

δS3(z, r⊥, ω) = Sz(z, r⊥, ω). (A.13)

The angular dependence of the induced fields δΦ(r, ω) is inherited from the source
terms δS(r, ω):

δΦ(r, ω) = δΦz(z, r⊥, ω) cosKφ ez + δΦ⊥(z, r⊥, ω) cosKφ e⊥

+ δΦφ(z, r⊥, ω) sinKφ eφ, (A.14)

and can be decomposed in an analogous way:

δΦ(r, ω) =
1√
2
[+δΦ1(z, r⊥, ω) cos (K − 1)φ+ δΦ2(z, r⊥, ω) cos (K + 1)φ] ex

+
1√
2
[−δΦ1(z, r⊥, ω) sin (K − 1)φ+ δΦ2(z, r⊥, ω) sin (K + 1)φ] ey

+ δΦ3(z, r⊥, ω) cosKφez. (A.15)

We insert Eqs. (A.15) and (A.10) in the Klein-Gordon equation (A.7), equate the
terms with cosKφ and sinKφ angular dependence and obtain the equations for
the components of the induced fields:[

−△z,r⊥,|K−1| +m2
ϕ

]
δΦ1(z, r⊥, ω) = δS1(z, r⊥, ω), (A.16)[

−△z,r⊥,|K+1| +m2
ϕ

]
δΦ2(z, r⊥, ω) = δS2(z, r⊥, ω), (A.17)[

−△z,r⊥,|K| +m2
ϕ

]
δΦ3(z, r⊥, ω) = δS3(z, r⊥, ω). (A.18)

By employing the solutions of Eqs. (A.16-A.18), we can reconstruct the compo-
nents of the meson fields in the cylindrical coordinate system:

δΦ⊥(z, r⊥, ω) =
1√
2
[+δΦ1(z, r⊥, ω) + δΦ2(z, r⊥, ω)] , (A.19)

δΦφ(z, r⊥, ω) =
1√
2
[−δΦ1(z, r⊥, ω) + δΦ2(z, r⊥, ω)] , (A.20)

δΦz(z, r⊥, ω) = δΦ3(z, r⊥, ω). (A.21)

We expand the solutions of the Klein-Gordon equations (A.6,A.16-A.18) in
terms of the eigenfunctions of the axially symmetric harmonic oscillator potential.
Detailed description of the HO basis can be found in Section 3.1.1, but here we
use smaller oscillator length b̃0 = b0/

√
2. This particular choice is a consequence

of the fact that the induced densities and currents, i.e. the source terms of Klein-
Gordon equations, are a linear combinations of products of HO basis functions.
Following the expressions for induced densities and currents given in Appendix
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A.9, the source terms can be written as:

δS0(z, r⊥, ω) =
∑
nz ,nr

(δS0)(nz ,nr)ϕnz(z, b̃z)ϕ
|K|
nr

(r⊥, b̃⊥), (A.22)

δS1(z, r⊥, ω) =
∑
nz ,nr

(δS1)(nz ,nr)ϕnz(z, b̃z)ϕ
|K−1|
nr

(r⊥, b̃⊥), (A.23)

δS2(z, r⊥, ω) =
∑
nz ,nr

(δS2)(nz ,nr)ϕnz(z, b̃z)ϕ
|K+1|
nr

(r⊥, b̃⊥), (A.24)

δS3(z, r⊥, ω) =
∑
nz ,nr

(δS3)(nz ,nr)ϕnz(z, b̃z)ϕ
|K|
nr

(r⊥, b̃⊥). (A.25)

Fields δΦi(z, r⊥, ω) are approximated by the same truncated expansion via coeffi-
cients (δΦi)(nz ,nr) for i = 0, 1, 2, 3.

Inserting each of the expansions (A.22-A.25) into their respective Klein-Gordon
equations, we obtain a set of linear equations:∑

n′
zn

′
r

HΛi

(nz ,nr)(n′
z ,n

′
r)
(δΦi)(n′

z ,n
′
r) = (δSi)(nz ,nr), (A.26)

with

Λi =


|K| for i = 0, 3,
|K − 1| for i = 1,
|K + 1| for i = 2.

(A.27)

The HK
(nz ,nr)(n′

z ,n
′
r)

matrix elements can be calculated analytically:

HK
(nz ,nr)(n′

z ,n
′
r)
=

[
nz +

1
2

b̃2z
+

2nr +K + 1

b̃2⊥
+m2

ϕ

]
δnrn′

r
δnzn′

z

−
δnrn′

r

2b̃2z

[√
(nz + 1)(nz + 2)δn′

znz+2 +
√
(n′

z + 1)(n′
z + 2)δnzn′

z+2

]
+
δnzn′

z

b̃2⊥

[√
nr(nr +K)δnrn′

r+1 +
√
n′
r(n

′
r +K)δn′

rnr+1

]
, (A.28)

while the matrix elements of the source terms are calculated numerically by em-
ploying Gauss-Hermite and Gauss-Laguerre quadrature formulas:

(δSi)(nz ,nr) =

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥ϕnz(z, b̃z)ϕ
|Λi|
nr

(r⊥, b̃⊥)δSi(z, r⊥, ω). (A.29)

By inverting the set of equations (A.26), we obtain the coefficients (δΦi)(nz ,nr) that
are used to calculate the induced fields δΦi(z, r⊥, ω) (i = 0, 1, 2, 3).

In the DIRQFAM code, all fields δSi(z, r⊥, ω) in coordinate space are repre-
sented by their values on Gauss-Hermite and Gauss-Laguerre quadrature nodes
δSi(z

iGH , riGL
⊥ , ω). By defining the matrix:

ΦK
(nz ,nr)(iGH ,iGL)

= ϕnz(z
iGH , b̃z)ϕ

|K|
nr

(riGL
⊥ , b̃⊥), (A.30)

the numerical integration in Eq. (A.29) can be written as a matrix-vector multi-
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plication:

(δSi)(nz ,nr) =
∑

iGH ,iGL

ΦΛi

(nz ,nr)(iGH ,iGL)
wiGH

bz
wiGL

b⊥
δSi(z

iGH , riGL
⊥ , ω). (A.31)

wiGH
bz

and wiGL
b⊥

denote the Gaussian quadrature weights. Inverting Eq. (A.26)
yields:[

(δΦi)(nz ,nr)

]
(nz ,nr)

=
(
HΛi

)−1
ΦΛi

[
wiGH

bz
wiGL

b⊥
δSi(z

iGH , riGL
⊥ , ω)

]
(iGH ,iGL)

. (A.32)

Because in practical calculations we need δΦi(z, r⊥, ω) evaluated on the Gaussian
quadrature grid, the Eqs. (A.22-A.25) analogous for the induced meson fields
δΦi(z, r⊥, ω) can be written as:[

δΦi(z
iGH , riGL

⊥ , ω)
]
(iGH ,iGL)

=
(
ΦΛi

)T (HΛi
)−1

ΦΛi×

×
[
wiGH

bz
wiGL

b⊥
δSi(z

iGH , riGL
⊥ , ω)

]
(iGH ,iGL)

. (A.33)

HK is a matrix representation of the linear operator −△z,r⊥,K +m2
ϕ in the trun-

cated HO basis, and since −△z,r⊥,K is positive operator, the real matrix HK is
positive definite. Thus, we can find its Cholesky factorization HK = LK

(
LK
)T ,

for regular lower-triangular matrix LK . By defining the matrix PK =
(
LK
)−1

ΦK ,
we can write:[

δΦi(z
iGH , riGL

⊥ , ω)
]
(iGH ,iGL)

=
(
PΛi

)T PΛi×

×
[
wiGH

bz
wiGL

b⊥
δSi(z

iGH , riGL
⊥ , ω)

]
(iGH ,iGL)

. (A.34)

To summarize, if the source terms δSi(z, r⊥, ω) are given on the Gaussian quadra-
ture grid, Eq. (A.34) provides a transformation for calculating the fields δΦi(z, r⊥, ω)
on the same quadrature grid. We notice that the total computational cost consists
of only two matrix-vector multiplications with a precomputed matrix PΛi .

A.3 Induced Coulomb potential
The induced potential for protons includes the direct Coulomb field:

δVC(r, ω) = e2
∫
dr′ δρ

p
v(r

′, ω)

|r − r′|
, (A.35)

where δρpv(r, ω) denotes the induced proton vector density. The logarithmic sin-
gularity in the integrand at the point r = r′ can be eliminated by using the
identity:

△r′ |r − r′| = 2

|r − r′|
, (A.36)

that together with an integration by parts, gives:

δVC(r, ω) =
e2

2

∫
d3r′|r − r′|△r′δρpv(r

′, ω). (A.37)
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Since the induced proton density can be written as δρpv(r, ω) = δρpv(z, r⊥, ω) cosKϕ,
this angular dependence also holds for the Laplacian:

△rδρ
p
v(r, ω) =

[
1

r⊥
∂r⊥ (r⊥∂r⊥)−

K2

r2⊥
+ ∂2z

]
δρpv(z, r⊥, ω) cosKϕ, (A.38)

and the angular part of the integral (A.37) can be solved analytically. We insert
the following relation into Eq. (A.37):

|r − r′|=
√

(r⊥ + r′⊥)
2 + (z − z′)2

√
1− a cos2 ϕ− ϕ

′

2
, (A.39)

with:
a =

4r⊥r
′
⊥

(r⊥ + r′⊥)
2 + (z − z′)2

. (A.40)

Next, we substitute ϕ−ϕ′ = 2x and use the symmetry properties of the integrand
to reduce the integration interval. Finally, we obtain the following integral:

IK(a) =

∫ π/2

0

√
1− a cos2 x cos (2Kx)dx. (A.41)

We notice that K ≥ 0 and a ∈ [0, 1]. For the K = 0 value Eq. (A.41) is reduced
to the definition of the complete elliptic integral of the second kind:

I0(a) = E(a) =

∫ π/2

0

√
1− a cos2 xdx, (A.42)

while for the K = 1 value it can be written as:

I1(a) =

(
2− 2a

3a

)
K(a)−

(
2− a
3a

)
E(a), (A.43)

where K(a) denotes the complete elliptic integral of the first kind:

K(a) =

∫ π/2

0

dx√
1− a cos2 x

. (A.44)

Finally, for K ≥ 2 the following recursive relation can be used to calculate IK(a):

IK(a) =

(
(4K − 4)(2− a)

(2K + 1)a

)
IK−1(a)−

(
2K − 5

2K + 1

)
IK−2(a). (A.45)

The entire problem of calculating the IK is reduced to computation of the complete
elliptic integrals E(a) and K(a) and this can be accomplished easily by using a
polynomial approximation or any other well established numerical method. The
induced Coulomb field also inherits the cosKϕ angular dependence:

δVC(r, ω) = δVC(z, r⊥, ω) cosKϕ, (A.46)
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with:

δVC(z, r⊥, ω) =

∫ +∞

−∞
dz′
∫ +∞

0

dr′⊥r
′
⊥G(z

′, r′⊥, z, r⊥)△z′,r′⊥
δρpv(z

′, r′⊥, ω). (A.47)

△z,r⊥ denotes the z and r⊥ components of the Laplacian operator (A.38) and the
Green’s function G(z′, r′⊥, z, r⊥) reads:

G(z′, r′⊥, z, r⊥) = 2e2
√

(r⊥ + r′⊥)
2 + (z − z′)2IK

(
4r⊥r

′
⊥

(r⊥ + r′⊥)
2 + (z − z′)2

)
.

(A.48)

A.4 Poisson equation in cylindrical coordinates
The procedure of solving the Poisson equation for the time-like component of the
Coulomb field is described in details in Appendix A.3 and in this section we focus
on the space-like components, i.e. we solve the following equation:

−△δVC(r, ω) = e2δjp(r, ω), (A.49)

where δjp(r, ω) denotes the induced proton current. The induced potential δVC(r, ω)
reads:

δVC(r, ω) = e2
∫
dr′ δjp(r

′, ω)

|r − r′|
. (A.50)

By using the identity:

△r′|r − r′|= 2

|r − r′|
, (A.51)

similar as in Appendix A.3, the induced potential can be written in the following
form:

δVC(r, ω) =
e2

2

∫
dr′|r − r′|△r′δjp(r

′, ω). (A.52)

The angular dependence of the induced currents includes both the cosKφ and
sinKφ functions (see Appendix A.9):

δjp(r, ω) = δjp,z(z, r⊥, ω) cosKφ ez + δjp,⊥(z, r⊥, ω) cosKφ e⊥

+ δjp,φ(z, r⊥, ω) sinKφ eφ. (A.53)

We decompose the induced proton current into Cartesian components:

δjp(r, ω) =
1√
2
[+δjp,1(z, r⊥, ω) cos (K − 1)φ+ δjp,2(z, r⊥, ω) cos (K + 1)φ] ex

+
1√
2
[−δjp,1(z, r⊥, ω) sin (K − 1)φ+ δjp,2(z, r⊥, ω) sin (K + 1)φ] ey

+ δjp,3(z, r⊥, ω) cosKφez, (A.54)
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where we have defined:

δjp,1(z, r⊥, ω) =
1√
2
[δjp,⊥(z, r⊥, ω)− δjp,φ(z, r⊥, ω)] , (A.55)

δjp,2(z, r⊥, ω) =
1√
2
[δjp,⊥(z, r⊥, ω) + δjp,φ(z, r⊥, ω)] , (A.56)

δjp,3(z, r⊥, ω) = δjp,z(z, r⊥, ω). (A.57)

One can show that the induced Coulomb potential inherits the angular dependence
from the induced proton current:

δVC(r, ω) = δVC,z(z, r⊥, ω) cosKφ ez + δVC,⊥(z, r⊥, ω) cosKφ e⊥

+ δVC,φ(z, r⊥, ω) sinKφ eφ, (A.58)

and can be decomposed in an analogous way:

δVC(r, ω) =
1√
2
[δVC,1(z, r⊥, ω) cos (K − 1)φ+ δVC,2(z, r⊥, ω) cos (K + 1)φ] ex

+
1√
2
[δVC,1(z, r⊥, ω) sin (K − 1)φ− δVC,2(z, r⊥, ω) sin (K + 1)φ] ey

+ δVC,3(z, r⊥, ω) cosKφez. (A.59)

Inserting Eqs. (A.54) and (A.59) into Eq. (A.52), and equating the terms with
identical angular dependence leads to the following expressions:

δVC,1(z, r⊥, ω) =
e2

2

∫
dr′|r − r′|△z′,r′⊥,|K−1|δjp,1(z

′, r′⊥, ω), (A.60)

δVC,2(z, r⊥, ω) =
e2

2

∫
dr′|r − r′|△z′,r′⊥,|K+1|δjp,2(z

′, r′⊥, ω), (A.61)

δVC,3(z, r⊥, ω) =
e2

2

∫
dr′|r − r′|△z′,r′⊥,|K|δjp,3(z

′, r′⊥, ω). (A.62)

The detailed description of the procedure for solving integrals in Eqs. (A.60-A.62)
by employing the Green’s function can be found in Appendix A.3. Finally, the
solutions of the integrals (A.60-A.62) are used to reconstruct the components of
the induced Coulomb potential in the cylindrical coordinates:

δVC,⊥(z, r⊥, ω) =
1√
2
[+δVC,1(z, r⊥, ω) + δVC,2(z, r⊥, ω)] , (A.63)

δVC,φ(z, r⊥, ω) =
1√
2
[−δVC,1(z, r⊥, ω) + δVC,2(z, r⊥, ω)] , (A.64)

δVC,z(z, r⊥, ω) = δVC,3(z, r⊥, ω). (A.65)
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A.5 Induced single particle Hamiltonian
The induced single-particle Hamiltonian reads:

δĥ =

[
δV + δS −σ · δΣ
−σ · δΣ δV − δS

]
, (A.66)

with:

δV (r, ω) = δV (z, r⊥, ω) cosKφ, (A.67)
δS(r, ω) = δS(z, r⊥, ω) cosKφ, (A.68)
δΣ(r, ω) = δΣz(z, r⊥, ω) cosKφ ez + δΣ⊥(z, r⊥, ω) cosKφ e⊥

+ δΣφ(z, r⊥, ω) sinKφ eφ. (A.69)

One can show that the induced single-particle Hamiltonian is block diagonal in
the simplex-y HO basis:

δh(ω) =

[
δh1(ω) 0

0 δh2(ω)

]
. (A.70)

Next, we describe the calculation of the matrix elements of the δh1(ω)α1,α2 block.
We use the same notation α = (d, nz, nr,Λ) as in Section 3.1.1, where d = f, g
denotes the large or small Dirac spinor component. First introduce the auxiliary
potentials:

δΣ1(z, r⊥, ω) =
1√
2
[δΣ⊥(z, r⊥, ω)− δΣφ(z, r⊥, ω)] , (A.71)

δΣ2(z, r⊥, ω) =
1√
2
[δΣ⊥(z, r⊥, ω) + δΣφ(z, r⊥, ω)] , (A.72)

δΣ3(z, r⊥, ω) = δΣz(z, r⊥, ω). (A.73)

For convenience, we omit the ω and z, r⊥ variables in the following expressions.
If d1 = d2 = f and |Λ1 − Λ2|= K, the matrix element δh1(ω)α1,α2 reads:

δh1(ω)α1,α2 =
1 + δK,0

2

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥(δV + δS)ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

. (A.74)

If d1 = d2 = g and |Λ1 − Λ2|= K, the matrix element δh1(ω)α1,α2 reads:

δh1(ω)α1,α2 =
1 + δK,0

2

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥(δV − δS)ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

. (A.75)

If d1 ̸= d2 and Λ1 + Λ2 + 1 = +K, the matrix element δh1(ω)α1,α2 reads:

δh1(ω)α1,α2 = −
1 + δK,0

2

√
2iAΣ

α1,α2

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥δΣ1ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

.

(A.76)
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If d1 ̸= d2 and Λ1 + Λ2 + 1 = −K, the matrix element δh1(ω)α1,α2 reads:

δh1(ω)α1,α2 = −
1 + δK,0

2

√
2iAΣ

α1,α2

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥δΣ2ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

.

(A.77)
If d1 ̸= d2 and |Λ1 − Λ2|= K, the matrix element δh1(ω)α1,α2 reads:

δh1(ω)α1,α2 = −
1 + δK,0

2

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥δΣ3ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

. (A.78)

The factor AΣ
α1,α2

is equal to −1 if d1 = g and d2 = f , otherwise it is equal
to +1. All other matrix elements δh1(ω)α1,α2 not listed above vanish. Notice
that it is sufficient to calculate only the upper triangle of the matrix δh1(ω),
because there holds: δh1(ω)α1,α2 = δh1(ω)α2,α1 for all (α1, α2), except for those
pairs (α1, α2) satisfying d1 ̸= d2 and |Λ1 +Λ2 + 1|= K, in which case there holds:
δh1(ω)α1,α2 = −δh1(ω)α2,α1 .

The second block δh2(ω) can be calculated directly from the first block δh1(ω)
because one can show that there holds: δh2(ω)α1,α2 = δh1(ω)α1,α2 for all (α1, α2),
except for those pairs (α1, α2) satisfying d1 ̸= d2 and |Λ1−Λ2|= K, in which case
there holds: δh2(ω)α1,α2 = −δh1(ω)α1,α2 .

Integrals in Eqs. (A.74-A.78) are numerically calculated using the values of
the induced potentials δV (ziGH , riGL

⊥ , ω), δS(ziGH , riGL
⊥ , ω) and δΣ(ziGH , riGL

⊥ , ω) on
the Gaussian quadrature grid. However, the domain of integration can be fur-
ther reduced because functions ϕnz(z) have a well defined parity: ϕnz(−z) =
(−1)nzϕnz(z). For illustration, suppose we have a function f(z, r⊥) and want to
calculate the integral:

Iα1,α2 =

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥f(z, r⊥)ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

. (A.79)

Integral Iα1,α2 can be written as:

Iα1,α2 =

∫ +∞

0

dz

∫ +∞

0

r⊥dr⊥
(
f(z, r⊥) + (−1)nz1+nz2f(−z, r⊥)

)
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

.

(A.80)
Thus, if we have the values f(ziGH , riGL

⊥ ) on Gaussian quadrature grid, we can
calculate:

f0(z
iGH , riGL

⊥ ) = f(+ziGH , riGL
⊥ ) + f(−ziGH , riGL

⊥ ), (A.81)

f1(z
iGH , riGL

⊥ ) = f(+ziGH , riGL
⊥ )− f(−ziGH , riGL

⊥ ), (A.82)

only for ziGH > 0, and then depending on the parity of nz1 + nz2 use f0 or f1
for calculating Iα1,α2 , but now integrating only for ziGH > 0, thus reducing the
number of operations by half.

A.6 Induced pairing field
In the following sections, for a given set A ⊆ R, we use 1A(·) to denote the
characteristic function of the set A, and sgn(·) to denote the signum function.
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The induced pairing field in the HO simplex-y basis takes the following form:

δ∆(±)(ω) =

 0 δ∆
(±)
1 (ω)

−
[
δ∆

(±)
1 (ω)

]T
0

 . (A.83)

In this section, we give an efficient formula for calculating δ∆(±)
1 (ω) obtained from

formula (2.89). Suppose we have Nz, Nr, nz1, nz2, nr1, nr2 ∈ N0 and Λ1,Λ2 ∈ Z.
We will use the shorthand k = (nz, nr,Λ) for triples of large component expansion
of the Dirac spinor just as we did in Section 3.1.1. First we define:

WNz ,Nr

(nz1,nr1,Λ1),(nz2,nr2,Λ2)
=1N0∩[0,nz1+nz2](Nz)× δmod(nz1+nz2,2),mod(Nz ,2)×
1N0∩

[
0,nr1+nr2+

|Λ1|+|Λ2|−|Λ1−Λ2|
2

](Nr)×

Mnz1,nz2

Nz ,nz
×Mnr1,Λ1,nr2,−Λ2

Nr,Λ1−Λ2,nr,0
×

b⊥
√
bz

(2π)3/4
×

√
nz!

2
nz
2

(
nz

2

)
!
× (a2 − b2z)

nz
2

(a2 + b2z)
nz+1

2

× (b2⊥ − a2)
nr

(b2⊥ + a2)
nr+1 ,

(A.84)

where we used the shorthand: nz = nz1 + nz2 − Nz and nr = nr1 + nr2 −
Nr+

|Λ1|+|Λ2|−|Λ1−Λ2|
2

. Coefficients Mnz1,nz2

Nz ,nz
and Mnr1,Λ1,nr2,Λ2

Nr,Λ,nr,λ
are Talmi-Moshinsky

brackets, and are given in Appendix A.7. Notice that WNz ,Nr

k,l enjoy symmetry
property: WNz ,Nr

l,k = WNz ,Nr

k,l .
Next, for any Nz, Nr ∈ N0, we define:

P
(±)
Nz ,Nr

(ω) =
∑

Shell(k′)≤Nmax

Shell(l′)≤Nmax

WNz ,Nr

k′,l′

(
δκ

(±)
1 (ω)

)
k′l′
. (A.85)

Similar to the selection rules governed in δρ1(ω) and δρ2(ω) from A.9, one can
show that the following selection rule is fulfilled in the induced pairng tensor:(
δκ

(±)
1 (ω)

)
kl
+
(
δκ

(±)
1 (ω)

)
lk
∝ δ|Λk−Λl|,K . Therefore, if we rewrite (A.85) as:

P
(±)
Nz ,Nr

(ω) =
∑

Shell(k′)≤Nmax

Shell(l′)≤Nmax

WNz ,Nr

k′,l′
1

2

[(
δκ

(±)
1 (ω)

)
k′l′

+
(
δκ

(±)
1 (ω)

)
l′k′

]
, (A.86)

we see that the sum in (A.85) can be constrained by the additional selection rule:
|Λk′−Λl′|= K. Finally, for any k1 = (nz1, nr1,Λ1), k2 = (nz2, nr2,Λ2), the following
formula holds:(
δ∆

(±)
1 (ω)

)
k1k2

= −G× 1 + δK,0

2
× δ|Λ1−Λ2|,K ×

∑
N ′

z

∑
N ′

r

W
N ′

z ,N
′
r

k1,k2
P

(±)
N ′

z ,N
′
r
(ω), (A.87)

where the first summation is over all 0 ≤ N ′
z ≤ nz1 + nz2, satisfying mod(N ′

z, 2) =
mod(nz1 + nz2, 2), and the second summation is over all 0 ≤ N ′

r ≤ nr1 + nr2 +
|Λ1|+|Λ2|−|Λ1−Λ2|

2
. We see that the tedious summation over all quantum numbers
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has been separated in two independent parts: {k′, l′} and {Nz, Nr} by means of
coefficients W which can be easily pre-calculated.

A.7 Talmi-Moshinsky brackets

A.7.1 One dimensional Talmi-Moshinsky brackets

For a given scale parameter b0 ≥ 0, and for any nz ∈ N0, we introduce a sequence
of functions:

ϕnz(z) =
1√
b0

1√√
π2nznz!

Hnz

(
z

b0

)
exp

{(
−1

2

(
z

b0

)2
)}

, ∀z ∈ R, (A.88)

where Hn(·) denotes nth-degree Hermite polynomial. For any non-negative inte-
gers: nz1, nz1, Nz, nz ∈ N0, we define one dimensional Talmy-Moshinsky bracket
Mnz1,nz2

Nz ,nz
as follows:

Mnz1,nz2

Nz ,nz
=1N0∩[0,nz1+nz2](Nz)× δnz1+nz2,Nz+nz

× 1√
2nz1+nz2

×
√
nz1!nz2!

Nz!nz!

×
min{nz ,nz1}∑

p=max{0,nz1−Nz}

(−1)p
(
nz

p

)(
Nz

nz1 − p

)
.

(A.89)

Then, for any fixed nz1, nz2 ∈ N0, and z1, z2 ∈ R, it holds that:

ϕnz1(z1)ϕnz2(z2) =
+∞∑
Nz=0

+∞∑
nz=0

Mnz1,nz2

Nz ,nz
ϕNz

(
z1 + z2√

2

)
ϕnz

(
z2 − z1√

2

)
. (A.90)

Previous equations have been numerically verified for variuous combinations of
nz1, nz2 ∈ N0, z1, z2 ∈ R. Notice that due to the constraints onNz and nz in (A.89),
infinite series in (A.90) reduces to finite sum. Also notice that from equation
(A.90), one can easily see the following symmetry:

Mnz2,nz1

Nz ,nz
= (−1)nzMnz1,nz2

Nz ,nz
. (A.91)

A.7.2 Two dimensional Talmi-Moshinsky brackets

Let us assume that b0 > 0 is a scale parameter, and for any nr ∈ N0,m ∈ Z, we
define a sequence of functions:

ϕnr,m(ρ) =
1

b0

√
2nr!

(nr + |m|)!

(
|ρ|
b0

)|m|

L|m|
nr

(
|ρ|2

b20

)
exp

(
−1

2

|ρ|2

b20

)
eimφ

√
2π
. (A.92)

ρ = (|ρ|cosφ, |ρ|sinφ) ∈ R2, where Lα
n(·) denotes associated Laguerre polynomial.

For any nr1, nr2, Nr, nr ∈ N0 and m1,m2,M,m ∈ Z, we define two dimensional
Talmy-Moshinky bracket Mnr1,m1,nr2,m2

Nr,M,nr,m
as follows:
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Mnr1,m1,nr2,m2

Nr,M,nr,m
=1N0∩

[
0,nr1+nr2+

|m1|+|m2|−|M|−|m|
2

](Nr)×

1Z∩
[
− 2nr1+|m1|+2nr2+|m2|

2
,+

2nr1+|m1|+2nr2+|m2|
2

](M − m1 +m2

2

)
×

δm1+m2,M+m × δ2nr1+|m1|+2nr2+|m2|,2Nr+|M |+2nr+|m|×

(−1)Nr+nr+nr1+nr2

√
22Nr+|M |+2nr+|m|

×

√
nr1! (nr1 + |m1|)!nr2! (nr2 + |m2|)!
Nr! (Nr + |M |)!nr! (nr + |m|)!

×

∑
0≤p,q,r,s≤nr

0≤P,Q,R,S≤Nr

0≤t≤|m|
0≤T≤|M |

(C1),(C2),(C3),(C4)

(−1)t+r+s

(
nr

p q r s

)(
Nr

P Q R S

)(
|M |
T

)(
|m|
t

)
,

(A.93)

where the summation over p, q, r, s, P,Q,R, S, t, T ∈ N0, is performed with four
additional constraints:

(C1) : p+ q + r + s = nr

(C2) : P +Q+R + S = Nr

(C3) : (2nr1 + |m1|)− (2nr2 + |m2|) + |m|+|M |= 2(p+ P )− 2(q +Q) + 2(t+ T )

(C4) : m1 = (r +R)− (s+ S) + sgn(m)t+ sgn(M)T .

In (A.93), we use standard notation for the multinomial coefficients. Then, for
any nr1, nr2 ∈ N0 and m1,m2 ∈ Z, there holds:

ϕnr1,m1(ρ1)ϕnr2,m2(ρ2) =
+∞∑

M=−∞

+∞∑
Nr=0

+∞∑
m=−∞

+∞∑
nr=0

Mnr1,m1,nr2,m2

Nr,M,nr,m
×

ϕNr,M

(
ρ1 + ρ2√

2

)
ϕnr,m

(
ρ2 − ρ1√

2

)
, (A.94)

for all ρ1,ρ2 ∈ R2. Previous equation has also been proven correct and numerically
verified. Again, constraints on Nr, nr ∈ N0 and M,m ∈ Z in (A.93) result in
truncating the series in (A.94) to finite sum. Notice that from (A.94), one can
easily confirm the following symmetry properties:

Mnr2,m2,nr1,m1

Nr,M,nr,m
= (−1)mMnr1,m1,nr2,m2

Nr,M,nr,m
, (A.95)

Mnr1,−m1,nr2,−m2

Nr,−M,nr,−m =Mnr1,m1,nr2,m2

Nr,M,nr,m
. (A.96)
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A.8 QFAM equations in simplex-y basis
The matrix element of the multipole operator fJK = |r|JYJK(θ, ϕ) calculated in
the HO basis reads:

⟨nznrΛms||r|JYJK(θ, ϕ)|n′
zn

′
rΛ

′m′
s⟩ = δms,m′

s
δΛ−Λ′,K×

×

√
2J + 1

4π

(J −K)!

(J +K)!
⟨nznr|Λ|||r|JPJK(cos θ)|n′

zn
′
r|Λ′|⟩, (A.97)

where PJK(cos θ) denotes the associated Legendre polynomial. Due to the selec-
tion rule ms = m′

s in the previous expression, the fJK operator is block diagonal
in the simplex-y basis:

⟨nznrΛ; s = ±i||r|JYJK(θ, ϕ)|n′
zn

′
rΛ

′; s = ±i⟩ = (δΛ′−Λ,K + δΛ−Λ′,K)×

×

√
2J + 1

4π

(J −K)!

(J +K)!
⟨nznr|Λ|||r|JPJK(cos θ)|n′

zn
′
r|Λ′|⟩. (A.98)

For K ≥ 0 we have:

⟨nznrΛ; s = ±i|f (+)
JK |n

′
zn

′
rΛ

′; s = ±i⟩ =
√

1 + δK,0

2
δ|Λ′−Λ|,K×

×

√
2J + 1

4π

(J −K)!

(J +K)!
⟨nznr|Λ|||r|JPJK(cos θ)|n′

zn
′
r|Λ|′⟩, (A.99)

f
(+)
JK =

(
f1 0
0 f2

)
. (A.100)

For this particular operator the following relation holds: f1 = f2, where f1 (and
f2) are real and symmetric matrices. The single-quasiparticle states are ordered
so that we first list states with s = +i, and then states with s = −i. The
corresponding U and V matrices read:

U =

(
u 0
0 u∗

)
, V =

(
0 −v∗
v 0

)
, (A.101)

while the F 20 and F 02 matrices for the external operator f read:

F 20 =

(
0 f 20

−[f 20]T

)
, F 02 =

(
0 f 02

−[f 02]T

)
, (A.102)

with f 20 = −
(
u†f1v +

(
u†f ∗

2 v
)†) and f 02 = −

(
v†f1u+

(
v†f ∗

2u
)†)T . In the initial

step of the QFAM iteration, we set the matrix elements of the induced Hamiltonian
to zero, i.e. δH20

µν(ω) = δH02
µν(ω) = 0, and the initial QFAM matrices X(ω) and

Y (ω) inherit the structure of the F 20 and F 02 matrices (see Eq. (A.102)). This
structure is retained in all subsequent QFAM iterations:

X(ω) =

(
0 x(ω)

−xT (ω) 0

)
, Y (ω) =

(
0 y(ω)

−yT (ω) 0

)
. (A.103)
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The induced density matrix is block diagonal:

δρ(ω) = UX(ω)V T + V ∗Y T (ω)U † =

(
δρ1(ω) 0

0 δρ2(ω)

)
, (A.104)

with δρ1(ω) = −
(
ux(ω)v† + vyT (ω)u†

)
and δρ2(ω) = −

(
vx(ω)u† + uyT (ω)v†

)T .
Consequently, the induced single-particle Hamiltonian is also block diagonal:

δh(ω) =

(
δh1(ω) 0

0 δh2(ω)

)
. (A.105)

The pairing tensors δκ(+)(ω) and δκ(−)(ω) are skew symmetric:

δκ(+)(ω) = UX(ω)UT +V ∗Y T (ω)V † =

(
0 δκ1

(+)(ω)

−
[
δκ1

(+)(ω)
]T

0

)
, (A.106)

δκ(−)(ω) = V ∗X†(ω)V † + UY ∗(ω)UT =

(
0 δκ1

(−)(ω)

−
[
δκ1

(−)(ω)
]T

0

)
,

(A.107)
with δκ1(+)(ω) = ux(ω)u†−vyT (ω)v† and δκ1(−)(ω) = −vx†(ω)v†+uy∗(ω)u†. The
pairing field acquires analogous form:

δ∆(±)(ω) =

 0 δ∆
(±)
1 (ω)

−
[
δ∆

(±)
1 (ω)

]T
0

 . (A.108)

Finally, the induced Hamiltonian elements δH20(ω) and δH02(ω) read:

δH20(ω) =

(
0 δh20(ω)

− [δh20(ω)]
T

0

)
, δH02(ω) =

(
0 δh02(ω)

− [δh02(ω)]
T

0

)
,

(A.109)
with:

δh20(ω) = −
(
u†δh1(ω)v + v†δhT2 (ω)u− u†δ∆

(+)
1 (ω)u+ v†

[
δ∆

(−)
1 (ω)

]†
v

)
,

(A.110)

δh02(ω) = −
(
v†δh1(ω)u+ u†δhT2 (ω)v + v†δ∆

(+)
1 (ω)v − u†

[
δ∆

(−)
1 (ω)

]†
u

)T

.

(A.111)

QFAM Eqs. (2.74) and (2.75) in simplex-y basis are reduced to the following form:

(Eµ + Eν − ω)xµν(ω) + δh20µν(ω) + f 20
µν = 0, (A.112)

(Eµ + Eν + ω)yµν(ω) + δh02µν(ω) + f 02
µν = 0. (A.113)

We notice that the quasiparticle-vibration coupling (qPVC) calculation neces-
sitates also the H11 part of the induced Hamiltonian and not just the H20 and
H02 parts, even though the induced H11 part doens’t contribute to QFAM. Here
we provide the details on calculating the induced H11 part. Let us recall that the
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induced Hamiltonian in quasiparticle basis is:[
δH11(ω) δH20(ω)

−δH02(ω) − (δH11(ω))
T

]
=

[
U V ∗

V U∗

]† [
δh(ω) δ∆(+)(ω)

−
(
δ∆(−)(ω)

)∗ −δhT (ω)
] [
U V ∗

V U∗

]
.

(A.114)
δH11(ω) is thus given by:

δH11(ω) = U †δh(ω)U−V †δhT (ω)V +U †δ∆(+)(ω)V −V † (δ∆(−)(ω)
)∗
U. (A.115)

δH11(ω) in the simplex-y HO basis is given by:

δH11(ω) =

[
δh111 (ω) 0

0 δh112 (ω)

]
, (A.116)

where δh111 (ω) and δh112 (ω) are given by:

δh111 (ω) = u†δh1(ω)u− v†δhT2 (ω)v + u†δ∆
(+)
1 (ω)v + v†

(
δ∆

(−)
1 (ω)

)†
u, (A.117)

δh112 (ω) = −
(
v†δh1(ω)v − u†δhT2 (ω)u− v†δ∆

(+)
1 (ω)u− u†

(
δ∆

(−)
1 (ω)

)†
v

)T

.

(A.118)

A.9 Induced densities and currents
For completeness, in this section we provide detailed expressions for induced den-
sities and currents. Again, we use set of indices α = (d, nz, nr,Λ) denoting an
element of basis within a given simplex block, where d = f denotes large, and
d = g small component of the Dirac spinor, respectively.

The selection rules for the induced density matrix δρ(ω) is as follows. For
(α1, α2) such that d1 = d2, the matrix elements of (δρ1(ω) + δρ2(ω))α1,α2 are zero
if |Λ1−Λ2|̸= K, while for d1 ̸= d2 they are zero if |Λ1+Λ2+1|̸= K. On the other
hand, for (α1, α2) such that d1 ̸= d2 the matrix elements of (δρ1(ω)− δρ2(ω))α1,α2

are zero if |Λ1 − Λ2|̸= K. For simplicity, in the following discussion we omit the
frequency ω in δρ1(ω), δρ2(ω), and the cylindrical coordinates z, r⊥ in the HO
eigenfunctions ϕnz(z) and ϕ

|Λ|
nr (r⊥). Below we list the expressions for the induced

densities and currents:

δρv(r, ω) =
cosKφ

2π

∑
α1,α2

|Λ1−Λ2|=K

(δρ1 + δρ2)α1,α2
Aρv

α1,α2
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

, (A.119)

Aρv
α1,α2

=

{
+1 for d1 = d2,
0 for d1 ̸= d2,

(A.120)

δρs(r, ω) =
cosKφ

2π

∑
α1,α2

|Λ1−Λ2|=K

(δρ1 + δρ2)α1,α2
Aρs

α1,α2
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

, (A.121)



APPENDIX A. QFAM APPENDIX 125

Aρs
α1,α2

=


+1 for d1 = d2 = f,
−1 for d1 = d2 = g,
0 for d1 ̸= d2,

(A.122)

δjz(r, ω) =
cosKφ

2π

∑
α1,α2

|Λ1−Λ2|=K

(δρ1 − δρ2)α1,α2
Ajz

α1,α2
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

, (A.123)

Ajz
α1,α2

=

{
0 for d1 = d2,
+1 for d1 ̸= d2 = f,

(A.124)

δj⊥(r, ω) =
cosKφ

2πi

∑
α1,α2

|Λ1+Λ2+1|=K

(δρ1 + δρ2)α1,α2
Aj⊥

α1,α2
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

, (A.125)

Aj⊥
α1,α2

=


0 for d1 = d2,
+1 for d1 = f and d2 = g,
−1 for d1 = g and d2 = f,

(A.126)

δjφ(r, ω) =
sinKφ

−2πi
∑
α1,α2

|Λ1+Λ2+1|=K

(δρ1 + δρ2)α1,α2
Ajφ

α1,α2
ϕnz1

ϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

, (A.127)

Ajφ
α1,α2

= sgn(Λ1 + Λ2 + 1)Aj⊥
α1,α2

. (A.128)

In order to solve the Klein-Gordon equation for the space-like components
of the currents, it is convenient to define: δj1 = (δj⊥ − δjφ)/

√
2 and δj2 =

(δj⊥ + δjφ)/
√
2. Explicit expressions for δj1 and δj2 are given below:

δj1(z, r⊥, ω) =

√
2

1 + δK,0

1

2πi

∑
α1,α2

Λ1+Λ2+1=+K

(δρ1 + δρ2)α1,α2A
j⊥
α1,α2

ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

,

(A.129)

δj2(z, r⊥, ω) =

√
2

1 + δK,0

1

2πi

∑
α1,α2

Λ1+Λ2+1=−K

(δρ1 + δρ2)α1,α2A
j⊥
α1,α2

ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

.

(A.130)
Next we show how to calculate the Laplacians of the induced densities and

currents. Using Talmi-Moshinsky brackets, one can show that the induced den-
sities δρv(z, r⊥, ω), δρs(z, r⊥, ω) and current δjz(z, r⊥, ω) can be written as linear
combinations of the basis functions:{

ϕNz(z, b̃z)ϕ
|K|
Nr

(r⊥, b̃⊥)
}
,

with reduced oscillator length b̃0 = b0/
√
2. On the other hand, induced current

δj1(z, r⊥, ω) is a linear combination of the basis functions:{
ϕNz(z, b̃z)ϕ

|K−1|
Nr

(r⊥, b̃⊥)
}
,

while the induced current δj2(z, r⊥, ω) is a linear combination of basis functions:{
ϕNz(z, b̃z)ϕ

|K+1|
Nr

(r⊥, b̃⊥)
}
.
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Finally, we can easily obtain expressions for the Laplacians of various densities
and current components. For example, let us focus on δρv(z, r⊥, ω). As we have
stated, δρv(z, r⊥, ω) can be written as:

δρv(z, r⊥, ω) =
∑
Nz ,Nr

cNz ,NrϕNz(z, b̃z)ϕ
|K|
Nr

(r⊥, b̃⊥). (A.131)

Essentially, we are interested in induced densities and currents evaluated only on
a Gaussian quadrature grid points (ziGH , riGL

⊥ ) given by Gauss-Hermite and Gauss-
Laguerre quadrature nodes. Once we have calculated the values of δρv(ziGH , riGL

⊥ , ω),
we can extract the coefficients cNz ,Nr by numerical integration:

cNz ,Nr =

∫ +∞

−∞
dz

∫ +∞

0

r⊥dr⊥δρv(z, r⊥, ω)ϕNz(z, b̃z)ϕ
|K|
Nr

(r⊥, b̃⊥). (A.132)

If we apply the Laplacian operator on the basis function, we obtain the following
expression:

△z,r⊥,KϕNz(z, b̃z)ϕ
|K|
Nr

(r⊥, b̃⊥) =

(
z2

b̃4z
+
r2⊥
b̃4⊥
− 2Nz + 1

b̃2z
− 2(2Nr +K + 1)

b̃2⊥

)
×

× ϕNz(z, b̃z)ϕ
|K|
Nr

(r⊥, b̃⊥), (A.133)

where the cylindrical Laplace operator for a given value of K is defined as:

△z,r⊥,K =
1

r⊥
∂r⊥ (r⊥∂r⊥)−

K2

r2⊥
+ ∂2z . (A.134)

Now we can easily evaluate the Laplacian of the induced density δρv(z, r⊥, ω) on
the Gaussian quadrature grid:

△z,r⊥,Kδρv(z
iGH , riGL

⊥ , ω) =
∑
NzNr

cNz ,Nr

(
△z,r⊥,KϕNz(z

iGH , b̃z)ϕ
|K|
Nr

(riGL
⊥ , b̃⊥)

)
,

(A.135)
using Eq. (A.133) and calculated coefficients cNz ,Nr via Eq. (A.132).

A.10 Performance and convergence of GMRES method
As an illustration, we have calculated the matrix T(ωγ) (defined in Eq. (3.58))
explicitly for deformed isotope 100Zr and J = 1, K = 0 isovector excitation
operator. The ground state deformation is β ≈ 0.47 and we have used the DD-
ME2 effective interaction. However, we use only Nshells = 6 shells, otherwise it
would be difficult to fit the matrix T(ωγ) into the computer memory. In Fig.
A.1 we show the spectrum σ(I − T(ωγ)) for excitation frequency ωγ = 30 + 0.05i
MeV. As we have anticipated, only a small fraction of eigenvalues are scattered
away from 1. Motivated by the illustrative example shown in Section 3.1.5, this
situation is well suited for the GMRES method, and thus in the DIRQFAM code
we have substituted the previously used modified Broyden’s method [29] with
GMRES method.
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Figure A.1: Example of spectrum of matrix σ(I−T(ωγ)) for isovector J = 1, K =
0 excitation of 100Zr at ωγ = 30+0.05i MeV. We notice a large cluster of eigenvalues
localized around 1, while only a small fraction of eigenvalues are scattered away
from 1.

To demonstrate the superiority of the GMRES method in terms of conver-
gence speed, we perform a calculation of the isovector J = 3, K = 1 response
of heavy deformed 240Pu isotope with deformed ground state β ≈ 0.28, where
we use Nshells = 20 oscillator shells and smearing width γ = 0.05 MeV. Again,
DD-ME2 interaction and separable pairing are used. We sweep across frequencies
in range from 0 MeV to 50 MeV with an increment of 0.02 MeV. The response
function is shown in Fig. A.2 and it looks rather involved with many significant
peaks. We compare the number of QFAM iterations performed by the modified
Broyden’s method where 70 vectors are retained in Broyden’s history with the GM-
RES method using a maximum of 70 Arnoldi vectors. The same self-consistency
tolerance is used in both methods. Modified Broyden’s method took a total of
364527 QFAM iterations, i.e. on the average 146 QFAM iterations per frequency,
while GMRES took a total of 107596 QFAM iterations2, i.e. on the average 44
QFAM iterations per frequency. Thus, for this example, GMRES method required
3.4 times less QFAM iterations to find the response function compared to previ-
ously used Broyden’s method. Maximum number of QFAM iterations for GMRES
method was obtained at ω = 38.76 MeV, where GMRES took 61 QFAM iterations,
while Broyden’s method took a maximum of 924 iterations at ω = 39.480 MeV.

In Figure A.3 we show the number of QFAM iterations for a given frequency
for GMRES and Broyden’s method. We can see that Broyden’s method tends

2We have taken into the account additional two QFAM iterations needed in GMRES, one for
finding b, and another for finding the final solution xn. We use x0 = 0 as initial guess and thus
the initial Arnoldi vector is q1 = r0/∥r0∥= b/∥b∥, i.e. q1 is given by b.
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Figure A.2: Isovector octupole J = 3, K = 1 response of ground state 240Pu using
DD-ME2 effective interaction and separable pairing. γ = 0.05 MeV is used as the
complex part of the frequency ωγ and Nshells = 20(21) oscillator shells are used in
the expansion of large (small) component of the spinor wave-function.

to have rather oscillating number of iterations while GMRES is approximatelly
uniform regardless of the frequency ω.

For lighter nuclei with a simpler profile of the response function and for a larger
smearing γ, (e.g. γ ∼ 0.5 MeV) performance superiority of GMRES compared to
Broyden’s method is less pronounced. After experimenting with various nuclei and
smearing width value γ, the GMRES method has always proved superior to the
modified Broyden’s method. Firstly, the number of QFAM iterations is reduced at
least by a factor of two, which is a significant improvement. Secondly, the number
of iterations performed with the GMRES method does not depend significantly
on the excitation energy, contrary to the Broyden’s method. Obviously, this is a
great advantage when distributing the calculations on separate computing nodes.

Self-consistency tolerance and the number of Arnoldi vectors

Relative residual error ∥b−Axn∥
∥b∥ of GMRES method applied on the QFAM problem

is:

∥xfree(ωγ)− (I− T(ωγ))xn(ωγ)∥
∥xfree(ωγ)∥

=

∥∥∥∥∥∥∥
xn+1(ωγ)︷ ︸︸ ︷

T(ωγ)xn(ωγ) + xfree(ωγ)−xn(ωγ)

∥∥∥∥∥∥∥
∥xfree(ωγ)∥

,

(A.136)
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Figure A.3: Number of iterations needed for both GMRES and Broyden’s method
at particular frequency for obtaining the response shown in Figure A.2.

which means that the GMRES method terminates when the norm of the difference
between two vectors: xn+1(ωγ) and xn(ωγ) in two consecutive GMRES iterations
(relative to the norm of the free response) is below a certain threshold tolerance
ε:

∥xn+1(ωγ)− xn(ωγ)∥
∥xfree(ωγ)∥

< ε. (A.137)

Experience has shown that for reasonable values of smearing γ ≈ 0.01−1 MeV, if ε
is set to ε = 10−d, one obtains a strength function with at least d− 1 correct most
significant digits. Thus we recommend using ε = 10−6, however, we have included
this parameter in a set of input parameters and the user can select the specific
value depending on the desired accuracy. During an extensive testing, even in the
most extreme cases, GMRES method converged with tolerance of ε = 10−6 within
approximatelly 50−60 iterations, i.e. retaining 50−60 Arnoldi vectors are enough,
however we have also included the number of retained Arnoldi vectors in computer
memory as an input parameter. We recommend using a value of 70 vectors. This
means that if GMRES fails to satisfy the relative residual error tolerance ε within
70 iterations, the currently available GMRES solution after 70 iterations will be
selected, and the corresponding strength function will be printed, where the final
relative residual error will also be printed (with a message that the tolerance hasn’t
been satisfied). Thus, if the user insists on having a very small tolerance ε, which
is not obtainable within 70 GMRES iterations, the user can easily increase the
maximun allowed number of GMRES iterations via input parameter. Keep in
mind that this increases the memory consumption of the program.
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A.11 Nucleon localization function
Here we derive the expression for the induced nucleon localization function given
in Eq. (3.73). First we calculate the terms appearing in Eq. (3.71). Following the
notation given in Section 3.1.1, first we calculate the following matrix elements:

⟨nz1, nr1 ,Λ1;±i|
←−
∇
−→
∇|nz2 , nr2 ,Λ2;±i⟩ =

+ ∂zϕnz1
(z)∂zϕnz2

(z)ϕ|Λ1|
nr1

(r⊥)ϕ
|Λ2|
nr2

(r⊥)
cos((Λ1 − Λ2)φ)

2π

+ ϕnz1
(z)ϕnz2

(z)∂r⊥ϕ
|Λ1|
nr1

(r⊥)∂r⊥ϕ
|Λ2|
nr2

(r⊥)
cos((Λ1 − Λ2)φ)

2π

+ ϕnz1
(z)ϕnz2

(z)ϕ|Λ1|
nr1

(r⊥)ϕ
|Λ2|
nr2

(r⊥)
Λ1Λ2

r2⊥

cos((Λ1 − Λ2)φ)

2π
,

(A.138)

⟨nz1, nr1 ,Λ1;±i|
−→
∇|nz2 , nr2 ,Λ2;±i⟩ =

+

(
ϕnz1

(z)∂zϕnz2
(z)ϕ|Λ1|

nr1
(r⊥)ϕ

|Λ2|
nr2

(r⊥)
cos((Λ1 − Λ2)φ)

2π

)
ez

+

(
ϕnz1

(z)ϕnz2
(z)ϕ|Λ1|

nr1
(r⊥)∂r⊥ϕ

|Λ2|
nr2

(r⊥)
cos((Λ1 − Λ2)φ)

2π

)
e⊥

+

(
ϕnz1

(z)ϕnz2
(z)ϕ|Λ1|

nr1
(r⊥)ϕ

|Λ2|
nr2

(r⊥)
Λ2

r⊥

sin((Λ1 − Λ2)φ)

2π

)
eφ.

(A.139)

Notice that the previous matrix elements are all real. We will drop the frequency
ω and coordinate (z, r⊥, φ) variables for brevity and focus our attention on the
second term in Eq. (3.71). Again we use the notation α = (d, nz, nr,Λ) for index
of basis vector within the given simplex block. For each simplex s = ±i block
there holds:

Re

[∑
α1,α2

(
ρ
·/T
0 + ηe−iωtδρ1/2 + ηe+iωtδρ†1/2

)
α1,α2

⟨α2;±i|
−→
∇|α1;±i⟩

]
=

∑
α1,α2
d1=d2

Re
[
ρ
./T
0

]
α1,α2

⟨α2;±i|
−→
∇|α1;±i⟩+ ⟨α1;±i|

−→
∇|α2;±i⟩

2

+
∑
α1,α2
d1=d2

2ηRe
[
e−iωtδρ1/2

]
α1,α2

⟨α2;±i|
−→
∇|α1;±i⟩+ ⟨α1;±i|

−→
∇|α2;±i⟩

2
.

(A.140)

Since we are averaging over the simplex number s = ±i, instead of ρ./T0 and δρ1/2,
we use 1

2

(
ρ0 + ρT0

)
and 1

2
(δρ1 + δρ2). For (α1, α2) such that d1 = d2, matrix

(ρ0)α1,α2 has selection rule |Λ1−Λ2|= 0, while matrix 1
2
(δρ1 + δρ2)α1,α2

has |Λ1−
Λ2|= K. Thus, if we define:

f 0
z =

∑
α1,α2
d1=d2

|Λ1−Λ2|=0

Re[ρ0]α1,α2

∂zϕnz1
ϕnz2

+ ϕnz1
∂zϕnz2

2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

1

2π
, (A.141)
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f 0
⊥ =

∑
α1,α2
d1=d2

|Λ1−Λ2|=0

Re[ρ0]α1,α2ϕnz1
ϕnz2

∂r⊥ϕ
|Λ1|
nr1

ϕ
|Λ2|
nr2

+ ϕ
|Λ1|
nr1

∂r⊥ϕ
|Λ2|
nr2

2

1

2π
, (A.142)

δfz =
∑
α1,α2
d1=d2

|Λ1−Λ2|=K

(
δρ1 + δρ2

2

)
α1,α2

∂zϕnz1
ϕnz2

+ ϕnz1
∂zϕnz2

2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

,
cosKφ

2π
,

(A.143)

δf⊥ =
∑
α1,α2
d1=d2

|Λ1−Λ2|=K

(
δρ1 + δρ2

2

)
α1,α2

ϕnz1
ϕnz2

∂r⊥ϕ
|Λ1|
nr1

ϕ
|Λ2|
nr2

+ ϕ
|Λ1|
nr1

∂r⊥ϕ
|Λ2|
nr2

2

cosKφ

2π
,

(A.144)
we have:

Re

〈∑
α1,α2

ρα1,α2⟨α2; s|
−→
∇|α1; s⟩

〉
s=±i

 =
(
f 0
z + 2ηRe

[
e−iωtδfz

]
+O(η2)

)
ez

+
(
f 0
⊥ + 2ηRe

[
e−iωtδf⊥

]
+O(η2)

)
e⊥

+O(η)eφ.

(A.145)

Following analogous steps, but now for imaginary part, it is easy to see that the
ground state part vanishes and we have:

Im

〈∑
α1,α2

ρα1,α2⟨α2; s|
−→
∇|α1; s⟩

〉
s=±i

 = O(η)ez +O(η)e⊥ +O(η)eφ. (A.146)

In total, when real and imaginary parts are combined, the second term in Eq.
(3.71) is given by:∣∣∣∣∣∣
〈∑

α1,α2

ρα1,α2⟨α2; s|
−→
∇|α1; s⟩

〉
s=±i

∣∣∣∣∣∣
2

=
(
f 0
z

)2
+
(
f 0
⊥
)2

+ 4ηRe
[
e−iωt

(
f 0
z δfz + f 0

⊥δf⊥
)]

+O(η2).
(A.147)

Following the same steps, if we define:

g0 =
∑
α1,α2
d1=d2

|Λ1−Λ2|=0

Re[ρ0]α1,α2ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

1

2π
, (A.148)
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h0 =
∑
α1,α2
d1=d2

|Λ1−Λ2|=0

Re[ρ0]α1,α2

(
∂zϕnz1

∂zϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

+ ϕnz1
ϕnz2

∂r⊥ϕ
|Λ1|
nr1

∂r⊥ϕ
|Λ2|
nr2

+ ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

Λ1Λ2

r2⊥

) 1

2π
,

(A.149)

δg =
∑
α1,α2
d1=d2

|Λ1−Λ2|=K

(
δρ1 + δρ2

2

)
α1,α2

ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

cosKφ

2π
, (A.150)

δh =
∑
α1,α2
d1=d2

|Λ1−Λ2|=K

(
δρ1 + δρ2

2

)
α1,α2

(
∂zϕnz1

∂zϕnz2
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

+ ϕnz1
ϕnz2

∂r⊥ϕ
|Λ1|
nr1

∂r⊥ϕ
|Λ2|
nr2

+ ϕnz1
ϕnz2

ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

Λ1Λ2

r2⊥

)cosKφ
2π

,

(A.151)

the remaining parts needed to calculate D in Eq. (3.71) are given by:〈∑
α1,α2

ρα1,α2⟨α2; s|α1; s⟩

〉
s=±i

= g0 + 2ηRe
[
e−iωtδg

]
+O(η2), (A.152)

〈∑
α1,α2

ρα1,α2⟨α2; s|
←−
∇
−→
∇|α1; s⟩

〉
s=±i

= h0 + 2ηRe
[
e−iωtδh

]
+O(η2). (A.153)

Next, we plug those parts into Eq. (3.71) and again keeping only the terms up to
linear order in η parameter, we get:

D(x, t) = D0(x) + 2ηRe
[
e−iωtδD(x, ω)

]
+O(η2), (A.154)

where:

D0(x) = h0(x)− (f 0
z (x))

2
+ (f 0

⊥(x))
2

g0(x)
, (A.155)

δD(x, ω) = δh(x, ω) + δg(x, ω)
(f 0

z (x))
2
+ (f 0

⊥(x))
2

(g0(x))2

− 2
f 0
z (x)δfz(x, ω) + f 0

⊥(x)δf⊥(x, ω)

g0(x)
.

(A.156)
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Next, the scaled D(x, t) with Thomas-Fermi density is:

D(x, t)

τTF(x)
=
D0(x, t)

τ 0TF(x)︸ ︷︷ ︸
F 0(x)

+2ηRe

e−iωt

(
δD(x, ω)

τ 0TF(x)
− 5

3

D0(x)

τ 0TF(x)

δg(x, ω)

g0(x)

)
︸ ︷︷ ︸

δF (x,ω)

+O(η2),

(A.157)
and finally, the nucleon localization function C(x, t) is:

C(x, t) = 1

1 + (F 0(x))2︸ ︷︷ ︸
C0(x)

+2ηRe

e−iωt

(
−2F 0(x)δF (x, ω)(
1 + (F 0(x))2

)2
)

︸ ︷︷ ︸
δC(x,ω)

+O(η2). (A.158)

A.12 Spurious translational mode removal
Following the discussion in Section 3.1.8, we now focus on the specific operators in
the simplex-y HO basis used within the DIRQFAM solver. The excitation operator
is given by:

f̂
(+)
JK =

f̂J,K + (−1)K f̂J,−K√
2 + 2δK,0

, (A.159)

where:

f̂J,K =
Z∑

p=1

|r(p)|JYJ,K(θ(p), φ(p))±
N∑

n=1

|r(n)|JYJ,K(θ(n), φ(n)). (A.160)

The center of mass operator R̂K
CM is given by:

R̂K
CM =

1

A

A∑
i=1

r
(i)
1,K , (A.161)

with:
r1,+1 =

+1√
2
r⊥e

−iφ, r1,0 = z, r1,−1 =
−1√
2
r⊥e

+iφ. (A.162)

However, because the operator f̂ (+)
J,K excites both +K and −K modes, we have to

make an analogous adjustment as in Eq. (A.159). For K = 0 the operator R̂K=0
CM

remains unmodified:

R̂K=0
CM =

1

A

A∑
i=1

z(i), (A.163)

while for K = 1 we define the operator:

R̂K=1
CM =

1

A

A∑
i=1

r
(i)
⊥ cosφ(i) =

1

A

A∑
i=1

x(i). (A.164)
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The corresponding total momentum operators are given by:

P̂K=0
CM = −i

A∑
i=1

∂z(i) , (A.165)

P̂K=1
CM = −i

A∑
i=1

∂x(i) = −i
A∑
i=1

cosφ(i)∂
r
(i)
⊥
− sinφ(i)

r
(i)
⊥

∂φ(i) . (A.166)

Next we calculate the matrix representations of operators R̂K
CM and P̂K

CM One can
easily prove the following relations:

⟨α1, s1|R̂K=0
CM |α2, s2⟩ =

1

A
δs1,s2δd1,d2δnr1 ,nr2

δ|Λ1−Λ2|,0

∫ +∞

−∞
zϕnz1

ϕnz2
dz, (A.167)

⟨α1, s1|P̂K=0
CM |α2, s2⟩ =

−i
2
δs1,s2δd1,d2δnr1 ,nr2

δ|Λ1−Λ2|,0×

×
∫ +∞

−∞

(
ϕnz1

∂zϕnz2
− ϕnz2

∂zϕnz1

)
dz, (A.168)

⟨α1, s1|R̂K=1
CM |α2, s2⟩ =

1

2A
δs1,s2δd1,d2δnz1 ,nz2

δ|Λ1−Λ2|,1

∫ +∞

0

r⊥ϕ
|Λ1|
nr1

ϕ|Λ2|
nr2

r⊥dr⊥,

(A.169)

⟨α1, s1|P̂K=1
CM |α2, s2⟩ =

−i
4
δs1,s2δd1,d2δnz1 ,nz2

δ|Λ1−Λ2|,1×

×
∫ +∞

0

[(
ϕ|Λ1|
nr1

∂r⊥ϕ
|Λ2|
nr2
− ϕ|Λ2|

nr2
∂r⊥ϕ

|Λ1|
nr1

)
+

Λ2
2 − Λ2

1

r⊥
ϕ|Λ1|
nr1

ϕ|Λ2|
nr2

]
r⊥dr⊥.

(A.170)

Previous equations show that the matrices RCM and PCM are block diagonal in
the simplex-y HO basis:

RCM =

[
rCM 0
0 rCM

]
and PCM =

[
pCM 0
0 pCM

]
, (A.171)

where Hermitian matrix rCM satisfies rCM = r∗CM = rTCM and Hermitian matrix pCM

satisfies pCM = −p∗CM = −pTCM. Matrices rCM and pCM can easily be calculated by
using Eqs. (A.167-A.170) thus yielding the matrices R20 and P 20:

R20 =

[
0 r20

− (r20)
T

0

]
and P 20 =

[
0 p20

− (p20)
T

0

]
. (A.172)

Matrices r20 and p20 read3:

r20 = −
(
u†rCMv + v†rTCMu

)
and p20 = −

(
u†pCMv + v†pTCMu

)
. (A.173)

3See Eq. (B.6) in Ref. [2]
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The general expression for the expectation value ⟨Φ|
[
R̂, P̂

]
|Φ⟩ in Eq. (3.94) can

be written as:
⟨Φ|
[
R̂, P̂

]
|Φ⟩ = 2Tr

[(
r20
)†
p20
]
. (A.174)

Using the block simplex form of the X and Y matrices:

X =

[
0 x
−xT 0

]
and Y =

[
0 y
−yT 0

]
, (A.175)

we obtain the following expressions for the expectation values ⟨Φ|
[
Ô†

(calc), R̂
]
|Φ⟩

and ⟨Φ|
[
Ô†

(calc), P̂
]
|Φ⟩ in Eqs. (3.92) and (3.93):

⟨Φ|
[
Ô†

(calc), R̂
]
|Φ⟩ = −Tr

[(
r20
)† (

+x+ yT
)]
, (A.176)

⟨Φ|
[
Ô†

(calc), P̂
]
|Φ⟩ = +Tr

[(
p20
)† (−x+ yT

)]
. (A.177)

Equations (3.95) and (3.96), providing the spurious free values for the QFAM
amplitudes, read:

x(phys)
µν = x(calc)

µν − λRr20µν − λPp20µν , (A.178)

y(phys)
µν = y(calc)

µν + λR
(
r20µν
)∗

+ λP
(
p20µν
)∗
. (A.179)

To summarize, if the excitation operator has an odd value of J and K is equal
to 0 or 1, the response is contaminated by the spurious Kπ = 0− or Kπ = 1−

contributions. Once the self-consistent solution x(calc)(ω), y(calc)(ω) is found, we
first calculate the scalar coefficients:

λR =
Tr
[
(p20)

† (−x(calc)(ω) + y(calc)(ω)T
)]

⟨Φ|
[
R̂, P̂

]
|Φ⟩

, (A.180)

λP =
Tr
[
(r20)

† (
+x(calc)(ω) + y(calc)(ω)T

)]
⟨Φ|
[
R̂, P̂

]
|Φ⟩

. (A.181)

Notice that both expressions in the numerator and denominator have to be summed
over both the proton and the neutron contribution. Next, we calculate the cor-
rected values of the QFAM amplitudes x(phys)(ω) and y(phys)(ω) according to Eqs.
(A.178) and (A.179). Finally, these corrected values are used to calculate the
spurious mode free response function. We have verified that for the isoscalar
J = 1 and K = 0, 1 excitation operator Eq. (A.159), the calculated response after
correction is precisely zero.



Appendix B

KPM Appendix

B.1 Existence of the QRPA eigenproblem solution
In this Appendix, we rigorously prove that in the case of positive-definite QRPA
matrix, there exist positive eigenfrequencies Ωi > 0 and QRPA amplitudes X i, Y i,
which are the generalized eigenpair of the QRPA matrix (4.7) satisfying the gener-
alized normalization and closure relations (4.8). We start with two lemmas which
describe the structure of eigenvectors of the QRPA and HFB matrices followed by
a proposition covering the result. Much more detailed treatment of general QRPA
eigenproblem can be found in Refs. [21, 54], however for convenience we provide
here an easy to follow proof.

Lemma 4. Let A,B ∈ Cn×n such that A† = A and BT = B. Then there exist

Q ∈ Cn×2n and diagonal diag[Di]
2n
i=1 ∈ R2n×2n such that

[
Q
Q∗

]
∈ C2n×2n is unitary

and: [
A B
B∗ A∗

]
=

[
Q
Q∗

]
diag[Di]

2n
i=1

[
Q
Q∗

]†
. (B.1)

Proof. Let us denote a Hermitian matrix S := [ A B
B∗ A∗ ] ∈ C2n×2n. Notice that for an

eigenvalueD ∈ R, if [ xy ] ∈ Ker (S −DI2n×2n), then also
[
y∗

x∗

]
∈ Ker (S −DI2n×2n).

Let us fix an eigenvalue D ∈ σ(S) ⊂ R with eigenspace VD := Ker (S −DI2n×2n),
and suppose dimVD = p ∈ N. We will show that there exist orthonormal set of
vectors:

[ x1
x∗
1

]
, . . . ,

[
xp

x∗
p

]
∈ C2n, such that: span

{[ x1
x∗
1

]
, . . . ,

[
xp

x∗
p

]}
= VD. Suppose

we have 0 ≤ l < p orthonormal vectors:
[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
∈ VD. We will show how

to construct a normalized vector
[
xl+1

x∗
l+1

]
∈ VD, which is orthogonal to previous

vectors:
[
xl+1

x∗
l+1

]
⊥
[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
. Since l < p, there exists [ xy ] ∈ VD such that

[ xy ] /∈ span
{[ x1

x∗
1

]
, . . . ,

[ xl
x∗
l

]}
. We can easily orthogonalize [ xy ] against other vectors{[ x1

x∗
1

]
, . . . ,

[ xl
x∗
l

]}
, i.e. there exists a normalized vector [ xy ] ∈ VD, such that [ xy ] ⊥[ x1

x∗
1

]
, . . . ,

[ xl
x∗
l

]
. This gives a normalized vector

[
y∗

x∗

]
∈ VD, such that:〈[

y∗

x∗

]
,
[ xi
x∗
i

]〉
=
〈
[ xy ] ,

[ xi
x∗
i

]〉∗
= 0, ∀i = 1, . . . , l. (B.2)

Thus, there exist two normalized vectors [ xy ] ,
[
y∗

x∗

]
∈ VD, orthogonal to previous

vectors: [ xy ] ,
[
y∗

x∗

]
⊥
[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
. We differentiate two cases:

136
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1. Assume that y = −x∗. Define z := ix ∈ Cn. Then [ z
z∗ ] = i [ xy ], and thus we

constructed a normalized vector [ z
z∗ ] ∈ VD, orthogonal to previous vectors:

[ z
z∗ ] ⊥

[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
.

2. Assume that y ̸= −x∗, i.e. x+ y∗ ̸= 0n. Define z := 1√
2||x+y∗||(x+ y∗) ∈ Cn.

Then [ z
z∗ ] =

1√
2||x+y∗||

(
[ xy ] +

[
y∗

x∗

])
∈ VD is a normalized vector orthogonal

to previous vectors: [ z
z∗ ] ⊥

[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
.

Thus, we constructed a normalized vector
[
xl+1

x∗
l+1

]
∈ VD orthogonal to previous

vectors
[
xl+1

x∗
l+1

]
⊥
[ x1
x∗
1

]
, . . . ,

[ xl
x∗
l

]
. Repeating this procedure p = dimVD times,

we obtain an orthonormal basis for the eigenspace VD = span
{[ x1

x∗
1

]
, . . . ,

[
xp

x∗
p

]}
.

Therefore, there exists xD ∈ Cn×dimVD such that the matrix
[ xD
x∗
D

]
∈ C2n×dimVD

has orthonormal column vectors and S
[ xD
x∗
D

]
= D

[ xD
x∗
D

]
. Repeating this argument

for each eigenvalue D ∈ σ(S) having degeneracy dimVD, and using the fact that
two eigenvectors of Hermitian matrix that correspond to two different eigenvalues
are orthogonal, we obtain a matrix Q ∈ Cn×2n such that

[
Q
Q∗

]
∈ C2n×2n is unitary

and S
[

Q
Q∗

]
=
[

Q
Q∗

]
diag[D]D∈σ(S).

Lemma 5. Let h,∆ ∈ Cn×n such that h† = h and ∆T = −∆ with
[
h ∆
−∆∗ −h∗

]
∈

C2n×2n invertible. Then there exist U, V ∈ Cn×n and diagonal E ∈ Rn×n with

positive diagonal elements such that
[
U V ∗

V U∗

]
∈ C2n×2n is unitary and:

[
h ∆
−∆∗ −h∗

]
=

[
U V ∗

V U∗

] [
+E 0
0 −E

] [
U V ∗

V U∗

]†
. (B.3)

Proof. The proof can be found in Ref. [54].

Proposition 1. Let A,B ∈ Cn×n such that A† = A, BT = B and
[
A B
B∗ A∗

]
∈

C2n×2n is positive-definite. Then there exist X, Y ∈ Cn×n and diagonal Ω ∈ Rn×n

with positive diagonal elements such that there holds:[
A B
B∗ A∗

] [
X Y ∗

Y X∗

]
=

[
I 0
0 −I

] [
X Y ∗

Y X∗

] [
+Ω 0
0 −Ω

]
, (B.4)

and: [
X Y ∗

Y X∗

] [
I 0
0 −I

] [
X Y ∗

Y X∗

]†
=

[
I 0
0 −I

]
. (B.5)

Proof. Due to the Lemma 4 and positive-definitness of
[
A B
B∗ A∗

]
, there exist uni-

tary
[
q1 q2
q∗1 q∗2

]
∈ C2n×2n for q1, q2 ∈ Cn×n and diagonal d1, d2 ∈ Rn×n with positive

diagonal elements such that:[
A B
B∗ A∗

]
=

[
q1 q2
q∗1 q∗2

] [
d1 0
0 d2

] [
q1 q2
q∗1 q∗2

]†
. (B.6)
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Then, a square root matrix
[
A B
B∗ A∗

]1/2
is well defined as:

[
A B
B∗ A∗

]1/2
:=

[
q1 q2
q∗1 q∗2

] [√
d1 0
0
√
d2

] [
q1 q2
q∗1 q∗2

]†
. (B.7)

Trivial calculation shows that the invertible matrix:[
A B
B∗ A∗

]1/2 [
I 0
0 −I

] [
A B
B∗ A∗

]1/2
, (B.8)

has the same structure as the HFB matrix in Lemma 5. Therefore, according

to Lemma 5, there exist unitary
[
x y∗

y x∗

]
∈ C2n×2n and diagonal Ω ∈ Rn×n with

positive diagonal elements, such that:[
A B
B∗ A∗

]1/2 [
I 0
0 −I

] [
A B
B∗ A∗

]1/2
=

[
x y∗

y x∗

] [
+Ω 0
0 −Ω

] [
x y∗

y x∗

]†
. (B.9)

Let us define matrices X, Y ∈ Cn×n as:[
X Y ∗

Y X∗

]
:=

[
I 0
0 −I

] [
A B
B∗ A∗

]1/2 [
x y∗

y x∗

] [
+Ω−1/2 0

0 −Ω−1/2

]
. (B.10)

Notice that the matrix on the right-hand side in Eq. (B.10) indeed has the struc-
ture as the one on the left-hand side, i.e. matrices X and Y are well defined.
Straightforward calculation then gives:[

A B
B∗ A∗

] [
X Y ∗

Y X∗

]
=

[
I 0
0 −I

] [
X Y ∗

Y X∗

] [
+Ω 0
0 −Ω

]
, (B.11)

and: [
X Y ∗

Y X∗

]† [
I 0
0 −I

] [
X Y ∗

Y X∗

]
=

[
I 0
0 −I

]
. (B.12)

Previous equation shows that:[
X Y ∗

Y X∗

]−1

=

[
I 0
0 −I

] [
X Y ∗

Y X∗

]† [
I 0
0 −I

]
, (B.13)

which finally gives: [
X Y ∗

Y X∗

] [
I 0
0 −I

] [
X Y ∗

Y X∗

]†
=

[
I 0
0 −I

]
. (B.14)



APPENDIX B. KPM APPENDIX 139

B.2 Synthetic generation of the QRPA matrices
In this Appendix we present some mathematical results that can be useful for
synthetic generation of matrices involved in the QRPA equation. Such synthetic
matrices can be used for numerical experiments and various tests. First, we prove
the Bloch-Messiah theorem for bosons stated in Appendix E of Ref. [21], and
then give a Remark explaining a procedure for generating QRPA matrix. In the
literature, we could not find a detailed and easy to follow proof of the Bloch-
Messiah theorem for bosons, and for completeness we provide a detailed proof
here.

Theorem 1. Let X, Y ∈ Cn×n such that they satisfy:[
X Y ∗

Y X∗

] [
I 0
0 −I

] [
X Y ∗

Y X∗

]†
=

[
I 0
0 −I

]
. (B.15)

Then there exist unitary C,D ∈ Cn×n and θ1, θ2, . . . , θn ≥ 0 such that:

X = D diag [cosh θi]
n
i=1C and Y = D∗ diag [sinh θi]

n
i=1C. (B.16)

Proof. The proof is similar to the proof of the Bloch-Messiah decomposition where
in this case the role of the Youla decomposition of skew-symmetric matrix plays
the Autonne-Takagi factorization of symmetric complex matrix. From equation:[

X Y ∗

Y X∗

] [
I 0
0 −I

] [
X Y ∗

Y X∗

]†
=

[
I 0
0 −I

]
, (B.17)

one obtains:
[
X Y ∗

Y X∗

]−1

=

[
I 0
0 −I

] [
X Y ∗

Y X∗

]† [
I 0
0 −I

]
, which gives:

[
X Y ∗

Y X∗

]† [
I 0
0 −I

] [
X Y ∗

Y X∗

]
=

[
I 0
0 −I

]
. (B.18)

Thus, the assumption of the Theorem gives X, Y ∈ Cn×n which according to
(B.17) and (B.18) satisfy:

XX† − Y ∗Y T = I, (B.19)

Y X† = X∗Y T , (B.20)

X†X − Y †Y = I, (B.21)

Y TX = XTY. (B.22)

Let X = U †
xΣxVx be singular value decomposition of X, where Ux, Vx ∈ Cn×n

are unitary and Σx = diag[xi]
n
i=1 is diagonal matrix containing singular values:

(xi)
n
i=1 ⊂ [0,+∞⟩. We will first show that all (xi)ni=1 are positive. From (B.21)

there holds: Y †Y = V †
x (Σ

2
x − I)Vx, which gives σ(Y †Y ) = {x2i − 1 : i = 1, . . . , n}.

Since Y †Y is Hermitian and positive-semidefinite, there holds σ(Y †Y ) ⊂ [0,+∞⟩,
which yields x2i − 1 ≥ 0, and thus xi ≥ 1 > 0, for all i = 1, . . . , n. Define
X̃ := UxXV

†
x = Σx and Ỹ := U∗

xY V
†
x . One can easily show that X̃, Ỹ ∈ Cn×n

also satisfy relations (B.19)-(B.22). Let us assume that the Theorem is true in the
case if X ∈ Cn×n is Hermitian and positive-definite. In that case, applying the
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Theorem on X̃, Ỹ ∈ Cn×n, there exist D̃, C̃ ∈ Cn×n unitary and θ1, . . . , θn ≥ 0,
such that X̃ = D̃ diag[cosh θi]

n
i=1C̃ and Ỹ = D̃∗ diag[sinh θi]

n
i=1C̃, yielding finally:

X = D diag[cosh θi]
n
i=1C and Y = D∗ diag[sinh θi]

n
i=1C, where D = U †

xD̃ and
C = C̃Vx are unitary matrices. Therefore, if we prove the Theorem with additional
assumption that X ∈ Cn×n is Hermitian and positive definite, the proof will
be completed and thus assume that X, Y ∈ Cn×n satisfy (B.19)-(B.22), where
X ∈ Cn×n is Hermitian and positive-definite matrix. Since X is Hermitian and
positive-definite, its spectral decomposition is:

X = Z

[
p⊕

i=1

xiIni×ni

]
Z†, (B.23)

where Z ∈ Cn×n is unitary and x
[n1]
1 , . . . , x

[np]
p > 0, are its eigenvalues having

degeneracies: n1, . . . , np ∈ N, with n1 + · · · + np = n. Define ρ := XX† ∈ Cn×n

and κ := Y X† ∈ Cn×n. According to Eq. (B.20), κ ∈ Cn×n satisfies: κ = Y X† =
X∗Y T , thus giving: κT = κ. Multiplying Eq. (B.22) by X† from the right and by
X∗ from the left yields:

κρ = ρ∗κ. (B.24)

We have ρ = XX† = Z [
⊕n

i=1 x
2
i Ini×ni

]Z†, which combined with (B.24) gives:

(ZTκZ)

[
n⊕

i=1

x2i Ini×ni

]
=

[
n⊕

i=1

x2i Ini×ni

]
(ZTκZ). (B.25)

Previous equation gives the equality for blocks in matrix ZTκZ:

(x2i − x2j)(ZTκZ)[i,j] = 0ni×nj
, i, j = 1, . . . , p, (B.26)

which because x1, . . . , xp > 0 are positive gives:

(ZTκZ)[i,j] = 0ni×nj
, i ̸= j = 1, . . . , p, (B.27)

i.e. ZTκZ is block diagonal matrix:

ZTκZ =

p⊕
i=1

κ̃i, (B.28)

having diagonal blocks κ̃i ∈ Cni×ni , which are symmetric: κ̃Ti = κ̃i, because ZTκZ
is symmetric. Every complex symmetric matrix κ̃i ∈ Cni×ni has Autonne-Takagi
factorization:

κ̃i = u∗i diag[σ
(i)
j ]ni

j=1u
†
i , i = 1, . . . , p, (B.29)

where ui ∈ Cni×ni are unitary and σ
(i)
1 , . . . , σ

(i)
ni ≥ 0. Using these decompositions,

from Eq. (B.28) we obtain:

(ZU)Tκ(ZU) =

p⊕
i=1

diag[σ
(i)
j ]ni

j=1, (B.30)

where U :=
⊕p

i=1 ui ∈ Cn×n is unitary block diagonal matrix. On the other hand,
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from (B.23), writing Ini×ni
= uiu

†
i , there holds:

X = Z

[
p⊕

i=1

xiuiu
†
i

]
Z† = (ZU)

[
p⊕

i=1

diag[xi]
ni
j=1

]
(ZU)†. (B.31)

Writing κ = Y X†, Eq. (B.30) gives:

p⊕
i=1

diag[σ
(i)
j ]ni

j=1 = (ZU)TY X†(ZU) = (ZU)TY (ZU) ·
(
(ZU)†X(ZU)

)†
, (B.32)

which after using Eq. (B.31) and positivity of x1, . . . , xp > 0 yields:

(ZU)TY (ZU) =

p⊕
i=1

diag[σ
(i)
j /xi]

ni
j=1. (B.33)

Let us define a unitary matrix Q := ZU ∈ Cn×n, and real non-negative numbers:
(y

(i)
j )ni

j=1 := (σ
(i)
j /xi)

ni
j=1 ⊂ [0,+∞⟩, for i = 1, . . . , p. Then (B.31) and (B.33) finally

give:

X = Q

[
p⊕

i=1

diag[xi]
ni
j=1

]
Q† and Y = Q∗

[
p⊕

i=1

diag[y
(i)
j ]ni

j=1

]
Q†. (B.34)

Inserting (B.34) into (B.21) we obtain:

x2i −
(
y
(i)
j

)2
= 1, j = 1, . . . , ni, i = 1, . . . , p, (B.35)

which shows that there exist θ1, . . . , θn ≥ 0, and Q ∈ Cn×n unitary such that:

X = Q diag[cosh θi]
n
i=1Q

† and Y = Q∗ diag[sinh θi]
n
i=1Q

†, (B.36)

which completes the proof in a special case where X ∈ Cn×n is Hermitian and
positive-definite.

Remark 1. Suppose we want to generate a positive-definite QRPA matrix
[
A B
B∗ A∗

]
∈

C2n×2n having preselected positive eigenfrequencies (Ωi)
n
i=1. First, guided by the

Theorem 1, we generate unitary matrices C,D ∈ Cn×n together with θ1, θ2, . . . , θn ≥
0, and define:

X = D diag [cosh θi]
n
i=1C, Y = D∗ diag [sinh θi]

n
i=1C. (B.37)

Second, we define matrices:

A = +
[
XΩX† +

(
Y ΩY †)∗] , B = −

[
XΩY † +

(
XΩY †)T] , (B.38)

which satisfy A† = A and BT = B, where Ω = diag[Ωi]
n
i=1 ∈ Rn×n. Then, one can
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easily see that (B.4) and (B.5) are satisfied. Also, (B.4) and (B.5) imply:[
A B
B∗ A∗

]
=

[
I 0
0 −I

] [
X Y ∗

Y X∗

] [
+Ω 0
0 +Ω

] [
X Y ∗

Y X∗

]† [
I 0
0 −I

]
, (B.39)

which evidently shows that the generated QRPA matrix
[
A B
B∗ A∗

]
is positive-

definite.

B.3 KPM method in PQ representation of QRPA

B.3.1 Definition of PQ representation

We follow the notation for PQ representation of QRPA introduced in Ref. [60].
Assume that we have two vectors F 20, F 02 ∈ Cn and a Hermitian positive semidefi-

nite QRPA matrix
[
A B
B∗ A∗

]
∈ C2n×2n, where A ∈ Cn×n is Hermitian A† = A and

B ∈ Cn×n is symmetric BT = B. Assume that there exist P,Q ∈ Cn×n, positive
numbers (Mi)

n
i=1 ⊆ ⟨0,+∞⟩ and non-negative numbers (Ωi)

n
i=1 ⊆ [0,+∞⟩, such

that there holds:[
A B
B∗ A∗

] [
P Q
−P ∗ −Q∗

]
=

[
I 0
0 −I

] [
P Q
−P ∗ −Q∗

] [
0 −iM−1

iMΩ2 0

]
, (B.40)

[
P Q
−P ∗ −Q∗

] [
0 −iI
iI 0

] [
P Q
−P ∗ −Q∗

]†
=

[
I 0
0 −I

]
, (B.41)[

P Q
−P ∗ −Q∗

]† [
I 0
0 −I

] [
P Q
−P ∗ −Q∗

]
=

[
0 −iI
iI 0

]
, (B.42)

where M = diag[Mi]
n
i=1 and Ω = diag[Ωi]

n
i=1. Notice that Eq. (B.41) and Eq.

(B.42) are equivalent. Let Ωb > 0 be the bounding frequency such that there
holds: (±Ωi)

n
i=1 ⊆ ⟨−Ωb,+Ωb⟩. Notice that for complex frequency ωγ = ω + iγ,

with γ > 0, the matrix: [
A B
B∗ A∗

]
− ωγ

[
I 0
0 −I

]
(B.43)

is invertible, and thus there exists:[
X(ωγ)
Y (ωγ)

]
=

([
A B
B∗ A∗

]
− ωγ

[
I 0
0 −I

])−1 [
F 20

F 02

]
. (B.44)

Define the strength function as:

S(ωγ) =

[
F 20

F 02

]† [
X(ωγ)
Y (ωγ)

]
. (B.45)

We seek the response function:

dB(ω)

dω
= lim

γ→0+

−1
π

ImS(ωγ). (B.46)
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B.3.2 Derivation of the response function

Notice that Eq. (B.41) gives:[
P Q
−P ∗ −Q∗

]−1

=

[
0 −iI
iI 0

] [
P Q
−P ∗ −Q∗

]† [
I 0
0 −I

]
. (B.47)

For any γ > 0 we have:[
A B
B∗ A∗

]
−ωγ

[
I 0
0 −I

]
=

[
I 0
0 −I

] [
P Q
−P ∗ −Q∗

] [
−ωγI −iM−1

iMΩ2 −ωγI

] [
P Q
−P ∗ −Q∗

]−1

,

(B.48)
which using Eq. (B.47) yields:([

A B
B∗ A∗

]
− ωγ

[
I 0
0 −I

])−1

=

[
P Q
−P ∗ −Q∗

] [
MΩ2 iωγI
−iωγI M−1

]−1 [
P Q
−P ∗ −Q∗

]†
(B.49)

If we define two column vectors (⟨Pi|F̂ |0⟩)ni=1, (⟨Qi|F̂ |0⟩)ni=1 ∈ Cn as follows:[
(⟨Pi|F̂ |0⟩)ni=1

(⟨Qi|F̂ |0⟩)ni=1

]
=

[
P Q
−P ∗ −Q∗

]† [
F 20

F 02

]
, (B.50)

then there holds:

S(ωγ) = −
[
(⟨Pi|F̂ |0⟩)ni=1

(⟨Qi|F̂ |0⟩)ni=1

]† diag [ M−1
i

ω2
γ−Ω2

i

]n
i=1

diag
[

−iωγ

ω2
γ−Ω2

i

]n
i=1

diag
[

+iωγ

ω2
γ−Ω2

i

]n
i=1

diag
[

MiΩ
2
i

ω2
γ−Ω2

i

]n
i=1

[(⟨Pi|F̂ |0⟩)ni=1

(⟨Qi|F̂ |0⟩)ni=1

]
,

(B.51)
which gives the response function (weak-* limit distribution to be more pedantic):

(B.52)
dB(ω)

dω
=

n∑
i=1

{
M−1

i |⟨Pi|F̂ |0⟩|2Di(ω) +MiΩ
2
i |⟨Qi|F̂ |0⟩|2Di(ω) +

2 Im
[
⟨Pi|F̂ |0⟩∗⟨Qi|F̂ |0⟩

]
Si(ω)

}
,

where distributions Di(ω) and Si(ω) are defined as:

Di(ω) = lim
γ→0+

Dγ
i (ω) = lim

γ→0+

−1
π

Im

[
1

ω2
γ − Ω2

i

]
, (B.53)

Si(ω) = lim
γ→0+

Sγ
i (ω) = lim

γ→0+

−1
π

Im

[
ωγ

ω2
γ − Ω2

i

]
. (B.54)

One can easily show that:

Si(ω) = lim
γ→0+

1

2

(
γ/π

(ω − Ωi)2 + γ2
+

γ/π

(ω + Ωi)2 + γ2

)
=
δ(ω − Ωi) + δ(ω + Ωi)

2
.

(B.55)
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On the other hand, if Ωi > 0, one can easily see as well that there holds:

Di(ω) = lim
γ→0+

1

2Ωi

(
γ/π

(ω − Ωi)2 + γ2
− γ/π

(ω − Ωi)2 + γ2

)
=
δ(ω − Ωi)− δ(ω + Ωi)

2Ωi

.

(B.56)
However, if one has Ωi = 0, then calculating the Di(ω) is a bit different but can
be show to be equal to:

Di(ω) = −δ′(ω), (B.57)

which can be formally understood as a limiting case Ωi → 0+ from Eq. (B.56) as
a negative central difference. One can easily now see that dB(ω)

dω
can be rewritten

as:

(B.58)
dB(ω)

dω
=

−
[
(⟨Pi|F̂ |0⟩)ni=1

(⟨Qi|F̂ |0⟩)ni=1

]† [
diag

[
M−1

i Di(ω)
]n
i=1

diag [−iSi(ω)]ni=1

diag [+iSi(ω)]ni=1 diag [MiΩ
2
iDi(ω)]

n
i=1

] [
(⟨Pi|F̂ |0⟩)ni=1

(⟨Qi|F̂ |0⟩)ni=1

]
,

which after reinserting (B.47) and (B.50) becomes:

(B.59)
dB(ω)

dω

=

[
F 20

F 02

]† [
P Q
−P ∗ −Q∗

] [
diag[Si(ω)]ni=1 diag[−iM−1

i Di(ω)]
n
i=1

diag[iMiΩ
2
iDi(ω)]

n
i=1 diag[Si(ω)]ni=1

] [
P Q
−P ∗ −Q∗

]−1 [
F 20

−F 02

]
Analytic function of 2× 2 matrix

Here we recall some elementary facts. Let f : C→ C be analytic and let A ∈ C2×2

be 2× 2 matrix. Suppose that
(
1
2
TrA

)2 − detA ̸= 0, then there holds:

f(A) =
f(λ+) + f(λ−)

2
I+

f(λ+)− f(λ−)

2
√(

1
2
TrA

)2 − detA

(
A− TrA

2
I

)
, (B.60)

where λ± are the eigenvalues of A:

λ± =
TrA

2
±

√(
1

2
TrA

)2

− detA. (B.61)

On the other hand, if A is such that
(
1
2
TrA

)2 − detA = 0, then there holds:

f(A) = f(λ)I+ f ′(λ)

(
A− TrA

2
I

)
, (B.62)

for degenerated eigenvalue:

λ =
TrA

2
. (B.63)
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Now, using the previous equations, for Ωi > 0 there holds:

f

([
0 −iM−1

i

iMiΩ
2
i 0

])
=

 (
f(+Ωi)+f(−Ωi)

2

)
−iM−1

i

(
f(+Ωi)−f(−Ωi)

2Ωi

)
iMiΩ

2
i

(
f(+Ωi)−f(−Ωi)

2Ωi

) (
f(+Ωi)+f(−Ωi)

2

)  ,
(B.64)

while on the other hand, for Ωi = 0 there holds:

f

([
0 −iM−1

i

iMiΩ
2
i 0

])
=

[
f(0) −iM−1

i f ′(0)
iMiΩ

2
i f

′(0) f(0)

]
. (B.65)

Notice that one can write for any Ωi ≥ 0:

f

([
0 −iM−1

i

iMiΩ
2
i 0

])
=

∫ +Ωb

−Ωb

f(ω)

[
Si(ω) −iM−1

i Di(ω)
iMiΩ

2
iDi(ω) Si(ω)

]
dω, (B.66)

and thus, for any analytic function f : C→ C, there finally holds:

f

([
0 −iM−1

iMΩ2 0

])
=

∫ +Ωb

−Ωb

f(ω)

[
diag [Si(ω)]ni=1 diag

[
−iM−1

i Di(ω)
]n
i=1

diag [iMiΩ
2
iDi(ω)]

n
i=1 diag [Si(ω)]ni=1

]
dω.

(B.67)

B.3.3 KPM algorithm

Continuing on Eq. (B.59) using Eq. (B.67) we have for any analytic function
f : C→ C:∫ +Ωb

−Ωb

dB(ω)

dω
f(ω)dω =

[
F 20

F 02

]† [
P Q
−P ∗ −Q∗

]
f

([
0 −iM−1

iMΩ2 0

])[
P Q
−P ∗ −Q∗

]−1 [
F 20

−F 02

]
,

(B.68)
which is equal to:∫ +Ωb

−Ωb

dB(ω)

dω
f(ω)dω =

[
F 20

F 02

]†
f

([
P Q
−P ∗ −Q∗

] [
0 −iM−1

iMΩ2 0

] [
P Q
−P ∗ −Q∗

]−1
)[

F 20

−F 02

]
,

(B.69)
which using the QRPA eigenvalue equation (B.40) finally reduces to:∫ +Ωb

−Ωb

dB(ω)

dω
f(ω)dω =

[
F 20

F 02

]†
f

([
I 0
0 −I

] [
A B
B∗ A∗

])[
I 0
0 −I

] [
F 20

F 02

]
. (B.70)

If we expand the response function in Chebyshev series as follows:

dB(ω)

dω
=

2/π√
Ω2

b − ω2

+∞∑
n=0

µnTn

(
ω

Ωb

)
, (B.71)

the expansion coefficients are given by:

µn =
1

1 + δn,0

∫ +Ωb

−Ωb

dB(ω)

dω
Tn

(
ω

Ωb

)
dω, (B.72)
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which are according to (B.70) given by:

µn =
1

1 + δn,0

[
F 20

F 02

]†
Tn

(
1

Ωb

[
I 0
0 −I

] [
A B
B∗ A∗

])[
I 0
0 −I

] [
F 20

F 02

]
. (B.73)

We obtain the same relation for the expansion coefficients as derived in Chapter
4 for XY representation of QRPA, which shows that one can use the same KPM
algorithm even if Ωi = 0 eigenfrequencies are present.

Imaginary eigenfrequencies

From Eq. (B.40) and Eq. (B.47) one can easily see:[
A B
B∗ A∗

]
=

[
I 0
0 −I

] [
P Q
−P ∗ −Q∗

] [
M−1 0
0 MΩ2

] [
P Q
−P ∗ −Q∗

]† [
I 0
0 −I

]
,

(B.74)
and thus because the QRPA matrix is Hermitian, we have Ω2

i ∈ R. Therefore,
the eigenfrequencies are either real or pure imaginary. If the QRPA matrix is
positive semidefinite, we see that ideed there holds Ωi ≥ 0. However, if the
QRPA matrix fails to be positive semidefinite, one may encounter pure imaginary
eigenfrequency. In that case, KPM method fails because when going trough the
Chebyshev recursion one effectively calculates the values Tn(ix), for some x > 0,
and one can see that Tn(ix) diverges as n is increased. Thus, the calculated KPM
coefficients µn will start to diverge if the QRPA matrix doens’t correspond to
the HFB energy minimum. This is one of the drawbacks of the KPM method.
However, one may argue that QRPA as a study of small oscillations only makes
sense to be performed around HFB minima. Thus, if we have chosen a large enough
value of bounding frequency Ωb, and the KPM method still diverges in term of µn

coefficients, we can conclude that we have at least one imaginary eigenfrequency.

B.3.4 Test of KPM method in PQ representation

QRPA characterization

Before we generate synthetic QRPA matrices, first we give a characterization of
every QRPA matrix which will be our guide when generating such matrices.

Theorem 2. Let P,Q ∈ Cn×n such that they satisfy:[
P Q
−P ∗ −Q∗

] [
0 −iI
iI 0

] [
P Q
−P ∗ −Q∗

]†
=

[
I 0
0 −I

]
. (B.75)

Then there exist D,C ∈ Cn×n unitary and θ1, . . . , θn ≥ 0 such that:

P =
i√
2
(D diag[cosh θi]

n
i=1C +D diag[sinh θi]

n
i=1C

∗) , (B.76)

Q =
1√
2
(D diag[cosh θi]

n
i=1C −D diag[sinh θi]

n
i=1C

∗) . (B.77)
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Proof. Let us define two matrices:

X :=
−i√
2
P +

1√
2
Q, Y :=

i√
2
P ∗ − 1√

2
Q∗, (B.78)

then there holds: [
X Y ∗

Y X∗

]
=

[
P Q
−P ∗ −Q∗

][ −i√
2
I −i√

2
I

1√
2
I −1√

2
I

]
. (B.79)

One can straightforwardly show using Eq. (B.75) that there holds:[
X Y ∗

Y X∗

] [
I 0
0 −I

] [
X Y ∗

Y X∗

]†
=

[
I 0
0 −I

]
, (B.80)

and thus Theorem 1 gives the existence of D,C ∈ Cn×n unitary and θ1, . . . , θn ≥ 0
such that there holds:

X = D diag[cosh θi]
n
i=1C, Y = D∗ diag[sinh θi]

n
i=1C. (B.81)

Plugging (B.81) into the inverse relations of (B.78):

P :=
i√
2
X +

i√
2
Y ∗, Q :=

1√
2
X − 1√

2
Y ∗, (B.82)

yields (B.76) and (B.77).

Suppose now that we have P,Q ∈ Cn×n satisfying Eq. (B.75). Then Eq.
(B.40) is equivalent to Eq. (B.74), which is equivalent to:

A = PM−1P † +QMΩ2Q†, B = PM−1P T +QMΩ2QT . (B.83)

Thus, if we generate unitary matrices D,C ∈ Cn×n and numbers θ1, . . . , θn ≥ 0, we
can generate according to (B.76) and (B.77) matrices P,Q ∈ Cn×n satisfying Eq.
(B.75). Then, if we generate positive numbers (Mi)

n
i=1 and non-negative numbers

(Ωi)
n
i=1, we can generate according to Eq. (B.83) matrices A,B ∈ Cn×n which

satisfy the QRPA equation (B.40). Thus, we have generated a general positive
semidefinite QRPA matrix, and we have seen that every positive semidefinite
QRPA matrix can be generated in this way.

Synthetic test example

Here we show results obtained by synthetically generating a QRPA matrix and
performing the KPM method.

First we generate 500 eigenfrequencies from uniform distribution in range
0 < Ωi < 50 MeV and add another 500 eigenfrequencies generated from uniform
distribution in a larger range 0 < Ωi < 200 MeV. Then we add 5 more spurious
eigenfrequencies Ωi = 0 MeV, and we obtain a set of n = 1005 eigenfrequencies
(Ωi)

n
i=1. We have done the same procedure when generating the eigenfrequen-

cies (Ωi)
n
i=1 as in Section 4.3.1, with only difference that now we have explicitly

generated 5 degenerated spurious eigenfrequencies. Bounding frequency used is
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Figure B.1: Low-energy region of the smeared response function and the KPM
response with Jackson kernel.

Ωb = 250 MeV. Then, we generate random values (Mi)
n
i=1 from uniform distribu-

tion in range 0 < Mi < 1. We also generate random complex values of vectors
F 20, F 02 ∈ Cn drawn from standard normal distribution. Then we generate two
unitary matrices D,C ∈ Cn×n as Q parts in QR factorization of two random com-
plex n×n matrices, followed by generating values (θi)ni=1 from uniformly in range
0 < θi < 3. Then we generate P,Q ∈ Cn×n as in Eqs. (B.76) and (B.77), and
generate A,B ∈ Cn×n as in Eq. (B.83). We also calculate the vectors (⟨Pi|F̂ |0⟩)ni=1

and (⟨Qi|F̂ |0⟩)ni=1 using Eq. (B.50). Then we perform the KPM method as ex-
plained in Algorithm 1, however here we decide to use the Jackson kernel instead
of the Lorentz kernel. For comparison with the KPM method, we calculate the
smeared response function dBγ(ω)/dω, given by Eq. (B.52), where instead of us-
ing the distributions Di(ω),Si(ω), we use the smeared versions Dγ

i (ω),S
γ
i (ω) given

in (B.53) and (B.54). We use the smearing value of γ = 0.05 MeV.
In Figure B.1 we show the low-energy region of the smeared response function

dBγ(ω)/dω compared to the KPM response when Nit = 6400 iterations in the
KPM algorithm are performed. In Figure B.2 we show a detailed look of the spu-
rious part of the smeared response function. Notice that the apparent "peak" isn’t
actually a QRPA pole because it depends on the smearing γ and is closer to zero
the smaller the smearing. One can easily see that from the shape of the spurious
contribution to the smeared response analyzed in Section IV. of Ref. [60].
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Figure B.2: Closer look of the spurious part of the smeared response function
displayed in Figure B.1.



Prošireni sažetak
Moderna teorija kvantne kromodinamike, fizikalna teorija koja opisuje djelo-

vanje jake nuklearne sile unutar složenih subatomskih čestica interakcijom između
kvarkova i gluona s pomoću triju svojstava nazvanih naboji boje: crveno, plavo
i zeleno, u stanju je uspješno teorijski opisati i eksperimentalno validirati funda-
mentalne principe na kojima je izgrađena. Iz toga bi se naivno moglo zaključiti
da je nuklearnu fiziku moguće promatrati kao samo jednu od podgrana kvantne
kromodinamike, iz razloga što su međunukleonske interakcije zapravo dominantno
posljedica kvark-gluon međudjelovanja, uz neke dodatne efekte koji proizlaze iz
slabe interakcije. Međutim, takvi proračuni koji polaze od najfundamentalnijih
principa (ab-initio) su daleko od izvedivih u praksi. Čak i najjednostavniji sus-
tavi vezanih nukleona predstavljaju velik izazov u smislu numeričkog simuliranja
ogromnog broja stupnjeva slobode koji proizlaze iz iznimne složenosti međunuk-
leonske interakcije. Danas se srednje-teški i teški sustavi nukleona mogu proučavati
gotovo isključivo u okviru efektivnih modela koji koriste fundamentalne principe
kao mikroskopsku vodilju pri konstrukciji efektivnih modela nuklearne interakcije.

Najuspješniji pristup u tom smjeru je dobro afirmirana teorija energijskog
funkcionala gustoće (eng. Energy Density Functional - EDF) korištena u brojnim
drugim granama fizike gdje se pojavljuje kvantni problem više tijela. EDF teorija
pruža precizan opis osnovnog stanja i kolektivnih pobuđenja atomskih jezgara od
relativno lakih sustava sve do superteških nuklida. Jedan od najizazovnijih prob-
lema moderne teorijske nuklearne fizike je konstrukcija i parametrizacija efektivnog
energijskog funkcionala gustoće koji bi, jednom kada mu se ugode parametri, repro-
ducirao poznate eksperimentalne podatke s visokim stupnjem preciznosti duž cijele
mape nuklida. Takav univerzalni funkcional gustoće bi se tada mogao vjerodos-
tojno koristiti u raznim istraživanjima i primjenama gdje eksperimentalni podaci
nisu dostupni, kao npr. u nuklearnoj astrofizici kod problema sinteze elemenata
u zvijezdama ili kod teorijskih predviđanja egzotičnih modova pobuđenja koja bi
upućivala eksperimente prema njihovoj eksperimentalnoj validaciji.

Odziv atomske jezgre na vanjsku pobudu može razotkriti vrijedne informa-
cije o njenoj internoj strukturi. Jednom kada je funkcional gustoće konstruiran i
definiran, teorijski bi trebalo biti moguće predvidjeti odziv na danu pobudu. Za
takva teorijska proučavanja kolektivnih pobuđenja u atomskim jezgrama često se
koristi aproksimacija slučajnih faza (eng. Random Phase Approximation - RPA)
izgrađena na Hartree-Bogoliubov modelu. Glavni cilj ove disertacije je prezenti-
rati implementaciju jednog takvog RPA rješavača te pokazati rezultate dobivene
na konkretnim primjena.

Pristup rješavanju nuklearnog mnogočestičnog problema energijskim funkcionalom
gustoće analogan je Kohn-Sham teoriji funkcionala gustoće u kojoj je samo-konzistentno
mean-field modelom efektivno preslikan mnogočestični problem u jednočestični, a
egzaktni funkcional gustoće je aproksimiran modelom koji je jednostavan funkcional
potencija i gradijenata nukleonskih gustoća i struja. Jedna od klasa samo-konzistentnih
mean-field modela predstavljaju relativistički (kovarijantni) funkcionali gustoće.
Jezgra je opisana kao sustav Diracovih čestica vezanih izmjenom mezona kroz
efektivni Lagrangian. Izoskalarni-skalarni σ mezon, izoskalarni-vektorski ω mezon
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i izovektorski-vektorski ρ mezon čine minimalan skupe mezonskih polja nužnih za
opis globalnih i jednočestičnih svojstava jezgre.

Već je u najranijim primjenama uočeno da ovakav jednostavan model baziran
na izmjeni mezona koji u Lagrangianu interakcije sadrži samo linearne članove u
mezonskim poljima nije adekvatan za kvantitativan opis složenih nuklearnih sus-
tava. Stoga je predložen model u kojoj se zadržavamo na interakciji linearnim u
ovisnosti o mezonskim poljima, ali se pretpostavlja da konstante vezanja nisu
doslovno realne konstante, već funkcije gustoće (eng. density-dependent cou-
pling). U praksi se predlažu razni fenomenološki pristupi (ansatz ) koji modeliraju
konstante vezanja ovisne o gustoći te njihovi parametri predstavljaju parametre
samog funkcionala gustoće koji se ugađaju na eksperimentalne podatke. Jedan
takav konkretan Lagrangian korišten u ovom radu je DD-ME2 (density-dependent
meson-exchange) parametrizacija koja se kroz zadnja dva desetljeća korištenja
pokazala uspješnom. Na istom tragu, alternativnu formulaciju relativističkih samo-
konzistentnih mean-field Lagrangiana čine modeli kontaktnog međudjelovanja koji
umjesto modeliranja interakcije mezonima konačnog dosega modeliraju interak-
ciju npr. kontaktnim dvo-fermionskim interakcijama i gradijentnim članovima
dobivenim razvojem mezonskih propagatora uslijed velike mase mezona u odnosu
na skalu nuklearnih interakcija. I u ovim kontaktnim modelima se za konstante
vezanja pretpostavlja ovisnost o gustoći zadane tipično ansatzom. Jedan takav
konkretan Lagrangian baziran na kontaktnoj interakciji s konstantama vezanja
ovisnima o gustoći je DD-PC1 (density-dependent point-coupling) parametrizacija.

Relativistički funkcionali gustoće uspješno su korišteni u studijama osnovnih i
pobuđenih stanja sfernih i deformiranih jezgara. Međutim, za kvantitativnu anal-
izu jezgara s otvorenim ljuskama nužno je uzeti u obzir interakcije sparivanja.
Sparivanje se često uzima u obzir u okviru Bardeen-Cooper-Schrieffer modela
(BCS), no u mnogim slučajevima ova aproksimacija nije zadovoljavajuća. Za
opise slabo vezanih sustava nužan je objedinjeni opis samokonzistentnog mean-field
međudjelovanja i korelacija sparivanja. Hartree-Fock-Bogoliubov (HFB) model
nudi ujedinjeni opis čestica-šupljina i čestica-čestica korelacija na mean-field razini.
Relativistička ekstenzija HFB modela vodi na relativistički Hartree-Bogoliubov
(RHB) model u kojem je osnovno stanje jezgre prikazano kao generalizirana Slaterova
determinanta koja predstavlja vakuum s obzirom na neovisne kvazičestice čiji su
operatori stvaranja i poništenja dobiveni unitarnom Bogoliubovljevom transfor-
macijom. Varijacijski princip RHB energijskog funkcionala gustoće vodi na RHB
problem svojstvenih vrijednosti s generaliziranim Hamiltonijanom čije rješenje
daje osnovno stanje jezgre. Interakcija sparivanja također je modelirana. U ovom
radu koristimo interakciju sparivanja konačnog dosega separabilnu u impulsnom
prostoru. Posebnim tehnikama moguće je fiksirati deformaciju jezgre u RHB mod-
elu. Ovaj rad fokusiran je na aksijalno simetrične parno-parne jezgre s mogućom
kvadrupolnom deformacijom. Opisani RHB model u praksi je implementiran kao
DIRHB rješavač koji se uspješno koristi zadnja dva desetljeća. U ovom doktorskom
radu, DIRHB rješavač koji proračunava osnovno stanje jezgre korišten je kao temelj
na kojem se proračunavaju svojstva odziva jezgre na vanjsku pobudu.

Aproksimacija slučajnih faza (eng. Random Phase Approximation - RPA) i njena
kvazičestična ekstenzija QRPA (Quasiparticle RPA - QRPA) bazirane na nuk-
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learnim energijskim funkcionalima gustoće predstavljaju jedan od najčešće ko-
rištenih teorijskih okvira za proučavanje kolektivnih pobuđenja u deformiranim
atomskim jezgrama. Standardna formulacija QRPA modela svodi se na linearizaciju
vremenski ovisne HFB teorije s obzirom na slabu vanjsku perturbaciju fiksne
energije. Razvojem kvazičestičnih operatora ovisnih o vremenu i zadržavanjem
samo linearnih članova QRPA problem se svodi na linearan sustav jednadžbi,
gdje je desna strana linearnog sustava reprezentirana vanjskom pobudom u kvaz-
ičestičnom prostoru, matrica linearnog ustava (QRPA matrica) je matrica stabil-
nosti generaliziranog RHB Hamiltonijana, a rješenje linearnog sustava daje koefi-
cijente ekspanzije kvazičestičnih operatora.

QRPA jednadžba tipično se za sferne jezgre rješava metodom dijagonalizacije
koja kao rješenja daje elementarne modove pobuđenja i QRPA svojstvene frekven-
cije. Međutim, u praksi se valna funkcija razvija u određenoj konačnoj bazi (koja
je aproksimacija potpune baze) poznatoj kao konfiguracijski prostor. Dimenzija
QRPA matrice raste kvadratno s dimenzijom konfiguracijskog prostora te je stoga
QRPA matrica u praksi ekstremno velika za deformirane sustave u odnosu na
sferne jezgre gdje sferna simetrija drastično reducira dimenzionalnost problema.
Sama eksplicitna konstrukcija QRPA matrice je gotovo nemoguće izvesti u praksi,
time štoviše i njena dijagonalizacija. U svrhu rješavanja QRPA sustava nedavno je
predložena metoda konačnih amplituda (eng. Finite Amplitude Method - FAM) i
njena kvazičestična ekstenzija (Quasiparticle FAM - QFAM). QFAM metoda bazi-
rana je na tvrdnji da je moguće iterativno riješiti QFAM jednadžbu (ekvivalentu
QRPA jednadžbi) tako da se kod iterativnog postupka niti u jednom koraku ek-
splicitno ne konstruiraju matrice koje odgovaraju dvočestičnom operatoru već se
zadržavamo na jednočestičnim operatorima. Mana QFAM metode je ta što se en-
ergija vanjske pobude mora fiksirati, te stoga QFAM jednadžbu treba rješavati za
skup energija (frekvencija) gdje za svako rješenje dane energije kao rezultat dobi-
vamo odzivnu funkciju na danoj energiji (frekvenciji). Ponavljanjem postupka za
gust skup frekvencija u konačnici dobivamo odzivnu funkciju koju je na ovaj način
moguće izračunati u razumnom vremenu čak i za velike sustave koji odgovaraju
teškim deformiranim jezgrama.

U okviru ovog doktorskog rada razvijena je nadogradnja DIRHB rješavača u ob-
liku DIRQFAM rješavača koji implementira QFAM metodu za slučaj parno-parnih
nuklida s aksijalno simetričnim osnovnim stanjem i kvadrupolnom deformaci-
jom. DIRQFAM rješavač kao bazu konfiguracijskog prostora koristi simplex-y bazu
kvantnog harmoničkog oscilatora. Za operatore koji opisuju vanjsku pobudu im-
plementirani su izoskalarni i izovektorski sferni harmonici. U disertaciji dani su
tehnički detalji DIRQFAM rješavača: detaljno je opisana korištena baza, QFAM
iterativni postupak, eksplicitna linearizacija jednočestičnog potencijal, metoda
niskog ranga za računanje induciranih struja i gustoća u koordinatnom pros-
toru, primjena GMRES metode za traženje samo-konzistentnog rješenja, nukleon-
ska lokalizacijska funkcija, tehnika konturne integracije, eliminacija spurioznog
moda, tehnika rješavanja mezonskih Klein-Gordon jednadžbi, tehnika integriranja
Coulombovog doprinosa te proračun potencijala sparivanja korištenjem Talmi-
Moshinsky zagrada. Na ilustrativnim primjerima demonstrirana je iznimna per-
formansa i fleksibilnost DIRQFAM rješavača
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Kao nadogradnju postojeće QFAM metode, u ovom disertaciji predložena je nova
Kernel Polynomial Method (KPM) metoda za računanje QRPA odzivne funkcije.
Ideja je zaobići glavnu manu QFAM metode, a to je činjenica da se QFAM jed-
nadžbe moraju samo-konzistentno rješavati za svaku frekvenciju pobude zasebno.
Cilj se može postići tako da se QRPA odzivna funkcija razvije u red Cheby-
shevljevih polinoma. Pokazano je da se koeficijenti razvoja Chebyshevljevog reda
mogu izračunati korištenjem postojećeg QFAM rješavača. Jer je QRPA odzivna
funkcija esencijalno težinska suma delta funkcija centriranih na QRPA svojstvenim
frekvencijama, javlja se fenomen Gibbsovih oscilacija jer pokušavamo razviti delta
funkciju u red polinoma. Gibbsov fenomen oscilacija rješava se već poznatom
KPM metodom uvođenjem dodatnih težinskih koeficijenata u Chebyshevljev red.
Dan je pregled odabira KPM težinskih koeficijenata, tehnički detalji oko imple-
mentacije te KPM metoda u PQ reprezentaciji QRPA problema. KPM metoda
je demonstrirana na sintetski generiranom primjeru, primjeru gdje je korišten
sykrme_rpa rješavač, primjeru gdje je korišten DIRQFAM rješavač, te na prim-
jeru efikasnog računanja momenata. Jedan od ključnih ulaznih parametara KPM
metode je granična frekvencija koja mora biti veća od svih QRPA svojstvenih
frekvencija, u protivnom se lako pokaže da KPM metoda divergira. Zbog pojave
Diracovog mora antičestičnih energija kod relativističkih funkcionala gustoće, koje
su tipično za red veličine iznad čestičnih energija, odgovarajuća najveća QRPA
svojstvena frekvencija je za red veličine veća nego kod tipičnih nerelativističkih
funkcionala. Zbog toga što je razlučivost Chebyshevljeve aprosksimacije direk-
tno proporcionalna graničnoj frekvenciji, a kod relativističkih modela granična
frekvnecija mora biti značajno veća od nerelativističkih modela, KPM metoda je
barem za red veličine inferiornija u smislu efikasnosti kada se koriste relativis-
tički modeli. S druge strane, za nerelativističke modele, pokazano je da KPM
metoda može izračunati odzivnu funkciju u bitno kraćem vremenu od konven-
cionalne QFAM metode.

Nakon što su prezentirane tehnike rješavanja QRPA problema, dani su rezultati
primjene DIRQFAM rješavača.

U prvoj primjeni napravljena je sistematična analiza multipolnog odziva de-
formiranih N = Z jezgara. Pokazano je da dominantni modovi uočeni na niskim
energijama odgovaraju oscilacijama grozdova (eng. clusters) za sve proučene
izoskalarne multipolne operatore pobuđenja. Na primjer, za laku deformiranu jez-
gru 20Ne (koja pokazuje podstrukturu grozdova čak i u osnovnom stanju) monopolni
i kvadrupolni operator pobuđenja induciraju dva α-grozda koji osciliraju oko 12C
sredice, dok dipolni i oktupolni operator pobuđenja induciraju α-grozd koji os-
cilira u odnosu na sredicu 16O. Računanjem QRPA odzivne funkcije u ovisnosti
o parametru deformacije jezgre proučena je ovisnost deformacije na formiranje i
oscilacije grozdova na slučaju monopolnog pobuđenja. Pojava opisanih dominant-
nih modova usko je vezana uz strukturu jedno-nukleonskih energijskih nivoa u
kanonskoj bazi. Specifično za 20Ne, cijepanje sferne 1d5/2 ljuske je ključno jer je
pokazano da su monopolna pobuđenja dominantno određena prijelazom iz 1/2+

stanja koje potječe od sferne 1d5/2 ljuske u 1/2+ stanje koje potječe od sferne
2s1/2 ljuske. Studija je provedena i na srednje teškim N = Z jezgrama od 12C do
56Ni. Pokazano je da su niskoenergetski modovi za monopolnu pobudu izraženiji
u smislu vjerojatnosti prijelaza za deformirane izotope daleko od zatvorene ljuske.
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Rezultat je ilustriran na tri izotopa: 24Mg, 28Si i 32Si koji pokazuju vidljivu pod-
strukturu grozdova čak i u osnovnom stanju. Slično kao i kod 20Ne primjera, u
pobuđenju dominantnu ulogu ima samo jedna dvočestična konfiguracija.

U drugoj primjeni korišten je DIRQFAM rješavač za efikasan proračun fonon-
skih frekvencija i kvazičestica-fonon vrhova vezanja pomoću kojih je izgrađena
aproksimirana Dysonova jednadžba za nukleonski propagator. Fononi su aproksimi-
rani u prvom redu korištenjem QRPA teorije. Pristup kvazičestica-fonon vezanja
formuliran je za RHB kvazičestice i proučen prvi puta za deformirane jezgre s
otvorenim ljuskama. Dosadašnje studije kvazičestica-fonon vezanja bile su moguće
samo korištenjem sfernih jezgara. Analizom rješenja za srednje-tešku jezgru bo-
gatu neutronima 38Si uočena je značajna fragmentacija koreliranih kvazičestičnih
energija blizu Fermijevog nivoa te povećanje gustoće stanja protona i neutrona.
Ta pojava značajno poboljšava slaganje s eksperimentalnim podacima za aksijalno
simetrične deformirane jezgre u odnosu na RHB aproksimaciju.

Naučene lekcije vezane uz QFAM implementaciju za aksijalno simetričan slučaj
daju vrijedan uvid za daljnja istraživanja gdje je poželjno dodatno oslabiti pret-
postavku aksijalne simetrije. Na primjer, mikroskopski opis spontane fisije je jedan
ona najvećih izazova u nuklearnoj fizici. Pri simulacijama fisije nužna je evalu-
acija kolektivnih potencijala i kolektivnih parametara tromosti duž fisijske linije
u prostoru parametara deformacije za opis kvantnog tuneliranja u spontanoj ili
niskoenergijskoj fisiji. Do nedavno, u studijama dinamike fisije u okviru teorije
energijskog funkcionala gustoće, kolektivni parametri tromosti evaluirani su ko-
risteći tzv. cranking aproksimaciju, koja je ekvivalentna QRPA problemu ako
zanemarimo rezidualnu interakciju. Ako se za svaki parametar u deformacijskom
prostoru RHB modela riješi QRPA problem, moguće je evaluirati parametre tro-
mosti gdje su efekti rezidualne interakcije uzeti u obzir. Pokazuje se da QFAM
metoda kombinirana sa tehnikama konturne integracije omogućuje efikasno raču-
nanje kolektivnih parametara tromosti čak i u slučaju teških deformiranih jezgara.
Kolektivni parametri tromosti evaluirani su u recentnoj studiji [135] za simetrični
fisijski put u 240Pu i 256Fm jezgri. Tamo je pokazano da je QFAM-QRPA param-
etar tromosti značajno veći od one dobivene cranking aproksimacijom s netrivijal-
nom ovisnošću o deformaciji fisijskog izomera što je direktna posljedica rezidual-
nih efekata. Ta studija je početna točka za sistematične studije fisijske dinamike
teških i superteških jezgara gdje su parametri tromosti po prvi puta evaluirani bez
cranking aproksimacije. Budući razvoj DIRQFAM rješavača bi idealno išao u istom
smijeru.
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