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We theoretically investigate the phenomenon of modulation instability for systems obeying the nonlinear
Schrödinger equation, which are under the influence of an external homogeneous synthetic magnetic field. For
an initial condition, the instability is detected numerically by comparing dynamics with and without a small
initial perturbation; the perturbations are characterized in a standard fashion by wave vectors in momentum
space. We demonstrate that the region of (in)stability in momentum space, as well as time evolution in real
space, for identical initial conditions, depend on the choice of the gauge (i.e., vector potential) used to describe
the homogeneous synthetic magnetic field. This superficially appears as if the gauge invariance is broken, but
this is not true. When the system is evolved from an identical initial condition in two different gauges, it is
equivalent to suddenly turning on the synthetic magnetic field at t = 0. This gives rise, via Faraday’s law, to an
initial instantaneous kick of a synthetic electric field to the wave packet, which can differ for gauges yielding an
identical uniform magnetic field for t > 0.

DOI: 10.1103/PhysRevA.103.013309

I. INTRODUCTION

Modulation instability (MI) is a nonlinear phenomenon
which has been long studied in various physical systems in-
cluding fluid dynamics, nonlinear optics, and plasma physics
[1–10] (for historical overview of early work, see Ref. [11]).
Following major experimental developments with ultracold
atomic gases, MI has been investigated for Bose-Einstein con-
densates (BECs) [12–15]. MI occurs when small perturbations
on the uniform background intensity become exponentially
amplified. In this way instability, which develops from the
interplay of nonlinearity and dispersion [10], breaks the sym-
metry of the uniform state. As a recent example, experiments
with ultracold atoms have investigated the role of MI in the
formation of matter-wave solitons [16,17], in analogy with
extensive studies of solitons in optics [18]. In this paper we
explore MI in a nonlinear system with a synthetic magnetic
field.

The implementation of synthetic gauge fields is of great
interest in atomic systems [19,20], because it can enable ex-
ploring topological phases of matter [21]. Analogous ideas on
photonic platforms have led to the emergence of topological
photonics [22,23]. There is extensive literature on synthetic
gauge fields and topological phases in these systems, as some
of the ideas arose a quarter of a century ago [24]; a number
of comprehensive reviews on these topics [19–23], some of
which are very recent [21,23], have been published.

*klelas@ttf.unizg.hr
†djukic@grad.unizg.hr

Let us mention a few of the schemes used for the cre-
ation of synthetic gauge fields for atoms [25–32] and photons
[33–36]. The first scheme for ultracold atoms was imple-
mented in rapidly rotating BECs by employing the analogy
between the Coriolis and the Lorentz force [25,26]. The first
implementation using light-atom interaction employed the
analogy between the Aharonov-Bohm phase for charged par-
ticles, and the Berry phase for ultracold atoms with spatially
dependent Raman coupling between internal hyperfine states
[27]. Very successful schemes were implemented in optical
lattices [28–32], where the tunneling matrix element between
neighboring sites is engineered to acquire a synthetic Peierls
phase.

An equivalent strategy to engineer coupling between op-
tical cavities, or photonic lattice sites, has been proposed in
photonic systems (e.g., see Refs. [37–41]). It was successfully
implemented by using link resonators of different length [35],
to image topological edge states [35]. A scheme mimicking
strained graphene was used in photonic lattices to obtain
artificial magnetic fields [33]. Interestingly, photonic Floquet
topological insulators were implemented using helical waveg-
uides which yield synthetic electric fields [34]. A non-Abelian
gauge field has been synthesized recently in an optical setup
[36].

A majority of work on synthetic gauge fields and
topological phases are in noninteracting systems (single-
particle phenomena) for ultracold atoms [19–21], and in
linear photonic systems [22,23]. However, when interactions
or nonlinearity are turned on, intriguing phenomena such as
the fractional quantum Hall effect can emerge [42,43]. The
nonlinear photonic phenomena addressed in the topological
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context include an analysis of the Hofstadter butterfly in a
nonlinear Harper lattice [44], solitons [45–49], nonlinear
harmonic generation [50,51], topological lasers [52–54],
topological transitions [55,56], nonlinear control [57], and
nonlinear pumping [58] of topological edge states.

In this paper, we theoretically explore how the implemen-
tation of the homogeneous synthetic magnetic field in systems
modeled by the two-dimensional (2D) nonlinear Schrödinger
equation (NLSE) affects the MI phenomenon. Dynamics of
weakly interacting BECs (in the mean-field approximation)
and propagation of light through nonlinear media are both
described by the NLSE [10,59]; for BECs it is usually referred
to as the Gross-Pitaevskii equation (GPE) [59]. Therefore, our
study is applicable to both ultracold atomic and photonic sys-
tems. In two dimensions, the addition of an external uniform
magnetic field into a Hamiltonian leads to harmonic terms
(among others) in the NLSE, resembling the scalar harmonic
trap potential. For this reason, in Sec. II we first outline the
study of MI in one-dimensional (1D) harmonic traps, follow-
ing the work in Ref. [15]. The NLSE in 2D with a magnetic
field is introduced in Sec. III for different gauges of the vector
potential. In Sec. IV we numerically explore MI in 2D NLSE
with the synthetic magnetic field. More specifically, we ex-
plore the time evolution of an initial Thomas-Fermi profile
wave packet (with and without perturbations), and compare its
dynamics for symmetrical and Landau gauges. Perturbations
are characterized in momentum space. We demonstrate that
the dynamics of wave packets with identical initial conditions,
and regions of (in)stability in momentum space, are dependent
on the choice of the gauge. This may seem as if gauge invari-
ance is broken; however, this is not true. When the system
is evolved from an identical initial condition in two different
gauges yielding the same uniform synthetic magnetic field,
it is equivalent to suddenly turning on the field at t = 0 (or
z = 0 in spatial photonics). At this instance, fields arising
from gauges differ and our results can be explained with
Faraday’s law: as the homogeneous synthetic magnetic field
is turned on, an instantaneous kick of a synthetic electric field,
which differs in the two gauges, occurs and affects subsequent
dynamics. This gauge matters effect has already been noted in
Ref. [60] in a different context. Finally, in Sec. V we conclude
and summarize our results.

II. MODULATION INSTABILITY IN 1D NLSE WITH
HARMONIC POTENTIAL

We start by studying a 1D system in a harmonic potential
which satisfies the dimensionless NLSE,

i
∂ψ

∂t
=

(
− ∂2

∂x2
+ ax2 + η|ψ |2

)
ψ. (1)

Here, a is the harmonic oscillator constant, and η < 0 charac-
terizes the strength of the nonlinearity. Due to the harmonic
potential, this equation does not have a homogeneous ground
state for which a standard MI analysis could be performed.
This problem has been thoroughly studied in Ref. [15]
numerically.

For clarity, we will briefly review a demonstration of MI
in this system. We assume that the initial state is the ground
state of the stationary NLSE in the Thomas-Fermi (TF)
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FIG. 1. Modulation instability in 1D NLSE with a harmonic
potential. (a) Density of the initial state ψ0(x, 0) = ψTF (solid red
line) and density of the time-evolved state ψ0(x, 4) (dashed blue
line). (b) Densities of the time-evolved states ψ1(x, 4) (solid red
line) and ψ2(x, 4) (dashed blue line), obtained with time evolu-
tion of the perturbed initial states ψ1(x, 0) = N1ψTF(1 + 0.01 cos x)
and ψ2(x, 0) = N2ψTF(1 + 0.01 cos 2x), respectively. See text for
details. (Here and throughout the paper all plotted quantities are
dimensionless.)

approximation. The stationary equation reads

μψ =
(

− ∂2

∂x2
+ ax2 + η′|ψ |2

)
ψ, (2)

where μ is the chemical potential, and the nonlinearity is
positive, η′ > 0. In the TF approximation the kinetic energy
term is neglected, and the resulting wave function is ψTF =√

μ−ax2

η′ for |x| <
√

μ/a, and ψTF = 0 elsewhere. We choose
the chemical potential μ = 1, harmonic oscillator constant
a = 0.0025, and strength of the nonlinearity η′ = 1 [15].
Since MI is expected to occur at negative values of nonlin-
earity, we quench the system so that the sign of nonlinearity
is switched from positive η′ to negative η = −η′ at t = 0, and
investigate the time evolution of Eq. (1) with the TF initial
condition. In the context of ultracold atomic gases, this quench
in the nonlinearity can be achieved experimentally by using
Feshbach resonances [61].

The time dynamics of the initial state ψ0(x, 0) = ψTF,
which we observe after the quench, results in density mod-
ulations, shown in Fig. 1(a) at t = 4, but they are here present
only due to the fact the TF state is not an eigenstate of the
system. On the other hand, MI is demonstrated by studying
the time evolution of a slightly perturbed initial TF state.
In our calculations, the perturbed initial states are of the
form ψk (x, 0) = NkψTF(1 + cos kx), where k = {1, 2}, and
the constant Nk ensures that both perturbed initial states have
the same normalization as the unperturbed initial TF state.
As visible in Fig. 1(b), adding an appropriate noise term with
k = 1 leads to density modulations which develop quickly in
time, indicating that the initial state is unstable with respect to
the perturbation with k = 1. In contrast, the perturbation with
k = 2 does not destabilize the trajectory from the initial TF
state, as visible in Fig. 1(b). At this point, it is worth noting
that at long times the TF state (which is not equal to the ground
state of the case with η = −1) will eventually be destroyed,
i.e., large amplitude localized excitations will be developed
independently of the initial value of k, due to the excitation of
unstable momenta [15].
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III. TWO-DIMENSIONAL NLSE WITH A SYNTHETIC
MAGNETIC FIELD: WHICH GAUGE TO USE?

Imagine the following experiment. We have a 2D pho-
tonic system with an implemented synthetic magnetic field
and the Kerr type nonlinearity. We launch a beam with some
initial profile into this system and ask whether the trajectory
from this initial condition is stable or not. For a definition
of stability of trajectories which are not periodic please see
Ref. [62], the section on Lyapunov exponents. In the parax-
ial approximation this system is modeled with the NLSE.
An equivalent experiment in BECs would be to prepare the
weakly interacting BEC in some initial state, in a potential
confining the dynamics to two dimensions; then, we suddenly
turn on the synthetic magnetic field, and wonder whether
subsequent dynamics is sensitive to small perturbations on the
initial state.

This is modeled with the NLSE in 2D with an additional
vector potential A,

i
∂ψ

∂t
= [(−i∇ − A)2 + η|ψ |2]ψ, (3)

where ∇ = x̂ ∂
∂x + ŷ ∂

∂y and ψ ≡ ψ (x, y, t ). In photonics, the
“time variable” is the propagation axis coordinate z instead of
t [23]. The vector potential A corresponds to a homogeneous
synthetic magnetic field perpendicular to the 2D plane, B =
Bẑ = ∇ × A. We should have the freedom to choose a gauge
for the vector potential A and focus on two most common
choices, the symmetric and the Landau gauge.

In the symmetric gauge AS = 1
2 B(−yx̂ + xŷ), which leads

to the following time-dependent NLSE in 2D:

i
∂ψ

∂t
=

[
− ∂2

∂x2
− ∂2

∂y2
− iBy

∂

∂x
+ iBx

∂

∂y

+ 1

4
B2(x2 + y2) + η|ψ |2

]
ψ. (4)

We can write the Landau gauge either as ALx = −Byx̂ or
ALy = Bxŷ. With the choice ALx, the time-dependent NLSE
reads

i
∂ψ

∂t
=

(
− ∂2

∂x2
− ∂2

∂y2
− 2iBy

∂

∂x
+ B2y2 + η|ψ |2

)
ψ, (5)

and with ALy we have

i
∂ψ

∂t
=

(
− ∂2

∂x2
− ∂2

∂y2
+ 2iBx

∂

∂y
+ B2x2 + η|ψ |2

)
ψ. (6)

It is obvious that dynamics from an identical initial condition
ψ (x, y, t = 0) will differ if we evolve it in a different gauge,
i.e., evolution with Eqs. (4), (5), or (6) will differ. However,
this does not mean that the gauge invariance principle is vi-
olated. Equations (4), (5), and (6) are related through gauge
transformations of the vector potential. However, in order
for all three of them to yield the same dynamics, the initial
condition for one of them should be ψ (x, y, 0), and the initial
conditions for the other two should be appropriately gauge
transformed. Because the system is experimentally prepared
in the state ψ (x, y, 0) at t = 0, it is not immediately clear
which equation, that is, which gauge to use for this initial
condition.

To understand what happened, note that in the gedanken
experiments described above, in the photonic and BEC con-
text, the system is prepared in some state, and then at t =
0 the synthetic magnetic field is suddenly turned on (in
photonics this is the moment the optical beam enters the
2D medium). Thus, B(t ) = Bθ (t ), and the vector potential
A(x, y, t ) = A(x, y)θ (t ), where θ (t ) is the Heaviside step
function. By Faraday’s law, the synthetic magnetic field at the
instant t = 0 creates a spatially dependent synthetic electric
field kick, which differs for the gauges mentioned above.
We obtain the following electric fields in different gauges:
ES = − ∂AS

∂t = −Bδ(t )(− y
2 x̂ + x

2 ŷ), ELx = − ∂ALx
∂t = Bδ(t )yx̂,

and ELy = − ∂ALy

∂t = −Bδ(t )xŷ. Thus, even though at times
t > 0 the fields generated by the vector potential are identical,
this kick affects dynamics for times t > 0.

One can ask next, which gauge should we use for a given
experiment? This depends on the experiment and the way
synthetic magnetic field is implemented at t = 0. A given
implementation of the uniform synthetic magnetic field will
have a particular and unique synthetic electric field kick at
t = 0. The gauge used for the dynamics should yield exactly
the same synthetic electric field kick in order to describe the
experimental situation. In the next section we will discuss
the MI phenomenon in the aforementioned different gauges,
which as we have just explained correspond to different ex-
perimental implementations of the field. Before that let us
elaborate how we choose the initial condition and explore MI.

When we introduce the vector potential into NLSE, new
terms on the right-hand side of Eqs. (4)–(6) appear: first-order
spatial partial derivatives and harmonic confinement terms.
Due to the harmonic terms, we do not proceed with the
standard MI analysis by using plane wave as an initial state,
because plane waves are not eigenstates of any of Eqs. (4)–(6).
However, following the discussion from the previous section,
for the initial state we choose the ground state of the 2D NLSE
with isotropic harmonic confinement 1

4 B2(x2 + y2)

μψ =
[
− ∂2

∂x2
− ∂2

∂y2
+ 1

4
B2(x2 + y2) + η′|ψ |2

]
ψ, (7)

in the TF approximation. We choose μ = 1 for the chemical
potential, the field is set to B = 0.1, and the strength of the
nonlinearity is positive, η′ = 1. In the TF approximation we
neglect the kinetic energy terms, which leads to the ground
state wave function

ψTF(x, y) =
√

μ − 1
4 B2(x2 + y2)

η′ (8)

for 0 <
√

x2 + y2 < 2
√

μ

B , and ψTF = 0 elsewhere. We ob-
serve the time evolution of the system from this initial state;
we propagate it with Eq. (3) with nonlinearity η = −η′,
because the MI is expected in the regime of negative nonlin-
earities (attractive BECs or self-focusing nonlinear media).

IV. MODULATION INSTABILITY IN 2D NLSE WITH A
SYNTHETIC MAGNETIC FIELD

In this section, we present numerical results which demon-
strate MI in our system. For this, we have implemented a
2D split-step method for the time evolution with the NLSE
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FIG. 2. (a) Density |ψ00(x, y, 0)|2 = |ψTF|2 of the initial
Thomas-Fermi state (8). Density |ψ00(x, y, t = 3)|2 evolved with
(b) the harmonic potential only [Eq. (9)], (c) the symmetric gauge
AS [Eq. (4)], (d) the Landau gauge ALx [Eq. (5)], and (e) the Landau
gauge ALy [Eq. (6)].

(3) in the symmetric and the Landau gauge, which include
the first-order spatial partial derivatives and harmonic terms
arising from the vector potential. For comparison, we will also
show results for the time evolution of the NLSE with only
the harmonic terms present, that is, for 2D generalization of
Eq. (1),

i
∂ψ

∂t
=

[
− ∂2

∂x2
− ∂2

∂y2
+ 1

4
B2(x2 + y2) + η|ψ |2

]
ψ. (9)

The initial state ψ00(x, y, 0) = ψTF given in (8) is illustrated
in Fig. 2(a). The time evolution of this state propagated in
different gauges [Eq. (9) and Eqs, (4)–(6)] is presented in
Figs. 2(b)–2(e). We observe that small density modulations
develop in time because the initial TF state is not an eigenstate
of the system in any gauge. The time evolution with only the
harmonic term present (9), and with the magnetic field in the
symmetric gauge (4) are hardly distinguishable for the chosen
set of parameters [compare Figs. 2(b) and 2(c)]. In the Landau
gauge(s) the density cloud becomes elongated and rotated in
time [Figs. 2(d) and 2(e)]. The two density clouds in Figs. 2(d)
and 2(e) are oriented at π/2 angle relative to each other, which
reflects the geometric relationship between Landau gauges
ALx and ALy.

We now add perturbations to the initial state,

ψkxky (x, y, 0) = NkxkyψTF[1 + 0.01 cos (kxx + kyy)]. (10)

Here, k = (kx, ky) is a 2D momentum of the perturbation, and
Nkx,ky is the normalization constant such that perturbed TF
states have the same normalization as the unperturbed TF state

FIG. 3. (a) Density |ψ10(x, y, 0)|2 of initial state (10) with per-
turbation momentum (kx = 1, ky = 0). (b)–(e) Density |ψ10(x, y, t =
3)|2 evolved with the same equations as in Figs. 2(b)–2(e).

(8). In order to consistently compare the time evolution of the
perturbed (10) and unperturbed initial state (8) we show time-
evolved density profiles at t = 3. We emphasize that, similarly
as in the 1D example, the dynamics for longer times will
eventually lead to the destruction of the TF cloud in all cases,
i.e., generation of very strongly localized patterns due to the
presence of unstable momenta in the initial TF state. For the
set of parameters chosen in our calculations, the subsequent
collapse of the wave function will also be observed. However,
here we study instability that occurs at short timescales, rather
than the long-term behavior of the wave packet. Therefore
we can exploit the separation of timescales, i.e., the time for
which the MI phenomenon can be established occurs prior to
the destruction and collapse of the TF state.

First, we consider ψ10(x, y, 0) with perturbation momen-
tum (kx, ky) = (1, 0). The density profile of this initial state is
shown in Fig. 3(a), and its time evolution in different gauges
in Figs. 3(b)–3(e); the outlines of Figs. 2 and 3 are identical
for easier comparison. We see that in all gauges the MI is
present, as can be seen from the strong modulations in the
densities. Time evolution with the harmonic confinement only
[Eq. (9)], and with the symmetric gauge [Eq. (4)] show MI
with the same intensity modulations [Figs. 3(b) and 3(c)];
however, in the symmetric gauge we observe rotation of mod-
ulation patterns. In the Landau gauge ALx [Eq. (5)], both the
density cloud and its modulation patterns are elongated and
rotated in time [Fig. 3(d)]. In contrast, in the Landau gauge
ALy [Eq. (6)], the cloud is also elongated and rotated, but
modulation patterns do not rotate during the time evolution
[Fig. 3(e)]. This difference in the modulation patterns in Lan-
dau gauges reflects the differences between synthetic electric
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FIG. 4. (a) Density |ψ20(x, y, 0)|2 of initial state (10) with per-
turbation momentum (kx = 2, ky = 0). (b)-(e) Density |ψ20(x, y, t =
3)|2 evolved with the same equations as in the Figs. 2(b)–2(e).

field kicks at t = 0 for ALx and ALy, i.e., synthetic electric field
ELx provides initial momentum perpendicular to the stripes
of perturbation in ψ10(x, y, 0), while synthetic electric field
ELy provides initial momentum parallel to the stripes of that
perturbation, which results in different dynamics of the mod-
ulation pattern later on.

Second, we consider time evolution from the initial state
ψ20(x, y, 0) with perturbation momentum (kx, ky) = (2, 0).
Results are presented in Fig. 4; the outline of the figures is
again identical to those in Figs. 2 and 3. This initial perturba-
tion does not destabilize the trajectory, i.e., we do not observe
MI in any gauge.

In a more general setting, perturbation may consist of two
or more components in momentum space. As an example, we
investigate the evolution of the TF initial state,

ψ̃11(x, y, 0) = Ñ11ψTF{1 + 0.01[cos(x) + cos(y)]}, (11)

where Ñ11 is the normalization constant determined as in
Eq. (10). The initial state (11) is a superposition of pertur-
bations with momenta (kx, ky) = (1, 0) and (kx, ky) = (0, 1).
The MI is revealed during the time evolution for this initial
state [see Fig. 5], as expected from the results for a single un-
stable (kx, ky) = (1, 0) perturbation. The modulation patterns
which develop during dynamics have more complex shapes
than the simple modulation stripes from Fig. 3. Here, density
modulations form a lattice when only the harmonic term is
present [Fig. 5(b)], and this lattice is rotated in the symmetric
gauge [Fig. 5(c)]. In addition to this, in both Landau gauges,
the atomic cloud is elongated and rotated, which leads to
nontrivial MI density patterns [Figs. 5(d) and 5(e)].

FIG. 5. (a) Density |ψ̃11(x, y, 0)|2 of the perturbed initial state
(11). (b)–(e) Density |ψ̃11(x, y, t = 3)|2 evolved with the same equa-
tions as in Figs. 2(b)–2(e).

In order to have a dynamical measure of the MI phe-
nomenon which emerges during time evolution, and numeri-
cally investigate the instability region in the momentum space
of perturbations, we introduce the following quantity:

�kx,ky (t ) =
√∫ [∣∣ψkxky (x, y, t )

∣∣2 − |ψ00(x, y, t )|2]2
dx dy.

(12)

In Fig. 6 we have calculated �kx,ky (t = 3) after time evolution
with Eq. (9) and Eqs. (4)–(6). The (in)stability region in
momentum space for evolution with the harmonic potential
only [Eq. (9)] and in the symmetric gauge AS [Eq. (4)] are
presented in Figs. 6(a) and 6(b), respectively. Results are
indistinguishable; in both cases �kx,ky has azimuthal sym-
metry, with the maximally unstable perturbation at radius

k =
√

k2
x + k2

y ≈ 0.95. In Figs. 6(c) and 6(d), we show the

(in)stability region for time evolution with the Landau gauges
ALx [Eq. (5)] and ALy [Eq. (6)], respectively. These instabil-
ity regions are of elliptical shape and perpendicular to each
other. The maximally unstable perturbations in Fig. 6(c) are
at k ≈ (−0.55, 0.55) and (0.55,−0.55); we can also see a
drop of instability in the vicinity of k ≈ (0.75, 0.75) and
(−0.75,−0.75).

More complex, direction dependent behavior of the in-
stability region for the Landau gauges is attributed to the
difference in the symmetries between the two Landau gauges
and the initial TF state. The switching of the synthetic mag-
netic field in the Landau gauge introduces an electric field
with translational symmetry; thus, it provides the momentum
kick which breaks the cylindrical symmetry of the initial TF

013309-5



KARLO LELAS et al. PHYSICAL REVIEW A 103, 013309 (2021)

FIG. 6. Instability region in the momentum space for the time
evolution with (a) the harmonic potential only [Eq. (9)], (b) the
symmetric gauge AS [Eq. (4)], (c) the Landau gauge ALx [Eq. (5)],
and (d) the Landau gauge ALy [Eq. (6)]. See text for details.

state. This further leads to the distortion of the density cloud
in time, which is reflected in the momentum instability region
as well. When the synthetic magnetic field is turned on in
the symmetric gauge, it generates an electric field with the
cylindrical symmetry; thus, the symmetry of the initial TF
state is preserved during the time evolution, both in the real
and the momentum space.

Up to this point, we have focused on a specific quench
protocol in our study of MI: at t = 0, starting from a perturbed
TF initial state, we turn off the harmonic trap, turn on the mag-
netic field, and also switch the sign of interaction. However,
the quench to the system can be applied in different ways.
In what follows, we comment on other foreseeable experi-
mental scenarios. For example, we can imagine the system
to be in a harmonic trap, and at t = 0 turn on the magnetic
field and switch the sign of interaction, without turning off
the harmonic confinement. We have numerically verified that
keeping the trap present during the time evolution of the
initially perturbed TF state does not change the results for in-
stability regions from previous analysis in Fig. 6. In addition,
we have also calculated and verified that our results are valid
also when the initial state is chosen to have a Gaussian profile
(perturbations are also added) with spatial width comparable
to the TF state (8). In this case, the Gaussian state can be
prepared as the ground state of a noninteracting system in a
shallow 2D harmonic potential which is kept during the time
evolution. In the next section we study another viable quench
scenario.

MI of the lowest Landau level states with quench in the
nonlinearity

Another interesting scenario would be to have a system
prepared in the ground state with the magnetic field already
present, and study the time evolution of the ground state (with
perturbations added at t = 0) with quench in the nonlinearity.
We first discuss this idea specifically for symmetric gauge: the

degenerate eigenstates

ψm(x, y) =
(

Be

2m

)m/2

(x − iy)me−[B(x2+y2 )/4], (13)

from the lowest Landau level (LLL) have circular density pro-
file, such that their radius increases with the angular quantum
number m = {0, 1, 2, 3, . . .} and the normalization is chosen
such that the intensity has maximum value equal to 1 for each
angular quantum number m.

Landau levels are flatbands and it is worthy to study MI
after switching on both positive and negative nonlinearity to
verify whether instability may occur for both self-focusing
and self-defocusing nonlinearity. Namely, because the band is
flat, one may expect that instability will occur symmetrically
for both types of the nonlinearity. There are two things to
comment on before we present our calculations.

First, the uniform wave is not an eigenstate of the system
(as is the usual case in MI studies), because plane waves are
not eigenstates of the system. Therefore, for the initial state
whose instability we study, we use LLL eigenstates.

Second, we comment on the flatband intuition. It is based
on the behavior of waves (light waves or matter waves) in
lattices where bands at band minima, maxima, or at special
points like Dirac points in graphene, have certain dispersion,
that is, dependence of energy (or frequency) vs momentum
(or quasimomentum). An effective low energy theory is com-
monly used for excitations close to these extremal points in the
spectra. For example, if the dispersion is such that the effective
mass is negative, one can balance dispersion of a localized
wave packet with self-defocusing nonlinearity to obtain soli-
tons. However, for the LLL, dispersion is not energy versus
2D momentum as in optical or photonic lattices, because the
gauge field was involved in creating the flatbands. Therefore,
that intuition is not applicable here and we are not surprised
to find that MI occurs for self-focusing but not self-defocusing
nonlinearity in our calculations.

In what follows we study time dynamics and the MI for
each LLL eigenstate (with perturbations) after switching on
the nonlinearity. The state (13) is perturbed along the az-
imuthal direction, so that the initial state is

ψmn(x, y, t = 0) = Nm,nψm(x, y)[1 + 0.01 cos (nφ)], (14)

where φ = arctan(y/x) is the polar angle and Nm,n is the
normalization constant such that perturbed LLL states (14)
have the same normalization as the unperturbed LLL states
(13). An example of an initial state is presented in Fig. 7(a),
with m = 10 and perturbation n = 14. Following the time
evolution, the MI is demonstrated to occur along the azimuthal
direction and only when negative (attractive) nonlinearity is
switched on at t = 0 (here we use η = −1 and B = 0.1 as in
previous simulations) [see Fig. 7(b)]. In order to quantify MI
in momentum space, we have calculated the quantity

�̃m,n(t ) =
√∫

[|ψmn(x, y, t )|2 − |ψm(x, y, t )|2]2dx dy∫ |ψm(x, y, t )|4dx dy
, (15)
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FIG. 7. (a) Density of state ψmn(x, y, t = 0) in symmetric gauge
with angular quantum number m = 10 and added perturbation n =
14. (b) Density profile (at t = 3) after time evolution from this initial
state which demonstrates MI along the azimuthal direction. Here, the
quench is achieved by switching on the negative nonlinearity.

which also includes the effect of different normalizations
of LLL eigenstates. The results for �̃m,n(t = 3) (where 0 <

m � 41 and 0 � n � 40) are shown in Fig. 8(a). Here, the
parabolic profile of the instability region can be understood
by considering the circle of maximum intensity of the eigen-
state ψm, with radius Rm = √

2m/B, as a homogeneous 1D
system with periodic boundary conditions and employing
textbook analysis of MI gain for 1D homogeneous systems,

i.e., g(k1D) =
√

2Ik2
1D − k4

1D [10]. In our case intensity I = 1
and k1D = n/Rm stands for the wave vector of the perturbation
cos (nφ) along the circle with radius Rm. Following this simple
approach we get the relationship between quantum number
m and the number nmax of the perturbation with maximum
gain, i.e., m = Bn2

max/2 which agrees excellently with results
presented in Fig. 8(a). The wavelength (and wave vector)
corresponding to the perturbation with maximum gain are
λmax = 2π (and kmax = 1) for any m > 0. (A purely Gaussian
symmetric gauge eigenstate with m = 0 does not have the ring
structure as for other eigenstates and has been treated sepa-
rately in a similar fashion as the TF state (10). In particular,
we have not observed MI patterns for the m = 0 eigenstate
since the spatial width of its intensity plateau is smaller
than the characteristic perturbation length scale λmax, and
the time dynamics leads directly to the collapse of the wave
function.)
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FIG. 8. Instability region in momentum space at t = 3 for the
time evolution of LLL eigenstates following the switching on of
negative nonlinearity in (a) the symmetric and (b) the Landau gauge.

A similar analysis can be made in Landau gauge. Eigen-
states in the Landau gauge ALy read as

ψky (x, y) = eikyye−(B/2)[x−(ky/B)]2

, (16)

where ky is the linear momentum, and we choose periodic
boundary conditions, i.e., ky = 2π j/L with j ∈ Z and L =
26π . In this case, the density profiles of eigenstates form
identical 1D stripes along the y direction which are shifted
along the x direction depending on the quantum number ky.
Here, the perturbation is introduced along the y direction, and
the initial state can be written as

ψkyn(x, y) = Nnψky (x, y)

[
1 + 0.01 cos

(
n

2π

L
y

)]
. (17)

Once again, the MI analysis for 1D homogeneous systems
can be employed, this time along the y direction, and we get
nmax = L/2π = 13 for the perturbation with maximum gain,
in excellent agreement with numerical results for �̃ky,n(t = 3)
shown in Fig. 8(b).

V. CONCLUSION

In conclusion, we have explored the phenomenon of mod-
ulation instability for 2D systems which obey the NLSE in
a homogeneous synthetic magnetic field. We have explored
MI for the trajectory evolving from the initial state which
has a Thomas-Fermi profile (8). Small perturbations upon the
initial state were characterized in momentum space [Eq. (10)].
Some perturbations destabilize the trajectory, others do not,
as expected. We have calculated the region of (in)stability
in momentum space, as presented in Fig. 6. The stability
depends on the gauge used; however, this does not mean that
gauge invariance is violated. We have pointed out that when
the synthetic magnetic field is turned on, there will be an
instantaneous electric field kick to the system arising from
Faraday’s law, which depends on the gauge used; all gauges
yield identical fields for t > 0. When an experiment is the-
oretically simulated, the gauge should be chosen to properly
describe this initial synthetic electric field kick. We envision
that our results will prove useful in studying instabilities that
appear either in experiments with ultracold atomic gases, or
when studying light propagation in nonlinear media, both with
synthetic magnetic fields.
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[20] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.
Prog. Phys. 77, 126401 (2014).

[21] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys.
91, 015005 (2019).

[22] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photonics 8,
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