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based on a relativistic energy density functional
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Low-energy structure of even-even 108−116Cd isotopes is analyzed using a collective model that is based on
the nuclear density functional theory. Spectroscopic properties are computed by solving the triaxial quadrupole
collective Hamiltonian, with parameters determined by the constrained self-consistent mean-field calculations
within the relativistic Hartree-Bogoliubov method employing a universal energy density functional and a pairing
force. The collective Hamiltonian reproduces the observed quadrupole phonon states of vibrational character,
which are based on the moderately deformed equilibrium minimum in the mean-field potential energy surface.
In addition, the calculation yields a low-lying excited 0+ band and a γ -vibrational band that are associated with
a deformed local minimum close in energy to the ground state, consistently with the empirical interpretation of
these bands as intruder bands. Observed energy spectra, B(E2), and ρ2(E0) values are, in general, reproduced
reasonably well.

DOI: 10.1103/PhysRevC.106.064317

I. INTRODUCTION

Quadrupole collectivity is a basic, yet prominent, fea-
ture of nuclear structure, characterized by the (anharmonic)
vibrations of a spherical nuclear surface or the rotations
of an ellipsoidal deformed nuclear shape [1–4]. A collec-
tive vibrational spectrum is, in particular, observed in nearly
spherical nuclei, and is interpreted in terms of the excitations
of quadrupole phonons. The energy spectrum then consists of
zero- (0+) and one-phonon (2+) states, followed by a two-
phonon triplet (4+, 2+, 0+) at twice the excitation energy
of the one-phonon state, and so on. Classic examples of the
vibrational energy spectrum have been known in stable nuclei
near the proton Z = 50 magic number, such as the even-even
cadmium (Cd) [5], where the observed low-lying states indeed
show features that resemble the quadrupole vibrational spectra
predicted by the collective model of Bohr and Mottelson [1].

Later experiments have revealed, however, in addition to
the multiphonon states, extra 0+ and 2+ levels that are close
in energy to the two-phonon triplet in even-even Cd [6]. The
appearance of these additional states is not explained in a
vibrational picture, but rather implies that the pure quadrupole
phonon interpretation of even-even Cd is untenable. In a
spherical shell model the additional states were attributed
to two-particle–two-hole (2p-2h) excitations of protons from
above the Z = 50 shell gap. Correlations between the va-
lence protons and neutrons can be then so enhanced that the
lowering of the intruder low-spin levels occurs [7–12]. The
interpretation of the extra 0+ and 2+ states in Cd as 2p-4h
states was confirmed by the (3He, n) reaction experiment [13].

*knomura@phy.hr

Furthermore, in the mean-field approximation [10,12,14–16]
the normal and intruder states correspond to different min-
ima on the potential energy surface defined in terms of the
quadrupole deformations.

Along the chain of even-even Cd isotopes, the intruder
bands have been shown to become lower in energy toward the
middle of the major shell N = 66 with the increasing number
of valence neutrons. The structure of the even-even Cd has
been studied by numerous experiments, most extensively, on
stable isotopes with the mass A = 106 to A = 116. An exten-
sive list of the references to the related experimental studies
is found in Ref. [17]. Recent reviews on the experimental and
theoretical studies on the structure of the light and heavy Cd
isotopes, as well as the neighboring isotopes in the tin (Sn)
region, are given in Refs. [12,18–20].

Besides that, theoretical investigations of the even-even Cd
have been performed from various perspectives. Large-scale
shell model calculations have been carried out from the light
(A ≈ 98) [21–23] up to the mass A = 108 [24] Cd. As a more
plausible approach that represents a drastic truncation of the
shell model configuration space, calculations within an ex-
tended version of the interacting boson model (IBM) [4] that
takes into account the 2p-2h intruder excitations and configu-
ration mixing between the normal (0p-0h) and intruder states
have been carried out extensively [9,11,17,25–32]. Alternative
approaches are self-consistent mean-field (SCMF) methods
[2] based on the nuclear density functional theory (DFT).
Calculations within the symmetry-projected SCMF method
using the Gogny-type [33,34] energy density functional (EDF)
were performed to analyze the systematic behavior of the 2+

1
state of the even-even Cd in the entire N = 50–82 major shell
[35], to provide detailed descriptions of the spectroscopy of
the 110,112Cd nuclei [36,37], and to describe in a systematic
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manner the low-energy structure of the even-even 98−130Cd
nuclei in comparison with the updated experimental data
[38]. A quadrupole collective Bohr Hamiltonian, derived from
a microscopic framework of the adiabatic time-dependent
Hartree-Fock-Bogoliubov method using a Skyrme force [39],
was considered for 110−116Cd [40].

Here we present an alternative theoretical description of
the even-even 108−116Cd nuclei using the triaxial quadrupole
collective Hamiltonian (QCH) that is based on the nuclear
DFT. Within this theoretical scheme, parameters of the QCH
are determined by using as microscopic inputs the solutions
of the SCMF calculations based on a universal EDF and a
pairing interaction. We shall identify, in most of the studied
nuclei, low-energy collective bands that are associated with
intruder bands as empirically suggested, and discuss their
microscopic structures in connection with shape coexistence.
In Sec. II, we give a brief description of the SCMF and QCH
approaches. Results of the SCMF calculations are shown in
Sec. III. In Sec. IV, we present the QCH results of the spectro-
scopic calculations, including the excitation energies, electric
quadrupole and monopole transition rates, and detailed spec-
troscopy of 110,112Cd. Finally, Sec. V gives a summary of the
main results.

II. THEORETICAL FRAMEWORK

The first step in the theoretical procedure is to perform,
for each nucleus, a set of the constrained SCMF calculations
within the framework of the relativistic Hartree-Bogoliubov
(RHB) method [41–44] employing the density-dependent
point-coupling (DD-PC1) interaction [45] and the separable

pairing force of finite range developed in [46]. The constraints
imposed in the SCMF calculations are on the expectation
values of the mass quadrupole operators

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (1)

which are related to the axially symmetric deformation β and
triaxiality γ [1], i.e.,

β =
√

5

16π

4π

3

1

A(r0A1/3)2

√
〈Q̂20〉2 + 2 〈Q̂22〉2

, (2)

γ = arctan
√

2
〈Q̂22〉
〈Q̂20〉

, (3)

with r0 = 1.2 fm. The SCMF calculations are carried out
in a harmonic oscillator basis, with the number of oscilla-
tor shells equal to 20. The strengths of the proton Vp and
neutron Vn pairings are set equal, V0 ≡ Vp = Vn = 728 MeV
fm3, which have been obtained in Ref. [46] so that the pairing
gaps provided by the Gogny-D1S [34] SCMF calculation are
reproduced.

Quadrupole collective states are obtained as the solutions
to the QCH. The parameters of the Hamiltonian are specified
by using the results of the RHB calculations: the potential
energy surfaces as functions of the β and γ deformations, and
the single-particle solutions. The detailed accounts of this pro-
cedure are found in Refs. [42,47]. The collective Hamiltonian
Ĥcoll is given as

Ĥcoll = T̂vib + T̂rot + Vcoll, (4)
with the vibrational kinetic energy

T̂vib = − h̄2

2
√

wr

[
1

β4

(
∂

∂β

√
r

w
β4Bγ γ

∂

∂β
− ∂

∂β

√
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β3Bβγ

∂

∂γ

)

+ 1

β sin 3γ

(
− ∂

∂γ

√
r

w
sin 3γ Bβγ

∂

∂β
+ 1

β

∂

∂γ

√
r

w
sin 3γ Bββ

∂

∂γ

)]
, (5)

rotational kinetic energy

T̂rot = 1

2

3∑
k=1

Ĵ2
k

Ik
, (6)

and collective potential Vcoll. Note the operator Ĵk in Eq. (6)
denotes the components of the angular momentum in the
body-fixed frame of a nucleus. The mass parameters Bββ ,
Bβγ , and Bγ γ in (5), and the moments of inertia Ik in
(6), are functions of the β and γ deformations, and are
related to each other by Ik = 4Bkβ

2 sin2(γ − 2kπ/3). Two
additional quantities in Eq. (5), i.e., r = B1B2B3 and w =
BββBγ γ − B2

βγ , determine the volume element in the col-
lective space. The moments of inertia are computed using
the Inglis-Belyaev formula [48,49], and the mass param-
eters are calculated in the cranking approximation. The
collective potential Vcoll (4) is obtained by subtracting the

zero-point energy corrections from the total RHB deformation
energy.

The corresponding eigenvalue problem is solved using an
expansion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ ,
and the Euler angles � = (φ, θ, ψ ). The diagonalization of
the Hamiltonian yields the excitation energies and collective
wave functions for each value of the total angular momen-
tum and parity, that are used to calculate various physical
observables. A virtue of using the QCH based on SCMF
single-(quasi)particle solutions is the fact that the observables,
such as electric quadrupole (E2) and monopole (E0) transi-
tion probabilities and spectroscopic quadrupole moments, are
calculated in the full configuration space and there is no need
for effective charges. Using the bare value of the proton charge
in the electric transition operators, the transition probabilities
between eigenvectors of the QCH can be directly compared
with spectroscopic data.
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FIG. 1. Potential energy surfaces for the even-even 108−116Cd
nuclei as functions of the triaxial quadrupole β-γ deformations,
computed by the constrained SCMF calculations within the RHB
framework employing the interaction DD-PC1 and the separable
pairing force of finite range. The total SCMF energies are plotted up
to 10 MeV from the global minimum (indicated by the solid circle),
and the energy difference between neighboring contours is 0.5 MeV.

III. MEAN-FIELD RESULTS

Figure 1 shows the β-γ triaxial potential energy sur-
faces for 108−116Cd calculated by using the constrained
RHB method. The global minimum occurs at a weakly de-
formed prolate configuration β ≈ 0.15 for 108,110,112Cd, and
at a nearly spherical configuration for 114,116Cd. Besides the
weakly deformed global minimum, in most of the nuclei two
local minima with larger deformation β � 0.3 are obtained on
both prolate (γ = 0◦) and oblate (γ = 60◦) sides. In particu-
lar, a pronounced triaxial local minimum near the prolate axis,
(β, γ ) ≈ (0.35, 12◦), which is close in energy to the global
minimum, is suggested to occur for 112,114Cd.

The appearance of the minima in the potential energy sur-
face is inferred from the behaviors of the single-particle levels
near the Fermi energies. Figure 2 shows the single-particle
energies for protons and neutrons for 112Cd as functions of
the axial quadrupole deformation β, obtained as the SCMF
solutions. In the proton single-particle spectra, near the Fermi

energy (indicated by a dash-dotted curve in Fig. 2), there is
a gap within the range 0.05 � β � 0.3. The gap is produced
essentially by the g9/2 and g7/2 orbitals, coming respectively
from below and above the Z = 50 major shell. In this range
of deformation the global prolate minimum is obtained in the
potential energy surface (see Fig. 1). Another gap is seen in
the single-proton spectra at β ≈ 0.35, which is produced by
the g9/2 and p1/2 from below the Z = 50 major shell, and
g7/2 and d5/2 from above. This corresponds to the local mini-
mum that appears near the prolate axis (β, γ ) ≈ (0.35, 12◦).
On the oblate side (β < 0), yet another gap is visible in the
interval −0.4 � β � −0.2, created as a result of the lowering
of the g7/2 levels and the rising of the g9/2, p1/2, and p3/2

ones. The gap is related to the oblate local minimum. The
fact that the several energy gaps are obtained in the proton
single-particle diagram conforms to the empirical interpre-
tation that the observed extra low-spin states in Cd isotopes
are attributed to particle-hole excitations of protons across the
Z = 50 closed shell. Similarly, one could see in the neutron
single-particle spectra (shown on the right-hand side of Fig. 2)
energy gaps near the Fermi energy in those same ranges of
the β deformation at which the local minima occur in the
potential energy surface. The gaps are, however, much less
pronounced, i.e., the level density around the Fermi surface
is much higher, than in the case of the single-proton spectra.
It should be noted that the above argument, in terms of the
appearance of the minima in the potential energy surface and
the gaps in the single-particle levels, is made at the mean-field
level, and provides only an approximate picture of low-lying
states.

We further study the sensitivity of the calculations to the
strengths of the proton Vp and neutron Vn pairing interactions.
As an example, we show in Fig. 3 the potential energy surfaces
for 112Cd computed with the pairing strengths unchanged,
i.e., Vp = Vn = 728 MeV fm3 (= V0), and increased by
15% for both protons and neutrons, i.e., Vp = Vn = 1.15V0 =
837 MeV fm3. A comparison between the two surfaces in
Fig. 3 shows that, with the increased pairing strength, the
global minimum shifts to the spherical side, β ≈ 0.05, while
the triaxial local minimum becomes much less pronounced.
The same conclusion was reached in [17] where the con-
strained Hartree-Fock plus BCS calculations for 112Cd using
the Skyrme SLy6 force [50] were employed as the input to
build the IBM Hamiltonian with configuration mixing. In the
following, we mainly discuss results with the original pairing
strength in the RHB calculations (Vp = Vn = V0), while the
dependence of the spectroscopic properties on the pairing
strengths will also be analyzed.

IV. SPECTROSCOPIC RESULTS

Figure 4 shows the calculated low-energy excitation
spectra, B(E2; 0+

2 → 2+
1 ) and ρ2(E0; 0+

2 → 0+
1 ) transition

probabilities for the even-even nuclei 108−116Cd. Experimental
data are taken from Refs. [19,36,37,51,52]. For 108−114Cd, the
0+

2 state has been empirically suggested to be the bandhead of
the intruder band associated with the proton 2p-2h excitations
[53]. As for 116Cd, the 0+

3 state has been identified as the low-
est intruder state. For all five nuclei, the 2+

3 state is attributed
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FIG. 2. Calculated single-particle energies for protons (left) and neutrons (right) for 112Cd as functions of the axial quadrupole deformation
β. Dash-dotted curves represent Fermi energies.

to the first excited state of the intruder band by experiments. In
the present RHB+QCH calculation, as shown later, the 0+

2 and
2+

2 states are considered as the corresponding intruder states.
Only for 108Cd, the 2+

3 state is here suggested to be of intruder
nature.

The present calculation reproduces the energies of the
normal, i.e., phonon-like, states (2+

1 , 4+
1 , 6+

1 , 3+
1 , 2+

2 , and
0+

3 ) fairly well. The observed intruder 0+ and 2+ states
gradually decrease in energy and become lowest at 114Cd
corresponding to the midshell N = 66. The measured E2 and
E0 transitions from the intruder 0+

intr state, i.e., B(E2; 0+
intr →

2+
1 ) and ρ2(E0; 0+

intr → 0+
1 ), also increase toward 114Cd. The

RHB+QCH calculation gives similar systematic behaviors
of these quantities, but underestimates the intruder 0+ and

FIG. 3. Potential energy surfaces for 112Cd obtained from the
constrained RHB method, with the pairing strength unchanged “V0”
(left) and increased by 15% for both protons and neutrons “1.15V0”
(right).

2+ level energies for 112,114Cd significantly. Moreover, the
predicted B(E2; 0+

2 → 2+
1 ) and ρ2(E0; 0+

2 → 0+
1 ) values are

generally a factor of two to three larger than the experimental
values.

Figure 5 compares the excitation energies for 112Cd,
obtained with the pairing strengths unchanged (Vp,Vn) =
(V0,V0), increased by 15% for protons only (Vp,Vn) =
(1.15V0,V0), for neutrons only (Vp,Vn) = (V0, 1.15V0), and
for both protons and neutrons (Vp,Vn) = (1.15V0, 1.15V0), in
the RHB calculations. It is seen that the increase in the proton
pairing does not have any notable effect on energy spectra, but
enhances the B(E2; 0+

2 → 2+
1 ) and ρ2(E0; 0+

2 → 0+
1 ) transi-

tion probabilities. On the other hand, if the neutron pairing
strength is increased, the 0+

2 level is raised to be closer in en-
ergy to the experimental counterpart. In this case, however, the
whole energy spectrum becomes stretched, and overestimates
the experimental spectrum. The finding that the change in the
proton pairing strength does not have notable influence on the
spectra reflects the fact that the studied Cd nucleus is close
to the proton Z = 50 major shell closure, around which the
number of valence protons (Zval = 2) is not large enough to
make a sizable contribution to the low-energy spectra. On the
other hand, the increase in the neutron pairing appears to have
a more significant effect on the low-lying levels than that for
the proton pairing. This is probably because, as the nucleus
is close to the middle of the neutron major shell N = 50–
82, there are more valence neutrons (Nval = 14 for 112Cd),
which are supposed to play a more dominant role in low-lying
states.
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FIG. 4. Comparison between the calculated and experimental low-energy spectra for the even-even 108−116Cd isotopes. Numbers with
arrows from the 0+

2 level to 2+
1 and 0+

1 represent the B(E2; 0+
2 → 2+

1 ) values in Weisskopf units (W.u.), and the ρ2(E0; 0+
2 → 0+

1 ) × 103

values, respectively. Only for 114Cd, the calculated 0+
2 level is below the 2+

1 one, and therefore the B(E2; 2+
1 → 0+

2 ) value is given. The
experimental data are taken from Refs. [19,36,37,51,52]. The experimental levels that are highlighted in color red represent the suggested
intruder states, while the corresponding theoretical levels are in color blue.

FIG. 5. Predicted excitation spectra for 112Cd with the pairing
strength unchanged (Vp = V0, Vn = V0), increased by 15% for protons
only (Vp = 1.15V0, Vn = V0), for neutrons only (Vp = V0, Vn =
1.15V0), and for both protons and neutrons (Vp = 1.15V0, Vn =
1.15V0) in the RHB calculations. B(E2; 0+

2 → 2+
1 ) (in W.u.) and

ρ2(E0; 0+
2 → 0+

1 ) × 103 values are also shown. The experimental
data are taken from [36].

Furthermore, the fact that increasing the pairing strength
generally raises the energy levels, as one observes in Fig. 5, is
also anticipated from the comparison of the potential energy
surfaces (see Fig. 3), which have been obtained with the pair-
ing strength increased and unchanged in the constrained RHB
calculations. With the increased pairing, the energy surface
indicates a less deformed shape; hence the energy spectrum
should become more of vibrational character.

To provide an insight into the intruder nature of the pre-
dicted excited states, in Fig. 6 we show the distributions of the
collective wave functions in the β-γ plane for the 0+

1,2,3 and
2+

1,2,3 states of 108−116Cd. The wave function of the 0+
1 ground

state in all the studied nuclei is sharply peaked at weakly de-
formed (triaxial) configurations (β, γ ) ≈ (0.15, 20◦–40◦), the
coordinate corresponding to the weakly deformed global min-
imum in the potential energy surface (see Fig. 1). The 0+

2 wave
function shows a sharp peak at larger deformation, (β, γ ) ≈
(0.35, 10◦). This deformation configuration corresponds to
the local minimum near the prolate axis in the potential energy
surfaces; hence the 0+

2 is here assigned to be the bandhead of
the intruder band. Two major peaks are obtained for the 0+

2
wave function for 116Cd: (β, γ ) ≈ (0.35, 15◦) and (0.1, 30◦).
The one at (β, γ ) ≈ (0.35, 15◦) is also spread along the γ

deformation. Hence, a considerable amount of shape mixing is
expected to be present in the 0+

2 state of 116Cd. This is related
to the fact that the energy surface for 116Cd is considerably
soft in the γ direction.

The 0+
3 wave function distributions, shown in the third

row of Fig. 6, generally exhibit a major peak on the oblate
side, corresponding to the local oblate minimum or saddle
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FIG. 6. Distributions of collective wave functions for the 0+
1,2,3, and 2+

1,2,3 states of 108−116Cd within the (β, γ ) plane.

point. The 2+
1 collective wave function for 108−112Cd shows

a similar distribution pattern to 0+
1 , as it is peaked at (β, γ ) ≈

(0.15, 20◦). For the 2+
1 states of 114,116Cd, however, the peak

appears at (β, γ ) ≈ (0.35, 15◦) for 114Cd and (0.2, 40◦) for
116Cd, at variance with the distribution patterns of the re-
spective 0+

1 collective wave functions. The 2+
1 wave function

for 112−116Cd is also spread over wider regions in the (β, γ )
plane than for 108,110Cd. This implies that the mixing be-
tween different shape configurations is present already in the
normal state 2+

1 of 112−116Cd. The calculated 2+
2 states for

110−116Cd, and 2+
3 state for 108Cd, can be associated with the

2+ members of the observed intruder states, based on the fact
that in the present calculation these nonyrast 2+ states are
shown to exhibit a particularly strong E2 transition to the

0+
2 state (see Fig. 4). Indeed, for most of these nuclei, the

collective wave function distribution gives two peaks, which
have a large overlap with the 0+

2 wave function. Further-
more, the calculation suggests the 2+

3 (2+
2 ) state for 110−116Cd

(108Cd) to be the bandhead of the lowest γ -vibrational or
K = 2+ band. This interpretation is based on the dominance
of the K = 2 components in these states. The corresponding
collective wave functions are indeed peaked at the triaxial re-
gion with γ ≈ 30◦. Figure 7 shows the calculated low-energy
band structure including B(E2) transition probabilities for
110Cd, in comparison with the experimental data [36]. For
the theoretical energy spectra, states are classified into the
ground-state, lowest three K = 0+, and lowest two K = 2+
bands according to the dominant E2 transitions within the
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FIG. 7. Calculated and experimental [36] excitation spectra and B(E2) transition rates (in W.u.) for the 110Cd nucleus. Following the
notations in Ref. [36], the experimental B(E2) values in parentheses stand for relative transition strengths. The experimental levels that are
highlighted in color red represent the suggested intruder states, and the corresponding theoretical levels are in color blue.

band and to the similarity in the fractions of the K = 0, 2,
and 4 components. The observed low-energy spectra have
multiphonon structure typical of vibrational nuclei, that is, the
approximate one-phonon state 2+

1 , two-phonon triplet (4+
1 , 2+

2 ,
0+

3 ) at twice its energy, and three-phonon quintet (6+
1 , 4+

2 , 3+
1 ,

2+
5 , 0+

4 ) at three times the 2+
1 energy. The �I = 2 band built

on the excited 0+
2 state has been assigned to be an intruder

band by experiment [36]. The second K = 2+ band, which
is based upon the 2+

4 state, has also been found to be the
intruder γ band experimentally. In the present calculation, a
phonon-like level structure appears as the closely lying (4+

1 ,
2+

3 , 0+
3 ) and (6+

1 , 4+
3 , 3+

1 , 2+
5 , 0+

4 ) states. The intruder bands
that can be identified by the RHB+QCH calculation are those
based on the 0+

2 and 2+
4 states. The calculation reproduces

the K = 0+
2 intruder band rather well, except that the the

energy level of the 6+ member is overestimated. A large
transition strength B(E2; 0+

2 → 2+
1 ) = 32 W.u. is here ob-

tained, being consistent with the experimental value <40 W.u.

The intruder γ (or second K = 2+) band is, however, cal-
culated to be rather high and stretched in energy by the
RHB+QCH, as compared with the data. States in the cal-
culated second K = 2+ band are connected by the strong
�I = 1, as well as �I = 2, in-band E2 transitions. The cal-
culated K = 0+

3 (0+
4 ) band is slightly higher than the observed

one, and exhibits large interband E2 transition probabili-
ties B(E2; 0+

K=0+
3

→ 2+
K=2+ ) = 19 W.u. and B(E2; 0+

K=0+
3

→
2+

K=0+
2

) = 69 W.u. [B(E2; 0+
K=0+

4
→ 2+

K=2+ ) = 45 W.u. and

B(E2; 0+
K=0+

4
→ 2+

K=0+
2

) = 25 W.u.]. Here 2+
K=2+ and 2+

K=0+
2

denote the 2+
3 bandhead of the lowest K = 2+ and the 2+

member of the K = 0+
2 band, respectively. The spectroscopic

quadrupole moment for the 2+
1 state is calculated to be

Q(2+
1 ) = −0.53 e b, slightly larger in magnitude than the ex-

perimental value −0.40(3) e b [36].
Figure 8 shows the energy spectra for 112Cd. The whole en-

ergy spectrum, both theoretical and experimental, appears to
be rather compressed in comparison with 110Cd. The present
RHB+QCH calculation reproduces the observed energy lev-
els reasonably well, apart from the fact that the 0+

2 band is
obtained at much lower energy and is more stretched with
increasing spin than in experiment. Similarly to the case of
110Cd, in addition to the phonon-like states grouped into
approximate multiplets (4+

1 , 2+
2 , 0+

3 ), (6+
1 , 4+

3 , 3+
1 , 2+

4 , 0+
4 ),

. . ., etc., the states belonging to the band built on the 0+
2

state, together with the additional 2+
6 and 3+

2 states, have
been experimentally suggested to be intruder states arising
from the proton 2p-2h excitations. The corresponding two
intruder bands in the present calculation are the ones starting
from the 0+

2 and 2+
4 states. A possible reason for the K = 0+

2
band being calculated to be significantly low in energy is
that the local triaxial minimum at (β, γ ) ≈ (0.35, 12◦) in the
potential energy surface is too pronounced (see Fig. 1). The
states belonging to the 0+

2 band are mainly constructed from
this local minimum. The fact that the calculated transition
rate B(E2; 0+

2 → 2+
1 ) = 167 W.u. is a factor of three greater

than the measured one (51 ± 14 W.u.) further corroborates
the occurrence of strong shape mixing. The predicted 0+

3 and
0+

4 excitation energies are, however, close to the experimental
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FIG. 8. Same as Fig. 7, but for the 112Cd nucleus.

ones. Their E2 selection rules also follow what are observed
experimentally: the large transition probability from the 0+

3
state to the 2+

K=2+ bandhead [B(E2; 0+
3 → 2+

3 ) = 31 W.u.]
and the dominance of the 0+

K=0+
4

→ 2+
K=0+

2
E2 transition over

the 0+
K=0+

4
→ 2+

gs one. The Q(2+
1 ) moment of 112Cd is calcu-

lated to be −0.68 e b, which is larger in magnitude than the
experimental value Q(2+

1 ) = −0.38 e b [36], as in the 110Cd
case discussed earlier.

Recent theoretical calculations for 110,112Cd [36,37] within
the symmetry conserving configuration mixing (SCCM)
method using the Gogny force generally overestimated the
energy levels of the observed excited 0+ states, whereas in
the present RHB+QCH calculation these 0+ energy levels,
particularly the one for the second 0+ state, are predicted
to be much lower. In addition, the same Gogny plus SCCM
calculations provided the ground-state band for both the
110,112Cd nuclei that is rather stretched in energy with re-
spect to the one obtained in the present calculation. It should
be noted that, in solving the collective Hamiltonian in the
present study, we do not make any adjustment of the crank-
ing moment of inertia, e.g., increase of it by 30%–40%
to reproduce experiment, that is often considered in the
literature.

The IBM calculation, using the boson Hamiltonian with
partial dynamical symmetry (PDS) breaking [32] and tak-
ing into account the configuration mixing between normal
and intruder states, was also carried out to study the pos-
sible breakdown of the vibrational structure of 110Cd. By
virtue of introducing the PDS, the IBM calculation obtained

additional low-lying states close in energy to the normal vibra-
tional states, which correspond to the empirically suggested
intruder states. The calculated energy spectra and B(E2)
rates reported in that reference fit very well the experimental
ones, while the parameters for the boson Hamiltonian and
effective charges for the quadrupole operator were there de-
termined by a phenomenological adjustment to the empirical
data.

V. SUMMARY

In summary, we have analyzed the structure of the
even-even 108−116Cd isotopes within the framework of a
general collective model that is based on the nuclear den-
sity functional theory. Parameters of the triaxial quadrupole
collective Hamiltonian, i.e., deformation-dependent mass pa-
rameters, moments of inertia, and collective potential, are
determined by using as microscopic inputs the solutions to
the constrained mean-field calculations within the relativistic
Hartree-Bogoliubov approach. The mean-field results for the
near midshell nuclei 112,114Cd indicate coexistence of normal
states that are associated with a weakly deformed prolate or
nearly spherical global minimum, and intruder states con-
structed from a more deformed, nearly prolate triaxial, local
minimum.

Observed low-energy spectra, B(E2), and ρ2(E0) val-
ues have been described reasonably well by the collective
Hamiltonian. The present spectroscopic calculation produced
a low-energy 0+

2 band and an additional γ -vibrational band
which correspond to a triaxial local minimum in the potential
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energy surface, consistent with the empirical assignment of
these bands as intruder bands. The calculation has repro-
duced an observed decrease of the intruder bands toward
the midshell N = 66 as a function of nucleon number. The
intruder interpretation of the 0+

2 band associated with the local
minimum has been further confirmed by distributions of the
collective wave functions in the β-γ plane. For 112,114Cd,
however, the QCH underestimates the observed intruder bands
significantly, and results in the too large B(E2; 0+

2 → 2+
1 ) and

ρ2(E0; 0+
2 → 0+

1 ) values, even though the approximate multi-
plets of energy levels typical of the phonon-like normal states
were reasonably described. The discrepancy in the intruder
bands reflects the too pronounced triaxial local minimum,
which reflects, to a large extent, properties of the energy den-
sity functional employed in this study. We have also studied
the sensitivity of the results to the pairing strengths in the

case of 112Cd. It has been shown that with the increase in the
strength of the (especially neutron) pairing, the local minima
disappear in the potential energy surface, leading to a less
deformed structure, and the corresponding energy levels are
significantly raised.
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