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Sub-symmetry-protected topological states

Ziteng Wang1,5, Xiangdong Wang1,5, Zhichan Hu1,5, Domenico Bongiovanni1,2,5, 
Dario Jukić    3, Liqin Tang    1, Daohong Song1, Roberto Morandotti2, 
Zhigang Chen1   & Hrvoje Buljan    1,4 

A hallmark of symmetry-protected topological phases are topological 
boundary states, which are immune to perturbations that respect the 
protecting symmetry. It is commonly believed that any perturbation that 
destroys such a topological phase simultaneously destroys the boundary 
states. However, by introducing and exploring a weaker sub-symmetry 
requirement on perturbations, we find that the nature of boundary state 
protection is in fact more complex. Here we demonstrate that the boundary 
states are protected by only the sub-symmetry, using Su–Schrieffer–Heeger 
and breathing kagome lattice models, even though the overall topological 
invariant and the associated topological phase can be destroyed by 
sub-symmetry-preserving perturbations. By precisely controlling symmetry 
breaking in photonic lattices, we experimentally demonstrate such 
sub-symmetry protection of topological states. Furthermore, we introduce 
a long-range hopping symmetry in breathing kagome lattices, which 
resolves a debate on the higher-order topological nature of their corner 
states. Our results apply beyond photonics and could be used to explore the 
properties of symmetry-protected topological phases in the absence of full 
symmetry in different physical contexts.

Symmetry-protected topological (SPT) phases of matter are ubiquitous 
in nature and exist on versatile platforms including condensed-matter 
physics, ultracold atomic gases and photonics1,2. Topological insu-
lators (TIs) induced by spin–orbit coupling, which are protected by 
time-reversal symmetry, are a paradigm for SPT phases of matter1–3. In 
topological crystalline insulators, a crystalline point group symmetry 
protects topological metallic boundary states1,4.

Imagine an SPT phase with a topological invariant characterizing 
the bulk states and the associated symmetry-protected boundary 
states. Any perturbation that respects the protecting symmetries will 
not destroy these boundary states or change the topological invari-
ant without closing the gap between bands1,2. However, as pictured 
in Fig. 1, the situation can be more complex: there are perturbations 
that preserve the topological invariant but oppose the existence of 
boundary states5,6 and, vice versa, there are perturbations that leave 
the boundary states unhurt while destroying the topological invariant7. 

Here we explore the underlying physics for the latter scenario by 
using the concept of sub-symmetry (SubSy), where the symmetry 
equation, involving the Hamiltonian and a symmetry operator, does 
not hold in the whole Hilbert space, but only in its subspace. For the 
prototypical one-dimensional (1D) Su–Schrieffer–Heeger (SSH) and 
two-dimensional (2D) breathing kagome lattice (BKL) models, the Sub-
Sys arise from their chiral symmetries, which restrict the possibilities 
of coupling between sublattices (rigorously defined below). Here the 
SubSy means that the symmetry equation holds on only one sublattice.

We demonstrate, theoretically and experimentally, that the 
boundary states in the SSH and BKL models are protected by their 
pertinent SubSy. Any SubSy-preserving perturbation will leave its 
corresponding boundary state eigenvalue at zero, even though the 
bulk topological invariant is lost. We utilize zigzag and twisted lattices, 
and ‘bridge’ waveguides to experimentally introduce SubSy-breaking 
and SubSy-preserving perturbations in a controlled manner and 
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where Σz = PA − PB and PA (PB) denotes the projection operator on the 
A (B) sublattice (Methods). The system has a trivial phase for t1 > t2 and 
a topologically non-trivial phase for t1 < t2, with the latter being char-
acterized by the Zak phase of π and two topologically protected edge 
states at zero energy (Fig. 2b). The amplitudes of the left edge state 
|AL⟩ are non-zero solely on the A sublattice, that is, PA |AL⟩ = |AL⟩, and 
PB |AL⟩ = 0, and analogously for the right edge state |BR⟩ (Fig. 2c).

The concept of SubSy focuses on perturbations that break the 
chiral symmetry but preserve a less strict SubSy requirement. This 
provides a theoretical framework and generalizes the partial chiral 
symmetry-breaking case proposed previously in ref. 7. There are two 
SubSys in the SSH model, the A-SubSy and the B-SubSy, which are 
defined by

ΣzHSSHΣ
−1
z Pi = −HSSHPi, i ∈ {A,B} . (2)

The most general perturbation in the couplings is of the form 
HAB + HAA + HBB, which implies that the hopping parameter between any 
two lattice sites (irrespective of distance) can be changed without any 
restrictions. Here HAB = Σm,n (sm,nab a†mbn + h.c.)  denotes couplings 
between the A and B sublattice sites (A–B coupling), where sm,nab  are the 
individual coupling strengths, with an analogous definition for the A–A 
(HAA) and B–B (HBB) couplings (see Methods for details).

Without loss of generality, we consider A-SubSy-preserving 
perturbations, which are of the form H′ = HAB + HBB; they are more 
restrictive than general perturbations but less restrictive than chi-
ral symmetry-preserving perturbations (HAB). Perturbations involv-
ing the A–A coupling (HAA) break the A-SubSy. We emphasize that 
A-SubSy-preserving perturbations can be periodic (that is, respect-
ing the lattice symmetry) or local (for example, perturbing only one 
coupling between two lattice sites) or even feature disorder.

One of our key results is that any such perturbation, if it respects 
the A-SubSy, will not destroy the left edge zero-energy state |AL⟩ (and 
fully analogously for the B-SubSy), as illustrated in Fig. 2a–c. The theo-
retical argument for this statement is made possible by the formulation 
of SubSy via projection operators in equation (2): because HAB preserves 
the chiral symmetry, the edge states are protected under such pertur-
bations until the gap closes. B–B perturbations do not affect |AL⟩ 
because HBBPA = 0, which leads to HBB |AL⟩ = HBBPA |AL⟩ = 0. Thus, |AL⟩ 
is protected under A-SubSy-preserving perturbations H′ = HAB + HBB. 
However, the right edge zero-energy state |BR⟩ is not protected because 
the HBB component affects this state. Moreover, HBB perturbations 
generally break both the chiral symmetry and the Zak phase 
quantization.

SubSy protection of edge states is illustrated in Fig. 2b,c, which 
show the spectra and the eigenmode structure for the case of a single 
randomly chosen A-SubSy-preserving perturbation. The energy of the 
perturbed left edge mode ||A′

L⟩ is intact, but that of the right edge mode 
as well as the whole spectrum is altered by A-SubSy-preserving pertur-
bations (Fig. 2b). The perturbed mode ||A′

L⟩ resides solely on the  
A sublattice, that is, ||⟨A′

L|PAA′
L⟩||

2 = 1; however, its structure can differ 
from the unperturbed mode (Fig. 2c). Detailed numerical analysis 
confirms that SubSy requirement is essential for protecting the edge 
states (Supplementary Information).

To experimentally test such edge-state protection with respect 
to the SubSy-preserving perturbations, we break the chiral symmetry 
in a controlled fashion. To this end, we introduce the appropriate A–A 
or B–B hopping by twisting the SSH lattice into the angled structure 
illustrated in Fig. 2d,e (left), which either breaks the A-SubSy (Fig. 2e) or 
preserves it (Fig. 2d). The probing is performed by launching a focused 
beam into the left-most waveguide on the A sublattice. In Fig. 2d  
(middle), the output intensity resides dominantly on the A sublattice, 
indicating that the left edge mode is topologically protected when the 
A-SubSy is preserved. For a direct comparison, in Fig. 2e (middle), we 
show the intensity of the same excitation beam propagating through 

thereby demonstrate SubSy-protected topological states. In the case 
of non-negligible long-range hopping (that is, non-negligible cou-
pling between distant lattice sites) in BKLs, we find that SubSy and an 
additional long-range hopping symmetry are sufficient to protect the 
corner states. Our experiments are performed in photonic structures, 
which have been established as a fertile platform for exploring novel 
topological phenomena8–10. The main message from our findings is 
summarized in Fig. 1.

The SSH lattice illustrated in Fig. 2a represents a typical 1D top-
ological model, originally used to describe polyacetylene11. It has 
subsequently been experimentally realized on versatile platforms 
including photonics and nanophotonics12–15, plasmonics16 and quantum 
optics17 and in the context of parity–time symmetry and nonlinear 
non-Hermitian phenomena18,19.

The SSH lattice is composed of A and B sublattices (Fig. 2a), with 
the Hamiltonian HSSH = Σn(t1b†nan + t2a†n+1bn + h.c.) , where an is the 
annihilation operator at an A sublattice site in the nth unit cell, with an 
analogous definition for bn, while t1 and t2 are the intracell and intercell 
coupling strengths, respectively. Its topological phase is protected by 
the chiral symmetry

ΣzHSSHΣ
−1
z = −HSSH, (1)

SubSy

SPT phase

Topological
invariant

SubSy

Fig. 1 | Classification of perturbations with respect to symmetries in SPT 
phases. A set of perturbations, which preserves the topological invariant (or 
invariants) and respects a particular symmetry (or symmetries), is encircled with 
a grey line. Every boundary state, when it exists, is protected with its pertinent 
SubSy. In the illustration, two sets of SubSy-preserving perturbations (encircled 
with red and green lines) are sketched, but their number depends on the actual 
system. At the overlap region, one has an SPT phase with a topological invariant 
(illustrated as a Möbius strip) characterizing the bulk (illustrated with a thick 
black line), and all associated boundary states (illustrated with red and green 
circles). For the SSH lattice, the SPT phase is protected by a chiral symmetry 
(with the implicit assumption of inversion symmetry). The topological invariant 
is protected by the inversion symmetry (even when the chiral symmetry is 
broken). The edge state on the A sublattice is protected with A-SubSy, which is 
defined by a chiral symmetry equation that holds solely on the A sublattice. The 
same holds for the edge state on the B sublattice with B-SubSy as the protecting 
sub-symmetry. For the BKL with negligible long-range hopping (see main text), 
the C3 symmetry protects the topological invariant, whereas there are three 
SubSys corresponding to three BKL sublattices, which protect the pertinent 
higher-order topological corner states. See text for details.
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the A-SubSy-breaking lattice. The presence of light in the second wave-
guide, that is, on the B sublattice, indicates that it is no longer a topo-
logically protected edge mode12,19. Numerical simulations (Fig. 2d,e, 
right) agree with experimental results.

Perturbations in the twisted SSH lattices (Fig. 2d,e) are localized. 
To experimentally probe the robustness of edge states under periodic 
A-SubSy-preserving (Fig. 2f) or A-SubSy-breaking (Fig. 2g) perturba-
tions, we fabricated two zigzag photonic SSH lattices. The zigzag lat-
tices plotted in Fig. 2f,g (left) are oriented such that the bottom site 
belongs to the A sublattice. By exciting the bottom edge waveguide in 
the A-SubSy-preserving lattice, we observe protection of the edge mode 
as light populates solely the A sublattice, without coupling to the bulk 
(Fig. 2f, middle). An identical excitation in the A-SubSy-breaking lattice 
(Fig. 2g, middle) clearly indicates that the edge mode is no longer 

topologically protected as light leaks into the B sublattice. Numerical 
simulations for much longer propagation distances (Fig. 2f,g, right) 
corroborate our experimental results. We emphasize that the zigzag 
lattice in Fig. 2f (left) breaks both the inversion and chiral symmetries, 
yet the edge mode |AL⟩ is protected by the A-SubSy.

The kagome lattice is an inexhaustible golden vein of intriguing 
physics, attracting the broad interest of the scientific community. BKLs, 
illustrated in Fig. 3a, have been classified as higher-order topological 
insulators (HOTIs), where topologically protected corner states were 
observed20–26. HOTIs are a new class of topological materials27, found in 
condensed-matter, networks of resonators, photonic and acoustic sys-
tems20–39. The corner states in the BKLs were initially considered as HOTI 
states protected by the generalized chiral symmetry and the C3 crystal-
line symmetry20. However, it was later debated that they are not HOTI 
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Fig. 2 | Demonstration of the A-SubSy-protected topological state in SSH 
lattice. a, The SSH model. b, Spectra of the unperturbed (black circles) and the 
A-SubSy-perturbed system (t1 = 0.1, t2 = 1). In all subplots, the blue crosses are 
perturbed bands, the red circle is the perturbed left edge state at zero energy, 
and the green cross is the perturbed right edge state. c, Modal structure of the 
unperturbed (black) and the perturbed left (red) and right (green) edge states. 
The black modes are shifted up for better visibility. d,e, Left: experimental 
images of A-SubSy-preserving lattice with B–B coupling (d) and A-SubSy-
breaking lattice with A–A coupling (e). The white arrows indicate that solely the 
left-most waveguide (A sublattice site) is excited at z = 0. Middle: output intensity 
patterns of the probe beam after propagating 20 mm through corresponding 
lattices in the left panels, respectively. The intensity profile in the A-SubSy-
preserving lattice resides solely on the A sublattice (d), whereas the intensity 

profile in the A-SubSy-breaking lattice is present on both A and B sublattices (e), 
which demonstrates SubSy protection of the left topological edge mode. The 
lattice constant (size of the unit cell) is 40 μm, and the twist angle is 57°. Right: 
numerical simulations in the middle panels agree with the related measurements. 
f,g, Left: experimental images of A-SubSy-preserving zigzag lattice with periodic 
B–B coupling (f) and A-SubSy-breaking lattice with A–A coupling (g). Middle: 
output intensity patterns after 20 mm of propagation (the probe beam excites 
the bottom site). The intensity profile in the A-SubSy-preserving lattice resides 
solely on the A sublattice (f), whereas it leaks onto the B sublattice for the 
A-SubSy-breaking case (g). This again demonstrates the SubSy protection of the 
edge mode |AL⟩. For these experiments, the lattice constant is 55 μm, and the 
twist angle is 60°. Right: numerical simulations to ten-times-longer propagation 
distance corroborate our experimental results.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | July 2023 | 992–998 995

Article https://doi.org/10.1038/s41567-023-02011-9

states40–42 because they are not protected by some specific long-range 
hopping perturbations obeying these symmetries40. In our discussion 
of SubSy-protected corner BKL states, we clarify this debated issue.

BKLs are composed of three sublattices (A, B and C), featuring 
intracell and intercell hopping amplitudes t1 and t2, respectively  
(Fig. 3a and Methods). The bulk polarizations are the topological  
invariants that characterize the topological phase: for t1 < t2, the system 
is in the non-trivial phase with Px = Py =

1
3
, whereas for t1 > t2, the polari-

zations are zero20,21. The BKL Hamiltonian HK possesses C3 symmetry 
and the generalized chiral symmetry Σ3HKΣ

−1
3 +Σ

2
3HKΣ

−2
3 = −HK (ref. 

20). Here Σ3 = PA + ei
2π
3 PB + e−i

2π
3 PC is the symmetry operator, where 

Pi, i ∈ {A,B,C}  are the projection operators. The generalized chiral 
symmetry yields three equations

Σ3HKΣ
−1
3 Pi +Σ

2
3HKΣ

−2
3 Pi = −HKPi, i ∈ {A,B,C} , (3)

defining three SubSys corresponding to the three sublattices.

Our theoretical results on BKLs are presented in Fig. 3. We consider 
a rhombic flake illustrated in Fig. 3a, which has one zero-energy corner 
state HK |Acor⟩ = 0 residing on the A sublattice, PA |Acor⟩ = |Acor⟩. The 
bandgap structure of one such flake is shown in Fig. 3d. First, we con-
sider perturbations between B–B, C–C and B–C sites, H′ = HBB + HCC + HBC, 
which obey the A-SubSy, yet breaking the generalized chiral  
symmetry. These perturbations obey H′PA = 0, which implies 
H′ |Acor⟩ = H′PA |Acor⟩ = 0, that is, any such perturbation does not affect 
the corner state. This is illustrated in Fig. 3c that shows the bandgap 
structure, with the corner state indicated by red crosses, for a set of 
randomly chosen perturbations H′ of various magnitudes quantified 
by δ′. These perturbations are randomly chosen from a set that respect 
both A-SubSy and the lattice symmetries (Methods). Interestingly, at 
some higher perturbation strengths, |Acor⟩ can become a bound state 
in the continuum43.

Next, we consider the A-SubSy-preserving perturbations between 
A–B and A–C sites: H″ = HAC + HAB. Such perturbations can affect the 
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Fig. 3 | Robustness of a kagome corner state with respect to SubSy 
perturbations and the LRHS. a, Sketch of the rhombic BKL with three 
sublattices. b, Illustration of the LRHS condition expressed in equation (4), for 
which the coupling between two sites indicated with red links must be equal,  
and the same for the coupling indicated with two blue links, and so on.  
c–e, Eigenvalue spectra of the rhombic BKL flake with 29 lattice sites along one 
edge for different perturbations. c, Ensemble of spectra for a set of 70 randomly 
chosen A-SubSy-preserving perturbations H′ = HBB + HCC + HBC of various 
strengths quantified by δ′, which leaves the zero-energy mode (red cross) intact. 
d, Bandgap structure of the unperturbed rhombic BKL flake (t1 = 0.1, t2 = 1). 
The rhombic BKL flake has a single corner state shown in the inset. e, Spectra 

for a set of 70 perturbations H′ + H″, which respect the A-SubSy and the LRHS 
(H″ = HAC + HAB). The magnitude of perturbations H′ is fixed at δ′ = 0.05, whereas 
that of the H″ perturbations, δ″ is varied. The zero-energy mode (red cross) is 
protected despite the presence of long-range hopping. In c and e, we calculate 
70 spectra for 70 different perturbations, which are plotted one on top of the 
other. What appears as a single red cross at zero value indicates that for any 
perturbation, the zero mode is protected. A slight spread of red crosses for 
δ″ > 0.12 in e indicates that the zero mode becomes adjacent to the band modes 
(blue crosses) when finite-size effects become relevant. f, FCA and the mode 
densities (ρ and σ) calculated for perturbations from e (Methods).
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zero-energy corner state |Acor⟩, even in a set-up preserving both the full 
generalized chiral symmetry and the C3 symmetry40. Long-range hop-
ping parameters in H″ between site A in the unit cell (m, n) and site B in 
the unit cell (m0, n0) are denoted with tm,n;m0 ,n0

ab  and equivalently for A–C 
coupling (Methods). We analytically find that the zero-energy state, 
residing solely on the A sublattice, can exist only if the following two 
conditions hold: tm,n;m0 ,n0

ac = tm,n;m0−1,n0+1
ab  and tm,n;m0 ,n0

ac = tm,n;m0 ,n0
ab  

(Supplementary Section 6). These conditions are trivially satisfied if 
the long-range hopping is zero, that is, when the tight-binding approxi-
mation holds. Otherwise, they are too strict and unphysical as illus-
trated in Fig. 3b, as all coupling strengths between lattice sites indicated 
with solid lines must be equal.

However, as the coupling strength is typically correlated with 
the distance, an inspection of the A–B and A–C links in Fig. 3b and our 
theoretical analysis (Supplementary Section 6) suggest that, when 
t1 < t2, we should consider an approximate but more physical and less 
restrictive long-range hopping symmetry (LRHS):

tm,n;m0 ,n0
ac = tm,n;m0−1,n0+1

ab . (4)

Equation (4) implies that only those couplings indicated by the same 
colour in Fig. 3b must be equal. To test the protection of the corner 
state under the A-SubSy and LRHS, we calculate the spectra for a set 
of randomly chosen H′ + H″ perturbations of different magnitudes 
quantified by δ′ and δ″, respectively; these perturbations also retain 
the lattice symmetry by construction (Fig. 3e and Methods). We see that 
the zero-energy corner state remains in the gap and protected, until 
it is too close to the band at strong perturbations (this is a finite-size 
effect). The perturbed corner state is dominantly on the A sublattice 
as long as it is in the gap (Supplementary Section 7).

We experimentally test the protection of the corner state under 
the SubSy by implementing targeted next-nearest-neighbour hopping, 

introduced by imprinting bridge waveguides in the rhombic lattice 
(Methods). As shown in Fig. 4a (left), the lattice with B–B and C–C 
bridges preserves the A-SubSy, while the lattice in Fig. 4b (left) with 
A–A bridges breaks the A-SubSy. For the lattice with a broken A-SubSy, 
after excitation of the corner site on the A sublattice, there is light in 
the B and C waveguides nearest to the corner site (Fig. 4b, middle). 
This offers clear evidence that the corner mode is not protected any-
more. On the contrary, for the lattice with a preserving A-SubSy, light 
is present solely on the A sublattice (Fig. 4a, middle), exhibiting the 
characteristics of HOTI corner states in BKLs20,21,39. This proves that the 
corner state, in this case, is protected against the B–B and C–C bridge 
perturbations. To underpin the experimental results, in Fig. 4a,b (right), 
we show results from numerical simulations obtained in realistic BKLs 
with parameters corresponding to those from the experiment, which 
display an excellent agreement. Long-distance simulations also validify 
that light remains localized at the corner without traversing through 
the bridges in Fig. 4a (left) due to topological protection but travels 
through the two bridges (even now they are further away) and spread 
into the bulk in Fig. 4b (left) (Supplementary Section 8).

We are now ready to discuss our results with the focus on the 
diagram in Fig. 1. In the 1D SSH lattice, the left edge mode is protected 
by A-SubSy (encircled with a red line), while B-SubSy-preserving per-
turbations (encircled with a green line) do not affect the right edge 
mode. At the overlap region, one has the full chiral symmetry and 
the SPT phase. However, it has been shown that perturbations that 
respect the inversion symmetry (encircled with a grey line) protect 
the topological invariant, that is, the Zak phase, even if the full chiral 
symmetry is broken5,6.

Recently, it was argued that the SSH model is a poor TI44,45; more 
specifically, it is a band (Dirac) insulator featuring zero modes at a 
domain wall between two dimerizations arising from the Jackiw–Rebbi 
mechanism. Indeed, at low energy, in the long-wavelength limit, the 
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output probe beam after propagating through the A-SubSy-preserving lattice 

(a), where light is solely populating the A sublattice, and through the A-SubSy-
breaking lattice (b), where the presence of light in B and C sublattice sites clearly 
indicates a destroyed topological corner mode. Right: numerically obtained 
intensity patterns corresponding to the experimental results in the middle 
panels, respectively. The white circles added to 2D intensity plots in the insets 
depict the corner structure of the BKL.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | July 2023 | 992–998 997

Article https://doi.org/10.1038/s41567-023-02011-9

tight-binding SSH model can be described by an effective 1D Dirac 
equation, where the Jackiw–Rebbi mechanism gives rise to a topo-
logical defect mode at zero energy44,45. Although we agree with this 
interpretation, the standardly used arguments for interpreting the 
SSH model as an SPT phase are holding (see, for example, refs. 2,46 
and references therein and Supplementary Section 9). We emphasize 
that the intent of this paper is to accurately classify perturbations that 
destroy or protect the boundary states, where we use the SSH model as 
one of the examples to illustrate the suitability of the SubSy concept 
towards this goal.

The scenario in which BKLs are involved is more complex. First, 
we consider BKLs where long-range hopping is negligible, which is 
physically common when hopping is generated with evanescent cou-
pling. The corner state on the A sublattice is robust with respect to 
A-SubSy-preserving perturbations and analogously for the corner 
states on other sublattices (their existence depends on the shape of 
the BKL flake). The topological invariant is quantized due to the C3 
symmetry38. Thus, for a triangular flake of the BKL with C3 and general-
ized chiral symmetry, one can classify perturbations with respect to 
symmetries in accordance with Fig. 1 with an additional C-SubSy (not 
shown) and the grey encircled region corresponding to C3 symmetry. 
In this model, the BKL corner states are HOTI states.

When the long-range hopping beyond the neighbouring unit 
cells becomes appreciable, the protection of the corner state under 
A-SubSy and the LRHS can be interpreted as being inherited from the 
underlying Hamiltonian HK . This interpretation is underpinned by the 
calculation of the fractional corner anomaly (FCA)25 shown in Fig. 3f 
for an ensemble of randomly chosen A-SubSy- and LRHS-preserving 
perturbations. It is a clear signature of non-trivial topology and the 
existence of the corner state.

In conclusion, we have demonstrated SubSy-protected boundary 
states of SPT phases by employing perturbations that break the original 
topological invariants. Although the SubSy concept here arises from 
the chiral symmetries, we envision its applicability for other protecting 
symmetries as well. For the BKLs with non-negligible long-range hop-
ping, we have unveiled a previously undiscovered LRHS that is essential 
for protection of the corner states, providing a basis for understanding 
their HOTI characteristics. We have used the 1D SSH and the BKL models 
to demonstrate our main findings. However, with appropriately defined 
SubSys, our findings can be applied to other systems, such as the 2D 
SSH lattice. More generally, our results extend beyond photonics to 
condensed-matter and cold atom systems, where many intriguing 
phenomena are mediated by the interplay of symmetry and topology. 
For example, a periodic zigzag SSH-like photonic lattice with A–A and 
B–B next-nearest-neighbour coupling (such as those in Fig. 2f,g (left)) 
can be engineered with Rydberg atoms47. Even though perturbations 
respecting or breaking SubSy are artificially engineered in our work, 
we nevertheless expect that such perturbations could naturally appear 
in a number of existing materials, including polymers or other organic 
and inorganic structures.
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Methods
Projection operators
The projection operator PA is constructed by requiring that the ampli-
tude of PA |ψ⟩ is identical to the amplitude of a given state |ψ⟩ on any A 
sublattice site and zero on any other sublattices. The other projection 
operators (PB, PC) are constructed fully analogously.

SSH lattice
The chiral symmetry of the SSH lattice in equation (1) implies that for 
every eigenstate |e⟩ satisfying HSSH |e⟩ = β |e⟩, there is another eigenstate 
Σz |e⟩ with eigenvalue −β. This ensures that any perturbation of the 
Hamiltonian that preserves the chiral symmetry does not destroy the 
topologically protected edge states unless the gap closes and the 
system undergoes a topological phase transition to a trivial phase (for 
example, see ref. 2 and references therein).

Perturbations of the SSH model corresponding to A–B coupling 
are formally defined as HAB = Σm,n (sm,nab a†mbn + h.c.) , where am is the 
annihilation operator at an A sublattice site in the mth unit cell, and 
analogously for bn, while sm,nab  is the strength of the coupling. Similarly, 
HBB = Σm,n (sm,nbb b†mbn + h.c.), where m ≠ n, and analogously for HAA.

Breathing kagome lattice
The BKL Hamiltonian is given by

HK = Σ
m,n

(t1a†m,nbm,n + t1a†m,ncm,n + t1b†m,ncm,n + h.c.)

+ Σ
m,n

(t2b†m,nam+1,n + t2c†m,nam,n+1 + t2c†m,nbm−1,n+1 + h.c.) ,

where am,n is the annihilation operator at an A sublattice site in the unit 
cell labelled with (m, n) indices and analogously for bm,n and cm,n. All 
perturbations between sublattices A and B beyond the hopping cor-
responding to t1 and t2 can be described by

HAB = Σ
m,n;m0 ,n0

(tm,n;m0 ,n0
ab a†m,nbm0 ,n0 + h.c.), (m,n) ≠ (m0,n0), (m,n)

≠ (m0 − 1,n0),

and analogously for HAC and HBC. The B–B hopping perturbations are 
described by

HBB = Σ
m,n;m0 ,n0

(tm,n;m0 ,n0
bb b†m,nbm0 ,n0 + h.c.),

and analogously for HAA and HCC.
To construct perturbations, the hopping amplitudes between the 

unit cells (m,n) → (m ± i,n ± j), i, j = −3,… , 3, are perturbed with strength 
randδ′|t2 − t1| for H′ = HBC + HBB + HCC and randδ′′|t2 − t1| for H″ = HAC + HAB. 
Here rand is a random number between 0 and 1 chosen with respect 
to uniform probability distribution. The nearest couplings t1 and t2 are 
not perturbed. The strength of the perturbations is given relative to 
the size of the gap, which is given by |t2 − t1|. All perturbations retain 
the lattice symmetry. In Fig. 3c, for each magnitude of the perturbation 
δ′, we calculate and plot an ensemble of 70 spectra for randomly 
chosen H′. An equivalent procedure is used for Fig. 3e, where param-
eter δ″ is now varied, and δ′ = 0.05 is kept fixed. Every H″ respects the 
lattice symmetry, the A-SubSy, and the LRHS. The projections 
||⟨A′

cor|Acor⟩||
2

 and ||⟨A′
cor|PAA′

cor⟩||
2

 between the unperturbed |Acor⟩ and the 
perturbed ||A′

cor⟩  corner states are exactly unity for any 
H′ = HBB + HCC + HBC. However, for H′ + H″, ||⟨A′

cor|Acor⟩||
2 < 1 (Supplemen-

tary Section 7).
The FCA is calculated as (ρ − 2  σ) mod 1 following ref. 25; the red 

and black circles in Fig. 3f represent the mode density of the corner unit 
cell ρ and the average mode density of edge unit cells σ (with edges that 
intersect at the corner), respectively. The mode density is calculated as 
the local density of states integrated over all states above the bandgap 
in the propagation constant spectrum (shown in Fig. 3e).

Experimental set-up and methods
In our experiments, we establish the desired photonic lattices 
(either the 1D ‘twisted’ and zigzag SSH lattices shown in Fig. 2 or 
the two-dimensional rhombic kagome lattice as shown in Fig. 4) by 
site-to-site writing of waveguides in a strontium–barium niobate 
(SBN:61) photorefractive crystal with a continuous-wave laser19,39. As 
illustrated in Extended Data Fig. 1, a low-power laser beam featuring 
a 532 nm wavelength illuminates a spatial light modulator, which 
creates a quasi-non-diffracting writing beam with variable input 
positions onto the 20-mm-long biased crystal. The lattice-writing 
beam is ordinarily polarized, while the probe beam launched to the 
lattice edge is extraordinarily polarized. Because of the self-focusing 
nonlinearity and the photorefractive ‘memory’ effect19,39, all wave-
guides are induced and remain intact during the subsequent probing 
processes. Compared with the femtosecond laser-writing method 
largely employed in glass materials9,26, the photonic lattices in our 
crystal can be readily reconfigured from topological non-trivial to 
trivial structures simply by controlling the lattice spacing. After 
the multi-step writing process (with a bias field of 130 kV m−1) is 
completed, the whole lattice can be examined by sending a set of 
Gaussian beams into the crystal to probe the waveguides one by 
one, which leads to superimposed lattice structures shown in Figs. 2  
and 4. To investigate the evolution of the topological states in this 
work, the probe beam used to excite the lattice edge/corner is set 
at a much weaker power of only about 20 nW, so it undergoes only 
linear propagation without nonlinear self-action through the lattice. 
(We note that the probe power can be increased to locally change 
the index structure of the lattices—the ingredient used for nonlin-
ear control of topological states as in our previous work19,39.) The 
intensity patterns of the probe beam exiting the lattices (Figs. 2  
and 4) are captured by an imaging lens paired to a charge-coupled 
device camera.
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from the corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Schematic illustration of the experimental setup 
employed for writing and probing a photonic lattice in a photorefractive 
crystal. CW: the continuous-wave laser beam; SLM: spatial light modulator; BS: 
beam splitter; FM: Fourier mask; L: circular lens; SBN: strontium barium niobite 

crystal; M: mirror; λ/2: half-wavelength plate; CCD: charge-coupled device. The 
inset shows a laser-written “bridged” kagome lattice used in the experimental 
work of Fig. 4. The bottom path is used as a reference beam for interference 
measurement when needed.
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