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Zagreb, 2023



Supervisor information

Assoc. Prof. Mario Basletić obtained his PhD in Physics in 2003 from the Faculty
of Science, University of Zagreb, under the supervision of dr. Bojana Hamzić on the
topic of experimental magnetotransport properties of selected low dimensional organic
conductors. In 2006-2007, he took a postdoctoral leave at Unité Mixte de Physique
CNRS/Thales (Université Paris-Sud), Palaiseau, France, where he began working on oxide
heterostructures and multiferroic systems with potential applications in spintronics.

After returning to the Department of Physics at the Faculty of Science, University
of Zagreb as an Assistant Professor, he expanded his research to include experimental
studies of highly correlated systems and high-entropy alloys. To date, he has published
62 scientific papers indexed in the Web of Science database, which have received a total
of 1775 citations, resulting in an h-index of 19. He has also contributed to numerous
conference talks and posters and has been a team member on several scientific projects.

In addition to his research, he is active in teaching and currently teaches Fundamentals
of Physics 1-4.

i



Acknowledgements

I would like to express my deepest gratitude to all those who have supported and guided
me throughout the process of completing this thesis.

First and foremost, I owe a debt of gratitude to my loving parents, Vlatko and Ana,
my sister, Danijela, and to the rest of my family, for their unwavering support and en-
couragement throughout my academic journey. Their love and belief in me have been the
foundation of my achievements.

I am deeply grateful to my supervisor, assoc. prof. dr. sc. Mario Basletić, for his
patience and guidance during the entire process, from conducting my measurements to the
writing of this thesis. His expertise and support have been instrumental in the completion
of this work.

My sincere thanks go to my colleague assoc. prof. dr. sc. Emil Tafra for his invaluable
assistance with the measurements, patiently answering all my questions, and helping me
troubleshoot problems. His expertise and patience have greatly contributed to the success
of my research.

To my college friends Petar Marević, Matija Kalanj, Saša Vrcelj, Pavao Andričević,
and Jure Dragović, thank you for your steadfast friendship and support during and after
college. Our annual trips abroad have been an incredible source of joy, providing much-
needed respite from academic endeavours.

I would also like to extend my gratitude to Marko Šušak for ensuring that I had access
to liquid helium and liquid nitrogen, and to Marko Hum for helping me navigate the PhD
bureaucracy. I am also grateful to prof. dr. sc. Emil Babić and dr. sc. Ignacio A. Figueroa
for supplying the ribbon samples used in this thesis.

Lastly, I am thankful to all my other colleagues who have lent a helping hand when
needed, assisting with measurements and troubleshooting various issues.

This thesis would not have been possible without the collective efforts of all the in-
dividuals mentioned above, and I am eternally grateful for their contributions to my
success.

ii



Abstract

This thesis presents the findings of a comprehensive, systematic study of transport proper-
ties, including resistivity, Hall effect, magnetoresistance, and superconductivity, in amor-
phous quinary alloys of early and late transition metals. The research focused on metal-
lic glass ribbons from three alloy systems: (TiZrNbNi)1−xCux, (TiZrNbCu)1−xNix, and
(TiZrNbCu)1−xCox, spanning a broad composition range, along with three alloy vari-
ants with a fixed TL (Cu, Ni) content and compositions: Ti0.30Zr0.15Nb0.15Ni0.20Cu0.20,
Ti0.15Zr0.30Nb0.15Ni0.20Cu0.20, and Ti0.15Zr0.15Nb0.30Ni0.20Cu0.20. In addition, measurements
were conducted on an amorphous thin film of TiZrNbCuNi, which was deposited on a
SrLaAlO4 substrate using a pulsed laser deposition (PLD) system. The results of resis-
tivity, Hall effect, magnetoresistance, and superconductivity measurements largely agree
with those reported in previous investigations on related binary and ternary amorphous al-
loys. However, we identified a novel model of two parallel conducting channels, composed
of a metal-like and a variable range hopping (VRH)-like channel, that better describes the
temperature variation of resistivity observed in our experiments. A possible mechanism
for the origin of these two conductance channels was proposed.

Keywords: amorphous alloys, metallic glasses, amorphous thin films, pulsed laser depo-
sition, transport properties, resistivity, Hall effect, magnetoresistance, superconductivity,
weak localization, enhanced electron-electron interactions, Anderson localization, variable
range hopping
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Prošireni sažetak

Materijali s kristalnim uređenjem uvijek su privlačili veliki interes znanstvene zajednice,
posebno od razvoja kvantne mehanike. Međutim, savršene kristalne strukture su češće
iznimka nego pravilo u prirodi. Umjesto toga, strukture u materijalima variraju od kristal-
nih rešetci s malim brojem defekata, do vrlo neuređenih amorfnih (staklastih) struktura.

Amorfni metali su čisti metali ili legure koje ne posjeduju dugodosežno atomsko ure-
đenje, a nastaju raznim tehnikama brzog hlađenja taljevine ili plina. Brzina procesa
sprječava stvaranje uređene kristalne faze pa atomi ostaju „smrznuti” u metastabilnom
stanju koje nalikuje tekućoj fazi. Razvoj tehnika brzog hlađenja tijekom 1960-ih doveo je
do povećanog interesa za amorfna metalna stakla i utjecaja dugodosežnog (ne)uređenja
na elektronsku strukturu, mehanička, magnetska i električna svojstva metala.

Među metalnim staklima, od posebnog su značaja slitine ranih (Ti, Zr, Nb, Hf) i
kasnih (Fe, Co, Ni, Cu) prijelaznih metala, poznate skraćeno kao TE–TL slitine. Ove
slitine su od posebnog interesa zbog širokog raspona koncentracija (obično između 20%

i 70% sadržaja kasnih prijelaznih metala) za koje je moguće formirati metalno staklo.
Ovo svojstvo omogućuje detaljno i sustavno proučavanje ovisnosti svojstava materijala o
kemijskom sastavu, jer je kod amorfnih slitina, za razliku od kristalnih, moguće dobiti
homogenu jednofaznu smjesu s kontinuiranim vrijednostima kemijskog sastava.

Tijekom godina, fokus u razvoju novih materijala polako se pomaknuo s binarnih i
ternarnih slitina na složenije, višekomponentne slitine. Tradicionalna strategija razvoja
višekomponentnih slitina sastojala se od korištenja jednog ili najviše dva glavna elementa
i dodavanja malih količina drugih elemenata kako bi se postigla željena sekundarna svoj-
stva. Međutim, ovaj pristup dizajnu slitina je dosta restriktivan i ostavlja ogromno neis-
traženo područje u središtu faznog dijagrama višekomponentnih slitina. Početkom ovog
stoljeća, u potrazi za novim masivnim metalnim staklima (engl. bulk metallic glasses),
upotrijebljena je nova strategija koja koristi višekomponentne legure s gotovo ekviatom-
skim koncentracijama. Ovaj pristup brzo se proširio na kristalne slitine visoke entropije
(engl. high-entropy alloys) te konačno i na intermetalne spojeve i keramike.
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Ove višekomponentne slitine i njihova amorfna stanja predstavljaju nove i zanimljive
pravce istraživanja. Njihovim istraživanjem možemo proširiti naše razumijevanje utjecaja
kemijskog sastava te kemijskog i strukturnog nereda na svojstva materijala. Ta znanja
mogu dovesti do razvoja novih materijala s poboljšanim svojstvima i potencijalnim in-
dustrijskim primjenama.

U skladu s ovim razvojima, ovaj rad prezentira rezultate opsežnog i sustavnog is-
traživanja transportnih svojstava, uključujući otpornost, Hallov efekt, magnetootpor i
supravodljivost, u amorfnim višekomponentnim slitinama ranih i kasnih prijelaznih me-
tala. Istraživanje se primarno sastojalo od mjerenja traka metalnih stakala (engl. metallic
glass ribbons) iz tri sustava kvinarnih slitina: (TiZrNbNi)1−xCux, (TiZrNbCu)1−xNix i
(TiZrNbCu)1−xCox u širokom rasponu kemijskog sastava od gotovo ekviatomskih slitina
visoke entropije (0 ≤ x ≤ 0.35) do konvencionalnih slitina s jednim glavnim elementom
(x ≥ 0.35). Dodatno, provedena su mjerenja na amorfnom tankom filmu TiZrNbNiCu,
koji je deponiran na SrLaAlO4 supstrat pomoću tehnike pulsne laserske depozicije.

Na svim uzorcima metalnih staklenih traka izmjereni su supravodljivi prijelazi iznad
300mK, osim za (TiZrNbNi)0.5Cu0.50 i (TiZrNbCu)0.57Co0.43 slitine. Temperature supra-
vodljivog prijelaza Tc su niže od onih u srodnim binarnim slitinama na bazi Zr, što je
najvjerojatnije rezultat negativnog utjecaja Ti, opaženog i u binarnim TE–TL slitinama.
U skladu s amorfnim i kristalnim TE–TL slitinama, temperature supravodljivog prijelaza
padaju s povećanjem koncentracije kasnih prijelaznih metala.

Vrijednosti Hallovog koeficijenta RH su u skladu s amorfnim binarnim TE–TL sli-
tinama. Svi Hallovi koeficijenti su pozitivni, osim za (TiZrNbCu)0.57Co0.43 slitinu. U
(TiZrNbCu)1−xCox slitinama uočena je promjena predznaka Hallovog koeficijenta RH s
porastom koncentracije x. Kritična koncentracija je oko x(Co) = 0.34. U (TiZrNbCu)1−xNix
slitinama primijećen je blagi pad vrijednosti s većim koncentracijama x. Ekstrapolirana
kritična vrijednost je približno x(Ni) = 0.6. Hallovi koeficijenti u (TiZrNbNi)1−xCux

slitinama ostali su približno nepromijenjeni u cijelom mjernom području koncentracija.
Prijelazi iz pozitivnih u negativne vrijednosti Hallovog koeficijenta korelirani su s pro-
mjenom karaktera d-elektrona na Fermijevom nivou, iz d-elektrona ranih u d-elektrone
kasnih prijelaznih metala.

Na svim uzorcima metalnih staklenih traka izmjerene su visoke vrijednosti otpornosti
na sobnoj temperaturi (140-240µΩcm) i mali negativni temperaturni koeficijent otpor-
nosti. Otpornosti na sobnoj temperaturi su rasle s povećanjem koncentracije kasnih prije-
laznih metala, u skladu s binarnim TE–TL slitinama, osim za (TiZrNbCu)1−xCox slitine,
gdje je primijećena veća promjena nego što je zabilježeno u binarnim Zr1−xCox slitinama.
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Na svim uzorcima je izmjeren pozitivan magnetootpor za magnetska polja do 10T,
dok je za veća polja opažen mogući pad vrijednosti u par mjerenih uzoraka. Promjena u
magnetskom polju je u skladu s binarnim amorfnim TE–TL slitinama. Proporcionalno
kvadratu magnetskog polja ∝ B2 na niskim poljima i proporcionalno korijenu magnetskog
polja ∝

√
B na visokim poljima. Izmjerena ovisnost o magnetskom polju je kvalitativno,

pa čak i kvantitativno, u skladu s binarnim amorfnim TE–TL slitinama.
Mjerenja su pokazala jako dobro slaganje sa srodnim binarnim TE–TL slitinama, što

sugerira da ove kvinarne slitine možemo promatrati kao pseudo-binarne slitine ranih i
kasnih prijelaznih materijala TE1−xTLx.

Posebna pažnja posvećena je temperaturnoj ovisnost otpornosti, odnosno pripad-
nom malom negativnom koeficijentu otpornosti. Iako se u literaturi navedena tempe-
raturna ovisnost pripisuje temperaturno ovisnim komponentama efekata slabe lokalizacije
(engl. weak localization) i pojačane elektron-elektron interakcije (engl. enhanced electron-
electron interaction), u ovom radu je predložen novi model s dva paralelna kanala vodlji-
vosti koji bolje opisuju izmjerenu temperaturnu ovisnost otpornosti. Jedan kanal pokazuje
metalnu vodljivost, dok drugi kanal pokazuje temperaturnu ovisnost nalik preskakanju
promjenjivog dosega (engl. variable range hopping, VRH).

Metalni kanal vodljivosti je temperaturno neovisan na višim temperaturama (≳ 20K),
što pripisujemo elastičnim raspršenjima na neuređenoj rešetci, takozvani rezidualni otpor.
Na niskim temperaturama (≲ 20K), ova komponenta otpornosti opada s temperaturom,
što pripisujemo temperaturno ovisnom doprinosu slabe lokalizacije i pojačane elektron-
elektron interakcije.

Za drugi kanal vodljivosti, koji pokazuje temperaturnu ovisnost preskakanja promje-
njivog dosega, predložili smo da je rezultat formiranja zona lokaliziranih i delokaliziranih
stanja. Delokalizirana stanja formiraju beskonačni klaster i više malih konačnih klastera.
Metalni kanal vodljivosti je rezultat difuznog gibanje elektrona kroz beskonačni klaster.
Međutim, ne doprinose svi dijelovi beskonačnog klastera ovom difuznom transportu elek-
trona, te dijelove možemo nazvati slijepe ulice. Preskakanjem između ovih slijepih ulica
i/ili konačnih klastera stvaraju se kanali vodljivosti paralelni beskonačnom klasteru. Zbog
temperaturno neovisne vodljivosti beskonačnog klastera (≳ 20K), uključujući i slijepih
ulica, temperaturna ovisnost otpornosti ovih paralelnih kanala bit će rezultat tempera-
turne ovisnosti preskakanja promjenjivog dosega exp(TVRH/T )

1/2.
Mjerenja transportnih svojstava amorfnog tankog filma, procijenjene debljine u ras-

ponu od 100-200 nm, pokazuju dobro slaganje s uzorcima metalnih staklenih traka. Depo-
zicijom novih tankih filmova raznih debljina, može se proučavati utjecaj dimenzionalnosti
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na vrijednosti i temperaturnu ovisnost transportnih svojstava. Takvo istraživanje bi moglo
pružiti vrijedan uvid u prirodu ova dva kanala vodljivosti te pomoći u testiranju valjanosti
predloženog modela vodljivosti na amorfne slitine visoke otpornosti.

Ključne riječi: amorfne slitine, metalna stakla, amorfni tanki filmovi, pulsna laserska
depozicija, transportna svojstva, otpornost, Hallov efekt, magnetootpor, supravodljivost,
slaba lokalizacija, pojačane elektron-elektron interakcije, Andersonova lokalizacija, pre-
skakanje promjenjivog dosega
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Introduction

Crystalline materials have received extensive interest since the advent of quantum me-
chanics. However, perfect crystalline structures are more the exception than the norm in
nature. Disorder can manifest in various forms, ranging from minor impurities within a
crystal lattice to the highly disordered extremes observed in amorphous (glassy) struc-
tures.

The advent of rapid quenching techniques and the first metallic glasses in the 1960s [1]
marked a pivotal moment in the investigation of amorphous materials’ properties. This
category of materials introduced a new domain in material science beyond the crystal
lattice. Several questions arose as a consequence of this development: How does the
absence of long-range order influence the electronic structure, mechanical, magnetic, and
electrical properties? What are the implications of disorder and short-range order? And
why do crystalline and amorphous materials with identical compositions exhibit some
shared properties but not others?

These and other questions have spurred new experimental and theoretical research
endeavours. For instance, due to the high disorder, conduction electrons exhibit a very
short mean free path, causing their behaviour to deviate from models based on the Boltz-
mann transport equations, which have been effective in describing transport properties
of, for example, crystalline metals. As a result, examination of quantum corrections to
the Boltzmann theory and alternative theories became necessary.

For example, with short elastic and long phase-breaking (inelastic) mean free paths,
interference effects between incident and scattered electron wavefunctions can become
significant. This aspect, not accounted for in the Boltzmann transport equations, places
special emphasis on electron paths forming closed loops, as there are then two paths
of equal length for the electron wavefunction—specifically, the closed path executed in
opposite directions. If the electron wavefunctions maintain phase coherence, the two
partial waves can reinforce each other, thereby doubling the probability of such paths
compared to classical expectations.
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Introduction Introduction

Among metallic glasses, one of the notable categories are alloys of early (Ti, Zr, Nb,
Hf) and late (Fe, Co, Ni, Cu) transition metals, known as TE–TL alloys. These alloys
are of particular interest due to the wide range of compositions (typically 20-70% of TL
content) that form metallic glasses [2]. This property is highly advantageous, as unlike
crystalline alloys, homogeneous single-phase systems of amorphous alloys can be prepared
with continuously varying compositions. As a result, the properties of the system can
be examined as a function of composition without the interference of structural phase
transitions, providing valuable insights into the properties and behaviour of these alloys.

Moreover, these alloys belong to the group of so-called strong scattering alloys [3],
which display negative temperature coefficients of resistivity and positive Hall coefficients,
contradicting the nearly free electron models developed for weakly scattering metals.
Consequently, extensive research has been conducted on this class of alloys [3–8].

Over the years, the focus of new materials development has transitioned from binary
and ternary alloys to more complex, multicomponent alloys. The conventional strategy
involved using one or, at most, two principal components, and then incorporating small
amounts of various other elements to impart secondary properties. However, this approach
to alloy design is restrictive, leaving a vast, underexplored region in the middle of the phase
diagram of multicomponent alloys.

At the start of this century, in an effort to discover new bulk metallic glasses, a novel
method was introduced that used multicomponent alloys with nearly equiatomic concen-
trations [9, 10]. According to traditional understanding, these multicomponent alloys
should have resulted in the formation of numerous phases and intermetallic compounds.
However, experimental studies found a remarkably smaller number of phases in these
systems, and even single-phase solid solutions [11, 12]. These single-phase solid solutions
quickly attracted attention and spurred a significant expansion of research into multi-
component, nearly equiatomic alloys [13, 14]. It was proposed that high configurational
entropy in these systems increases the stability of solid solutions relative to intermetal-
lic compounds [12], leading to the term high entropy alloys. This research subsequently
extended to high entropy intermetallic compounds and ceramics [13, 14].

These novel multicomponent alloys and their corresponding amorphous states offer
intriguing research opportunities, shedding light on the effects of compositional variations
and chemical complexity on material properties. Moreover, alloys exhibiting both a solid
solution phase and an amorphous (metallic glass) phase, such as Al0.5TiZrPdCuNi [15,
16], allow for direct comparisons between systems that share chemical disorder, but one
possesses structural order, while the other is structurally disordered.
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Introduction Introduction

Understanding the intricate relationship between chemical and structural disorder,
composition, and material properties in these alloys can offer valuable insights, contribut-
ing to the advancement of materials science. This knowledge may lead to the discovery of
new materials with improved performance and potential applications across various indus-
tries. Ultimately, continued research in this area holds significant potential to influence
the future of materials science and technology.

Following these developments, the research conducted and presented in this thesis fo-
cuses on measuring and classifying the electronic properties, including electrical resistiv-
ity, magnetoresistance, Hall effect, and superconductive transitions, of amorphous sam-
ples from three quinary TE–TL alloy systems: (TiZrNbCu)1−xNix, (TiZrNbNi)1−xCux,
and (TiZrNbCu)1−xCox, encompassing both the nearly equiatomic high entropy range
(0 ≤ x ≤ 0.35) and the conventional range (x ≥ 0.35). Additionally, a proof-of-concept
amorphous thin films of TiZrNbNiCu have been fabricated using pulsed laser deposition,
representing an initial step in exploring the effects of dimensionality on this class of amor-
phous metal alloys. Part of the research present in this work, has already been published
in two papers [17, 18].

The structure of this thesis is organized as follows:
Chapter 1 provides a definition of amorphous metals and metallic glasses, and a

brief discussion of their key structural properties. This is followed by an overview of the
transport properties, including resistivity, Hall effect, magnetoresistance, and supercon-
ductivity, in high-resistivity amorphous materials, with a primary focus on amorphous
TE–TL alloys.

Chapter 2 introduces relevant concepts and theories that will be useful in the analysis
and discussion of the obtained results.

Chapter 3 details the experimental setups and methodologies for data collection
and analysis presented in this work. Furthermore, it briefly describes the preparation
of the amorphous ribbon samples employed in this research, which were prepared by Dr.
Ignacio A. Figueroa at the Institute for Materials Research–UNAM, Mexico. Additionally,
Section 3.2 outlines the preparation of amorphous thin films of the TiZrNbCuNi alloy
using pulsed laser deposition at the Department of Physics, Faculty of Science in Zagreb,
and their characterisation.

Chapter 4 presents the results of transport measurements conducted on amorphous
ribbon and thin film samples, comparing and contrasting these findings with similar bi-
nary TE–TL metallic glass alloys. In addition, a novel description of the temperature
dependence of resistivity is introduced, which suggests the presence of two parallel con-

3



Introduction Introduction

ducting channels in the studied alloys: one metallic-like and the other resembling variable
range hopping (VRH).

Lastly, Chapter 5 offers a summary of key findings and potential avenues for future
research.

4



Chapter 1

Amorphous Metals

Amorphous metals are pure metals or alloys possessing no long-range atomic order. They
are typically formed by a variety of techniques which involve rapid solidification from
the gas or liquid phases. Common methods include melt spinning, splat quenching, and
evaporation or sputtering onto a substrate. The solidification occurs so rapidly that it
leaves no time for nucleation and crystal growth, and so the equilibrium crystalline phase
is not reached. Instead, atoms solidify into a disordered, thermodynamically metastable
state that is similar to the liquid phase, i.e. to a glassy state [19]. In some cases, amorphous
metals can also be produced by mechanical alloying, ion implantation or electrochemical
deposition.

1.1 Glass formation

We can examine the formation of an amorphous, glassy state by monitoring changes that
occur in the material as it cools from a liquid state. For instance, we can track the volume
change with temperature, as illustrated in Figure 1.1. When the temperature of a liquid
metal is gradually lowered, its volume decreases until it reaches the melting point Tm. At
this temperature, the volume experiences a sudden drop, reaching a value typical of the
solid crystalline metal. As it continues to cool, the volume decreases gradually, depending
on the coefficient of thermal expansion.

During the crystallization process, the liquid typically experiences undercooling, en-
abling the liquid state to persist below the melting temperature. This occurs because an
activation energy barrier must be overcome for nucleation sites to form. The extent of
undercooling relies on various factors, including: the viscosity of the liquid, the free en-
ergy difference between the undercooled melt and the crystal phases, the imposed cooling
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Figure 1.1: Schematic illustration of the change in volume with temperature for a normal crys-
talline and a glass-forming material. After [20].

rate, and heterogeneous nucleating agents [20].
Unlike ordinary metals, glass-forming metals can exhibit significant undercooling, fa-

cilitated by high cooling rates. The melt volume continues to decrease in this undercooled
region, accompanied by an increasing viscosity. At a certain temperature well below Tm,
the viscosity becomes so high that the liquid essentially freezes in place, leading to the
formation of a solid glassy state. The temperature at which the undercooled liquid solid-
ifies into glass is referred to as the glass-transition temperature Tg. However, since this
transition to the glassy state occurs without a distinct phase transition like crystallization
(i.e. the transition is continuous), there is no precisely defined temperature at which it
takes place. Instead, there exists a temperature range in which the liquid transitions to
glass, depending on the cooling rate and the method of glass preparation. The faster the
alloy is cooled from the liquid state, the higher the values of the transition temperature
Tg and density of the resulting glassy state. In metallic glasses, these values can differ by
as much as 100K, with corresponding density differences of up to 0.5% [8].

Unlike crystalline solids, which transform into the liquid state at the melting temper-
ature Tm upon heating, metallic glasses, similar to other types of glasses, can often revert
to the undercooled liquid state without crystallization. This state is commonly referred to
as the supercooled liquid region [20]. At Tx, a temperature higher than Tg, the supercooled
liquid transitions into a crystalline phase or phases. The temperature interval between
these temperatures, ∆Tx = Tx − Tg, is referred to as the width of the supercooled liquid
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region. The value of ∆Tx depends on the material and cooling rate and is typically used
as an indicator of the thermal stability of the produced glass.

It is crucial to recognize that, for metallic glasses, there is no unique "structure" as
there is for a crystal. The temperature at which the glass transition occurs determines
the structure, and this temperature is a function of the cooling rate. Consequently, the
properties of glassy materials are dependent on their history. Fortunately, the transport
properties of interest are reasonably reproducible if the specimens are made with standard
techniques and their temperature is not raised excessively. Nevertheless, care must be
taken to ensure the quality of the amorphous phase.

The temperature dependence of volume exhibits a change in slope at the glass tran-
sition temperature, as seen in Figure 1.1. Other thermodynamic variables, such as en-
tropy and enthalpy, are also continuous through the glass transition and exhibit a change
in slope. Accordingly, at Tg, there is a discontinuity in the derivative of these vari-
ables, such as the coefficient of thermal expansion αT = (∂ lnV/∂T ), compressibility
κT = −(∂ lnV/∂p)T , and heat capacity Cp = (∂H/∂T )p. It follows that calorimetric ex-
periments are effective markers of the glass transition temperature. A useful method for
monitoring the glass transition phenomena is by means of differential scanning calorimetry
(DSC) or differential thermal analysis (DTA), in which the sample is heated at a con-
stant rate, usually 5-40Kmin−1, and changes in heat flow (DSC) or temperature (DTA)
compared to an empty reference pan are measured.

A typical DSC curve for metallic glasses is illustrated in Figure 1.2(a). The curve
displays three significant features. The glass transition temperature Tg is identified by a
change in the slope of the baseline due to the increased heat capacity of the supercooled
liquid. This is followed by one or multiple crystallization events starting at Tx, indicated
by large exothermic peaks. Lastly, the onset of the alloy melting process is observed at Tm,
which is endothermic in nature. Most alloys, unless they correspond exactly to the eutectic
composition, possess a range of melting temperatures. Therefore, two temperatures should
be identified: one at the start, Tm (the solidus temperature, sometimes denoted as Ts),
and the other at the end of the melting process, Tl (the liquidus temperature). It is
important to note that the values of Tx and Tg are not inherent to a given amorphous
alloy but depend on the heating rate. Additionally, DSC/DTA curves of metallic glass
can be more complex, with multiple glass and crystallization events.

An example of a DSC/DTA curve for metallic glass ribbons of one of the multi-
component TE–TL alloy systems studied in this work, (TiZrNbCu)1−xCox, is shown
in Figure 1.2(b). These curves are quite similar to those of (TiZrNbCu)1−xNix and
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Figure 1.2: (a) Illustration of a typical DSC curve for a metallic glass alloy. (b) DSC/DTA curves
of (TiZrNbCu)1−xCox metallic glass ribbons, obtained at a constant heating rate of 20Kmin−1.
On heating, three processes can be observed: the glass transition temperature Tg, multiple
crystallization processes starting at Tx, and the start and end of melting at the temperatures Tm

and Tl respectively. (a) is reproduced from [20] and (b) from [21].

(TiZrNbNi)1−xCux metallic glasses [21–23].
Before proceeding further, a few clarifications regarding terminology need to be made.

Historically, in the literature, the terms noncrystalline, amorphous, and glassy have been
used interchangeably to refer to similar random atomic arrangements in solid materials,
with some researchers preferring one term over the others. Over the years, it has generally
been accepted that noncrystalline is a generic term used to describe any solid material that
lacks crystallinity. Moreover, a distinction has emerged between glassy and amorphous
materials. A glass is any noncrystalline solid obtained through continuous cooling from
the liquid state, while an amorphous solid is any noncrystalline material obtained by
any other method [20]. In this thesis, the term amorphous will be used more generally
to include any noncrystalline metal (or alloy) irrespective of the method of preparation,
including metallic glasses.

Some researchers have also emphasized that the hallmark of a true glass is the presence
of a glass transition temperature Tg. For a majority of melt-spun metallic glass ribbons
that have been structurally proven noncrystalline, DSC/DTA curves do not display a
clear glass transition. This is likely due to a small difference between Tg and Tx in these
materials; the presence of Tg cannot be clearly observed next to a strong exothermic peak
at Tx [20]. Therefore, in this thesis, no distinctions for metallic glasses based on the
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observation of the glass transition temperature Tg will be made. It should be noted that
amorphous alloys produced by non-solidification methods might not show the presence of
Tg, as it is expected to be observed only during solidification from the liquid state [20].

1.2 Structure of amorphous metals

Figure 1.3: X-ray diffraction pattern for slow cooled polycrystalline samples (left panel) and melt
spun amorphous ribbons (right panel) of (TiZrNbCu)1−xNix. Adapted from [24].

The absence of long-range order in amorphous metals is evident in their X-ray diffrac-
tion (XRD) patterns. Figure 1.3 displays the diffraction patterns of (TiZrNbCu)1−xNix
alloys in both crystalline and amorphous states. The diffraction pattern of crystalline
samples (Figure 1.3, left) features multiple sharp peaks corresponding to Bragg reflec-
tions from parallel crystal lattice planes. In contrast, the amorphous diffraction pattern
lacks sharp peaks, presenting only broad, diffuse halos; one large (though typically of
smaller intensity than Bragg maxima in crystals) and several smaller ones. This pattern
results from the short-range order in amorphous metals, as atoms cannot be truly ran-
domly distributed. Factors such as a tendency for close packing, well-defined atomic sizes,
and a closest distance of approach lead to distinct local structures.

The amorphous structure can be conceptualized as a relatively close-packed collection
of nearly hard spheres, as illustrated in Figure 1.4(a). Surrounding any given atom, there
is a ring of first neighbours at an average distance of d1, a less well-defined ring of second
neighbours at d2, and so on. This short-range order plays an important role in shaping
the electron density of states N(E), which in turn affects other material properties.

The short-range order in a material can be visualized using the radial distribution
function g(r), which depicts the deviation from the average atom number density n0

at a distance r from a reference atom. In other words, the number of atoms found in
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Figure 1.4: (a) Illustration of the close-packed structure in an amorphous metal and the corre-
sponding radial distribution function g(r). Illustrations of the radial distribution function g(r)

of (b) a gas, (c) a liquid, and (d) a crystal. After [25, 26].

the volume of a spherical shell with radius r and thickness dr is given by n0g(r)4πr
2dr.

As illustrated in Figure 1.4(a), g(r) = 0 at small values of r due to the finite sizes of
atoms. As r increases, the first maximum emerges, corresponding to the nearest neighbour
distance in the amorphous material. Further maxima appear as r increases, representing
the second, third, and subsequent nearest neighbour distances; however, their intensities
rapidly diminish and eventually converge to the average density limr→∞ g(r) = 1. For
comparison, in gases, where near true randomness exists, g(r) = 1 for all values of r
larger than the size of the atom or molecule, as seen in Figure 1.4(b). Conversely, in
crystalline materials, g(r) consists of a series of delta functions at distances characteristic
of a given crystal lattice, as seen in Figure 1.4(d).

The radial distribution function g(r) can be determined from the measured angular
distribution of the intensity of elastically scattered X-ray or neutron beams I(Q).a g(r)

aHere, Q = 2Q0 sin θ represents the magnitude of the scattering vector, where Q0 is the magnitude of
the wave vector of the incoming X-rays/neutrons, and Θ is the angle of incidence of the X-ray/neutron
beam.
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is calculated from the following equation [19, 26]:

g(r) = 1 +
1

2π2n0

∫ ∞

0

[S(Q)− 1]Q2

(
sinQr

Qr

)
dQ , (1.1)

where S(Q) is the structural factor, which is determined from:

S(Q) =
I(Q)

Nf 2
, (1.2)

where N represents the number of atoms involved in the scattering process, and f denotes
the atomic scattering factor, which depends on the atomic species involved, the type of
scattering, and in the case of X-rays, the magnitude Q.b

The radial distribution function is also often reported in the form:

R(r) = 4πr2n0g(r) , (1.3)

which describes the number density of atoms found at a distance r. This radial distribution
function will have the peaks corresponding to the nearest neighbours, as seen in Figure
1.4, superimposed on the average density parabola 4πr2n0.

An example of the radial distribution function R(r) determined from synchrotron-
based high-energy XRD (HEXRD) measurements for one of the multicomponent TE–TL
systems studied in this work, (TiZrNbNi)1−xCux, is shown in Figure 1.5. The graph
displays short-range order as described, featuring a large maximum whose centre shifts
from 2.96Å to 2.75Å as x increases from 0.12 to 0.50. Furthermore, smaller maxima,
that correspond to the second and third nearest neighbours, can be observed at greater
radial distances r. The decrease in the first nearest neighbour distance with increasing Cu
content is attributed to the replacement of larger TE atoms by smaller Cu atoms. The
difference between R(r) for x = 0.05 and x > 0.05, specifically the narrower and more
pronounced first and third peaks, has been ascribed to the emergence of a nanocrystalline
phase in the amorphous matrix for x ≤ 0.05 [22].

By integration over the first maximum, it is possible to determine the average number
bFor more detailed treatments of the radial distribution function and its calculation from various

elastically scattered beams when multiple atomic species are involved, see, for example, Chapter 15 in
[26] or Chapter 3 in [27].
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Figure 1.5: Radial distribution function od (TiZrNbNi)1−xCux alloys. Inset: The corresponding
average coordination number (average number of first nearest neighbour atoms). Reproduced
from [22].

of first nearest neighbour atoms, i.e. the average coordination number:

N =

∫
first maximum

R(r)dr . (1.4)

The inset of Figure 1.5 shows that the coordination number does not change significantly
with Cu content, suggesting no alteration in the short-range order for (TiZrNbNi)1−xCux

alloys, consistent with binary TE–Cu alloys [28, 29]. This contrasts with (TiZrNbCu)1−xNix
and (TiZrNbCu)1−xCox alloys, where N remains nearly constant with Ni and Co content
before sharply increasing around x = 0.43 and x = 0.25, respectively [30].

It is worth noting that the standard XRD technique has limited sensitivity when de-
tecting small volume fractions of crystalline phase within an amorphous matrix, especially
if the crystals are nanocrystalline.c As a result, even if the XRD pattern displays only
broad peaks, the material may still contain a small quantity of nanocrystals dispersed
within the amorphous matrix.

cThe measurement resolution increase with decreasing photon wavelength.
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1.3 Electronic structure of TE–TL alloys

Prior to examining the transport properties of amorphous metals, it is beneficial to un-
derstand their electron band structure and density of states, as they play a crucial role
in explaining various physical properties such as electron transport, Hall effect, supercon-
ductivity, magnetism, and more. Numerous techniques have been developed to investigate
the electronic structure of crystalline metals, which rely on a long mean free path of con-
duction electrons (e.g., de Haas-van Alphen effect, radio-frequency size effect, cyclotron
resonance, and high-field magnetoresistance). However, these techniques are inapplicable
to amorphous materials, which generally exhibit short mean free paths. As a result, the
principal technique for investigating the electron density of states in metallic glasses is
photoemission (photoelectron) spectroscopy (PES).

Figure 1.6: Schematic diagram of the photoemission process (photoelectron effect) used to mea-
sure the electron density of states of the conduction band and core levels. After [31].

In this technique, high-energy monochromatic photons are used to impart sufficient
energy to eject electrons from their bound state in the sample into the vacuum. The
kinetic energy of the emitted electrons can be measured to determine the band structure
below the Fermi level, as depicted in Figure 1.6. The binding energy of the electron in the
atom relative to the vacuum level εB is given by the difference between the energy of the
incident photon hv and the kinetic energy of the emitted electron εkin. By subtracting the
work function Φ, the binding energy with respect to the Fermi level EF can be calculated:

εi = hv − εkin − Φ . (1.5)
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Assuming the number of emitted electrons at a given kinetic energy εkin is proportional
to the density of states at the corresponding binding energy εi, this technique provides
experimental information on the electronic density of states within the valence band as
a function of binding energy [31]. However, this assumption is generally imprecise and
the number of emitted electrons depends on the type of atom and band (s, p, d or f) and
the photon energy involved [26]. In other words, the shape of the PES spectra generally
depend on the energy of an incoming photon. Although corrections can be applied,
they are often unknown or disregarded. In fact, this discrepancy can be exploited to
distinguish the contributions of different types of bands and atoms. The technique is
differentiated into ultraviolet photoemission (photoelectron) spectroscopy (UPS) and X-
ray photoemission (photoelectron) spectroscopy (XPS) based on the energy of the incident
photons.

In this work, we will focus on the electronic structure of TE–TL alloys. Figure 1.7
displays various examples of UPS spectra for binary TE–TL metallic glasses. Given the
typically low contribution from sp-bands to the photoemission intensity, these spectra
primarily reflect the density of states of d-electrons.

The prominent feature evident in these spectra is the presence of two well-defined
peaks, which form the so-called "split band" structure. The peak situated closer to the
Fermi level is attributed to the d-states of TE elements, whereas the deeper-lying peak
is associated with the d-states of TL elements. Consequently, the density of states at
the Fermi level is predominantly influenced by TE d-states. This assignment of the two
peaks to TE and TL d-states was corroborated by Greig et al. on Cu–Zr alloys [32]. They
successfully differentiated between the Cu and Zr d-bands, due to a more pronounced
change in excitation probabilities of Zr d-electrons between photon energies of 40 eV and
120 eV compared to Cu d-electrons.

As seen in Figure 1.7(a), the density of states for both crystalline and amorphous
alloys are similar, although fine details in the density of states of the crystalline alloy are
smoothed out in the amorphous case. This suggests that the split band structure is not
a result of the amorphous nature. The striking similarity can be largely attributed to the
fact that the density of states of the d-electrons is determined by short-range interactions.
In other words, short-range order, which is similar in amorphous and crystalline TE–TL
alloys, is more important than long-range order when determining d-electron density of
states [3].

Furthermore, hybridisation between the TE and TL d-bands leads to a shift in the
position of the bands relative to their positions in the pure metal. The d-band of the
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Figure 1.7: Comparison of UPS spectra for (a) amorphous Cu60Zr40, crystalline Cu3Zr2 and
pure Cu metal; (b) Zr-based metallic glasses with different late transition metal; (c) Cu and Ni
metallic glasses with various early transition metals. The (a) panel was reproduced from [33];
(b) and (c) panels were reproduced from [34].

late transition metal is pushed to higher binding energies, and that of the early transition
metal component to lower binding energies [3].

For the same TE component, alloying with different TL elements of increasing atomic
number (i.e. Fe→Co→Ni→Cu→Pd→Pt) causes the d-band splitting to increase, as seen
in Figure 1.7(b). However, the band structure remains almost unchanged if the TL
component is kept constant while the TE element is varied within the same group, as
shown in Figure 1.7(c). Additionally, as the concentration of TL elements increases, the
binding energy of the TL d-band decreases, i.e. shifts towards the Fermi level, while the
peak width increases [34]. Thus, at a certain crossover concentration the Fermi level is
expected to shift from the TE d-band to the TL d-band [35].

Figure 1.8 shows the UPS spectra for the three quinary alloy systems studied in this
work, (TiZrNbNi)1−xCux, (TiZrNbCu)1−xNix and (TiZrNbCu)1−xCox, all with the same
concentration x = 0.43, as well as for the equiatomic TiZrNbCuNi for comparison. Con-
trary to the binary alloys with two peaks, these quinary alloys display three peaks in their
UPS spectra. A similar shape of the UPS spectra had been observed in ternary TE–TL
alloys.

In (Ni0.33Zr0.67)0.85 X0.15 alloys, the inclusion of a TL element (X=Fe, Co, Cu) led to the
appearance of a third peak associated with the d-band of the added element. In contrast,
the addition of a TE element (X=Ti) merely altered the height and width of the TE (Zr)
peak at the Fermi level [36], mirroring the change observed when changing the TE element
in binary TE–TL alloys, as observed in Figure 1.7(c). Similarly, in our quinary alloys,
the peak at the Fermi level originates from the d-bands of TE elements (Ti, Zr and Nb),
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Figure 1.8: Photoemission spectra of TiZrNbNiCu, (TiZrNbNi)0.57Cu0.43, (TiZrNbCu)0.57Ni0.43,
and (TiZrNbNi)0.57Cu0.43. The Fermi level EF is located at the binding energy value of zero.
Reproduced from [30].

while the two remaining peaks correspond to the two TL elements. The peak at higher
binding energies, situated around 3.5 eV, corresponds to the Cu d-band, while the peak
closer to the Fermi level is attributed to either the Ni or Co d-band [21, 22, 30, 37, 38].

In accordance with binary TE–TL alloys, the peak corresponding to the Cu d-band
in (TiZrNbNi)1−xCux alloys shifts only slightly towards the Fermi level with increasing
concentration x. In contrast, in (TiZrNbCu)1−xNix alloys, the peak associated with the
Ni d-band exhibits a considerable shift from about 1.85 eV for x = 0.20, to 1.5 eV for
x = 0.43, and in (TiZrNbCu)1−xCox alloys, the Co d-band peak demonstrates an even
more pronounced shift from 1.3 eV for x = 0.20 (not show here, see [21]), to 0.8 eV for
x = 0.43.

1.4 Transport properties

This section offers a brief overview of experimental findings and relevant theoretical models
regarding the Hall effect, resistivity, magnetoresistance, and superconductivity in amor-
phous non-magnetic TE–TL alloys.
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1.4.1 Hall effect

Hall coefficient measurements have generally showed either no or only a small temperature
dependence (a few precent) for most non-magnetic amorphous alloys [3, 39]. This small
temperature dependence has been attributed [40] to enhanced electron-electron interac-
tions (EEI; see subsection 1.4.2.2) which result in a temperature dependence in the form
of [41]:

∆RH

RH
= 2

∆ρEEI

ρ
∝ −

√
T . (1.6)

This dependence is intriguing because it predicts that the sign of the temperature change
of the Hall coefficient ∆RH(T ) is opposite to the sign of the Hall coefficient itself. It
decreases (increases) with temperature for positive (negative) Hall coefficients, assum-
ing a negative temperature coefficient of resistivity, which is the case in high resistivity
amorphous alloys.

This behaviour has been observed in a series of TE–TL alloys [40, 42]. However,
it is important to note that these changes are small, in accordance with the change in
resistivities which are typically a few precent. This makes it potentially challenging to
accurately measure these differences in the Hall coefficient due to the small Hall signals.
Furthermore, it has been shown that small amounts of crystallinity in the sample can
produce strong temperature-dependent Hall coefficients [43].

An intriguing property of Hall effect in amorphous transition metals is the widespread
appearance of positive (hole-like) values of the Hall coefficient RH. This is evident in
Figure 1.9 for some binary TE–TL alloys. Several observations can be made about the
Hall coefficient values in non-magnetic TE–TL alloys.

At higher TE concentrations, RH is positive. However, as the concentration x of the
TL element increases, the Hall coefficient changes sign at a certain critical concentration
xc. This critical concentration tends to increase with the atomic number of the TL element
(following the order Co→Ni→Cu). For example, the critical concentrations are found to
be approximately 0.32 for Zr1−xCox, 0.45 for Zr1−xNix and 0.8 for Zr1−xCux [35].

This crossover has been associated with the shift in the character of the d-band at
the Fermi level from TE-dominated to TL-dominated [35]. This correlation between the
position of the TL d-band and the RH values can be observed by comparing Figure 1.6
with Figure 1.9. As the TL d-band moves towards the Fermi level, either through an
increase in the atomic number of the TL element or an increase in TL concentrations, the
values of the Hall coefficient decrease and ultimately change sign. This crossover tends
to occur earlier in TL elements with lower atomic numbers, since their d-band is located

17



1.4. Transport properties Chapter 1. Amorphous Metals

Figure 1.9: Room-temperature Hell coefficients RH for (a) Zr1−xCux (open triangles), Zr1−xNix
(closed circle) and Zr1−xCox (open circles); and (b) Ti1−xNix (open circles), Zr1−xNix (open
squares) and Hf1−xNix (open triangles). Panel (a) was reproduced from [44] and panel (b) from
[39].

closer to the Fermi level. On the other hand, in TE-Cu the d-band of Cu is always situated
far below the Fermi level, and in pure Cu, it is the s-states that dominate the Fermi level.
Therefore, the crossover occurs when the Fermi level becomes dominated by sp-states of
Cu.

Interestingly, the crossover concentration seems to be relatively insensitive to whether
the TE element belongs to the 3-d, 4-d, or 5-d series [29, 39, 44], as seen in Figure 1.9(b).
However, limited experimental data suggest that the critical concentration increases with
the atomic number (group) of the TE element (e.g. Zr→Nb) [39, 45]. Lastly, the positive
values of RH tend to decrees with higher series of the TE element (from 3d to 4d to 5d)
[3, 29, 44, 46].

The observed positive Hall coefficients contradict the negative values predicted by the
nearly free electron model, commonly used for simple metals. In this model, the Hall
coefficient is given by:

RH = − 1

ne
, (1.7)

where n denotes the density of charge carriers (electrons) per unit volume. Even when
accounting for two types of charge carriers, such as highly mobile s-electrons and sluggish
d-electrons with charges q1,2, mobilities µ1,2, and concentrations n1,2, the Hall coefficient,
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Figure 1.10: Illustration of s-d hybridisation with a parabolic free-electron-like s-electron curve
and an infinitely narrow d-electron band (a) without and (b) with damping. (c) Illustration of
a more realistic s-d hybridised curve from an well-defined d-band. After [8].

given by:

RH =
q1n1µ

2
1 + q2n2µ

2
2

(|q1n1µ1|+ |q2n2µ2|)2
, (1.8)

still remains negative, since the electron charges are negative (q1 = q2 = −e).
To date, a consensus has not been reached on the explanation for the occurrence of the

positive Hall coefficient in transition-metal-based amorphous alloys. Various explanations
have been suggested thus far [3]. One of the more widely recognized explanations proposes
that the positive Hall coefficient results from an "S"-shaped E(k) dispersion curve, which
appears due to s-d hybridization, as initially proposed by G. F. Weir et. al. [47]. The
outline of this model is as follows:

With a parabolic free-electron-like dispersion curve (E(k) ∝ k2) of s-electron states
and an infinitely narrow band of d-electron states, as illustrated in Figure 1.10(a). Where
the s- and d-curves intersect, a phenomenon known as hybridization may occur. A quasi-
free electron with an energy not too far from that of a d-state can be thought of as
spending part of its time in that state, i.e. it is no longer purely s-like but takes on some
d-character, and its dispersion curve E(k) is modified accordingly. There are no longer
separate s- and d-like electrons but hybrids of intermediate character.

The illustration without damping and a perfectly narrow band is unrealistic. When
damping is included to account for electron scattering, the sharp change at the d-band
density Ed is spread over a range of energies, as illustrated in Figure 1.10(b). This
results in an "S"-shaped dispersion curve featuring a region with a negative slope around
Ed. Furthermore, in real alloys, the d-band spans a range of energies, and due to heavy
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scattering, the associated wavefunctions are heavily damped. This leads to a more realistic
shape, as shown in Figure 1.10(c).

The crucial outcome of this s-d hybridization is the emergence of a region of energies
where, due to the negative slope of the dispersion curve, electrons have negative group
velocities. It means that when the Fermi level resides within this range, the electrons that
govern transport will possess negative group velocities. For simple metals with a spherical
Fermi surface this leads to a positive Hall coefficient [3, 48]:

RH = −
∂E(k)
∂k∣∣∣∂E(k)
∂k

∣∣∣ 1

ne
. (1.9)

Following this, Nguyen-Manh et. al. [49] demonstrated that the Hall coefficient is
proportional to the derivative of the density of states at the Fermi level, given by:

RH =
−α

2eN2
s (EF )

dNs(E)

dE

∣∣∣∣
E=EF

, (1.10)

where α is a constant between 1-3 and Ns(E) is the density of the hybridized s-states.
Once again, s-d hybridization leads to negative values of dNs(E)/dE and, consequently,
a positive Hall coefficient.

Not all d-states participate in the hybridization, so care must be taken to account
for the un-hybridized d-states contribution to the Hall effect. Although the mobility of
d-electrons is smaller than that of s-electrons, this can be compensated by their higher
concentration. Calculations [3] have shown that while the contribution of d-electrons to
conductivity can be significant, their contribution to the Hall effect would be small and
negative.

Additionally, anomalous contributions to the Hall effect, such as skew-scattering and
the side-jump effect that involve spin-orbit interactions, have been proposed to contribute
to and account for the positive Hall coefficient in non-magnetic amorphous alloys [3,
39, 44, 50, 51]. Skew scattering can lead to a positive contribution to the Hall effect,
but estimates of its size imply that this contribution would be negligible [3, 51]. For
the side-jump mechanism, theoretical models have not definitively established whether it
contributes to the Hall effect in amorphous systems at all, or whether its contribution is
sizeable enough to shift the negative free electron value of the ordinary Hall coefficient to
a positive value [39, 51].

More recently, a comprehensive experimental and theoretical review of the anoma-
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lous Hall effect, including skew-scattering and side-jump contributions to the anoma-
lous Hall conductivity (resistivity), was presented by N. Nagaosa et. al. [52]. From the
experimental data, three regimes were identified: the high conductivity regime (σxx >
106Ω−1 cm−1), where skew-scattering with σxy ∝ σxx scaling dominates;d the good-metal
regime (104Ω−1 cm−1 < σxx < 106Ω−1 cm−1), where intrinsic Barry phase related anoma-
lous Hall effect and side-jump dominate, and σxy is roughly independent of σxx; and finally,
the bad-metal regime (σxx < 104Ω−1 cm−1), in which the anomalous Hall conductivity
scales as σxy ∝ σ1.6−2.0

xx .e The origin of this particular scaling has not been identified.
According to these findings, neither skew-scattering nor the side-jump effect should be

observed in amorphous alloys with resistivities >100 µΩcm (σxx<104Ω−1 cm−1), which
is the case for most TE–TL alloys. It is important to note that, as of now, there is no
clear evidence supporting the applicability of either the s-d hybridization or the spin-
jump mechanism to TE–TL alloys. Further research, experimental and theoretical, is
needed to better understand the underlying mechanisms that contribute to the positive
Hall coefficient in these materials.

1.4.2 Resistivity

The resistivity of amorphous metals is significantly higher than that of their crystalline
counterparts, ranging from 20-1000µΩcm [26], with only minor changes in resistivity
occurring within the temperature range of 2-300K. The highly disordered nature of
these materials makes this observation unsurprising. What is intriguing, however, is
that the temperature coefficient of resistivity (TCR) can be either positive or negative,
a characteristic rarely observed in crystalline metals. Furthermore, the values of the
TCR appears to be linearly (anti)correlated with resistivity, an empirical relationship first
reported by J. H. Mooij in 1973. [53], and subsequently known as the Mooij correlation.
Amorphous alloys with resistivities below 150 µΩcm typically exhibit a positive TCR,
while those with resistivities above this threshold display a negative TCR.

To describe the temperature dependence of resistivity of metallic glasses, nearly free
electron models have been developed, such as a generalization of the Faber-Ziman theory,
originally formulated to describe the resistivities of simple liquid metals and alloys, to
account for the inelastic electron-phonon scattering that becomes significant at tempera-

dσxx = jx/Ex is the conductivity (magnetoconductivity) of the material and σxy = jx/Ey describes
the appearance of an electric field perpendicular to the current, i.e. the Hall effect.

eAssuming ρxy ≪ ρxx, which is generally satisfied in metallic glasses, the anomalous contribution to
Hall resistivity scales as ρxy ∼ ρ0.0−0.4

xx
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tures below the Debye temperature ΘD [26]. These models have had some success when
applied to metallic glasses with resistivities low enough that the electron mean free path l
is significantly longer than both interatomic distances and the electron wavelength λ, i.e.
kFl ≫ 1, where kF = 2π/λ is the Fermi wavevector. These criteria tend to be satisfied only
for "simple" alloys without d- and f-states near the Fermi level. In the case of amorphous
transition metal alloys, resistivities are typically ≳ 150 µΩcm, and the electron mean
free path, in terms of the semiclassical theory, is comparable to its wavelength, kFl ≳ 1.
For these alloys, also called strong scattering alloys, the Faber-Ziman and other models
based on the Boltzmann transport theory cannot explain the temperature dependence of
resistivity [54], and quantum corrections to semiclassical theories need to be considered
[3, 55].

In the Boltzmann transport theory, electron propagation between scattering events is
treated as a classical free particle trajectory, meaning there is no interference between
electron wavefunctions at different points along their path, and the rare scattering events
are considered independently. However, when scattering events are not rare, interference
effects between electron wavefunctions scattered from different scattering centres along
their path must be taken into account. As a result, conduction electrons should be treated
as waves that propagate through the material and can interfere with themselves and each
other. These interference effects provide the first-order corrections to the semiclassical
theory and will be discussed in the following two subsections, before we turn to describing
the temperature dependence of resistivity in binary TE–TL alloys according to the present
consensus in the literature, in subsection 1.4.2.3.

1.4.2.1 Weak localization

As electrons move through a system, they experience a series of random scattering events,
resulting in a random, diffuse motion of electrons. These scattering events can be divided
into those that maintain and those that break phase coherence between the incident
and scattered electron wavefunctions. The first type involves elastic scattering on static
disorder, in which the electron preserves its energy and thus the time variation of the
wavefunction (exp(iεt/ℏ)). The mean time between elastic scatterings is denoted as τe.
The scattering processes that break phase coherence include inelastic electron-phonon
and electron-electron collisions, as well as spin-flip scattering by magnetic impurities.
The time between these processes, where phase coherence is maintained, is known as the
phase-breaking or dephasing time and is denoted by τφ.

Classical transport theory can be applied when τφ < τe, i.e. when there is no phase
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coherence between incident and scattered wavefunctions and they do not interfere. How-
ever, in a disordered system, where elastic scattering events are frequent and when the
temperature is low enough that inelastic scattering processes are rare, phase coherence is
maintained for a time τφ ≫ τe, and quantum interference between scattered wavefunctions
can occur.

Consider an electron that propagates diffusely from point R1 to point R2, as seen
in Figure 1.11. Classically, the probability PR1→R2 of reaching point R2 is given by the
sum of probabilities of all possible paths between R1 and R2. However, if all scattering
processes are elastic, i.e. phase coherence is maintained along paths between R1 and R2,
we have to consider interference and sum up the probability amplitudes Ai of all paths.
The probability is then given as the square modulus of this sum:

PR1→R2 =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

=
∑
i

|Ai|2 +
∑
i̸=j

AiA
∗
j , (1.11)

The first term represents the classical probabilities, and the second term accounts for
interferences, which are excluded in the classical treatment.

The phase change along a path is given by the line integral [56]:

∆φ =

R2∫
R1

k · dl . (1.12)

Since the lengths of the paths between R1 and R2 differ substantially, so will the final
phase differences between them. When summing over all possible path combinations
the interference term would generally average to zero, since there would be a random
phase difference between them. Even when considering quantum interference effects,
there appears to be no change in the classical conductivity.

There exists, however, a special class of electron trajectories that contain closed loops,
as illustrated in Figure 1.11, where interference effects appear. When two electron paths
traverse a closed loop in the opposite directions and all processes are elastic, the associated
partial electron wavefunctions accumulate the same phase change and therefore interfere
constructively.f Since, the two paths are in phase and possess the same probability am-
plitude A, the probability that an electron returns to its starting position O in a closed
loop after a series of elastic scattering events is: W = 2 |A|2 + 2AA∗ = 4 |A|2, which is

fThe two paths can be transformed into each other by simultaneously reversing k and dl in Equation
(1.12); k → −k and dl → −dl.
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Figure 1.11: Illustration of various diffusive paths between point R1 and point R2, including a
path with a closed loop. O marks the starting/ending point of the path around the closed loop.

twice as likely as in the classical treatment Wclassical = 2 |A|2. An enhanced probability of
an electron returning to the point it has left, i.e. enhanced backscattering, increases the
time the electron spends at this point, and therefore decreases the probability of finding
the electron at point R2, the point of observation. As a result, the material exhibits
a lower conductivity (higher resistivity) than theories neglecting this interference. This
phenomena is referred to as weak localisation (WL).

We can estimate the magnitude of this correction to the conductivity. Assuming that
electrons propagate ballistically for times shorter than the elastic mean free time τe, and
diffusively for longer times, the probability p(r, t) that the electron reaches a distance r
in time t > τe can be obtained by solving Fick’s second law for diffusion:

∂p(r, t)

∂t
= D∇2p(r, t) , (1.13)

where D is the diffusion coefficient. The normalized solution is:

p(r, t) = (4πDt)−3/2e−r2/4Dt . (1.14)

The electron can interfere with itself if it returns to the origin r = 0 in some time t.
The probability for a point-like object to return precisely to the origin is zero. However,
we can view an electron as a wave packet with a dimension of its wavelength λ. Therefore,
travelling ballistically with the Fermi velocity vF, an electron in some time dt sweeps a
volume λ2FvFdt. Then the probability for the electron to find itself within this volume
around the origin in time dt is given by:

p(r = 0, t)λ2vFdt =
λ2vF

(4πDt)3/2
dt . (1.15)
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To estimate the enhanced probability of backscattering, we integrate the return prob-
ability (1.15) over the time the electron wavefunction remains coherent. The diffusive
motion sets in after the elastic mean free time τe. For times shorter than the elastic mean
free time τe, the propagation is ballistic, and there is no chance of return. On the other
end, after a phase-breaking time τφ, the partial wavefunctions are no longer coherent and
cannot interfere. The relative change in conductivity (resistivity)g is proportional to this
return probability:

−∆ρ

ρ0
∝ ∆σ

σ0
∝ −

∫ τφ

τe

λ2vF

(4πDt)3/2
dt ∝ − 1

(kFl)2

[
1−

(
τe
τφ

)1/2
]
, (1.16)

where expressions for the diffusion coefficient D = v2Fl/3 and electron wavelength λ =

2π/kF were used, and l = vFτe is the mean free path between elastic scattering events,
which the electron traverses ballistically.

From Expression (1.16), we observe that, as expected, the interference effect vanishes
when the phase-breaking time τφ is reduced to equal the elastic scattering time τe. Fur-
thermore, the magnitude of the effect is determined by the factor (kFl)

2. If this factor is
large, signifying that the mean free path of the electrons is large compared to their Fermi
wavelength, the effect is vanishingly small, and vice versa. Since the elastic scattering
time τe is temperature-independent, the temperature dependence of the WL contribution
to conductivity will be due to the temperature dependence of the phase breaking time τφ.

In the preceding discussion, the electron’s spin was not considered. This is a valid ap-
proach provided that the electron’s spin state remains conserved during elastic scattering
events. However, this will no longer be the case, if elastic scattering of conduction elec-
trons involves spin-orbit coupling, as this interaction can induce a change to the electron’s
spin state.

The spin-orbit interaction during an elastic scattering event depends on the product
[8, 57]:

k× k′ · σ , (1.17)

where k and k′ are the wave vectors of the electron before and after scattering, respec-
tively, and σ denotes the Pauli spin matrix. Given that the partial waves traverse the
loop in opposite directions the induced changes in the spin state will be different. As
a result, the spin states of the partial waves may no longer coincide when they return

gAssuming ρxx ≫ ρxy it follows that ρxx ≈ 1/σxx; additionally if ∆ρxx ≪ ρxx it follows that
∆ρxx/ρxx ≈ −∆σxx/σxx. Subscript "xx" is omitted from the main text.
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to the starting position. Indeed, their spin states could assume opposite signs, leading
to destructive interference of the probability amplitudes. This destructive interference
reduces the probability of a return to the starting position below the classical term, and
thus enhancing the probability of forward scattering. Under conditions where the spin-
orbit interaction is strong enough, this destructive interference could lead to an increase in
conductivity (a reduction in resistivity) relative to semiclassical Boltzmann values. This
phenomena is known as weak antilocalization (WAL).

If the initial and final states of the electron are determined by wavefunctions φα and φβ

(α and β are spin indices), respectively, the interference term has the form C = A1A
∗
2 =

1/2(φ
(1)
α φ

(2)
β φ

(1)∗

β φ
(2)∗
α ) [41]. Making use of the eigenstate functions of the total spin for a

two-electron system:
ψ1,±1 = φ

(1)
± φ

(2)
± ,

ψ1,0 =
1√
2

(
φ
(1)
+ φ

(2)
− + φ

(1)
− φ

(2)
+

)
,

ψ0,0 =
1√
2

(
φ
(1)
+ φ

(2)
− − φ

(1)
− φ

(2)
+

)
,

(1.18)

this interference term can be reformulated as:

C =
1

2

(
|ψ1,+1|2 + |ψ1,0|2 + |ψ1,−1|2 − |ψ0,0|2

)
(1.19)

The wavefunction ψ0,0 corresponds to the singlet combination of the initial and final
spin configurations, with total spin j = 0. The tree wavefunctions ψ1,m correspond to
the triplet combination with total spin j = 1 and projections m = +1, 0,−1. In the
absence of spin-orbit coupling, all four components are numerically identical [8] and the
interference term C = |ψ0,0|2 is positive and equals the classical term, as obtained in the
weak localization discussion where the spin variable was disregarded.

Calculations, as outlined in [41, 58], demonstrate that the triplet configurations decay
due to spin-orbit scattering with a characteristic time τso, called the spin-orbit time, which
depends on both the strength of the spin-orbit coupling and the concentration of such
scattering centres. On the other hand, the singlet configuration remains unaffected by
spin-orbit scattering and decays in time τφ. In other words, the triplet state ψ1,m contains
the information on the electron’s spin state, which is gradually lost over time τso as a
consequence of random spin-orbit scattering events.

Accounting for the electron’s spin introduces a correction to the integral in Equation
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1.16, in the form of [41]:

−∆ρ

ρ0
∝ ∆σ

σ0
∝ −

∫ τφ

τe

λ2vF

(4πDt)3/2

(
3

2
e−t/τso − 1

2

)
dt . (1.20)

The first term within the parentheses, with the exponential factor, describes the decay of
the triplet form due to spin-orbit scattering, or in other words, the probability that the
phase coherence in the triplet state is preserved at some time t. The second, negative,
term stems from the singlet’s contribution to interference.

For τe ≪ τφ ≪ τso, we can approximate the exponential factor as exp(−t/τso) ≈
1 during the time interval of phase coherence, and the integral reverts to the form in
Equation 1.16 for WL, meaning there is effectively no spin-orbit scattering. However, for
τe ≪ τso ≪ τφ, the first term decays rapidly and the second term leads to an increase
in conductivity above the semiclassical Boltzmann value, i.e. to the aforementioned weak
antilocalization.

Phase breaking primarily occurs due to inelastic electron-electron and electron-phonon
scattering events. Hence, the phase-breaking time τφ can, in a first approximation, be
identified with the inelastic scattering time τφ ≃ τin. Assuming that both the inelastic and
spin-orbit scattering times considerably exceed the elastic scattering time, τin, τso ≫ τe. A
comprehensive analysis of the interference effects in three dimensions using the diagram-
matic technique [59] provides the temperature-dependent component of the conductivity
change due to WL, including the spin-orbit interaction (WAL), up to the leading order
in τin/τe and τso/τe, as:

∆σWL(T ) =
e2

2π2ℏD1/2

[
3

(
1

τso
+

1

4τin

)1/2

−
(

1

4τin

)1/2
]
. (1.21)

The diffusion coefficient, which depends on the elastic scattering time τe, and the spin-
orbit time τso, are temperature independent. On the other hand, the inelastic scattering
time is polynomially dependent on temperature τin ∝ T−p, where p is a positive constant.

In a low-temperature region where τso ≪ τin, the contribution from 1/τso dominates
the conductivity change, leading to an increase in total conductivity (WAL). In this
region as the temperature increases, the second term in the square brackets of Equation
(1.21) increases more rapidly than the first. This leads to a reduction in conductivity,
suppression of the WAL effect, i.e. a positive temperature coefficient of resistance. This
trend continues until a minimum conductivity in Equation (1.21) is reached at τin ≈ 2/τso.
Beyond this point, further increases in temperature (and in turn, the inelastic scattering
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time τin) result in an increase in conductivity, as the WL effect continues to be suppressed,
i.e. a negative TCR.

Additionally, scattering on magnetic impurities, not discussed so far, will result in a
flattening of the resistance curve at low temperatures [60]. A high rate of magnetic scat-
tering events, will result in a saturation like behaviour at low temperatures, irrespective
of the presence of spin-orbit coupling.

For higher temperatures, when τin ≪ τso, there is effectively no spin-orbit scattering,
and the Expression (1.21) simplifies to:

∆σWL(T ) ≃ e2

2π2ℏD1/2

(
1

τin

)1/2

. (1.22)

In this regime, the conductivity change due to WL scales with temperature as ∆σWL(T ) ∝
T p/2.

The semiclassical Boltzmann contribution to resistivity is temperature-independent
when the dominant contribution stems from elastic scattering events on static disorder,
i.e. residual resistance. Such conditions generally coincide with the observation of in-
terference effects (WL and WAL), where the elastic scattering rate 1/τe surpasses the
inelastic electron-phonon scattering rate 1/τin. Thus, barring other factors, the temper-
ature dependence of total resistivity (conductivity) will be governed by the temperature
dependence of WL and WAL, as characterized by Equation (1.21).

While residual resistivities are frequently observed at low temperatures even in the
so-called good metals, the magnitude of interference effects is inversely proportional to
the diffusion coefficient D (or the electron mean free path l). Given that good metals
possess large diffusion coefficients, the contribution from the interference effect will be
negligible.

Instead, these effects are usually discernible in materials with substantial amount of
disorder, whether structural or chemical, when the electron mean free path l is short, thus
leading to low diffusion coefficients D. For instance, such conditions are often found in
high-resistivity amorphous alloys, including TE–TL alloys.

1.4.2.2 Electron-electron interaction effects

A second source of quantum corrections to the Boltzmann transport theory, potentially
as significant as WL, stems from enhanced electron-electron interactions (EEI) due to
the diffusive motion of electrons. Unlike WL effects, which would manifest in a system
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of non-interacting electrons, the presence of EEI effects requires the Coulomb interaction
between electrons.

In good metals owing to the ballistic motion, distance between electrons increases
linearly with time, r ∝ vFt. However, under diffusive motion, the inter-electron distance
increases at a significantly slower rate r ∝ vF

√
tτe. This slower dispersal means that

electrons spend a longer period of time within a given spatial region, which in turn elevates
the likelihood of two electrons encountering each other twice within a brief time interval.
Consequently, this phenomenon gives rise to enhanced electron-electron interactions.

The relevant time scale for the enhanced interaction between two electrons, whose
energies differ by ∆ε, is the time ℏ/∆ε during which the states of the two electrons are
almost indistinguishable due to the Heisenberg uncertainty principle [61]. Given that
diffusion occurs for electrons within the energy bounds of ±kBT around the Fermi level
EF, the mean energy difference between two conduction electrons is ∆ε ≈ kBT . As a
consequence, the characteristic time frame wherein the enhanced interaction between two
electron occurs is [62]:

τT ≃ ℏ
2πkBT

, (1.23)

called the thermal coherence time, and is analogous to the phase-breaking time τφ in the
WL phenomena. With increasing temperature, τT decreases, subsequently reducing the
EEI effect.

While a straightforward physical interpretation of WL is available, to our knowledge,
no analogous, comprehensive, and straightforward interpretation exists for the EEI effect.
Nonetheless, some attempts [62] have been undertaken to partially elucidate the physical
origin of certain contributions (such as the Hartree component of the diffusion channel)
to conductivity that arise from EEI.

The temperature-dependent correction to conductivity from enhanced electron-electron
interactions in three dimensions, can be derived from comprehensive diagrammatic com-
putations [41], and is given as:

∆σEEI(T ) =
0.915e2

4π2ℏ

√
kBT

ℏD

[
4

3
− 3

2
F̃σ − 2g(T )

]
, (1.24)

where

F̃σ =
32

3F

[(
1 +

1

2
F

) 3
2

− 1− 3

4
F

]
, (1.24a)

is the renormalized value of the parameter 0 ≤ F ≤ 1, which is the average of the screened
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Coulomb interaction over the Fermi surface [63, 64]. Additionally,

1

g(T )
=

 − ln
(

T
Tc

)
for superconductors,

1
λ0

+ ln
(
2eγTF
πT

)
for normal metals,

(1.24b)

is the so-called renormalized coupling constant, where λ0 is the bare electron interac-
tion constant determined by both the virtual-phonon exchange and repulsive Coulomb
interaction [64–66], Tc is the superconducting transition temperature, TF is the Fermi
temperature, and γ ≈ 0.577 is the Euler’s constant.

The elements within the square bracket of Equation (1.24) are typically classified into
the Diffusion (particle-hole) channel, further separated into exchange (4/3) and Hartree
(−3F̃σ/2) contributions, and the particle-particle (Cooper) channel (−2g(T )). The ex-
pression for the Cooper channel is valid for ln(T/Tc) ≫ 1 or ln(TF/T ) ≫ 1.

For superconductors, the Cooper channel contribution will increase conductivity, while
for normal metals it reduces conductivity. For normal metals, however, the Fermi tem-
perature TF is typically in the order of ∼104K. Consequently, the magnitude of the
contribution becomes negligible at low temperatures (<30K), where EEI effects are typ-
ically observed in metallic glasses.

The exchange component of the Diffusion channel enhances conductivity, while the
Hartree component, conversely, reduces conductivity with increasing temperature. Gen-
erally, the exchange component outweighs the Hartree component (4/3 > 3F̃σ/2), leading
to an overall EEI correction that increases the conductivity as

√
T , thus offering an ad-

ditional mechanism for a negative temperature coefficient of resistance, besides WL.
Remarkably, the Expression (1.24) for the temperature dependence of the conductivity

correction due to enhanced EEI bears a striking similarity to the Expression (1.22) for
the temperature dependence of the WL correction. In fact, excluding the Cooper chan-
nel contribution, the ratio between the two mechanisms ∆σEEI(T )/∆σWL(T ) scales with
√
Tτin [41]. This implies that when Tτin ≫ ℏ/kB ≈ 7.6× 10−12 Ks, the contribution from

the EEI has decreased more than the WL contribution, compared to the zero-temperature
limit (τin = ∞).h In other words, when the criteria is fulfilled — which typically arises
at low temperatures if τ−1

in increases faster than T — the temperature dependence of
conductivity will be dominated by the temperature decrease of the EEI contribution.

For a comprehensive review of quantum corrections to Boltzmann transport theory, the
hThe zero-temperature limit differs from the bare Boltzmann conductivity, due to a reduction of

conductivity due to EEI and WL quantum corrections.
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following articles are recommended. B. L. Altshuler and A. G. Aronov [41] offer a detailed
diagrammatic analysis of enhanced electron-electron interaction effects, as does the review
by H. Fukuyama [67], both of which also delve into the topic of weak localization. P. A.
Lee and T. V. Ramakrishnan [63] explore enhanced electron-electron interaction effects
from the perspective of scaling theory. B. Kramer and A. MacKinnon [68] provide an
overview of the weak localization effect. Meanwhile, S. Chakravarty and A. Schmid [58]
present a wave-based theory of weak localization based on semiclassical principles.

1.4.2.3 Temperature dependence of resistivity

In strong scattering, i.e. high-resistivity alloys (≳ 150 µΩcm), the elastic scattering rate
is higher than the inelastic electron-phonon scattering rate, τe ≪ τin. As already men-
tioned, under these circumstances, the Boltzmann component of conductivity exhibits a
weak temperature dependence, effectively behaving as a large residual resistance. The
temperature variation of conductivity is then principally driven by quantum corrections
to the conductivity (WL, WAL, EEI), which are significant in disordered systems with
small diffusion coefficients (i.e., short electron mean free paths).

In high-resistivity amorphous alloys, where primarily quantum corrections dictate the
temperature dependence of resistivity, two temperature regimes can be delineated [3].
In the high-temperature regime (≳ 30K), the temperature dependence of resistivity is
predominantly due to the suppression of the WL contribution as temperature increases.
Conversely, in the low-temperature regime (≲ 30K), the EEI contribution becomes in-
creasingly significant as the temperature decreases, dictating the temperature variation
of resistivity .

The temperature dependence of WL originates from the temperature dependence of
the dephasing time τφ, which can be identified with the inelastic electron-phonon scat-
tering time τin as discussed earlier. In the presence of strong impurity scattering, the
low-temperature (T < ΘD) inelastic electron-phonon scattering rate scales as 1/τin ∝ T 2,
in contrast to 1/τin ∝ T 3 scaling observed in good transition metals (see [69, 70] and
references therein). While the inelastic electron-electron scattering rate also scales as
1/τin ∝ T 2 at low temperatures, its contribution remains negligible compared to electron-
phonon scattering [3, 69]. Above the Debye temperature (T > ΘD), the scattering rate
adopts the classical 1/τin ∝ T dependence, though this scaling is known to extend some-
what below the Debye temperature.

The aforementioned temperature-dependent behaviour of the inelastic scattering time
leads to the following temperature profile of weak localization in high-resistivity amor-
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Figure 1.12: Change of conductivity ∆σ as a function of
√
T (a) and T (b) for a set of Zr1−xTLx

alloys, marked as follows: a – Zr0.33Ni0.67, b – Zr0.50Cu0.50, c – Zr0.76Fe0.24, d – Zr0.81Co0.19.
The insets shows the variations of the respective fit slope values with TL concentrations x.
Reproduced from [70].

phous metals:

∆σWL(T ) ∝

 T for T ≪ ΘD ,
√
T for T ≳ ΘD .

(1.25)

Empirically, the transition between these two temperature regimes roughly occurs at ΘD/3

[69–71]. Figure 1.12 provides an example of this temperature dependence of conductivity,
for a set of Zr–TL alloys.

At lower temperatures, the resistivity (conductivity) curve begins to display signs
of saturation, attributable to spin-orbit coupling, and potentially due to scattering on
magnetic impurities. However, as the temperature is further reduced, below approxi-
mately 15K, an increase in resistivity is observed. This increase has been ascribed to
the EEI contribution to conductivity, and exhibits the characteristic

√
T dependence. In

superconducting systems, however, this low-temperature behaviour may not be easily dis-
cernible if the superconducting transition temperature Tc is sufficiently high. This is due
to superconducting fluctuations, which lead to a decrease in resistivity even above Tc.

This combination of temperature-dependent contributions of the WL and EEI effects
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was used to interpret the temperature dependence of resistivity of amorphous TE-TL [3,
45, 55, 69–74], as well as other high-resistivity amorphous metals (for instance, La1−xAlx
[75]) over a wide temperature range.

It is pertinent to acknowledge the alternative proposals that have been made to de-
scribe the temperature dependence of resistivity in the high- and low-temperature regimes
of these amorphous alloys. For instance, U. Mizutani and colleagues proposed an empirical
function:

ρ(T ) = A+B exp

(
−T

∆

)
. (1.26)

to describe the temperature dependence of resistivity in the 30-300K range for high-
resistivity non-magnetic metallic glasses with d-electron or f-electrons at the Fermi level.
At lower temperatures, the resistivity deviates from the exponential function.

They successfully fitted this equation to a diverse range of TE–TL and other amor-
phous alloys (for instance, Y1−xAlx and La1−xMx where M≡Al, Si, Ag, Au) [76–80]. They
tentatively attributed this temperature dependence to a phonon-assisted delocalisation
process [80].

In the low-temperature regime, distinguishing between ρ(T ) ∝
√
T and ρ(T ) ∝

ln(T ) temperature dependencies has proven to be a challenge [3, 45, 71, 80]. This low-
temperature increase was initially attributed to the Kondo effect due to magnetic im-
purities, ρ(T ) ∝ ln(T ). However, this was subsequently discounted, as the increase was
observed to persist in samples with no trace of magnetic impurities and in the presence
of high magnetic fields which should destroy the Kondo effect [3].

An alternative proposal for the observed increase involved electron scattering on
fast relaxing two-level systems (TLS) [3, 81, 82]. Since amorphous materials are in a
metastable state, certain atoms or groups of atoms can tunnel between states of roughly
equivalent energy. Scattering from these centres was proposed to lead to a resistivity
increase at low temperatures, akin to the Kondo effects, given by ρ(T ) ∝ ln(A+T 2). Fur-
thermore, scattering from TLS could result in an inelastic scattering rate proportional to
T , thus producing a

√
T temperature dependence of the WL contribution to conductivity,

which is also predicted from the EEI effect.
While it has been argued that both the direct contribution to resistivity and the

variation in the inelastic scattering time would result in negligible resistivity corrections
(refer to [3] and the references therein), the significance of the TLS effect remains an open
issue [83, 84].
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1.4.2.4 Magnetoresistance from quantum corrections

To start the discussion on magnetoresistance (MR), a qualitative overview of the influence
of a magnetic field on quantum interference effects (WL and WAL) is provided. This is
followed by a detailed accounting of the quantitative theoretical expressions describing
the magnetic field dependence of WL (inclusive of WAL) and EEI corrections to conduc-
tivity. In the next subsections 1.4.2.5, an overview of MR in amorphous TE–TL alloys is
presented.

As a wavefunction propagates in a magnetic field, it accumulates an additional phase
change, thus necessitating a modification of the line integral in Equation (1.12) where k is
replaced by (k−eA/ℏ), where A is the vector potential of the magnetic field, A = ∇×B.
The additional phase change arising from a magnetic field for paths around a closed loop
is: ∮

e

ℏ
Adl =

∫
e

ℏ
BdS =

e

ℏ
ϕ , (1.27)

where ϕ denotes the magnetic flux threading the loop. The ensuing phase difference
between two counter-propagating waves is therefore 2eϕ/ℏ.

As the magnetic field strength increases, this phase difference also increases, thereby
diminishing constructive interference and the probability for a particle to return to its
initial position, which in turn reduces resistivity.

Further increase of the magnetic field will bring the waves back into phase, thereby
enhancing constructive interference and resistivity, leading to a periodic fluctuation in
MR as the flux increases with a period of ℏ/2e. This phenomenon is known as the
Aharonov-Bohm effect [8].

In a disordered system, the interference effect underlying WL is formed from closed
loops of varying sizes and orientations relative to the magnetic field, thereby yielding
differing values for the magnetic flux and dephasing. Eventually, random values of the
phase difference for different closed loop paths lead to a complete destruction of the
constructive interference that contributes to enhanced backscattering. An increase in
magnetic field suppresses the resistivity increase due to WL, resulting in a characteristic
negative MR (positive magnetoconductivity). The characteristic time in which dephasing
due to the magnetic field occurs is given by [41]:

τB =
ℏ

4eBD
. (1.28)

For long magnetic times tB ≫ τin, i.e. weak magnetic fields, all paths experience a small
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phase change, leading to a unified dephasing of all paths and an accompanying reduction in
resistivity. For small values of the phase difference ∆φ, the probability of returning to the
starting position O in a closed loop path is W (B) = 2|A|2(1+cos∆φ) ≈ 2|A|2(2−∆φ2/2).
Given that ∆φ ∝ B, for weak magnetic fields the resistivity decrease will be proportional
to ∆ρ ∝ B2.

At higher magnetic fields, the reduction in resistivity is more gradual as paths with
waves moving out of phase are partially offset by those moving back into phase. For τB <

τin, the temperature dependence can be obtained by substituting the upper integration
limit in Equation (1.16) from τin to τB. This leads to a resistivity decrease in a magnetic
field as ∆ρ ∝

√
1/τB ∝

√
B.

The presence of a magnetic field similarly destroys the interference terms leading to
weak anti-localization, enhanced forward-scattering, resulting in a positive MR. Similarly
to WL, the resistivity increases as ∆ρ ∝ B2 for weak magnetic fields, transitioning to
∆ρ ∝

√
B for high magnetic fields.

The expression for the change in conductivity with magnetic fields due to WL and
WAL in case of strong or weak spin orbit scattering is given as [85, 86]:

∆σWL(B) =
e2

2π2ℏ

√
eB

ℏ

[
3

2
f3

(
4eDBτ ∗so

ℏ

)
− 1

2
f3

(
4eDBτin

ℏ

)]
, (1.29)

where:
1

τ ∗so
=

1

τin
+

4

τso
, (1.29a)

and

f3(x) =
∞∑
n=0

{
2

(
n+ 1 +

1

x

) 1
2

− 2

(
n+

1

x

) 1
2

−
(
n+ 0.5 +

1

x

)− 1
2

}
, (1.29b)

with limiting values [87]:

f3(x) =

 x3/2/48 for x≪ 1 ,

0.6049 for x≫ 1 .
(1.29c)

As discussed qualitatively, the Equation (1.29) has limiting forms of ∝ B2 and ∝
√
B,

for small and high magnetic fields, respectively. The sign of the change will depend on the
strength of spin-orbit scattering. Specifically, four different magnetic field regimes can be
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identified. Without spin-orbit scattering, for small fields Expression (1.29) reduces to:

∆σWL(B) ≈ +
e2

192π2ℏ
(4Dτin)

3/2

(
eB

ℏ

)2

, (1.30a)

and only a positive magnetoconductivity (negative MR) is observed. However, in the
presence of spin-orbit scattering there is necessarily a small-field regime τB > τso in which
magnetoconductivity is negative (a positive MR) with the form:

∆σWL(B) ≈ − e2

96π2ℏ
(4Dτin)

3/2

(
eB

ℏ

)2

. (1.30b)

For high magnetic fields τin ≫ τB, if τB > τso still holds, the magnetoconductivity will
remain positive and is defined as:

∆σWL(B) ≈ −0.6049
e2

4π2ℏ

√
eB

ℏ
. (1.30c)

For even higher magnetic fields τB < τso, spin-orbit scattering is ineffective in the time
before dephasing due to the magnetic field occurs and a positive magnetoconductivity
(negative MR) appears:

∆σWL(B) ≈ +0.6049
e2

2π2ℏ

√
eB

ℏ
. (1.30d)

The same expressions is obtained in the high-field regime if no spin-orbit scattering is
present. Interestingly, the high field regimes are independent of τin, and therefore tem-
perature, while the low field regime can be used to determine the value of τin.

What magnetic field regimes will be observed in a material will depend on the relative
size of the spin-orbit time τso and inelastic scattering time τin. Accordingly, the shape of
the MR curve can be classified into three categories, as illustrated in Figure 1.13. For
weak spin-orbit scattering τin ≪ τso a negative MR is observed. Although, a small positive
magnetoresistance may still be observed at low enough magnetic fields for a finite value
of spin-orbit scattering. For very strong spin-orbit scattering τin ≫ τso, the magnetic field
required to suppress spin-orbit scattering is larger than the applied magnetic fields and
only a positive MR is observed up. For moderate values of spin-orbit coupling τin ≃ τso,
a transition from a positive to negative MR will be observed at approximately τB ≃ τso.

An additional contribution to MR of WL and WAL originates from Zeeman spin
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Figure 1.13: A schematic diagram of the WL and WAL magnetoconductivity for (a) weak
τin ≪ τso, (b) moderate τin ∼ τso and (c) strong τin ≫ τso spin-orbit scattering. After [88].

splitting. A full expression including the spin splitting contribution is given as [59]:

∆σWL(B) =
e2

2π2ℏ

{√
eB

ℏ

[
f3

(
h

1 + t

)
+

0.5√
1− γ

[
f3

(
h

t+

)
− f3

(
h

t−

)]]
− 1√

Dτso

[√
t+ −

√
t−√

1− γ
−
√
t+ 1 +

√
t

]}
,

(1.31)

where
t =

τso
4τin

,

t± = t+ 0.5(1±
√

1− γ) ,

h =
eDBτso

ℏ
,

γ =

(
g∗µBBτso

2ℏ

)2

,

(1.31a)

g∗ is the effective g-factor and µB is the Bohr magneton. Without spin splitting, i.e. γ = 0,
this expression is reduced back to Equation (1.29).

Both models in Expressions (1.29) and (1.31) produce identical values in the limits
of τso → 0 and τso → ∞. Between those limits the values can differ appreciably. For
high values of the diffusion coefficient D > 1 cm2 s−1 the difference is negligible [64, 89].
However, this is generally not the case for metallic glasses where the diffusion coefficient is
often lower than 1 cm2 s−1 and the full expression including Zeeman spin splitting should
be used [89].

The exchange contribution to the Diffusion channel in the enhanced EEI correction
to conductivity is insensitive to the magnetic field and the EEI contribution to MR will
originate from the Hartee term and the Cooper channel.
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In the Cooper channel the MR due to orbital breaking is given as [86]:

∆σEEI,C(B) = −α e2

2π2ℏ

√
eB

ℏ
g(T,B) ϕ3

(
2DeB

πkBT

)
(1.32)

where:

ϕ3(x) =

√
π

2x

∫ ∞

0

t1/2

sinh2 t

(
1− xt

sinh(xt)

)
dt (1.32a)

with limiting values [87]:

ϕ3(x) =

 0.32925 x3/2 for x≪ 1 ,

1.900344 for x≫ 1 ,
(1.32b)

The coefficient α was defined as having a value of 1 for weak and 1/4 for strong spin orbit
coupling. However, newer calculations arrived at α = 1/π irrespective of the strength of
spin-orbit coupling [41, 64]. Since g(T,B) is generally negative above the superconduct-
ing transition temperature, the Cooper channel will produce a positive contribution to
magnetoconductivity, i.e. negative MR.

Two other expressions for the magnetic dependence of conductivity for the enhance
EEI in the Copper channel exist in literature, one that includes the Zeeman spin splitting
and magnetic spin scattering [41] and the other that includes dephasing due to inelastic
scattering [90]. These two expressions reproduce values of Equation (1.32) in the limit
of large diffusivity and long dephasing time, respectively. Values of all three expression
agree well in the limit of small magnetic fields (with α = 1/π). However, they differ
substantially for high magnetic fields with input values typical of metallic glasses. That
said, since the coupling constant g(T,B), which is found in all three expressions, has not
been satisfactorily generalized to include the effects of the magnetic field, it is unclear
if either expression is appropriate [64]. The treatment of the Cooper channel is often
restricted to small fields, where g(T,B) ≈ g(T ) values given by Equation (1.24b) can be
used and the relatively simple Expression (1.32) can be applied.

In the diffusion channel, orbital dephasing does not lead to a change in resistance,
and the magnetic field dependence is due to spin splitting, which results in a positive MR
contribution, is given as [41, 91]:

∆σEEI,D(B) = − e2

4π2ℏ
F̃σ

√
kBT

2ℏD
g3

(
gµBB

kBT

)
, (1.33)
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where F̃σ is given by Equation 1.24a and:

g3(x) =

∫ ∞

0

dΩ
{

d2

dΩ2

[
Ω

eω − 1

]}(√
Ω + x+

√
|Ω− x| − 2

√
Ω
)
, (1.33a)

with limiting values [87]:

g3(x) =

 0.056464 x2 for x≪ 1 ,

x1/2 for x≫ 1 .
(1.33b)

Just as with MR due to WL, Equations (1.33) and (1.32) exhibit the same asymptotic
behaviour, notwithstanding the temperature and field dependence of g(T,B). Specifically,
they are proportional to B2 at low fields, and proportional to a

√
B and temperature

independent at high magnetic fields. That said, the contributions to the total MR and
the characteristic fields that mark the transition between the two regimes are different
than in MR due to WL and WAL. Consequently, in a regime where both EEI and WL
effects contribute to MR, the resulting dependence on the magnetic field will exhibit
complex behaviour.

In superconducting materials, quenching of superconducting fluctuations by the mag-
netic field provides another vital contribution to magnetoresistance (MR). These are
divided into the Aslamasov-Larkin and Maki-Thomson contributions, associated with
superconducting fluctuations and scattering of normal electrons by these fluctuations,
respectively [41, 64].

The Aslamasov-Larkin contribution decreases rapidly beyond the superconducting
transition temperature Tc, proving significant only in the immediate vicinity of the super-
conducting transition. Conversely, the Maki-Thomson contribution declines more slowly
with temperature, and is relevant even far from the superconducting transition. While the
Maki-Thomson contribution to the temperature dependence of resistivity in three dimen-
sions is typically negligible compared to the Cooper channel contribution, it constitutes
a significant component of the MR in superconducting materials.

The Maki-Thomson contribution to magnetoconductivity is given as follows [41]:

∆σMT(B) = − e2

2π2ℏ

√
eB

ℏ
β(T,B) f3

(
4eDBτin

ℏ

)
. (1.34)

It has a form similar to magnetoconductivity due to WL and they are often merged
into a single expression for superconducting alloys, by substituting 1/2 → 1/2 + β(T,B)
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next to the singlet term in Equation (1.29). Given that β(T,B) > 0 is always positive,
the Maki-Thomson contribution reduces magnetoconductivity (increases MR) in absolute
terms.

The values of β(T,B = 0) were tabulated by Larkin A. I. [65] as a function of renor-
malized coupling constant g(T ) for values not to close to the transition temperature Tc.
The precise magnetic field dependence of β(T,B) remains unknown [41, 64]. However, an
approximate form of field dependence is often employed. Rather than calculating g(T )

with Equation (1.24b), g(T,B) is calculated using the following formula [92]:

1

g(T,B)
= − ln

(
T

Tc

)
+Ψ

(
1

2

)
−Ψ

(
1

2
+
DeB

2πkT

)
, (1.35)

where Ψ(x) is the Digamma function. Then, Larkin’s tabulation of β(g(T )) is employed
to determine an approximate field-dependent β(T,B) from g(T,B). Although, such cal-
culated vales of β(T,B) have the wrong asymptotic form. Instead of converging to the
magnetoconductivity value in the absence of the Maki-Thomson contribution, they result
in a vanishing magnetoconductivity at high fields [64, 93].

1.4.2.5 Magnetoresistance in TE–TL alloys

In the low-temperature regime (≲ 50K), non-magnetic TE–TL alloys exhibit magnetore-
sistance approximately 104 times greater than the normal metallic MR (which, according
to the Kholer’s rule, should be of the order of ∆ρ/ρ ∼ 10−8 at 1T) [8, 55]. The prominent
contribution to the MR is found to originate from magnetic field dependence of WL and
WAL [88, 94], even though the temperature dependence of resistivity below about 15K

is attributed to temperature-dependent contributions from EEI.
Contributions to MR from EEI effects are minor, becoming significant only at low

temperatures and high magnetic fields, specifically, under conditions of high B/T ratios
— at temperatures exceeding 1K for fields higher than approximately 10T, but only a
few tesla for temperatures below 1K [55, 88]. Additionally, in superconducting alloys,
MR is anticipated to increase significantly as the superconducting transition temperature
Tc is approached, due to the suppression of superconducting fluctuations by the magnetic
field.

J. B. Bieri et. al. [88] conducted MR measurements on a series of different strong
scattering amorphous alloys. The alloys demonstrated varying MR profiles, depending
on the relative strength of spin-orbit scattering. Alloys composed of "light" metals and
thereby exhibiting weak spin-orbit scattering, such as Mg0.20Cu0.80, displayed negative
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Figure 1.14: Magnetoresistance as a functions of
√
µ0H at a set of temperatures for amorphous

Zr0.43Cu0.57. Solid lines depict fits to WL magnetoresistance given in Equation (1.29) with
the contribution for Maki-Thomson superconductive fluctuations given with Equation (1.34).
Magnetic field independent values of β(T ) were used. Inset: magnetoresistance measured in a
very high pulsed magnetic field, up to 30T. Reproduced from [97].

MR in line with WL, as illustrated in Figure 1.13(a). Notably, in accordance with theory,
the slopes of the linear variation in

√
µ0H were temperature-independent, and a minor

positive MR was observed at the lowest temperature (1.2K) in weak magnetic fields.
On the other hand, alloys with "heavy" elements indicative of strong spin-orbit cou-

pling, such as Cu0.50Lu0.50 and Pd0.80Si0.20), exhibited solely positive MR up to 6T, as
illustrated in Figure 1.13(c). Meanwhile, a transition from positive to negative MR in high
magnetic fields was observed in alloys displaying moderate spin-orbit scattering, such as
Cu0.50Y0.50 and Zr0.43Cu0.57), as illustrated in Figure 1.13(b).

Comparable behaviour has been reported in other amorphous strong scattering alloys (
such as Ti–Cu, Zr–Cu, Y–Al, Cu–Mg, Ca–Al; see [3] and references therein). Additionally,
when small amounts of "heavy" elements, such as Au and Ag, were introduced to the
parent Ca-Al alloys, a transition from negative to positive MR was observed, attributable
to the substantial spin-orbit coupling associated with Au and Ag atoms [95, 96].

The magnetoresistance (MR) behaviour of the amorphous alloy Zr0.43Cu0.57 will serve
as an illustrative example, and is shown in Figure 1.14. A characteristic positive MR,
transitioning to a negative slope at high fields and low temperatures, is observed. The inset

41



1.4. Transport properties Chapter 1. Amorphous Metals

of Figure 1.14 shows a broad peak around 9T during a pulsed magnetic field measurement
at 4.2K. Eventually, at around 30T, MR values transition into the negative range. The
observed change in slope in the

√
µ0H dependence, contrary to expectations for WL MR,

arises from the influence of Maki-Thomson superconducting fluctuations. The observed
discrepancies between the fitting curves and the empirical data are attributed to several
factors. These include the omission of electron-electron interaction (EEI) effects, the
utilization of a field-independent β(T ) [94], and the neglect of the Zeeman spin splitting
contribution to weak antilocalization (WAL), which necessitates the use of Equation (1.21)
instead of Equation (1.29) [89].

A similar MR behaviour was observed in Cu1−xTix alloys [94]. A peak in MR around
4T was discerned in Ti0.65Cu0.35, with negative MR values observable above 20T. In
contrast, Ti0.50Cu0.50 exhibited a broad peak only at around 30T. Better fit to the data,
compared to Zr0.43Cu0.57, was achieved with the use of the orbital component of WL
MR combined with the Maki-Thomson contribution using a magnetic field dependent
β(T, µ0H) factor and the diffusion component of the EEI MR given with Equation (1.33).

Various researchers have used the low magnetic field MR data to determine the values
and temperature dependence of the inelastic scattering time τin (see [3] and references
therein). For instance, from linear fits to (µ0H)2, J. B. Bieri et. al. [88, 97] found that
τ−1
in ∝ T 2 for temperatures above 5-10K across a range of different amorphous alloys.

Meanwhile, A. Schulte and G. Fritsch [98] found a relationship of τ−1
in ∝ T p with p = 2−3

for a range of Ti1−xCux alloys between 6-20K. M. A. Howson et. al. [94] used fits across the
whole magnetic field range to the equations of WL and WWI, concluding that τ−1

in ∝ T 2

above 20K deviates to τ−1
in ∝ T 4 between 4-10K.

P. Lindqvist and Ö. Rapp [89] noted that the scaling parameter of calculated τin at
low temperatures is highly sensitive to the choice of the diffusion coefficient. In a more
recent work, P. Lindqvist [99], with a thorough handling of the limiting values employed
in τin calculations, found τ−1

in ∝ T p with p = 1.15± 0.1 between 1.5-5K and p = 3.7± 0.5

between 20-50K for Ti0.35Cu0.65. These results for τin were interpreted as a combination
of saturating behaviour at low temperatures due to scattering from magnetic impurities
or zero-point motion, and contributions from electron-electron scattering (p = 3/2) and
electron-phonon scattering (p = 3 − 4). These observations have cast doubt on the
applicability of Expression (1.25) to describe the temperature dependence of resistivity
due to weak localization at low temperatures.
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1.4.3 Superconductivity

TE–TL amorphous alloys are considered extremely dirty type-II superconductors, due to
very short electron mean free paths le, with estimated values of the dirtiness parameter
ξ0/le ≈ 300 − 1300 and the Ginzburg-Landau parameter κ = 70 − 100 [100, 101], where
ξ0 is the BCS coherence length and λ the penetration depth.

The superconducting transition temperature Tc for TE–TL alloys are usually below
4K, and decrease with increasing TL content, as seen in Figure 1.15,. The rate of the
decrease depends on the TL element, and increases in order Ni, Cu, Co, Fe [66, 100, 102,
103].

Figure 1.15: Composition dependence x of the superconducting transition temperature Tc and the
molar specific-heat coefficient γm of Zr1−xCox (left panel) and Zr1−xNix (right panel) amorphous
alloys. Reproduced from [100].

The variation with TE content is less clear. The values for (3d) Ti–TL and (5d)
Hf–TL alloys are generally lower than those of (4d) Zr–TL [66, 102, 104]. Similarly,
measurements on (Zr1−xTix)0.78Ni0.22 showed a significant decrease of Tc with increasing Ti
content, while for (Zr1−xNbx)0.78Ni0.22 Tc values increased with small amounts of added Nb
content (5-15%) and then decreased for higher concentrations of Nb [100]. Additionally,
no superconductive transitions for metallic glasses in Ti1−xNix and Ti1−xCux alloys were
observed down to 1.4K and 1.0K respectively [102].

The temperature variation of the upper critical field µ0Hc2(T ) is usually well described
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in metallic glasses by the Werthamer–Helfand–Hohenberg (WHH) theory, also known as
the Werthamer–Helfand–Hohenberg-Maki (WHHM) theory [100, 105, 106], which includes
the effects of the Pauli spin paramagnetism and spin-orbit interactions. According to the
WHH theory, in the dirty limit, the critical field µ0Hc2(t) is obtained as the magnetic field
that satisfies [107]:

ln

(
1

t

)
=

(
1

2
+
iλso
4γ

)
Ψ

(
1

2
+
h̄+ 1

2
λso + iγ

2t

)
+

(
1

2
− iλso

4γ

)
Ψ

(
1

2
+
h̄+ 1

2
λso − iγ

2t

)
−Ψ

(
1

2

)
,

(1.36)

where Ψ(x) is the Digamma function,

t =
T

Tc
, (1.36a)

is the reduced temperature,

h̄ =
eHc2D

kBπTc

, (1.36b)

is the scaled upper critical field,

α =
ℏ

2meD
, (1.36c)

is the Maki parameter [108],

λso =
ℏ

3πkBTcτso
, (1.36d)

is the spin-orbit interaction parameter and

γ =
[(
αh̄

)2 − (
1
2
λso

)2]1/2
. (1.36e)

However, in order to obtain a proper fit the measured µ0Hc2(t) data to the WHH formula,
a wide enough temperature range needs to be measured, down to at least 0.2Tc [106].

The Maki parameter describes the relative importance of the orbital and spin para-
magnetic Cooper pair breaking mechanisms in the magnetic field, and can be defined as
[108]:

α =
√
2
Horb

c2 (0)

HP(0)
, (1.37)

where Horb
c2 (0) and HP(0) are the orbital- and Pauli-limiting fields respectively. In the

dirty limit, the orbital-limiting field can be estimated from the initial slope of the upper
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critical field (µ0dHc2/dT )T=Tc
as:

µ0Hc2(0) = −0.69Tc

(
µ0
dHc2

dT

)
T=Tc

. (1.38)

Whereas, the Pauli-limiting field for a weak-coupling BCS superconductor is:

µ0H
BCS
P (0) = 1.84Tc . (1.39)

From this considerations, in the absence of spin-orbit interaction (λso = 0) according
to the WHH formula the upper critical field can be estimated as:

µ0Hc2(0) =
Horb

c2 (0)√
1 + α2

. (1.40)

That said λso is not negligible in TE-TL alloys [100, 106]. Additionally, the electron-
phonon and spin-fluctuation corrections to the Pauli limiting field need to be considered.
However, as noted by N. Toyota et. al. [105], the Pauli limiting field should be renormalized
on account of electron-phonon coupling (λep), spin-fluctuations (λsf) and the Stoner factor
S, which are not insignificant in TE–TL metallic glasses [66, 102, 109].

45



Chapter 2

Concepts

This chapter will briefly review some concepts and phenomena relevant for the discussion
on temperature dependence of resistivity in chapter 4.

2.1 Anderson localization

It was first pointed out by P. W. Anderson [110] that the knowledge of the density of
states is not sufficient to describe the physical properties of disordered systems. The view
had previously been that scattering by random potential causes the Bloch waves to lose
phase coherence on the length scale of the mean free path, but that wavefunctions remain
extended throughout the system. Anderson pointed out that in the presence of strong
disorder electron wavefunctions can become localised. The wavefunction is confined to a
small region of space, falling of exponentially with distance from a starting point in space

ψ(r) ∝ e−|r−r0|/ξ (2.1)

where ξ is the localization length. Furthermore, if states at the Fermi level EF are localised
no current can pass thorough the system at absolute zero, i.e. the system will exhibit
insulation behaviour, even though the density of states at the Fermi level N(EF) is finite.
Opening of a band gap at the Fermi level is not a prerequisite for insulating behaviour.
The localisation of wavefunctions due to the presence of disorder is called the Anderson
localization and the associated insulators the Anderson insulators, which is distinguished
from band insulators by a finite density of states at the Fermi level.

We can examine the problem of localization and charge transport in disordered sys-
tem with a tight-binding model with a single electron state per site (atom). Neglecting
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electron-electron interactions and electron spin we can write the Hamiltonian as:

H =
∑
i

εic
†
ici −

∑
i̸=j

tijc
†
icj , (2.2)

where εi is the energy of the electron at the site i, c†i and ci are the creation and annihi-
lation operator of the electron state at the site i, and tij is the hopping integral between
sites i and j. In an ordered system, where εi are identical for all sites, and we only
consider hopping between nearest neighbours ti(i+1) = t the tight-binding model would
produce extended Bloch states in a band of width D = 2zt, where z is te number of near-
est neighbours. In a disordered system the values of the site energies εi and the hopping
integrals tij between them would vary randomly. The former is called diagonal disorder,
the latter off-diagonal or structural disorder. For simplicity the Anderson model assumes
that off-diagonal disorder is negligible, and we only consider nearest neighbour hopping
with the same hopping integral ti(i+1) = t. Although, for a full description of an amor-
phous system with varying separation between nearest neighbours, off-diagonal disorder
should be considered. Nonetheless, this simplified model will provide a good qualitative
picture of the disorder induced localization. The effect of disorder is introduced in the
system through a random and uncorrelated distribution of site energies εi, i.e. energy of
a particular site is independent of the energies at other sites. The energy distribution is
assumed uniform over some interval W , that is, the probability distribution of the site
energies is:

P (ε) =

 1
W

|ε| ≤ W
2
,

0 |ε| > W
2
.

(2.3)

However, other distribution functions, such as Gaussian and Lorentzian can be used [56].
This is the so-called the Anderson model and can be visualized as a set of periodically
spaced potential wells of varying depth, see Figure 2.1.

The exact solutions to the Anderson model are only known in one dimension, where
states are localized for any small amount of disorder. Nonetheless, we can gain a quali-
tative understanding of the disordered system. We start by observing two limiting cases.
When there is no disorder W = 0 (all sites possess the same energy), the electron wave-
functions are Bloch waves extending over the whole system. On the other hand, when
there is no overlap t = 0, the states are localised to the sites and the electron wavefunc-
tions are the site wavefunctions.. What interests us, though, is what happens between
these extremes. Anderson found that for a sufficiently large W/t, all states are localised
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Figure 2.1: Illustration of the Anderson model. A set of periodically spaced potential wells of
varying depths. After [111].

and there exists a critical value of (W/t)c below which delocalised states appear in the
middle of the band.

For a given value of 0 < W/t < (W/t)c localised states can be found at the band
edges, see Figure 2.2. These localised states are separated from delocalised states by a
sharp boundary at some energy level EC (or E ′

C) called the mobility edge. If the Fermi
level of a material is found in the delocalised region of the band the material will exhibit
metallic behaviour and conduction will involve diffusion of conduction electrons through
the material. On the other hand, if the Fermi level is in the localised region the material
will exhibit insulating properties and the conduction will proceed either through hopping
between localised states or activation to the delocalised state above the mobility edge.
This type of transition from metal to insulator, either due to the change in disorder W/t
or the position of the Fermi level, is called the Anderson metal-insulator transition (MIT).

A better understanding of this model can be obtained by examining the simplest case
of two potential wells, which when isolated from each other, have electron energies ε1
and ε2 and corresponding wavefunctions ϕ1 and ϕ2. The electron wavefunctions of the
interacting system are then:

ψI =c1ϕ1 + c2ϕ2 ,

ψII =c2ϕ1 + c1ϕ2 .
(2.4)

The exact solutions of c1 and c2, and the energies of the two wavefunctions EI and EII are
rather complicated, but it will be sufficient to examine the two limiting cases [112, 113].

If the energy difference of the two wells is small compared to the hopping integral,
i.e. overlap of ϕ1 and ϕ2, |ε1 − ε2| ≪ t, then c1 ∼ c2 and EI − EII = 2t. In this case
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Figure 2.2: Illustration of the density of states of a band in the Anderson model, with delocalized
states in the centre of the band and localized states (marked with blue hatching) at the band
edges. Energies EC and E′

C demarcate the regions of delocalized and localised states at the
so-called mobility edge. After [112].

electron is equally shared between the two wells, i.e. the wells have an equal probability of
containing the electron. Here we can observe, that in case ε1 = ε2 the electron is shared
between the wells no matter how far apart they are, i.e. how small the hopping integral
is. As a consequence two states of the same energy in the band must simultaneously be
localized or delocalised; for if one is delocalized and the two are connected then the other
must be too. This is an argument for the existence of the sharp mobility edge separating
localised and delocalised states in the band [112].

If the energy difference of the two wells is large compared to the hopping integral,
|ε1 − ε2| ≫ t, then c2/c1 = t/|ε1 − ε2|. This ratio increases exponentially with increasing
separation of the wells. In this limit, the energy EI (EII) and wavefunction ψI (ψII)
of state I (II) are close to the isolated well energy ε1 (ε2) and wavefunction ϕ1 (ϕ2).
Therefore, each state corresponds to the electron being in one well or the other, there is
no collectivization of the electron.

From the example of two wells, we can construct an image of an infinite array of wells,
following the arguments of [113, 114]. If the energy of two sites is found within a energy
band −∆/2 < E < ∆/2, where energy E is well within the range of site energies εi and
the bandwidth is of the order of t, they are called resonant, and if they are outside this
band they are called nonresonant. The implication of this definition is that if two resonant
sites are nearest neighbours, they share an electron state.

Two resonant sites are also connected if they are linked by a chain of connected nearest
neighbour resonant sites. All such connected resonant sites form a cluster. The absolute
value of the electron wavefunction is roughly constant across all sites of the cluster and
negligible outside.
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In the following, we disregard all nonresonant sites. With this step, we also disregard
the coupling of two resonant sites separated by a nonresonant site, but the effective overlap
integral of these resonant sites will be t2/W , instead of t. If t/W is small (the limit of
large disorder), we can safely neglect coupling via nonresonant sites. Therefore, the extent
of the wavefunction is determined by the size of the resonant cluster.

In the Anderson model the site energies are uniformly distributed in an interval W .
Therefore, the fraction of resonant sites is of the order t/W . If t/W is small there are
only finite isolated clusters. When t/W is increased to some critical value and an infinite
cluster of resonant sites is formed, the electron wavefunction spreads infinitely over the
infinite cluster. In other words the material exhibits a change from insulating behaviour
of isolated cluster to metallic behaviour of the infinite cluster.

The value of (∆/W )c can be determined with percolation theory, and it corresponds
to the site problem percolation threshold for a given lattice. To estimate the critical value
of (W/t)c, a connection between the bandwidth ∆ and the hopping integral t needs to
be found. B. I. Shklovskii and A. L. Efros [113] propose that, since at the percolation
threshold the infinite cluster is formed from a practically one-dimensional chain, it is
natural to take the one-dimensional chain bandwidth as the resonant bandwidth ∆ ≈ 4t.
While this approach is crude, it gives good agreements between (W/t)c = 4/(∆/W )c and
(W/t)c from computer simulations.

2.2 Variable range hopping

In a system where all states near the Fermi level are localised at the absolute zero T = 0K,
all electrons will be trapped in the localised states and no conduction can occur. If the
temperature is high enough, electron in the localised states can be excited into empty
delocalised states above the mobility edge at EC, or in case the whole band is localised
to the nearest empty states in a delocalized band ED. At low temperatures, above the
absolute zero T = 0K, the energy required to jump to the mobility edge E ′

C − EF or
an empty delocalised band ED − EF might be higher than the available thermal energy
kBT . Nevertheless, even in this regime the electrons can move by thermally activated
tunnelling, hopping, between localised states, if there is a finite overlap between their
wavefunctions. This transfer is accompanied by an absorption or emission of a phonon to
account for the energy difference between the states.

The conductivity of the system is proportional to the probability of hopping between
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two localized states [113]:

σ ∝ exp

(
−2R

ξ
− ∆ε

kBT

)
, (2.5)

where R is the distance and ∆ε is the energy difference between two localized states. The
first component represents the probability of tunnelling between localised wavefunctions,
which decay exponentially with distance, see Expression (2.1), and therefore have small
finite overlaps. The second term corresponds to the probability of thermal activation, that
is, of finding a phonon with the necessary energy ∆ε to complete the hop between states
with different energies. The first term favours shorter distance hops, while the second
term prefers longer distances, as this increases the probability of finding states that are
closer in energy. Therefore, an electron might have a higher probability of hopping to a
spatially distant state if the energy difference between them is smaller. This mechanism
is referred to as variable range hopping (VRH).

Assuming constant density of states near the Fermi level N(EF ) The number of states
inside a d-dimensional sphere of radius R within an energy interval ∆E is

CRdN(EF)∆E , (2.6)

where C is a constant. Therefore the smallest energy difference between states an electron
sees inside a radius R is:a

∆ε =
1

CRdN(EF)
. (2.7)

By substituting Equation (2.7) into Equation (2.5), we find an expression:

σ ∝ exp

(
−2R

ξ
− 1

CRdN(EF)kBT

)
, (2.8)

in which the first component (∝R) increases, and the second component (∝1/Rd) de-
creases with increasing distance R. Consequently, there should be an optimal hopping
distance Roptimal, that minimizes this expression. To find Roptimal, we differentiate the
expression with respect to R, equate it to zero, and obtain:

Roptimal =

(
ξd

2CN(EF)kBT

) 1
d+1

. (2.9)

Assuming that hops with optimal hopping distance dominate the conductivity, the fol-
aThe smallest energy interval ∆E needed to find one state at a distance R
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lowing expression can be obtained:

1

ρ(T )
= σ(T ) = σ0 exp

[
−
(
T0d

T

) 1
d+1

]
. (2.10)

VRH characterized by this temperature dependence of conductivity (resistivity) is know
as Mott VRH, after N. F. Mott who first proposed this type of hopping [115]. The
temperature exponent depends on the dimension of the system d, with values of 1/4 for
three-, 1/3 for two-, and 1/2 for one-dimensional systems.

The treatment presented here is only qualitative. A proper determination of T0d

requires a more intricate derivation involving percolation methods [113].
According to Equation (2.9), the optimal hopping distance decreases with temperature

and at one point becomes comparable to the distance between nearest neighbours. When
this occurs the conductions is confined to hopping between nearest neighbours, and only
the second component of Equation (2.5) is temperature dependent. The conductivity
exhibits an activation like behaviour:

1

ρ(T )
= σ(T ) = σ0 exp

(
−A
T

)
, (2.11)

where A represents the average energy difference between nearest neighbours. This type
of hopping is called nearest neighbour hopping (NNH).

In deriving the Mott VRH hopping we assumed that the density of states is constant
around the Fermi level, however, A. L. Efros and B. I. Shklovskii showed that due to
Coulomb interaction the density of states vanishes at the Fermi level [116].

We start with a system in ground state, i.e. all the electron states above the Fermi
level EF are empty and all states below are full. It is convenient to first redefine the
energies with respect to the Fermi level:

ϵ = E − EF . (2.12)

The energy required to transfer an electron from an occupied state ϵi < 0 to an unoccupied
state ϵj > 0 that are separated by a distance rij is:

∆Ei→j = ϵj − ϵi −
e2

κrij
, (2.13)
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where κ is the relative permittivity.b The third term e2/κrij compensates for the self
interaction of the electron in state j with the now empty state i. This expression can be
better understood if the excitation process is performed in two steps. First we move the
electron from state i to infinity, and in the second step we bring it back to state j. The
work required for the first step is −(ϵi+EF). The work required for the second step would
be ϵj +EF if state i is still occupied, i.e. the system was in the ground state. However, in
the second step the donor i is empty and when calculating the work we must treat state
i as if it contains a positively charged hole. The attraction between the electron and the
hole diminishes the required work by e2/κrij

Since the starting system was in the ground state, the transfer energy ∆Ei→j must
be positive for any pair of occupied ϵi < 0 and unoccupied states ϵj > 0. Therefore, the
smaller (closer to the Fermi level) the energies ϵi and ϵj are, the larger the separation
between them has to be to satisfy ∆Ei→j > 0. In particular, the density of states must
be zero at the Fermi level N(EF) = 0, as in that case the separation would have to be
rij = ∞. This is referred to as the Coulomb gap. It represents a type of soft gap, where
the density of states iz zero at only one point, unlike a hard gap where the density of
states is zero for a range of energies (e.g., between the conductions and valence band of a
semiconductor).

To determine the shape of the gap, consider all pairs of states in a small energy range
(−ϵ/2,ϵ/2). From ϵj − ϵi < ϵ and ∆Ei→j > 0, it follows that:

rij >
e2

κε
. (2.14)

Therefore the concentration of statesc within the energy range (−ϵ/2,ϵ/2) in d-dimensions
is limited to:

n(ε) ∝ 1

rij(ε)d
<

(κε
e2

)d

, (2.15)

From this we obtain the upper limit on the density of states:

N(ε) =
∂n(ε)

∂ε
< d

( κ
e2

)d

|ε|d−1 . (2.16)

In other words, the density of states needs to fall off at least as fast as |ε|d−1 as ε approaches
the Fermi level.

Efros and Shklovskii argue [113, 116] that density of states also cannot fall off faster
bUsing Gaussian units for simplicity. 1/4πϵ0 = 1
cnumber of states per unit of d-dimensional volume
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than |ε|d−1 either. Density of states N(ε) ∝ |ε|d−1 implies that states within the energy
range (−ϵ/2,ϵ/2) are on average separated by e2/κε and the interaction between them is of
the order ε. If the density of states were to fall off faster, then the average distance would
be greater than e2/κε and the interaction energy weaker than ε. Such a weak interaction
could not result in lowering of the density of states and therefore they conclude:

N(ε) ∝ |ε|d−1 (2.17)

Returning to the problem of variable range hopping. For a d- dimensional system and
an N(E) ∝ |E −EF|n dependence of the density of states near the Fermi level, a general
expression for VRH conductivity (resistivity) can be obtained [113] in of the form:

1

ρ(T )
= σ(T ) = σ0 exp

[
−
(
T0

T

)p]
, (2.18)

where the exponent p is obtained from:

p =
n+ 1

n+ d+ 1
. (2.19)

Mott VRH is retrieved with n = 0, p = 1/(d + 1). On the other hand, the n = d − 1

dependence of the density of states due to the Coulomb gap results in an exponent of
p = 1/2, independent of the system dimension:

1

ρ(T )
= σ(T ) = σ0 exp

[
−
(
TES

T

) 1
2

]
. (2.20)

This type of VRH due to the Coulomb gap is called the Efros-Shklovskii VRH (ES VRH).

2.2.1 VRH in Granular Metals

A different type of VRH has been observed in granular metals, which cannot be described
by either Mott or ES VRH. Granular metals are composite materials of metals and insu-
lators. The most common forms are granular metal films and cermets.

Granular metal films are created by depositing metals onto an insulating substrate.
The materials are chosen so that the metal does not wet the substrate surface, leading
to the formation of metallic islands on the substrate surface, as seen in Figure 2.3(a).
A material consisting of metallic grains embedded in an insulating matrix, in this case
air or vacuum, is thus obtained. Additional metal deposition causes the metal regions to
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Figure 2.3: Scanning electron microscope images of indium evaporated onto SiO2 at room tem-
perature. The average film thickness is provided below each photograph. (a), (b) Growth and
coalescence of islands; (c) elongated structures; (d) percolation. Reproduced from [117]

expand, as shown in Figures 2.3(b) and 2.3(b), until a percolation threshold is reached,
and a single metallic region is formed. In other words, insulating regions are now separated
by a metallic matrix.

Cermets, on the other hand, are produced by the simultaneous deposition of a metal
and an insulator that do not dissolve into each other. Depending on the metal-to-insulator
ratio, similar structural features to those in the films are obtained.

When the concentration of metal x is low, the metallic granules are isolated, and the
system exhibits insulating properties. For high metal concentrations, above a critical
percolation concentration xc, the metal granules touch and form a continuum, thus ex-
hibiting metallic properties. An interesting early observation in the insulating regime was
the appearance of an ES-like VRH temperature behaviour of resistivity, described by the
Expression (2.20) [118], examples of which can be seen in Figure 2.4. This temperature
behaviour is quite pervasive, appearing for both metallic and semiconducting, irregular
and periodic granular arrays [119].

Values of TES have been observed in a wide range of values, from 185K for high
metal concentrations (x = 0.38) in Au-Al2O3 to 51 000K for low metal concentrations
in Ni-SiO2 (x = 0.08) and Pt-SiO2 (x = 0.04) cermets [118]. Furthermore, in W-Al2O3

55



2.2. Variable range hopping Chapter 2. Concepts

Figure 2.4: Resistivity of the (a) Ni-SiO2 and (b) W-Al2O3 cermets (granular metals) vs T−1/2.
On the (a) panel x indicates the volume fraction of Ni. On the (b) panel the open circles are for
the samples before annealing and open triangles for samples after annealing. The resistivities of
annealed samples were normalized to sample resistivities at 300K before annealing. Penal (a)
was reproduced from [118] and panel (b) from [120].

cermet, it was observed that TES does not change when the samples are annealed at high
temperatures, while the pre-exponential factor of resistivity ρVRH increases by several
orders of magnitude, as shown in Figure 2.4(b). W does not precipitate with annealing
and remains uniformly dispersed within the insulator, i.e. the metal concentration remains
unchanged, but the size of the metal grains increases. This indicates that TES is insensitive
to the distribution of the metal grains in these systems and is solely a function of the
metal’s volume fraction [120].

When discussing isolated metallic granules in the insulating regime, two additional
parameters need to be considered. The first is the discreet electron energy levels due to
electron confinement within a single grain. The mean level spacing in a grain is :

δ =
1

N(EF)V
, (2.21)

where V is the volume of the grain. For granules of several nanometers, the spacing δ

is typically of the order of several kelvins. For example, for an aluminium particle with
radius of 5 nm the spacing is ≈1K [119]. From here on, we will focus on the temperature
range where quantum size effects are not significant.
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The second parameter is the Coulomb charging energy required to add or remove an
electron from a neutral grain:

Ech =
e2

2κa
, (2.22)

where a is the granule radius.d This energy represents the amount required to charge
a granule in isolation, without considering the interactions among other granules, i.e. it
does not account for the inter-granule interactions.

Electrical conduction in the insulating regime arises from the transport of electrons
and holes between isolated metallic grains. In the ground state, all the metal grains are
neutral. To create charge carriers, an electron must be transferred between two neutral
grains, generating a pair of positively and negatively charged grains, or in other words, an
electron-hole pair. Since the transfer of an electron between two neutral grains requires
considerable energy 2Ech, a hard gap is present in the excitation spectrum. This can be
considered analogous to a Mott gap in a Mott insulator, where Ech plays the role of the
repulsive Coulomb potential U [118, 119]. In the limit of weak electric fields,e the charge
carriers are thermally activated, and the number of electron-hole pairs follows the Boltz-
mann distribution. Consequently, conductivity will exhibit an activation dependence:

σ(T ) = σ0 exp

(
− Ech

2kBT

)
. (2.23)

However, as previously mentioned, the activation behaviour is typically not observed in
granular metals; instead, ES-like VRH is observed.

The initial explanation for this discrepancy was provided by B. Abeles et. al. [118].
Here, only a simplified derivation will be presented, keeping the key arguments. The
charging energy is defined as:

Ech =
e2

2κa
F
(s
a

)
, (2.24)

where s is the separation between grains, and F (s/a) is a function that depends on the
shape and arrangement of grains. The primary assumption is that the ratio between the
grain radius a and the separation between grains s, i.e. the insulating layer thickness,
remains constant in a sample. Given a uniform composition throughout a sample up to a
small subregion, larger grains must be separated further than smaller grains in order to
maintain the uniform sample composition. As a result s/a = const., and depends solely

dThe granules are assumed to be isolated spherical capacitors C = κa and the energy to charge
capacitors is Ech = 1/2 ·Q2/C = e2/2κa.

ee∆V < kBT , where ∆V is the voltage drop between neighbouring metal grains due to the external
field.
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on the metal volume concentration x. It follows from Equation (2.24), that the product
sEch is a constant as well.

Since there is a variation in size and shape of individual granules there will be a
distribution of charging energies Ech. Once an electron-hole pair with some charging
energy E ′

ch is created, they will move through the sample by tunnelling between grains.
They are prevented from tunnelling to grains of higher charging energy due to insufficient
energy, and to grains of smaller charging energy due to larger tunnelling barriers resulting
from the sEch = const. constraint. Therefore, once charges are created they will move
through the sample following an optimal path of least deviation of charging energies from
E ′

ch.
The corresponding mobility is then given by the tunnelling probability

exp(−2χs) , χ =
1

ℏ
√
2meUeff (2.25)

where Ueff is the effective brier height and me is the electron mass. And since the number
of charge caries is given by the Boltzmann distribution, the conductivity is given as:

σ ∝ exp

(
−2χs− Ech

2kBT

)
= exp

(
−2χs− T0

8χsT

)
(2.26)

where in the second step we introduce a constant T0 = 4χsEch/kB.
Similar to Equation (2.8) we can observe a component of the conductivity that in-

creases with s and another that decreases. Therefore, assuming there is a distribution of
s as a result of a distribution of a, there will be an optimal distance:

soptimal =
1

4χ

√
T0
T
. (2.27)

Assuming that the current flows mainly through the path set ba soptimal, substituting
(2.27) into (2.26), the characteristic ES VRH Expression (2.20) is obtained.

This model has been criticized on multiple assumptions. Based on measurements, the
ratio of the grain radius a and grain radius s is not constant [121]. The random variation
capacitance cannot lift the hard gap at the Fermi level, as that would require macroscopic
grain sizes (C ∝ 1/a) [122]. Furthermore ES VRH temperature dependence of resistivity
was observed in periodic arrays of quantum dots and artificially manufactured metallic
periodic granular systems where the size of the granules and the periodicity in the dot
arrangement were controlled within a few percent accuracy [119].
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Two key issues must be addressed in order to fully explain the ES VRH conductivity
in granular materials [119]. First, the underlying mechanism governing tunnelling over
extended distances must be identified. Second, the problem of the hard gap must be
resolved, specifically the origin of the finite density of states in proximity of the Fermi
level and the role of Coulomb interactions in shaping the density of states.

Unlike localised states discussed in the previous section 2.2, where even distant lo-
calised states have finite overlaps between exponentially decaying wavefunctions, the range
of tunnelling in granular materials is non-trivial, as each grain is typically connected by
tunnel junctions only to its nearest neighbours. The mechanism for long range tunnelling
in granular materials has been attributed to co-tunnelling (elastic or inelastic) of electrons
between distant granules via a chain of intermediate virtual states [119].

Before proceeding, a clarification should be added here. The density of states of a
granule describes the energy levels of an electron in a single granule. When placing an
electron into a granule, multiple states with similar energies are typically available for the
electron to occupy (δ ≪). For hopping purposes, these states are considered equivalent
since finding at least one state is enough to ensure transport. Therefore, when constructing
a density of states relevant for hopping, only the lowest excited state of each grain should
be considered, resulting in the single-particle density of states of the granule system,
known as the density of ground states [119, 122]. It is this density of ground states that
exhibits a gap at the Fermi level due to the Coulomb charging energy required to form a
conducting electron-hole pair.

J. Zheng and B. I. Shklovskii [122] successfully addressed the hard gap issue. The
presence of charge impurities in the insulating layer leads to random charging of metallic
granules in the global ground state. In the case of low metallic granule density, this is
due to the random positioning of granules, and in the case of high density, it is due to the
random positioning of impurities. These charge fluctuations smear the density of ground
states, which at high enough levels of charge impurities leads to closing of the hard gap at
the Fermi level. In other words, the charge disorder present the in insulating layer leads
to a reduction in the Coulomb charging energy for some granule pairs within the system.

The density of ground states is then suppressed at the Fermi level by incorporating
long-range Coulomb interactions between granules e2/κeffrij, where κeff is the effective
relative permittivity of the granular metal. To clarify, up to this point when considering
the effects of granule charging we have treated the granules as isolated from each other,
i.e. we have not considered the effects of Coulomb interactions when charging two neutral
granules. Removing an electron and thereby charging the first granule requires Ech energy,
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but due to the attraction between the electron and the positively charged first granule, it
only takes Ech − e2/κeffrij energy to place an electron on the second granule. In a similar
fashion as outlined for localised states in the previous section 2.2, these interactions than
result in the appearance of the Coulomb soft gap in the density of ground states at the
Fermi level.

2.3 Lifshitz model

The Anderson model assume that off-diagonal (structural) disorder is negligible. However,
this is not the case in disordered amorphous systems. A alternative model that explores
off-diagonal disorder is the so-called Lifshitz model, initially proposed by I. M. Lifshitz
[123], and later utilized by B. I. Shklovskii and A. L. Efros to describe the metal-insulator
transition [113].

The model consists of identical potential wells, randomly distributed in space with a
concentration nw, as illustrated in Figure 2.5. The model considers only one electron per
well (site). Since all the wells have the same energy ε0, diagonal disorder is absent, and
the model solely addresses off-diagonal (structural) disorder. This stands in contrast to
the Anderson model, which exclusively considers diagonal disorder.

In order to examine localization, we assume that the mean separation between the wells
is large compared to both the well size and the radius of the single-well wave function.
The single-well wavefunctions far from the well can be approximated by the Expression
(2.1). Following the discussion in section 2.1 regarding resonant sites in the Anderson
model, it can be inferred that since all the wells possess the same energy level ε0, all
the wells are resonant and only collective delocalized states would form. However, the
resonant interaction will be stronger for pairs of nearest neighbour wells. These resonant
pairs will form collective states similar to Expression (2.4), which subsequently shifts their
energies levels to:

ε0 ± λ
exp

(
−R12

ξ

)
R12

, (2.28)

where λ represents a value dependent on the well characteristics and the material’s per-
mittivity, and R12 is the distance between neighbouring wells forming a resonant pair. As
this distance varies for each pair, the energy shift will also differ.

Not all wells will form resonant pair. Consider a well (3) whose nearest neighbour
(2) has a different nearest neighbour (1), such that R12 < R23, as illustrated in Figure
2.5. In this case, wells (1) and (2) will form collective states with energies described by
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Figure 2.5: Illustration of the Lifshitz model. Black dots represent randomly distributed identical
potential wells. Orange lines indicate resonant pairs and triplets of neighbouring wells that form
collective states. Isolated wells (3) are formed when its the nearest neighbour (2) has a closer
neighbour (1); such that R12 < R23. Collective states equally shared by three wells can form
when a well (2’) has two equidistant neighbouring wells (1’,3’); when R1′2′ = R2′3′ . After [111]
and [123].

Equation (2.28), while the state on well (3) will remain localized with a minor admixture
of neighbouring wavefunctions producing a small shift in energy ∝ exp(2R23/ξ).

For three wells to equally share a collective state, well (2) would have to be equidistant
from wells (1) and (3), such that R12 = R23. For a collective state to form, this equality
can be violated by at most the localisation length ξ [113]. These implies that if the mean
separation between wells n−1/3

w greatly exceeds the localization length ξ, the probability
of finding three of more wells forming collective states becomes exceedingly small. As a
result, all electrons will be localised to individual wells or resonant pairs of neighbouring
wells.

The Lifshitz model significantly differs from the Anderson model. In the Anderson
model, energy dispersion and overlap between neighbouring sites are governed by two sep-
arate parameters, W and t. The ratio of these parameters determines whether the system
is localized or not. Conversely, in the Lifshitz model, energy dispersion and overlap are
controlled by a single parameter: the average separation between wells, n−1/3

w . Localiza-
tion of the system occurs when the average separation between wells is much greater than
the single-well wavefunction localization length, ξ, i.e., when n−1/3

w /ξ ≫ 1.
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Chapter 3

Samples and Experimental Methods

This chapter is divided into four sections, with the first two focusing on the samples
measured as a part of this work, and the latter two describing the experimental setup and
techniques employed for the measurements.

Section 3.1 details the manufacturing and prior work on the chemical and structural
characterization of metallic glass ribbon samples of quinary TE-TL alloys. Section 3.2
describes the procedures and setups employed to fabricate and characterize amorphous
thin films of TiZrNbCuNi. Section 3.3 describes the techniques used to measure and
analyse resistance, magnetoresistance, and the Hall effect. Finally, Section 3.4 outlines
the experimental setup used to perform measurements from room temperature down to
300mK and in magnetic fields up to ±16T.

3.1 Metallic glass ribbon samples

In this work, we explore metallic glass thin ribbon samples of three similar quinary
TE-TL alloy systems: (TiZrNbCu)1−xNix, (TiZrNbNi)1−xCux and (TiZrNbCu)1−xCox
(hereinafter referred to as Nix, Cux and Cox, respectively). Seven different composi-
tions of Nix (x = 0.125, 0.15, 0.20, 0.25, 0.35, 0.43, 0.50), seven of Cux (x = 0.0,
0.12, 0.20, 0.25, 0.32, 0.43, 0.50) and five of Cox (x = 0.10, 0.20, 0.25, 0.32, 0.43)
were prepared and studied. Additionally, three alloys variants with fixed (CuNi) content,
with nominal compositions: Ti0.30Zr0.15Nb0.15Ni0.20Cu0.20, Ti0.15Zr0.30Nb0.15Ni0.20Cu0.20,
and Ti0.15Zr0.15Nb0.30Ni0.20Cu0.20 (hereinafter referred to as Ti0.30, Zr0.30 and Nb0.30, re-
spectively), were also investigated. These three samples possess varying concentrations of
TE elements while maintaining the same TE/TL ratio as (TiZrNb)0.6(NiCu)0.4, which is
the same composition as Ni0.20 and Cu0.20.
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3.1. Metallic glass ribbon samples Chapter 3. Samples and Experimental Methods

Figure 3.1: SEM image and EDS element maps of Ni Kα, Cu Kα, Ti Kα, Zr Lα, and Nb Lα,
peaks of TiZrNbNiCu. Reproduced from [22].

All the metallic glass ribbon samples were prepared by Dr. I. A. Figueroa at the
Institute for Materials Research-UNAM, Mexico. For each alloy composition, ingots were
prepared from high purity components (≥ 99.8 at.%) by arc melting in high purity argon
in the presence of a titanium getter. The ingots were flipped and re-melted five times
to ensure thorough mixing of the components. Thin ribbons were fabricated from these
ingots through melt-spinning. Molten alloys were ejected onto the surface of a rotating
copper roller in a pure He atmosphere. The rotating copper roller rapidly and continuously
conducts heat away (104-106Ks−1) from the melt, resulting in the solidification of the
material in a glassy state. This procedure yielded ribbons typically ranging 1-2mm in
width and 15-40 µm in thickness.

XRD and DSC/DTA investigations of the as-cast ribbons confirmed that all samples
were fully amorphous, exhibiting broad halos in the XRD patterns, for an example see
Figure 1.3(b), and a glass transition in the DSC curves, for an example see Figure 1.2(b).
However, a study of the structure factors and the associated radial distribution func-
tions, using synchrotron based HEXRD, revealed a minor nanocrystalline phase within
the amorphous matrix of Cu0.0 and Nb0.30, see Figure 1.5 and the discussion in Section
1.2. Elemental mapping by scanning electron microscopy with energy dispersive spec-
troscopy (SEM/EDS) confirmed a random distribution of constituent elements down to
a micrometer scale, for an example see Figure 3.1, and the calculated compositions were
within 1 at.% of nominal [21–23, 124, 125].
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Figure 3.2: (a) and (b) show images of representative ribbon samples with applied silver paste
contacts. (c) and (d) provide schematic representations of the sample and contact geometries.
(a) and (c) are used for room-temperature measurements of resistivity on large samples, while
(b) and (d) are used for measurements of resistivity, Hall effect and magnetoresistance in a
cryostat. I+I− are the current contacts, V+V− and V’+V’− are two pairs of redundant voltage
contacts and H+H− are Hall contacts. The directions of electric current and magnetic field are
indicated in the middle.

For the purpose of measuring resistivity, magnetoresistance, and Hall effect, ribbon
samples typically 6-8mm long were mounted on a gold-plated ceramic sample carrier with
"GE" varnish, as shown in Figure 3.2(b). Prior to mounting, samples were thoroughly
cleaned in an ultrasonic bath with acetone and isopropyl alcohol. Platinum wires were
glued onto the samples with silver paste to make current, voltage, and Hall contacts. The
silver paste was allowed to dry at room temperature, resulting in contact resistances up
to 100Ω. Two pairs of voltage contacts (V+V− and V’+V’−) were employed to provide
redundancy during measurements, ensuring that an alternative pair is available in case
one of the voltage contacts loses contact.

For the low-temperature measurements of superconductive transitions, only four con-
tacts, two current and two voltage, were made, in the same configuration as shown in
Figure 3.2(c).
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Due to a large scatter in the measured resistivity of these relatively small sam-
ples, larger samples, typically 3-5 cm long, were used to measure resistivities at room-
temperature, as seen in Figure 3.2(a). The same procedure for making contacts, as for
small samples, was followed.

3.2 Amorphous thin film samples

In addition to the metallic glass ribbon samples, amorphous thin films were prepared using
pulsed laser deposition (PLD). PLD is a thin film deposition technique that employs a
focused, high-energy pulsed laser beam to vaporize target materials. The laser pulse
energy is absorbed by the target, causing localized rapid heating and evaporation of the
target material. This process generates a plasma plume of vaporized material that expands
away from the target. As the plasma plume expands, the vaporized material reaches the
substrate and begins to condense, forming a thin film on its surface. The properties of
the deposited film can be controlled by various deposition parameters, such as substrate
type, laser energy, fluence,a wavelength, pulse duration and frequency, target-to-substrate
distance, substrate temperature, and background gas type (vacuum, O2, N2, Ar, etc.),
pressure, and flow.

Figure 3.3 presents a schematic illustration of the employed pulsed laser deposition
setup. The main components include the ultra-high vacuum (UHV) chamber and the
Nd:YAG pulsed laser. The UHV chamber is capable of achieving vacuum levels down
to 10−8mbar, using a turbomolecular pump connected to a dry backing pump. The
turbomolecular pump can be bypassed, and a partial pressure of an inert (N2 or Ar) or
reactive (O2) gas can be introduced by supplying a steady flow of the desired gas and
pumping the UHV chamber only through the dry backing pump.

Inside the chamber, the target and substrate are situated. The target is mounted on
a target holder, which can rotate about its axis, enabling the laser beam to scan across
the target. Without this rotation, the laser beam would create a deep spot in the target,
negatively affecting the deposition process. Up to three target holders can be placed in
the rotating target carousel, allowing for the change of the target in the laser beam’s path
without breaking the vacuum. Rotation of the target holder and carousel is achieved using
two motors positioned atop the UHV chamber. The substrate is placed on a substrate
carrier surrounded by a resistive heating element, enabling substrate temperatures up to
700 ◦C. A Maurer infrared radiation thermometer Series KTR 1075 is used to measure

aOptical energy per unit of area.
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Figure 3.3: Schematic illustration of the pulsed laser deposition setup at the Department of
Physics, Faculty of Science in Zagreb.

the substrate temperature through an infrared-transparent window on the UHV chamber.
The target-to-substrate distance can be controlled through a vertical motion arm to which
the substrate holder is attached.

The laser used in this setup is a Continuum Surelite SL II-10 Nd:YAG, with a fun-
damental wavelength of 1064 nm. Wavelengths of 532 nm and 266 nm can be achieved by
using second and fourth harmonic generators. The laser pulse duration is in the range of
1-2 ns, and the frequency can be set in the 1-10Hz range. Filtering (when using harmon-
ics) and directing of the laser beam are performed by two dichroic mirrors. To prevent
damage to the mirrors, the beam first passes through a divergent lens. After the mirrors,
the beam passes through a convergent lens that focuses the beam onto the target. The
laser beam enters the UHV chamber through a EUV quartz window that is transparent
to ultraviolet light.

Using this setup, a series of thin films of TiZrNbCuNi with different deposition parame-
ters was produced. The TiZrNbCuNi target with 99.9% purity was supplied by Alineason
GmbH (Frankfurt am Main, Germany). For the substrate, we used 5 × 5 × 0.5mm3 one
side polished transparent SrLaAlO4 (a = 0.3756 nm, c = 1.2636 nm) single crystals in the
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Figure 3.4: XRD patterns of TiZrNbNiCu/SrLaAlO4 thin film CA011a and an as-delivered
SrLaAlO4 substrate. Large peaks correspond to (002)-(008) reflections on the SrLaAlO4 sub-
strate corresponding to the c = 1.263 nm out-of-plane lattice constant. Small peaks are the same
reflections resulting from Cu Kβ radiation (1.39Å).

(001) orientation, supplied by Crystal GmbH (Berlin, Germany).
The produced films showed no signs of crystalline peaks in the XRD measurements.b

XRD data was collected on a Bruker Discover D8 diffractometer (Karlsruhe, Germany)
supplied with a LYNXEYE XE-T detector. Measurements were taken in Bragg–Brentano
geometry (1D) applying Cu Kα radiation (1.54Å). The angle 2θ was varied from 10◦ to
70◦. The data was obtained using a step size of 0.02◦ and measuring time of 0.2 s/step.
A representative example of an XRD measurement can be seen in Figure 3.4. The only
observed sharp Bragg peaks are from the SrLaAlO4 substrate. Unfortunately, due to the
strong signal from the substrate, no broad diffuse halos from the amorphous state could
be observed.

SEM/EDS imaging was also performed on the thin film samples.c A TESCAN VEGA3
SEM equipped with a tungsten filament was utilized for imaging the samples. The imaging
process was carried out at a working distance of 15.3 nm and an accelerating voltage of

bXRD measurements were performed by T. Klaser from the Department of Physics, Faculty of Science,
University of Zagreb.

cSEM/EDS imaging was conducted by B. Radatović from the Institute of Physics, Zagreb.
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Figure 3.5: (a) SEM image and (b) EDS maps of Ni Kα, Cu Kα, Ti Kα, Zr Kα, and Nb Kα,
peaks of TiZrNbNiCu/SrLaAlO4 thin film CA011a.

30 kV in resolution mode using a secondary electron detector. For energy-dispersive X-
ray spectroscopy (EDS) analysis, a Bruker XFlash 6l30 detector was employed, and the
Esprit 2.1 software was used for spectrum analysis. A significant presence of dropletsd

and surface damage from high-energy particles in the plasma plume was observed in most
of the imaged samples.

Of the produced samples, films designated as CA011a and CA011b exhibited the
highest quality. They were deposited simultaneously by placing two polished transparent
SrLaAlO4 substrates on the substrate holder. Sample CA011a was utilized for XRD and
SEM/EDS measurements, as shown in Figures 3.4 and 3.5, while sample CA011b was cut
post-deposition into a smaller sample designated CA011b_1, measuring 5×1.7×0.5mm3,
to obtain a geometry more suitable for transport measurements.

The deposition parameters for TiZrNbCuNi/SrLaAlO4 thin films CA011a and CA011b
were as follows: laser wavelength 266 nm, fluence of 2 J cm−2, pulse energy of 43mJ, and
a frequency of 10/3Hz; deposition time of 30min (corresponding to 6000 laser pulses);
target-to-substrate distance of 4 cm; a vacuum in the chamber of 10−7mbar; and the
substrate was kept at room temperature during deposition. Prior to placement in the UHV
chamber, the substrates were washed in baths of acetone and methanol and dried using
N2. Once in the chamber and under vacuum, the substrates were heated to 645 ◦C for 1 h
to eliminate any contaminants present on the substrate surface. After the heating process,
the substrates were allowed to cool down to room temperature before the deposition began.
Before the start of deposition, to ensure a clean target surface, the target was ablated for

dMacroscopic pieces of the target that are ablated from the target surface and fall onto the substrate
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Figure 3.6: Image (a) and schematic representations of the sample and contact geometries (b) for
resistivity, Hall effect and magnetoresistance measurements on a TiZrNbCuNi/SrLaAlO4 thin
film CA011b_1. I+I− are the current contacts, V+V− and V’+V’− are two pairs of redundant
voltage contacts and H+H− are Hall contacts. The directions of electric current and magnetic
field are indicated in the bottom right.

10min using the deposition parameters while keeping the substrate covered.
The SEM/EDS images of the CA011a sample reveal a clean surface and uniform dis-

tribution of elements, see Figure 3.5. However, the data for the Ti map is not reliable
due to the overlap between the Ti Kα peak and La Kα peak from the substrate. Deter-
mining the atomic concentration of the deposited films was not possible, as a correction
accounting for the sample’s small thickness would be necessary. Unfortunately, no reliable
methods for determining sample thickness were available at the time.

An estimate of the thickness can be made from Hall effect and resistivity measurements
by using the Hall coefficient and room-temperature resistivity values for Ni0.20 metallic
glass ribbons. For CA011b_1, the estimated thickness from resistivity is (100 ± 10) nm,
and from the Hall coefficient it is (200± 50) nm. Despite a slight difference, these values
are in good agreement.

While we are currently unable to precisely pinpoint the origin of this discrepancy,
it has been observed that amorphous thin films have higher resistivities than their bulk
metallic glass counterparts [126–128]. Moreover, the resistivities were found to increase
with decreasing thickness [129, 130]. A higher resistivity of the thin film sample would
result in a larger calculated thickness value, thereby bringing it closer to the value obtained
from the Hall coefficient. On the other hand, the Hall coefficients of thin films were found
to be in good agreement with those of metallic glass ribbons [127, 128].

Resistivity, Hall effect, and magnetoresistance measurements were performed on the
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TiZrNbCuNi/SrLaAlO4 thin film CA011b_1 following the same procedures as for the
metallic glass ribbon samples. The sample was thoroughly cleaned in an ultrasonic bath
with acetone and isopropyl alcohol. It was then mounted on a gold-plated ceramic sample
carrier using "GE" varnish. Platinum wires were glued onto the samples with silver paste
to create current, voltage, and Hall contacts, as shown in Figure 3.6.

3.3 Transport measurements

Sample resistivities ρ were determined using the standard four-contact resistance measure-
ments, in order to eliminate contact resistance. Contacts were arranged on the samples as
shown in Figures 3.2 and 3.6. Due to significant uncertainty in ribbon sample thickness
t, resistivity was calculated using sample mass m, sample length Lsample, voltage contact
distance LVV, and density D:e

ρ =
w × t

LVV
R =

m

Lsample × LVV ×D
R . (3.1)

Magnetoresistance is defined as the relative change in sample resistance due to the
applied magnetic field:

∆R

R(0)
=
R(µ0H)−R(0)

R(0)
, (3.2)

where R(µ0H) and R(0) represent resistance in the presence and absence of the magnetic
field, respectively. Since MR is symmetric with respect to the direction of the applied
magnetic field, any asymmetric contributions to the measured resistance, such as the
Hall effect, can be eliminated by symmetrizing the resistance R(µ0H) with respect to the
magnetic field direction:

R(µ0H) =
R(µ0H) +R(−µ0H)

2
. (3.3)

In Hall effect measurements, we measure the Hall voltage VH = EHwHH on a pair of
contacts (H+H−) perpendicular to the applied magnetic field µ0H and current I = jwt,
as indicated in Figures 3.2(d) and 3.6(b), where wHH is the distance between the Hall
contacts. In a magnetic field perpendicular to the current, the Hall effect generates an
electric field EH perpendicular to both the applied current and magnetic field, and is

eDensity was estimated using the rule-of-mixtures, with D = (
∑

i Wi/Di), where Wi and Di are the
mass fraction and density of the i-th component, respectively [22, 124].
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proportional to the magnitudes of the applied magnetic field µ0H and current density j:

EH = RH j µ0H , (3.4)

where the proportionality constant RH is known as the Hall coefficient. It is common
to combine the measured Hall voltage VH and applied current I into a so-called Hall
resistance:

Rxy =
VH
I

= RH
wHH

wt
µ0H . (3.5)

By measuring the magnetic field dependence of the Hall resistance Rxy, we can deter-
mine the slope a = Rxy/µ0H, from which the Hall coefficient can be calculated as:

RH = at
w

wHH
. (3.6)

The thickness of the ribbon samples is determined from the sample mass, broad surface
area SL×w, and density:

t =
m

SL×w ×D
. (3.7)

Due to imperfect placement of the Hall contacts, it is possible to observe MR in
measurements of the Hall resistance. Since the Hall effect is asymmetric with respect
to magnetic field direction, we asymmetrize the Hall resistance to remove symmetric
components:

Rxy(µ0H) =
Rxy(µ0H)−Rxy(−µ0H)

2
. (3.8)

Sample dimensions and contact distances were determined from calibrated images,
captured by a CMOS camera attached to a microscope. Uncertainty due to the finite
width of silver paste contacts and the error in determining the sample dimensions and
mass was incorporated into the error values of absolute resistivity and Hall coefficient, as
well as values derived from those.

Measurements were conducted using either DC or low-frequency (22Hz) AC current. In
both cases, Keithley 6221 was used as the current source. For DC currents, voltages were
measured with Keithley 2182a nanovoltmeters. Due to the presence of thermoelectric
voltages, the measured voltages would not be symmetric with respect to the current
direction, resulting in a voltage offset. To eliminate this contribution, voltages were
measured for both directions of current and the respective resistances were averaged as
follows:

R =
R(+I) +R(−I)

2
. (3.9)
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This method was applied for measurements of resistance and Hall voltage.
AC voltages were measured using dual-phase Signal Recovery 5210 and 7225 Lock-

In amplifiers. A precision 1Ω resistor in series with the sample and current source was
employed to set up the reference phase on the Lock-In amplifiers. The advantages of AC
measurements include lower noise and faster measurement times. Noise can be further
reduced by connecting a low-noise model 1900 transformer, which amplifies the signal by
a factor 100. The disadvantage of AC measurements involves parasitic capacitances at
the sample-contact interface. These become significant for high resistance samples, i.e.
high RC constant. All the measured samples were of low resistance <1Ω, and parasitic
capacitances were not an issue.

However, for some samples, an out-of-phase component (due to capacitance and/or
inductance) appeared in the magnetic fields. This component increased roughly with
µ0H

2 and was dependent on the current frequency used, even displaying a change in
sign with changing frequency. We attribute this to extrinsic sources, as it changed with
new contacts applied to the same sample. Most likely, this effect is due to the uneven
thickness profile and longitudinal microcracks in the ribbon samples, which are the result
of the melt-spinning process, causing unpredictable current directions in the magnetic
field. This is corroborated by the fact that this effect was not observed in the amorphous
thin film CA011b_1. In most cases, the out-of-phase component was much larger than
the in-phase (resistive) component of the voltage at high magnetic fields, which made
precise measurements of the Hall effect and MR with an AC current impossible. In these
cases, DC current was used for measurements within and without of the magnetic field,
for consistency. While a similar effect, charging with an RC constant that increases with
an increasing magnetic field, was also observed for DC currents in these samples. This
could be mitigated by waiting 2-3 s after setting a current for the voltage to stabilize
before taking a measurement.

Thus, resistance, Hall effect, and MR measurements, depending on the sample, were
performed using either AC or DC currents with currents in the 200 µA-2mA range.

For superconductive transition measurements, only AC current was employed, as the
lower noise allowed for the application of smaller currents, and the applied magnetic fields
<4T were low enough for the out-of-phase component to be negligible. As a precaution,
the measurements were verified with DC measurements, which showed good agreement
within the noise. Currents in the 20-200µA range were used, corresponding to current
densities in the range of 0.1-0.8A cm−2.
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3.4 Superconducting Magnet System

To perform measurements in a magnetic field and at low temperatures, a cryostat with
a superconducting magnet is used. The 16/18 T Oxford superconducting magnet system
employed in this work is illustrated in Figure 3.7(a).

High magnetic fields up to ±16T are achieved by passing a high current 100A through
the superconductive coil. The magnet is immersed in a liquid He (LHe) bath to maintain
its superconductivity. To minimize LHe evaporation, the LHe chamber is surrounded by
a liquid nitrogen (LN2) chamber. To reduce thermal contact between the two cryogenic
liquid chambers and the exterior, an outer vacuum chamber is utilized.

Inside the system, either a variable temperature insert (VTI) or a HelioxVL He3 insert
is placed, as illustrated in Figures 3.7(a) and 3.8. The VTI system is used for measure-
ments from room temperature down to 1.3K, although in the magnetic field, the highest
temperature is limited to 200K. The He3 insert is employed for low-temperature mea-
surements down to 0.3K. Although no high-temperature limit is explicitly set and tem-
peratures up to room temperature can be achieved, for practical purposes, temperatures
are kept <20K. Measurements of resistivity, Hall effect, and MR were performed in the
VTI, while low-temperature measurements of superconductive transitions were conducted
in the He3 insert.

To perform measurements in the VTI system, the gold-plated sample carrier with a
mounted sample is placed in a socket at the top of a sample holder, as detailed in Figure
3.7(b). The sample is then enclosed within a cylindrical copper cover cap to ensure good
thermal equilibrium across the sample and with the calibrated Cernox temperature sensor
mounted behind the sample carrier socket. The copper cap is wrapped with a Constantan
wire, which serves as the sample heater. Once closed and tested, the sample holder is
inserted into the sample space of the VTI system, as depicted in Figure 3.7(a). The
sample is situated at the centre of the magnetic field. Inside the sample space, a rough
vacuum is maintained by a rotary vane pump.

By opening a needle valve (NV), a small amount of LHe is transferred from the helium
bath into the sample space. The expansion of LHe into a gas reduces its temperature below
4.2K, so that sample temperatures down to 1.3K can be achieved. The cooling power of
the system is controlled by opening and closing the NV and with a heater placed near the
opening of the NV into the sample space. Fine temperature control is achieved through
the sample heater. A LakeShore 340 temperature controller reads the temperature from
the Cernox sensor and controls the sample heater power to attain the desired temperature.

73



3.4. Superconducting Magnet System Chapter 3. Samples and Experimental Methods

Figure 3.7: (a) Schematic diagram of the 16/18 T Oxford superconducting magnet system with
a variable temperature insert and sample holder. (b) Schematic diagram of the sample holder
head.

To perform measurements with the He3 system, the gold-plated sample carrier with
a mounted sample is placed in a socket at the base of the He3 insert, as shown in Figure
3.8. Once the sample is in place, the inner vacuum chamber is sealed and evacuated, and
a small amount of 4He exchange gas is added to the inner vacuum chamber. The insert
may than be slowly lowered into the superconducting magnet system, in place of the VTI
shown in Figure 3.7(a). The small amount of exchange gas facilitates cooling; once the
system reaches its base temperature, a piece of charcoal cloth will absorb the exchange
gas, ensuring thermal insulation between the LHe bath and the sample.

The He3 insert possesses a self-contained storage reservoir of 3He gas. When the
system is cooled, the 3He gas is absorbed by the sorption pump. Heating the sorption
pump releases the 3He gas, which condenses into the 3He pot upon contact with the 1K
plate. The 1K plate is cooled similarly to the VTI system: by opening the NV, liquid
4He is drawn from the bath via a pickup tube into an expansion coil around the 1K plate.
The expansion of the 4He cools the 1K plate, and the gas is evacuated by a rotary vane
pump.

Once all the 3He gas has been released from the sorption pump and liquefied into the
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Figure 3.8: Schematic diagram of the HelioxVL He3 insert for the 16/18 T Oxford supercon-
ducting magnet system.

3He pot, the pot and the sample, which is in good thermal contact with the pot, will be
at approximately 1.3K. The temperature can be lowered by cooling the sorption pump
until it starts to absorb the 3He gas, which results in pumping of the gas and consequently
lowering the temperature of the 3He liquid in the pot. In this way, the 3He pot and the
sample can be cooled down to 0.3K.

The temperature is varied by heating or cooling the sorption pump, which alters the
pumping of 3He and therefore the cooling of the 3He liquid. Additionally, heat can be
supplied directly to the 3He pot via a heater. In this manner, the temperature can be
varied between 0.3-3K. For higher temperatures, the liquid 3He needs to be evaporated,
and the temperature control is achieved by combining the cooling from the 1K pot and
heating from the 3He pot heater. Heat exchange between the two is facilitated through
the 3He gas.

The sample temperature is measured by a calibrated Cernox sensor placed directly
behind the sample carrier socket. A LakeShore 340 temperature controller is used to read
the temperature. Due to the extremely low temperatures, the Cernox sensor exhibits
non-negligible magnetoresistance. Therefore, for measurements in a magnetic field, an
appropriate temperature correction was applied.

75



Chapter 4

Results and discussion

This chapter presents the results, analysis, and discussion of comprehensive measure-
ments of transport properties, which include resistivity, Hall effect, magnetoresistance,
and superconductivity, on metallic glass ribbons from three alloy systems: Cux, Nix, and
Cox, and three alloy variants with a fixed TL (Cu, Ni) content: Ti0.30, Zr0.30, and Nb0.30.
Furthermore, measurements on the CA011b_1 thin film of TiZrNbCuNi deposited on a
SrLaAlO4 substrate, are presented as well.

In section 4.3 on resistivity, we outline a novel model involving two parallel conduc-
tance channels. This model was found to better describe the temperature variation of
resistivity in our alloys. Additionally, we discuss the potential physical origins of this
proposed model.

4.1 Superconductivity

All our samples, barring Cu0.50 and Co0.43, were superconducting at temperatures above
300mK. The composition x dependence of the superconducting transition temperatures
Tc, defined as the temperature at which the resistivity drops to half the normal resistivity
just above the transitions ρ(Tc) = 0.5ρN , is illustrated in Figure 4.1(a).

The superconducting transition temperatures Tc are observed to be lower than those
for Zr-based binary alloys of similar composition (such as those shown in Figure 1.15); this
effect can be ascribed to the influence of Ti. As previously mentioned in the introduction
1.4.3, no superconducting transitions for Ti1−xNix and Ti1−xCux alloys were detected
down to 1.4K and 1.0K respectively [102]. The adverse influence of Ti is also evident
from the lower Tc for Ti0.30 as compared to Zr0.30 and Nb0.30.

The monotonic decrease of Tc with increasing TL content, barring Cu0.0, aligns with
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Figure 4.1: (a) Composition x dependence of the superconducting transition temperatures Tc for
Cux (red up-triangles), Nix (green circles), Cox (blue squares) alloy system. Additionally, three
alloy variants with fixed (CuNi) content Ti30 (orange down-triangle), Zr30 (orange diamond)
and Nb30 (orange pentagon) are shown. The dashed lines are provided as guides to the eye.
(b) Temperature dependence of the normalized resistivity ρ(T )/ρN close to the superconducting
transition for a Cu0.20 metallic glass ribbon sample, in constant magnetic fields from 0-1.8T.

other amorphous [66, 100, 102, 103] and crystalline [131, 132] TE–TL alloys . The rate of
decline increases in the sequence Nix, Cux, Cox as observed in related binary amorphous
alloys. The deviation for the Cu0.0 sample could be due to its composition, as small
amounts of a nanocrystalline phase in the amorphous matrix were noted [22].

The scattering of transition temperatures for different compositions, such as the sim-
ilar Tc values for Ni0.125 and Ni0.15, or Ni0.20 and Ni0.25, can be attributed to structural
inhomogeneities in the sample. These inhomogeneities arise during the fabrication pro-
cess. They can be caused by factors such as varying cooling rates between the beginning
and the end of the ribbon, which occur as the copper roller heats up during fabrication; or
by differences in the ribbon thickness. Furthermore, Tc measurements based on resistance
are particularly sensitive, as they record the onset of the first superconducting current
path through the sample, while the bulk of the sample remains in the normal state [133].

Values of the width of the resistive transitions ∆Tc, defined as the temperature interval
between 0.1ρN and 0.9ρN , varied within 0.06-0.15K for Cux, 0.05-0.12K for Nix, 0.05-
0.40K for Cox, and 0.04-0.12K for alloy variants with fixed (CuNi) content.
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Figure 4.2: The temperature dependence of the upper critical fields µ0Hc2(T ) for Cux (a), Nix
(b), Cox (c) alloy systems and three additional alloy variants with fixed (CuNi) content. The
solid lines in these figures represent initial slopes of the upper critical field (µ0dHc2/dT )T=Tc

.
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Figure 4.3: Composition x dependence of the upper critical fields at zero temperature µ0Hc2(0)

(a) and the orbital-limiting field Horb
c2 (0) (b) for Cux (red up-triangles), Nix (green circles), Cox

(blue squares) alloy system, and three alloy variants with fixed (CuNi) content Ti30 (orange
down-triangle), Zr30 (orange diamond) and Nb30 (orange pentagon). The dashed line in panel
(b) corresponds to the BCS Pauli-limiting field µ0H

BCS
P (0) = 1.84Tc.

In Figure 4.1(b), we provide a representative example of the temperature dependence
of the normalized resistivity ρ(T )/ρN in proximity to the superconducting transition for
a Cu0.20 sample, subjected to varied magnetic fields. As the magnetic field increases,
the transition temperature Tc decreases, and the transition widens, more so at the lower
temperature end. To circumvent the effects of this broadening when determining transi-
tion temperatures at different magnetic fields Tc(µ0H), we opted for a different resistivity
criterion, ρ(Tc(µ0H)) = 0.9ρN .

We then ascertain the temperature dependence of the upper critical fields µ0Hc2(T )

from these measurements, as demonstrated in Figure 4.2. The measured temperature
range of µ0Hc2(T ) is too narrow to perform an adequate fit to the WHH formula (1.36).
However, we can determine the orbital-limiting field Horb

c2 (0) according to Equation (1.38),
from initial slopes of the upper critical field (µ0dHc2/dT )T=Tc

, depicted as solid lines in
Figure 4.2. The values of (µ0dHc2/dT )T=Tc

demonstrate minimal variation with compo-
sition x, with absolute values decreasing in Cux and Nix, while increasing in Cox.

Figure 4.3(b) shows the dependence of the orbital-limiting field Horb
c2 (0) on the super-

conducting transition temperature Tc. As the values of (µ0dHc2/dT )T=Tc
display negligible

variation with composition, Horb
c2 (0) scales linearly with Tc in accordance with Equation

(1.38).
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Interestingly, this scaling seems to align with the scaling of the BCS Pauli-limiting
field µ0H

BCS
P (0) = 1.84Tc. This suggests that the orbital and Pauli paramagnetic spin

splitting mechanisms contribute nearly equally to the magnetic field breaking of Cooper
pairs. From Equation (1.37), for Horb

c2 (0) ≈ HBCS
P (0), it follows that the Maki parameter

for our amorphous alloys is α ≈
√
2. This estimate aligns with the Maki parameter

α = 1.2− 1.9 identified in related Zr–TL binary amorphous alloys [100, 106].

4.2 Hall effect

The Hall voltage (resistance) of all measured samples was linear with the magnetic field
and temperature independent, within the noise, down to the lowest measured tempera-
tures. Figure 4.4(a) shows a representative example for metallic glass ribbons, specifically
a Ni0.125 sample, while Figure 4.4(b) shows the measurement on the CA011b_1 thin film
sample. While the voltage noise due to contact resistance was negligible compared to
the full voltage across the sample in the case of resistance measurements, it constituted
a significant component of the small Hall voltage signal. Uncertainty in the value of the
slope due to this noise, coupled with the sample thickness t uncertainty, was incorporated
into the error values of the Hall coefficient, as shown in Figure 4.4(c).

No temperature dependence of the Hall coefficient RH was observed in any of the
samples, despite the expected temperature dependence of RH due to enhanced electron-
electron interactions (EEI). This effect, which is proportional to the temperature depen-
dence of the resistivity change due to EEI, as per Equation (1.6), should be less than
1% (see subsection 4.3.3). The noise level in the present measurements precludes the
detection of such minor variations in the Hall coefficient.

All values of the Hall coefficient RH are positive, except for Co0.43. The slope of Hall
resistance in the CA011b_1 thin film sample was positive as well, as seen in Figure 4.4(b).
However, the lack of an independently determined thickness of the sample precludes the
determination of the Hall coefficient in the thin film sample. The dependence of the Hall
coefficient on composition x in our quinary alloys, as seen in Figure 4.4(c), aligns well
with that of binary TE–TL amorphous alloys.

RH values for Cux alloys are generally constant within the measured range of Cu
concentration. This is in line with binary Zr1−xCux, Ti1−xCux and Hf1−xCux amorphous
alloys, where RH values remain mostly constant up to 50% of Cu content and exhibit a
relatively high critical concentration around xc ≈ 0.8 [29, 44, 134].

RH values for Nix alloys are practically constant for x < 0.35 and start to decrease
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Figure 4.4: Magnetic field µ0H dependence of the Hall resistance Rxy for (a) a representative
metallic glass ribbon Ni0.125 and (b) the amorphous thin film sample CA011b_1. The solid
black lines represent the slope fit. (c) Composition x dependence of the Hall coefficient RH for
Cux (red up-triangles), Nix (green circles), Cox (blue squares) alloy systems. Additionally, three
alloy variants with fixed (CuNi) content Ti30 (orange down-triangle), Zr30 (orange diamond) and
Nb30 (orange pentagon) are shown. The dashed lines are provided as guides to the eye.

for higher concentrations. No crossover was observed within the available concentration
range, but extrapolation from RH values between x = 0.35 and x = 0.50 suggests a critical
concentration of xc ≈ 0.6. This is higher than reported values in Zr1−xNix of xc = 0.45 [35].
This discrepancy could be due to the presence of Cu and Nb in our (TiZrNbCu)1−xNix
alloys. For instance, in Ta1−xNix.a, the crossover concentration is around xc ≈ 0.55 [45]

Conversely, Cox alloys exhibit a sharp drop in RH values with an interpolated critical
concentration at xc = 0.34, which is in good agreement with binary Zr1−xCox with a
critical concentration of xc = 0.32 [35].

Regarding the alloys with fixed (CuNi) content, they exhibit a decrease in RH values
in the order Ti30 → Ni20 → Zr30 and Nb30. This trend is expected when increasing the
concentration of 4d TE elements (Zr and Nb) at the expense of the 3d Ti.

aTa and Nb belong to group 5, whereas Zr and Ti are group 4 elements.
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4.3 Resistivity

All measured samples exhibited a high room-temperature resistivity in range of 140-
240 µΩcm, along with a small negative temperature coefficient of resistivity (TCR), con-
sistent with the Mooij correlation [53], as is typically observed in amorphous TE-TL alloys
[3, 29, 45, 46, 54, 66, 69–71, 104].

Figure 4.5 shows the composition x dependence of room-temperature resistivities ρRT

for all measured metallic glass alloys. Room-temperature resistivities show some variation
between different samples of nominally identical composition, with a typical discrepancy
of around 5%. In all three quinary alloy systems, the room-temperature resistivities ρRT,
within a noticeable scatter, increase with composition x. This trend is consistent with
findings in binary TE–TL alloys, where room-temperature resistivities initially increase
with increasing proportion of TL content, and then begin to decrease at some concen-
tration above 50% TL content [3, 29, 45, 46, 54, 66]. The concentration at which this
inversion occurs is relatively broad, with the specific point of change varying depending
on the particular TE–TL system under consideration.

The room-temperature resistivities of Cux and Nix alloys exhibit a small increase
with increasing TL content. Both the observed values and the small increase align with
those found in related binary alloys, namely Ti1−xCux, Zr1−xCux, Zr1−xNix, and Nb1−xNix
[3, 29, 46, 54, 66, 73]. An exception is found in the binary Ti1−xNix alloys, which display a
significant increase from 149 µΩcm at x = 0.24 to a peak value of 280 µΩcm at x = 0.40,
followed by a decrease to 184 µΩcm at x = 0.64 [135]. A similarly high increase in
resistivity with composition x is observed in our Cox alloys. This behaviour differs from
the related binary Zr1−xCox alloys, which have a smaller increase from 162 µΩcm for
x = 0.20, to 183.5 µΩcm for x = 0.45 [3, 66, 73].

An interpretation for this type of resistivity dependence on composition has been pro-
posed for amorphous TE-Cu alloys by D. Pavuna [46]. In the Cu-rich region, conduction
primarily occurs via electron s-states. As the proportion of TE element increases, thereby
enhancing the number of d-states at the Fermi level, resistivity increases due to a higher
contribution from Mott s-d scattering. At the TE-rich end, conduction by d-state becomes
increasingly more significant. In the intermediate region, the interplay of decreasing s-
state conduction and increasing d-state conduction gives rise to a resistivity dependence
that resembles the Nordheim rule, ρ ∝ x(1− x) [136]. However, extending this model to
other TE elements (Fe, Co, Ni) is non-trivial, because unlike pure Cu, where the Fermi
level is dominated by s-states, the Fermi levels of other pure TE elements contain both s-
and d-states.
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Figure 4.5: Composition x dependence of the room-temperature resistivity ρRT for Cux (red up-
triangles), Nix (green circles), Cox (blue squares) alloy system. Additionally, three alloy variants
with fixed (CuNi) content Ti30 (orange down-triangle), Zr30 (orange diamond) and Nb30 (orange
pentagon) are shown. The dashed lines are provided as guides to the eye.

The three studied alloy variants, with fixed (CuNi) content, show a small decline in
ρRT in the Ti0.30, Zr0.30, Nb0.30 sequence. This trend is consistent with the resistivity
changes observed between different binary alloy systems, such as Ti1−xNix, Ti1−xCux,
Zr1−xNix, Zr1−xCux, and Nb1−xNix [3, 29, 46, 54].

4.3.1 Temperature dependence of resistivity

All measured samples exhibit a small negative TCR and the temperature variation of re-
sistivity ρRT has the characteristic curve shape previously observed in binary and ternary
TE–TL amorphous alloys, and as described in subsection 1.4.2.3. Examples of this curve
shape can be found in Figures 4.7(a), 4.8(a) and 4.9(a). As the temperature is lowered,
resistivity increases with a slightly increasing slope. Below approximately 30K the re-
sistivity curve begins to saturate with decreasing temperature, until it starts to increase
again below approximately 15K. Accordingly, as in other TE–TL alloys, the temperature
variation of resistivity can be separated into a low-temperature and a high-temperature
regime.
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In the high-temperature regime the temperature dependence of resistivity has been
attributed to the weak localization (WL) contribution. Accordingly, resistivity (conduc-
tivity) should scale with temperature as per Equation (1.25): ∝

√
T above ΘD/3 and

∝ T below ΘD/3. As seen in Figure 4.6 for three representative curves, the conductivity
ostensibly follows this temperature scaling, with a dividing temperature between the two
regimes at approximately ≈ 100K. This is close to a third of the Debye temperatures
ΘD = 220− 260K obtained for Nix alloys from LTSH measurements [37].

Examining the derivatives of conductivity with
√
T and T in Figures 4.6(c) and 4.6(d)

respectively, we observe wide peaks rather than a constant derivative over a wide tem-
perature range, especially for the lower temperature

√
T regime. This is understandable,

as Equation (1.25) provides only limiting behaviour far from the Debye temperature ΘD

and furthermore does not consider the conductivity saturation due to spin-orbit coupling
and magnetic impurity scattering at lower temperatures.

That begin said, we have found that the temperature variation of resistivity ρ(T ) can
be better described by an alternative model involving two conductance channels:

1

ρ(T )
=

1

ρMetal(T )
+

1

ρVRH(T )
. (4.1)

where ρMetal(T ) represents an ordinary metallic-like contribution and ρVRH(T ) variable
range hopping (VRH)-like contribution to the resistivity.

The metallic component ρMetal(T ) consists of a nearly constant value ρ0 at high tem-
peratures, that we attribute to a large value of residual resistance in a disordered system,
i.e. the Boltzmann contribution to resistivity. At low temperatures the resistivity in the
metallic channel increases with decreasing temperature. This increase scales with

√
T and

can be attributed to quantum corrections to the Boltzmann conductivity. This metallic
contribution to resistivity is therefore modelled as:

ρMetal(T ) =

 asqrt

(√
Tsqrt −

√
T
)
+ ρ0 for T ≤ Tsqrt ,

ρ0 for T ≥ Tsqrt ,
(4.2)

where Tsqrt represents the temperature at which the low-temperature component ∝
√
T

reaches a zero-value. In other words, it marks the transition between the low-temperature
resistivity variation and the temperature-independent resistivity ρ0 at higher tempera-
tures.

As shall be shown latter, the low-temperature increase in resistivity can be equally
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Figure 4.6: Normalized conductivity σ/σRT variation with
√
T (a) and T (b) for representative

metallic glass ribbon samples with compositions Cu0.32 and Co0.20, and the amorphous thin film
sample CA011b_1. The dashed lines in these figures represent linear fits. (c) and (d) show
derivatives of the normalized conductivity with

√
T and T respectively. The dashed lines in

these figures indicate the slope values of the linear fits in (a) and (b).
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well described by a ln(T ) scaling law, and the metallic contribution can alternatively be
described by:

ρMetal(T ) =

 aln ln
(
Tln
T

)
+ ρ0 for T ≤ Tln ,

ρ0 for T ≥ Tln ,
(4.3)

where Tln is analogous to Tsqrt in the previous Expression (4.2). We will return to dis-
cussing the merits of

√
T and ln(T ) scaling and other details of the low-temperature limit

in subsection 4.3.3.
The VRH-like component can be described by the standard VRH temperature depen-

dence:
ρVRH(T ) = ρVRH,0 exp

(
TVRH

T

)p

, (4.4)

with a p = 1/2 exponent. Contribution from ρVRH(T ) to the total resistivity ρ(T ) is
rather small, with its values 20-30 times larger than ρMetal(T ) at room temperature and
increasing for lower temperature. In other words, ρVRH(T ) represents a small correction
to the ρMetal(T ) resistance.

It can be difficult to distinguish the correct value of the exponent p from ln(ρ)− T−p

plots. Therefore, to confirm the p = 1/2 used in the fitting procedure a so-called "special
logarithmic derivative" can be used (see for example [137, 138]), where one calculates:

W = −d(ln ρVRH)

d(lnT )
= p

(
TVRH

T

)p

, (4.5)

and then slope of the ln(W )− ln(T ) plot gives the value of the exponent p.
Three representative examples of fitting to the described model of two parallel con-

ductance channels are shown in Figures 4.7, 4.8, and 4.9 for a Cu0.32, a Co0.20 and the thin
film sample, respectively. (a) panels show the measured resistivity and the fitted curve
according to Equation (4.1). Panels (b) and (c) display separated components ρMetal(T )

and ρVRH(T ) of the measured and fitted curves. To obtain the metal component of the
measured resistivity, the VRH component of the fitting curve given with Equation (4.4)
was subtracted from the total resistivity ρMetal(T ) = ρ(T )−ρfit

VRH(T ). Analogously, we ob-
tain the VRH component of the measured resistivity by subtracting the metal component
of the fitting curve given with Equation (4.2) (or (4.3)) ρVRH(T ) = ρ(T )− ρfit

Metal(T ).
The fitting procedure was performed iteratively. To start, initial values of the fitting

parameters for ρMetal(T ) are obtained from the measured resistivity curve ρ(T )— asqrt

and Tsqrt (or aln and Tln) from the slope of the low-temperature increase and ρ0 from
the position of the saturation around 20K. These values are used to calculate the values
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Figure 4.7: Results of fitting the measured temperature dependence of resistivity for a metallic
glass ribbon sample with a Cu0.32 composition, to the model with two parallel conductance
channels. Points represent measured data, whereas lines indicate the fits. Refer to the text for
details. (a) Temperature dependence of the normalized resistivity ρ/ρRT. Inset: magnified view
of the low-temperature region of the main panel. (b) Temperature dependence of the metallic
component of resistivity ρMetal/ρRT. (c) The "special logarithmic derivative" plot of the VRH-
like component of resistivity, per Equation (4.5), featuring a p = 1/2 slope. (d) Logarithmic plot
of the VRH-like component of resistivity ln(ρVRH/ρRT) as a function of 1/

√
T .
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Figure 4.8: Results of fitting the measured temperature dependence of resistivity for a metallic
glass ribbon sample with a Co0.20 composition, to the model with two parallel conductance
channels. Points represent measured data, whereas lines indicate the fits. Refer to the text for
details. (a) Temperature dependence of the normalized resistivity ρ/ρRT. Inset: magnified view
of the low-temperature region of the main panel. (b) Temperature dependence of the metallic
component of resistivity ρMetal/ρRT. (c) The "special logarithmic derivative" plot of the VRH-
like component of resistivity, per Equation (4.5), featuring a p = 1/2 slope. (d) Logarithmic plot
of the VRH-like component of resistivity ln(ρVRH/ρRT) as a function of 1/

√
T .
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Figure 4.9: Results of fitting the measured temperature dependence of resistivity for the amor-
phous thin film CA011b_1, to the model with two parallel conductance channels. Points repre-
sent measured data, whereas lines indicate the fits. Refer to the text for details. (a) Temperature
dependence of the normalized resistivity ρ/ρRT. Inset: magnified view of the low-temperature
region of the main panel. (b) Temperature dependence of the metallic component of resistivity
ρMetal/ρRT. (c) The "special logarithmic derivative" plot of the VRH-like component of resis-
tivity, per Equation (4.5), featuring a p = 1/2 slope. (d) Logarithmic plot of the VRH-like
component of resistivity ln(ρVRH/ρRT) as a function of 1/

√
T .
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of the ρVRH(T ) component, on which we fit Equation (4.4) to obtain parameters TVRH

and ρVRH(T ). These are then used to calculate the ρMetal(T ) component, on which we fit
Equation (4.2) (or (4.3)) to obtain new values of the fitting parameters. We repeat this
procedure until a satisfactory fit is reached for ρ(T ), calculated ρMetal(T ) and ρVRH(T ).

The described fitting procedure was satisfactorily applied to all our alloys, and the
resulting fitting parameters are shown in Figures 4.13 and 4.15. These, along with the
accompanying discussion, can be found in subsections 4.3.2 and 4.3.3, respectively. Errors
of the fitting parameters are estimated based on the limits in which the values of the fitting
parameters reasonably well describe the measured resistivity. The fitting was performed
for normalized values of resistivity, such that values asqrt/ρRT, aln/ρRT and ρVRH,0/ρRT are
obtained from the fitting procedure. This was done in order to subsequently introduce
the error in resistivity values stemming from errors in measuring the sample dimensions
and mass, when calculating asqrt, aln and ρVRH,0.

From the calculated values of ρMetal(T ) presented in Figures 4.7(b), 4.8(b) and 4.9(b),
we clearly observe a low-temperature increase in resistivity, and a temperature indepen-
dent contribution to resistivity from around 20K to around 200K, except for Cox samples
which exhibit a deviation from the proposed model at lower temperatures. Accordingly,
in Cox alloys, the lower limit of the temperature independent ρMetal(T ) shifts to higher
temperatures, with the limiting temperature increasing with Co content from 40K for
Co0.10 up to 70K for Co0.43.

The temperature-independent behaviour of ρMetal(T ) appears to break in all samples
between 150K and 200K. Usually, the values of ρMetal(T ) deviate below ρ0, although
in a few cases, it deviates to higher values. These deviations are of the order of 0.1%
of ρRT, whereas the contribution to the total resistivity from the VRH-like channel is
only 3-5%. That is to say, a small error in the measured data could have a significant
effect on the fitting results. Measurements in this high-temperature range are difficult to
perform with the current setup, and extrinsic effects on the resistivity, such as contact
deterioration and thermal expansion of the sample, could play a significant role in the
observed deviation. For example, the linear coefficient of thermal expansion of a related
Cu0.55Zr0.30Ti0.10Ni0.05 metallic glass ribbon just above room temperature was found to be
αL = 1.3× 10−5 K−1 [139]; similar values were found in other metallic glasses [140]. This
corresponds to a length, and thereby a resistivity change, of about 0.13% over a 100K

temperature range, comparable to the observed high-temperature deviation.
Due to the lack of more accurate data in this high-temperature regime at the moment,

we believe that it is most likely that the temperature-independent ρMetal(T ) extends above
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200K. To clarify this issue, additional measurements should be carried out from 200K

to temperatures well above room temperature.
In Figures 4.7(d), 4.8(d), and 4.9(d), we observe a good fit of the VRH Equation (4.4)

to the calculated values of ρVRH(T ) from 20K to about 150-200K depending on the sam-
ple. This is the same temperature range in which the temperature-independent ρMetal(T )

is observed. Same as in ρMetal(T ) a small deviation develops above approximately 200K.
A larger deviation is observed around 15K and is an artefact of the fitting procedure,
specifically, due to the sharp transition into the low-temperature resistivity upswing in
the ρMetal(T ) fitting curves (4.2) and (4.3), compared to a gradual transition in the mea-
sured curves. In case of Cox samples a much larger deviation in ρVRH(T ) appears due to
the additional feature observed between 10K and 70K.

Figures 4.7(c), 4.8(c) and 4.9(c) of the "special logarithmic derivative" clearly show
a p = 1/2 exponent. This exponent was confirmed in all measured samples in the tem-
perature region where ρMetal(T ) is constant, i.e. temperature independent. We emphasize
here that the fitting procedure detailed above is unique in the sense that only one choice
of ρMetal(T ) values generates a ρVRH(T ) with a VRH temperature variation, and only so
with the exponent p = 1/2.

As seen in Figure 4.8(b), Cox samples display a reproducible decrease in resistivity
values below ρ0, a feature unaccounted for in our proposed model and absent in all other
measured alloy composition. This decrease for different Cox alloys, which manifests be-
tween approximately 10K and 70K, can be seen in Figure 4.10. With an increase in Co
content, both the magnitude and the width of this feature grow, while the temperature
Tmin, which marks the point of minimum resistivity in ρMetal(T ), shifts towards lower
values, as seen in Figure 4.15.

A similar minimum in resistivity, i.e. an additional increase with temperature in the
low-temperature regime, has been reported in binary Zr–Fe [141, 142] as well as ternary
Zr–Ni–Fe and Zr–Ni–Mn amorphous alloys [80, 143]. The effect increases as the com-
position approaches the paramagnetic-to-ferromagnetic transition with increasing Fe or
Mn content, and it has been attributed to scattering of conduction electrons from spin
fluctuations in nearly (ferro- and antiferro-) magnetic metals [141, 143].

It is plausible that this effect extends to Co-containing amorphous TE–TL alloys, but
due to its small magnitude, it may not be discernible in the temperature variation of
the raw resistivity measurements ρRT. Nonetheless, when the VRH-like component is
removed from the total resistivity, the small change is visible next to other features of the
calculated ρMetal(T ) channel.

91



4.3. Resistivity Chapter 4. Results and discussion

Figure 4.10: Temperature dependence of the normalized metallic component of resistivity
ρMetal/ρ0 for three different Cox alloys.

The resistivity contribution from spin fluctuations exhibits an increase with tem-
perature, which scales as T 2 at low temperatures, transitions to a linear scaling T at
medium temperatures, and eventually saturates to a temperature-independent contribu-
tion at higher temperatures [143]. It is challenging to validate this scaling behaviour in
our data because of the overlapping effect from the low-temperature resistivity increase
associated with quantum corrections.

Magnetic susceptibility measurements on Cox alloys [21, 30] demonstrated an increase
in susceptibility with increasing Co content for x ≥ 0.25. This was associated with the
approach towards a ferromagnetic transition at higher concentrations of Co. Moreover,
partially crystalline Co0.50 alloys, which have not been investigated in this work, displayed
ferromagnetic hysteresis loops at low temperatures [21].

The proposed model of two conductance channels bears resemblance to the empirical
function (1.26) proposed by U. Mizutani and colleagues [76–80], to describe the temper-
ature dependence of resistivity in the 30-300K range. However, they differ in the finer
details, such as using a sum of conductances (4.1) instead of resistivities (1.26). This
difference enables our model to account for the resistivity saturation that happens at
temperatures below 30K. As the temperature is lowered, the ρVRH(T ) component grows
exponentially, leading to a substantial decline in its contribution to the total resistivity
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ρ(T ). If not for the metal component’s upswing at low temperatures, the total resistivity
would tend towards ρ0 as temperature is lowered.

4.3.2 VRH

We turn to exploring possible origins of the VRH-like temperature dependence. In the
simplest picture a portion of the sample is insulating, i.e. electron states in parts of the
sample are localised due to random variation of chemical and structural disorder through-
out the sample. The metallic component of the sample contributes the temperature inde-
pendent conductivity and the insulating component the VRH-like temperature dependent
conductivity.

At room temperature the measured resistivities of the metal component are in the
range of 140-240µΩcm, and those of the VRH-like component are in the range of 3000-
8000µΩcm, as seen in Figure 4.13(a). These values represent the upper bounds of the
true resistivities for the underlying metallic and insulating subregions.b In essence, these
resistivities would be observed if the entire sample consisted exclusively of either the
metallic or insulating region. The values appear appropriate for a disordered bad metal
and a heavily doped semiconductor (e.g. the resistivity value is akin to that of silicon with
1019 cm−3 impurities). However, a concern arises as a heavily doped semiconductor, i.e.
high concentration of charge carries, is fundamentally opposed to localization and VRH
conductivity [113].

A constraint must be imposed on the volume concentration of the insulating regions,
as the predominantly metallic nature of the conductivity suggests that the insulating com-
ponent appears as an inclusion within a metallic matrix. Moreover, SEM measurements
did not reveal any inhomogeneity in the samples down to a scale of approximately 1 µm.
Consequently, the dimensions of the features of the metallic and insulating regions would
need to be smaller than roughly 3000 atoms.

bAssuming that the subregions contribute to the total resistance as two separate parallel resistors
1/R = 1/RMetal + 1/Rinsulator, and their dimensions add up to the dimension of the entire sample.
The measured resistivities of the insulating region are derived from the dimensions of the entire sample
ρmeasured
insulator = Rinsulator × wsample × tsample/Lsample, while the true resistivity of the insulating compo-

nent should be determined from the dimensions of the subregion ρtrue
insulator = Rinsulator × winsulator ×

tinsulator/Linsulator. Assuming that the dimensions of the subregions scale with the volume concentration
of the insulator 0 < x < 1, (w, t, L)insulator = x× (w, t, L)sample, it follows that ρtrue

insulator = x× ρmeasured
insulator .

Similarly, for the metallic subregion, ρtrue
metal = (1 − x) × ρmeasured

metal . Therefore, the true resistivities are
invariably smaller then the measured values as defined above. This conclusion is valid if one or two of
the sample dimensions are equal for the subregions and the sample, except when the width and thickness
are maintained equal, and the length scales with concentration. However, this would correspond to a
series connection between the subregions, which is in contradiction to the initial assumption that they
are connected in parallel.
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A further issue with this interpretation is the exponent p = 1/2, which is observed for
all samples. This value excludes 3D Mott VRH with p = 1/4, which would be expected for
an isotropic bulk material, although this assumption is debatable due to size limitations
placed on the insulating features. This leaves the Efros-Shklovskii (ES) VRH with p =

1/2 as a possibility, but it has its own challenges. While it is possible to calculate the
localisation length from the characteristic temperature, which for ES VRH is given as
[113]:

TES =
2.8e2

κξ
. (4.6)

Regrettably, we lack information on the value of relative permittivity κ, and furthermore,
relative permittivity is expected to diverge when approaching the metal-insulator tran-
sition [144]. However, from the available information, we can calculate the ratio of the
mean hopping length and localisation length [144]:

R̄hop(T )/ξ =
1

4

(
TES

T

) 1
2

. (4.7)

For VRH, the mean hopping length is expected to be larger than the localization length,
which places an upper limit on the temperature at which ES VRH should be observed:

T <
TES

16
. (4.8)

The values of the mean hopping length can be smaller than the localisation length close
to metal-insulator transition (MIT), but then an even stricter limit can be placed in the
case of weakly compensated semiconductors [144]:

T <
TES

25
. (4.9)

The values of TVRH in our samples vary in the 500-800K range, while the p = 1/2

exponent was clearly observed in the 30-150K, meaning neither condition is satisfied in
our samples. According to criteria (4.8), the highest temperature VRH should be observed
is 800K/16 = 50K.

We therefore look for an alternative theory which could explain both the low resis-
tivity of the insulating component and the high temperatures of the observed VRH-like
conductivity with a p = 1/2 exponent. We start with the assumption that the system, due
to inherent chemical and structural disorder, contains localised states, i.e. there exists a
mobility edge separating localized and delocalised sites. This appears as a reasonable as-
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sumption due to the high resistivity for a metal and the presumed appearance of VRH-like
conduction.

Sites, i.e. localized atomic orbitals, in the system can either be resonant (close in
energy and space) and form collective extended delocalized states, or non resonant form-
ing localized states (see section 2.1 for details). Orbitals that form localised states do
not contribute significantly to wavefunctions of delocalised states and vice versa. Thus,
throughout the system there will exist randomly distributed regions composed of localised
or delocalised states, as illustrated in the Figure 4.11. To clarify, it is not that the lo-
calised states are found at the Fermi level, but that the existence of localized states at
these sites means they will not contribute significantly to delocalized states and therefore
there will be regions of space were delocalized state wavefunctions fall of exponentially.
We will refer to them as regions of delocalised states and regions of localised states, or
localised and delocalized regions for short.

Owing to the predominantly metallic nature, it is reasonable to assume that regions
of delocalised states form an infinite cluster. Alongside the infinite cluster, finite clusters
of mutually resonant sites can also form, which are separated from the infinite cluster by
regions of localised states. These finite clusters will not contribute to charge transport
and neither will branches of the infinite cluster that form dead ends (blind alleys), as
indicated in Figure 4.11. From now on, we will refer to the portion of the infinite cluster
that contributes to charge transport solely through the diffusive motion of electrons as the
principal component of the infinite cluster. The remaining portions of the infinite cluster
will be referred to as dead ends, and the finite clusters as isolated pockets.

Only the portion of the sample that contains the principal component of the infi-
nite cluster contributes to the classical metallic conductivity. This is a sub-portion of
the portion of the sample forming the infinite cluster, therefore the part of the sample
contributing ρMetal(T ) can be smaller then the critical concentration of sites forming de-
localized states that is needed to from an infinite cluster, i.e. for the system to be on the
metallic side of the MIT.

We propose that in such a system, hopping between two dead ends, or an isolated
pocket and the infinite cluster, at places where they are separated by short distance can
significantly contribute to charge transport. These dead ends and/or isolated pockets
can form conduction channels that run parallel to the principal component of the infinite
cluster, for example, see the illustrations in Figures 4.12(a) and (b). With a small number
of hops, channels can be formed that connect distant parts of the principal component of
the infinite cluster, acting as a sort of bypass.
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Figure 4.11: Illustration of a two dimensional sample with randomly distributed regions of lo-
calised sites and delocalised states. Grey area: regions of delocalized states. Black area: regions
of localized sites. Red arrows: hopping between isolated pockets and/or dead ends. Orange
ellipsis identify examples of key features: isolated pocket, dead end, and choke point.

The most significant contribution would come from channels, which are combinations
of dead ends and isolated pockets, that connect sections of the principal component of
the infinite cluster with anomalously high resistance. For example, channels that bypass
"choke points" (sections of the principal component of the infinite cluster formed by an
anomalously small number of resonant sites),c for an example see Figure 4.11. Or short
channels that bypass long paths in principal component of the infinite cluster. The limiting
factor for transport in these parallel channels would be the hopping probability, rather
than the diffusive electron transport, therefore the highest contribution to conductivity
would come from paths with the fewest hops.

Given that most of the sample length is covered by the diffusive motion of electrons,
rather than hopping, the conductivity of these channels would be greater than hopping ex-
clusively through localised sites. Furthermore, as indicated by measurements, the metallic
conduction channel is temperature independent down to ≈20K; that is, diffusion through
delocalised states is temperature-independent. We can therefore conclude that the tem-
perature dependence of conductivity in these channels is the result of hopping process.

It is worth emphasizing that hopping enables the utilisation of delocalised regions
that would otherwise not contribute to charge transport, leading to an enhancement in
conductivity. Or looking at it from the other side, the conduction of electrons through
delocalised regions within the sample effectively reduces the distance that electrons need
to hop in order to traverse the sample.

cWhen considering a sample cross-section perpendicular to the current, "choke points" would be points
along the length of the sample where the area occupied by the principal component of the infinite cluster
was anomalously small.

96



4.3. Resistivity Chapter 4. Results and discussion

Figure 4.12: Illustrations of the hopping process between delocalised regions of a system. (a)
Hopping between two dead ends and (b) hopping through an isolated pocket in a channel parallel
to the infinite cluster (c) Creation of an electron-hole pair after hopping between two delocalised
regions separated by localised sites. (d) Effects of electrons and holes trapped in the localised
states. (e) A more detailed illustration of the complex shape of the branches of delocalised
regions in the vicinity of a hopping location.

Hopping of an electron between two delocalised regions separated by localised sites
(dead ends and/or isolated pockets) will create an electron-hole pair, as illustrated in
Figure 4.12(c). These charges then move diffusively through the delocalised regions and
contribute to charge transport. Hopping can be thought of as a process of creating an
electron-hole pair separated by a barrier of localised sites. The hopping process determines
the number of charge carriers, while the diffusive motion dictates their mobility.

We now turn to the process of hopping between the delocalized regions and the result-
ing temperature dependence. This process has a lot of similarities to hopping granular
materials. In our model we have hopping between regions of delocalized states sepa-
rated by localised sites, in granular metals the hopping occurs between metallic granules
separated by an insulating matrix. Both hopping processes involve creation of charges,
electron-hole pairs or pairs of charged granules.

97



4.3. Resistivity Chapter 4. Results and discussion

Just as the granules have numerous states an electron can hop to, the delocalized
regions also contain a multitude of states that are close in energy, this includes the initial
energy state of the electron. Therefore, an electron will always be able to find an empty
state on the other side of the localized region to hop into. This would correspond to a
simple tunnelling process between distant sites, and would only depend on the separation
distance due to a small overlap between sites ∝ exp(−2r/ξ). However, this would be
a constant, temperature-independent process, and would not be able to reproduce the
observed temperature dependence.

However, just like in granular metals, hopping of the electron will charge two separated
delocalised regions. The energy required to charge a delocalised region is given by:

Ech =
e2

2C
, (4.10)

where C is capacitance involved with charging one region, and is highly dependent on the
features of the delocalized regions in the vicinity of the hopping site. Therefore, for an
electron to hop it would need enough energy to charge the starting and final delocalised
region. Just like granular metals, this would open a hard gap in the electron-hole excita-
tion spectrum, and would result in an activation behaviour, not VRH conductivity with
p = 1/2 exponent.

In granular metals, it was reported [122], that the capacitance disorder and variation
in separation between granules are not enough to remove the hard Coulomb gap in the
associated electron-hole excitation spectrum, the so-called density of ground states, and
random charging of the granules in the ground states is required to close the hard gap.
This charging is the result of charge disorder from impurities and defects in the insulating
layer [122]. Similarly, the localised states in our system can contain trapped holes (empty
localised states below the Fermi level) and electrons (filled localised states above the Fermi
level), which could alter the local Coulomb potential, as illustrated in Figure 4.12(d). But
while the isolated pockets could be charged in a fashion similar to metal granules, the
same cannot be said for dead ends which are all connected by the infinite cluster, and will
therefore always remain neutral in the ground state.

More specifically, however, in the case of a low density of metallic granules, it is the
fluctuation of the electrical potential, arising from variations in position and charge of
impurities and metallic granules, that smears the density of ground states and eliminates
the hard Coulomb gap at the Fermi level [122]. While the fluctuation of the electrical
potential in granular metals is predominately the result of a random distribution of charges
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on granules, in the absence of charged granules, the charge variations in impurities could
potentially still smear the density of ground states, just at a higher concentration of
impurities.

As illustrated in Figure 4.12(e), in the vicinity of a hopping location the structure
of the delocalised regions is quite complex, due to the assumed random distribution of
localised and delocalised sites. Therefore, charge impurities in localized sites, originating
from trapped holes and electrons, along with a high variability in charging capacitances,
which can be expected to be greater than in granular metals, coupled with screening
from neighbouring branches, could eliminate the charging penalty between sections of
neighbouring delocalized regions. In other words, the hard gap could be closed.

Similarly, to granular metals, and as previously discussed in 2.2, incorporating the
Coulomb interactions e2/κrij between generated electrons and holes leads to the appear-
ance of a soft Coulomb gap at the Fermi level in the electron-hole excitation spectrum.
Consequently, we arrive at the ES VRH temperature dependence characterized by Ex-
pression (2.20).

Unlike granular metals, the long range hopping is not due to co-tunnelling between
distant granules each associated with a different energy in the density of ground states.
In our model, the hopping always occurs between two neighbouring delocalized regions,
where different sections (branches) of the delocalized regions are associated with different
Coulomb charging energies Ech due to variations in the local capacitance and electrical
potential. Since most of the charge transports in the parallel channels occurs through
diffusive motion, the exact position of the hopping sites on a pair delocalized regions is
irrelevant to conduction. The important contribution of the hopping process is the cre-
ation of electron-hole pairs. The hopping process therefore optimizes for pairs of hopping
sites on two neighbouring delocalized regions, which are separated in distance by rij and
in energy ∆Eij, where ∆Eij is the result of Coulomb charging energies Ech at sites i and
j and the Coulomb interaction energy e2/κrij. See Figure 4.12(e) for an illustration.

At higher temperatures, when the thermal energy kBT exceeds the width of the
Coulomb gap ∆CG a transition to Mott VRH followed by a transition to the NNH regime,
is expected. [113, 122]. Although for high values of ∆CG, the transition could bypass Mott
VRH and move directly into activation-like behaviour of the NNH regime. This was sug-
gested to be the case for granular metals [145]. It is possible that the high temperature
deviation of resistivity from the proposed two-channel model, observed in our samples
above approximately 200K, could be due to a change in the hopping regime. Specifically,
the decrease below the fitting function, observed in most measurements, is accompanied

99



4.3. Resistivity Chapter 4. Results and discussion

by an upward deviation of the logarithm special derivative ln(W ) from the p = 1/2 line,
towards p = 1/4. However, the data is generally too noisy and the temperature range too
short to confirm this proposition at this point. As previously proposed, in order to clarify
this situation, precise resistivity measurements above 300K are needed.

Before proceeding further, we note that variations of disorder throughout the sample
could give rise to regions with higher and lower proportions of localized states. This would
produce the same outcome as discussed above, albeit at a different spatial scale. In this
scenario, the black and grey areas in Figure 4.11 would correspond to regions of higher
and lower proportions of localized states. This is similar to what was proposed in the
beginning of this subsection, with a major difference that hopping would occur between
separated delocalized states, rather than through localized states.

We can also investigate what would happen across an Anderson MIT. The outcome
will depend on the position of the Fermi level. If the Fermi level is situated in the middle
of the band, the transition will take place when all states are localized. In this state of
the system, the conduction will proceed through hopping between localized states.

However, if the Fermi level is not found in the middle of the band, the transition can
occur before all states are localized, specifically when the Fermi level crosses the mobility
edge. In this scenario, there could still be delocalized states in the middle of the band, as
illustrated in Figure 2.2. The delocalized states will either be entirely empty or occupied,
depending on whether the Fermi level is below the lower mobility edge at EC, or above
the upper mobility edge at E ′

C. Charge transport can then occur either through hopping
across localized states or via activation in to empty, or out of occupied delocalized states.

A different outcome could emerge, if the transition takes place by cutting the infinite
cluster of delocalized regions into two or more finite clusters, without altering the position
of the Fermi level with respect to the mobility edge. Without the infinite cluster, the
charge transport will continue via hopping between finite clusters, analogous to the charge
transport in granular metals. This situation could arise in very thin films, where limited
thickness of the finite sample could disrupt the infinite cluster. Above the percolation
threshold, an infinite sample would possess an infinite cluster, but a finite sample with
sufficiently small dimensions might only contain finite clusters that do not extend across
the entire sample.

By examining amorphous thin films of our alloys with diminishing thickness, we should
observe a decrease of conductivity in the metallic channel until it vanishes entirely as the
infinite cluster of delocalized regions is broken. Subsequently, we should only observe the
VRH-like conduction, which resembles ES VRH in granular metals.
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Figure 4.13: Composition x dependence of the fitting parameters TVRH (a) and ρVRH,0 (b) for
Cux (red up-triangles), Nix (green circles), Cox (blue squares) alloy systems. Additionally, three
alloy variants with fixed (CuNi) content Ti30 (orange down-triangle), Zr30 (orange diamond) and
Nb30 (orange pentagon), and the amorphous thin film sample CA011b_1 (magenta star) are
shown. The dashed line is provided as a guide to the eye. Multiple data points at the same
composition x correspond to multiple measured samples.

Increased values of resistivity compared to related metallic glass ribbons have been
previously observed in amorphous thin films [126–128]. Moreover, the resistivities of
amorphous thin films have been found to increase with decreasing thickness [129, 130],
with the rate of increase increasing as the thickness is reduced. For example, the resistivity
of Ti0.77Co0.23 increased from about 130 µΩcm at 140 nm to 267 µΩcm at 8 nm [129]. The
value at 140 nm is somewhat lower than values found in the related Zr1−xCox metallic
glasses, but it is unclear if the reported thin films were fully amorphous. Furthermore,
TCR values were found to increase with increasing resistivity, in agreement with the Mooij
correlation [127]. These observations are consistent with our model, even though no MIT
transitions were observed down to 8 nm. In thin films, the contribution from the principal
component of the infinite cluster is suppressed, thus increasing resistivity. Consequently,
the contribution from parallel channels exhibiting a VRH temperature dependence would
increase, leading to a higher TCR. However, it also needs to be noted that resistivity
in thin films will increase due to an enhanced contribution from conduction electron
scattering on the surface, as well as when the film thickness approaches the electron mean
free path.
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We can now compare the results of the fitting procedure to the two conductance
channels with this model. Clearly, the precise contribution to the conductivity from the
parallel channels will be strongly dependent on the specific forms of the infinite and finite
clusters, i.e. the extent to which parallel channels bypass the infinite cluster and how
effectively they do so. This could account for the considerable scatter in the observed
values of ρVRH,0, as found in Figure 4.13(a). However, it is difficult to assess the relative
significance of this contribution to the scatter in comparison to the contribution arising
from the high variability of room-temperature resistivities in small samples, and whether
there is any correlation between the two.

On the other hand, TVRH values, as found in Figure 4.13(b), would be entirely depen-
dent on the hopping process, and consequently, the local structure of delocalised regions
and localised sites in the vicinity of hopping sites. For Nix and Cux samples, TVRH re-
mains, within some scatter, constant with changing concentration x. However, for Cox,
TVRH exhibits a clear increase with increasing Co concentration. This difference could be
attributed to the Co d-band, which is situated closer to the Fermi level than the Ni and
Cu d-bands. As previously noted for the Hall effect results, with increasing Co content in
Cox, the ratio of Co d-states near the Fermi level increases more rapidly than is the case
for Ni d-states in Nix and Cu d-states in Cux.

In granular metals, it has been observed that TES does not vary with the change in
size (structure) of metal granules but only with the volume concentration of the metal
[120]. This observation is supported by theoretical considerations [122]. This suggests
that the observed TVRH increase with Co content in our Cox alloys could be attributed
to an increase in the ratio of localized to delocalized regions. This, in turn, would be
consistent with the increase of ρRT with increasing Co content, due to a reduction in the
size of the principal component of the infinite cluster.

The values of TVRH a ρVRH(T ) appear to agree well with those of Ni0.20 metallic glass
ribbon samples. Although if the value of resistivity in our thin film is higher than the
bulk, as in Ti1−xCux amorphous thin films [127], the value of ρVRH(T ) would be higher
as well.

In the following paragraphs, we shall highlight some open questions and problems,
and potential applications of this model. The assumption that regions of localised states
exist, separating regions of delocalized states, is acceptable in a simple model where
each site contributes one state, local orbital, to form collective wavefunctions. How-
ever, what are the implications for the model, if each site contributes multiple initial
states/wavefunctions?
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If all these orbitals were of the same character, s, p, or d, it would not be a significant
stretch to assume that for a given site, they would all be either localized, or delocalized,
particularly in the Lifshitz model where localization is dependent on the ratio of the
wavefunction’s localization length and the average separation between sites. The problem
emerges when sites contain two types of electrons at the Fermi level, for example, s- and
d-states in the case of our alloys, where the s orbitals extend further from the atom and
are therefore more likely to overlap and from delocalized states than d orbitals. Can
the associated s- and d- bands be treated independently with two separate structures of
localized and delocalized regions seen in Figure 4.11, with electrons scattering between
the two? Or do they have to be treated collectively, and what are then the implications
for this model? Furthermore, what is the significance of the s-d hybridization proposed
to explain the Hall effect measurements?

This model for VRH-like parallel conduction mode is formed only with the assumption
of the coexistence of delocalized and localized regions due to disorder near the metal-
insulator transition. This would suggest that it should be applicable in describing the
negative temperature coefficient of resistivity in other high-resistivity metallic disordered
systems, particularly other amorphous TE-TL alloys, as our measurements indicate no
significant difference between our multicomponent and binary TE-TL alloys. This is
further bolstered by the success of U. Mizutani and colleagues in fitting the empirical
function (1.26) to resistivities of a variate of TE-TL and other amorphous alloys in the
30-300K range [76–80].

However, due to the small contribution of the VRH-like conduction mode (3-5% at
room temperature), two practical limitations exist. First, the temperature measurements
of resistivity must be highly precise; second, the metallic component must be temperature-
independent for a wide range of temperatures. Otherwise, it would be challenging or even
impossible to successfully disentangle the metallic and VRH-like conduction channels in
the temperature dependence of resistivity.

4.3.3 Low-temperature resistivity

In all the samples measured, we observed an increase in resistivity in the low-temperature
regime, a trend routinely observed in non-magnetic TE–TL alloys. This increase had been
attributed to the EEI effect, which dominates the variation in low-temperature resistivity
with the characteristic dependence ∆ρ(T ) ∝ −∆σ(T ) ∝ −

√
T [3].

As was reported elsewhere [3, 45, 71, 80], we too found it difficult to discern weather
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√
T or ln(T ) resistivity scaling more accurately describes the measured data at low tem-

peratures. In fact, some samples conformed more closely to one or the other scaling law,
while the majority could be reasonably well fitted to both. Generally, the temperature
range where

√
T accurately describes the data is a few degrees lower compared to the

region where ln(T ) fits the data well.
It is important to note that we performed our fits on the calculated ρMetal(T ) values,

which stands distinct from the current literature where the raw measured low-temperature
data was fitted either to

√
T or ln(T ) [71, 74, 95, 146], or using a combined function

of EEI (1.24) and WL (1.21) (with τ−1
in ∝ T 2) temperature dependent contributions

[72, 73, 147, 148].
Figure 4.14 provides examples of linear fits of ρMetal(T ) to both

√
T and ln(T ) for

comparison. Given the associated derivatives, neither the
√
T nor ln(T ) scaling can be

definitively preferred in our measured amorphous alloys.
Figure 4.15 provides the fitting parameters of the ρMetal(T ) functions (4.2) and (4.3).

In addition to these fitting parameters, we include the slope values asqrt/ρ
2
0 and aln/ρ

2
0

of the temperature scaling of conductivity,d given that the EEI and WL equations are
defined in terms of conductivity.

Regrettably, the temperature range where a linear variation in
√
T or ln(T ) can be

observed in our samples is limited by superconducting fluctuations and potentially con-
tributions from the Cooper channel of the EEI effect. This is naturally more pronounced
for alloys exhibiting higher superconducting transition temperatures Tc at lower TL con-
centrations x. This observation may account for the decrease in slope values asqrt/ρRT

and aln/ρRT (asqrt/ρ
2
0 and aln/ρ

2
0) for concentrations x < 0.25, compared to near constant

values for x > 0.25. The outlier, Cu0.0, which also presents a lower Tc than expected from
its composition x as observed in Figure 4.1, further substantiates this explanation.

The near constant values of asqrt/ρRT in the 320−560Ω−1m−1K−1/2 range for x > 0.25

align with values reported for other TE–TL alloys [74, 149]. We also observe that the
slope values for the thin film CA011b_1 exceed those of the corresponding metallic glass
ribbons. This indicates a higher resistivity in the thin film in comparison to the ribbon
samples, as an increase in resistance would lead to a decrease in the values of asqrt/ρ

2
0 and

aln/ρ
2
0.e

Finally, we note that except for Cox alloys, Tsqrt and Tln mark the transition point
between the low-temperature resistivity variation and the constant ρ0 value in ρMetal(T ).

d∆σ = −∆ρ/ρ2
eFitting parameter asqrt/ρRT is normalized and therefore independent of resistivity ρ, this implies that

asqrt/ρ
2
0 ∝ 1/ρ0.
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Figure 4.14: Variation of the normalized metallic component of resistivity ρMetal/ρ0 with respect
to

√
T (a) and ln(T ) (b) for representative metallic glass ribbon samples with compositions

Cu0.32 and Co0.20 and the amorphous thin film sample CA011b_1. The dashed lines in these
figures represent linear fits. (c) and (d) show derivatives of the normalized metallic component
of resistivity with

√
T and ln(T ) respectively. The dashed lines in these figures indicate the slope

values of the linear fits in (a) and (b).
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Figure 4.15: Composition x dependence of the fitting parameters asqrt (a), aln (b), Tsqrt (e)
and Tln (f), and the derived parameters asqrt/ρ

2
0 (c) and aln/ρ

2
0 (d) for Cux (red up-triangles),

Nix (green circles), Cox (blue squares) alloy systems. Additionally, three alloy variants with
fixed (CuNi) content Ti30 (orange down-triangle), Zr30 (orange diamond) and Nb30 (orange
pentagon), and the amorphous thin film sample CA011b_1 (magenta star) are shown. Panels
(e) and (f) also show the variation of temperature Tmin (blue diamond), marking the point of
minimum resistivity in ρMetal(T ), in Cox alloys. Multiple data points at the same composition
x correspond to multiple measured samples.
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For Cox alloys, we added the temperature Tmin, which marks the point of minimum
resistivity in ρMetal(T ), i.e. the transition, with increasing temperature, from the low-
temperature resistivity decrease due to quantum corrections to the resistivity increase
due to scattering from spin fluctuations.

For a quantitative analysis we will use Ni0.25 as an example, in order to minimize the
effects of superconducting fluctuations, and for which the data for N(EF) is also available
[37]. We can determine the value of the diffusion coefficient from the Einstein relation [8]:

σ = e2N(EF)D . (4.11)

Using the values for Ni0.25, N(EF) = 1.14 eV−1 atom−1, with a rule-of-mixture value
for the atomic volume Vat = 1.6 × 10−29 m3f, and the room-temperature resistivity for
the small sample used to measure the resistivity curve ρRT = 162.5 µΩcm, we obtain
D = 5.4× 10−5 m2 s−1.

Using Equation (1.24) the diffusion coefficient can be derived from the slope of the
low-temperature increase asqrt/ρ

2
0. In a first-order approximation, we use F̃ σ = 0 [74], and

omit the Cooper channel contribution. Higher values of F σ would result in lower vales of
the diffusion coefficient. From the slope asqrt/ρ

2
0 = 468Ω−1m−1K−1/2 of a Ni0.25 sample,

we calculate the diffusion coefficient as D = 3.4× 10−5 m2 s−1.
The agreement between the two obtained values is excellent, especially considering the

error in determining resistivities. In addition, we emphasize that we used two expressions
for the diffusion coefficient D; in one (the Einstein relation) the diffusion coefficient is
proportional to conductivity (D ∝ ρ−1), while in Equation (1.24), the diffusion coefficient
is proportional to the square of resistivity (D ∝ ρ2), via the dependence on the slope
asqrt/ρ

2
0.

However, a complication arises when we consider that, according to the proposed
model, only the principal component of the infinite cluster contributes to diffusive metallic
conduction ρMetal(T ). Hence, the actual value of resistivity ρ′ within the infinite cluster
will be lower than the resistivity ρ determined with dimensions of the entire sample, rather
than the unknown dimensions of the infinite cluster, i.e. ρ′ = ηρ, where η < 1 represents
an unknown scaling. This implies that for any ρ′ < ρ, the diffusion coefficient calculated
through the Einstein relation and the EEI Equation (1.24) would diverge, as the former
would increase by η−1 and the latter decrease by η2. Therefore, we can conclude that in the
proposed model with two conductance channels, the EEI contribution to conductivity is

fN(EF) = 7.13× 1022 eV−1 cm−3
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insufficient to fully account for the magnitude of the temperature dependence of resistivity
on its own.

It is important to also consider the contribution of the WL correction to conductivity.
Notwithstanding that the current theoretical framework cannot account for the observed√
T or ln(T ) scaling, barring a potential τ−1

in ∝ T contribution from TLS. However, MR
measurements in binary TE–TL alloys returned a τ−1

in ∝ T 2 scaling [3].
In addition, we also note that in binary TE–TL alloys the bulk of the MR magnitude

in the low-temperature limit (≲ 30K) has been attributed to the WL contribution, with
corrections from the EEI contribution and superconducting fluctuations [3, 8]. Despite the
apparent dominance of the EEI contribution in the temperature variation of resistivity, the
magnetic field variation is primarily governed by WL and weak antilocalization (WAL).

A unique aspect of our model is the clear observation of the constant Boltzmann con-
tribution ρ0 to the total resistivity, in ρMetal(T ) within the temperature range of 20-200K.
This constant provides a baseline value to which the quantum corrections to resistiv-
ity are added. This feature allows, not only the determination of temperature scaling,
but also the estimation of the total resistivity contribution from quantum corrections.
Furthermore, we can observe the breakdown of quantum corrections with increasing tem-
perature. This occurs as the thermal coherence time τT, and the phase-breaking time τφ
(τin), approach the value of the elastic scattering time τe.

Assuming that the contribution from WL vanishes when τin aligns with τe, we can
leverage Equation (1.22), with τin = τe, to estimate the value of τe. In essence, the total
contribution to resistivity from WL, σWL, identified in the zero-temperature limit, must be
equivalent in magnitude and opposite in sign to the temperature-dependent contribution
from WL when τin = τe.

Further assuming that the entire low-temperature increase is attributable to WL, we
arrive at:

σWL = −asqrt

ρ20

√
Tsqrt = −∆σWL (τe) = − e2

2π2ℏ(3D)1/2

(
1

τe

)1/2

, (4.12)

where the factor 3−1/2 was added to account for the difference between ballistic motion
in time τe and diffusive motion over longer periods. For the diffusion coefficient we use
the values determined from the Einstein relation.

However, it must be noted that the contribution from the WL effect should decay
considerably before τin reaches the value τe. Moreover, Equation (1.21) and consequently
Equation (1.22) were ascertained in the τin ≫ τe regime.
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Despite this, Expression (4.12) can be used to estimate the value of τe and juxtapose
it against the value computed from the free electron Drude formula, given by:

σ =
ne2τe
me

, (4.13)

where n denotes the charge carrier density. Assuming that each atom contributes one
conduction electron and using the rule-of-mixtures density, we determine a charge carrier
density of n ≈ 6.3× 1022 cm−3 for Ni0.25.

By using the same resistivity and slope data for the Ni0.25 sample, we are able to
calculate τDrude

e = 3.5 × 10−16 s using the Drude expression and τWL
e = 3.1 × 10−13 s by

employing Equation (4.12). A discrepancy of three orders of magnitude exists between
these values, which suggests that the WL contribution to resistivity in our samples should
be larger than what we have measured.

However, we must once again consider that the diffusive-current-carrying principal
component of the infinite cluster is smaller than the whole sample, and accordingly
rescale the resistivity as ρ′ = ηρ. This, in turn, modifies the slope values to (asqrt/ρ

2
0)

′ =

η−1(asqrt/ρ
2
0) and the diffusion coefficient determined from the Einstein relation to D′ =

η−1D. For instance, using η = 0.2, we obtain τ ′Drude
e = 1.8 × 10−15 s and τ ′WL

e =

2.5 × 10−15 s, which agree far better. The η = 0.2 value implies that 20% of the sam-
ple contributes to metallic conduction, and not that only 20% of sites (localized atomic
orbitals) form delocalized states.

We are now faced with a new issue, as these elastic scattering times τ ′e are significantly
shorter than both the thermal dephasing time τT = 4 × 10−14 s and an estimated value
of the inelastic scattering time τin = 4.4 × 10−13 s, as reported by J. B. Bieri et al. [88]
for Zr0.43Cu0.57 at 30K.g This is the temperature at which no indications of the low-
temperature resistivity increases due to quantum corrections are observable, except for
possibly Cox alloys.

This suggests one of two possibilities: either the elastic scattering time τe is con-
siderably longer, which would then approach values seen in good metals (10−14 s), or a
different mechanism could be responsible for the loss of interference in the quantum cor-
rections as the temperature approaches 30K. The former seems unlikely, as we observe
no contribution from electron-phonon scattering in the metallic (Boltzmann) contribu-
tion to resistivity, implying that τe ≪ τin even at room temperature. As for the latter,

gJ. B. Bieri et al. [88] provide the temperature scaling τ−in1 = 2.5×109 s−1 K−2T 2 for Zr0.43Cu0.57. The
inelastic scattering times should also be rescaled with η as τ ′in = η−1/3τin = 2.6× 10−13 s (see Equation
(1.30c)), however this change is negligible, and we opt to use the original values.
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it is difficult as this stage to speculate on the validity of such a proposition, particu-
larly given the potential implications for the magnetoresistance, which is also sensitive
to phase-breaking processes. Consequently, additional research is necessary to investigate
this matter further.

At this juncture, the source of the observed low-temperature increase in resistivity
remains ambiguous — it could stem from contributions from either EEI or WL, or a com-
bination of both. We also note, that the confined environment within the infinite cluster
could potentially alter the effective dimensionality of the sample. This infinite cluster,
with variable size and shape throughout the sample, could lead to some intriguing phys-
ical implications. In particular, if at any point the cluster size in one or two dimensions
is smaller than

√
Dτin or

√
DτT — the distances a diffusive electron can traverse before

its phase coherence is destroyed — the quantum corrections at that point will behave as
if the system is effectively lower-dimensional d < 3. In case of d = 2, both the EEI and
WL temperature-dependent contributions will scale as ln(T ), irrespective of the polyno-
mial scaling factor of τin [41, 63]. Such a shift in dimensionality would have significant
implications for MR as well.

4.3.4 Magnetoresistance

Figures 4.16 and 4.17 display the variation of MR with
√
µ0H and (µ0H)2 at different

temperatures for selected metallic glass ribbon samples. The observed magnetic field
variation and values are similar to the MR in Zr0.43Cu0.57 shown in Figure 1.14, and
consequently other binary non-magnetic TE–TL alloys. MR in the thin film sample
CA011b_1 exhibited similar qualitative and quantitative behaviour to the metallic glass
ribbons.

All measured samples displayed positive MR, with no negative slopes detected up to
10T, which was the maximum measured field for most samples. In measurements with
higher magnetic fields, a minimal negative slope was found at 1.3K in the Co0.10 sample
between 10-14T and in the Ni0.20 sample between 10-16T. However, these negative slopes
are barely distinguishable from the measurement noise (≈0.01%). Conversely, MR in the
Co0.25 sample showed an increase at 1.3K up to 14T.

Due to contributions from superconducting fluctuations (Aslamasov-Larkin and Maki-
Thomson), relatively large MR values are observed at low temperatures (blue circles),
particularly in samples with higher superconducting transition temperature Tc, lower TL
concentrations. The low-temperature MR curves seem to saturate at higher magnetic
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Figure 4.16: Magnetoresistance as a function of
√
µ0H at a set of temperatures is shown for

selected metallic glass ribbons: (a) Ni0.25, (b) Cu0.43, (c) Co0.20, (d) Co0.43, and (e) for the
amorphous thin film sample CA011b_1. The dashed lines represent the temperature independent
MR scaling of Equation (1.30c).
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Figure 4.17: Magnetoresistance as a function of (µ0H)2 at a set of temperatures is shown for
selected metallic glass ribbons: (a) Ni0.25, (b) Cu0.43, (c) Co0.20, (d) Co0.43 and (e) for the
amorphous thin film sample CA011b_1. The solid lines in these figures represent linear fits at
low magnetic fields.
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fields, except for Cox samples with x ≥ 0.20, where saturation is not reached up to 10T

(14T for Co0.25).
The MR in the thin film samples resembles the values found for Cu0.43 more closely

than those for Ni0.25. This suggests that the superconducting transition temperature is
suppressed in our thin film compared to the related metallic glass ribbon sample. This
observation is further supported by the temperature variation of resistivity in the thin
film sample, as seen in Figure 4.14. Here, the drop due to superconducting fluctuations
is observed at lower temperatures than in Co0.20 and Cu0.34, which have comparable or
lower transition temperatures than the Ni0.20 and Cu0.20 ribbon samples. Resistivity
measurements in the He3 cryostat at temperatures below 1.3K, in order to determine the
superconducting transition temperature, have yet to be conducted.

There are noticeable differences between the MR curve shapes in Cu0.43 and Co0.43,h

which may be tentatively attributed to spin fluctuations [142], the presence of which we
observed in the temperature dependence of resistivity.

The spin-orbit time was found to be similar between binary Zr–Cu, Zr–Ni, and Zr–Co
alloys [88, 142]. As such, the observed differences should not be the result of increased
spin-orbit scattering in Cox alloys. However, it is imperative to note that suppression of
spin fluctuations in a magnetic field theoretically induces a negative MR [150]. As already
noted, no negative MR was observed up to at least 100K, although a more precise MR
measurement is warranted for definitive conclusions.

At an intermediate temperature (green triangles; 15K), we observe a nearly linear
variation with

√
µ0H. However, the slopes do not align with the universal slope from

Equation (1.30c) (represented by the dashed lines), just as is the case in Zr0.43Cu0.57.
This discrepancy is attributable to the combined influence of superconducting fluctuations
and EEI MR. At higher temperatures (orange squares and red down triangles; ≥50K),
no discernible MR within the measurement noise was detected in all samples, with the
exception of Cox alloys with x ≥ 0.20.

From the slope of the MR curves vs (µ0H)2 in low magnetic fields at 15K, as shown in
Figure 4.17, the values of the inelastic scattering time τin can be calculated with Equation
(1.30b). Using Ni0.25 as a representative example, and employing the previously calculated
diffusion coefficient from the density of states and resistivity, D = 5.4× 10−5m2 s−1, the
value τin = 1.4× 10−12 s is calculated. This is close to the τin = 1.8× 10−12 s value at 15K
provided by J. B. Bieri et al. [88] for Zr0.43Cu0.57.

hCu0.43 exhibits a superconducting transition at Tc = 0.36K, while in Co0.43 no superconducting
transition was observed down to 0.3K
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As for Cu0.43, Co0.20, Co0.43 samples, the values of the density of states N(EF), which
are necessary to determine the diffusion coefficient, are not presently known. However,
we can make a rough approximation for the density of states N(EF) = 1 eV−1 atom−1 in
order to calculate the diffusion coefficients D and the scattering times τin. We obtain D =

6.2× 10−5m2 s−1 and τin = 7.5× 10−13 s for Cu0.43, D = 5.7m2 s−1 and τin = 7.8× 10−13 s

for Cu0.20, and D = 3.6 × 10−5m2 s−1 and τin = 1.4 × 10−12 s for Co0.43. These values
are in good agreement with each other, more so considering the rough nature of the
approximations used.

As mentioned in the preceding section 4.3.3, τin values need to be rescaled in accor-
dance with resistivity when considering the model proposed to explain the two conduc-
tance channels in subsection 4.3.2. With the rescaled values obtained as τ ′in = η−1/3τin.
However, this rescaling will not significantly alter the values of τin.

The temperature-dependent resistivity in a magnetic field, compared against the zero
field curve, can be seen in Figure 4.18. At higher temperatures, the two curves align, sig-
nifying the absence of MR above 50K with the exception of the Cox alloy, wherein a minor
MR was still detected at somewhat higher temperatures. Interestingly, the

√
T scaling,

not only persists, but improves in the magnetic field at low temperatures, especially so in
alloys possessing higher values of the superconducting transition temperature Tc. This can
be attributed to the suppression of the superconducting fluctuations (Aslamasov-Larkin
and Maki-Thomson) in the magnetic field. Moreover, the ln(T ) scaling remains observ-
able as well. However, the temperature range in good agreement with ln(T ) scaling shifts
towards higher temperatures.

While the present measurements are sparse and noisy, they show good qualitative
and even quantitative agreement with MR measurements in binary amorphous TE–TL
alloys. To perform a thorough analysis of MR in our quinary alloys, ribbons and thin
films, a comprehensive and systematic set of measurements in varying magnetic fields
and temperatures needs to be conducted. However, before that, more effort is needed to
find ways of reduce the noise in MR measurements, for example, by reducing the contact
resistance.
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Figure 4.18: Variation of the normalized metallic component of resistivity ρMetal/ρ0 with respect
to

√
T (a) and ln(T ) (b) for selected metallic glass ribbon samples with compositions Co0.20 and

Co0.43 in zero magnetic field and at µ0H = 10.4T. The dashed lines in these figures represent
linear fits. (c) and (d) show derivatives of the normalized metallic component of resistivity with√
T and ln(T ) respectively. The dashed lines in these figures indicate the slope values of the

linear fits in (a) and (b).
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Chapter 5

Summary and Outlook

As part of this work, we sought to expand our understanding of amorphous alloys, par-
ticularly those comprised of early and late transition metals. Our initial interest was in
exploring the roles and interplay of chemical and structural disorder within these materi-
als. To this end, we examined the transport properties of quinary TE–TL alloys, including
resistivity, Hall effect, magnetoresistance, and superconductivity.

Our investigation centred on metallic glass ribbons from three alloy systems: Cux,
Nix, and Cox, along with three alloy variants with a fixed TL (Cu, Ni) content: Ti0.30,
Zr0.30, and Nb0.30. Additionally, we also studied an amorphous thin film of TiZrNbCuNi,
deposited on a SrLaAlO4 substrate using a PLD system.

In regard to superconductivity, all samples except for Cu0.50 and Co0.43 were super-
conducting above 300mK. We observed low transition temperatures, which can likely be
attributed to a negative influence of Ti observed in binary TE–TL, and further illustrated
by the lower Tc for Ti0.30 compared to Zr0.30 and Nb0.30. The supercontracting transi-
tion temperatures Tc decreased with increasing TL content, in line with amorphous and
crystalline TE–TL alloys.

The Hall coefficients also showed good agreement with amorphous binary TE–TL al-
loys. Hall coefficients were positive, with the exception of Co0.43. For Cox alloys, a change
in RH sign was observed with an increasing concentration x, with the critical concentra-
tion around x(Co) = 0.34. RH in Nix alloys slightly decreased at higher concentrations
x, with an extrapolated critical concentration of approximately x(Ni) = 0.6. Conversely,
Cux alloys remained constant for the entire measured concentration range.

We found that all metallic glass ribbon samples exhibited high room-temperature resis-
tivity (140-240µΩcm), coupled with a small negative temperature coefficient of resistivity.
The room-temperature resistivities increased with higher TL content in line with related
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binary TE–TL alloys, except for Cox alloys which show a more significant increase than
expected from Zr1−xCox.

In a magnetic field, all the samples displayed a positive and increasing magnetoresis-
tance up to 10T, with some indications of a potential negative slope at fields greater than
10T. The magnetic field variation is consistent with amorphous binary TE–TL alloys —
roughly ∝ B2 at low fields, ∝

√
B at intermediate fields, followed by a saturation-like be-

haviour at higher fields. Furthermore, the temperature variation of MR can be attributed
to the contribution from superconducting fluctuations. This demonstrates a qualitative
and even quantitative agreement with binary TE–TL alloys.

To reiterate, these measurements showed good agreement with their binary counter-
parts, effectively suggesting that these quinary alloys can be regarded as pseudo-binary
alloys, TE1−xTLx.

While the temperature dependence of resistivity in our samples can be described by
the temperature variation of weak localization and enhanced electron-electron interaction
contributions to conductivity, as has been done in amorphous binary and ternary TE–
TL alloys, we discovered that a model with two parallel conductance channels better fits
the measured temperature variation. This model features a metal-like and a VRH-like
channel as 1/ρ(T ) = 1/ρMetal(T ) + 1/ρVRH(T ).

We postulated that the Boltzmann contribution in the metallic channel is dominated
by elastic scattering on the disordered lattice resulting in a temperature-independent
resistivity at higher temperature (≳ 20K), and by WL and EEI contributions at low
temperatures (≲ 20K). We proposed that the VRH-like conductance channel is the result
of the formation of regions of delocalized and localized states. The delocalized states form
an infinite cluster that contributes to the aforementioned metallic conductance channel.
However, not all portions of the infinite cluster contribute to this diffusive transport of
electrons, these portions are termed dead ends. Hopping between these dead ends can
then contribute to parallel conduction channels. Due to the temperature independent
nature of the Boltzmann conduction through the infinite cluster, including dead ends, the
temperature dependence of these channels is dominated by the hopping process, resulting
in the VRH-like temperature dependence exp(TVRH/T )

1/2.
This model, however, raises questions regarding the influence of localized states on

other properties of the system, the role of lower effective dimensionality of the infinite
cluster, the nature of the low-temperature resistivity increase and magnetoresistance, and
possible effects on superconductivity and the Hall effect. At this stage of research, we are
unable to provide satisfactory answers to these questions.
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The next step in validating the two-channel conductance model should be to reanalyse
previously published measurements of the temperature variation of resistivity in amor-
phous binary and ternary TE-TL alloys and other high-disorder high-resistivity systems,
and where necessary perform new measurements with higher precision.

For the quinary alloys examined in this study, a more detailed set of magnetoresistance
measurements should be performed as a function of magnetic field and temperature, given
the sparse and noisy data presented in this work. Furthermore, alternative methods of
applying contacts (e.g. other types of conductive epoxy glues, wedge and ball bonding,
pressure contacts) should be explored in order to reduce contact resistance and measure-
ment noise.

Finally, the thickness of the amorphous thin film reported in this work, estimated to
be in the range of 100-200 nm, is still very much within the bulk range. Nevertheless, it
demonstrates that amorphous thin films of multicomponent TE-TL alloys can be fabri-
cated, and that their transport properties are in good agreement with those of metallic
glass ribbon samples. The next step is to conduct a new series of thin film depositions
of varying thicknesses to study the effect of film thickness on the value and temperature
variation of resistivity. This could provide valuable insights into the nature of the VRH-
like conductance channel we observed. However, a reliable method for independently
determining film thickness should be established before proceeding with measurements of
resistivity, Hall effects, magnetoresistance, and superconductivity.
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