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Entropija crnih rupa: kvantni aspekti

Sažetak

Cilj ovog diplomskog rada je bio istražiti i analizirati literaturu koja se bavi kvant-

nim aspektima entropije crnih rupa, s naglaskom na kvantnim korekcijama. U prvom

poglavlju generaliziramo ’t Hooftovu brick wall metodu na više dimenzionalne crne

rupe, i te rezultate primjenjujemo na Schwarzschildovu te Reissner-Nordströmovu

crnu rupu. U drugom poglavlju promatramo ispreplitanje stupnjeva slobode un-

utra i izvan crne rupe, tretirajući njen horizont kao ispreplitajuću plohu te inter-

pretirajući dobivenu entropiju kao entropiju crne rupe. Predstavljamo dvije metode

koje olakšavaju računanje isprepletene entropije: replica trick u kojem smo zadatak

računanja isprepletene entropije sveli na računanje particijske funkcije na replici-

ranoj mnogostrukosti i heat kernel metodu gdje računamo entropiju putem traga

tzv. heat kernela. U trećem poglavlju promatramo jednopetljenu renormalizaciju

gravitacijske akcije putem Pauli-Villarsovog regulatora, te pokazujemo da to vodi na

renormalizaciju Bekenstein-Hawkingove entropije. U zadnjem poglavlju zaključu-

jemo raspravom o mogućnosti primjene ovih metoda na crnim rupama nižih dimen-

zija.

Ključne riječi: Opća teorija relativnosti, kvantna mehanika, statistička mehanika,

crne rupe, termodinamika crnih rupa, entropija, kvantna teorija polja na zakrivljenim

prostorima



The entropy of black holes: quantum aspects

Abstract

The goal of this thesis was to research and analyze the literature that deals with quan-

tum aspects of black hole entropy, with a heavy emphasis on quantum corrections.

In the first chapter, we generalize ’Hooft’s brick wall method to higher-dimensional

black holes, and we apply those results to the Schwarzschild and Reissner-Nordström

black holes. In the second chapter, we look at the entanglement between the degrees

of freedom inside and outside a black hole, while considering the horizon as the en-

tanglement surface and interpreting the obtained entropy as the entropy of the black

hole. We present two methods that simplify the calculations of the entanglement

entropy: the replica trick, where we turn the task of calculating the entanglement

entropy to calculating the partition function on a replicated manifold, and the heat

kernel method, where we calculate the entropy by taking the trace of the so-called

heat kernel. In the third chapter, we consider the one-loop renormalization of the

gravitational action, and using the Pauli-Villars regulator, we show that it leads to

the renormalization of the Bekenstein-Hawking entropy. In the final chapter, we con-

clude with a discussion on the applicability of these methods to lower-dimensional

black holes.

Keywords: General theory of relativity, quantum mechanics, statistical mechanics,

black holes, black hole thermodynamics, entropy, quantum field theory on curved

spacetimes
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1 Introduction

A black hole is a region of spacetime where gravity is so strong that nothing, in-

cluding light, can escape it. This boundary of no escape is called the event horizon.

Mathematically, black holes emerge as the solutions to the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.1)

Physically, they arise from the gravitational collapse of massive stars, giving rise to a

system with a very strong gravitational field. This property makes black holes an ideal

arena, both theoretically and phenomenologically, to observe the quantum effects of

gravity and, specifically, any possible quantum corrections that a system may obtain.

In the stationary case, black holes can be described by three parameters: mass M ,

charge Q, and angular momentum J , which is a consequence of the no-hair theorem

[1]. To illustrate the need for applying thermodynamic laws to black holes, let us

imagine a scenario where some matter falls into a black hole. Prior to crossing the

horizon, this matter possessed a certain entropy S. After crossing the horizon, an

outside observer cannot determine what occurred with this entropy. Nevertheless,

we do know that before the matter fell into the black hole, the overall entropy was

S. After the matter entered the black hole and after a sufficiently long time, all we

observed was the steady state of the black hole, as described by its mass, charge, and

angular momentum. If there were only a single state for a black hole, characterized

by these three quantities, the entropy of each such black hole would be zero. This

implies that when matter enters a black hole, the total entropy diminishes, conflicting

with the second law of thermodynamics. This issue was resolved by Bekenstein [2],

who postulated that black holes also possess entropy. Building upon these facts and

observations, we can draw parallels between the mass M , charge Q, and angular

momentum J of the black hole and thermodynamic variables, leading us to the four

laws of the mechanics of black holes [3–4].

The zeroth law states that stationary black holes have a constant surface gravity

κ at the event horizon.

The first law is expressed as

dM =
κ

8π
dA+ ΩdJ, (1.2)
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where Ω represents the angular velocity of the horizon, and A signifies the surface

area of the horizon.

The second law states that the surface area of the horizon is non-decreasing

δA ≥ 0. (1.3)

The third law claims that the surface gravity κ cannot be reduced to zero in a finite

number of steps.

Comparing the first law with the one from thermodynamics, dE = TdS−pdV , and

matching ΩdJ with the work term, we have a correspondence of TdS with κdA/8πG.

Hawking [5] calculated that black holes radiate like black bodies and have a temper-

ature of

TH =
ℏκ
2π
. (1.4)

Utilizing the aforementioned results, we arrive at the formula for the entropy of black

holes

SBH =
A

4ℓ2Pl
, (1.5)

where ℓPl =
√
Gℏ denotes the Planck length. This formula is called the Bekenstein-

Hawking entropy. The unique feature of the Bekenstein-Hawking entropy is that it

is proportional to the area of the black hole’s surface, known as the horizon, which

differs from typical entropy calculations where the entropy is usually proportional

to volume. During the 80s of the previous century, researchers explored different

approaches to understanding black hole entropy. ’t Hooft [6] calculated the entropy

of Hawking particles just outside the black hole horizon, treating them like a ther-

mal gas. Although this calculation yielded an entropy proportional to the horizon

area, it required a "brick wall" boundary near the horizon to regulate certain diver-

gences. Bombelli, Koul, Lee, and Sorkin [7] considered a reduced density matrix

obtained by tracing over quantum field degrees of freedom inside a black hole’s hori-

zon. This procedure seemed natural for black holes because their horizon acts as a

causal boundary, making events inside inaccessible to observers outside. Srednicki

[8] calculated the entropy directly in flat spacetime by tracing over degrees of free-

dom inside an imaginary surface. This entropy, known as entanglement entropy, was

also found to be proportional to the entanglement surface. The entropy arises from

2



short-distance correlations in the quantum field system near the surface and is thus

sensitive to the size of the region near the surface. This means that only modes lo-

cated in a region near the surface contribute to the entropy, signifying that the size

of this region plays the role of a UV regulator. An interesting thing to note is that

the entanglement entropy of a quantum field in flat spacetime already establishes

the area law without the need for a black hole. Furthermore, it was realized that

the entropy obtained by the "brick wall" model and the entanglement entropy are

related [9]. Another method to calculate the entanglement entropy had been de-

veloped by Susskind [10], introducing a small conical singularity at the entangling

surface, then evaluating the effective action of a quantum field on the background

metric with a conical singularity, and then differentiating the action with respect

to the deficit angle. This method is the so-called replica trick. Using this method,

systematic calculations of the UV divergent terms in the entanglement entropy of

black holes have been made [11], and particularly, logarithmic UV divergent terms

have been found [12]. These logarithmic correction terms have also been found us-

ing several different methods, including string theory [13], higher loop corrections

to the gravitational action [14], the heat kernel method [15], and using noncom-

mutative geometry [16]. The important question of whether the UV divergence in

entanglement entropy can be properly renormalized was explored by Susskind and

Uglum [17], which revealed that the standard renormalization of Newton’s constant

produces a finite entropy if we consider the entanglement entropy as a quantum

contribution to the Bekenstein-Hawking entropy. Later on, Ryu and Takayanagi [18]

proposed a holographic interpretation of entanglement entropy, linking it to the area

of a minimal surface in anti-de Sitter spacetime through the AdS/CFT correspon-

dence. Ongoing research suggests that entanglement entropy holds promise for a

better understanding of black holes and Quantum Gravity, as several reviews have

covered its role for black holes [19, 20], its calculation in quantum field theory in

flat spacetime [21], and its holographic aspects [22].

This thesis will provide a detailed analysis of the original methods of calculating

black hole entropy and a review of the newer methods of calculation, such as the

replica trick method, the heat kernel method, and the one-loop renormalization of

the gravitational action. Thus, the structure of this thesis will be as follows: In the

second chapter, we will generalize the brick wall method of calculating the entropy

3



to higher-dimensional black holes and apply it to certain black hole solutions. The

third chapter will cover the entanglement entropy calculation, the replica trick, and

the heat kernel method. In the fourth chapter, we will go in detail over the one-loop

renormalization of the gravitational action. The final chapter includes concluding

remarks. The units we will be using are c = kB = 1, unless otherwise stated.

4



2 The brick wall model

One of the very first ways of calculating the entropy of black holes was using the

brick wall method that was suggested by ’t Hooft [6]. In this section, we will go

over the method, generalize it for higher-dimensional black holes, and find that the

quantum corrections to the entropy that arise due to considering a quantum theory

are logarithmic in black hole area [23].

The brick wall model is a semi-classical approach to understanding the micro-

scopic origin of black hole entropy. The black hole geometry is assumed to be a fixed

classical background on which matter fields propagate, and the entropy of black holes

arises due to the canonical entropy of matter fields outside the black hole event hori-

zon, evaluated at the Hawking temperature. Considering the number of energy levels

that a particle can occupy in the vicinity of a black hole, we find that the density of

states diverges [6]. This, in turn, would suggest that the entropy of a black hole

diverges and can be used as an argument for claiming that a black hole is an infinite

sink of information. To remedy this infinity, we introduce a so-called brick wall near

the horizon. That is, we assume that all fields must vanish within some fixed distance

h from the horizon,

Φ(r) = 0, r = rH + h, (2.1)

where rH is the position of the horizon of the black hole. To further simplify our

calculations, we shall take Φ to be a scalar wave function, that is, we will consider

a scalar field theory. We shall consider a (D + 2)-dimensional, spherically symmetric

black hole spacetime with the metric

ds2 = −f(r)dt2 + dr2

g(r)
+ r2dΩ2

D, (2.2)

where dΩ2
D is the metric of a D−sphere. The surface gravity κ defined as

ka∇ak
b = κkb, (2.3)

where ka and kb are Killing vectors defined by the Killing equation

∇µkν +∇νkµ = 0. (2.4)

5



Since a given Killing vector is normal to its Killing horizon, we can use the following

property [24]

ka∇bkc + kb∇cka + kc∇akb = 0, (2.5)

Combining (2.4) and (2.5), we arrive at

kc∇akb = −ka∇bkc + kb∇akc. (2.6)

Contracting from the left with ∇akb,

(∇akb)(∇akb)kc = −ka∇akb∇bkc − kb∇bka∇akc (2.7)

= −κka∇akc − κkb∇bkc = −2κka∇akc = −2κ2kc.

We arrive at a formula for the surface gravity

κ =

√
−1

2
(∇akb)(∇akb)

∣∣∣∣∣
r=rH

=

√
−1

2
gaa′gbb′(∇a′kb′)(∇akb)

∣∣∣∣∣
r=rH

. (2.8)

In the case of a spherically symmetric spacetime, there are four Killing vectors, one

time-like and three space-like ones. Evaluating (2.8) for the simplest of these vectors,

the time-like one, which is of the form

kµ = (1, 0, 0, 0), kµ = (−f(r), 0, 0, 0), (2.9)

we find the surface gravity to be given by

κ =

√
−1

2
grrgtt(∇rkt)(∇rkt)

∣∣∣∣∣
r=rH

=

[√
g(r)

f(r)

(
f ′(r)

2

)]∣∣∣∣∣
r=rH

, (2.10)

where rH is the location of the event horizon of a given black hole. Since we will

consider the behavior of the field near the horizon, it is useful to expand the metric

functions g(r), and f(r) near the horizon up to second order,

f(r) = f ′(rH)(r − rH) +
1

2
f ′′(rH)(r − rH)

2 + . . . , (2.11)

g(r) = g′(rH)(r − rH) +
1

2
g′′(rH)(r − rH)

2 + . . . ,

6



where the horizon is defined as the value at which they vanish

g(rH) = f(rH) = 0. (2.12)

Another useful quantity that we will use is the proper radial distance from the

event horizon of the black hole to the brick wall. We will name it hc, and it is given

by

hc =

∫ rH+h

rH

dr√
g(r)

. (2.13)

Expanding g(r) up to first order and using the substitution x = r − rH we find

hc =

∫ h

0

dx√
g′(rH)x

=

√
4h

g′(rH)
. (2.14)

Since we are working in a scalar field theory, our field Φ satisfies the Klein-Gordon

equation: (
□− m2

ℏ2

)
Φ = 0, (2.15)

where □ = ∇µ∇µ represents the d’Alembertian operator, and m is the mass of the

scalar field.

Since the metric that we are using is diagonal, its determinant g has the form

g = −f(r)
g(r)

r2DH(θ, ϕ, ...), (2.16)

where H is a function of all angle variables of the D−sphere. The d’Alembertian can

then be rewritten as

□ = ∇µ∇µ =
1√
−g

∂µ(g
µν
√
−g∂ν) (2.17)

=
1√
−g

∂t(g
tt
√
−g∂t) +

1√
−g

∂i(g
ij
√
−g∂j) =

1√
−g

∂t(g
tt
√
−g∂t) +∇2

D+1,

where ∇2
D+1 is the (D+1)-dimensional Laplace operator in curved spacetime, which

in the case of a diagonal metric has the form

∇2
D+1 =

1√
−g

∂i(g
ij
√
−g∂j) =

1√
−g

D+1∑
i=1

∂i(g
ii
√
−g∂i). (2.18)

7



For a diagonal metric, the elements of the inverse metric, gµν , can be written as

gµν = 1/gµν .

Since gtt i
√
−g are both independent of t, the first term in the d’Alembertian can be

rewritten as

gtt∂tt = − 1

f(r)
∂tt, (2.19)

and the Klein-Gordon equation is now given by

(
− 1

f(r)
∂tt +∇2

D+1 −
m2

ℏ2

)
Φ = 0. (2.20)

Due to the rotational symmetry of the spacetime (2.2) we can use the ansatz [25]

Φ = e−iEt/ℏ R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi), (2.21)

whereG(r) =
√
f(r)g(r), i ∈ {1, ..., (D−1)} and Yℓmi

(θ, ϕi) denote the hyperspherical

harmonics. By plugging in (2.21) into (2.20), we show in Appendix A that the radial

equation for the scalar wave function is given by

R′′(r) +

[
V 2(r)

ℏ2
−∆(r)

]
R(r) = 0, (2.22)

where V 2(r) is defined in (A.9), and where ∆(r) is given by (A.18). We can notice

that the V 2(r) term plays the role of the effective potential [23]. Since it is diffi-

cult to find an exact analytical solution for the function R(r), we resort to the WKB

approximation. The WKB ansatz we are going to use is

R(r) =
1√
P (r)

exp

[
i

ℏ

∫ r

P (r′)dr′
]
. (2.23)

Using

R′(r) = −1

2

1

P (r)
P ′(r)R(r) +

i

ℏ
P (r)R(r) =

(
−1

2

P ′(r)

P (r)
+
i

ℏ
P (r)

)
R(r), (2.24)
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and

R′′(r) =

(
−1

2

P ′′(r)

P (r)
+

1

2

(
P ′(r)

P (r)

)2

+
i

ℏ
P ′(r)

)
R(r) +

(
−1

2

P ′(r)

P (r)
+
i

ℏ
P (r)

)2

R′(r)

=

(
−1

2

P ′′(r)

P (r)
+

1

2

(
P ′(r)

P (r)

)2

+
i

ℏ
P ′(r) +

1

4

(
P ′(r)

P (r)

)2

− i

ℏ
P ′(r)− 1

ℏ2
P (r)2

)
R(r)

=

(
−1

2

P ′′(r)

P (r)
+

3

4

(
P ′(r)

P (r)

)2

− 1

ℏ2
P (r)2

)
R(r), (2.25)

and plugging this into (2.22), we arrive at the following equation

P 2(r)[P 2(r)− V 2(r)] = ℏ2
[
3

4
P ′(r)

2 − 1

2
P ′′(r)P (r)−∆(r)P (r)2

]
. (2.26)

Originally, ’t Hooft [6] stopped at the leading order WKB solution for R(r), and

used that to evaluate the number of states N(E), which was then used to calculate

the free energy F and entropy S of the quantum field. Here we will extend the

analysis by going to higher orders of ℏ in the WKB aproximation. Now, writing P (r)

as a series in ℏ2

P (r) =
∞∑
n=0

ℏ2nP2n(r), (2.27)

and inserting this series into (2.26), and grouping the terms by powers of ℏ2, we

arrive at the equations for P2n(r), up to n = 2

P0(r) = ±V (r), (2.28)

P2(r) =

(
3

8P0(r)

)(
P ′
0(r)

P0(r)

)2

−
(
P ′′
0 (r)

4P0(r)2

)
−
(

∆(r)

2P0(r)

)
,

P4(r) = −
(
5P2(r)

2

2V (r)

)
−
(
4P2(r)∆(r) + P ′′

2 (r)

4V 2(r)

)
+

(
3P ′

2(r)V
′(r)− P2(r)V

′′(r)

4V 3(r)

)
.

Notice how higher order terms P2n for n > 1 can be recursively written as functions of

P0(r). Furthermore, P (r) was written as a series in ℏ2 instead of ℏ because the terms

proportional to odd powers of ℏ are zero. This can be easily shown by plugging an

expansion that includes odd powers into the equation (2.26) and grouping the terms

in powers of ℏ.

Since our WKB ansatz is of the form R ∼ ei
∫
Pdr, we follow the standard quanti-

zation procedure [6], imposing a quantization condition similar to
∫
Pdr = ℏπn, for

each mode, P2n, where the total number of states of the field is given by N =
∑
n.

9



More specifically, we impose

∫ L

rH+h

dr

∫ ℓmax

0

dℓ(2ℓ+D − 1)W(ℓ)P2n(r) = πℏ1−2nN2n(E), (2.29)

where we have transitioned from the sum over the angular quantum number ℓ to

the integral, since the difference between any two angular momenta is smaller than

ℓmax, i.e ℓmax ≫ 1, where

W(ℓ) =
(ℓ+D − 2)!

(D − 1)!ℓ!
(2.30)

is the degeneracy factor of the angular momentum, which becomes important at

spacetime dimensions that differ from D = 2, and where N2n(E) is the contribution

of the n-th mode to the total number of states of the field with energy less than E,

N(E) =
∞∑
n=0

N2n(E). (2.31)

We should note that the upper bound of the radial integral (2.29), L, signifies the

infrared cutoff, imposed to guarantee the finiteness of the entropy at large distances.

ℓmax is given in such a way that the functions P2n are real, or equivalently, that P0(r)

is real. The condition on ℓmax is then

ℓmax(ℓmax +D − 1) =
r2

ℏ2

(
E2

f(r)
−m2

)
. (2.32)

We decompose the entropy and the free energy in the same manner

S =
∞∑
n=0

S2n, F =
∞∑
n=0

F2n, (2.33)

where

F2n = −
∫ ∞

0

N2n(E)

eβE − 1
dE, S2n = β2∂F2n

∂β
. (2.34)

To derive the left relation in (2.34), we use statistical mechanics.

e−βF = Z =
∑
i

e−βEi =
∏
n,l,m

∑
N

(
e−βE

)N
=
∏
n,l,m

1

1− e−βE
, (2.35)

where Z is the partition function, and where it is summed over all the allowed states

10



indexed by i, where some states might have the same energy. Since the energy

spectrum of the given particles is determined by n, l andm, and using the assumption

that the particles are independent, we can switch from the sum to the integral over

those quantum numbers, summing over all the particles in that particular mode. The

free energy is then given by

F =
1

β

∑
N

ln(1− e−βE) =
1

β

∫
dN ln(1− e−βE) = −

∫
dE

N(E)

eβE − 1
, (2.36)

where we transitioned from the sum to the integral since we are assuming that we

can have arbitrary many particles in the vicinity of the black hole, and where we

partially integrated in the last step.

2.1 Electrically neutral black holes in 4 dimensions

In this subsection, we will calculate the entropy up to the second order for the case of

a four-dimensional black hole (D = 2), with f(r)=g(r) and m = 0. Equations (A.9)

and (A.18) are now given by

V 2(r) =
1

g2(r)

(
E2 − g(r)

ℓ(ℓ+ 1)ℏ2

r2

)
, (2.37)

and

∆(r) =

(
g′′(r)

2g(r)

)
−
(
g′(r)2

4g(r)2

)
+

(
1

r

)(
g′(r)

g(r)

)
. (2.38)

For the zeroth order, P0(r) can be written as

P0(r) = ± 1

g(r)

[
E2 − g(r)

ℏ2ℓ(ℓ+ 1)

r2

]1/2
, (2.39)

and after plugging it into N0(E)

N0(E) =
1

ℏπ

∫ L

rH+h

dr

∫ ℓmax

0

dℓ(2ℓ+ 1)P0(r), (2.40)

11



using the substitution λ = ℓ(ℓ+ 1) we are left with

N0(E) =
1

ℏπ

∫ L

rH+h

dr

∫ r2E2/ℏ2g(r)

0

dλ

√
E2

g2(r)
− ℏ2λ
g(r)r2

, (2.41)

and we finally obtain

N0(E) =
2E3

3πℏ3

∫ L

rH+h

r2

g2(r)
dr. (2.42)

The free energy is given by

F0 = − 2π3

45ℏ3
1

β4

∫ L

rH+h

r2

g2(r)
dr, (2.43)

and the entropy by

S0 =
8π3

45ℏ3
1

β3

∫ L

rH+h

r2

g2(r)
dr. (2.44)

Before introducing the brick wall, the entropy diverged at the horizon due to the

diverging density of states. We use this fact to conclude that the dominant contri-

bution to the entropy will be from the terms that, after the r integration, diverge

as h → 0. To that end, we introduce the near-horizon variable x = r − rH. After

expanding the metric function to higher orders near the horizon

g(r) = (r − rH)g
′(rH) +

1

2
(r − rH)

2g′′(rH), g′(r) = g′(rH) + (r − rH), (2.45)

g′′(rH), g′′(r) = g′′(rH),

and, instead of g′(rH) and g′′(rH) using g′ i g′′, we can write the entropy as

S0 =
κ3

45

∫ L−rH

h

dx
(x+ rH)

2

(g′x+ x2g′′/2)2
. (2.46)

The dominant terms will now be those of the form x−k, k ≥ 1. We can now use the

following expansions to calculate the entropy

1

xg′ + x2g′′/2
=

1

xg′(1 + xg′′/(2g′))
=

1

xg′

(
1− xg′′

2g′

)
, (2.47)

1

(xg′ + x2g′′/2)2
=

1

x2g′2 + x3g′′g′
=

1

x2g′2(1 + xg′′/g′)
=

1

x2g′2

(
1− xg′′

g′

)
.

Furthermore, we will ignore all constant and linear terms of x under the integral

since after the integration, they will be proportional to h i h2, and hence will not be
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divergent as h→ 0, and neither contribute significantly to the entropy.

S0 =
κ3

45

∫ L−rH

h

dx
(x+ rH)

2

(g′x+ x2g′′/2)2
(2.48)

=
κ3

45

∫ L−rH

h

dx

(
1

g′2
+

2rH
xg′2

+
r2H
x2g′2

)(
1− xg′′

g′

)
=
κ3

45

∫ L−rH

h

dx

(
2rH
xg′2

+
r2H
x2g′2

− r2Hg
′′

xg′3

)
=

g′3

8 · 45
r2H
hg′2

+

(
2

45

κg′2

4

rH
g′2

− g′3

8 · 45
r2Hg

′′

g′3

)
ln

(
L− h

h

)
=

r2H
90h2c

−
(
g′′(rH)r

2
H

360
− κrH

90

)
ln
(α
h

)
The previous integration leads to a correction term in the form of

ln

(
L− rH
h

)
= ln

(
L− rH
h

α

α

)
= ln

(α
h

)
+ ln

(
L− h

α

)
≈ ln

(α
h

)
, (2.49)

where we have ignored the part proportional to L, since it signifies the infrared

divergence and can thus always be removed. We also interpret this term as the

vacuum contribution to the entropy. Essentially, this way we have introduced a free

constant, α, which we can choose as we like. The way that we will choose it is

that after we obtain the equation for the entropy, we will equate the most divergent

part of the entropy, with regards to the cutoff hc, with SBH. Using the relation that

connects hc and h, (2.14), and plugging that h back in the logarithm term, we will

determine α in such a way that the argument of the logaritham has the form
(

A
ℓ2Pl

)
.

S0 =
r2H
90h2c

+

[
κrH
90

− g′′(rH)r
2
H

360

]
ln
(α
h

)
. (2.50)

We notice that even in the leading order we have a correction term that is logarith-

mic in nature. If we were to stop at this order, we would have to equate the most

divergent part of the entropy with SBH, to obtain h2c .

(S0)div =
r2H
90h2c

= SBH =
A
4ℓ2Pl

, (2.51)

using A = 4r2Hπ, we have

h2c =
ℓ2Pl
90π

. (2.52)
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So to ensure that the logarithmic part has the form A/ℓ2Pl, we have to choose α =

r2Hg
′(rH)/90. The entropy at the zeroth order would be given by

S = S0 =
r2H
90h2c

+

[
κrH
90

− g′′(rH)r
2
H

360

]
ln

(
4r2H
90h2c

)
, (2.53)

and after plugging in (2.52), we are left with

S = SBH + F1(A) ln

(
A
ℓ2Pl

)
, (2.54)

where

F1(A) =
κrH
90

− g′′(rH)r
2
H

360
. (2.55)

To calculate the second order correction to the entropy, notice that we can rewrite

P2(r) as

P2(r) =

(
P

(0)
2 (r)

G(E , r)

)
+ λ(r)

(
P

(1)
2 (r)

G3(E , r)

)
+ λ2(r)

(
P

(2)
2 (r)

G5(E , r)

)
, (2.56)

where we defined

G(E , r) = [E − λ(r)]1/2, (2.57)

with E = E2 and

λ(r) = ℓ(ℓ+ 1)ℏ2
g(r)

r2
, (2.58)

and where P (0)
2 (r), P

(1)
2 (r), P

(2)
2 (r) are given by

P
(0)
2 (r) = −g

′(r)

2r
, (2.59)

P
(1)
2 (r) =

3g(r)

4r2
− 3g′(r)

4r
+
g′′(r)

8
+
g′(r)2

8g
, (2.60)

P
(2)
2 (r) =

5g

8r2
− 5g′(r)

8r
+

5g′(r)2

32g
. (2.61)

Before we turn to calculating N2(r), notice that the following relations for the func-

tion (2.57) hold

1

G(E , r)
= 2

∂G(E , r)
∂E

,
1

G3(E , r)
= −4

∂2G(E , r)
∂E2

,
1

G5(E , r)
=

8

3

∂3G(E , r)
∂E3

. (2.62)
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They will prove useful when applying the Leibniz rule

∂

∂x

∫ b(x)

a(x)

f [x, t]dt = f [x, b(x)]

(
db(x)

dx

)
(2.63)

−f [x, a(x)]
(
da(x)

dx

)
+

∫ b(x)

a(x)

[
∂f(x, t)

∂x

]
dt,

to calculate N2(E). N2(E) is defined as

N2(E) =
ℏ
π

∫ L

rH+h

dr

∫ ℓmax

0

dℓ(2ℓ+ 1)P2(r). (2.64)

Substituting (2.58) into (2.64), we have

ℏN2(E) =
1

π

∫ L

rH+h

r2

g(r)
dr

∫ E

0

[
2
∂G(E , λ)
∂E

P
(0)
2 (r)dλ (2.65)

−4λ
∂2G(E , λ)
∂E2

P
(1)
2 (r)dλ+

8

3
λ2
∂3G(E , λ)
∂E3

P
(2)
2 (r)dλ

]
.

We now use the Leibniz rule to extract the divergences that would arise if we

were to execute the λ integration on the right-hand side. The first integral does not

lead to divergent terms. Using (2.63) with a(E) = 0 and b(E) = E we have

∫ E

0

P
(0)
2 (r)

∂G(E , r)
∂E

dλ =
∂

∂E

∫ E

0

P
(0)
2 (r)G(E , r)dλ. (2.66)

Applying (2.63) to the second integral and third integral in (2.65), we arrive at

∫ E

0

λ
∂2G(E , λ)
∂E2

dλ =
∂

∂E

∫ E

0

λ
∂G(E , λ)
∂E

dλ− E ∂G(E , λ)
∂E

∣∣∣∣
E=λ

(2.67)

=
∂2

∂E2

∫ E

0

λG(E , λ)dλ− E
2(E − λ)1/2

∣∣∣∣
E=λ

,∫ E

0

λ2
∂3G(E , λ)
∂E3

dλ =
∂3

∂E3

∫ E

0

λ2G(E , λ)dλ−
[
∂

∂E

[
E2

2G(E , λ)

]
− E2

4G3(E , λ)

]∣∣∣∣
E=λ

.

From the upper two equations, we see that both integrals have a finite and a diver-

gent part. The divergence happens at the turning point E = λ. This is a non-physical

divergence that arises due to the fact that the WKB approximation is not viable near

the turning points of the effective potential [26]. After discarding the non-physical
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divergences, N2(E) is given by

ℏN2(E) =
2

π

∫ L

rH+h

dr
r2

g(r)
P

(0)
2 (r)

∂

∂E

∫ E

0

G(E , λ)dλ (2.68)

− 4

π

∫ L

rH+h

dr
r2

g(r)
P

(1)
2 (r)

∂2

∂E2

∫ E

0

λG(E , λ)dλ

+
8

3π

∫ L

rH+h

dr
r2

g(r)
P

(2)
2 (r)

∂3

∂E3

∫ E

0

λ2G(E , λ)dλ.

Using the integrals

∫ E

0

G(E , λ)dλ =
2

3
E3/2,

∫ E

0

λG(E , λ)dλ =
4

15
E5/2, (2.69)∫ E

0

λ2G(E , λ)dλ =
16

105
E7/2,

and after differentiating by E and plugging E = E2, N2(E) is given by

N2(E) =
E

πℏ

∫ L

rH+h

r2

g(r)

(
2P

(0)
2 − 4P

(1)
2 +

16

3
P

(2)
2

)
dr. (2.70)

Plugging in (2.59-2.61), the final expression for N2(E) is given by

N2(E) =
E

ℏπ

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
. (2.71)

Applying the formula for the free energy (2.34), we first evaluate the energy integral

∫ ∞

0

EdE

eβE − 1
= {u = βE, du = βdE} =

1

β2

∫ ∞

0

udu

eu − 1
(2.72)

=

{∫ ∞

0

x

ex − 1
=
π2

6

}
=
π2

6β
.

The free energy is given by

F2 = − π

6ℏβ2

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
, (2.73)

and the entropy

S2 =
π

3ℏβ

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
. (2.74)

After applying the same procedure for calculating S0, and using the substitution x =
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r − rH, the entropy has the following form

S2 =
π

3ℏβ

∫ L−rH

h

dx

[
− 4(x+ rH)(g

′ + xg′′)

3(xg′ + x2g′′/2)
(2.75)

+(x+ rH)
2

(
(g′ + xg′′)2

3(xg′ + x2g′′/2)2
− g′′

2(xg′ + x2g′′/2)

)]
,

The first term in the integrand can be rewritten as

−4(x+ rH)(g
′ + xg′′)

3(xg′ + x2g′′/2)
= −4

3

(x+ rH)(g
′ + xg′′)

3xg′

(
1− xg′′

2g′

)
(2.76)

= − 4

3g′

(
1 +

rH
x

)
(g′ + xg′′)

(
1− xg′′

2g′

)
= − 4

3g′
g′rH
x

(
1− xg′′

2g′

)
= −4rH

3x
,

where we kept terms proportional to x−k, k ≥ 1, as done previously. The second

factor in the second term in the integral can be written as

(
g′2

3x2g′2
+

2xg′g′′

3x2g′2
+
x2g′′2

3x2g′2

)(
1− xg′′

g′

)
− g′′

2xg′

(
1− xg′′

2g′

)
(2.77)

=
1

3x2
+

2g′′

3xg′
− g′′

2xg′
=

1

3x2
+
g′′r2H
6g′

.

The entire second term is thus given by

(x2 + 2xrH + r2H)

(
1

3x2
+
g′′r2H
6

)
=

(
2rH
3x

+
r2H
3x2

+
g′′r2H
6g′

)
. (2.78)

At Hawking temperature, the factor in front of the entire integral assumes the fol-

lowing form
π

3ℏβ
= {1/β = TH = ℏκ/(2π)} =

κ

6
. (2.79)

The entropy is now

S2 =
κ

6

∫ L−rH

h

dx

(
r2H
3x2

− 2rH
3x

+
g′′r2H
6

)
=
g′

12

r2H
3h

+

(
g′

12

g′′r2H
6g′

− κrH
9

)
ln
(α
h

)
(2.80)

= {h2c = 4h/g′} =
r2H
9h2c

−
(
g′′(rH)r

2
H

72
+
κrH
9

)
ln
(α
h

)
.

The entropy up to second order S = S0 + S2 has the form

S =
11r2H
90h2c

−
(
κrH
10

+
g′′(rH)r

2
H

60

)
ln
(α
h

)
. (2.81)
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Equating the most divergent term with the Bekenstein-Hawking entropy, the re-

lation for hc is given by

h2c =
11ℓ2Pl
90π

. (2.82)

Choosing α following the same procedure as before, α = 11r2Hg
′(rH)/90, the entropy

up to second order can now be written in the form

S = SBH + F(A) ln

(
A
ℓ2Pl

)
, (2.83)

where

F(A) = −κrH
10

− g′′(rH)r
2
H

60
. (2.84)

2.1.1 Schwarzschild black hole

Applying this result to the Schwarzschild black hole,

g(r) = 1− 2GM

r
, rH = 2GM, κ =

1

4GM
=

1

2rH
, g′′(rH) = − 1

2G2M2
= − 2

r2H
,

we obtain

S = SBH − 1

60
ln

(
A
ℓ2Pl

)
. (2.85)

The Schwarzschild black hole receives a correction to its entropy in the form of a

logarithm of the horizon area of the Schwarzschild black hole. An important thing to

note is that the factor that multiplies the logarithm is a constant and not dependent

on the horizon area.

2.2 Charged black holes and charged probes

To expand our consideration to charged black holes and charged probes, we will solve

the Klein-Gordon equation using the minimal substitution ∂µ → ∂µ + i
ℏqAµ, where

Aµ = (A0(r), 0, 0, 0) describes the 4-vector potential of the charged spacetime, and q

is the charge of the scalar field we will be probing the spacetime with. Furthermore,
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we will assume f(r) = g(r). The Klein-Gordon equation now becomes

(
1√
−g

(
∂µ +

i

ℏ
qAµ

)(√
−ggµν

(
∂ν +

i

ℏ
qAν

))
− m2

ℏ2

)
Φ = 0. (2.86)

After multiplying out, we are left with

(
1√
−g

(
∂µ(

√
−ggµν∂ν) + ∂µ

(√
−ggµν i

ℏ
qAν

)
(2.87)

+
i

ℏ
qAµ(

√
−ggµν∂ν)

)
− 1

ℏ2
gµνq2AµAν −

m2

ℏ2

)
Φ = 0.

In Appendix B, we show that, after using the same ansatz as in the neutral case, the

radial equation is given by

R′′(r) +

(
W 2(r)

ℏ2
−∆(r)

)
R(r) = 0. (2.88)

where we defined a new quantity

W 2(r) =
1

G2(r)

(
(E − qA0(r))

2 − f(r)

[
m2 +

(
ℓ(ℓ+D − 1)ℏ2

r2

)])
, (2.89)

for which the radial equation then has the same structure as before (2.22), with

V 2(r) → W 2(r), i.e., E → E − qA0(r). This also means that, in order to calculate

the zeroth and second order corrections to the entropy for a charged black hole

that is probed with a charged scalar field, we just have to apply the transformation

E → E − qA0(r) in the defining equations for N0 (2.42) and N2 (2.71) and evaluate

those integrals.

2.2.1 Reissner-Nordström black hole

In this subsection, we calculate the entropy of a Reissner-Nordström black hole

probed with a charged masless scalar field Φ, where [16]

A0(r) =
Q

r
, g(r) = 1− 2GM

r
+
Q2G

r2
, D = 2, m = 0, (2.90)

r± = GM ±
√
G2M2 −GQ2, rH = r+.
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The number of modes in the zeroth order is

N0(E) =
2

3πℏ3

∫ L

r++h

dr

(
E − qQ

r

)3
r2dr

g2(r)
=

2

3πℏ

∫ L

r++h

dr

(
E − qQ

r

)3
r6

(r − r+)2(r − r−)2
(2.91)

=
2

3πℏ3

∫ L−r+

h

dx

(
E − q Q

x+r+

)3
(x+ r+)

6

x2(x+ r+ − r−)2

=
2

3πℏ3

∫ L−r+

h

dx
(E(x+ r+)

2 − qQ(x+ r+))
3

x2(x+ r+ − r−)2

=
2

3πℏ3
r6+(E − qQ

r+
)3

(r+ − r−)2
1

h

+
2

3πℏ3

3r5+

(
2E − qQ

r+

)(
E − qQ

r+

)2
(r+ − r−)2

−
2r6+

(
E − qQ

r+

)3
(r+ − r−)3

 ln
(α
h

)
.

The first term has the same structure as the number of modes in [16], while the

second is the logarithmic correction. We can write the free energy as

F0 =− 2

3πℏ3
r6+

(r+ − r−)2
1

h
K(β) (2.92)

− 2

3πℏ3

(
3r5+

(r+ − r−)2
K ′(β)−

2r6+
(r+ − r−)3

K(β)

)
ln
(α
h

)
,

where the functions K(β) and K ′(β) are given by

K(β) =

∫ ∞

0

dE

(
E − qQ

r+

)3
eβE − 1

(2.93)

=
Γ(4)ζ(4)

β4
− 3qQΓ(3)ζ(3)

r+β3
+

3q2Q2Γ(2)ζ(2)

r2+β
2

− q3Q3Γ(1)ζ(1)

r3+β
,

and

K ′(β) =

∫ ∞

0

(
2E − qQ

r+

)(
E − qQ

r+

)2
eβE − 1

(2.94)

=
2Γ(4)ζ(4)

β4
− 5qQΓ(3)ζ(3)

r+β3
+

4q2Q2Γ(2)ζ(2)

r2+β
2

− q3Q3Γ(1)ζ(1)

r3+β
.

The K(β) and K ′(β) functions have an infinite contribution from the electrostatic

self-energy of the charge q of the scalar particle, which is contained in the ζ(1) term,

which we can regulize by rescaling Sreg
0 = S0(β) − S0(β = ∞). This way, we ensure
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that S = 0 when T = 1/β = 0. The entropy is then given by

S0 =− 2

3πℏ3
r6+

(r+ − r−)2
1

h

(
−4Γ(4)ζ(4)

β3
+

9qQΓ(3)ζ(3)

r+β2
− 6q2Q2Γ(2)ζ(2)

r2+β

)
(2.95)

− 2

3πℏ3

(
3r5+

(r+ − r−)2

(
−8Γ(4)ζ(4)

β3
+

15qQΓ(3)ζ(3)

r+β2
− 8q2Q2Γ(2)ζ(2)

r2+β

)
−

2r6+
(r+ − r−)3

(
−4Γ(4)ζ(4)

β3
+

9qQΓ(3)ζ(3)

r+β2
− 6q2Q2Γ(2)ζ(2)

r2+β

))
ln
(α
h

)
,

Evaluating the entropy at the Hawking temperature, TH = 1/β = κℏ/(2π) = g′(rH)ℏ/(4π),

and using Γ(n) = (n− 1)!, ζ(4) = π4/90, ζ(2) = π2/6 we have

S0 =
r6+

(r+ − r−)2
1

h

(
(g′(r+))

3

360
− 3qQζ(3)(g′(r+))

2

4r+ℏ
+
q2Q2g′(r+)

6r2+ℏ2

)
(2.96)

+

(
r5+

(r+ − r−)2

(
(g′(r+))

3

60
− 15qQζ(3)(g′(r+))

2

4π3r+ℏ
+

2q2Q2g′(r+)

3r2+ℏ2

)
−

r6+
(r+ − r−)3

(
(g′(r+))

3

180
− 3qQζ(3)(g′(r+))

2

2π3r+ℏ
+
q2Q2g′(r+)

3r2+ℏ2

))
ln
(α
h

)
.

Using

g(r) = 1− 2GM

r
+
Q2G

r2
, (2.97)

and

g′(r+) =
2

r3+
(r+GM −Q2G) = 2

GM(GM +
√
G2M2 −Q2G)−Q2G

r3+
(2.98)

= 2
G2M2 −Q2G+GM

√
G2M2 −Q2G

r3+

= 2
√
G2M2 −Q2G

√
G2M2 −Q2G+GM

r3+
=
r+ − r−
r2+

,

we are now left with

S0 =
1

h

(
(r+ − r−)

360
− 3qQr+ζ(3)

4π3ℏ
+

q2Q2r2+
6(r+ − r−)ℏ2

)
(2.99)

+

((
(r+ − r−)

60r+
− 15qQζ(3)

4π3ℏ
+

2q2Q2r+
3(r+ − r−)ℏ2

)
−
(

1

180
− 3qQr+ζ(3)

2π3(r+ − r−)ℏ
+

q2Q2r2+
3(r+ − r−)2ℏ2

))
ln
(α
h

)
.
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After rearranging, we finally have

S0 =
1

h

(
r+ − r−
360

− 3qQr+ζ(3)

4π3ℏ
+

q2Q2r2+
6(r+ − r−)ℏ2

)
(2.100)

+

(
2r+ − 3r−
180r+

− 3qQζ(3)(3r+ − 5r−)

4π3(r+ − r−)ℏ
+
q2Q2r+(r+ − 2r−)

3(r+ − r−)2ℏ2

)
ln
(α
h

)
.

With Q→ 0, i.e. r+ = rH = 2GM and r− = 0,

lim
Q→0

S0 =
GM

180h
+

1

90
ln
(α
h

)
, (2.101)

Which completely coincides with S0 for the result obtained for the Schwarzschild

black hole (2.54)

S0,SCHW =
r2H
90h2c

−
(
g′′(rH)r

2
H

360
− κrH

90

)
ln
(α
h

)
(2.102)

=

{
h2c =

4h

g′(rH)
, g′(rH) =

1

rH
, κ =

1

2rH
, g′′(rH) = − 2

r2H

}
=

rH
360h

−
(
− 1

180
− 1

180

)
ln
(α
h

)
=
GM

180h
+

1

90
ln
(α
h

)
.

For q → 0, (2.100) obtains the form

S0 =
r+ − r−
360h

+
2r+ − 3r−
180r+

ln
(α
h

)
. (2.103)

Applying Q → 0 to this result, we reproduce (2.102). Furthermore, the leading

contribution to both cases is in agreement with the solution given in [16]. For the

second order, we apply E → E − qA0(r) to N2(E)

N2(E) =
1

ℏπ

∫ L

rH+h

dr

(
E − qQ

r

)[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
. (2.104)

which leads to the following free energy

F2 = − 1

ℏπ

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
K ′′(β) (2.105)

with

K ′′(β) =

∫ ∞

0

dE

(
E − qQ

r

)
eβE − 1

, K ′′(β) =
Γ(2)ζ(2)

β2
− qQΓ(1)ζ(1)

rβ
. (2.106)
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We once again discard the ζ(1) term, interpreting it as the infinite contribution from

the electrostatic self-energy. We are left with

F2 = − π

6ℏβ2

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
. (2.107)

The entropy evaluated at Hawking temperature is now

S2 =
π

3ℏβ

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
(2.108)

=
κ

6

∫ L

rH+h

dr

[
1

3
− 4rg′(r)

3g(r)
+ r2

(
g′(r)2

3g(r)2
− g′′(r)

2g(r)

)]
.

To calculate this, we introduce some shorthand notation,

g(r) = 1− 2GM

r
+
Q2G

r2
=

(r − r−)(r − r+)

r2
, r± = GM ±

√
G2M2 −GQ2

(2.109)

g′(r) =
2GMr − 2Q2G

r3
≡ ar + b

r3
, a = 2GM, b = −2Q2G, (2.110)

g′′(r) =
6Q2G− 4GMr

r4
≡ c+ dr

r4
, c = 6Q2G, d = −4GM (2.111)

and now we can write the entropy as

S2 =
κ

6

∫ L

rH+h

dr

[
−4

3

ar + b

(r − r−)(r − r+)
+

1

3

(ar + b)2

(r − r−)2(r − r+)2
− 1

2

c+ dr

(r − r+)(r − r−)

]
(2.112)

=
κ

6

∫ L−rH

h

dx

[
−

4
3
(a(x+ r+) + b) + 1

2
(c+ d(x+ r+))

x(x+ r+ − r−)
+

1

3

(a(x+ r+) + b)2

x2(x+ r+ − r−)2

]
,

where we ignored the constant term in the integral since it would be proportional to

h after the integration. Using the following series expansions, with D = r+ − r−

1

x+D
=

1

D

(
1− x

D

)
,

1

(x+D)2
=

1

D2

(
1− 2x

D

)
, (2.113)
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the entropy is now

S2 =
κ

6

∫ L−rH

h

dx

[
−Ax+B

xD

(
1− x

D

)
+

1

3

(Cx+ E)2

x2D2

(
1− 2x

D

)]
(2.114)

=
κ

6

∫ L−rH

h

dx

[
− B

Dx
+

1

3

(
2EC

xD2
+

E2

x2D2
− 2E2

xD3

)]
=
κ

6

(
E2

3D2

1

h
+

(
2EC

3D2
− 2E2

3D3
− B

D

)
ln
(α
h

))
,

where the constants A,B,C,D,E are defined as

E = ar+ + b, D = r+ − r−, C = a, (2.115)

B =
4

3
ar+ +

4

3
b+

1

2
c+

1

2
dr+, A =

4

3
a+

1

2
d

Using

κ

6
=
g′(r+)

12
=

1

12

r+ − r−
r2+

, (2.116)

we arrive at

S2 =
r+ − r−
36h

− 1

36
ln
(α
h

)
. (2.117)

We have arrived at a result that does not depend on the charge of the probe, q as we

discarded the only part that had q, due to its appearance in the divergent contribution

to the entropy. For Q→ 0

S2 =
rH
36h

− 1

36
ln
(α
h

)
=
GM

18h
− 1

36
ln
(α
h

)
, (2.118)

we recover the Schwarzschild result for S2 from [23]

S2 =
r2H
9h2c

−
(
g′′(rH)r

2
H

72
+
κrH
9

)
ln
(α
h

)
(2.119)

= {g′(rH) = 1/rH, g
′′(rH) = −2/r2H} =

GM

18h
− 1

36
ln
(α
h

)
.
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The total entropy for the Reissner-Nordström black hole up to second order is given

by

S = S0 + S2 (2.120)

=
1

h

(
11(r+ − r−)

360
− 3qQr+ζ(3)

4π3ℏ
+

q2Q2r2+
6(r+ − r−)ℏ2

)
+

(
−(r+ + r−)

60r+
− 3qQζ(3)(3r+ − 5r−)

4π3(r+ − r−)ℏ
+
q2Q2r+(r+ − 2r−)

3(r+ − r−)2ℏ2

)
ln
(α
h

)
.

For the limit Q → 0 we have shown that both S0 and S2 recover the Schwarzschild

entropy, and so their total contribution also coincides with the total entropy up to

second order for the Schwarzschild black hole. For q → 0 we have

S =
11(r+ − r−)

360h
− (r+ + r−)

60r+
ln
(α
h

)
, (2.121)

which is the same entropy as the one obtained in [23], where only a charged space-

time was considered and not a charged probe.
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3 Entanglement entropy

Entanglement entropy is a measure of the quantum entanglement between two sub-

systems, usually obtained by tracing out one of the subsystems from the total quan-

tum state. In the context of black hole physics, the subsystems of interest are the

degrees of freedom inside and outside the event horizon. The calculation of entan-

glement entropy involves dividing the spacetime into two regions: the black hole

interior and the exterior. The entanglement entropy is then defined as the von Neu-

mann entropy of the reduced density matrix corresponding to the interior region.

The calculation of entanglement entropy has provided a microscopic understand-

ing of black hole entropy. It has also led to an understanding of some of the under-

lying microscopic degrees of freedom responsible for the entropy and established a

connection between quantum entanglement and gravity. In this section of the thesis,

we will calculate the entanglement entropy of a system by modeling a scalar field on

R3 as a collection of coupled oscillators. We will primarily follow [7-9], and we will

also assume ℏ = 1.

Let us consider a pure vacuum state |ψ⟩ of a quantum system defined within a

spacelike section O, and let us assume that the degrees of freedom are localized in

some regions of O. If we investigate an arbitrary surface Σ, which partitions the

space O onto two disjoint subspaces A i B, then the given quantum system can be

represented as a union of two subsystems. The wave function of the entire system is

then given by the linear combination of the product of the quantum states of every

subsystem,

|ψ⟩ =
∑
i,a

ψi,a |A⟩i |B⟩a , (3.1)

where the states |A⟩i are constructed from degrees of freedom localized in the region

A, while states |B⟩a from the degrees of freedom in region B.

The density matrix, which corresponds to the pure quantum of the system |ψ⟩ is

given by

ρ0(A,B) = |ψ⟩ ⟨ψ| , (3.2)

and has zero von Neumann entropy, since the pure state is one without uncertainty.

If we trace over the degrees of freedom in region A, i.e., the partial trace TrA for

the density matrix of the pure state, we obtain the reduced density matrix for the
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subsystem B

ρB = TrAρ0(A,B). (3.3)

The statistical entropy for some density matrix is called the von Neumann entropy

and is given by

S = −Tr(ρ ln ρ). (3.4)

This means that the entropy for the subsystem B is given by

SB = −Tr(ρB ln ρB), (3.5)

which coincides with the entanglement entropy, which is connected with the surface

Σ. Applying the same procedure, we can obtain the entanglement entropy SA. We

can now show that the following equality holds true

SA = SB. (3.6)

Let A be the region inside the horizon and B the one outside. We have [8] (ρA)ij =

(ψψ†)ij, and (ρB)ij = (ψTψ∗)ij. We can see that, for k ∈ N,

Tr(ρkA) = Tr((ψψ†) . . .︸︷︷︸
k−2 terms

(ψψ†)) = {cyclicity} = Tr(ψ†ψ . . . ψ†ψ) (3.7)

= Tr((ψTψ∗)T . . . (ψTψ∗)T ) = Tr((ρkB)
T ) = Tr(ρkB).

Writing ln(ρA) as a power series,

ln(ρA) = −
∞∑
k=1

(−)k(ρA − 1)k

k
= −

∞∑
k=1

k∑
j=0

(
k

j

)
(−)jρkA, (3.8)

we can show that the entropies are indeed equal

SA = −Tr(ρA ln ρA) = −
∞∑
k=1

k∑
j=0

(
k

j

)
(−)jTr(ρk+1

A ) (3.9)

=
∞∑
k=1

k∑
j=0

(
k

j

)
(−)jTr(ρk+1

B ) = SB.

This shows that the entanglement entropy for a system in a pure state is not an ex-
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tensive quantity, i.e., it does not depend on the size of neither region A nor region B,

and thus is determined by the geometry of the surface that partitions the space, Σ.

Applying this to black holes, we can conclude that the black hole entropy can be cal-

culated by calculating the entropy outside the black hole. This is in accordance with

the brick wall method, where we calculated the entropy by observing the behavior

of scalar fields outside the black hole, and where we also concluded that the leading

contribution to the entropy comes from the black hole horizon.

3.1 Entropy of a collection of coupled harmonic oscillators

To showcase how entanglement entropy works, let us consider a simple case where

we model a scalar field on R3 as a collection of coupled oscillators on a lattice of

spaced points, labeled by capital Latin indices, and the displacement at each point

gives the value of the scalar field at that point. The Lagrangian of such a system is

given by

L =
1

2
GMN q̇

M q̇N − 1

2
VMNq

MqN , (3.10)

where qM gives the displacement of the M th oscillator, and q̇M its generalized veloc-

ity. The symmetric tensor GMN is positive definite and has the following property

GMPGPN = δMN , (3.11)

where GMN is its inverse. This matrix can be considered a metric on this configu-

ration space of the coupled harmonic oscillators. The matrix VMN is also symmetric

and positive definite. We introduce the conjugate momentum to qM ,

PM = GMN q̇
N (3.12)

And the Hamiltonian for this system now has the form of

H =
1

2
GMN q̇

M q̇N +
1

2
VMNq

MqN (3.13)

Now we define a new symmetric matrix WMN as

GABWMAWBN = WMAW
A
N = VMN , (3.14)
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where the metric G was used to raise indices. Essentially, the W matrix can be

considered the square root of the matrix V in the scalar product induced by G.

We can rewrite the Hamiltonian in the following way

H =
1

2
GMN(PM − iWMAq

A)∗(PN − iWNBq
B) +

1

2
Tr(W ), (3.15)

where Tr(W ) term is the zero-point energy. To prove this, we multiply the terms in

the brackets and use the definition of the conjugate momentum

H =
1

2
GMNPMPN +

i

2
(GMNWMAq

APN −GMNPMWNBq
B) (3.16)

+
1

2
GMNWMAWNBq

AqB +
1

2
WA

A

=
1

2
GMNGMAq̇

AGNB q̇
B +

i

2
(GMNWMAq

AGNB q̇
B −GMNGMAq̇

AWNBq
B)

+
1

2
VABq

AqB
1

2
+WA

A

=
1

2
GAB q̇

Aq̇B +
1

2
VABq

AqB +
1

2
WA

A

This form looks like the familiar Hamiltonian of a quantum harmonic oscillator, if we

interpret the following two operators as the creation and annihilation operators

a∗M =
(
PM − iWMAq

A
)∗

= PM + iWMAq
A, (3.17)

aM = PM − iWMAq
A.

Imposing the standard commutation relations for P and q,

[qM , PN ] = iδMN , [qM , qN ] = 0, [PN , PM ] = 0, (3.18)

we can notice that the creation and annihilation operators do not correspond to

normal modes since they do not satisfy the normal mode commutation relation

[aM , a
∗
N ] = iδMN , (3.19)
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and instead satisfy

[aM , a
∗
N ] = [PM − iWMAq

A, PN + iWNBq
B] = [PM , iWNBq

B]− [iWMAq
A, PN ] (3.20)

= −i · iδBMWNB − i · iδANWMA = 2WMN ,

as the W matrix will, in general, not be given by

WMN =
i

2
δMN , (3.21)

as we expect it to for normal modes. The Hamiltonian of our system now has the

form

H =
1

2
GMNa∗MaN +

1

2
Tr(W ). (3.22)

To construct the ground state |ψ0⟩ of our system, it must be cancelled by the annihi-

lation operator for all modes. That is, the following condition must hold

(PM − iWMAq
A) |ψ0⟩ = 0, ∀M ∈ R3 (3.23)

In the position representation, where PM = −i∂/∂qM ≡ −i∂M , we have

(
∂M +WMBq

B
)
ψ0({qA}) = 0, ∀M ∈ R3 (3.24)

where ψ0({qA}) = ⟨{qA}|ψ0⟩ is the wave function of the ground state in the position

representation, and it depends on the displacement for each oscillator. The wave

function that solves this equation has the following form

ψ0({qA}) = N exp

[
−1

2
WABq

AqB
]
, (3.25)

where N is the normalization constant that we have yet to compute. To prove that

this function does indeed solve equation (3.24), we just need to plug it in.

(∂M +WMNq
N) exp

[
−1

2
WABq

AqB
]

(3.26)

=

(
−1

2
WABδ

A
Mq

B − 1

2
WABq

AδBM +WMNq
N

)
exp

[
−1

2
WABq

AqB
]

=

(
−1

2
WMNq

N − 1

2
WMNq

N +WMNq
N

)
exp

[
−1

2
WABq

AqB
]
= 0,
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where in the third row we used the symmetry of the W matrix, as well as relabel

the repeated A and B indices of the first two terms to N , showing that all the terms

cancel. To completely determine the ground state wave function, we just need to find

the normalization constant N . To do this, we need to find N such that the following

condition holds

∫
dq1 . . . dqN |ψ0|2

!
= 1. (3.27)

The integral we need to evaluate is then the following

∫
dq1 . . . dqN exp

[
−qAWABq

B
]

(3.28)

= {qi = Uijq
′j, U is unitary, such that UTWU ≡ D is diagonal}

=

∫
dq′1 . . . dq′N

∣∣∣∣ ∂q∂q′
∣∣∣∣ exp [−UAiq

′iWABUBjq
′j]

=

∫
dq′1 . . . dq′N | detU | exp

[
−q′i(UT )iAWABUBjq

′j]
=

∫
dq′1 . . . dq′N exp

[
−q′iDijq

′j] = ∫ dq′1 . . . dq′N exp

[
−

N∑
i=1

Dii(q
′i)2

]

=

{∫
R
e−a(x+b)2dx =

√
π

a

}
=

√
πN∏N
i=1Dii

=

√
π . . . π

D11 . . . DNN

=

√
1

det
(
D
π

) ,
where we have unitarily transformed the displacement vectors that we are integrat-

ing over in such a way that we diagonalize W . This is possible due to the Autonne-

Takagi factorization theorem, which states that if we have a complex symmetric ma-

trix (in our case, W ), then a unitary matrix U exists such that UTWU = D, where D

is a real diagonal matrix with nonnegative entries. Since U is a unitary matrix, the

determinant that we obtain from the Jacobian has a value of one. Finally, since the

matrix D is N dimensional, we can allocate each π to every element and compactly

write the final expression as one over the square root of the determinant of a single

matrix.

The normalization constant is then given by

N2

√
1

det
(
D
π

) = 1 =⇒ N =

(
det

(
D

π

))1/4

. (3.29)
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The ground state wave function finally looks like

ψ0({qA}) =
(
det

(
D

π

))1/4

exp

[
−1

2
WABq

AqB
]
. (3.30)

Which agrees with Srednicki’s calculation as well [8]. The density matrix for the

vacuum state is given by

ρ = |ψ0⟩ ⟨ψ0| , (3.31)

which in the position representation has the form

ρ({qA}, {q′B}) ≡ ⟨{qA}|ψ0⟩ ⟨ψ0|{q′B}⟩ = ψ0({qA})ψ0({q′B})∗ (3.32)

=

(
det

(
D

π

))1/2

exp

[
−1

2
WAB(q

AqB + q′Aq′B)

]

Let us consider a region Ω of R3. We will decompose the vector space of displace-

ments of the oscillaters into two subspaces, one within Ω, and one outside. We will

label the oscillators within Ω with Greek indices and the oscillators outside the region

with lower case Latin indices,

qA =

qa
qα

 . (3.33)

Similarly we will decompose the matrix W into a block form

WAB =

Wab Waα

Wαb Wαβ

 , (3.34)

where Wab couples two oscillators within Ω, Wαβ couples two oscillators outside Ω,

and where the other two matrices describe the coupling of oscillators between the

two regions. If we consider that the information of the displacement about the oscil-

lators inside Ω is unavailable (as it is when applied to black holes), we can obtain a

reduced density matrix ρred for the oscillators outside Ω, integrating over R for each

of the oscillators in the region Ω,

ρred({qa}, {qb}) ≡ ⟨{qa}|ρ|{qb}⟩ =
∫ ∏

α

dqα ⟨{qa, qα}|ρ|{q′b, qα}⟩ . (3.35)

To calculate this, let us first look at the product in the exponent of (3.32), which
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we can rewrite and simplify as follows

qAWABq
B =

(
qa qα

)Wab Waβ

Wαb Wαβ

qb
qβ

 =
(
qa qα

)Wabq
b +Waβq

β

Wαbq
b +Wαβq

β

 (3.36)

= qaWabq
b + qaWaβq

β + qαWαbq
b + qαWαβq

β.

And similarly for the primed oscillators,

q′AWABq
′B = q′aWabq

′b + q′aWaβq
′β + q′αWαbq

′b + q′αWαβq
′β. (3.37)

While calculating the reduced density matrix, since we are integrating out over the

inner region, we should note that we will have q′σ = qσ for all the primed displace-

ments in the region Ω.

The exponential part of (3.35) under the integral then has the form of

−1

2

(
Wab(q

aqb + q′aq′b) + qaWaβq
β + q′aWaβq

β + qαWαbq
b + qαWαbq

′b + 2qαWαβq
β
)

= −1

2
Wab(q

aqb + q′aq′b)−Wαβq
αqβ −Waα(q

a + q′a)qα, (3.38)

where we have renamed some indices to have a more compact form. The reduced

density matrix now looks like

ρred({qa}, {q′b}) =
(
det

(
DAB

π

))1/2

exp

[
−1

2
Wab(q

aqb + q′aq′b)

]
(3.39)

×
∫ ∏

α

dqα exp
[
−Wαβq

αqβ −Waα(q
a + q′a)qα

]
In our further discussions, we shall also use the inverse matrix of WAB,

WAB =

W ab W aα

Wαb Wαβ

 (3.40)

where we should note that the raised indices were not obtained by raising indices

using GAB. Furthermore, we will denote the inverses of the submatrices of WAB

using an overhead tilde. For example, W̃ ab is the inverse of Wab and so on. To

evaluate the density matrix completely, we still need to evaluate the integral. To do

that, we will complete the square in the exponent, and then it will be reduced to the
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form where we will just have to use the Gaussian integral, just as we did in (3.28).

The exponent of (3.39) can now be written as

−Wαβ(q
αqβ + W̃αβWaα(q

a + q′a)qα ± 1

4
(W̃αβWaα(q

a + q′a))2) (3.41)

−Wαβ

(
qβ +

1

2
WaαW̃

αβ(qa + q′a)

)2

+
1

4
WαβW̃

αβWaαW̃
αβWbβ(q

a + q′a)(qb + q′b)

= −Wαβ

(
qα +

1

2
WaβW̃

αβ(qa + q′a)

)2

+
1

4
W̃αβWaαWbβ(q + q′)a(q + q′)b.

Using the Gaussian integral from (3.28), the reduced density matrix can now be

written as

ρred({qa}, {q′b}) =
(
det

(
DAB

π

))1/2(
det

(
Dαβ

π

))−1/2

(3.42)

× exp

[
−1

2
Wab(q

aqb + q′aq′b)

]
exp

[
1

4
W̃αβWaαWbβ(q + q′)a(q + q′)b

]
,

where Dαβ is the diagonal submatrix of W , corresponding to the coupling between

oscillators in the interior of Ω. We can further symplify this by using the identity

det (WAB) ≡ det (W̃ab) det (Wαβ), (3.43)

which can be obtained by taking the determinant of the following equation,A B

C D

 =

1 B

0 D

A−BD−1C 0

D−1C 1

 . (3.44)

After decomposing (3.34) in such a way and taking the determinant, we arrive at

det (WAB) = det (Wαβ) det (Wab −WaαW̃
αβWαb). (3.45)

This means, that to to verify (3.43), we need to show that

W̃ab = Wab −WaαW̃
αβWαb. (3.46)
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Which means we need to show that the RHS is the inverse of W ab.

W ca(Wab −WaαW̃
αβWβb) = {W cAWAb = W caWab +W cγWγb} (3.47)

= W cAWAb −W cγWγb − (W cAWAα −W cγWγα)W̃
αβWβb

= {W cAWAb = δcb ,W
cγWγb = 0 (c and b are not in Ω),WAαW̃

αβ = δβA,WγαW̃
αβ = δβγ}

= δcb −W cAδβAWβb +W cγδβγWβb = δcb .

We have now verified (3.46). Using the fact that unitary matrices have a determinant

of one, we can trivially find the diagonal form for (3.43),

det (DAB) = det (D̃ab) det (Dαβ). (3.48)

When applying this to (3.42), the determinant factors simplify to

(
det

(
D̃ab

π

))1/2

. (3.49)

Introducing

Mab ≡ W̃ab, Nab = WaαW̃
αβWβb, (3.50)

we can write the exponential part of the reduced density matrix (3.42) as

− 1

2
(W̃ab +WaαW̃

αβWαb)(q
aqb + q′aq′b) +

1

4
W̃αβWaαWbβ(q + q′)a(q + q′)b (3.51)

= −1

2
(Mab +Nab)(q

aqb + q′aq′b) +
1

4
Nab(q

aqb + q′aqb + qbq′a + q′aq′b)

= −1

2
Mab(q

aqb + q′aq′b) +
1

4
Nab(−qaqb + q′aqb + qbq′a − q′aq′b)

= −1

2
Mab(q

aqb + q′aq′b)− 1

4
Nab(q − q′)a(q − q′)b.

Finally, the reduced density matrix is given by the following Gaussian matrix

ρred({qa}, {q′b}) =
(
det

(
Mab

π

))1/2

exp

[
−1

2
Mab(q

aqb + q′aq′b)

]
(3.52)

× exp

[
−1

4
Nab(q − q′)a(q − q′)b

]
.

To find the entropy of such a density matrix, we will study the entropy of a Gaussian

density matrix obtained for a coherent state of two oscillators and then extend this
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result to a general Gaussian density matrix.

3.1.1 Entropy of a coherent state

When we have a system of two oscillators, each one has its own degree of freedom.

Let us say that a and b are annihilation operators for the two oscillators. Let us

consider the coherent state

|ψ⟩ = Ceγa
∗b∗ |0⟩a ⊗ |0⟩b (3.53)

= C
∞∑
n=0

γn

n!
(
√
n! |n⟩a)⊗ (

√
n! |n⟩b) = C

∞∑
n=0

γn |n⟩a ⊗ |n⟩b ,

where γ is a real number and C is the normalization constant

⟨ψ|ψ⟩ = |C|2
∞∑
n=0

∞∑
m=0

γn+m
a ⟨m|n⟩ a ⊗ b ⟨m|n⟩b = |C|2

∞∑
n=0

γ2n
!
= 1 (3.54)

=⇒ |C|2 1

1− γ2
= 1 =⇒ C = (1− γ2)1/2,

defined up to a global phase. Note that since we must have a finite normalization

constant, we obtain a restriction on γ, as to ensure the convergence of the geometric

sum in the above equation, γ2 < 1.

Forming the density matrix ρ = |ψ⟩ ⟨ψ|, and tracing out over the oscillator b, we

obtain the following reduced density matrix

ρred =
∞∑

m=0

b ⟨m|ψ⟩ ⟨ψ|m⟩b =
∞∑

m=0

C2γ2m |m⟩ aa ⟨m| . (3.55)

Since the matrix is diagonal, it is easy to evaluate the entropy associated with this

density matrix.

S = −Tr(ρred ln ρred) = −
∞∑

m=0

(1− γ2)γ2m ln
[
(1− γ2)γ2m

]
(3.56)

= −(1− γ2)
ln(1− γ2)

1− γ2
− (1− γ2) ln γ2

∞∑
m=0

mγ2m
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To calculate the second sum, we use

∞∑
m=0

γ2m =
1

1− γ2
, (3.57)

and differentiating with respect to γ, we obtain

∞∑
m=0

2mγ2m−1 = − (−2γ)

(1− γ2)2
=⇒

∞∑
m=0

mγ2m =
γ2

(1− γ2)2
. (3.58)

The entropy is then given by

S = − ln (1− γ2)− γ2

1− γ2
ln γ2 (3.59)

In order to relate this entropy to that of a Gaussian density matrix, we will, as in the

previous parts of this section, find the density matrix in the position representation.

Acting with the annihilation operators a and b onto the state vector (3.53), we find

that the following equalities hold

a |ψ⟩ = C
∞∑
n=1

γn
√
n |n− 1⟩a ⊗ |n⟩b = C

∞∑
n=0

γn+1
√
n+ 1 |n⟩a ⊗ |n+ 1⟩b = γb∗ |ψ⟩

(3.60)

b |ψ⟩ = C
∞∑
n=1

γn
√
n |n⟩a ⊗ |n− 1⟩b = C

∞∑
n=0

γn+1
√
n+ 1 |n+ 1⟩a ⊗ |n⟩b = γa∗ |ψ⟩ .

If we denote that the displacement of the two oscillators is given by x and y, with cor-

responding conjugate momenta p and q, we can write the annihilation and creation

operators as

a =
1√
2
(p− ix), a∗ =

1√
2
(p+ ix), (3.61)

b =
1√
2
(q − iy), b∗ =

1√
2
(q + iy).

The set of equations (3.60) can now be rewritten as

[(p− γq)− i(x+ γy)] |ψ⟩ = 0, (3.62)

[(p− γp)− i(y + γx)] |ψ⟩ = 0.
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In order to solve (3.62), we introduce new oscillators by defining their displacements,

u and v as

u ≡ x+ γy, v ≡ y + γx. (3.63)

Since the displacement of the "new" u and v oscillators is a combination of the dis-

placements of the "old" x and y oscillators, we can suppose that the momentum op-

erators for the u and v oscillators will also only be a combination of the momentum

operators of the x and y oscillators,

Pu = ap+ bq, Pv = cp+ dq. (3.64)

Now, after we impose the same commutation relations for the displacement and the

momentum of the "new" oscillators as we did for "old" oscillators,

[u, Pu] = i, [v, Pv] = i, [v, Pu] = 0, [u, Pv] = 0, (3.65)

while also retaining the previous comutation relations

[x, p] = i, [y, q] = i, [x, q] = 0, [y, p] = 0, (3.66)

we can obtain the constants a, b, c, d. For the oscillator u

i = [x+ γy, ap+ bq] = a[x, p] + bγ[y, q] =⇒ a+ bγ = 1 =⇒ a = 1− bγ, (3.67)

Pu = (1− bγ)p+ bq,

0 = [v, Pu] = [y + γx, (1− bγ)p+ bq] = (1− bγ)γ[x, p] + b[y, q]

= (1− bγ)γ + b =⇒ bγ2 − b = γ =⇒ b =
γ

γ2 − 1

Pu =

(
1− γ2

γ2 − 1

)
p+

γ

γ2 − 1
q = − 1

γ2 − 1
p+

γ

γ2 − 1
q =

1

1− γ2
(p− γq).

Following the same procedure for the oscillator v, we obtain

Pv =
1

1− γ2
(q − γp). (3.68)
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The pair of differential equations (3.62) can now be rewritten as

[(1− γ2)Pu − iu] |ψ⟩ = 0, (3.69)

[(1− γ2)Pv − iv] |ψ⟩ = 0.

In the position representation we have

Pu = −i∂u, Pv = −i∂v, (3.70)

and now the pair of equations have a similar form as (3.24),

[
∂u +

1

1− γ2
u

]
ψ(u, v) = 0, (3.71)[

∂v +
1

1− γ2
v

]
ψ(u, v) = 0

where WAB can be written as a diagonal 2× 2 matrix with the same diagonal entries

(1− γ2)−1. The solution then has the same structure (3.25)

ψ(u, v) = K exp

(
−1

2

1

1− γ2
(u2 + v2)

)
, (3.72)

and K is the normalization constant. Plugging the definitions of u and v (3.63) back

into (3.72), we can obtain ψ(x, y). Using

u2 + v2 = (x+ γy)2 + (y + γx)2 = x2 + 4γxy + γ2x2 + y2 + γ2y2 (3.73)

= (x2 + y2)(1 + γ2) + 4γxy,

we have

ψ(x, y) = K exp

[
−1 + γ2

1− γ2
x2 + y2

2
− 2γ

1− γ2
xy

]
. (3.74)
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Using the normalization condition we obtain the constant K

∫
dxdyψ(x, y)ψ∗(x, y) = K2

∫
dxdy exp

[
−1 + γ2

1− γ2
(x2 + y2)− 4γ

1− γ2
xy

]
= K2

∫ 2π

0

dϕ

∫ ∞

0

rdr exp

[
−r2

(
1 + γ2

1− γ2
r2 +

4γ

1− γ2
sinϕ cosϕ

)]
(3.75)

=

{
x = r2, dx = 2rdr, A(ϕ) ≡ 1 + γ2

1− γ2
r2 +

4γ

1− γ2
sinϕ cosϕ

}
=
K2

2

∫ 2π

0

dϕ

∫ ∞

0

dxe−xA(ϕ) =
K2

2

∫ 2π

0

dϕ

−A(ϕ)
e−ax

∣∣∣∣∞
0

=
K2

2

∫ 2π

0

dϕ
1+γ2

1−γ2 +
2γ

1−γ2 sin(2ϕ)
=
K2

2

(
−2π

|y − 1||y + 1|
y2 − 1

)
= {|y| < 1} = K2π

!
= 1 =⇒ K2 =

1

π

The density matrix can now be constructed in the same manner as before (3.32)

ρ[(x, y), (x′, y′)] = ψ(x, y)ψ∗(x′, y′) (3.76)

After tracing over one of the oscillators, we obtain the following reduced density

matrix

ρred(x, x
′) =

∫
dyρ[(x, y), (x′, y)] (3.77)

=
1

π

∫
dy exp

(
−1 + γ2

1− γ2
x2 + y2

2
− 2γ

1− γ2
xy − 1 + γ2

1− γ2
x′2 + y2

2
− 2γ

1− γ2
x′y

)
=

1

π
exp

[
−1 + γ2

1− γ2
x2 + x′2

2

] ∫
dy exp

(
−1 + γ2

1− γ2
y2 − 2γ

1− γ2
(x+ x′)y

)
=

1

π
exp

[
−1 + γ2

1− γ2
x2 + x′2

2

] ∫
dy exp

[
−1 + γ2

1− γ2

(
y2 − 2γ

1 + γ2
(x+ x′)y ± γ2

(1 + γ2)2
(x+ x′)2

)]
=

1

π
exp

[
−1 + γ2

1− γ2
x2 + x′2

2

] ∫
dy exp

[
−1 + γ2

1− γ2

(
y − 2γ

1 + γ2
(x+ x′)

)2

+
γ2(x+ x′)2

(1 + γ2)(1− γ2)

]

=
1

π
exp

[
−1 + γ2

1− γ2
x2 + x′2

2

]√
π(1− γ2)

(1 + γ2)
exp

[
γ2

(1− γ4)
(x+ x′)2

]

=

√
(1− γ2)

π(1 + γ2)
exp

[
−1 + γ2

1− γ2
x2 + x′2

2
+

γ2

(1− γ4)
(x+ x′)2

]
.

To rewrite in the same form as (3.52), we introduce

µ ≡ γ2, M ≡ 1− µ

1 + µ
, and N ≡ 4µ

1− µ2
, (3.78)
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and we now have

ρred(x, x
′) =

√
M

π
exp

[
−1

2
M(x2 + x′2)− 1

4
N(x− x′)2

]
. (3.79)

Which is a Gaussian density matrix of the form (3.52). Now we finally know the con-

nection between the entropy obtained previously (3.56) and the family of Gaussian

density matrices, parametrized by one degree of freedom, γ. Relabelling (3.56) with

µ = γ2, the entropy has the following form

S = − µ

1− µ
lnµ− ln(1− µ) = −µ lnµ+ (1− µ) ln (1− µ)

1− µ
. (3.80)

To ensure the finiteness of the normalization constant C of our starting state vector

(3.54), we arrived at the constraint on γ2

γ2 < 1 =⇒ µ < 1. (3.81)

With this constraint, we can find the unique connection between µ and N and M ,

using their definitions (3.78)

µ = 1 +
2M

N
− 2

√
M

N

(
1 +

M

N

)
. (3.82)

Since we wish to find the entropy of the density matrix (3.79) for arbitrary M and

N , we shall consider a density matrix of the same form, but with freely specified M

and N . Using the fact that the entropy must be dimensionless, we know that it can

only depend on the dimensionless ratio λ ≡ N/M of the dimensional parameters in

the density matrix. If we define

µ ≡ 1 + 2λ−1 − 2[λ−1(1 + λ−1)]1/2, (3.83)

we can generalize our result to state that the entropy of any density matrix that has

the form (3.79), with M and N freely specified and µ given by (3.75), is

S = −µ lnµ+ (1− µ) ln (1− µ)

1− µ
. (3.84)
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We can show that the density matrix associated with this entropy can be rewritten as

ρred(x, x
′) = π−1/2 exp

[
−1

2
(x2 + x′2)− 1

4
λ(x− x′)2

]
. (3.85)

3.1.2 Entropy of a general Gaussian density matrix

Since we wanted to calculate the entropy of (3.52) in the first place, which is the

generalization of (3.79), we want to write it in a form to which we can apply the

previous result as a product of density matrices given by (3.85). To achieve this and

justify (3.85), we construct a basis in which both M and N are diagonal. For these

reasons, we will consider M to be a metric on configuration space (similar to what

we have considered G before) and choose as a basis a complete orthonormal set

of vectors with respect to it. This means our basis is fixed up to an M -orthogonal

transformation, since any transformation that is in the orthogonal direction with

respect to any basis vector will be in the direction of some other basis vector and will

thus not change M . This will be used to diagonalize N . Applying this to (3.52), we

arrive at the following expression

ρred({qa}, {q′b}) =
∏
n

{
π−1/2 exp

[
−1

2
(qnq

n + q′nq
′n)− 1

4
λn(q − q′)n(q − q′)n

]}
,

(3.86)

where we are not summing over the repeated indices, and where λn are the diagonal

elements of N in the M -orthogonal basis. These diagonal elements correspond to the

eigenvalues of the operator

Λa
b ≡ (M−1)acNcb. (3.87)

ρred has the form

ρred = ⊗
n
ρ(λn), (3.88)

which means that the entropy is given by

S =
∑
n

S[ρ(λn)], (3.89)
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where each λn corresponds to a different µ in (3.78), and thus a different (3.80) is

obtained for each distinct n. To conclude, the entropy associated with the Gaussian

density matrix of the form (3.52) for a system with many degrees of freedom can be

calculated as

S = −
∑
n

µn lnµn + (1− µn) ln (1− µn)

1− µn

, (3.90)

where

µn = 1 + 2λ−1
n − 2

√
λ−1
n (1 + λ−1

n ), (3.91)

and {λn} are the eigenvalues of

Λa
b ≡ (M−1)acNcb. (3.92)

Plugging in the original definitions of M and N through W (3.50) into (3.92), we

can obtain the form of Λ through W .

Λa
b = (M−1)acNcb = W acWcαW̃

αβWβb (3.93)

=
{
W aCWCα = 0 =⇒ W acWcα = −W aγWγα =⇒ W aβ = −W acWcαW̃

αβ
}

= −W aβWβb.

This shows how Λ depends on the choice of unavailable oscillators (the ones in Ω),

since it takes values associated with Ω through the Greek indices in W . If we consider

Wab as a metric for the configuration space of the oscillators outside of Ω, we can

lower or raise either index on Λ (both indices are lower case Latin latters, so they take

the values from oscillators in the space outside of Ω). Acting with such a lowering

operator on Λ, we have the following identity

WamΛ
m
b = −WamW

mαWαb = WaµW
µαWαb. (3.94)

But since WAB, and Wαβ are positive definite, we conclude that Λa
b is also a positive

definite operator.

Finally, to evaluate the entropy of a system, we must consider the dynamics of the
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field we want to study, the specific set of oscillators that we will ignore (that is, the

region Ω we will integrate over), write down the form of the operator Λ, determine

its eigenvalues, and then plug them into (3.91) and (3.92).

Srednicki [8] independently used a variation of this method to calculate the en-

tropy inside a sphere of radius R, where he traced the ground state of a massless

scalar field over the degrees of freedom inside a radial lattice. The entropy he ob-

tained numerically is given by

S = 0.3M2R2, (3.95)

where M is the inverse length scale and is given by M = 1/a, where a is the dis-

tance between lattice points. This result is quite similar to the one obtained for the

Bekenstein-Hawking entropy, considering that R2 ∼ A. Both papers [7,8] also claim

that this entropy should not be considered the sole contributor to the entropy of a

black hole.

3.1.3 Continuum case

Let us now consider a real scalar field and the problem of calculating the entropy

associated with this field in the presence of a black hole. To apply our formalism,

we will imagine a black hole to be simulated as a region, Ω, of flat spacetime. In the

continuum limit of our formalism, we have

1

2
VABq

AqB → 1

2
⟨ϕ|∇2 +m2|ψ⟩ =

∫ [
1

2
(∇ϕ)2 + 1

2
m2ϕ2

]
d3x. (3.96)

With this, we can try to apply the formalism that we have developed so far. That is,

we want to construct a similar operator that corresponds to Λa
b, evaluate its eigenval-

ues, and calculate the entropy for some appropriate region Ω. To make our discussion

easier, we shall work in momentum representation. The matrix V in this representa-

tion is given by

V (x, y) =

∫
d3k

(2π)3
(k2 +m2)eik·(x−y), (3.97)
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the "square root" matrixW will have the following continuum form in the momentum

representation

W (x, y) =

∫
d3k

(2π)3
(k2 +m2)1/2eik·(x−y), (3.98)

and the inverse of the square root of the same matrix is given by

W−1(x, y) =

∫
d3k

(2π)3
(k2 +m2)−1/2eik·(x−y), (3.99)

where now, instead of discrete indices denoted by capital letters A,B, we have con-

tinuous indices over R3. Following the matrix definition of Λ, as a multiplication of

W matrices (3.93), the continuous case will be given by

Λ(x, y) = −
∫
Ω

d3zW−1(x, z)W (z, y), (3.100)

Λ(x, y) = −
∫
Ω

d3z

(∫
d3k

(2π)3
(k2 +m2)−1/2eik·(x−z)

)(∫
d3k′

(2π)3
(k′2 +m2)1/2eik

′·(z−y)

)

And to determine the eigenvalues, we have to solve the continuous eigenvalue equa-

tion

∫
d3yΛ(x, y)f(y) = λf(x). (3.101)

We should also note that the upper integral includes the entire space, not just Ω. After

solving this equation, and finding the eigenvalues, we can plug them into (3.91) and

(3.92) to properly calculate the entropy, where instead of a finite sum, we will have

an infinite one.

By looking at the dimension of the entropy, we can conclude that there has to

be a length cutoff in the integrals above that ensures the finiteness of the entropy.

To prove this, let us look at the case of a massless field m = 0. Since the entropy

is a dimensionless quantity, S has to be invariant under a rescaling of the region

Ω, and the only answer we can expect to get for it is either 0 or ∞. If m ̸= 0, S

could dimensionally be a function of mR, where R is some characteristic size of Ω

(in the case of black holes, this would be its radius). If the entropy was not infinite,

we would expect it to vanish in the limit as the size R → 0 (since then the black

hole would disappear), but this limit is equivalent to m → 0, which gives an infinite
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entropy from the previous argument. Physically, this divergence of the entropy is

ultraviolet in origin; since it is not removed by a nonvanishing mass, it means that

it arises from modes of arbitrarily small wavelengths. This means that there has to

be a fundamental length in the theory. We introduce a dimensional parameter l that

will act as a cutoff (in the brick wall model, this fundamental length cutoff is the

brick wall, h). Now the entropy can be a function of R/l. The way that we take

into account this cutoff into our calculations is by using a position cutoff near the

boundary of Ω (similarly as what was done in the brick wall method), which means

the integration over Ω will be restricted to points at a distance of at least l from the

boundary. Furthermore, we consider the cutoff to be of Plank length order. This

way, we disable the correlations between points inside and outside Ω if they are less

than a distance of l apart. Another thing to note is that the high-frequency modes

that we expect to contribute most to S are localized near the boundary (we can see

the parallels with the Bekenstein-Hawking entropy for black holes here as well, as

the degrees of freedom that contribute the most to the entropy of black holes are

the ones near the horizon). For these types of calculations, we usually choose the

space we are integrating over Ω to have some sort of symmetries, so we can reduce

a three-dimensional problem to an effective one-dimensional one. For example, one

might use a sphere of radius R for the region Ω, and to reduce this problem to

an effective one-dimensional one, we have to assume the following ansatz for the

eigenfunctions of the operator Λ, f(r, θ, ϕ) = Ylm(θ, ϕ)f(r). This ansatz leads to

numerous calculation difficulties and is outside the scope of this thesis, and will

thus not be explored further. The main point of this subsubsection was to outline a

procedure for systematically calculating the eigenvalues of the operator Λ, while also

explaining the need for a cutoff scale. As a final note and for future developments, it

would be useful to try and extend this method to curved spacetimes.

3.2 The replica trick

As we have shown in the previous section, the entanglement entropy can be obtained

if we know how to diagonalize the reduced density matrix and obtain its eigenval-

ues. However, the calculation is troublesome in a continuum quantum field theory

with infinite degrees of freedom. Thus, it is more convenient to derive the entan-
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glement entropy by using the replica trick [27, 28]. The idea is to first consider a

Rényi entropy, which is a one-parameter generalization of the entanglement entropy

equipped with an additional Rényi index q, which is initially an integer, and recover

the entanglement entropy after we analytically continue q to the real numbers, along

with taking the limit q → 1. This way, our task is reduced to calculating the partition

function of a replicated manifold M̂q using the path integral, which is simpler for

QFT. We shall use the replica trick to explicitly calculate the entanglement entropy of

static and spherically-symmetric black hole spacetimes. We consider entanglement

between two timelike regions in the maximally extended black hole spacetime that

are connected by a wormhole with a radius equal to the black hole radius. Let ρA

be the reduced density matrix obtained by tracing out the degrees of freedom in the

unobservable region B, leaving only the ones in the accessible region A. We consider

the Rényi entropy, given by

S
(q)
Ren =

1

1− q
log(Tr(ρqA)), (3.102)

where q is an interger-valued Rényi index. When we analytically continue q to a

continuous variable and take the limit q → 1, using log Tr(qA) = 0

lim
q→1

S
(q)
Ren = lim

q→1

1

1− q
log(Tr(qqA)) = − lim

q→1

log(Tr(qqA))− log(Tr(qA))

q − 1
(3.103)

= −∂q log(Tr(ρqA)|q=1 = SA,

we see that the Rényi entropy reduces to the entanglement entropy. Without loss of

generality, we will suppose that the subsystems are at a constant-time slice where

x > 0 for subsystem A, and x < 0 for subsystem B. Hence, the boundary ∂A = ∂B

is located at x = 0. We can calculate the trace Tr(ρqA) by considering a partition

function Z[Mq], which is represented by a quantum path integral in a replicated

manifold Mq, which contains a q-copy of the manifold of the original QFT, M, which

are sewn together cyclically along the subregion A by following the cyclicity of the

trace Tr(ρqA). Since we are considering a normalized reduced density matrix ρA, the

trace Tr(ρqA) is given by

Tr(ρqA) =
Z[Mq]

(Z[M ])q
, (3.104)
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where M1 ≡ M is the original manifold of the original QFT. In the manifold Mq,

we need to circulate the boundary ∂A q-times before finally arriving at the starting

position. This means that a complete cycling of ∂A takes 2πq instead of 2π. To calcu-

late the partition function of Mq, we set ϕ ∼ ϕ+2πq everywhere, which introduces a

conical singularity at the origin (r = 0) with an excess angle. It is possible to simplify

the calculation of the entropy from apparent conical singularities by replacing Mq

with a single-sheeted manifold M̂q, which has a conical singularity located at ∂A

with deficit angle ∆ϕ = 2π(1 − 1/q). This conical singularity appears because the

manifold M̂q is smooth if the periodicity is ϕ ∼ ϕ + 2πq, but we identify the angle

with ϕ ∼ ϕ + 2π. These calculations essentially lead to the same conclusion, but the

latter identification simplifies the entropy calculation for multi-horizon black holes.

To write a metric for the manifold M̂q, let us assume that r is the distance between

any point from ∂A to ∂A, and ϕ is the angle between r and A, which is shown in

Figure 3.1.

Figure 3.1: A parameterization of the replica spacetime with a conical singularity
located at r = 0 in flat spacetime. The region A in the τ = 0 slice is defined as x > 0
[28].

In a flat background, we parametrize the metric of M̂q with polar coordinates in

the following way

ds2M̂q
=
r2

q2
dϕ2 + dr2 + . . . , (3.105)

where the remainder represents the transverse coordinates. Identifying ϕ ∼ ϕ + 2π

gives M̂q a conical singularity at r = 0, that is, at ∂A, with a deficit angle ∆ϕ =
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2π(1 − 1/q). Since the action is local, the relation between the partition functions

Z[Mq] and Z[M̂q] is as follows

Z[Mq] = (Z[M̂q])
q. (3.106)

The entanglement entropy can now be calculated as

SA = −∂q log Tr(ρqA)|q=1 = −∂q log
Z[Mq]

(Z[M])q
= −q∂q logZ[M̂q]|q=1 (3.107)

Using the formula above, we will calculate the entanglement entropy in Schwarzschild

spacetime.

ds2 = −
(
1− rS

r

)
dt2 +

(
1− rS

r

)−1

dr2 + r2dΩ2, (3.108)

where dΩ2 = dθ2 + sin2 θdϕ2 and rS = 2GNM is the Schwarzschild radium of a

black hole with mass M , and where GN is the 4-dimensional Newton’s constant. The

metric can be obtained by solving the classical equation of motion δI = 0 from the

Einstein-Hilbert action

I[M] =
1

16πGN

∫
M
d4x

√
−gR, (3.109)

where, as before, g is the determinant of the metric, and R is the Ricci scalar. Since

the Ricci scalar is zero for Schwarzschild spacetime, the contribution to the entropy

comes from the surface term when varying the action. The Schwarzschild spacetime

can be maximally extended into two asymptotically flat spacetimes sperated by a

boundary that is located at the horizon r = rS. The Penrose diagram of a maximally

extended Schwarzschild spacetime is depicted in Figure 3.2.

Each point on Figure 3.2 corresponds to a 2-sphere, since we have suppressed

these two dimensions to be able to graphically show a 4-dimensional space in 2D.

We can imagine that there is a codimension-one t = 0 slice Σ that is constructed from

two subregions such that Σ = ΣA ∪ΣB. The boundary separating ΣA and ΣB is given

by a codimension-two surface S2 with radius r = rS. To calculate the entanglement

entropy, we will only consider the boundary that separates the two subregions A

and B, as we have done previously. We will suppose that all points in a maximally
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Figure 3.2: Penrose diagram of a maximally extended Schwarzschild spacetime [28].

extended Schwarzschild spacetime M represent quantum gravitational degrees of

freedom in the background M. Following the action integral approach to quantum

gravity [29], we assume that in the low energy or classical limit, the gravitational

(Euclidean) partition function is given by

Z[M] =

∫
Dge−IE [g] ≈ e−IE [M], (3.110)

where we used the saddle point approximation, and IE[M] is the on-shell Euclidean

action with the metric (3.113). The Euclidean action IE[M] is obtained by Wick

rotating the time coordinate t → iτ of the Einstein-Hilbert action (3.109). Since

in Schwarzschild spacetime we do not have a proper field theoretical description of

the quantum degrees of freedom, we are only considering the entanglement of the

degrees of freedom in the semiclassical approach, where we have assumed that the

quantum gravitational path integral of the theory can be described by the saddle-

point approximation of the Einstein-Hilbert action in the classical limit. The Eu-

clidean Schwatzschild metric is given by

ds2 =
(
1− rS

r

)
dτ 2 +

(
1− rS

r

)−1

dr2 + r2dΩ2 (3.111)

To avoid the conical singularity at r = rS, the Euclidean time coordinate needs to

be periodic with τ ∼ τ + β, where β = 8πM is the inverse temperature of the black

hole. Introducing the Kruskal coordinates in the same way as one does in Lorentzian
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Schwarzschild, the spacetime has the following form

ds2 =
4r3S
r
e−r/rS(dT 2

E + dR2) + r2dΩ2, (3.112)

where

T 2
E +R2 =

(
r

rS
− 1

)
er/rS . (3.113)

The positivity of the left-hand side of the upper equations restricts us to the region

where r > rS. With this and the periodicity of τ , the Euclidean Schwarzschild can be

described by a "cigar" geometry, which is depicted in the following figure.

Figure 3.3: Illustration of the total (unnormalized) density matrix ρ. The slice Σ
divides the cigar into two time-symmetric parts. To normalize ρ, we divide the calcu-
lation by Tr(ρ) which is given by a full cigar [28].

In Figure 3.3, Σ is a slice in the time-reflection symmetry axis that equally sepa-

rates the upper and lower part at τ = 0, β/2. This way, the subregions ΣA and ΣB are

the lines that start from r = rS to r → ∞ at τ = 0 and τ = β/2 respectively. The cigar

geometry with a cut in Σ gives us the pure density matrix ρ of the quantum gravita-

tional degrees of freedom in M. The reduced density matrix ρA can be obtained by

identifying points from r = rS to r → ∞ at τ = β/2, which leaves a cut from r = rS

to r → ∞ at τ = 0. To calculate the entanglement enttropy of the region ΣA, we

perform the replica trick by computing Tr(ρqA). The trace Tr(ρqA) is described by q-

sheeted cigars, which are cyclically identified through the cuts following the cyclicity

of the trace Tr(ρqA), which can be shown in the following Figure.

This is the Mq manifold for the Euclidean Schwarzschild. Following the pre-

viously outlined procedure, we now replace Mq with M̂q, where M̂q is a single

manifold with a conical singularity located at the origin r = rS, with deficit angle

∆ϕ = 2π(1− 1/q), given in Figure 3.5, with analytically continued q into non-integer

values.
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Figure 3.4: Illustration of the partition function Z[Mq] of the manifold Mq. Blue
lines connected by the arrow are identified [28].

Figure 3.5: The one sheeted manifold M̂q which now has a conical singularity at the
fixed point r = rS with deficit angle ∆ϕ = 2π(1− 1/q) [28].

We need to parametrize the Euclidean Schwarzschild with a new coordinate that

describes the distance to the horizon r = rS and the angle. If ξ ≡ r−rS is the distance

to the horizon while the angle is the Euclidean time τ , and replacing r with ξ and

Taylor expanding around ξ = 0, we obtain the near-horizon geometry for a Euclidean

Schwarzschild (notice that this is a similar procedure to what we have done in the

brick wall method, where the main contribution to the entropy was the near-horizon

contribution). Using

1− rS/r =
r − rS
r

= {ξ = r − rS, ξ ≈ 0} ≈ ξ

rS
, (3.114)
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we have

ds2 =
ξ

rS
dτ 2 + rS

dξ2

ξ
+ r2SdΩ

2 + . . . , (3.115)

where the remainder represents terms of higher order in ξ. Reparametrizing with

y2 = ξ, ỹ = 2
√
rSy, τ̃ = τ/2rS, we have

ξ

rS
dτ 2 = y24rSdτ̃

2 = ỹ2dτ̃ 2 (3.116)

and

rS
dξ2

ξ
= rS

4y2dy2

y2
= 4rSdy

2 = dỹ2. (3.117)

In total,

ds2 = ỹ2dτ̃ 2 + dỹ2 + r2SdΩ
2 + . . . , (3.118)

where the remaining terms represent the higher order terms in ỹ. The metric near

ỹ = 0 is given by R2 × S2. To avoid the conical singularity at ỹ = 0, τ̃ needs to be

periodic with τ̃ ∼ τ̃ + 2π. To build the metric for M̂q, we add the q-dependence to

the metric in (3.118) in the same way as in (3.105),

ds2 =
ỹ2

q2
dτ̃ 2 + dỹ2 + r2SdΩ

2 + . . . , (3.119)

with τ̃ ∼ τ̃ + 2π. Now we have a conical singularity at the ỹ = 0, with a deficit angle

of ∆ϕ = 2π(1 − 1/q). This metric describes the geometry of M̂q near the tip of the

M̂q cigar. Now we can finally calculate the entanglement entropy.

SA = q∂qIE[M̂q]|q=1. (3.120)

To obtain ∂qIE[M̂q] we perform variations of the action IE[M̂q] with respect to the
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Rényi index q, and replace the variation with partial derivatives [30],

∂qIE[M̂q] =

∫
M̂q

d4x

16πGN

√
−gGµν∂qg

(q)µν (3.121)

+

∫
Ω̂ε

d3x

16πGN

√
γn̂ρ(g

(q)
µν∇ρ∂qg

(q)µν −∇µ∂qg
(q)ρµ),

where g
(q)
µν is the component of the metric tensor given in (3.119). The first term

vanishes since Gµν = 0. The second term is the surface term evaluated at a hypersur-

face Ω̂ε of constant and arbitrarily small radius ε centered at ỹ = 0. Notice how this

ε is reminiscent of the brick wall cutoff h, introduced previously. This hypersurface

is necessary to isolate the conical singularity from our calculations, and we take the

limit of ε → 0 after the calculations. γ is the determinant of the induced metric in

Ω̂ε, and n̂µ is a unit normal vector of Ω̂ε point away from ỹ = 0. After plugging the

metric into the above equation and performing the τ̃ integration from 0 to 2π, it can

be shown that

∂qIE[M̂q] =
4πr2S
4GNq2

+O(ỹ)
∣∣
ỹ=ε

. (3.122)

As ε→ 0, the higher order terms in ỹ all vanish. Multiplying this by q and evaluating

at q = 1, the entanglement entropy recovers the area law,

SA =
4πr2S
4GN

=
A

4GN

. (3.123)

Since the result is independent of Euclidean time τ , it is valid for Lorentzian space-

time as well. Another way of calculating the entanglement entropy is by introducing

an arbitrarily large but finite cutoff rc such that the regions ΣA and ΣB range from

r = rS to r = rc at τ = 0 and τ = β/2 respectively. Adding such a cutoff does not af-

fect the final result of the entanglement entropy since we only need the near-horizon

metric (that is, the metric near the tip of the cigar) to calculate the entanglement

entropy. If the cutoff is large enough, we may then impose the boundary condition

at the cutoff such that the variation there is vanishing. Meaning we obtain a result

independent of the cutoff rc as long as it is large enough. This fact is also useful for

calculating the entanglement entropy for multihorizon black holes. Also note that

this cutoff plays a similar role to the infrared cutoff in the brick wall method. The
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entanglement entropy calculated here describes the correlations that are strong near

the horizon, and thus the leading term of the entanglement entropy is proportional

to the area of the entangling surface ∂Σ. Any contribution from long-range corre-

lation, i.e., entanglement between degrees of freedom that are relatively far from

the entangling surface, only contributes as the sub-leading term of the entanglement

entropy. This physical interpretation helps us to be sure that any entangled degrees

of freedom outside the cutoff region r > rc does not contribute to the entanglement

entropy, and the entropy is still well described by the area law (3.123). Now we can

ask ourselves if it is possible to find a full metric that reduces to (3.119) near r = rS.

To do this, we replace rS → rS/q in the Euclidean Schwazschild metric,

ds2 =

(
1− rS

rq

)
dτ 2 +

(
1− rS

rq

)−1

dr2 + r2dΩ2. (3.124)

This metric can be interpreted as a Schwarzschild metric with a horizon located at

r = rS/q and a temperature of T = q/4πrS. Expanding near ξ = 0, for ξ = r − rS we

have

1− rS
rq

=
rq − rS
rq

=
(ξ + rS)q − rS

rSq
=

(
1− 1

q

)
+

ξ

rSq
≡ εq +

1

rSq
ξ. (3.125)

Here, we have an extra term εq, which is of order O(1 − 1/q) and vanishes when

q = 1, i.e., ε1 = 0. For 1 < q < ∞, we have 0 < εq < 1. Keeping ξ fixed and

expanding the metric near q = 1, we have

ds2 =
ξ

rSq
dτ 2 +

rSq

ξ
dξ2 + r2SdΩ

2 +O(εq), (3.126)

which, using a similar parametrization as before, y2 = ξ, ỹ2 = 4rSqy
2, and τ̃ = τ/2rS,

reduces to

ds2 =
ỹ2

q2
dτ̃ 2 + dỹ2 + r2SdΩ

2 +O(εq), (3.127)

which looks very similar to the q-dependent near-horizon metric (3.119), meaning

that the metric (3.124) seems to be a good candidate for M̂q, the only difference

from the near-horizon metric being the subleading terms in O(εq). To calculate the

entanglement entropy, we first ignore those terms since we will take the q → 1 limit
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in the end, and then calculate the surface term (3.121), since directly plugging in

the full spacetime would lead to divergences. Instead of directly calculating the full

spacetime, we first consider the metric perturbatively by keeping only the subleading

terms of order εq. The metric coefficients can be rewritten as

1− rS
rq

= {εq = 1− 1/q, 1/q = 1− εq} = 1− rS
r
(1− εq) = 1− rS

r
+
rS
r
εq, (3.128)

and

(
1− rS

rq

)−1

=
1

1− rS/r + rS/rε
=

1

1− rS/r

(
1

1 + rS
r(1−rS/r)

εq

)
(3.129)

=
1

1− rS/r

(
1− rS

r(1− rS/r)
εq

)
=

1

1− rS/r
− rS
r(1− rS/r)2

εq

The full Euclidean metric is then given by

ds2 =
(
1− rS

r
+
rS
r
εq

)
dτ 2 +

[
1

1− rS/r
− rS
r(1− rS/r)

εq

]
dr2 + r2dΩ2. (3.130)

The metric can also be written as g(q)µν = ḡµν + δg
(q)
µν , where ḡµν is the background

metric when q = 1, and the perturbation vanishes at q = 1, δg(1)µν = 0. We can find the

inverse of the metric perturbation by using δgµν(q) = ḡµαḡνβδg
(q)
αβ . They are given by

δg(q)ττ =
rS
r
εq, δg(q)rr = − rS

r(1− rS/r)
εq, (3.131)

δgττ(q) =
rS

r(1− rS/r)2
εq, δgrr(q) = −rS

r
εq.

Now we have all the components needed to calculate ∂qIE[M̂q] to leading order of

εq,

∂qIE[M̂q] =

∫
r=rS+ε

d3x

16πGN

√
γn̂ρ(ḡµν∇̄ρ∂qδg

µν(q) − ∇̄µ∂qδg
µρ(q)), (3.132)

where γ is the induced metric of a surface with r = rS+ε, n̂ρ is its unit normal vector,

and all components with overbars correspond to the background metric coefficients.

The Euclidean time coordinate τ is integrated from 0 to β, where β = 4πrS, to
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introduce the coordinate singularity at the origin. A direct calculation gives

∂qIE[M̂q] =
4πr2S
4GNq2

, (3.133)

and reproduces the earlier result. This is an alternative way to calculate the entan-

glement entropy without relying on the near-horizon geometry.

3.3 The heat kernel method

In this subsection, we will outline an entropy calculation method called the heat ker-

nel method, and we will calculate the entanglement entropy for a (D−2)-dimensional

plane Σ in D-dimensional spacetime. We will predominantly follow [9]. If we con-

sider a quantum bosonic field that is described by a field operator D so that the

partition function is Z = det−1/2D, then the effective action is defined as

W = −1

2

∫ ∞

ϵ2

ds

s
TrK(s). (3.134)

where ϵ is the UV cutoff. The effective action is expressed in terms of the trace of the

so-called heat kernel

K(s,X,X ′) = ⟨X|e−sD|X ′⟩ , (3.135)

which is defined as a solution to the heat equation

(∂s +D)K(s,X,X ′) = 0, (3.136)

K(s = 0, X,X ′) = δ(X,X ′).

In order to calculate the effective action W (α), where α has the same functionality

as the Rényi index q in the previous subsection, indicating that the ϕ angle in a given

spacetime with a conical singularity is 2πα periodic. If we are working in a Lorentz

invariant theory, we can use the invariance under abelian symmetry ϕ → ϕ + w to

connect the heat kernel on a space with a conical singularity with the heat kernel

on flat spacetime, which is 2π periodic with respect to the difference in angles, by
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applying the Sommerfeld formula [31]

Kα(s, ϕ, ϕ
′) = K(s, ϕ− ϕ′) +

i

4πα

∫
Γ

cot
w

2α
K(s, ϕ− ϕ′ + w)dw, (3.137)

where we have suppressed all other coordinates besides ϕ, and where the contour Γ

has two lines, one from (−π + i∞) to (−π − i∞) and from (π − i∞) to (π + i∞).

cot(w/2α) will in general generate first order poles: 2παk, where k ∈ Z. In the case

of a plane in flat spacetime, if the operator D is the Laplace operator,

D = −∇2, (3.138)

the heat kernel function in D spacetime dimensions that satisfies (3.136) can be

written in Fourier space as

K(s,X,X ′) =
1

(2π)d

∫
ddpeipµ(X

µ−X′µ)e−sp2 . (3.139)

Evaluating the integral in a hyperspherical coordinate system, such that zi = z′i for

i = 1, ..., D − 2, and choosing the system to be oriented so that ϕ = ϕ′ + w, we have

pµ(X −X ′)µ = 2pr sin
w

2
cos θ, p =

√
pµpµ, (3.140)

and where θ is the angle between pµ and (X −X ′)µ.

The integral now has the following form

K(s, w, r) =
ΩD−1

(2π)d

∫ ∞

0

dp pD−1

∫ π

0

dθ sind−2(θ)e2ipr sin
w
2
cos(θ)e−sp2 , (3.141)

where

ΩD−1 =
2π(D−1)/2

Γ((D − 1)/2)
(3.142)

is the area of the unit sphere in D − 1 dimension. Using the substitution x = cos(θ),

we can simplify our integral

K(s, w, r) =
ΩD−1

(2π)D

∫ ∞

0

dp pD−1e−sp2
∫ 1

−1

dx(1− x2)
D−3
2 e2ipr sin

w
2
x. (3.143)
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Using

∫ 1

−1

dx(1− x2)
D−3
2 e2ipr sin

w
2α

x = 2
D−2
2 π

1
2Γ

(
D − 1

2

)(
2pr sin

w

2

) 2−D
2
JD−2

2

(
2pr sin

w

2

)
,

(3.144)

where Jn(x) is the n-th Bessel function of the first kind, we are left with

K(s, w, r) =
ΩD−1

√
π

(2π)D
Γ
(
D−1
2

)(
r sin w

2

)D−2
2

∫ ∞

0

dp p
D
2 JD−2

2

(
2pr sin

w

2

)
e−sp2 (3.145)

The trace can be found to be

TrK(s, w) =
s

(4πs)D/2

πα

sin2 w
2

A(Σ), (3.146)

where A(Σ) =
∫
dD−2x is the area of the surface Σ. Evaluating the contour integral

via residues [32], the trace of the heat kernel on a space with a conical singularity

can be found to be

TrKα(s) =
1

(4πs)D/2

(
αV +

πs

3α
(1− α)2A(Σ)

)
, (3.147)

where V =
∫
dτdD−1x is the volume of spacetime. The entropy has a similar form

as (3.107), where the density matrix is not normalized, with q → α, and W (α) =

− logZ(α)

S = (α∂α − 1)W (α)|α=1. (3.148)

Substituting (3.147) into (3.134), we find that the effective action has the following

form

W (α) = − 1

2(4π)D

∫ ∞

ϵ2

(
αV

sD/2+1
+

π

3αsD/2
(1− α)2A(Σ)

)
. (3.149)

The first term, proportional to the volume V , reproduces the vacuum energy in the

effective action, and the second term, proportional to the area, is responsible for the

entropy. Making use of (3.148), the entanglement entropy of an infinite plane Σ in
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D spacetime dimensions can be shown to have the following form

S =
A(Σ)

(D − 2)(4π)(D−2)/2ϵD−2
. (3.150)

Since any surface can locally look like a plane, and since curved spacetime is locally

Minkowski, this result gives the leading contribution to the entanglement entropy of

any surface Σ in both flat and curved spacetime. If we are considering a massive

field, we would have −∇2 → −∇2 +m2, we just need to add a factor of e−m2s to the

massless case (3.139), which plays a role when we need to evaluate the following

integral

S =
A(Σ)

12(4π)(D−2)/2

∫ ∞

ϵ2

ds

sd/2
e−m2s. (3.151)

In the case of D = 4 this integral leads to a logarithmic divergence in the UV cutoff,

S =
A(Σ)

48π

(
1

ϵ2
+ 2m2 ln ϵ+m2 lnm2 +m2(γ − 1)

)
, (3.152)

similarly to the result obtained using the brick wall model (2.81).
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4 One-loop renormalization of the gravitational ac-

tion

In this chapter, we will connect the divergences in the entropy with the renormaliza-

tion of the coupling constants in the theory by examining a scalar field propagating in

a 4-dimensional, non-extremal Reissner-Nordström black hole background. We will

consider the renormalization of the coupling constants in the gravitational action

by a quantum scalar field theory. We will regulate the scalar field loops by using a

Pauli-Villars renormalization scheme and determine the renormalization of Newton’s

constant. We will apply this regularization scheme in the brick wall model, and the

Pauli-Villars regulator will be shown to implement a cutoff for the entropy calcula-

tion, removing the need for the brick wall. This way, we can directly compare the

divergences appearing in the entropy and in the effective action. This chapter will

primarily follow [9, 33], and we will use ℏ = 1.

Let us consider the gravitational action

Ig =

∫
d4x

√
−g
[
− ΛB

8π8GB

+
R

16πGB

+
αB

4π
R2 +

βB
4π
RabR

ab +
γB
4π
RabcdR

abcd + . . .

]
,

(4.1)

where ΛB is the cosmological constant, GB Newton’s constant, and αB, βB, γB the

dimensionless coupling constants for the quadratic curvature interactions. The B

index just denotes that they are the bare constants, and the remaining terms denote

higher order curvature terms, along with derivative interactions. The action for a

minimally couple scalar field is

Im = −1

2

∫
d4x

√
−g
[
gab∇aϕ∇bϕ+m2ϕ2

]
. (4.2)

We wish to determine the effective action for the metric. To do so, we first obtain the

partition function after we integrate out the scalar field in the path integral.

Z(g) =

∫
Dϕe−iIm[ϕ,g] (4.3)
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Performing this integration [34], we find the effective action to be

W (g) = − i

2
Tr(log[−GF (g,m

2)], (4.4)

where GF (g,m
2) is the Feynmann propagator of a field with mass m, and where the

background metric is g. This expression is divergent, and we must regulate it for it

to be properly defined. We have a representation of the scalar one-loop action as an

asymptotic series [35,36]

W (g) = − 1

32π2

∫
d4x

√
−g
∫ ∞

0

ds

s3

∞∑
n=0

an(x)(is)
ne−im2s, (4.5)

where the an(x) coefficients are functionals of the local geometry at x, e.g.

a0(x) = 1, a1(x) =
1

6
R, a2(x) =

1

180
RabcdRabcd −

1

180
RabRab +

1

30
□R +

1

72
R2.

(4.6)

The ultraviolet divergences rise as s → 0 in the first three terms of the above series.

To regulate this effective action, we use a Pauli-Villars regularization scheme, where

we introduce fictious fields with large masses that are set by a certain ultraviolet

cutoff scale. Some of these regulator fields are quantized using incorrect statistics,

so that their contributions in loops cancel those of the remaining fields. All of these

features are chosen so that all the ultraviolet divergences become finite. Specifically,

we introduce five regulator fields: ϕ1 and ϕ2 which are two anticommuting fields

with the same mass, m1,2 =
√
µ2 +m2; ϕ3 and ϕ4 which are two commuting fields

with mass, m3,4 =
√

3µ2 +m2; and ϕ5 which is an anticommuting field with mass,

m5 =
√

4µ2 +m2. The total action for the matter fields is then given as

Im = −1

2

5∑
i=0

∫
d4x

√
−g[gab∇aϕi∇bϕi +m2

iϕ
2
i ], (4.7)

where ϕ0 is the original field ϕ with mass m. Each field makes a contribution to

the effective action, where the commuting fields are contributing as (4.4) and the

anticommuting fields as

W (g) = +
i

2
Tr(log[−GF (g,m

2)]). (4.8)
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The divergent terms in the effective action are then

Wdiv =− 1

32π2

∫
d4x

√
−g
∫ ∞

0

ds

s3
[a0(x) + isa1(x) + (is)2a2(x)] (4.9)

× [e−im2s − 2e−i(µ2+m2)s + 2e−i(3µ2+m2)s − e−i(4µ2+m2)s]

=
1

32π2

∫
d4x

√
−g[−Ca0(x) +Ba1(x) + Aa2(x)].

Where we have defined A,B,C as the s integrals in front of a2(x), a1(x) and a0(x)

respectively,

A =

∫ ∞

0

ds

s
[e−im2s − 2e−i(µ2+m2)s + 2e−i(3µ2+m2)s − e−i(4µ2+m2)s], (4.10)

B = −i
∫ ∞

0

ds

s2
[e−im2s − 2e−i(µ2+m2)s + 2e−i(3µ2+m2)s − e−i(4µ2+m2)s], (4.11)

C =

∫ ∞

0

ds

s3
[e−im2s − 2e−i(µ2+m2)s + 2e−i(3µ2+m2)s − e−i(4µ2+m2)s]. (4.12)

We can notice that we have three classes of integrals that appear in the calculation

of the constants A,B,C:

∫ ∞

0

e−i(aµ2+m2)s

sn
, n = 1, 2, 3 (4.13)

They can be evaluated as indefinite integrals, and then, by looking at the asymptotic

behavior at s = 0 and s = ∞, we can keep the dominant terms. In the case of n = 1,

we have to look at the following type of integral

∫
e−i(aµ2+m2)x

x
dx = Ei(−ix(aµ2 +m2)) + C, (4.14)

where Ei(x) is the exponential integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt. (4.15)

The integral (4.14) has the following asymptotic behavior at x = 0

lim
x→0

Ei(−ix(aµ2 +m2)) =
1

2

(
2 ln(x) + ln (−(aµ2 +m2)2) + 2γ

)
, (4.16)
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where γ is the Euler-Mascheroni constant. And the following behavior for x = ∞

1

2
e−ix(aµ2+m2)

(
2i

(aµ2 +m2)x
+O

((
1

x

)2
))

, (4.17)

which obviously vanishes at infinity. Adding together the contributions for a =

0, 1, 3, 4 in (4.10), the diverging ln(x) contributions in (4.16) all cancel out, and the

formula for A is given by

A = −1

2
ln (−m4) + ln (−(µ2 +m2)2)− ln (−(3µ2 +m2)2) +

1

2
ln (−(4µ2 +m2))2),

(4.18)

and can be rewritten as

A = ln
4µ2 +m2

m2
+ 2 ln

µ2 +m2

3µ2 +m2
. (4.19)

To evaluate B, we look at the case of n = 2 in (4.13), which is the following type of

integral

∫
e−i(aµ2+m2)x

x2
dx = −i(aµ2 +m2)Ei(−i(aµ2 +m2)x)− e−i(aµ2+m2)x

x
+ C. (4.20)

The term e−i(aµ2+m2)x

x
goes to zero as x→ ∞, and has the following asymptotic behav-

ior at x = 0

lim
x→0

e−i(aµ2+m2)x

x
=

1

x
− i(aµ2 +m2). (4.21)

Thus, the main contribution to the integral (4.20) when plugging in the bounds are

∫ ∞

0

e−i(aµ2+m2)x

x2
dx =

i

2
(aµ2 +m2)(2 ln(x) + ln(−(aµ2 +m2)2) + 2γ) (4.22)

− 1

x
+ i(aµ2 +m2)
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Adding up this type of integral for a = 0, 1, 3, 4 in (4.11), the diverging terms ln(x)

and 1/x all cancel out, and the formula for B is given by

B =
1

2
(m2 ln (−m4)− 2(µ2 +m2) ln (−(µ2 +m2)2) (4.23)

+ 2(3µ2 +m2) ln (−(3µ2 +m2)2)− (4µ2 +m2) ln (−(4µ2 +m2)2)).

After grouping it in terms of µ2 and m2, we are finally left with

B = µ2

[
2 ln

3µ2 +m2

µ2 +m2
+ 4 ln

3µ2 +m2

4µ2 +m2

]
+m2

[
ln

m2

4µ2 +m2
+ 2 ln

3µ2 +m2

µ2 +m2

]
.

(4.24)

We can apply the same principles for the n = 3 case,

∫
e−i(aµ2+m2)x

x3
= −1

2
(aµ2 +m2)2Ei(−i(aµ2 +m2)) +

ie−i(aµ2+m2)x((aµ2 +m2)x+ i)

2x2
.

(4.25)

Using the following asymptotic behavior,

lim
x→0

e−i(aµ2+m2)x

x2
=

1

x2
− ia

x
− a2

2
, (4.26)

we can write the main contribution to the integral (4.25) when plugging in the

bounds

∫ ∞

0

e−i(aµ2+m2)x

x3
=

1

4
(aµ2 +m2)2(2 ln(x) + ln(−(aµ2 +m2)2) + 2γ) (4.27)

− i

2
(aµ2 +m2)

(
1

x
− i(aµ2 +m2)

)
+

1

2

(
1

x2
− i(aµ2 +m2)

x
− (aµ2 +m2)2

2

)

Finally, it can be shown that, after adding all the different terms for a = 0, 1, 3, 4

in (4.12), the diverging terms ln(x), 1/x, and 1/x2 all cancel out, and C has the

following form

C = µ4

[
8 ln

3µ2 +m2

4µ2 +m2
+ ln

3µ2 +m2

µ2 +m2

]
+ 2m2µ2

[
ln

3µ2 +m2

µ2 +m2
+ ln

3µ2 +m2

4µ2 +m2

]
+
m4

2

[
ln

m2

4µ2 +m2
+ 2 ln

3µ2 +m2

µ2 +m2

]
. (4.28)
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Combining the scalar one-loop action with the bare action, we obtain the renormal-

ized coupling constants in the effective gravitational action

Ieff = Ig +W (4.29)

=

∫
d4x

√
−g
[
− 1

8π

(
ΛB

GB

+
C

4π

)
+

R

16π

(
1

GB

+
B

12π

)
+
R2

4π

(
αB +

A

576π

)
+

1

4π
RabR

ab

(
βB − A

1440π

)
+

1

4π
RabcdR

abcd

(
γB +

A

1440π

)
+ . . .

]
.

We have discarded the total derivative term of □R in a2(x), since it vanishes at the

boundary. We can also identify the renormalized Newton’s constant

1

GR

=
1

GB

+
B

12π
. (4.30)

Note that for large values of µ, the constants A,B,C have leading order terms of

the form lnµ/m, µ2 and µ4 respectively, as well as subleading contributions (those of

lower powers in µ), and finite contributions (those without µ). Another thing to note

is that, since we will be considering the entropy of a Reissner-Nordström black hole,

we should expect a U(1) gauge potential as well as a coupling between the gauge

field and the metric. However, since we are only considering a neutral scalar field,

in the effective action, the gauge field interaction will be unaffected by the scalar

one-loop contribution. We can apply this procedure of introducing Pauli-Villars fields

to calculate the entropy by looking at the calculation for the entropy of a Reissner-

Nordström black hole using the brick wall method for a massive field. Using (2.39),

(2.40), and (2.90),

N(E) =
1

π

∫ L

rH+h

dr

∫ ℓmax

0

dℓ(2ℓ+ 1)P (r), (4.31)

P (r) =
1

g(r)

[
E2 − g(r)

(
ℓ(ℓ+ 1)

r2
+m2

)]1/2
, (4.32)

g(r) = 1− 2GM

r
+
Q2G

r2
=
(
1− r−

r

)(
1− r+

r

)
, (4.33)

r± = GM ±
√
G2M2 −GQ2, rH = r+, m ̸= 0,
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for the free energy we have

F = − 1

π

∫ ∞

0

dE

eβE − 1

∫ L

r++h

dr
1

g(r)

∫ ℓmax

0

dℓ(2ℓ+ 1)

[
E2 − g(r)

(
ℓ(ℓ+ 1)

r2
+m2

)]1/2
(4.34)

where ℓmax has the value such that P (r) is real,

ℓmax(ℓmax + 1) = r2
(
E2

g(r)
−m2

)
(4.35)

We can execute the ℓ integration by using the substitution Λ = ℓ(ℓ+ 1),

∫ r2
(

E2

g(r)
−m2

)
0

dΛ

[
E2 − g(r)

(
Λ

r2
+m2

)]1/2
=

2r2

3g(r)
(E2 − g(r)m2)3/2. (4.36)

The free energy can then be rewritten as

F = − 2

3π

∫ ∞

0

dE

eβE − 1

∫ L

r++h

dr
1

g(r)2
r2
[
E2 − g(r)m2

]3/2
. (4.37)

The integral has a double pole at r = r+, which is regulated with the brick wall, h.

By introducing a new variable, s = 1− r+/r, our integral assumes the following form

F = −
2r3+
3π

∫ ∞

0

dE

eβE − 1

∫ L′

h′

ds

s2(1− s)4(1− u+ us)2
[E2 − s(1− u+ us)m2]3/2,

(4.38)

where u = r−/r+, L′ = 1−r+/L and h′ = h/(r++h) ≃ h/r+. For small values of s, we

have
∫
h′ ds/s

2 ≃ 1/h′, which diverges as we pull the brick wall back to the horizon

h′ → 0 as expected. We are repeating the ’t Hooft calculation for the Pauli-Villars

regulated field theory, where each field makes a contribution to the free energy. The

total free energy is now

F̄ = −
2r3+
3π

5∑
i=0

∆i

∫ ∞

0

dE

eβE − 1

∫ L′

h′

ds

s2(1− s)4(1− u+ us)2
[E2 − s(1− u+ us)m2

i ]
3/2,

(4.39)

where ∆0 = ∆3 = ∆4 = +1, for the commuting fields, and ∆1 = ∆2 = ∆5 = −1

for the anticommuting fields. The free energy of the anticommuting regulator fields
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comes with a minus sign with respect to the commuting fields, as is required since

the role of these fields is to cancel the contribution of very high energy modes in the

regulated theory. For small s, we now have
∑5

i=0 ∆i

∫
h′ ds/s

2 = 0, since there are 3

commuting and 3 anticommuting fields. The sub-leading logarithmic divergence at

small s is also cancelled since
∑5

i=0∆im
2
i = 0. Meaning, in the Pauli-Villars regulated

theory, we are free to remove the brick wall, setting h′ = 0, since it would not appear

in the near-horizon (small s) integration. The total free energy is then

F̄ = −
2r3+
3π

∫ ∞

0

dE

eβE − 1

∫ L′

0

ds

s2(1− s)4(1− u+ us)2

5∑
i=0

∆i[E
2 − s(1− u+ us)m2

i ]
3/2.

(4.40)

For small s, we can use the following approximations,

1

(1− s)4
≃ 1 + 4s, 1− u+ us ≃ 1− u,

1

(1− u+ us)2
≃ 1

(1− u)2

(
1− 2us

1− u

)
,

1

s2(1− s)4(1− u+ us)2
≃

(1 + 4s)
(
1− 2us

1−u

)
s2(1− u)2

≃
1 + 4s− 2us

1−u

s2(1− u)2
=

1

s2(1− u)2
+

2(2− 3u)

s(1− u)3
,(

1− s(1− u)m2
i

E2

)3/2

≃ 1− 3s(1− u)m2
i

2E2
. (4.41)

The total free energy is now

F̄ = −
2r3+
3π

∫ ∞

0

dEE3

eβE − 1

∫ L′

0

ds

(
1

s2(1− u)2
+

2(2− 3u)

s(1− u)3

) 5∑
i=0

∆i

(
1− 3s(1− u)m2

i

2E2

)
≡

2r3+
3π

∫ ∞

0

dEE3

eβE − 1

(
1

(1− u)2
B̃ +

2(2− 3u)

(1− u)3
Ã

)
, (4.42)

where

B̃ = −
5∑

i=0

∆i

∫ L′

0

ds

s2

(
1− 3s(1− u)m2

i

2E2

)
, (4.43)

Ã = −
5∑

i=0

∆i

∫ L′

0

ds

s

(
1− 3s(1− u)m2

i

2E2

)
. (4.44)

We can connect these quantities to B and A from (4.24) and (4.19), respectively. The
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definition of B is

B = −i
5∑

i=0

∆i

∫ ∞

0

ds

s2
e−im2

i s = {small s} ≃ −i
5∑

i=0

∆i

∫ ∞

0

(1− im2
i s). (4.45)

Using the substitution

ix = −3s(1− u)

2E2
, ds =

2iE2

3(1− u)
dx, s2 = −x24

9
E4 1

(1− u)2
, (4.46)

B̃ can be written as

B̃ = −3

2

(1− u)

E2
(−i)

5∑
i=0

∫ ∞

0

dx

x2
(1− ixm2

i ) = −3

2

(1− u)

E2
B. (4.47)

Using similar arguments, we find the connection between A and Ã to be Ã = −A.

The total free energy can be expressed as

F̄ = −
2r3+
3π

∫ ∞

0

dEE3

eβE − 1

(
1

(1− u)2
3(1− u)

2E2
B +

2(2− 3u)

(1− u)3
A

)
, (4.48)

Using

∫ ∞

0

dEE

eβE − 1
=

π2

6β2
,

∫ ∞

0

dEE3

eβE − 1
=

π4

15β4
(4.49)

The total free energy is then

F̄ = −r3+
[

π

6(1− u)β2
B +

4π3(2− 3u)

45(1− u)3β4
A

]
. (4.50)

The entropy can now be finally calculated as

S = β2∂F̄

∂β
= r3+

[
π

3(1− u)β
B +

16(2− 3u)π3

45(1− u)3β3
A

]
(4.51)

If we evaluate this at the inverse Hawking temperature,

βH =
4πr+
1− u

, (4.52)
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the entropy is

S =
A
4

B

12π
+

(2− 3u)A

180
, (4.53)

where A = 4πr2+ is the surface area of the event horizon. We see that the entropy

has the constants A and B, which give the dependence on the regulator mass µ

appearing in the renormalization of Newton’s constant. Adding this entropy to the

standard Bekenstein-Hawking entropy, we have

SBH + S =
A
4

(
1

GB

+
B

12π

)
+

(2− 3u)A

180
=

A
4GR

+
(2− 3u)A

180
. (4.54)

We find that the first contribution proportional to B in the scalar field entropy pro-

vides the one-loop renormalization of the Bekenstein-Hawking entropy. To account

for the constant term, we expect that this contribution to the entropy is related to

the quadratic curvate interaction in the action. This part of the total action can be

written as

I2 =

∫
d4x

√
−g
[
αB

4π
R2 +

βB
4π
RabR

ab +
γB
4π
RabcdR

abcd

]
, (4.55)

and it was found that the entropy contribution has the form [37]

∆S = −8πuβB + 16π(1− 2u)γB. (4.56)

Including this contribution, the total entropy is

Stotal = SBH +∆S + S (4.57)

=
A
4

(
1

GB

+
B

12π

)
− 8πu

(
βB − A

1440π

)
+ 16π(1− 2u)

(
γB +

A

1440π

)
=

A
4GR

− 8πuβR + 16π(1− 2u)γR

Both terms in the scalar field entropy account for the scalar one-loop renormalization

of the full black hole entropy. Furthermore, the divergences appearing in ’t Hooft’s

statistical-mechanical calculation of black hole entropy are precisely the quantum

field theory divergences associated with the renormalization of the coupling con-

stants appearing in the expressions of the entropy.
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So far in this discussion, we have considered a minimally coupled scalar field. We

would like to know whether the obtained results hold for arbitrary field theories cou-

pled to gravity. If we consider a non-minimally couple scalar field, the matter action

has the form

I ′m = −1

2

∫
d4x

√
−g[gab∇aϕ∇bϕ+m2ϕ2 + ξRϕ2]. (4.58)

This additional coupling to the curvature modifies the adiabatic expansion coeffi-

cients (4.6) [34], which in turn affects the renormalization of the bare coupling

constants. The renormalized Newton’s constant now looks like

1

GR

=
1

GB

+
B

2π

(
1

6
− ξ

)
, (4.59)

and the new equation of motion for the scalar field has the form

(□−m2 − ξR)ϕ = 0. (4.60)

However, since R = 0 for the RN metric, the equation of motion for the scalar field

has the same form as in the minimally coupled case, meaning the calculations end

up the same. Since Newton’s constant is renormalized as (4.59), and the entropy

is independent of ξ, it means that the entropy does not properly account for the

renormalization of the Bekenstein-Hawking formula. This shows the limitation in ’t

Hooft’s brick wall model, as it does not capture the full physics of the problem.
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5 Concluding remarks

In this thesis, we researched and analyzed some methods of calculating the black

hole entropy and its corrections.

We systematically generalized ’t Hooft’s brick wall method to black holes of arbi-

trary dimension and derived the entropy formula for an electrically neutral black

hole in 4 dimensions up to the second order of the WKB approximation by including

only the dominant near-horizon terms. We found that the quantum correction to

the Bekenstein-Hawking entropy is proportional to the logarithm of the black hole

area. We evaluated this entropy for the Schwarzschild black hole, and we found that

the factor in front of the logarithm is constant. We expanded the consideration to

a charged spacetime with a charged probe, and using the minimal substitution, we

found that the radial equation is the same as in the non-charged case, up to a trans-

formation of energy. We then evaluated the entropy up to the second order for the

Reissner-Nordström black hole, and by taking the chargeless limits, we confirmed

that the entropy reduces to that of Schwarzschild.

We explained in detail a method for calculating the entanglement entropy of a black

hole by modeling a scalar field as a collection of coupled oscillators on a lattice of

spaced points. After finding the wave function of the ground state for such a sys-

tem, we constructed its density matrix. By tracing this density matrix outside the

black hole, we constructed the reduced density matrix and found it to be given by

a Gaussian matrix. We rewrote this reduced density matrix as a multiplication of

density matrices. The entropy of such a density matrix was then given as a sum of

the entropies of each matrix in the multiplication. When applying this formalism to

a sphere of radius R, the entropy was found to be proportional to the area, similar

to the Bekenstein-Hawking law. We inspected the continuum case and sketched the

method for calculating the eigenvalues of the coupling operator between two oscil-

lators, which appear in the formula for the entropy. Since these types of calculations

are difficult to perform, we outlined two other methods. In the replica trick method,

we considered a Rényi entropy, which is a one-parameter generalization of the en-

tanglement entropy. We obtained the entanglement entropy after the parameter q

was analytically continued to the real numbers and the limit where it goes to unity

was applied. This way, we reduced our problem of finding the entropy to calculating
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the partition function of a replicated manifold by using the path integral. We con-

sidered a q-copy of the original manifold. After setting a periodicity condition, we

introduced a conical singularity at the origin. By using the saddle point approxima-

tion and Wick rotating to Euclidean time, we obtained the entanglement entropy for

the Schwarzschild black hole. This result reproduces the Bekenstein-Hawking for-

mula and does not depend on Euclidean time, meaning it is also valid for Lorentzian

spacetime. In the heat kernel method, we outlined an entropy calculation for the

entanglement entropy of a plane embedded in a higher-dimensional spacetime. The

effective action was defined by the trace of the so-called heat kernel, which is de-

fined as a solution to the heat equation for a given operator. In the massless case,

we showed that the entanglement entropy reproduced the area law and that it is

quadratically divergent in the UV cutoff. In the massive case, we obtained, alongside

a quadratically divergent term, a logarithmically divergent term, similarly to what

we obtained with the brick wall model before.

The last method of calculating the black hole entropy that we considered was the

one-loop renormalization of the gravitational action. We considered the gravita-

tional action, which had terms up to the second order in curvature. We found the

effective action for a minimally coupled field, which we represent as an asymptotic

series. Since this series is divergent, we use a Pauli-Villars regularization scheme,

where we introduce five fictitious fields with different masses and statistics. Adding

this regulized effective one-loop action with the gravitational action, we obtain the

renormalized coupling constants in the effective gravitational action. We apply this

procedure of introducing Pauli-Villars fields to calculate the entropy of a Reissner-

Nordström black hole using the brick wall method for a massive field. We find that in

this regulized theory, we can remove the brick wall. After we add the brick wall en-

tropy to the Bekenstein-Hawking entropy and the entropy of the quadratic curvature

interaction, we see that all terms in the scalar field entropy account for the scalar

one-loop renormalization of the full black hole entropy. We also notice that in the

non-minimal coupling case, the entropy does not account for the renormalization of

the Bekenstein-Hawking formula.

Now let us list out some potential future applications of the methods that we de-

scribed in this thesis. Using the brick wall method, we can calculate entropies for

lower-dimensional black holes, such as the BTZ, QBTZ (charged BTZ), and NCQBTZ
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(noncommutative charged BTZ) black holes and see how they behave. Using the

replica trick, we could extend our calculation to include charge and apply it to a

Reissner-Nordström black hole. Finally, using the one-loop renormalization method,

we could include higher order terms in curvature and see if they could remedy the

failure of the entropy to remormalize the Bekenstein-Hawking formula.
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Appendices

Appendix A Radial equation for a free scalar field

We are solving the massive Klein-Gordon equation in (D+2)-dimensional spacetime,

(
− 1

f(r)
∂tt +∇2

D+1 −
m2

ℏ2

)
Φ = 0. (A.1)

Due to the rotational symmetry of the spacetime (2.2), we can use the ansatz [24]

Φ = e−iEt/ℏ R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi), (A.2)

whereG(r) =
√
f(r)g(r), i ∈ {1, ..., (D−1)} and Yℓmi

(θ, ϕi) denote the hyperspherical

harmonics. By plugging in (A.2) into (A.1), we have

− 1

f(r)

R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi)∂tt
(
e−iEt/ℏ)+ e−iEt/ℏ∇2

D+1

(
R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi)

)
(A.3)

−m
2

ℏ2

(
e−iEt/ℏ R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi)

)
= 0.

After differentiating twice with respect to t and dividing the entire equation with

e−iEt/ℏ, we are left with

1

f(r)

E2

ℏ2
R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi) + Yℓmi
(θ, ϕi)∇2

D+1

(
R(r)

rD/2G(r)1/2

)
(A.4)

+
R(r)

rD/2G(r)1/2
∇2

D+1 (Yℓmi
(θ, ϕi))−

m2

ℏ2

(
R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi)

)
= 0.

Using [24]

∇2
D+1Yℓmi

(θ, ϕi) = −ℓ(ℓ+D − 1)

r2
Yℓmi

(θ, ϕi), (A.5)

and dividing by Yℓmi
(θ, ϕi), (A.4) simplifies to

1

f(r)

E2

ℏ2
R(r)

rD/2G(r)1/2
+∇2

D+1

(
R(r)

rD/2G(r)1/2

)
(A.6)

+
R(r)

rD/2G(r)1/2

(
−ℓ(ℓ+D − 1)

r2

)
− m2

ℏ2

(
R(r)

rD/2G(r)1/2

)
= 0.
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Regrouping and using

∇2
D+1

(
R(r)

rD/2G(r)1/2

)
=

1√
−g

∂r

(
grr

√
−g∂r

(
R(r)

rD/2G(r)1/2

))
, (A.7)

plugging grr = g(r) and (2.16) into (A.7), (A.6) becomes

(
1

f(r)

E2

ℏ2
− ℓ(ℓ+D − 1)

r2
− m2

ℏ2

)
R(r)

rD/2G(r)1/2
(A.8)

+

√
g(r)

f(r)r2D
∂r

(
g(r)

√
f(r)r2D

g(r)
∂r

(
R(r)

rD/2G(r)1/2

))
= 0.

We introduce a new quantity, which is interpreted in the main body of the text

V 2(r) =
1

G2(r)

(
E2 − f(r)

[
m2 +

(
ℓ(ℓ+D − 1)ℏ2

r2

)])
. (A.9)

The first term in (A.8), after factoring out 1/f(r)ℏ2 reduces to

G2(r)V 2(r)

f(r)ℏ2
R(r)

rD/2G(r)1/2
=
g(r)V 2(r)

ℏ2
R(r)

rD/2G(r)1/2
, (A.10)

after multiplying (A.8) with rD/2G(r)1/2/g(r), its first term is then given by

V 2(r)

ℏ2
R(r), (A.11)

while the factor in front of the second term is given by

rD/2G(r)1/2

g(r)

√
g(r)

f(r)r2D
=

rD/2G(r)1/2√
g(r)f(r)rD

= {G(r) =
√
f(r)g(r)} =

1

G(r)1/2rD/2
.

(A.12)

We can now rewrite the second term as

1

G(r)1/2rD/2
∂r

(
G(r)rD∂r

(
R(r)

rD/2G(r)1/2

))
(A.13)

=
1

G(r)1/2rD/2
∂r

(
G(r)1/2rD/2R′(r)− D

2
rD
G(r)1/2R(r)

rD/2+1
− 1

2
G(r)

rD/2R(r)

G(r)3/2
G′(r)

)
=

1

G(r)1/2rD/2
∂r

(
G(r)1/2rD/2R′(r)− D

2
rD/2−1G(r)1/2R(r)− 1

2

rD/2R(r)

G(r)1/2
G′(r)

)
.
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The first term in the upper equation is then

1

G(r)1/2rD/2
∂r
(
R′(r)G(r)1/2rD/2

)
= R′′(r) +

1

2

R′(r)

G(r)
G′(r) +

D

2

R′(r)

r
, (A.14)

the second term is then

1

G(r)1/2rD/2
∂r

(
−D

2
rD/2−1G(r)1/2R(r)

)
= −D

2

(
D

2
− 1

)
R(r)

r2
(A.15)

−D
4

R(r)

G(r)r
G′(r)− D

2

R′(r)

r
,

and the third term is

1

G(r)1/2rD/2
∂r

(
−1

2

rD/2R(r)

G(r)1/2
G′(r)

)
= −D

4

R(r)

G(r)r
G′(r)− 1

2

R′(r)

G(r)
G′(r) (A.16)

+
1

4

R(r)

G2(r)
(G′(r))2 − 1

2

R(r)

G(r)
G′′(r).

Adding the upper three equations (A.13) is ultimatively given by

R′′(r) +

(
−D(D − 2)

4r2
− D

2r

G′(r)

G(r)
+

(G′(r))2

4G2(r)
− G′′(r)

2G(r)

)
R(r). (A.17)

Definiting a new quantity, ∆(r), as

∆(r) =

(
D(D − 2)

4r2
+
D

2r

G′(r)

G(r)
− (G′(r))2

4G2(r)
+
G′′(r)

2G(r)

)
, (A.18)

(A.17) is reduced to

R′′(r)−∆(r)R(r). (A.19)

Adding (A.11) and (A.19), we obtain the radial equation for our scalar wave function

R′′(r) +

[
V 2(r)

ℏ2
−∆(r)

]
R(r) = 0. (A.20)
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Appendix B Radial equation for a free charged scalar

field in charged spacetimes

We are solving the massive charged Klein-Gordon equation in 4-dimensional charged

spacetime. Starting from (2.86),

(
1√
−g

(
∂µ(

√
−ggµν∂ν) + ∂µ

(√
−ggµν i

ℏ
qAν

)
(B.1)

+
i

ℏ
qAµ(

√
−ggµν∂ν)

)
− 1

ℏ2
gµνq2AµAν −

m2

ℏ2

)
Φ = 0,

since only the zeroth component of Aµ is non-vanishing, the mixed terms of ∂ and A

can be written as

1√
−g

(
∂t

(√
−g
(

−1

f(r)

)
i

ℏ
qA0(r)Φ

)
+
i

ℏ
qA0(r)

(√
−g
(

−1

f(r)

)
∂tΦ

))
(B.2)

= −2
1

f(r)

i

ℏ
qA0(r)∂tΦ.

(B.1) now has the form

(
1√
−g

∂µ(
√
−ggµν∂ν)− 2

1

f(r)

i

ℏ
qA0(r)∂t −

1

ℏ2
gµνq2AµAν −

m2

ℏ2

)
Φ = 0, (B.3)

Using the same ansatz as before (A.2), we see that the first and fourth terms

reproduce (A.20). (B.3) is now

R′′(r) +

(
V 2(r)

ℏ2
−∆(r)

)
R(r) +

(
− 2

G2(r)

1

ℏ2
qA0(r) +

1

G2(r)

1

ℏ2
q2A2

0(r)

)
R(r) = 0.

(B.4)

Since

V 2(r) =
1

G2(r)

(
E2 − f(r)

[
m2 +

(
ℓ(ℓ+D − 1)ℏ2

r2

)])
, (B.5)

we can define a new quantity

W 2(r) =
1

G2(r)

(
(E − qA0(r))

2 − f(r)

[
m2 +

(
ℓ(ℓ+D − 1)ℏ2

r2

)])
, (B.6)

for which the radial equation then has the same structure as before, with V 2(r) →
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W 2(r), i.e., E → E − qA0(r),

R′′(r) +

(
W 2(r)

ℏ2
−∆(r)

)
R = 0. (B.7)
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6 Prošireni sažetak

6.1 Uvod

Crne rupe su područje prostorvremena gdje je gravitacija toliko snažna da ništa,

uključujući svjetlost, ne može pobjeći iz njih. Ova granica se naziva horizont do-

gad̄aja. Matematički, crne rupe se pojavljuju kao rješenja Einsteinovih jednadžbi

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (6.8)

Fizički, one nastaju gravitacijskim urušavanjem masivnih zvijezda, stvarajući sustav s

izuzetno jakim gravitacijskim poljem. Ovo svojstvo čine crne rupe idealnom arenom,

kako teorijski, tako i fenomenološki, za promatranje kvantnih efekta gravitacije,

a posebice mogućih kvantnih korekcija koje sustav može dobiti. U stacionarnom

slučaju, crne rupe se mogu opisati s tri parametra: masa M , naboj Q i angularni

moment J , što proizlazi iz no-hair teorema [1]. Kako bismo ilustrirali potrebu prim-

jene termodinamičkih zakona na crne rupe, zamislimo scenarij u kojem neka tvar

pada u crnu rupu. Prije prijelaza horizonta, ova tvar posjeduje odred̄enu entropiju

S. Nakon prijelaza horizonta, promatrač izvana ne može odrediti što se dogodilo s

ovom entropijom. Ipak, znamo da je prije nego što je tvar upala u crnu rupu, ukupna

entropija bila S. Nakon što tvar ud̄e u crnu rupu i nakon dovoljno dugog vremena,

sve što vidimo je stabilno stanje crne rupe opisano njezinom masom, naboja i angu-

larnim momentom. Ako bi postojalo samo jedno stanje za crnu rupu, karakterizirano

s ova tri parametra, entropija svake takve crne rupe bi bila nula. To implicira da

kada tvar ud̄e u crnu rupu, ukupna entropija pada, što je u sukobu s drugim za-

konom termodinamike. Ovaj problem riješio je Bekenstein [2], postulirajući da crne

rupe takod̄er posjeduju entropiju. Nadovezujući se na ove činjenice i promatranja,

možemo povući paralele izmed̄u mase M , naboja Q i angularnog momenta J crne

rupe i termodinamičkih varijabli, što nas dovodi do četiri zakona mehanike crnih

rupa [3-4]. Nulti zakon govori da stacionarne crne rupe imaju konstantnu površin-

sku gravitaciju κ na horizontu dogad̄aja. Prvi zakon je prikazan kao

dM =
κ

8π
dA+ ΩdJ, (6.9)
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gdje Ω označava kutnu brzinu horizonta, a A njegovu površinu. Drugi zakon kaže da

se površina horizonta ne smanjuje

δA ≥ 0. (6.10)

Treći zakon kaže da se površinska gravitacija κ ne može smanjiti na nulu u konačno

mnogo koraka. Uspored̄ujući prvi zakon s onim iz termodinamike, dE = TdS − pdV ,

i izjednačavajući ΩdJ član s radom, dobivamo jednakost TdS = κdA/8πG. Hawking

[5] je izračunao da crne rupe zrače poput crnih tijela i imaju temperaturu

TH =
ℏκ
2π
. (6.11)

Koristeći navedene rezultate, dolazimo do formule za entropiju crnih rupa

SBH =
A

4ℓ2Pl
, (6.12)

gdje ℓPl =
√
Gℏ označava Planckovu duljinu. Ova formula naziva se Bekenstein-

Hawkingova entropija. Jedinstvena značajka Bekenstein-Hawkingove entropije je da

je proporcionalna površini crne rupe, poznatoj kao horizont, što se razlikuje od tip-

ičnih računa entropije gdje je entropija obično proporcionalna volumenu. Tijekom

osamdesetih godina prošlog stoljeća, istraživači su istraživali različite pristupe razu-

mijevanju entropije crnih rupa. ’t Hooft [6] je izračunao entropiju Hawkingovih

čestica neposredno izvan horizonta crne rupe, tretirajući ih kao termalni plin. Iako

je ovaj izračun rezultirao entropijom proporcionalnom površini horizonta, zahtijevao

je tzv. brick wall blizu horizonta kako bi regulirao odred̄ene divergencije. Bombelli,

Koul, Lee i Sorkin [7] razmatrali su reduciranu matricu gustoće, dobivenu uzimanjem

traga preko kvantnih stupnjeva slobode unutar horizonta crne rupe. Ovaj postupak

činio se prirodnim za crne rupe jer njihov horizont djeluje kao kauzalna granica,

čineći dogad̄aje unutar crne rupe nedostupnima promatračima izvana. Srednicki

[8] izračunao je entropiju izravno u ravnom prostoru uzimanjem traga preko stupn-

jeva slobode unutar zamišljene površine. Ova entropija, poznata kao entropija ispre-

pletenosti ili sprege, takod̄er je bila proporcionalna površini preko koje se odvijalo

preplitanje. Entropija proizlazi iz kratkodosežnih korelacija u kvantnom polju blizu

površine, pa je osjetljiva na veličinu područja blizu površine. To znači da samo mod-
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ovi smješteni u području blizu površine doprinose entropiji, što implicira da veličina

tog područja igra ulogu UV regulatora. Zanimljivo je primijetiti da entropija ispre-

pletenosti kvantnog polja u ravnom prostoru već vodi na činjenicu da je entropija

procionalna površini, bez postojanje ikakve crne rupe. Osim toga, shvaćeno je da

su entropija dobivena brick wall modelom i entropija isprepletenosti povezane [9].

Druga metoda za izračun entropije isprepletenosti razvijena je od strane Susskinda

[10], uvodeći malu koničnu singularnost na površinu ispreplitanja, zatim izvrijednju-

jući efektivnu akciju kvantnog polja na pozadinsku metriku s koničnom singularnošću

te zatim derivirajući akciju s obzirom na kutni defekt. Ova metoda naziva se tzv.

replica trick. Koristeći ovu metodu, napravljeni su sistematski izračuni UV divergent-

nih članova u entropiji isprepletenosti crnih rupa [11], a posebno su pronad̄eni log-

aritamski UV divergentni članovi [12]. Ti logaritamski korekcijski članovi pronad̄eni

su i s pomoću nekoliko različitih metoda, uključujući teoriju struna [13], korekcijama

viših petlji gravitacijske akcije [14], heat kernel metodom [15] i upotrebom nekomu-

tativne geometrije [16]. Pitanje može li UV divergencija u entropiji isprepletenosti

biti pravilno renormalizirana istraživali su Susskind i Uglum [17]. Utvrdili su da

standardna renormalizacija Newtonove konstante proizvodi konačnu entropiju, ako

razmatramo entropiju isprepletenosti kao kvantni doprinos Bekenstein-Hawkingovoj

entropiji. Kasnije su Ryu i Takayanagi [18] predložili holografsko tumačenje entropije

isprepletenosti, povezujući je s površinom minimalne plohe u anti-de Sitterovom

prostorvremenu putem AdS/CFT korespondencije. Trenutna istraživanja sugeriraju

da entropija isprepletenosti obećava bolje razumijevanje crnih rupa i kvantne grav-

itacije, budući da su se nekoliko revija bavili njezinom ulogom u crnim rupama [19,

20], njezinim izračunom u kvantnoj teoriji polja u ravnom prostorvremenu [21] i

njezinim holografskim aspektima [22].

6.2 Brick wall metoda

U ovom poglavlju smo razvili brick wall metodu, koja je semiklasična metoda za razu-

mijevanje mikroskopskog uzroka entropije crnih rupa. Pretpostavlja se fiksna pozad-

ina na kojoj polja propagiraju, a entropija se računa pomoću kanonske entropija od

polja materije izvan horizonta crne rupe, izvrijednjenoj na Hawkingovoj temperaturi.

Zbog velikog broja energijskih stanja koja čestica može okupirati, gustoća stanja di-
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vergira [6]. Ovo sugerira onda da entropija crne rupe divergira, te služi kao argument

da su crne rupe beskonačni ponori informacija. Kako bismo se riješili ove beskon-

ačnosti, uvodimo tzv. brick wall blizu horizonta. Drugim riječima, pretpostavlja se da

sve polja iščezavaju unutar neke fiksne udaljenosti od horizonta.

Φ(r) = 0, r = rH + h, (6.13)

Razmatramo skalarnu valnu funkciju Φ na (D+2)-dimenzionalnom, sfernosimetričnom

prostorvremenu crne rupe, koja zadovoljava Klein-Gordonovu jednadžbu

(
□− m2

ℏ2

)
Φ = 0, (6.14)

gdje je □ = ∇µ∇µ d’Alembertov operator, a m is masa skalarnog polja. Možemo

riješiti ovu jednadžbu koristeći ansatz [24].

Φ = e−iEt/ℏ R(r)

rD/2G(r)1/2
Yℓmi

(θ, ϕi), (6.15)

gdje su G(r) =
√
f(r)g(r), i ∈ {1, . . . , (D − 1)}, a Yℓ,mi

hipersferni harmonici. Koris-

teći to dobijemo radijalnu jednadžbu,

R′′(r) +

[
V 2(r)

ℏ2
−∆(r)

]
R(r) = 0, (6.16)

gdje je ∆(r) pokrata, a V 2(r) ima ulogu efektivnog potencijala. Da riješimo ovu

jednadžbu, koristimo ansatz

R(r) =
1√
P (r)

exp
i

ℏ

∫ r

P (r′)dr′. (6.17)

Kako bismo išli u više redove WKB aproksimacije, P (r) pišemo poput

P (r) =
∞∑
0

ℏ2nP2n(r). (6.18)
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Zbog oblika našeg WKB ansatza, pratimo standardnu kvantizacijsku proceduru, zada-

jući naredni kvantizacijski uvjet

∫ L

rH+h

dr

∫ ℓmax

0

dℓ(2ℓ+D − 1)W(ℓ)P2n(r) = πℏ1−2nN2n(E), (6.19)

gdje W označava degeneracijski faktor za angularni moment, a N2n je doprinos n-tog

moda ukupnom broju stanja skalarnog polja s energijom nižom od E,

N(E) =
∞∑
n=0

N2n(E). (6.20)

Uvjet na ℓmax je dan tako da zahtijevamo da su funkcije P2n realne. Entropiju i slo-

bodnu energiju za dani mod računamo preko

F2n = −
∫ ∞

0

N2n

eβE − 1
dE, S2n = β2∂F2n

∂β
. (6.21)

Entropija do drugog reda za slučaj četverodimenzionalne crne rupe (D = 2) sa f(r) =

g(r) i m = 0 iznosi

S = SBH −
(
κrH
10

+
g′′(rH)r

2
H

60

)
ln

(
A
ℓ2Pl

)
, (6.22)

gdje su nakon integracije sadržani najdominantniji članovi u limesu h → 0, budući

da očekujemo da ti članovi najviše utječu na entropiju, jer su oni upravo ti koji su

vodili do divergencije zbog divergentne gustoće stanja. Primjenjujući ovu formulu na

primjeru najjednostavnije crne rupe, Schwarzschildove,

g(r) = 1− 2GM

r
, rH = 2GM,κ =

1

4GM
=

1

2rH
, g′′(rH) = − 2

r2H
, (6.23)

dobivamo

S = SBH − 1

60
ln

(
A
ℓ2Pl

)
. (6.24)

Schwarzschildova crna rupa prima korekciju na njenu entropiju u obliku logaritma

površine horizonta. Primijetimo kako je faktor ispred logaritma konstanta, neovisna

o površini horizonta.

Sada možemo proširiti razmatranje na nabijene crne rupe i nabijene probe. U
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tom slučaju moramo napraviti minimalnu supstituciju u Klein-Gordonovu jednadžbu,

∂µ → ∂µ +
i
ℏqAµ, gdje Aµ = (A0(r), 0, 0, 0) opisuje 4-potencijal nabijenog prostorvre-

mena, a q je naboj skalarnog polja s kojim ispitujemo prostorvrijeme. Uz to, koristimo

pretpostavku da je f(r) = g(r). Korištenjem istog ansatza kao i prije, možemo jed-

nostavno doći do radijalne jednadžbe koja ima sličnu strukturu kao i prijašnja

R′′(r) +

(
W 2(r)

ℏ2
−∆(r)

)
R(r) = 0, (6.25)

gdje je W 2(r) funkcija koja ima isti oblik kao i V 2(r) uz E → E − qA0(r). Ovo

znači da, kako bismo izračunali nulti i drugi red korekcije, moramo samo napraviti

zamjenu E → E − qA0(r) u definicijskim jednadžbama za N0 i N2. Napravimo ovo

na primjeru Reissner-Nordströmove crne rupe

A0(r) =
Q

r
, g(r) = 1− 2GM

r
+
Q2G

r2
, D = 2, m = 0, (6.26)

r± = GM ±
√
G2M2 −GQ2, rH = r+.

Primjenjujući istu proceduru kao i prije, dolazimo do entropije za Reissner-Nordströmovu

crnu rupu do drugog reda

S = S0 + S2 = (6.27)

1

h

(
11(r+ − r−)

360
− 3qQr+ζ(3)

4π3ℏ
+

q2Q2r2+
6(r+ − r−)ℏ2

)
+(

−(r+ + r−)

60r+
− 3qQζ(3)(3r+ − 5r−)

4π3(r+ − r−)ℏ
+
q2Q2r+(r+ − 2r−)

3(r+ − r−)2ℏ2

)
ln
(α
h

)
.

U limesu Q→ 0 reproduciramo Schwarzschildovu entropiju. Dok za q → 0 dobijemo

S =
11(r+ − r−)

360h
− (r+ + r−)

60r+
ln
(α
h

)
, (6.28)

što je isti rezultat za entropiju kao u [23] koji je dobiven razmatranjem samo nabi-

jenog prostorvremena, a ne nabijene probe.

6.3 Isprepletena entropija

Isprepletena entropija je mjera kvantnog ispreplitanja izmed̄u dva podsistema, do-

bivena uzimanjem traga po jednom od podsistema ukupnog sistema. U kontekstu
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crnih rupa, podsistemi od interesa su stupnjevi slobodi unutra i izvan horizonta

dogad̄aja. Računi prepletene entropije uključuju dijeljenje prostorvremena u dvije

regije: unutrašnjost crne rupe i vanjski dio. Entropija ispreplitanja je definirana

kao von Neumannova entropija reducirane matrice gustoće koja odgovara unutarn-

jem području. Računi isprepletene entropije daju mikroskopsko razumijevanje en-

tropije crnih rupa. To vodi do razumijevanja mikroskopskih stupnjeva slobode koji

su zaslužni za entropiju, te utemeljuje poveznicu izmed̄u kvantnog preplitanja i grav-

itacije. U ovom dijelu diplomskog rada računat ćemo isprepletenu entropiju sistem,

modelirajući skalarno polje na R3 kao skup vezanih oscilatora. Pratit ćemo [7-9] the

ćemo pretpostaviti ℏ = 1.

Razmotrimo čisto vakuumsko stanje |ψ⟩ kvantnog sustava definiranog unutar

prostornolike regije O, i pretpostavimo da su stupnjevi slobode lokalizirani unutar

odred̄enih regija O. Valna funkcija cijelog sustava O, kojeg ploha Σ dijeli na dva

podsustava A i B tada je dana linearnom kombinacijom produkta kvantnih stanja

svakog podsustava,

|ψ⟩ =
∑
i,a

ψi,a |A⟩i |B⟩a , (6.29)

Matricu gustoće koja odgovara čistom kvantnom stanju sustava |ψ⟩ dana je izrazom

ρ0(A,B) = |ψ⟩ ⟨ψ| , (6.30)

i ima von Neumannovu entropiju jednaku nuli, budući da je čisto stanje ono bez

neodred̄enosti. Ako uzmemo trag po stupnjevima slobode u području A, tj. parcijalni

trag TrA za matricu gustoće čistog stanja, dobivamo reduciranu matricu gustoće za

podsustav B

ρB = TrAρ0(A,B). (6.31)

Statistička entropija za neku matricu gustoće naziva se von Neumannova entropija i

dana je izrazom

S = −Tr(ρ ln ρ). (6.32)

To znači da je entropija za podsustav B dana izrazom

SB = −Tr(ρB ln ρB), (6.33)
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što se poklapa s entropijom isprepletenosti koja je povezana s plohom Σ. Primjenju-

jući isti postupak, možemo dobiti entropiju isprepletenosti SA. Može se pokazati da

vrijedi

SA = SB. (6.34)

Ovo znači da isprepletena entropija nekog sistema u čistom stanju nije ekstenzivna

veličina, tj. odred̄ena je geometrijom plohe koja dijeli prostor, Σ.

Prvo promotrimo entropiju skupa vezanih harmoničkih oscilatora u R3 opisani s

Lagrangianom

L =
1

2
GMN q̇

M q̇N − 1

2
VMNq

MqN , (6.35)

gdje su q i q̇ otklon i generalizirana brzina respektivno. Simetrična matrica G ima

ulogu metrike, dok je V simetrična matrica. Uvod̄enjem matrice "korijena" od V ,

WMAW
A
N = VMN , možemo uvesti operatore stvaranja i poništenja,

a∗M = PM + iWMAq
A, aM = PM − iWMAq

A, (6.36)

gdje je P generalizirani impuls od q. Zahtijevajući da operator poništenja poništava

osnovno stanje našeg sistema, dolazimo do izraza za valnu funkciju osnovno stanja

ϕ0({qA}) =
(
det

(
D

π

))1/4

exp

[
−1

2
WABq

AqB
]
, (6.37)

gdje je D dijagonalizirana matrica od W . Matrica gustoće onda ima oblik

ρ({qA}, {q′B}) ≡ ⟨{qA}|ψ0⟩ ⟨ψ0|{q′B}⟩ = ψ0({qA})ψ0({q′B})∗ (6.38)

=

(
det

(
D

π

))1/2

exp

[
−1

2
WAB(q

AqB + q′Aq′B)

]
.

Ako napravimo trag po nekom potprostoru Ω od R3, dobivamo reduciranu matricu

gustoće

ρred({qa}, {q′b}) =
(
det

(
Mab

π

))1/2

exp

[
−1

2
Mab(q

aqb + q′aq′b)

]
(6.39)

× exp

[
−1

4
Nab(q − q′)a(q − q′)b

]
.
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Entropija ovakve reducirane matrice gustoće za sustav s mnogo stupnjeva slobode je

dana sa

S = −
∑
n

µn lnµn + (1− µn) ln(1− µn)

1− µn

, (6.40)

gdje je

µn = 1 + 2λ−1
n − 2

√
λ−1
n (1 + λ−1

n ), (6.41)

a λn su svojstvene vrijednosti od Λa
b = −W aβWβb. Srednicki [8] je ovakvom metodom

izračunao entropiju za sferu radijusaR uzimanjem traga osnovnog stanja bezmasenog

skalarnog polja preko stupnjevima slobode unutar radijalne rešetke. Za entropiju je

numerički dobio

S = 0.3M2R2. (6.42)

Drugi način računanja isprepletene entropije je replika trik gdje gledamo Rényi en-

tropiju, kao jedno parametarsku generalizaciju prepletene entropije s indeksom q

koji analitički produljimo na realne brojeve, te napravimo limes q → 1. Ovom

metodom entropiju možemo izračunati tako da izračunamo particijsku funkciju repli-

cirane mnogostrukosti M̂q koristeći integrale po putevima, što je puno jednostavnije

za kvantnu teoriju polja. Promatramo ispreplitanje izmed̄u dvije vremenolike regije

koje su povezane s crvotočinom koja ima isti radijus kao i Schwarzschildova crna

rupa. Formula za entropiju glasi

S = −q∂q logZ[M̂q]|q=1. (6.43)

Gledajući niskoenergijski limes, Euklidska gravitacijska particijska funkcija je dana s

Z[M] =

∫
Dge−IE [g] ≈ e−IE [M ], (6.44)

gdje je IE[M] on-shell Euklidska akcija sa Schwarzschildovom metrikom. Entropija

se može napisati preko derivacije te akcije, i reproducira se Bekenstein-Hawkingov
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zakon

S = q∂qIE[M̂q]q=1 =
4πr2S
4GN

=
A

4GN

(6.45)

Treći način računanja je heat kernel metoda, i ovdje računamo entropiju ispreplitanja

za (D − 2)-dimenzionalnu ravninu u D-dimenzionalnom prostorvremenu. Efektivna

akcija je dana s

W = −1

2

∫ ∞

ϵ2

ds

s
TrK(s), (6.46)

gdje je K(s,X,X ′) = ⟨X|e−sD|X ′⟩ heat kernel definiran kao rješenje toplinske jed-

nadžbe za operator D

(∂s +D)K(s,X,X ′) = 0, K(s = 0, X,X ′) = δ(X,X ′). (6.47)

Za ravninu u ravnom prostorvremenu, uz operator D = −∇2, trag heat kernela iznosi

TrK(s, w) =
s

(4πs)D/2

πα

sin2 w
2

A(Σ), (6.48)

gdje je A(Σ) =
∫
dD−2x površina ravnine Σ. Trag se uvrsti u efektivnu akciju i onda

se entropija se računa istom formulom kao i kod replica trika, uz q → α, i W (α) =

− logZ(α). Entropija onda glasi

S =
A(Σ)

(D − 2)(4π)(D−2)/2ϵD−2
(6.49)

Ako dodamo masu u operator D, danog s

D = −∇2 +m2, (6.50)

entropija poprima sličan oblik kao i ona dobivena u brick wall metodi, tj. ima logari-

tamsku divergenciju u UV regulatoru, ϵ

S =
A(Σ)

12(4π)

(
1

ϵ2
+ 2m2 ln ϵ+m2 lnm2 +m2(γ − 1)

)
. (6.51)
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6.4 Jednopetljena renormalizacija gravitacijske akcije

U ovom poglavlju povezujemo divergencije u entropiji s renormalizacijom konstanti

vezanja u teoriji, promatrajući propagiranje skalarnog polja u 4-dimenzionalnoj neek-

stremalnoj Reissner-Nordströmovoj pozadini. Korištenjem Pauli-Villarsove regular-

izacijske sheme, regularizirati ćemo jednopetljene doprinose skalarnih polja te odred-

iti renormalizaciju Newtonove konstante. Pokazujemo da Pauli-Villarsov regulator

sam po sebi daje UV cutoff, zamijenjujući tako potrebu za brick wallom. Uz gravitaci-

jsku akciju

Ig =

∫
d4x

√
−g
[
− ΛB

8π8GB

+
R

16πGB

+
αB

4π
R2 +

βB
4π
RabR

ab +
γB
4π
RabcdR

abcd + . . .

]
,

(6.52)

i akciju minimalno vezanog skalarnog polja,

Im = −1

2

∫
d4x

√
−g
[
gab∇aϕ∇bϕ+m2ϕ2

]
, (6.53)

želimo odrediti efektivnu akciju za metriku. Može se pokazati da ona iznosi

W (g) = − i

2
Tr(log[−GF (g,m

2)], (6.54)

kako je ovaj izraz divergentan, moramo ga regulirati da bude ispravno definiran.

Možemo ga zapisati u obliku

W (g) = − 1

32π2

∫
d4x

√
−g
∫ ∞

0

ds

s3

∞∑
n=0

an(x)(is)
ne−im2s, (6.55)

i onda uvesti 5 regulatorskih polja, tako da ukupna akcija za polja materije iznosi

Im = −1

2

5∑
i=0

∫
d4x

√
−g[gab∇aϕi∇bϕi +m2

iϕ
2
i ]. (6.56)
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Najdivergentniji članovi u efektivnoj akciji su onda dani s

Wdiv = − 1

32π2

∫
d4x

√
−g
∫ ∞

0

ds

s3
[a0(x) + isa1(x) + (is)2a2(x)] (6.57)

×[e−im2s − 2e−i(µ2+m2)s + 2e−i(3µ2+m2)s − e−i(4µ2+m2)s]

=
1

32π2

∫
d4x

√
−g[−Ca0(x) +Ba1(x) + Aa2(x)].

Spajajući skalarnu jednopetljenu akciju s golom akcijom, dobivamo renormalizirane

konstante vezanja u efektivnoj gravitacijskoj akciji,

Ieff = Ig +W (6.58)

=

∫
d4x

√
−g
[
− 1

8π

(
ΛB

GB

+
C

4π

)
+

R

16π

(
1

GB

+
B

12π

)
+
R2

4π

(
αB +

A

576π

)
+

1

4π
RabR

ab

(
βB − A

1440π

)
+

1

4π
RabcdR

abcd

(
γB +

A

1440π

)
+ . . .

]
.

Možemo identificirati renormaliziranu Newtonovu konstantu

1

GR

=
1

GB

+
B

12π
. (6.59)

Sada možemo primijeniti ovu metodu uvod̄enja Pauli-Villarsovih polja da izračunamo

entropiju Reissner-Nordströmove crne rupe koristeći brick wall metodu. Možemo

pokazati da se pomoću tih polja makne potreba za brick wall, h, i tada ukupna slo-

bodna energija za sva polja glasi

F̄ = −
2r3+
3π

∫ ∞

0

dE

eβE − 1

∫ L′

0

ds

s2(1− s)4(1− u+ us)2

5∑
i=0

∆i[E
2 − s(1− u+ us)m2

i ]
3/2.

(6.60)

Ukupna entropija, izvrijednjena na inverznoj Hawkingovoj temperaturi βH = 4πr+
1−u

je

onda

S =
A
4

B

12π
+

(2− 3u)A

180
. (6.61)

Dodavanje ove entropije Bekenstein-Hawkingovoj, dobivamo da doprinos propor-

cionalan s B daje jednopetljenu renormalizaciju Bekenstein-Hawkingove entropije,

ako uključimo i članove koji su kvadratni u zakrivljenosti, dobivamo sljedeću for-
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mulu za totalnu entropiju, gdje se pojavljuju i članovi s ostalim renormaliziranim

konstantama vezanja

Stotal =
A

4GR

− 8πuβR + 16π(1− 2u)γR. (6.62)

Ako bismo imali neminimalno vezano skalarno polje, onda entropija više ne bi uključi-

vala potpunu renormalizaciju Bekenstein-Hawkingove formule, zato što Riccijev skalar

iščezava za Reissner-Nordströmovu crnu rupu. Ova nekonzistentnost ukazuje na

ograničenja u brick wall modelu.

6.5 Završne opaske

U zaključku smo dali pregled svih rezultata dobivenih u ovom radu, te spomenuli da

se metode mogu proširiti primjenjujući ih na crne rupe nižih dimenzija poput: BTZ,

QBTZ te NCQBTZ.

6.6 HR nazivi slika i tablica

Slika 3.1: Parametrizacija repliciranog prostorvremena s koničnim singularitetom

lociranom na r = 0 u ravnom prostorvremenu. Regija A u τ = 0 vremenu je defini-

rana kao x > 0 [28].

Slika 3.2: Penroseov dijagram maksimalno-proširenog Schwarzschildovog prostorvre-

mena [28].

Slika 3.3: Ilustracija ukupne (nenormalizirane) matrice gustoće ρ. Rez Σ dijeli cigaru

na dva vremenski simetrična dijela. Da bismo normalizirali ρ, dijelimo račun s Tr(ρ)

koje opisuje cijelu cigaru [28].

Slika 3.4: Ilustracija particijske funkcije Z[Mq, Plave linije povezane sa strelicom su

identificirane [28].

Slika 3.5: Jednolistna mnogostrukost M̂ koja sada ima konični singularitet na fiksnoj

točci r = rS s angularnim defektom od ∆ϕ = 2π(1− 1/q) [28].
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