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Abstract

In the current period where the data driven methods vastly outperform
standard decision making processes, combining classifiers presents one of the
key ingredients for such success. My work begins with an exhaustive analysis
of all the components of the ensemble system including the popular algorithms
such as Boosting and Random Forests. I explore the concept of diversity, ac-
knowledge its role in creating a successful ensemble learner and present some
of the commonly used methods for its measurement. The explored techniques
are used in my experiment in the task of speech recognition. Study includes
Transformers, their modification E-Branchformer as reference and the ensem-
bles containing them which are the current state of the art models in end-to-end
speech recognition problem. Experiment is held on a popular speech dataset,
Librispeech. Thesis explores the advantages and flaws of combining several
models of such type. Moreover, I discuss the computational issues in real
world applications of large models. Thesis ultimately establishes that combin-
ing classifiers is an empirical process, that there is no universal, best performing
algorithm for every task.





Introduction

Artificial intelligence is one of the most talked-about topics these days. Surprising
results are emerging from giving a simple input prompt to a language model. Nowa-
days, neuroscientists use their research on brain functioning to create new components
for neural networks and conversely, they use the analysis of neural net behavior to
better understand the human brain. Such methodology has led to many papers in
recent years. Moreover, language models are now co-authors in scientific papers, a
fact that is indisputable. This trend will only continue to the point where AI gains its
own consciousness. At that point, it will create its own research papers based on its
research interests. The complete need for AI arose from dissatisfaction with common
statistical estimators such as mean, median, variance, and so on. Scientists started
searching for patterns, leading to the creation of the first machine learning models.

The entire research area is lately advancing by taking advantage of the newest
hardware options, highlighting the importance of computing development for the
future of the field. In the last several years, there have been hundreds of papers
on scaling large models and making them suitable for real-world usage by limiting
the computational time required for their training and inference. Currently, simple,
small algorithms or models in the AI context simply do not possess the capability to
generalize well in unseen environments. For this purpose, these algorithms or models
are frequently combined to get the improved performance. As previously mentioned,
that comes at the price of computing. I believe that for an AI system to be complete,
functional, and not useless in a real-world scenario, it must be fast and reliable.

In this thesis, my primary goal is to emphasize the role of combining classifiers
in achieving SOTA results on all of today’s AI-related tasks, such as speech recogni-
tion, object detection, action recognition, and so on. There will be a discussion and
overview of the advantages and shortcomings of current methods of combining clas-
sifiers and their future. The thesis is structured such that in the first chapter, some
extra flavor to the discussion from above is added, but I also present some already
established notation. In the second chapter, thesis explore each bit of the topic more
thoroughly. Some common ways to combine classifiers are introduced and afterward,
through experiment, I will attempt to prove that my ensemble outperforms each sin-
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gle estimator. At the end, conclusion will be presented based on the results of the
experiment.



Chapter 1

Combining Pattern Classifiers

1.1 Discussion

Let’s bring our topic into a real-world context. Classification in AI systems happens
on various levels and has multiple applications, from feature selection to prediction
and prediction combination. Much like humans, who constantly make classification
decisions in everyday life, AI systems employ similar decision-making processes. Now,
consider a parliament as a political arena. Parallels can be drawn between politicians
and classifiers in an AI ensemble. Each politician, much like a classifier, is chosen
based on their performance, similar to how classifiers are selected based on benchmark
results. In a democratic system, every politician’s vote has equal weight, akin to
the majority voting system in classifiers. Despite its simplicity, it’s highly effective,
much like the saying, ”None of us is as smart as all of us” – Ken Blanchard, often
applies. This principle is exemplified in Random Forests, where decisions of individual
Decision Tree classifiers, developed through bootstrapping are combined.

It’s intriguing to note how AI behaviours mirror human actions. This leads to
the question: Is there a better method then majority voting for combining classifiers?
Statistically, the answer is yes. For instance, the Naive Bayes Combiner (NBC) and
Behavior Knowledge System often outperform majority voting, although the ”No
Free Lunch Theorem” still applies. Why not experiment with these methods in a
parliamentary setting if they prove more effective then regular democratic votes? For
example, we could track and evaluate politicians votes based on outcomes like resolv-
ing critical issues. Over a larger dataset, each politician’s vote could be weighted,
potentially leading to a more effective system then the unbiased original. While
these analogies extend, they underscore that AI isn’t a mysterious art; it’s a human
creation, deeply rooted in our history and now finding applications in modern AI
systems. Artificial General Intelligence (AGI) will likely evolve from these ensemble
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6 CHAPTER 1. COMBINING PATTERN CLASSIFIERS

methods, possibly employing more advanced techniques then those currently in use.

1.2 Historical Overview

After the starting discussion, begginings of this field can be explored. Combining
pattern classifiers fits into a topic called ensemble learning, which is considered syn-
onymous. The definition and boundaries of the field are, to put it mildly, ambiguous.
In the book ’Combining Pattern Classifiers’ by Kuncheva [13], it is stated that one
should use combiners as methods to combine classifiers. One step further, one may
consider methods to combine combiners, and so on, to infinity.

The idea of combining classifiers was proposed more then 70 years ago by Sebestyen
in the book ”Decision Making Processes in Pattern Recognition”, where he empha-
sized the importance of machine learning in pattern recognition and acknowledged
possible approaches to surpass the shortcomings of regular statistics in the decision-
making process. A further major leap was made by Robert E. Schapire in 1990.
in his paper ”The Strength of Weak Learnability”, introducing a novel method of
combining classifiers named Boosting. The idea can be summarized as using weak
classifiers to build a strong one. The results were amazing, so much so that the
best-performing algorithms on tabular data today are based on this approach, obvi-
ously with various modifications and upgrades. After this, the next major leap was
made by Leo Breiman six years later, publishing a paper called ”Bagging Predictors”,
featuring the usage of the bootstrap method on datasets and averaging predictions
made by each base classifier. The concept later expanded to Random Forests, which
focuses on reducing the correlation between predictors. Neural networks can also be
considered as the ensemble algorithm, each neuron can be acknowledged as a simple
estimator, and their stacking as a combiner. Recall that the Perceptron algorithm is
nothing more then Logistic Regression in special case. Now, if neural networks are
considered to belong in this field, its relevance grows exponentially.

1.3 Parallel Computing

To address the question of ’Why’ concerning the relevance of the field, an under-
standing of parallel and distributed computing is essential, as its development shows
a strong correlation with the topic of interest. Most modern computing processes
involving AI systems are managed by graphics cards, primarily due to their high
number of CUDA cores. In simpler terms, these are similar to CPU cores, but with
differences that are typically inconsequential for AI tasks. A common analogy com-
pares computing a massive number of operations on a GPU to a large container ship
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moving slowly but carrying a vast amount of cargo, contrasted with a fast-moving
boat with limited cargo space, which mirrors the function of a CPU. The larger
the model, the more memory it requires for training, storage, and inference. For
instance, the GPT3 model has 175 billion parameters, and GPT4 has more then a
trillion. Such models are trained on clusters comprising thousands of GPU units
housed in specialized facilities known as data centers.

1.4 Why?

Combining pattern classifiers nowadays have specific purpose in a specific sub-fields
of AI. However, some properties are shared among all types of problems. Ensemble
models yield lower error rates since the base estimators are basically ’fighting’ each
other for permission to grant the most influence in final prediction. Another benefit
obtained is reduced overfitting with models that are prone to such behaviour. With
development of multi core devices, field of Parallel computing became influential as
it allows training and inferencing several algorithms in the same time.

Unstructured Data

Unstructured datasets come in several formats and usually require extensive pre-
processing. For example: emails, images, videos and so on. Tasks with unstructured
data are mastered by neural networks which, as it has been discussed earlier some
categorize as an example of ensemble method. The biggest advantage of neural
networks is their scalability, in other words, property that they can benefit from
extra data in a way other methods can not. That is achieved by expanding the
network architecture(more layers, more neurons). Whereas advantages are obvious
in benchmark scores, the shortcomings lie in their interpretability and computational
challenges. Combining classifiers may help us in both of those up to a certain point.
For example:

• The larger dataset can be used and splitted so that each classifier is fed with
enough data to learn specific targets and aggregate the outputs to obtain final
prediction.

• Use several smaller classifiers(based on number of parameters) to reach the
performance of the larger one
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Structured Data

Structured datasets are in a predefined format. They are easy to analyze and gen-
erally to work with. For example: financial data, customer information, product
specification and so on. Algorithms such as Random Forests, XGBoost and CAT-
Boost usually yield the best performance. Their importance in this type of tasks is
not only in ensemble algorithm itself, but also in feature extraction. It is known that
machine learning methods outperform standard statistical methods like ANOVA for
task of feature selection. One example of such method, which is also example of
ensemble method is Boruta[14]. However, this thesis will not be focusing on the fea-
ture extraction task so this example serves as a showcase of the reach of ensemble
methods.

1.5 Constructing Ensemble System

As it is proposed in a paper[21] by Lior Rokach. Upon constructing ensemble method
the following aspects should be defined:
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Aspect Description

Combiner - Non-trainable: Combiners that do not include
training additional parameters, for example Ma-
jority Voting.

- Trainable: Combiners that include training pa-
rameters, for example Naive Bayes Combiner.

Ensemble method - Type of Ensembling: algorithms for combining
base classifiers, including training them separately
(parallel) or training on top of each other (sequen-
tial/stacked).

Diversity - How diversity is introduced?: Techniques for en-
suring diversity among base classifiers, and mea-
suring the existing one.

Ensemble Size - How many different classifiers is it used?: The
number of base classifiers that make up the ensem-
ble. Ensemble size can vary from a small number
to a large number of classifiers.

Universality - Can it be used with any classifier?: Whether
ensemble methods are compatible with any type
of base classifier or whether they have specific re-
quirements or limitations regarding the choice of
base classifiers.

Table 1.1: Overview of Ensemble Learning Aspects

An additional category is acknowledged, the meta-classifiers. They are not added
as they can be listed as a trainable combiners. They take output labels from models
as an input and try to find a patterns in errors of classifiers. There is an interesting
debate ongoing on whether Fine-Tuning procedure should be categorized as a meta-
classifier.





Chapter 2

Methods

Let’s go in-depth into each building block of the ensemble. In the following figure,
the complete building procedure can be seen.

Figure 2.1: General Building Procedure
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12 CHAPTER 2. METHODS

2.1 Combiner

Combiner in the ensemble build serves as the glue that binds predictions from base
learners to reach final decision. There are several approaches to combiners in en-
semble learning, each with its unique characteristics depending on the specifications
of the system. Major distinguishing factor is whether its worked with continuous
or discrete output label. In both scenarios, non trainable and trainable methods
can be developed. One special group of those methods are meta-classifiers. As its
been mentioned mentioned, they are categorized in trainable subgroup of combiners
as they are trained on a set of output labels as the input features and output the
final label. Hypothetically, meta-classifiers can be seen as a system for them selves.
Typically, each base classifier is trained on the same dataset, followed by the use of
a small additional dataset (preferably overlapping with the training set) to train the
combiner model. To express these concepts more precisely, an introduction to the
probabilistic framework is necessary. The notation is from [13].

An ensemble of classifiers is considered, comprising p base classifiers in the set
G = {g1, g2, ..., gp} and a set of classes Ω = {w1, ..., wc}. Four types of classifier
outputs are considered:

(a) Class Labels
Each classifier gi produces a class label wi ∈ Ω, i = 1, ..., c. Thus, for any
input x, the p classifier outputs define a vector l = [l1, ..., lp]

T ∈ Ωp. In this
scenario, the measure of certainty in the predicted label is not considered, and
there is no information about the ordering of labels. Additionally, the object
x could be either a vector or a matrix. Certain algorithms, like Convolutional
Neural Networks support matrix inputs. For ones that don’t, input is typically
reshaped into a ”line.”

(b) Ranked Class Labels
The output of each gi classifier is a subset of the class labels Ω, ranked by a cer-
tain property. These labels are called Ordinal labels. In this type of problems,
standard classifiers such as Logistic Regression perform sub-optimally as they
do not take into account the measure of distance from the predicted label to
the true label(Does it matter how wrong is something?). For this reason, clas-
sifiers with different loss functions and target outputs were developed [4],[22].
Another approach for taking advantage of this type of class labels is utilized in
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field of deep learning with Embedding vectors. For each label, high dimensional
feature representation is learned and a positional information is added to it[16].

(c) Numerical Support For Classes
Each classifier gi gives a c-dimensional vector [di,1, ..., di,c]

T as its output. Value
di,j represents a probability that element x comes from class wj. Without loss
of generality, it can be assumed that the outputs contain values between 0 and
1, spanning the space [0, 1]c. Such normalization can be made with application
of softmax, among others.

(d) Oracle Output
With these outputs, information as to which class label has the input data
point been assigned is disregarded. For a given dataset X, and its element xj,
classifier gi produces an output element li such that di,j ∈ {0, 1} depending
on whether classifier gi classified object xj correctly or not. Mathematically
speaking, following is found: 1li=wj

. This type of output is useful in problems
with many class labels.

With previously introduced notation for class label outputs l = [l1, ..., lp]
T ∈ Ωp,

following methods model the probability P (wk is correct |l) for k = 1, ..., c.

Discrete Case

➤ Majority Voting Combiner
Most common combiner when working with the large number of classifiers is
majority voting combiner. Final decision is reached by simply counting ’votes’
for each class. If there are p classifiers, and the Oracle outputs are being
observed, it is sufficient to have ⌊p

2
⌋+1 correct votes. If pi, i = 1, ..., p represents

the probability of each classifier hitting correct label ’pi = accuracyi/100’, then
in order to reach the maximum potential of combiner, exactly ⌊p

2
⌋ + 1 correct

votes are required. Any additional correct vote will negatively impact the overall
performance of combiner since the classifier that made it will, on average make
1 correct vote less in the future. On the other hand, if there are ⌊p

2
⌋ correct

votes and ⌊p
2
⌋ + 1 incorrect votes, then, following the same analogy as before,

combiner will have the worst possible performance. These special cases are
called Pattern of success/Pattern of failure. Algorithm goes as follows:
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Algorithm 1 Majority Voting Combiner

1: INFERENCE
2: Input: Base classifiers g1,..,gp
3: Input: Data point x
4: Find class predictions l1, ...lp for each of p classifiers.
5: Calculate di,j for each class wj, j = 1, ..., c by each classifier gi, i = 1, ..., p

di,j(x) = 1li=wj

6: For x, new element, choose ŷ output class s.t. ŷ = argmaxcj=1

∑p
i=1 di,j(x)

In case of a tie, common solution is to randomly select from the top-voted
labels.

➤ Weighed Majority Voting
Method that fits into category of trainable combiners. It comes as a modifica-
tion from majority voting combiner in a way that more importance is given to
the more relevant classifiers. Relevance of the classifier is determined by its per-
formance on testing set. The lower the error, the greater the relevance. Final
prediction is determined as a sum of weighted votes, where class with highest
overall support is being selected as the output. Algorithm goes as follows:

Algorithm 2 Weighted Majority Voting Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Training set for combiner {(x1, y1), ..., (xm, ym)}
4: Calculate accuracy p̂i, i = 1, ..., p on Training set
5: Find νi = log( p̂i

1−p̂i
), i = 1, ..., p

6: INFERENCE
7: Input: Data point x
8: Find class predictions l1, ...lp for each of p classifiers.
9: Calculate di,j for each class wj, j = 1, ..., c by each classifier gi, i = 1, ..., p

di,j(x) = 1li=wj

10: For x, new element, choose ŷ output class s.t. ŷ = argmaxcj=1

∑p
i=1 νidi,j(x)

➤ Naive Bayes Combiner
This method falls into category of trainable combiners and differs from weighted
majority voting in its use of Bayes’ rule. Its simplicity may be deceiving, as
it often yields better performance then some more complicated algorithms in
specific tasks. To train it, confusion matrix for each classifier is first computed
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based on a dataset (overlap with the training set is desirable). Then, the usual
practice is to add some correction coefficient (ϵ > 0) to avoid zeroes in confusion
matrices. During the inference phase, prior support for each label is found as the
quotient of the number of class elements and all elements. Posterior probability
of support for each class is then reached as a product of the corresponding
elements in confusion matrices of each classifier. At the end, final output label
is assigned to class with the largest support. Algorithm proceeds as follows:

Algorithm 3 Naive Bayes Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Training set for combiner {(x1, y1, ..., (xm, ym)}
4: Find number of elements for each class wk,mk

5: Find confusion matrices Ki ∈ Rc×c for i = 1, ..., p
6: Apply correction for zeroes in confusion matrices
7: INFERENCE
8: Input: Data point x
9: Find class predictions li for i = 1, ..., p.
10: Set prior support for each class: µk(x) =

mk

m

11: Update support for posterior: µj(x)← µj(x)
∏p

i=1 Ki(j, li) for j = 1, ..., c
12: For x, new point, choose ŷ output class s.t. ŷ = argmaxcj=1µj(x)

➤ Behaviour Knowledge System Combiner

BKS is a method that fits into the category of trainable combiners. This com-
biner works with multinomial combinations of classifier outputs, meaning that
it tries to find a pattern in the combination of all classifier outputs rather then
observing each separately. During the training phase, a matrix with all com-
binations of outputs of p classifiers is found and later used during inference
to identify the most probable class. Essentially, it counts how many times a
received combination of votes occurred and what the output was, assigning a
label to the output that occurred most times. The problem with this method
is that it requires a large dataset for training, and even when that is fulfilled,
it can not fully capture the posterior probabilities of each combination. The
algorithm proceeds as follows:
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Algorithm 4 Behaviour Knowledge System Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Training set for combiner {(x1, y1), ..., (xm, ym)}
4: Find a pattern matrix on Training set, E ∈ Rm×p

5: INFERENCE
6: Input: Data point x
7: Find the class predictions vector l = [l1, ...lp]
8: Compare rows in matrix E with vector l and select one that occurs most fre-

quently

In case of a tie, majority voting combiner can be utilized.

Continuous Case

In continuous case, classifiers with continuous outputs are considered. It is assumed
that the classifier returns for each class a degree of support, i.e., a measure propor-
tional to the probability that a data point belongs to a certain class. Thus, each
classifier can be redefined as gi :R→ [0,1]c. This notation is possible since softmax
transformation can be applied to the outputs, i.e. Softmax : Rn → [0,1]n where the
sum of output vector elements is 1. Decision profile, in notation DP (x) for input
data point x is a matrix whose elements di,j are functions of x and are defined as
support that classifier gi gives to the hypothesis that the output label comes from
class wj.

➤ Average Combiner
The most basic combiner in group of continuous labeled output combiners is
average combiner. Final label is obtained by averaging supports that each
classifier gives to the certain class. So, for a new data point, decision profile is
found and after that the supports are calculated. Finally, element is assigned
to label with maximum support. Algorithm goes as follows:

Algorithm 5 Average Combiner

1: INFERENCE
2: Input: Base classifiers g1,..,gp
3: Input: Data point x
4: Compute decision profile for input data point
5: Find support for each class by computing µj =

1
p

∑p
i=1 di,j(x) j=1,...,c

6: For x, new point, choose ŷ output class s.t. ŷ = argmaxcj=1µj(x)
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Further non-trainable methods, like minima/maxima or median combiners, are
also viable options. Additionally, introducing a tunable parameter α ∈ R allows
for the calculation of support for each label on an input sample x as follows:

µj(x) =
1

p

(

p
∑

i=1

di,j(x)
α

)1/α

Other modifications are analogously defined.

➤ Borda Count Combiner
Algorithm firstly devised in 1770. by Jean Charles de Borda. It fits into a
list of non trainable combiners. Using this combiner, supports for classes that
are not most likely are not excluded. In some literature, Borda count can be
found grouped within the discrete case label outputs. General condition is that
each classifier provides a complete ranking of all possible alternative choices.
Therefore, it is necessary for each classifier to give c degrees of support. The
most probable class gets c − 1 points of support, and so on down to the least
likely which gets 0 points of support. Final label belongs to a class with the
largest score. Algorithm goes as follows:

Algorithm 6 Borda Count Combiner

1: INFERENCE
2: Input: Base classifiers g1,..,gp
3: Input: Data point x
4: Compute decision profile DP(x)
5: Initialize support for each class: µj(x) = 0, for all j = 1, . . . , c
6: for each classifier gi in G do
7: Update score: µ:(x)+ = Rank([DP (x)]:,i)
8: end for
9: For x choose ŷ output class s.t. ŷ = argmaxcj=1µj(x)

Where Rank function returns ranks across whole column.

➤ Decision Template Combiner
Combiner firstly proposed by Kuncheva[13] where the concept of decision profile
is used to create decision templates for each class. Decision template captures
central tendencies in the continuous outputs of base classifiers. Using certain
training set, decision profiles are firstly computed, and then averaged per class
to create specific decision templates. New data point is assigned to a class
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whose decision template is the most similar to its decision profile. Algorithm
goes as follows:

Algorithm 7 Decision Template Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Data set for training combiner {(x1, y1), ..., (xm, ym)}
4: Find decision profiles DP (xi) for i=1,...,m
5: Compute decision templates for each class as: DTj =

1
mk

∑

xk:wj=yk
DP (xk)

6: INFERENCE
7: Input: Data point x
8: Compute decision profile DP(x)
9: Find similarity score between DP(x) and each DTj where j = 1, ..., c

µj(x) = S(DP (x), DTj)
10: For x, new element, choose ŷ output class s.t. ŷ = argmaxcj=1µj(x)

Two similarity scores were presented in this thesis, including the Mahalanobis
distance, which can be defined as follows:

S(DP (x), DTj) =

(

p,c
∑

i,k=1

(DP (x)i,k − [DTj]i,k)

)T

Σ−1

(

p,c
∑

i,k=1

(DP (x)i,k − [DTj]i,k)

)

(2.1)
Where the Σ is covariance matrix. The second one presented is Swain&Ballard
similarity which can be defined as:

S(DP (x), DTj) =

∑p,c
i,k=1 min(DP (x)i,k, [DTj]i,k)

∑p,c
i,k=1[DTj]i,k

(2.2)

In some scenarios it is better to have both similarity scores calculated so to get
more robust information on how strong is the combiner(testing accuracy should
be similar).

➤ Dempster-Schafer Combiner
Dempster-Shafer theory of evidence, originally presented by Barnett and Shafer
during the 1970s and 1980s, offers an unique approach to handling uncertainty,
differing from Bayesian reasoning by not necessitating prior probabilities for
evidence and effectively dealing with incomplete knowledge. Despite its early
popularity, it was rejected due to various exposed shortcomings by critics such
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as Cheeseman [5] in his paper, interestingly named In defense of probability.
Nowadays, its applications have been mostly limited to data fusion problems.
The Dempster-Shafer combiner operates by first calculating a proximity func-
tion using previously defined decision templates, from which belief is derived,
and then by employing Dempster’s rule of combination[3][20], degree of support
for each class is determined. Algorithm goes as follows:

Algorithm 8 Dempster-Schafer Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Data set for training combiner {(x1, y1), ..., (xm, ym)}
4: Find decision profiles DP (xi) for i=1,...,m
5: Compute decision templates for each class as: DTj =

1
mk

∑

k:wj=yk
DP (xk)

6: INFERENCE
7: Input: Data point x
8: Compute decision profile DP(x)

9: Compute proximity score for each j = 1, ..., c: βj,i(x) =
(1+||[DTj ]i−gi(x)||

2)−1

∑c
k=1

(1+||[DTk]i−gi(x)||2)−1

10: Compute beliefs bj(gi(x)) =
βj,i(x)

∏
k ̸=j(1−βk,i(x))

1−βj,i(x)[1−
∏

k ̸=j(1−βk,i(x)]
for i=1,...,p

11: Apply Dempster rule: µj = K
∏p

i=1 bj(gi(x))
12: For x, new element, choose ŷ output class s.t. ŷ = argmaxcj=1µj(x)

K is here normalization constant ensuring sum of all support values is 1.

➤ Stacked Generalization Combiner
This combiner represent a general class of combiners that make use of standard
machine learning algorithms such as Logistic Regression, Decision Trees, ANN
and so on. It was first considered by Wolpert [25] in 1992. In its most general
form, for a new point x, input feature for the combiner is its entire decision
profile DP (x) and the output is final class label. This can obviously be simpli-
fied by optimizing weights only for a certain base classifier(weighted combiner)
or including also weights for each class. General algorithm goes as follows:
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Algorithm 9 Stacked Generalization Combiner

1: TRAINING
2: Input: Base classifiers g1,..,gp
3: Input: Data set for training combiner {(x1, y1), ..., (xm, ym)}
4: Input: Combiner classifier f
5: Train combiner classifier f on {(D(x1), y1), ..., (D(xm), ym)} dataset
6: INFERENCE
7: Input: Data point x
8: Compute predictions for each base classifier gi, i=1,...,p
9: Predict the final output label ŷ = f ◦D(x)

Here, D prediction represents abstract input for f combiner which can be de-
cision profile, but it can also be a vector.

2.2 Ensemble methods

Ensemble algorithms boost predictive accuracy by parallelly training different base es-
timators with mutually compensatory errors. They excel with efficient, high-variance
base estimators like Decision Trees or ANN. Combining outputs of multiple models
helps avoid the effect of overfitting on training set. Following algorithms will be
presented for both types of problems, classification and regression. For that reason,
estimator notation for base model in ensemble algorithms will be used.

Bagging

Bagging, short for Bootstrap Aggregating, is the simplest ensemble algorithm. In this
algorithm, diversity is introduced at the data selection level. For each selected base
classifier, subset of data used for training is selected using the bootstrapping method.
Bootstrapping uses a uniform distribution to decide whether an element will be in a
dataset or not. This means that having dataset X with m elements, each element
will have a chance of 1

m
to end up in a bootstrap sample in each step of selection

process. If the element from dataset X is denoted as x, bootstrap sample as Xboot

and sampler with S, following holds:

P (x /∈ S) = 1− 1

m
=⇒ P (x /∈ Xboot) =

(

1− 1

m

)m
m→∞→ e−1 ≈ 0.368 (2.3)

Thus, each element will have a chance of approximately 36.8% to not end up in boot-
strap sample for algorithm iteration for large datasets. In regression scenarios, the
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outputs of each regressor are averaged and assigned as the output. In classification,
majority voting is commonly used to determine the output label. This method has
shown it self to be very efficient with models that yield high variance, for example
ANN or Decision Trees. Practically any known machine learning (ML) algorithm can
be used as the base classifier/regressor, and it’s even possible to combine different
types. Linear models, as base classifiers tend not to improve performance as the
output ensemble model is, again, linear model. This can be illustrated by considering
that the process essentially involves adding models like y = ax+b where y is target, a
is weight matrix, x input feature and b bias term. ”Best” linear model can be already
estimated by the number of different algorithms. The training process is as follows;
First, the size of ensemble p is selected. Next step is assigning data points to certain
estimator based on results of bootstraping. Finally, a combiner is used to aggregate
the outputs of each model during inference.

Algorithm 10 Bagging

1: Input: Training set {(x1, y1), . . . , (xm, ym)}, yi ∈ R

2: Input: Number of iterations p
3: Input: Base estimator
4: Initialize sampler vector S ∈ Rm, Si =

1
m
, for all i = 1, . . . ,m

5: for l = 1 to p do
6: Train tree model gl using sampler weights S
7: end for
8: Output: Final model B(x) = F (h1(x), .., hp(x))

Random Forests

Random Forests algorithm is a modification of Bagging algorithm. In its basic form,
apart from using bootstrapping to construct modified datasets, it uses random feature
subspaces. This algorithm uses fixed base estimators, Decision Trees. These trees
are typically grown to a substantial size, usually with a depth of around 5 to 10
splits. The GINI index or the mean decreased accuracy measure is used to identify
the optimal feature and value for expanding the tree.

Key terminology includes Out-Of-Bag(OOB) error estimates which can be easily
obtained by evaluating error from trees trained with bootstrap sample on elements
left out of bag. Such measures are aggregated across each tree and result is called
Generalization error. Generalization error provides a quick and unbiased estimate
of prediction error. OOB procedure enables continuous tracking of changes during
training upon iterating. It replaces role of cross-validation. When some trees are
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overfitted, pruning can be employed. It is a method where least valuable leaves are
removed to decrease size of tree. Such leaves provide least improvement in explained
variability compared to others.

Random Forest algorithm is one of the most frequently used algorithms, but
like Bagging, a significant drawback is loss of interpretability compared to ordinary
Decision Tree.

Algorithm 11 Random Forests

1: Input: Training set {(x1, y1), . . . , (xm, ym)}, y ∈ R

2: Input: Number of iterations p
3: Input: Max tree depth d
4: Initialize sampler vector S ∈ Rm, Si =

1
m
, for all i = 1, . . . ,m

5: for l = 1 to p do
6: Randomly select feature subspace K
7: Train tree model gl on subspace K using sampler weights S with depth at

most d
8: end for
9: Output: Final model RF (x) = F (g1(x), .., gp(x)))

Same as with Bagging, function F is majority voting in case of the classification
problem, and average in case of the regression problem.

Boosting

Family of Boosting algorithms yields some of the best results in machine learning.
Goal is to obtain a strong classifier from many weak ones. A strong classifier by
itself gives low error on the test set. The Boosting algorithms can be divided into
Adaptive Boosting (AdaBoost) algorithms and Gradient Boosters (GB) depending
on the feature used for the sequential construction of estimators. This means that
there won’t be all base estimators defined in the first iteration, but each subsequent
estimator will be defined taking into account the previous one. This will provide some
good as well as some bad properties. With a large number of iterations, it will be able
to overfit the estimator to the training set, so it will be important to adjust number
of iterations based on the data set size. AdaBoost methods construct so-called weak
learners in each iteration and assign them data depending on the distribution of the
samplers. On the other hand, Gradient Boosters model the residuals of estimators
in each iteration, based on some predefined loss function. Described procedure is
same in the case of problems of classification and regression. Training of AdaBoost
algorithm goes as follows:
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Algorithm 12 AdaBoost Algorithm

1: Input: Training set {(x1, y1), . . . , (xm, ym)}, yi ∈ R

2: Input: Weak learner
3: Input: Error function Err
4: Input: Number of iterations p
5: Initialize sampler vector S ∈ Rm, Si =

1
m
, for all i = 1, . . . ,m

6: for l = 1 to p do
7: Train weak learner using sampler weights S to get estimator gl
8: ϵi = liErr(yi, gl(xi)) for i = 1, ...,m
9: epsl =

∑m
i=1 ϵi

10: βl =
epsl

1−epsl

11: si ← siβ
1−epsl for i = 1, ...,m

12: si ← si∑m
i=1

si

13: end for
14: Output: Final model ABoost(x) = F (β1, ..., βl, g1(x), .., gl(x))

Generally, any weak learner can be chosen, similar to Bagging. The error function,
denoted as Err, may be defined differently depending on whether the context is
regression or classification. Most often, the MSE is used for regression and 0 − 1
error for classification. It can be proven that the AdaBoost algorithm minimizes
exponential loss. Important detail is that the values ϵi are between 0 and 1 for each
i = 1, ...,m. Function F is weighted majority voting in case of classification, and in
the case of regression, it is a weighted average combiner. Here, the coefficients βl,
l = 1, ..., p represent confidence level assigned to each estimator by algorithm for the
final decision-making process[7].
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Algorithm 13 Gradient Boosting

1: Input: Training set {(x1, y1), . . . , (xm, ym)}, y ∈ R

2: Input: Weak learner
3: Input: Differentiable loss function p
4: Input: Number of iterations p
5: Initialize starting model Fo(x) = argminγ

∑m
i=1 L(yi, γ)

6: for l = 1 to p do

7: Calculate ril = −
[

∂L(yi,Fl−1(xi))

∂Fl−1(xi)

]

for i = 1, . . . ,m

8: Train Weak learner gl(x) using dataset {(x1, r1l), ..., (xm, rml)}
9: Calculate γl = argminγ

∑m
i=1 L(yi, Fl−1(xi) + γgl(xi))

10: Update model Fl(x) = Fl−1(x) + γlgl(x)
11: end for
12: Output: Final model F (x) = Fp(x)

For the first iteration of the model, something simple like mean in case of re-
gression, and most frequent class in case of classification can be used. For a more
educated guess, Newton-Raphson algorithm can be utilized. Coefficient γl, l = 1, .., , p
is most often estimated numerically with Gradient Descent. Moreover, a threshold
for disregarding low-value learners is often employed to make final learner stronger.
In case of Decision Tree weak learner, this algorithm is called GBM.

Stochastic Gradient Boosting modifies standard GB to reduce overfitting. Base
estimators are trained on random subsets of 50-80 percent of input data without
replacement. Recent methods focus strictly on Decision Trees. XGBoost, a method
introduced in 2014., features modified tree learning algorithms capable of handling
sparse data and incorporates regularization coefficients to prevent overfitting. Addi-
tionally, an algorithm for optimizing the splitting threshold is employed. More details
on this algorithm can be found in [6].

Mixture of Experts

Mixture of Experts is another interesting ensemble algorithm. Novelty compared to
previous ensemble algorithms is an element called router. Router’s responsibility is
to figure out which model would have highest chance to estimate target value for
input data point x as accurately as possible. p estimators or experts, either identical
or distinct, are defined and trained concurrently alongside the router. Depending on
implementation, expert receiving highest degree of support can be used to make an
estimation, or multiple experts can be used but their decisions weighted according
to output of router. Router is usually a neural network with multiple dense layers
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and softmax activation at its output layer. Experts are trained on specific data splits
whose combination of inputs and outputs can be successfully modeled. For this type
of algorithm, specific loss functions have been developed. Two will be presented here.
First is called Competition encouraged loss function. For a target vector y, p, number
of experts, wi, i = 1, ..., p router output weights which sum up to 1 and ŷi prediction
vectors of each expert, loss can be calculated as:

Lcomp =

p
∑

i=1

wi||y − ŷi||2 (2.4)

As the name of loss suggests, experts are pitted against each other to get the highest
support from router by allowing each of them to make it’s own prediction without
the impact of weights of other experts. When trained with this loss, router typically
assigns a task of estimation to a single expert for each data point. Another popular
loss function is called the Cooperation encouraged loss function. With the same
notation, it is defined as:

Lcoop = ||y −
p
∑

i=1

wiŷi||2 (2.5)

In this case, parameters in each expert model are updated according to the overall
loss. This method is prone to overfitting. Mixture of Experts algorithm is even used
in modern systems like GPT-4 with purpose of minimizing number of parameters
and therefore reducing inference time. When used for larger models, each expert is
usually allocated to its own GPU. Its greatest flaw is instability during the training
phase. These issues are mostly related to a primitive router output, i.e., assigning
each data point to the same expert. Such issues are addressed by adding noise to
the data points and applying a label smoothing penalty to the softmax output of the
router. Another issue is its slow training. Recently, to address this, Binary-Tree and
Fast-Feed-Forward Network architectures/modifications have been introduced.

2.3 Diversity

Diversity is a measure of difference between estimators inside ensemble. It can be
introduced in various ways. For example, in previous section I defined ensemble
algorithms that introduced diversity through managing input data set, in case of
Bagging, Random Forests, Boosting(AdaBoost), and through prediction results in
case of Mixture of Experts, Gradient Boosting Machines methods. Aswell as with
using different estimators. However, naturally arising question is: ”How to measure
the amount of diversity ensemble possesses?”. Probably the only completely feasible
way is to find a difference in output labels between classifiers. So, the greater the
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difference between predictions among base classifiers, the greater the diversity. Many
diversity metrics have been proposed over the years. I include 3 of them here for
pairwise and 3 non-pairwise(global) estimation of diversity.

Pairwise Measures

Here, for a set of p classifiers G = {g1, ..., gp}, diversity is estimated for each pair,
so there are

(

p
2

)

scores in total. To reach the final approximation, the average of
those scores is taken over the number of combinations. Hence, in following formulas
i, j = 1, ..., p and the Oracle outputs are considered as the exponent, i.e. true/wrong
classification. Let the input dataset be defined as X.

For classifiers gi and gj where i ̸= j is not necessarily true:

N
0,0
i,j - Number of samples correctly classified by both classifiers

N
0,1
i,j - Number of samples correctly classified by classifier gj and incorrectly by gi

N
1,0
i,j - Number of samples correctly classified by classifier gi and incorrectly by gj

N
1,1
i,j - Number of samples correctly classified by both classifiers gi and gj

1. Disagreement Measure
Measure was proposed by Skalak in 1996. in his attempt to find a difference
between two base classifiers.

Dis(gi, gj) =
N0,1

i,j +N1,0
i,j

N1,0
i,j +N0,1

i,j +N1,1
i,j +N0,0

i,j

(2.6)

which takes value of 0 if used classifiers make the same decisions, i.e. there
is no diversity, and 1 if they classify each sample differently. In this scenario,
decision is being made based on the Oracle output, which is as its mentioned
earlier, indicator function on a set containing correct label. Global score can
be reached by averaging over the number of combinations of classifiers:

Dis =
2

p(p− 1)

p
∑

i=1

p
∑

j=i+1

Dis(gi, gj) (2.7)

This equation can be further simplified if it is acknowledged that N1,0
i,j +N0,1

i,j +

N1,1
i,j +N0,0

i,j = card(X) . Then the simplified form of global score is:

Dis =
2

card(X)p(p− 1)

p
∑

i=1

p
∑

j=i+1

(N0,1
i,j +N1,0

i,j ) (2.8)
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2. Q Statistics
Measure proposed by George Udny Yule in 1912., known as coefficient of colli-
gation. It’s use in measuring ensemble diversity was explored in [23]. Pairwise
measure is defined as:

Q(gi, gj) =
N0,0

i,j N
1,1
i,j −N1,0

i,j N
0,1
i,j

N0,0
i,j N

1,1
i,j +N1,0

i,j N
0,1
i,j

(2.9)

It takes values between −1 and 1 with the same intuition behind it as in case
of Disagreement measure.

Global score is then:

Q =
2

p(p− 1)

p
∑

i=1

p
∑

j=i+1

Q(gi, gj) (2.10)

Global score provides extra intuition. If Q > 0, votes for correctly classified in-
stances tend to be the same; on the other hand, if Q < 0, vote is not unanimous.
This helps in further assessing ensemble performance.

3. Interrater Agreement
Statistical measure with value between 0 and 1 where lower the value, the higher
the disagreement and hence the diversity. Usually, κ notation is used for it:

κ(gi, gj) =
2(N1,1

i,j N
0,0
i,j −N0,1

i,j N
1,0
i,j )

(N1,1
i,j +N0,1

i,j )(N
1,0
i,j +N0,0

i,j ) + (N1,1
i,j +N1,0

i,j )(N
0,1
i,j +N0,0

i,j )
(2.11)

Global measure is again reached by averaging over the number of combinations
of classifiers.

Global Measures

Global measures are somewhat more complicated to define as they must take
into account all classifiers and elements in dataset.

4. Entropy
Measure originating from informational theory. It is formulated here as:

Ent =
1

m
(2p− 1)

m
∑

j=1

min{s(xj), p− s(xj)} (2.12)

where xj is element of data set X and s(xj) is number of correct classifications
of xj among all classifiers.
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5. Interrater Agreement
Measure developed for calculating inter-rater reliability(how much do the opin-
ions of independent observers coincide in certain topic). It is derived using
coincidence matrix. Procedure can be found in appendix of [13]. It is defined
using κ notation as:

κ = 1−
1
p

∑m
j=1 s(xj)(p− s(xj))

m(p− 1)â(1− â)
(2.13)

Here, â is average classification accuracy among all p classifiers.

6. The Measure of Difficulty
A somewhat more interesting method examined here is measure of difficulty[9].
If X is defined as a random variable that takes values in {0, 1

p
, ..., 1}. Its den-

sity can be estimated such that, for p classifiers within an ensemble, the test
is run on a dataset and for each of the m data points, is observed how many
classifiers have correctly classified it. Those are counted, and a histogram is
then constructed. If the distribution of volume across the bins is well-balanced,
it indicates that ensemble is effective. Conversely, if only one or two bins
dominate, this suggests that ensemble is underperforming, i.e. there is no sig-
nificant diversity. This means that if these ensembles are presented with new,
noisy data, they are likely to underperform. Each classifier’s precision is rep-
resented by âi, and they are modeled with a binomial distribution, defined as
(n = m, p = âi) for i = 1, ..., p. The variance of the random variable is then
computed as: X = g1+g2+...+gp

p
. Variance of random variable X is the global

measure of diversity.

2.4 Ensemble Size

Number of models within an ensemble, depending on the situation or use, can en-
hance the overall prediction or score. That number can be 1, and it can also be 1000.
Often, for models that are easy to train, larger ensembles are employed and diver-
sity is introduced through bootstrapping on data. Whereas for larger models like
Convolutional Neural Networks, low number of base models is being kept. Reason
is the computational bottleneck during training and also during inference (in case of
working on a real-time application). For this reason, algorithms such as Boosting are
useless when considering them. Mixture of Experts algorithm also creates various
issues during its training, but it actually achieves benefits during the inference since
it can force use of only one model instead of several (depending on the loss function
defined), one assigned by the router to make the prediction.
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2.5 Universality

Concept of universality, in the context of an ensemble, refers to the choice of a base
estimator. What is questioned, for a predefined algorithm, is whether the specific
machine learning algorithm can be used as a base estimator. Some examples of algo-
rithms where there is no universality are: Random Forests, BART (Bayesian Additive
Regression Trees), Gradient Boosting Machines, and so on. With these methods, the
use is restricted to tree-based models. In contrast, techniques like Bagging or Mixture
of Experts allow for the combination of various types of estimators.





Chapter 3

Experiment-Automatic Speech
Recognition Task

Speech recognition is one of the oldest problems addressed by machine learning. Hun-
dreds of methods have been proposed to solve it. Initially, the problem was attempted
to be solved using Hidden Markov Models[19], but the results were not satisfactory.
The next step was made when the problem was tried to be addressed using Arti-
ficial Neural Networks. Further improvements came after the two-part system was
introduced, the Encoder-Decoder system. The encoder is responsible for gathering
relevant data from the input waveform, and the decoder is responsible for gener-
ating translation. Recurrent Neural Networks were originally used, combined with
Convolutional Networks, but from 2017., the focus shifted to Transformer Neural
Networks[24]. The Transformer architecture, and its modifications like Conformer[8]
and Branchformer[18], hold the state-of-the-art (SOTA) performance on all bench-
mark datasets to this day. In this experiment, multiple representations extracted
from the waveform will be utilized, and with the application of the introduced meth-
ods and algorithms, the goal is to achieve improved results. The Librispeech dataset
will be employed for this specific problem. Librispeech is somewhat of a standard
regarding speech recognition problems, consisting of 960 hours of speech in the train-
ing set, and around 5 hours of speech in smaller datasets ’dev-clean’, ’dev-other’,
’test-clean’, and ’test-other’ which are used for model tuning and inference. It is
derived from audiobooks that are part of the LibriVox project. These are public
domain audiobooks read by volunteers, so the dataset covers a wide range of accents
and recording conditions. There are 2,484 different speakers, some male and some
female. It is sampled at 16Khz. All 960 hours will be used as the training set to train
the Transformer models, and for development, the ’dev-clean’ dataset will be used.
Models will be evaluated on remaining three datasets.

31
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3.1 Feature Extraction

Feature extraction phase can be split into two groups. Acoustical features, ones which
are obtained by applying transformations to waveform, and language features, ones
that are obtained by applying transformations to raw transcripts.

Acoustic Features

Most of well-known sound representations for task of speech recognition are being
used. spafe [15] library was used for the extraction. Details about features are
excluded in this work.

1. Log-Mel-Spectrogram

2. Group Delay Mel Spectrogram

3. Constant Q-Transform

4. MFCC

5. Gammatone Spectrogram

The pre-processing is concluded with the application of spectral augmentation
and standardization.

Language Features

BPM tokenizer is used to create unigrams for the first trial and characters for the
second. Each sentence is converted to a sequence of tokens which start with SOS
token, and end with EOS token. BLANK and PAD token are used for leaving space
and padding respectively. During the training phase, all samples inside mini-batch
are padded to a size of the largest one.
Example of a transcript and it’s encoded form for unigram (a) and character (b)
tokenizer:

(a)
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Transcript: yesterday is history tommorow is a mystery

Unigram: yesterday is history tom mo row is a mystery

Tokenized: [1750, 24, 1075, 903, 924, 2036, 24, 9, 2731]

(b)

Transcript: yesterday is history tomorrow is a mystery

Charseq: y e s t e r d a y i s h i s t o r y t o

m o r r o w i s a m y s t e r y

Tokenized: [4, 22, 5, 12, 6, 5, 13, 14, 7, 22, 4,

10, 12, 4, 11, 10, 12, 6, 8, 13, 22, 4, 6, 8, 17,

17, 8, 13, 8, 19, 4, 10, 12, 4, 7, 4, 17, 22, 12,

6, 5, 13, 22]

3.2 Modelling

For modeling, standard Transformer architecture is adapted for working with wave-
forms. Layer normalization is utilized instead of batch normalization, and also 1D
convolutional layers before the input embedding to extract essential features and re-
duce the length of input sequence. Additionally, weights are shared between character
embedding layer and output layer of the last stack in decoder. Residual connections
are used before each module in stack. Their role is explored in[10] and serve to prevent
an unwanted behaviour of gradients, i.e. exploding/vanishing gradients. Intuitively, if
optimizer deems layer causes harm to the overall performance, it will zero-out weights
inside it and simply use a residual connection to pass the information further. That
is very useful in very deep architectures such as ResNets. As an optimizer, Adam[12]
was selected and as a loss function, label smoothed cross-entropy with a softening
coefficient λ = 0.1 with aim of avoiding behaviour of model getting stuck in a local
optima during training phase. The backward pass will not be discussed here.

Below, one can find chosen hyperparameters and architecture used.
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Figure 3.1: Transformer architecture
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Architecture modules

• Subsampling Module

The module consists of 2 one-dimensional convolutional layers, that is, the
kernel with which it works is one-dimensional. Although 1D convolution on
images is not often used, here it works, and significantly reduces computation
cost so making the training easier. As with a 2D convolutional layer, filter
is passed through the input data, but here only along the x axis, i.e., in one
direction only. More filters mean more passes, and a larger output dimension.
Also, more parameters. Filter ”weights” are optimized using backpropagation
algorithm. After each convolutional layer, GLU activation function is applied
with the aim of reducing the number of channels (they are reduced in half).
This is done by fitting a linear network with the number of input and output
channels equal to those that the output from the convolutional layer has, then
the output of linear layer is divided in half (by channels dimension), sigmoid
function is applied to the second half(it can also be applied to the first half)
of the expression, and the dot product between first and second parts of the
expression is computed. Visualization of module is at 3.2.

Figure 3.2: Conv1D on image
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• Feed Forward Module
The feed forward module consists of 2 fully connected layers, i.e., linear layers.
Feed Forward Neural Networks, often called Artificial Neural Networks (ANNs),
are the most basic form of neural networks. The input is sent to the first
neuron of the first layer and it passes through all the neurons and layers to the
output. The weights are then optimized backward, using the backpropagation
algorithm. In my case, I use 2 such networks/layers. The first reduces the
number of channels, while the second increases them, usually by 4×, and a
RELU activation function is applied at the output of the layers, which zeroes
all values less then 0 on the input expression. General module architecture can
be seen at 3.3

Figure 3.3: Visualization of FFN Module

• Layer Normalization
A layer that performs feature normalization. Previously, batch normalization[11]
was used, which looked at an entire batch of samples to estimate the mean and
variance of the mini-batch distribution, and then normalized each sample. With
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layer normalization[1], each element is normalized using only its own statistical
properties. After normalization, values are scaled and shifted using γ and β
parameters which are tuned during network training so that the wider range of
values can be observed i.e., not to necessarily be restricted to the [0,1] set.

• Multi-Head-Attention Layer

Attention layer appeared [2] in 2015. in a paper addressing machine transla-
tion problem. This layer is often explained through an inquiry system. Query
(Q), value (V), and key (K) matrices are defined as the products of the source
and corresponding weight matrices WQ,W V ,WK respectively. Within an in-
quiry context, the query represents a specific element for which representation
is sought, the key denotes a value that describes the query, and the value signi-
fies the offered value/response. Passing through attention layer is often referred
to as communication phase. Unlike standard attention layer, which observes
all inputs simultaneously, multi-head attention layer divides source matrix into
nheads pieces along dimension dmodel so that with my selection of hyperparame-
ters, I have 64 as one dimension for Q, K, V. In case of self-attention, same input
is used for query, key, and value, while in case of cross-attention, V and K are
obtained from encoder. Common misconception is that query, key, and value
matrices are same in case of self-attention. As mentioned, they are obtained by
multiplying with differently initialized weight matrices on right. After obtain-
ing Q, K, and V matrices, following graphic illustration 3.4, first multiply Q
and K, then apply a mask to their output, used to avoid undesired interactions
(only during training phase). After applying mask, softmax function is ap-
plied to scale values between 0 and 1, and finally, resulting matrix is multiplied
with matrix V. This procedure is applied to each separated piece, then they
are concatenated and multiplied by another weight matrix at the end. Notice
that weight matrices here are standard linear layers without bias term. Also,
in originally released paper, number of attention heads is marked with h, but
nheads notation is used in this work.

Ti = Attention(Qi, Ki, Vi) = Softmax

(

QiK
T
i√

dmodel

)

Vi (3.1)

for i = 1, ..., nheads. Ti matrices are then concatenated and multiplied with

another weight matrix.

MultiHead(Q,K, V ) = Concat(T1, ..., Tnheads
)WO (3.2)
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(a) Multi Head Attention (b) Scaled Dot Product
Attention

Figure 3.4: Multi Head Attention Visualizations (Vaswani et al. 2017.)

Using this approach, computation is accelerated in comparison to the stan-
dard self-attention layer with a single head, enabling parallelization across the
number of attention heads. Additionally, it allows the capture of globally less
significant connections among tokens.

• Projection
Projection layer is a linear layer which, after the layer normalization has been
applied projects output of the last layer of decoder shaped (T,dmodel) to dimen-
sion of vocabulary, i.e. dvocab.

• Positional Encoding
An addition to the extracted embedding in the encoder and decoder. It is added
to provide positional information to the data. Following two expressions are
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used:

PE(p, 2i) = sin

(

p

10000
2i

dmodel

)

(3.3)

PE(p, 2i+ 1) = cos

(

p

10000
2i

dmodel

)

(3.4)
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Figure 3.5: Positional encoding

• Softmax Activation function used at the output of final layer. Sometimes
modified to log-softmax with purpose of numerical stability. For a vector x ∈ Rn

it is defined as:

Softmax(x)i =
exi

∑n
j=1 e

xj
(3.5)

Selected Hyperparameters For Base Classifiers

• Preprocessing

– Number of Mel Bins: 80

– Sampling Rate: 16000

– Hop Size: 0.01s
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– Frame Length: 0.025s

– Vocabulary Type: Unigram - Charseq

– Vocabulary Size: 10000 - 32

– SOS Token: < s >

– EOS Token: < /s >

– PAD Token: < PAD >

– BLANK Token: < BLANK >

• Encoder

– Number of Layers : 12

– Dropout : 0.1

– Number of Neurons in FFN: 2048

– Model Dimension: 256

– Embedding Dimension: 256

– Number of Attention Heads: 4

• Decoder

– Number of Layers : 12

– Number of Attention Heads: 4

– Dropout : 0.1

– Number of Neurons in FFN: 2048

• Optimizer & Loss function

– Optimizer : Adam

– Loss Function : Label Smoothed Cross Entropy

• Learning Rate
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Figure 3.6: Learning Rate

Forward Pass During Training

The input sequence first passes through a subsampling module where the main goal is
to reduce its length thus preventing OOM(out of memory) issues. It then encounters
a linear layer whose aim is to extract the desired features. Positional information is
added to the output of the linear layer, and then it is sent to the encoder stacks. As it
can be seen in Figure 3.1, they are composed of multi-head attention and feed-forward
modules, in front of which is performed layer normalization, and which are connected
by residual connections. After the data passes through encoder stack Ne times, layer
normalization is applied to the output of the last stack, and this information is then
transferred to the decoder through a multi-head attention layer. During training,
ground truth transcript is passed as input to the decoder, where each token is then
embedded into a vector of size dmodel. Positional information is added to this vector.
A mask is applied to the extracted sequence, which is intended to prevent interaction
with future tokens (those yet to be predicted). The data undergoes self-attention and
cross-attention, utilizing information from the encoder, and finally passes through a
feed-forward module. Following Nd passes through the decoder stack, layer normal-
ization is applied to the output, which is then projected onto a dimension equal to the
size of the vocabulary. Subsequently, softmax is applied to scale the values between
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0 and 1. Token is selected using one of the decoding algorithms and fed back into the
input of the decoder. During the training of the network, decoder is allowed to see
previous ground truth tokens when generating a new one, while during inference it has
to rely on its own generated tokens. Mathematically speaking, during training phase
it tries to find P (ŷk|yk−1, ..., y0, x), and during inference P (ŷk|ŷk−1, ..., ŷ0, x) where
x is the input data, i.e., the waveform in this example. In literature the explained
process during training is usually reffered to as Teacher forcing. Models which work
this way are called autoregressive models.

Forward Pass During Inference

During inference phase, the mask is not being applied during decoding, and the input
transcript given to the decoder is a vector of size max len that starts with the SOS
token and is filled with PAD tokens to the end. Decoding stops when the EOS token
is produced.

Decoding Algorithm During Inference

Specific algorithms can be used during the inference phase for decoding. Most well-
known ones are Greedy Decode and Beam Search. Beam Search takes into account
multiple choices for a potential token, and using aligning algorithm, it calculates a
score for each such sequence of choices, and selects the best one. Number of choices
that will be considered, and the length of the beam are hyperparameters. Beam
Search represents current standard among such algorithms. On the other hand, much
simpler Greedy Decode algorithm only considers the possibility of choosing the token
that has the highest probability (numerical support). Simpler algorithm will be used
in this thesis primarily for computational reasons.

Evaluation Metrics

In the task of speech recognition, word error rate and character error rate metrics are
ones commonly used for benchmarking. word error rate(WER) and character error
rate(CER) are calculated as following:

WER =
Sw +Dw + Iw

Nw

=
Sw +Dw + Iw
Sw +Dw + Cw

CER =
Sc +Dc + Ic

Nc

=
Sc +Dc + Ic
Sc +Dc + Cc



3.2. MODELLING 43

where w and c indexes marks level at which changes are being observed. In
the case of WER metric, changes at word level are being observed, while with CER
metric changes at character level are observed. General notations are as follows:

• S - number of substitutions

• D - number of deletions

• I - number of insertions

• C - number of correct elements

• N - number of elements in the reference (N=S+D+C).





Chapter 4

Results

Complete experiment was conducted using two distinct vocabularies. In total, ten
Transformer Neural Networks were trained, each going through 90 to 160 passes over
dataset, using a batch size of around 230. Training each network took 24 hours for
unigrams, where vocabulary consisted of 10,000 tokens, and 36 hours for character
tokens per base classifier. Models were trained using Fairseq framework[17], utilizing
an RTX3090 for majority of training and dual RTX6000ADA GPUs for additional
training when deemed necessary. Unigram model has 29,536,256 learnable parame-
ters, while character token model has about 3 million fewer. This difference is due
to projection layer, where unigrams are projected to a dimension of 10,000, while
characters are projected to a dimension of 32, matching size of vocabularies.

After training phase, parameter dictionaries were extracted, and a separate pipeline
was created for individual experiments. Fewer experiments were conducted with uni-
grams due to impracticality of using trainable ensemble algorithms with such a large
class set. At the beginning of each section, training losses will be presented accord-
ing to the chosen loss function, i.e., cross-entropy. For the development phase, I
used dev-clean dataset which is somewhat less complex, therefore slightly lower loss
will be seen on development set then on the training set. Experiments will be or-
ganized starting with basic ones and gradually moving to more complex ones. For
training combiners and assessing diversity measures, I also used dev-clean dataset.
Experiments were evaluated on test-clean, dev-other, test-other datasets, ensuring
comprehensive assessment across various data conditions and robust evaluation of
model performance.

45
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4.1 Unigram Based Models

Firstly, the approach with unigrams is observed. Despite extra parameters, inference
time is approximately three times lower compared to working with characters. The
reason is that generating a ”complete” token string (a full sentence) requires far fewer
passes through the decoder. In the following graphical representations, training losses
can be observed. Models with Group Delay features and Gamma features failed to
capture some specific properties of the input features and were thus useless, even
detrimental to ensemble performance during deeper analysis. Model with Constant
q Transform features performs slightly worse then the remaining two based on MEL
and MFCC features, but it will be shown later that it also contributes to the diversity
of the ensemble.
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Figure 4.1: (a) GD (b) GAMMA (c) CQT (d) MFCC (e) MEL

Comparing Model Performances

Individual models were evaluated on described three datasets and compared with the
current SOTA model, E-Branchformer. It’s important to note that the actual SOTA
is even lower(better), but was achieved using alternative datasets, so it won’t be
included here. Most studies don’t include CER metric as it has already been reduced
to very low levels, and therefore it is simply denoted as ”< 1%”. In the following
table, scores for each model can be seen:
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Table 4.1: Single Model Performance

data metric MFCC CQT MEL GAMMA GD SOTA

te
st
-c
le
a
n

CER 2.11 4.43 2.05 49.66 45.62 < 1%

WER 5.07 9.16 5.05 68.65 68.37 2.49

d
e
v
-o
th

e
r

CER 6.27 12.55 5.91 57.67 55.65 < 1%

WER 12.77 22.07 11.91 81.09 81.06 5.68

te
st
-o
th

e
r

CER 6.63 13 6.06 63.92 59.32 < 1%

WER 13.7 23.25 12.78 89.24 86.64 5.61

Non Trainable Combiners

Since the output labels are continuous, impact of simple, non trainable combiners 5 is
explored. When combining models, Gamma and Group delay models were excluded
as they only worsened performance. For example, I experimented with a simple
average combiner and obtainedWER and CER scores of 5.73% and 2.5%, respectively,
which are worse then the score of (better) base model. Following table shows the
results, where ’GEOM’ indicates geometric mean, ’HARM’ harmonic mean, ’MAX’
maximum, and ’AVG’ simple average combiner.
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Table 4.2: Non Trainable Combiners

data metric AVG GEOM HARM MAX SOTA

te
st
-c
le
a
n

CER 1.86 1.87 1.868 2.28 < 1%

WER 4.66 4.66 4.66 5.38 2.49

d
e
v
-o
th

e
r

CER 5.31 5.29 5.29 6.68 < 1%

WER 10.73 10.71 10.70 12.87 5.68

te
st
-o
th

e
r

CER 5.49 5.48 5.46 6.98 < 1%

WER 11.49 11.47 11.45 13.79 5.61

Weighted Average Combiner

Following the impressive results with simple combiners, the question arises whether
even better performance can be achieved. In the case of the weighted average com-
biner, the goal is to determine optimal linear combination of coefficients
δGAM , δMEL, δCQT , δMFC , δGD such that δGAM + δMEL + δCQT + δMFC + δGD = 1 and
delta cofficients are real. Indexes are adjusted so the notation is more readable.

Ŷw = δGAM
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ŶMEL2
...
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ŶCQT10k











+ δMFC
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ŶGD10k











(4.1)

I firstly evaluated all base classifiers on ’dev-clean’ dataset so to avoid any connection
with the actual test sets. For a referent measure, I selected WER. MFCC model ob-
tained 4.76%, MEL model obtained 4.63% ,CQT model obtained 8.406% , GAMMA
model obtained 69.99% GD model obtained 66.21% WER.
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Using the coefficients from 2, I found: δGAM = −0.12289, δMEL = 0.439, δCQT =
0.34665, δMFC = 0.43482,δGD = −0.09762.

Following results are obtained:

Metric test-clean dev-other test-other
CER 1.7667 5.26 5.286
WER 4.506 10.70 11.267

Table 4.3: Weighted Average Combiner Scores

I acknowledge that these weights may not be the best possible choice, but they
represent a solid starting point.

4.2 Diversity Between Classifiers

As it is previously mentioned, diversity is a key ingredient in constructing an efficient
ensemble. It can be divided into positive and negative. In this case, negative diversity
comes from the GAMMA and GD models, while the remaining three contribute
positive diversity. Generally, diversity is positive as long as it does not harm overall
performance. In Chapter Two, some methods for its measurement were presented.
In this context, one measure will be used for each pair (Disagreement 2.6), along
with a global measure derived from a histogram (Difficulty measure;there will only
be graphical representation).
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Figure 4.2: Disagreement Graph
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Based on the graph, it can be observed that the highest diversity is exhibited by
the GD and GAMMA models, but as its mentioned, these are instances of negative
diversity. On the other hand, CQT demonstrates relatively good diversity, while
MEL and MFCC exhibit very low diversity, which is expected considering the nature
of how each feature is derived.
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Figure 4.3: Difficulty Histogram

In the histogram, it’s evident that the majority of samples were correctly classified
by three classifiers. This aligns with expectations, as the GD and GAMMA models
generally yield poorer performance. This fact contributes to the relatively small
number of instances classified correctly by all five classifiers. It can be observed that
there is a subset of data that only one classifier correctly identifies, and similarly for
two classifiers also. This signals that the ensemble is indeed successful, but can yet
be improved by further studying sources of errors.

4.3 Character Based Models

Now let’s consider the case where the tokens are characters. The vocabulary con-
sists of 32 characters in total. Their advantage is that they less frequently encounter
contextual errors compared to unigrams and there are no OOV(out of vocabulary)
elements. In the following graphs, similar to unigrams, losses during training can
be observed for each individual base classifier. Here, the GD model did not achieve
nearly as good results as in the case of unigrams. Also, the GAMMA model achieved
surprisingly good results, even on par with MEL and MFCC. The CQT model per-
formed somewhat worse compared to the unigram case. During following experiments
GD model will not be used as it produces defective outputs.
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Figure 4.4: (a) GAMMA (b) CQT (c) MFCC (d) MEL (e) GD

Comparing Model Performances

Similarly as with unigrams, each of four selected models were evaluated on three
testing subsets. Scores are in the following table:

Table 4.4: Single Model Performance

data metric MFCC CQT MEL GAMMA SOTA

te
st
-c
le
a
n

CER 4.51 25.08 4.36 4.69 < 1%

WER 7.72 21.6 7.43 7.99 2.49

d
e
v
-o
th

e
r

CER 8.19 23.99 7.65 8.56 < 1%

WER 15.14 39.71 14.13 15.8 5.68

te
st
-o
th

e
r

CER 8.77 25.08 8.15 9.48 < 1%

WER 16.73 41.69 15.32 17.50 5.61
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Average Combiner and Modifications

Since the output labels are continuous, impact of simple, non trainable combiners is
observed 5, 6.

Table 4.5: Non Trainable Combiners

data metric AVG GEOM HARM MAX BORDA SOTA

te
st
-c
le
a
n

CER 4.22 4.26 4.27 4.793 4.54 < 1%

WER 7.22 7.22 7.23 8.294 7.82 2.49

d
e
v
-o
th

e
r

CER 7.02 7.034 7.02 7.87 8.14 < 1%

WER 13.06 13.08 13.07 14.46 15.22 5.68

te
st
-o
th

e
r

CER 7.67 7.68 7.67 8.43 8.54 < 1%

WER 14.53 14.53 14.52 15.82 16.4 5.61

I conducted experiments with various subsets of base classifiers and found that
using all of them together yielded the best performance. For instance, when I removed
CQT due to its notably poorer performance compared to others, relative performance
dropped by approximately 3%.

Weighter Average Combiner

For the weighted average combiner similarly as before, I tried to find δGAM , δMEL, δCQT , δMFC

such that the δGAM + δMEL+ δCQT + δMFC = 1 and delta cofficients are real. Indexes
are adjusted so the notation is more readable.
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(4.2)

Following the same approach as with unigrams, MFCC model obtained 7.458%, MEL
model obtained 7.36%, CQT model obtained 21.44% and GAMMA model obtained
7.9112% WER.

Using the coefficients from 2 I found: δGAM = 0.278663, δMEL = 0.287689, δCQT =
0.147510, δMFC = 0.286137.

Following results are obtained:

Metric test-clean dev-other test-other
CER 4.23 6.846 7.462
WER 7.13 12.766 14.21

Table 4.6: Weighted Average Combiner Scores

Generalized Stacking

For the next experiment, let’s consider a classifier g : R32 → {1, ..., 32} s.t. input
data is numerical support obtained for each token and the labels are the ground
truth tokens. The experiment is being done with different amounts of tokens and
different ML algorithms. It has been experimented with training set consisting of
chunks of train-clean-100 and train-other-500 datasets having around 500000 tokens
in total. For the development set, I took around 150000 tokens from dev-clean subset.
Following are the results on the development set.
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Figure 4.5: Results With Meta Classifiers

As it can be seen, experiment did not yield any significant improvement in ac-
curacy score compared to simple greedy selection. One possible reason is a natural
class imbalance, where specific characters are simply more often used and thus the
algorithms have a harder time adapting. Most of the ensemble algorithms were able
to learn the principle of greedy decode but could not of improved further from that.
I experimented with usage of Random Forests on the actual dataset with MELs
and it actually decreased the baseline4.4 CER and WER score to 4.777 and 8.295
respectively. Certain unexpected behaviour was introduced also, such as deformed
sequences in some samples.
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Figure 4.6: Distribution of Characters For dev-clean



4.3. CHARACTER BASED MODELS 55

Decision Template

For the final experiment, decision template was chosen. Algorithm 7 is used. The
experiment is conducted at three levels, depending on the amount of tokens used to
train the decision templates. At the Figure 4.6 it can be observed that there is a
significant class imbalance, so it is expected that a larger training set will provide a
better estimation of the base classifiers decisions for each class. Furthermore, this
method is suitable for the given problem because class imbalance has no impact on
the decision templates themselves; the greater the number of elements for a certain
class, the larger the divisor for their sum. Swain & Ballard similarity was used as it
proved to be more effective then Mahalanobis. The results are in the following table:

Table 4.7: Decision Template Combiner

data metric S M L SOTA

te
st
-c
le
a
n

CER 4.23 4.2 4.21 < 1%

WER 7.16 7.11 7.12 2.49

d
e
v
-o
th

e
r

CER 6.92 6.95 6.94 < 1%

WER 12.9 12.91 12.9 5.68

te
st
-o
th

e
r

CER 7.63 7.56 7.57 < 1%

WER 14.43 14.53 14.44 5.61

S, M, and L denote the quantities of tokens used for training the templates,
corresponding to 200, 000, 600, 000, and 1M tokens, respectively. This combiner
profits most from correctly picked training set. Hence, it is hypothesized that a
better selection of training data could improve results. The first batch was derived
from a subset of data with minimal noise, the second batch from a noisier subset,
and the third batch once again from a less noisy subset. I acknowledge the further
potential of this method in task of speech recognition.
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4.4 Diversity Between Classifiers

Using a similar procedure as with unigrams, following graphs are obtained:

GAMMA MEL CQT MFCC
Classifier

GA
M

M
A

M
EL

CQ
T

M
FC

C
Cl

as
sif

ie
r

0 0.13 0.35 0.13

Pairwise disagreement matrix

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 4.7: Disagreement Graph

It can be observed that decisions of GAMMA, MEL, and MFCC are very similar,
especially when compared with ones on unigrams. CQT model contributes the most
to diversity, in a positive way.
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Figure 4.8: Difficulty Histogram

There are many easy points, meaning those for which all four classifiers made the
correct decision. Conversely, looking at the number of instances where fewer classifiers
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are accurate, there are subsets of data whose elements are correctly identified by only
one classifier, and likewise, there are those that two classifiers correctly recognize, and
so on. Ultimately, the provided histogram indicates that used ensemble is successful.





Chapter 5

Conclusion

Firstly, it was observed that varying the size of the vocabulary can significantly influ-
ence a model’s performance. The CQT model, for example, shows far better results
with unigrams compared to characters, whereas the GAMMA model is more effective
with a smaller vocabulary, though the reasons for these differences are unclear. It
was observed that using unigrams resulted in significantly better results compared to
using characters as tokens. In both methodologies, non-trainable combiners led to a
5-7% relative improvement in WER score on all 3 testing datasets, while trainable
ones achieved an increase of 7-10%. The best improvement was achieved by deci-
sion templates combiner at the test-clean dataset in case of character tokens. The
weighted average yields the best performance on the other datasets. These results
are significant, considering use of a more compact transformer model, yet results on
par with much larger versions were attained by integrating multiple smaller models.
This accomplishment aligns with my initial objective. Additionally, the transformer
ensemble is suitable for parallelized inference in accordance with the number of used
features, efficiently tackling the issue of slow inference encountered in larger trans-
formers, ones with over 70 million learnable parameters.
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Sažetak

U ovome radu fokus je bio na metodama kombiniranja klasifikatora. Osnovni algo-
ritmi nisu detaljno opisani već su korǐsteni kao temelj uz pretpostavku o znanju u
području strojnog učenja. Prvo se izvodi nekoliko kombinatora, tj. algoritama koji
stvaraju sintezu medu izlazima vǐse klasifikatora. Zatim su predstavljeni najčešće
korǐsteni algoritmi u ansamblima, vodeni težnjom za stvaranjem optimalnog ansam-
bla, kroz koncept raznolikosti opisani su ključni elementi uspješnog ansambla. Nakon
toga su testirane neke od prikazanih metoda na problemu prepoznavanja govora
koristeći poznati benchmark skup podataka Librispeech. Problematika je riješena
korǐstenjem naprednih Transformerskih neuronskih mreža. Demonstrirana je visoka
preciznost modela u prepoznavanju govora. Provedena je opsežna analiza pri čemu je
korǐstena većina prezentiranih algoritama, uz primjenu 5 vizualnih reprezentacija au-
dio signala. Rezultati su prikazani grafički i objašnjeni korǐstenjem mjera raznolikosti.
Na kraju rada potvrdena je hipoteza da ansambli kada se pravilno koriste nadilaze
standardne modele, bilo da se radi o Linearnoj regresiji, KNN-u ili Transformerskim
neuronskim mrežama.





Summary

In this work, the focus was on methods of combining classifiers. Base algorithms were
not described in detail but used as a foundation with the assumption of knowledge in
the field of machine learning. Initially, several combiners, i.e., algorithms that create
a synthesis among the outputs of multiple estimators, were explored. Then, the most
commonly used algorithms in ensembles were presented and driven by the desire to
create an optimal ensemble, key elements of a successful ensemble were described
through the concept of diversity.

Subsequently, some of the presented methods were tested on the problem of speech
recognition using the well-known benchmark dataset Librispeech. The problem is ad-
dressed using advanced Transformer Neural Networks, demonstrating high precision
of the model in speech recognition. An extensive analysis was conducted, employ-
ing most of the presented algorithms along with five visual representations of audio
signal. Results were graphically displayed and explained using measures of diversity.
Ultimately, this work confirms the hypothesis that ensembles, when used correctly,
surpasses standard models, whether it be Linear Regression, KNN, or Transformer
Neural Network.





Životopis

Roden sam 23. listopada 1998. u Zagrebu. Nakon završetka školovanja u Os-
novnoj školi Sesvetski Kraljevec, nastavio sam obrazovanje u Tehničkoj školi Jelkovec,
diplomiravši 2017. godine. Radi sklonosti prema matematici, upisao sam preddiplom-
ski studij matematike (nastavnički smjer) na PMF-u u Zagrebu te ga završio u rujnu
2021. postavši time sveučilǐsni prvostupnik. Iste godine sam započeo diplomski studij
Matematičke statistike na istome studiju. Tijekom drugoga semestra diplomskog
studija pronašao sam svoj interes u području Umjetne inteligencije (AI) i usmjerio
svoje daljnje obrazovanje u tom smjeru. Nedugo zatim, zaposlio sam se kao data
analyst u Rimac korporaciji, radeći paralelno uz studij. U četvrtom semestru, kao
član tima Unsupervised Lemons, osvojio sam Lumen 2023., najveće natjecanje iz po-
dručja Data Science u našoj regiji. Ovaj rad je dokaz mojeg entuzijastičnog pristupa
području AI. Nakon završetka studija, planiram nastaviti karijeru u tom području.
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