
Physics-inspired dynamical systems for optimization
(Dinamički sustavi za optimizaciju inspirirani fizikom)

Jovanović, Luka

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:074762

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-20

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:074762
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:12632
https://repozitorij.unizg.hr/islandora/object/pmf:12632
https://dabar.srce.hr/islandora/object/pmf:12632

UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Luka Jovanović

PHYSICS-INSPIRED DYNAMICAL

SYSTEMS FOR OPTIMIZATION

Master’s thesis

Advisors:
assoc. prof. dr. sc. Ilja Gogić,
dr. sc. Daniel Ebler

Zagreb, December 2023

SVEUČILIŠTE U ZAGREBU

PRIRODOSLOVNO±MATEMATIČKI FAKULTET

MATEMATIČKI ODSJEK

Luka Jovanović

Dinamički sustavi za optimizaciju

inspirirani fizikom

Diplomski rad

Voditelji rada:
dr. sc. Ilja Gogić, izv. prof.;
dr. sc. Daniel Ebler

Zagreb, prosinac 2023.

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom

u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

To my parents and grandparents, to my brothers, to my friends, and to my dear one ±

for the support and love they shared with me throughout my studies.

Contents

Contents 2

Introduction 9

1 Quadratic Unconstrained Binary Optimization 11

1.1 Analysis of the problem . 15

1.2 Applications . 18

2 Preliminary theory 25

2.1 Dynamical systems . 26

2.2 Numerical simulations . 34

2.3 Other . 36

3 Algorithms 39

3.1 Introduction to CIM and SB . 40

3.2 Coherent Ising machine (CIM) . 46

3.3 Gradient descent and momentum . 48

3.4 Simulated Bifurcation (SB) . 49

3.5 Mechanism of CIM and SB . 53

3.6 Comparing CIM and SB . 54

3.7 Introduction to SimCIM and bSB . 56

3.8 Simulated Coherent Ising machine (SimCIM) 60

3.9 Ballistic Simulated Bifurcation (bSB) 65

3.10 Mechanism of SimCIM and bSB . 70

3.11 Relation between SimCIM and bSB . 71

3.12 First bifurcation point . 73

3.13 Overview . 73

4 Experiments 75

4.1 GSet Dataset . 75

2

CONTENTS 3

4.2 Method . 76

4.3 Benchmarking . 77

4.4 Momentum . 83

4.5 Dropout . 84

Conclusion 91

Acknowledgements 93

Bibliography 95

Introduction

The quadratic unconstrained binary optimization (QUBO) task is a minimization task de-

fined by

min
s1,...,sn∈{0,1}

n
∑

i, j=1

Ji jsis j +

n
∑

i=1

hisi + c

where the coefficients Ji j, hi, c ∈ R are given. This simple combinatorial optimization

task has many applications in the sense that it can be used to model various real-world

problems. These real-world problems include combinatorial optimization problems which

arise in finance [1], cluster analysis [2], economic analysis [3], computer-aided layout

design [4], integrated chip design [5], physics [5, 6], and many more [7]. Although simple

to state, these combinatorial optimization problems are in general very hard to solve if the

number of variables is large. One obvious algorithm for solving such a problem would

be to try every possible combination si ∈ {0, 1}, evaluate it, and then take the minimum

result found. However, the problem with this algorithm is that the number of possible

combinations which need to be evaluated is 2n which grows exponentially with respect to

the number of variables. For example, solving a problem with n = 100 variables on a

computer which can perform 108 multiply/add operations per second would require more

than 2100 ∗ 1002/108 > 1026 seconds which is more time than the predicted current age of

the Universe (according to [8]).

The question which now emerges is whether there exists a significantly faster algorithm

which would find the exact solution of QUBO? The short answer to this question is Ð

probably not. In fact, QUBO is an archetype of a NP-hard combinatorial optimization

problem [7, 9], meaning that there is no polynomial-time algorithm which would solve it,

unless P=NP which is suspected to be false [10]. Furthermore, many NP-complete and

NP-hard problems, including all of Karp’s 21 NP-complete problems, can be reduced to a

QUBO problem efficiently [11].

Although being NP-hard, there is a vast number of algorithms for solving QUBO prob-

lem exactly. Each of these algorithms exploits some properties of QUBO and provides a

smarter way to reach the exact solution than trying all combinations. Nevertheless, their

complexity is still non-polynomial and thus they work efficiently for up to a few hundred

5

6 INTRODUCTION

variables at most. Many of these algorithms, developed before 2014, can be found in a

survey [7].

On the other hand, there is a multitude of heuristic and metaheuristic algorithms for

solving QUBO approximately but quickly. These algorithms usually do not have a guar-

antee of achieving certain accuracy, but their performance is rather based on empirical

evidence. These algorithms include variations and adaptations of tabu search [12], simu-

lated annealing [13, 14], genetic algorithms [15], Hopfield neural networks [16], and many

others [7]. There is also one notable metaheuristic algorithm called Breakout Local Search

(BLS) [17] which provides high quality approximate solutions to the MAX-CUT problem,

which is equivalent to QUBO 1.2.6.

Along these classical algorithms designed for running on conventional computers, sig-

nificant effort was put into building Ising machines ± a special type of hardware devices

designed for sampling the exact, or high-quality approximate solutions of the QUBO prob-

lem [18]. One particular type of Ising machines are quantum computers capable of per-

forming adiabatic quantum computing [19]. The working principle is as follows. First,

the combinatorial optimization problem is encoded into a Hamiltonian HP in such a way

that the ground state of this Hamiltonian encodes the optimum solution of the combinato-

rial problem. In order to find the ground state of HP, one first prepares the quantum state

to be the ground state of some initial Hamiltonian H0 whose ground state is easy to find

and construct. Then, the system is slowly evolved in time from H0 to HP according to

H(t) = (1 − t
T

)H0 +
t
T

HP. According to the adiabatic theorem of quantum mechanics [20],

if the system is evolved slowly enough, the state will remain the ground state at each time

instance. Thus, at the final time instance T , the ground state of the Hamiltonian H(T) = HP

will be prepared. After measurement, it provides the solution of the original combinatorial

optimization problem. There is, however, a debate whether this technique would be useful

in practice because, in order to satisfy the assumptions of the adiabatic theorem of quantum

mechanics, one often finds that the required time for evolution depends exponentially on

the problem size [11]. Besides this, one would first need a quantum computer with a large

enough number of qubits in order to outperform the existing classical computer architec-

tures. The current state of the art quantum annealers have around 5000 qubits (by D-Wave

[21, 22]). However, the topological embedding of these qubits limits the number of vari-

ables that can be encoded into the annealer to around tens or hundreds of variables. Thus,

existing quantum devices are not able to handle moderate and large instances of problems.

Some other physical devices which have been proposed as Ising machines include

a network of coupled optical parametric oscillators [23], electronic oscillators [24], and

quantum-mechanical oscillators [25]. Some of these machines have been built and demon-

strated good performance on problems of size up to 100,000 variables [26].

Recently, a new paradigm for heuristic approaches has been proposed in [27] and [25].

Instead of building a physical hardware for an Ising machine, one can simulate its be-

INTRODUCTION 7

haviour on standard hardware devices such as CPU, GPU, and FPGA. In order to do that,

one first writes a set of differential equations which approximately describe the behaviour

of an Ising machine. For example, instead of evolving a quantum Hamiltonian on a quan-

tum device, one can define the corresponding classical dynamical system by approximating

the expected value of the annihilation operator a, present in the quantum Hamiltonian H,

by a complex number x+ iy where x, y ∈ R. This way, one obtains the equations of motion

for x and y.

The derived set of differential equations represents a dynamical system which is then

further simplified such that it can be efficiently simulated with standard numerical algo-

rithms on a classical computer. This is how Coherent Ising Machine (CIM) [28], Simu-

lated Bifurcation (SB) [29], Simulated Coherent Ising Machine (SimCIM) [30], Ballistic

Simulated Bifurcation (bSB) [31], Discrete Simulated Bifurcation (dSB) [31], and some

other related algorithms were born. These algorithms are easily parallelized on GPUs or

similar hardware devices which enables them to quickly provide high-quality solutions for

large instances of QUBO and other combinatorial problems.

The goal of this master’s thesis is presenting these physics-inspired dynamical systems,

and analyzing them from a mathematical perspective in order to understand their mecha-

nisms for generating high-quality solutions of combinatorial optimization problems. To

understand how a continuous dynamical system can provide a solution of the combinato-

rial optimization problem, consider a state vector which evolves in time x : [0,∞⟩ → Rn.

Taking the sign of each component at some time instance t, σi ≔ sign xi(t) provides a can-

didate solution (σ1, . . . , σn) for the QUBO task. The evolution of a continuous dynamical

system is determined by its vector field and initial conditions. The vector field is defined

at each point in space and determines the velocity ẋ of the system if it passes through that

point. The initial conditions x0 ∈ Rn determine the starting position of the dynamical sys-

tem x(0) = x0. The goal is obtaining a dynamical system which attracts various trajectories

towards such areas of space that provide high-quality approximate solutions of the QUBO

problem, according to the mapping mentioned above σi ≔ sign xi(t).

In chapter 1, a QUBO task is studied. Several other combinatorial optimization prob-

lems are presented including MAX-CUT and Traveling Salesman Problem, and their em-

bedding into a QUBO task is given.

In chapter 2, a mathematical theory for dynamical systems and certain other topics are

briefly presented, with the main purpose of providing a good understanding of topics in

chapter 3.

Chapter 3 is the core chapter as it presents and analyzes these aforementioned physics-

inspired dynamical systems and their corresponding numerical simulations which together

are used for approximately solving a QUBO problem. These algorithms include Coher-

ent Ising Machine (CIM), Simulated Bifurcation (SB), Simulated Coherent Ising Machine

(SimCIM), and Ballistic Simulated Bifurcation (bSB). In order to provide a bigger pic-

8 INTRODUCTION

ture and the mutual relation between these algorithms, they may be presented in slightly

different form than in the original articles.

All of these algorithms have efficient implementations which are run on classical com-

puters or even parallelized architectures such as GPUs and FPGAs. They can be used for

fast sampling of high-quality QUBO solutions. The results obtained by these algorithms

are presented in the final chapter 4. These results cover the performance of algorithms on

a benchmark dataset GSet along with methods used for fine-tuning parameters. Finally, a

dropout technique is proposed for improving the performance of these algorithms.

INTRODUCTION 9

Contributions

This thesis focuses on analyzing physics-inspired dynamical systems purely from a formal

mathematical perspective. Thus, some arguments mentioned in the original articles are

refined here and formalized as much as possible. In order to do that, it was first neces-

sary to extract the relevant existing theorems from the theory of dynamical systems and

other fields. Some arguments for explaining the mechanism of these algorithms are only

applicable to autononomous dynamical systems. Since dynamical systems of interest are

nonautonomous, the author proposes a theorem for connecting nonautonomous system

whose vector field changes slowly in time to the corresponding autonomous systems with

the vector field frozen in time. This is the theorem 2.1.9.

As proposed in the original articles, the dynamical systems discussed in this thesis are

solved approximately by simulating them numerically. In this thesis, the exact solutions

of SimCIM and bSB algorithms are derived which is, as far as the author is aware, not yet

reported in the literature, but could potentially be useful for further research.

Although momentum has been introduced for SimCIM algorithm, it seems not to be

used for CIM. It was observed that adding momentum to CIM improved the solution quality

for the QUBO task. During fine-tuning, the momentum had the option of being 0 (original

CIM), or some other larger values (for example 0.8, 0.9, 1.0). It indeed turned out to always

pick some value larger than 0. In chapter 4, results which compare the performance of CIM

with and without momentum have also been provided.

Furthermore, it is shown in chapter 3 that CIM with momentum is in a certain sense a

generalization of the SB algorithm. Similarly, SimCIM with momentum is in some sense a

generalization of the bSB algorithm, which is even able to exactly reproduce the behaviour

of bSB.

Most of these algorithms have already been benchmarked on GSet. However, the thesis

provides another independent source of these results. This can be understood as comparing

all of these algorithms in a consistent and unified way.

Finally, a new technique for adding a meaningful noise was proposed in chapter 4,

which we call dropout. It works by randomly and temporarily (throughout one iteration

of the algorithm) dropping out some vertices ± meaning that all of the connections of such

vertices are temporarily deleted. This technique was tested on GSet instances and seems to

improve the solution quality obtained by CIM, SimCIM, and bSB algorithms. How exactly

does this technique enable these algorithms to find better solutions is yet to be researched.

Chapter 1

Quadratic Unconstrained Binary

Optimization

The quadratic unconstrained binary optimization (QUBO) problem is a combinatorial op-

timization problem defined by

min
s1,...,sn∈{0,1}

n
∑

i, j=1

Ji jsis j +

n
∑

i=1

hisi + c (1.1)

where coefficients Ji j, hi, c ∈ R are given. In other words, the task is to minimize a given

quadratic polynomial in n variables over the discrete domain {0, 1}n.

We are usually interested not only in finding a minimum but finding an argument which

minimizes the function. Also, since finding such an optimum is computationally very

hard for large instances, we will be interested in finding as low value as possible and

the corresponding argument. The domain {−1,+1}n is called the search space while the

elements of this set are called candidate solutions or feasible solutions or simply solutions.

An optimum solution is then the minimizer of the function over the set of feasible solutions

- i.e. the best possible solution.

Since hisi = his
2
i for si ∈ {0, 1}, all terms of degree one can be transformed into

quadratic terms. The constant c does not play any role in the minimization task. That

being said, an equivalent formulation of the QUBO task is minimizing a homogeneous

quadratic polynomial in n variables over the domain {0, 1}n,

min
s1,...,sn∈{0,1}

n
∑

i, j=1

Ji jsis j (1.2)

Coefficients Ji j can always be taken symmetrically i.e. such that Ji j = J ji. Indeed, if

they are not symmetric, taking coefficients 1
2
(Ji j + J ji) in place of both Ji j and J ji will make

them symmetric.

11

12 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

As stated in the Introduction part, an obvious brute-force algorithm for solving a QUBO

problem is to evaluate the polynomial at all possible candidate solutions si ∈ {0, 1} and take

the minimum among them. However, the problem with this algorithm is that there are 2n

combinations in total, so the search space grows exponentially with respect to the number

of variables. Depending on the computer’s performance, this will work efficiently for a

number of variables of order 101. However, already for n = 100 this becomes too many

operations to perform on a computer within any reasonable amount of time.

The key point here is that, since QUBO is a NP-hard problem [7], there is no polynomial-

time algorithm which would solve it exactly (unless P=NP which is suspected to be false

[10]). Thus, there is probably no algorithm for solving QUBO exactly which would have

significantly lower computational complexity than exponential one.

Nevertheless, there are many algorithms which solve QUBO exactly by leveraging var-

ious properties of the problem and using different techniques. Many of these methods are

listed in [7]. However, all of these methods work effectively for number of vertices up to

few hundreds at most.

For larger instances of QUBO, various heuristic and metaheuristic algorithms have

been developed which provide some relatively high-quality approximate solution. A lot of

such algorithms can be found in [7] as well. However, there is one special kind of heuristic

algorithms recently proposed. These algorithms are based on physics-inspired dynamical

systems. These algorithms are the core of this thesis and are presented in chapter 3.

It will be shown in 1.2 that QUBO problem is in fact equivalent to a specific graph

problem called MAX-CUT. There are some approximation algorithms in the literature for

solving MAX-CUT which are thus directly applicable to solving QUBO.

The question which emerges is whether there exists a polynomial-time algorithm which

would provide arbitrarily good approximate solution. In fact, QUBO problem is APX-hard,

which under the assumption P,NP implies that there is no polynomial-time approximation

scheme (PTAS) for it [32, 33, 34]. In other words, no polynomial-time algorithm can

guarantee to provide a solution which is as close to the optimal solution as we would

require in advance (if P,NP).

To address the question of how close to the optimal solution can some algorithm get

with a guarantee, there is an article by Goemans and Williamson [35] proposing a random-

ized algorithm for solving MAX-CUT problem (see section 1.2) based on semidefinite

programming which always provides solutions with expected value at least 0.87856 times

the optimal solution. MAX-CUT is equivalent to QUBO 1.2.6 in such a way that there ex-

ists a mapping from candidate solutions of one problem to candidate solutions of the other

problem, which preserves value obtained by these candidate solutions. Thus, algorithm

which provides solutions with expected value at least 0.87856 times the optimal solution

of the MAX-CUT problem could also be used to provide solutions of the QUBO problem

with the same accuracy.

13

If the unique games conjecture [36] is true, this is the best possible approximation ratio

which can be guaranteed for MAX-CUT (see [34, 36], subsection 1.2 and remark 1.2.6),

and thus for QUBO as well.

Equivalent forms

Let Q′(s1, . . . , sn) =
∑n

i, j=1 J′i jsis j+
∑n

i=1 h′i si+c′ be a quadratic polynomial with the domain

{0, 1}n as in 1.1. By taking a linear change of variables given byσi = 2si−1, a new quadratic

polynomial Q(σ1, . . . , σn) is given over the domain {−1,+1}n, satisfying Q′(s1, . . . , sn) =

Q(σ1, . . . , σn). Thus, the QUBO task 1.1 has an equivalent form

min
σ1,...,σn∈{−1,+1}

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσi + c (1.3)

for some new coefficients Ji j, hi, c.

Although equivalent, each of these formulations has it’s own benefit. As it will be

seen in the following sections, some other combinatorial optimization problems can be

embedded into QUBO task. Sometimes it will be easier to think of an embedding in 1.1

form and sometimes in 1.3 form. Form 1.3 might be more suitable for analysis because the

domain {−1,+1}n consists of elements with equal norm. When solving QUBO task on a

computer, the algorithm will often be implemented either as Q over the domain {−1,+1}n
or as Q′ over the domain {0, 1}n. It is thus useful to have an explicit relation between

coefficients in Q and Q′. That relation is given by

Q : {−1,+1}n → R Q′ : {0, 1}n → R

Ji j =
1

4
J′i j J′i j = 4Ji j

hi =
1

4

n
∑

j=1

(J′i j + J′ji) +
1

2
h′i h′i = −2

n
∑

j=1

(Ji j + J ji) + 2hi (1.4)

c =
1

4

n
∑

i, j=1

J′i j +
1

2

n
∑

i=1

h′i + c′ c′i =

n
∑

i, j=1

Ji j −
n

∑

i=1

hi + c

Another equivalent form emerges if minimization task is replaced with maximization.

Indeed,

max
σ1,...,σn∈{−1,+1}

Q(σ1, . . . , σn) = − min
σ1,...,σn∈{−1,+1}

−Q(σ1, . . . , σn) (1.5)

and −Q is still a quadratic polynomial.

14 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

Homogenizing

Let us assume that a quadratic polynomial

Q(σ1, . . . , σn) =

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσi + c

is given over the domain {−1,+1}n. For the minimization task, the constant term c is

irrelevant so here we assume without loss of generality that c = 0. By introducing one

auxiliary variable σn+1 ∈ {−1,+1} we define a polynomial

P(σ1, . . . , σn, σn+1) ≔

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσiσn+1

which is homogeneous of degree 2. For each configuration (σ1, . . . , σn) ∈ {−1,+1}n, there

are two corresponding configurations in {−1,+1}n+1.

Those are (σ1, . . . , σn,+1) and (−σ1, . . . ,−σn,−1). It follows that (c = 0 by assumption)

Q(σ1, . . . , σn) = P(σ1, . . . , σn,+1) = P(−σ1, . . . ,−σn,−1) (1.6)

Thus, finding a minimum of a (nonhomogeneous) quadratic polynomial with n variables

over the domain {−1,+1}n is equivalent to finding a minimum of the corresponding homo-

geneous quadratic polynomial with n+1 variables over the domain {−1,+1}n+1. Because of

(1.6), not only the minima are in correspondence, but all values are. Although increasing

the number of variables by 1 does not play any important role in a sense of computa-

tional complexity, the performance of some algorithms might be affected because the extra

variable σn+1 is (possibly) coupled to all other variables. If some algorithm leverages the

coupling structure of the original problem (for example sparsity of J), the new coupling

might lose this structure after introducing σn+1 (sparsity might be compromised because

σn+1 could be coupled to all other variables), thus causing the algorithm to drop in per-

formance. Adding this extra variable could also often cause issues with convergence of

physics-inspired dynamical systems and corresponding algorithms presented in chapter 3.

Nevertheless, we will not be concerned with the effect of adding this extra variable in

the rest of the thesis, but rather take this theoretical result as a justification for solving and

analyzing mostly the homogeneous case

min
σ1,...,σn∈{−1,+1}

n
∑

i, j=1

Ji jσiσ j (1.7)

1.1. ANALYSIS OF THE PROBLEM 15

Matrix-Vector notation

Given a quadratic polynomial with real coefficients

Q(σ1, . . . , σn) =

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσi + c

it’s evaluation can be written in matrix-vector notation as follows. Put all coefficients Ji j

into the matrix J ∈ Mn(R), coefficients hi into the vector h ∈ Rn and arguments σi into the

vector σ ∈ {−1,+1}n. Then we write

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσi + c = Q(σ1, . . . , σn) = Q(σ) = σ
T Jσ + σT h + c

and so the minimization task is rewritten as

min
σ∈{−1,+1}n

σ
T Jσ + σT h + c (1.8)

This transition between vectors, matrices and their coefficients, will be used in what follows

without further noticing.

1.1 Analysis of the problem

Bounds with coefficients

Define the following matrix and vector norms

∥J∥1 ≔
n

∑

i, j=1

∣

∣

∣Ji j

∣

∣

∣ ∥h∥1 ≔
n

∑

i=1

|hi|

∥J∥∞ ≔ max
i, j=1,...,n

∣

∣

∣Ji j

∣

∣

∣ ∥h∥∞ ≔ max
i=1,...,n

|hi|

Then we have the following bounds for the value in QUBO

∣

∣

∣

∣

∣

∣

∣

n
∑

i, j=1

Ji jσiσ j +

n
∑

i=1

hiσi + c

∣

∣

∣

∣

∣

∣

∣

≤ ∥J∥1 + ∥h∥1 + |c| ≤ n2 ∥J∥∞ + n ∥h∥∞ + |c| (1.9)

Bounds with the largest and the smallest eigenvalue

Let λ1, . . . , λn be the eigenvalues of the symmetric coupling matrix J sorted in descending

ascending order, meaning that λ1 ≤ λ2 ≤ · · · ≤ λn. Let v1, . . . , vn be the orthonormal basis

16 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

which diagonalizes the coupling matrix J, corresponding to eigenvalues λ1, . . . , λn. Then

we have the following:

σ =
∑

i

viv
T
i σ

σ
T Jσ = (

∑

i

viv
T
i σ)T J(

∑

i

viv
T
i σ) =

∑

i, j

σ
T viv

T
i Jv jv

T
j σ =

∑

i

λiσ
T viv

T
i σ

Thus,

σ
T Jσ ≤ max{λ1, . . . , λn}

∑

i

σ
T viv

T
i σ = max{λ1, . . . , λn}σT

σ

σ
T Jσ ≥ min{λ1, . . . , λn}

∑

i

σ
T viv

T
i σ = min{λ1, . . . , λn}σT

σ

Since for all vectors σ ∈ {−1,+1}n the quantity σ
T
σ is equals n, we obtain the bounds

n ·min{λ1, . . . , λn} ≤ σ
T Jσ ≤ n ·max{λ1, . . . , λn} (1.10)

Degree of synchronization

Let Q(x) = −xT Jx and consider the following minimization QUBO task

min
σ∈{−1,+1}n

Q(σ) (1.11)

We have that λmin(−J) = −λmax(J) with eigenvectors corresponding to each other. Ac-

cording to the previous subsection, if the eigenvector vmax corresponding to the largest

eigenvalue λmax(J) consists only of components with magnitude 1 i.e. vmax ∈ {−1,+1}n,

then the solution of the QUBO problem (1.11) is exactly the vector vmax. Intuitively this

should also hold in case that vmax is very close to some point from the feasible set {−1,+1}n
(ignoring the scale and considering all vectors to be normalized). This is formally justified

in the following result from [37].

Definition 1.1.1. Let x be an arbitrary vector in Rn. The feasible solution for QUBO task

corresponding to this vector is considered to be σ = sign(x). We define the degree of

synchronization of x to be

α2(x) =

(

xT

∥x∥
σ

∥σ∥

)2

(1.12)

where σ = sign(x).

1.1. ANALYSIS OF THE PROBLEM 17

Theorem 1.1.2. Consider the minimization QUBO task (1.11). Denote with Q0 the opti-

mum (minimum) solution for this minimization task. Denote with Q1 the second smallest

value if it exists, otherwise let Q1 = Q0. Denote with ∆Q = Q1 − Q0. Let λmax = λ1 ≥
· · · ≥ λn = λmin be all eigenvalues of J sorted in descending order. Assume that the largest

eigenvalue’s multiplicity is 1 (i.e. λ1 , λ2). Denote with vmax a normalized eigenvector

corresponding to λmax.

If for the degree of synchronization of vector vmax it holds

α2(vmax) ≥ 1 − ∆Q

n(λmax − λmin)
(1.13)

then the corresponding solution σ = sign(vmax) is the optimum solution of QUBO task

(1.11).

Proof. If ∆Q = 0 we have that all feasible solutions are minima so there is nothing to

prove. Thus, let us assume that ∆Q > 0.

α2(vmax) = 1 is equivalent to the fact that σ is proportional to vmax. In this case, σ

reaches the bound value of (1.10) so σ must be the optimum solution and the proof is

done.

Consider the opposite case where σ is not proportional to vmax. Since λi < λmax,∀i > 1

we have that

Q0 > min
∥x∥2=n

Q(x) = −nλmax (1.14)

which implies

Q1 > −nλmax + ∆Q (1.15)

Using the fact that J =
∑

i λiviv
T
i we have that

Q(σ) = −σT Jσ = −σT (
∑

i

(λi − λmin)viv
T
i)σ −

∑

i

λminσ
T viv

T
i σ

= −
∑

i

(λi − λmin)(vT
i σ)2 − nλmin

≤ −(λmax − λmin)(vT
maxσ)2 − nλmin

(1.16)

where for obtaining the last inequality we have dropped all but one summation terms. Since

nα2(vmax) = (vT
maxσ)2, by assumption of the theorem we have that

(vT
maxσ)2 ≥ n − ∆Q

λmax − λmin

(1.17)

Combining these we get

Q(σ) ≤ ∆Q − n(λmax − λmin) − nλmin = ∆Q − nλmax < Q1 (1.18)

Thus, Q(σ) = Q0 i.e. σ is the optimum solution of the QUBO task. □

18 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

1-opt solution

Let Q(σ1, . . . , σn) =
∑n

i, j=1 Ji jσiσ j +
∑n

i=1 hiσi +C.

Definition 1.1.3. For the maximization QUBO task

max
σ∈{−1,+1}n

Q(σ), (1.19)

vector σ ∈ {−1,+1}n is called a 1-opt solution if for every i = 1, . . . , n we have that

∆iQ(σ1, . . . , σn) ≤ 0 (1.20)

where

∆iQ(σ1, . . . , σn) ≔ Q(σ1, . . . , σi−1,−σi, σi+1, . . . , σn) − Q(σ1, . . . , σi−1, σi, σi+1, . . . , σn)

(1.21)

That is, for a 1-opt solution, switching the value of a single variable cannot produce a

better solution.

By replacing ≤ with ≥ in equation (1.21) we get the definition of a 1-opt solution for

the minimization QUBO task.

In a similar way we can define a k-opt solution for integer k > 1.

Writing out further the formula for ∆iQ and using the fact that Ji j = J ji, Jii = 0, we get

∆iQ(σ1, . . . , σn) = −2

n
∑

j=1

(Ji j + J ji)σiσ j − 2hiσi = −4

n
∑

j=1

Ji jσiσ j − 2hiσi (1.22)

1.2 Applications

Many combinatorial optimization problems can be embedded into a QUBO problem. Those

include all of Karp’s 21 NP-complete problems. [11] This embedding refers to the fact that

the original combinatorial optimization problem can be reformulated into a QUBO task

in such a way that the solution of QUBO task encodes the solution of the original op-

timization problem. In the following subsections, some examples of these embeddings

are provided. Namely, those are MAX-CUT problem, Number partitioning problem, and

Traveling salesman problem. Many more examples can be found in [11].

There is one notable difference among these embeddings of different combinatorial

optimization problems. As an example, let us consider the Traveling salesman problem

(TSP). In order to embed this problem into the QUBO formulation, we need to introduce

some ancillary variables. So, for a TSP problem with n variables (cities), we would need

1.2. APPLICATIONS 19

to solve the QUBO task with n2 variables. Nevertheless, the number of variables required

for embedding all of Karp’s 21 NP-complete problems is at most cubic with respect to

the number of variables in the original problem [11]. Additionally to ancillary variables,

we will need to impose some constraints on those variables i.e. we will have to solve a

constrained quadratic binary optimization task. These constraints can often be embedded

into the QUBO task as well, but this might significantly affect the algorithm’s performance

and the quality of the solution.

Handling constraints

In this section we will describe a way of handling constraints by introducing penalty func-

tions. Consider a minimization task

min
s∈A

Q(s1, . . . , sn) (1.23)

where A ⊂ {0, 1}n is some allowable set over which we want to minimize a quadratic

polynomial Q. Denote with Ac its complement. Let us suppose that P(s1, . . . , sn) is a

quadratic polynomial which is precisely equal zero on the set A, while it is strictly greater

than zero outside of A. Now, let us define

Q′(s) ≔ Q(s) +C · P(s) (1.24)

for some C > 0.

First, we have not changed the values obtained when evaluating solutions from the

allowable set. That is, Q′(s) = Q(s),∀s ∈ A.

Second, by choosing C > 0 to be large enough, every configuration which is not al-

lowed evaluates Q′ to something which is too large to be the minimum of Q. That is,

∀s ∈ Ac,Q′(s) > mins∈A Q(s)

Third, Q′ is still a quadratic polynomial.

This means that solving an unconstrained (QUBO) problem

min
s∈{0,1}n

Q′(s1, . . . , sn) (1.25)

provides us with a solution of the constrained problem (1.23).

Example 1.2.1. Suppose we want to minimize some quadratic polynomial Q(s1, . . . , sn)

over the discrete set {0, 1}n, but we are only interested in balanced configurations, i.e.

configurations (s1, . . . , sn) which contain equal amount of 0’s as 1’s (assume that n is even).

For the penalty function

P(s1, . . . , sn) ≔















n

2
−

n
∑

i=1

si















2

(1.26)

20 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

we have that P(s1, . . . , sn) ≥ 0 for all configurations, but P(s1, . . . , sn) = 0 if and only if the

configuration is balanced. Furthermore, P is a quadratic polynomial.

By selecting C > 0 appropriately large, and defining Q′ ≔ Q + C · P, we have that

Q′ is a quadratic polynomial whose minimum over the whole set {0, 1}n corresponds to the

minimum of Q over the set of all possible balanced configurations.

Similar procedures can be done for handling other types of constraints. If we have mul-

tiple constraints which need to be satisfied at the same time, we can just sum the penalties

which correspond to each constraint separately.

Although theoretically perfectly valid, handling constraints with penalty functions can

impose problems in practice because algorithms for solving the QUBO often do not neces-

sarily provide the minimum, but rather an approximate solution. Choosing a constant C > 0

(from above example) which is too large might force the algorithm to produce solutions

which satisfy the constraints, but are completely unaware of the actual value of Q which

we are trying to minimize. On the other hand, making the value C > 0 too small might

allow the algorithm to produce solutions which violate constraints. Therefore, we would

definitely need to fine tune the value C. However, for approximate solvers this sometimes

just does not work well (for example if many constraints need to be satisfied at the same

time).

It is very problem-specific and also algorithm-specific to determine how to efficiently

embed the constraints ± whether there are some alternative penalty functions which might

perform better, and whether there are some completely different embeddings which could

perform better.

MAX-CUT

This section is based on [34].

MAX-CUT is a combinatorial optimization problem on graphs which can be directly

modeled with QUBO task. Consider an undirected weighted graph G = (V, E) with no

self-loops and no multiple edges between vertices. V denotes the set of vertices, E the set

of edges. Each edge e ∈ E is a triplet of the form e = (a, b, Jab) where vertices a, b ∈ V

are connected with an edge with weight Jab. If the number of vertices is n = |V | then all

weights can be stored in a symmetric adjacency matrix J ∈ Mn(R). The fact that vertices

a, b ∈ V are connected with an edge having weight w is represented in adjacency matrix by

Jab = Jba = w. Throughout this section, only graphs of this type will be considered.

In order to describe the MAX-CUT problem we need a precise definition of what the

graph cut means.

Definition 1.2.2. Given a graph G = (V, E) with adjacency matrix J, a (graph) cut is a

bipartition P = {A, B} of the vertices (meaning that A, B ⊂ V; A ∩ B = ∅; A ∪ B = V).

1.2. APPLICATIONS 21

The value of a certain graph cut P = {A, B} is a number
∑

a∈A,b∈B

Jab (1.27)

A cut is maximum if no other cut produces greater value.

The MAX-CUT problem is then straightforward

Problem 1.2.3 (MAX-CUT problem). Given a graph G, determine its maximum cut.

MAX-CUT problem is a NP-hard problem.

There is a similar version with yes-no solution

Problem 1.2.4 (MAX-CUT problem, binary). Given a graph G and a value k, determine

whether or not there exists a cut with value at least k in G.

This version is a NP-complete problem and is on the Karp’s list of 21 NP-complete

problems.

Remark 1.2.5. A dual definition of ºMIN-CUTº of a graph could be provided and so the

problem of finding a MIN-CUT would be equivalent to the problem of finding a MAX-CUT

by just taking the opposite sign of each edge weight. However, in the literature a MIN-CUT

is usually considered only for weighted graphs whose weights are strictly positive and with

the requirement that the cut is not trivial i.e. A, B , ∅ (otherwise a trivial cut A = V, B =

would always be the solution). Under these restrictions, a MIN-CUT problem becomes

P instead of NP-hard. It is in fact a dual problem to the max-flow problem i.e. finding

the maximum flow from source to sink (source and sink are newly added vertices) which

is as well solvable in polynomial time. Here, only graphs with arbitrary real weights are

considered, so in order to stay aligned with nomenclature in the literature, only MAX-CUT

problem will be considered, as defined in 1.2.2.

Let us formulate the MAX-CUT problem as a QUBO task. Suppose a graph G = (V, E)

is given, with adjacency matrix J and the set of vertices being V = {1, . . . , n} . Assume

that the graph is weighted, has no self-loops, and is undirected. For a given cut P = {A, B},
define a vector σ = (σ1, . . . , σn) ∈ {−1,+1}n such that σi = −1 if i ∈ A, and σi = +1 if

i ∈ B. It is clear that this mapping is a one-to-one correspondence between all possible cuts

and all vectors {−1,+1}n. Furthermore, define

Q(σ) ≔
1

4

n
∑

i, j=1

Ji j(1 − σiσ j) (1.28)

which is a quadratic polynomial over the domain {−1,+1}n. For a particular cut P = {A, B},
plugging in σ corresponding to P, the value of Q(σ) becomes precisely the value of that

22 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

cut. To see this, note that (1 − σiσ j) is equals to 2 in case that i and j belong to different

parts of the partition (i.e. i ∈ A, j ∈ B or i ∈ B, j ∈ A) while it is 0 otherwise.

The conclusion is that finding a MAX-CUT of the graph can be embedded into solving

a QUBO task given by

max
σ∈{−1,+1}n

Q(σ)

with Q defined by 1.28.

Note that up to a constant term (which is irrelevant for maximization task), Q is a

homogeneous polynomial. The number of variables that we required to embed a MAX-

CUT problem into a QUBO task is O(n), where n is the number of vertices in the graph.

On the other hand, consider an arbitrary QUBO problem given by

max
σ∈{−1,+1}n

σ
T Jσ + σT h + c (1.29)

As discussed in subsection 1, this is equivalent to solving the QUBO task with a corre-

sponding homogeneous polynomial with n+ 1 variables. In this correspondence, all candi-

date solution values are preserved. Thus, we may assume that h = 0 and c = 0 without loss

of generality. Let us define an undirected graph G = (V, E) with adjacency matrix given

by −4J. Up to a constant term, all the cuts of this graph and their values correspond to

the evaluation of the given quadratic polynomial, as seen in 1.28. Thus, solving a QUBO

problem can be embedded into a MAX-CUT problem.

These two statements are summarized in the following remark.

Remark 1.2.6. The QUBO problem and the MAX-CUT problem are equivalent in a sense

that given an arbitrary instance of one of these problems with n variables, one can formu-

late an instance of the other problem with at most n+1 = O(n) variables in such a way that

there is a mutual correspondence between candidate solutions as well as between values

produced by these candidate solutions.

Thus, statements and techniques for solving MAX-CUT can almost always be applied

to QUBO, and vice versa.

Number Partitioning

Number partitioning is the following combinatorial problem.

Problem 1.2.7 (Number Partitioning). A sequence of n real numbers a1, . . . , an is given.

Determine whether or not there exists a bipartition P = {A, B} of those numbers (A, B ⊂
{1, . . . , n}; A ∪ B = {1, . . . , n}; A ∩ B = ∅) such that

∑

i∈A ai =
∑

i∈B ai.

If such a bipartition exists, determine it.

1.2. APPLICATIONS 23

For example, can we divide a set of assets with values a1, . . . , an fairly between two

people?

This problem is known to be NP-complete [11].

To formulate this problem in terms of a QUBO task, let us define the following quadratic

polynomial with n variables over the domain {−1,+1}n.

Q(σ1, . . . , σn) ≔ (

n
∑

i=1

aiσi)
2 (1.30)

There is a one-to-one correspondence between each bipartition P = {A, B} and the do-

main {−1,+1}n given by the rule: σi = −1 if i ∈ A, σi = +1 if i ∈ B. It is clear that

a solution of the number partitioning problem exists if and only if there exists a configu-

ration (σ1, . . . , σn) ∈ {−1,+1}n that evaluates to Q(σ1, . . . , σn) = 0. Additionally, those

solutions are in correspondence with minimizers of Q by the described rule. Evaluation

Q(σ1, . . . , σn) = 0 means that the minimum of Q has been found and it is equals to 0.

Thus, minimizing Q is equivalent to solving the Number partitioning problem.

If there does not exist a solution to the Number partitioning problem, then one might

want to find a bipartition which is the closest possible to the fair partition. Minimizing Q

again solves this problem.

The polynomial Q is generally not homogeneous. The number of variables required for

encoding the number partitioning problem into a QUBO task is linear with respect to the

problem size, i.e. O(n), where n is the number of assets that are being partitioned.

Traveling Salesman Problem

There are many variants of the traveling salesman problem. We will present the following

version and it’s QUBO formulation. Many other variants can be formulated as QUBO task

in a similar fashion.

Problem 1.2.8 (Traveling Salesman Problem (TSP)). A weighted directed complete graph

G = (V, E) is given. Edges of the form (a, b,Wab) ∈ E represent that there is an edge from

a to b with weight Wab. All weights are positive. The fact that G is directed here refers to

the possibility that Wab , Wba. Let us assume that vertices are numbered V = (1, . . . , n). A

tour v1, . . . , vn is a permutation of vertices V representing the order for visiting each vertex,

that is v1, v2, . . . , vn, v1 because one wants to return to the starting vertex.

The task is to find a tour which minimizes the sum of traversed edges i.e. the sum

n−1
∑

i=1

Wvi,vi+i
+Wvn,v1

which will often be refered to as tour length.

24 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

One example of the traveling salesman problem is: how to plan the route for a delivery

vehicle given that it needs to visit each of the specified locations once, while minimizing

the total path length and thus minimizing the transport costs.

Let us present a QUBO formulation of the TSP. Since the route length does not depend

on the starting vertex, we may choose vertex a = 1 as the starting one. Define (n − 1)2

variables si,u ∈ {0, 1} where i ∈ {2, . . . , n} represents the step and u ∈ V \ {a} represents the

vertex to be visited in i-th step. si,u = 1 means that we want to visit vertex u at step i, while

si,u = 0 otherwise. Since we want a permutation of vertices, we want exactly one si,u = 1

per turn i, and all others to be si,u = 0. The same should hold per each vertex u ∈ V \ {a}.
Let us thus define the following quadratic polynomial

QA(s) ≔

n
∑

i=2

(1 −
∑

u∈V\{a}
si,u)2 +

∑

u∈V\{a}
(1 −

n
∑

i=2

si,u)2 (1.31)

We have that QA(s) = 0 if and only if s represents a permutation of vertices as described

above, and QA(s) ≥ 1 otherwise.

Now define the following quadratic polynomial

QB(s) ≔
∑

u∈V\{a}
Wa,us2,u +

n
∑

i=3

∑

u∈V\{a}

∑

v∈V\{a}
Wu,vsi−1,usi,v +

∑

u∈V\{a}
Wu,asn,u (1.32)

We have that QB ≥ 0. Considering only those configurations s that already represent a

valid permutation as described above, the value QB(s) is precisely the length of the tour

corresponding to the given permutation. Now define

Q(s) ≔ C · QA(s) + QB(s) (1.33)

for properly chosen constant C > 0. It should be chosen in such a way that any configura-

tion s which violates the above requirements for producing a valid permutation, evaluates

to suboptimal Q(s). For example, for any s corresponding to a valid permutation of ver-

tices, QB(s) ≤ n · maxu,v∈V Wu,v. Choosing any C > n · maxu,v∈V Wu,v as a constant will be

sufficient. Indeed, for any s which does not correspond to a valid permutation, the value

Q(s) will be higher than every possible tour length, so any valid route encoding s′ will

provide Q(s′) < Q(s). Minimizing Q thus simplifies to minimizing QB over the set of all

valid permutations. This is exactly minimizing the tour length from the traveling salesman

problem.

Since Q is a quadratic polynomial over the domain {0, 1}(n−1)2

, we have showed that

solving a traveling salesman problem can be embedded into solving a minimization QUBO

task. The number of variables required for embedding a traveling salesman problem into a

QUBO task is O(n2) where n is the number of vertices in the graph.

Chapter 2

Preliminary theory

This chapter is a brief recapitulation of certain well-known topics in mathematics. Its first

purpose is to give a mathematical background for dynamical systems, along with a few

examples which will be essential for understanding the behaviour of dynamical systems in

chapter 3. Its second purpose is to serve as a reference for some arguments used in chapter

3.

In terms of notation, a time derivative is denoted by a dot, ẋ = dx
dt

. Column vectors in

R
n are denoted by bold letters, while their components are denoted with regular letters and

a subscript denoting their index of component x =























x1

...

xn























= (x1, . . . , xn)T . The superscript

T denotes a transpose. For a vector function f : Ω ⊂ Rn → Rn, its matrix derivative or

differential is considered to be a matrix of its partial derivatives arranged as

∂f

∂x
=



























∂ f1
∂x1

. . .
∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . .
∂ fn
∂xn



























So, for a scalar function E : Rn → R, ∂R
∂x

is a row vector. Its second differential (also called

Hessian matrix) is considered to be a matrix

∂2E

∂x2
=



























∂2E
∂x1∂x1

. . . ∂2E
∂x1∂xn

...
. . .

...
∂2E

∂xn∂x1
. . . ∂2E

∂xn∂xn



























Throughout the thesis, the second differential will always be taken of C2 functions, so the

matrix ∂2E

∂x2 will always be symmetric due to the Schwarz’s theorem.

Matrix derivations of higher order and shape could be defined as well, but will not be

used in the thesis.

25

26 CHAPTER 2. PRELIMINARY THEORY

2.1 Dynamical systems

In this section, the results and concepts from the theory of dynamical systems are briefly

given. All systems discussed are continuous dynamical systems meaning that the time is

continuous and they are governed by ordinary differential equations.

Let I ⊂ R,U ⊂ Rn be open sets, and f ∈ C1(I × U;Rn). A (continuous) dynamical

system is an ordinary differential equation of the form

ẋ(t) = f(t, x) (2.1)

where f is a given vector field. When initial condition x(0) = x0 is specified, we call such

system














ẋ(t) = f(t, x)

x(0) = x0

(2.2)

an initial value problem.

The following two theorems are fundamental for dynamical systems in a sense that

given a vector field, and the initial condition, the trajectory of the dynamical system exists

and is uniquely determined. Moreover, this solution can be extended in time until it either

reaches the domain boundary or blows up to infinity.

Theorem 2.1.1 (Existence-Uniqueness). [38] Let t0 ∈ I ⊂ R, x0 ∈ U ⊂ Rn be open sets,

and f ∈ C1(I×U;Rn). Then there exist open subsets t0 ∈ I0 ⊂ I, x0 ∈ U0 ⊂ U and a function

ϕ : I0 × I0 × U0 → Rn such that for each (t1, x1) ∈ I0 × U0, the function t 7→ ϕ(t, t1, x1) is

the unique solution defined on I0 of the initial value problem (2.2).

Theorem 2.1.2 (Extension). [38] Let t0 ∈ I ⊂ R, x0 ∈ U ⊂ Rn be open sets, and f ∈
C1(I × U;Rn). Let ⟨α, β⟩ be the maximal open interval where the solution x of dynamical

system (2.2) exists, with −∞ ≤ α ≤ β ≤ ∞. Then either |x(t)| approaches ∞ or x(t)

approaches the boundary of U as t → β.

When f does not depend on the time variable t, we call such dynamical system an

autonomous dynamical system. Otherwise, we call it a nonautonomous dynamical system.

When f(t, x) = Ax for some constant matrix A ∈ Mn(R), we say that the dynamical

system is linear. Otherwise we call it a nonlinear dynamical system.

Remark 2.1.3. Nonautonomous dynamical systems are often referred to as a generaliza-

tion of autonomous ones, so if we do not care if f depends on t or not, we may just say a

nonautonomous dynamical system.

Analogously, nonlinear dynamical systems are a generalization of linear ones.

Consider a nonautonomous dynamical system

ẋ(t) = f(t, x) (2.3)

2.1. DYNAMICAL SYSTEMS 27

Definition 2.1.4. An equilibrium point of a nonautomous dynamical system is a point x0 ∈
Ω which is also a trajectory of the system, meaning that x(t) ≔ x0 is the solution of (2.3).

The definition of equilibrium point is equivalent to the fact that f(t, x0) = 0,∀t. When

studying a dynamical system, it is often useful to look for its equilibrium points. The

character of these points can often tell us about the qualitative behavior of the dynamical

system in the neighborhood of these points. The main result about this is the Hartman-

Grobman theorem for nonlinear autonomous dynamical systems.

The Hartman-Grobman theorem

This section is based on [38]. Consider a nonlinear autonomous dynamical system

ẋ(t) = f(x) (2.4)

where f ∈ C1(U;Rn),U ⊂ Rn.

Definition 2.1.5. For each x0 ∈ U let x be the solution of 2.4 with initial condition x(0) =

x0. Let us define a one-parameter family of functions ϕt called the flow of dynamical system

2.4 as

ϕt(x0) = x(t)

for every t in which x is defined.

Proposition 2.1.6. The flow ϕt of the dynamical system 2.4 has the following properties

a) ϕt+s = ϕt ◦ ϕs

b) ϕ0(x) = x

whenever both sides of the equation are defined.

Let us assume that the dynamical system 2.4 has an equilibrium point at x0.

The behavior of a nonlinear autonomous dynamical system near an equilibrium point

x0 is qualitatively the same as the dynamics of the corresponding linearization i.e.

ẋ(t) = Ax (2.5)

where A = ∂f
∂x

(x0). That is formally stated in the Hartman-Grobman theorem.

Theorem 2.1.7 (The Hartman-Grobman Theorem [38]). Let f ∈ C1(Rn;Rn) be a smooth

vector field, and let ϕt be the flow of the nonlinear system (2.4). Suppose that x0 is a

hyperbolic equilibrium point, meaning that f(x0) = 0 and none of the eigenvalues of A =
∂f
∂x

(x0) have zero real part. Let ψt be the flow of the corresponding linearization (2.5).

Then there exist open sets x0 ∈ U ⊂ Rn, 0 ∈ V ⊂ Rn and a homeomorphism H : U → V

such that H(ϕt(x)) = ψt(H(x)) whenever x ∈ U and both sides of the equation are defined.

28 CHAPTER 2. PRELIMINARY THEORY

A connection between autonomous and nonautonomous systems

In chapter 3, we will be dealing with nonautonomous dynamical systems. However, the

vector field f will slowly vary in time, meaning that ∂f
∂t

has relatively small norm. In this

case, if we want to analyze the local (in time) behavior of the dynamical system, it might

be tempting to analyze the behaviour of the dynamical system which has its vector field

frozen in time, i.e. the dynamical system

ẋ = f(t0, x) (2.6)

where t0 is some time instance at which the vector field is frozen.

For analyzing the global (in time) behavior of the system, this strategy is inadequate

and even misleading, as seen from the following example.

Example 2.1.8. Consider a one-dimensional nonautonomous dynamical system

ẋ(t) = t − x(t) (2.7)

If we were to analyze this system by observing the system which has its vector field frozen

in time, that is

ẋ(t) = t0 − x(t) (2.8)

for some t0 ∈ R, we would see that it has equilibrium point at x = t0. The linearization of

such system is

ẋ(t) = −x(t) (2.9)

which by Hartman-Grobman theorem (or by solving this directly) would imply that it is

an attractive equilibrium. It might be tempting to conclude that the system follows the

trajectory given by instantaneous equilibrium points, that is the trajectory xISP(t) = t.

However, the exact solutions of this equation are x(t) = Ce−t + t − 1 for some C ∈ R. It

is clear that all of these solutions converge to the solution xDHT(t) = t − 1 as t → ∞.

First of all, xISP(t) is not even a solution of the above differential equation. Second, and

even more important, the system globally behaves in such a way that it converges towards

the trajectory xDHT(t), and not xISP(t).

In [39] they develop the concept of a distinguished hyperbolic trajectory which in the

above example is precisely xDHT(t), contrary to the instantaneous stagnation points which

are xISP(t) in this example.

However, the global (in time) behavior of the dynamical system will not be of great

interest in chapter 3, but rather a local one. In this case, analyzing the system as if its

vector field was frozen in time makes sense. This concept is formalized in the following.

2.1. DYNAMICAL SYSTEMS 29

Let f ∈ C1(R × Rn;Rn) be a given vector field, x0 ∈ Rn, t0 < t1.

Consider the following dynamical system














ẋ(t) = f(t, x(t))

x(t0) = x0

(2.10)

and the corresponding dynamical system with vector field frozen at time instance t0, with

the same initial conditions.














ẏ(t) = f(t0, y(t))

y(t0) = x0

(2.11)

For vector v ∈ Rn we will denote the norm ∥v∥∞ = maxi=1,...,n |vi|, and for a vector

function g : Ω ⊂ Rm → Rn we will denote the norm

∥g∥L∞(Ω) ≔ max
i=1,...,n

∥gi∥L∞(Ω) (2.12)

Let us formally define the successive approximations as

x0(t) ≔ x0

xk+1(t) ≔ x0 +

∫ t

t0

f (τ, xk(τ))dτ

y0(t) ≔ x0

yk+1(t) ≔ x0 +

∫ t

t0

f (t0, yk(τ))dτ

(2.13)

Theorem 2.1.9 (Connection between autonomous and nonautonomous dynamical sys-

tems). Let f ∈ C1(R × Rn;Rn), x0 ∈ Rn, t0 < t1. Assume that all successive approximations

(2.13) for dynamical systems (2.10) and (2.11) are well defined and continuous on [t0, t1]

and that they uniformly converge to solutions

xk

L∞([t0,t1])−−−−−−−→ x (2.14)

yk

L∞([t0,t1])−−−−−−−→ y (2.15)

Assume that D ⊂ Rn is a convex compact set which contains both solutions and all suc-

cessive approximations x([t0, t1]), xk([t0, t1]), y([t0, t1]), yk([t0, t1]) ⊂ D,∀k. Let L > 0 be a

Lipschitz constant in second variable for f in a sense that

∥f(t, x) − f(t, y)∥∞ ≤ L ∥x − y∥∞ , ∀t ∈ [t0, t1],∀x, y ∈ D (2.16)

Let

M ≔

∥

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

∥

L∞([t0,t1]×D)

(2.17)

30 CHAPTER 2. PRELIMINARY THEORY

Then,

∥x − y∥L∞([t0,t])
≤ M

L2
eL(t−t0) − M

L
(t − t0) − M

L2
, ∀t ∈ [t0, t1] (2.18)

Proof. First, let’s show that f is Lipschitz continuous in second variable with some constant

L > 0 in a sense of (2.16). By following the proof of proposition 2.3.4 and applying it to

each component of f, we get that f1, . . . , fn are Lipschitz continuous in second variable.

From here, (2.16) follows easily.

By inductive argument we prove a bound for
∥

∥

∥xk(t) − yk(t)
∥

∥

∥∞. For k = 0 we have
∥

∥

∥x0(t) − y0(t)
∥

∥

∥∞ = 0. Assume that for some k it holds

∥

∥

∥xk(t) − yk(t)
∥

∥

∥∞ ≤ M

k+1
∑

i=2

Li−2

i!
(t − t0)i, ∀t ∈ [t0, t1] (2.19)

Then,

∥

∥

∥xk+1(t) − yk+1(t)
∥

∥

∥∞ ≤
∫ t

t0

∥

∥

∥f(τ, xk(τ)) − f(t0, yk(τ))
∥

∥

∥∞ dτ (2.20)

=

∫ t

t0

∥

∥

∥f(τ, xk(τ)) − f(τ, yk(τ)) + f(τ, yk(τ)) − f(t0, yk(τ))
∥

∥

∥∞ dτ (2.21)

≤
∫ t

t0

L
∥

∥

∥xk(τ) − yk(τ)
∥

∥

∥∞ + M(τ − t0)dτ (2.22)

≤
∫ t

t0

LM

k+1
∑

i=2

Li−2

i!
(τ − t0)i + M(τ − t0)dτ (2.23)

= LM

k+1
∑

i=2

Li−2

i!

∫ t

t0

(τ − t0)idτ +

∫ t

t0

M(τ − t0)dτ (2.24)

= M

k+1
∑

i=2

Li−1

(i + 1)!
(t − t0)i+1 +

M

2
(t − t0)2 (2.25)

= M

k+2
∑

i=2

Li−2

i!
(t − t0)i (2.26)

for arbitrary t ∈ [t0, t1]. In order to get (2.22), we used triangle inequality, mean value

theorem, Lipschitz condition (2.16) and bound for the partial derivative of f by t (2.17).

2.1. DYNAMICAL SYSTEMS 31

Now, by induction we have that (2.19) holds for each k. Thus, for all k we have

∥

∥

∥xk − yk

∥

∥

∥

L∞([t0,t])
≤ M

k+1
∑

i=2

Li−2

i!
(t − t0)i (2.27)

≤ M

∞
∑

i=2

Li−2

i!
(t − t0)i (2.28)

=
M

L2

∞
∑

i=0

Li

i!
(t − t0)i − M

L
(t − t0) − M

L2
(2.29)

=
M

L2
eL(t−t0) − M

L
(t − t0) − M

L2
, ∀t ∈ [t0, t1] (2.30)

Since

xk

L∞([t0,t1])−−−−−−−→ x, k → ∞ (2.31)

yk

L∞([t0,t1])−−−−−−−→ y, k → ∞ (2.32)

we get the bound

∥x − y∥L∞([t0,t])
≤ M

L2
eL(t−t0) − M

L
(t − t0) − M

L2
, ∀t ∈ [t0, t1] (2.33)

□

Gradient dynamical systems

A special type of dynamical systems are gradient dynamical systems. The name is derived

by the fact that the vector field is negative gradient of some landscape function. More

formally, let Ω ⊂ Rn, I ⊂ R be open sets and E ∈ C2(I ×Ω;R). The dynamical system

ẋ(t) = −∂E

∂x

T

(t, x) (2.34)

is a gradient dynamical system with corresponding landscape function E.

Generally, the function E can vary over time. However, let us analyze an example

where E is time-independent, i.e. E = E(x).

Example 2.1.10. Let A ∈ Mn(R) be a real symmetric matrix and E(x) = 1
2
xT Ax. Consider

a gradient dynamical system with landscape function E.

ẋ(t) = −∂E

∂x

T

(x(t))

= −Ax

(2.35)

32 CHAPTER 2. PRELIMINARY THEORY

Since A is symmetric, it is orthogonally diagonalizable, so let UT AU = Λ = diag(λ1, . . . , λn)

be its orthogonal diagonalization.

Define a change of variables Åx ≔ UT x. The equation (2.35) becomes

Å̇x = −UT AU Åx

= −ΛÅx
(2.36)

which is a system of decoupled ordinary differential equations in each component. Written

out component-wise, the system is

Å̇xi = −λi Åxi; i = 1, . . . , n (2.37)

The solution for each component is thus

Åxi(t) = Åx(0)e−λit; i = 1, . . . , n (2.38)

where Åx(0) is the initial condition. The solution in the original reference frame is then

x(t) = U Åx(t).

This change of reference provides us not only with the exact solution, but also with a

qualitative understanding of solution’s behavior. For each component we have different

behavior depending on the sign of the corresponding eigenvalue. For λi > 0 the solution

component rapidly collapses towards 0. For λi = 0, the solution component is stationary.

For λi < 0 the solution component rapidly expands to ±∞.

This gives us the qualitative understanding of the behavior of x(t). When viewed in

reference frame which diagonalizes A, the solution’s components either collapse, stay sta-

tionary, or expand, all with respect to the sign of the corresponding eigenvalue.

Hamiltonian dynamical systems

Let I ⊂ R,Ω ⊂ R2n be open sets and H ∈ C2(I × Ω) where H = H(t, x, y), x, y ∈ Rn. A

system of the form

ẋ =
∂H

∂y

T

(t, x, y)

ẏ = −∂H

∂x

T

(t, x, y)

(2.39)

is called a Hamiltonian dynamical system.

Function H is called a Hamiltonian function or total energy of the system.

Hamiltonian H can take various forms.

2.1. DYNAMICAL SYSTEMS 33

The motion of the particles in space can be modeled by taking H to be of the following

form

H(t, x, y) =

n
∑

i=1

mi

2
y2

i + E(t, x) (2.40)

Each particle has certain number of degrees of freedom (for example 1D, 2D or 3D mo-

tion). Each degree of freedom has its corresponding position xi and momentum yi. The

quantity
∑n

i=1
mi

2
y2

i is called the kinetic energy of the system, while E(t, x) is a function

called potential energy of the system. Kinetic energy depends only on constants mi which

represent the mass of each particle, and momenta yi. On the other hand, the potential en-

ergy depends only on the position vector x and the time instance in case that the potential

energy changes over time.

Example 2.1.11. Let A ∈ Mn(R) be a real symmetric matrix and E(x) = 1
2
xT Ax. Consider

an autonomous Hamiltonian dynamical system corresponding to the motion of particles,

each with mass m, in time-independent potential E(x)

H(x, y) =

n
∑

i=1

m

2
y2

i +
1

2
xT Ax

ẋ =
∂H

∂y

T

= my

ẏ = −∂H

∂x

T

= −Ax

(2.41)

Since A is symmetric, it is orthogonally diagonalizable, so let UT AU = Λ = diag(λ1, . . . , λn)

be its orthogonal diagonalization.

Define a change of variables Åx ≔ UT x, Åy ≔ UT y. The dynamical system (2.41) be-

comes

Å̇x = mÅy

Å̇y = −UT AU Åx = −ΛÅx
(2.42)

or written out component-wise

Å̇xi = mÅyi; i = 1, . . . , n

Å̇yi = −λi Åxi; i = 1, . . . , n
(2.43)

By taking the derivative of Å̇xi we obtain an equivalent equation

ÈÅxi = −mλi Åxi; i = 1, . . . , n (2.44)

34 CHAPTER 2. PRELIMINARY THEORY

This is a system of decoupled linear equations so for each component we have the solution

depending on the sign of λi.

If λi > 0, then

Åxi(t) =
1
√

mλi

Å̇xi(0) sin
(√

mλit
)

+ Åxi(0) cos
(√

mλit
)

(2.45)

which means that this component periodically oscillates around 0.

If λi = 0, then

Åxi(t) = Å̇xi(0)t + Åxi(0) (2.46)

which means that this component linearly expands.

If λi < 0,

Åxi(t) =

(

Åxi(0)

2
+

Å̇xi(0)

2
√
−mλi

)

e
√
−mλit +

(

Åxi(0)

2
− Å̇xi(0)

2
√
−mλi

)

e−
√
−mλit (2.47)

which means that this component exponentially expands.

By changing the reference frame back to the original x = U Åx, we can obtain the exact

solution of the dynamical system. However, the qualitative behavior of this dynamical

system can be understood by analyzing each solution component of the system in reference

frame which diagonalizes A. Each component in this reference frame either oscillates

around zero, linearly expands, or exponentially expands, with respect to the sign of the

corresponding eigenvalue.

2.2 Numerical simulations

In this section, two numerical methods for solving ordinary differential equations are pre-

sented. Those are Euler method and symplectic Euler method.

Euler method is a numerical method which can be used to approximately solve any

initial-value problem and thus simulate any dynamical system. Although being very sim-

ple to state and implement, its weakness is being less precise than some other numerical

methods such as various other Runge-Kutta methods.

Symplectic Euler method is a modification of the Euler method used for simulating

special kind of ordinary differential equations, namely Hamiltonian dynamical systems.

Although the error bound is of the same order as for the Euler method, symplectic Euler

method conserves the energy (for time-independent Hamiltonian) much better than the Eu-

ler method. Thus, symplectic Euler method is more appropriate for simulating Hamiltonian

dynamics.

Many other numerical methods for solving various ordinary differential equations can

be found in [40] and [41], each with certain advantages and disadvantages. However, only

these two methods will be used in chapter 3.

2.2. NUMERICAL SIMULATIONS 35

Euler method

This section is based on [40]. Consider a given initial value problem

ẋ(t) = f(t, x)

x(t0) = x0

(2.48)

The Euler method for approximately solving this initial value problem is given by the

iterative formula

x(0) = x0

x(k+1) = x(k) + f(tk, x
(k)) · ∆t, k = 0, . . . ,Niter − 1

(2.49)

where ∆t =
T

Niter
, tk = k∆t, and T is the time interval on which we need to approximate the

solution. For each k, x(k) is the approximate value for x(tk).

Euler method is a first-order method, meaning that the bound for error between the

approximate and exact solutions is proportional to ∆t, and is not proportional to any higher

power of ∆t. Details can be found in [40].

Symplectic Euler method

This section is based on [42]. Symplectic Euler method (sometimes also called semi-

implicit Euler method) can be used for approximately solving the initial value problem of

the form

ẋ = f(t, y)

ẏ = g(t, x)

x(t0) = x0

y(t0) = y0

(2.50)

This system typically arises in Hamiltonian dynamics if the Hamiltonian has separable

variables

H(t, x, y) = E(t, x) + T (t, y)

Often E is the potential energy of the system, while T is the kinetic energy.

Symplectic Euler method for approximately solving this system is given by the iterative

formula

x(0) = x0

y(0) = y0

x(k+1) = x(k) + f(tk, y
(k)) · ∆t

y(k+1) = y(k) + g(tk, x
(k+1)) · ∆t, k = 0, . . . ,Niter − 1

(2.51)

36 CHAPTER 2. PRELIMINARY THEORY

where ∆t =
T

Niter
, tk = k∆t, and T is the time interval on which we need to approximate the

solution. For each k, x(k) and y(k) are respectively approximate values for x(tk) and y(tk).

The difference between original Euler method is that x(k+1) is used for calculating y(k+1),

instead of x(k).

A second variant of this method is given by reversing the order of calculations, i.e.

x(0) = x0

y(0) = y0

y(k+1) = y(k) + g(tk, x
(k)) · ∆t

x(k+1) = x(k) + f(tk, y
(k+1)) · ∆t, k = 0, . . . ,Niter − 1

(2.52)

Although symplectic Euler method is also a first-order method, i.e. the error is proportional

to ∆t, it is usually a more appropriate method for simulating Hamiltonian dynamical sys-

tems compared to the original Euler method. This is due to the fact that symplectic Euler

method conserves energy (for time-independent Hamiltonians) better than Euler method.

In fact, Euler method often persistently increases the energy, making it less accurate. De-

tails about this method can be found in [42] and [41].

2.3 Other

This section serves only as a reference for some arguments used in the rest of the thesis.

Theorem 2.3.1 (Weyl’s inequality [43]). Let M = N + R, N, and R be n × n Hermitian

matrices, with their respective eigenvalues µi, ηi, ρi ordered in descending order as follows:

M : µ1 ≥ · · · ≥ µn,

N : η1 ≥ · · · ≥ ηn,

R : ρ1 ≥ · · · ≥ ρn

Then the following inequalities hold:

ηi + ρn ≤ µi ≤ ηi + ρ1, i = 1, . . . , n

Proposition 2.3.2. Let Ω ⊂ Rn be an open, convex and connected set. Let E ∈ C2(Ω) such

that the second differential ∂2E

∂x2 is positive semidefinite, i.e. all of its eigenvalues are greater

than 0, at each point of Ω.

Then E is a convex function.

Definition 2.3.3. [44] Consider a second-order differential equation

Èx(t) = tx(t) (2.53)

2.3. OTHER 37

Two linearly independent solutions of this equation are called Airy functions and are de-

noted by A(t), B(t).

Proposition 2.3.4. Let D ⊂ Rn be a compact and convex set. Let f ∈ C1(D).

Then, f is Lipscitz continuous.

Proof. Choose arbitrary x, y ∈ D and consider the line between them parametrized by

γ : [0, 1] → D, γ(t) = (1 − t)x + ty. Since D is convex, γ is indeed contained in D. Define

g : [0, 1]→ R, g = f ◦ γ. Then, by the mean value theorem there exists ξ ∈ ⟨0, 1⟩ such that

∂ f

∂x
(γ(ξ)) · (y − x) = g′(ξ) = g(1) − g(0) = f (y) − f (x)

Thus,

| f (y − x)| ≤ [

Cauchy-Schwartz
] ≤

∥

∥

∥

∥

∥

∂ f

∂x
(γ(ξ))

∥

∥

∥

∥

∥

· ∥y − x∥ ≤ L · ∥y − x∥

where

L = max
x∈D

∥

∥

∥

∥

∥

∂ f

∂x
(x)

∥

∥

∥

∥

∥

< ∞

Thus, f is Lipschitz with a Lipschitz constant L. □

Chapter 3

Algorithms

This chapter presents and analyses physics-inspired dynamical systems and their corre-

sponding numerical simulations, which together comprise algorithms for heuristically solv-

ing QUBO problem. These algorithms are namely Coherent Ising Machine (CIM) 3.2,

Simulated Bifurcation (SB) 3.4, Simulated Coherent Ising Machine (SimCIM) 3.8, and

Ballistic Simulated Bifurcation (bSB) 3.9. There are other similar variants of these physics-

inspired algorithms, such as Discrete Simulated Bifurcation (dSB) [31] and heated versions

of simulated bifurcation [45], but those are not covered in the thesis.

These physics-inspired algorithms were proposed as adaptations of quantum algorithms

(algorithms designed for running on a quantum computer) for solving QUBO and other

combinatorial optimization problems. These adaptations are done by approximating the

expected value of annihilation operator a, present in the quantum Hamiltonian H, by a

complex number x + iy where x, y ∈ R. What is left after this dequantization are the

equations of motion for variables x, y. This is where physics-inspired dynamical systems

for solving combinatorial optimization problems came from Ð the details can be found

in [27], [29], and [25]. Modifying these dynamical systems further enabled to design

algorithm which are easier to simulate, while preserving, and even improving the solution

quality [31, 30].

Although motivated by quantum systems, these dynamical systems are completely clas-

sical, often even deterministic. Thus, in what follows, those systems will be analyzed from

a mathematical perspective of dynamical systems.

First, in order to understand how a dynamical system generates candidate solutions of

QUBO problem, consider a state vector which evolves in time x : [0,∞⟩ → Rn. Taking

the sign of each component at some time instance t, σi ≔ sign xi(t) provides a candi-

date solution for the QUBO task (σ1, . . . , σn). The goal is to obtain a dynamical system

which attracts various trajectories towards such areas of space that provide high-quality

approximate solutions of the QUBO problem, according to the mapping mentioned above

39

40 CHAPTER 3. ALGORITHMS

σi ≔ sign xi(t).

Finally, CIM and SB were chronologically developed earlier, and they are respectively a

gradient and a Hamiltonian system over the same energy/landscape function E. Motivated

by CIM and SB, and by modifying the function E, new algorithms were proposed. This is

how bSB and SimCIM were born. They are also respectively a gradient and a Hamiltonian

systems over this new energy/landscape function.

3.1 Introduction to CIM and SB

Let us define the following energy functional

E(x;α, β, µ) =
α

4

n
∑

i=1

(x2
i − µ)2 − β

2

n
∑

i, j=1

Ji jxix j (3.1)

and the corresponding gradient vector field

f(x;α, β, µ) = −∂E

∂x

T

(x;α, β, µ)

= −α[x3
1, . . . , x

3
n]T + αµx + βJx

(3.2)

both of which will be used in sections 3.2 and 3.4. E and f are functions of position x

and parameters α, β, µ denoted after the semicolon. It is essential to analyze this energy

functional E with respect to parameters because it defines the vector field f which will

govern the dynamical systems in sections 3.2 and 3.4. This energy function will vary in

time itself because the parameters will vary in time.

The given coupling matrix J is symmetric (if not, we may always symmetrize it by

taking coefficients 1
2
(Ji j + J ji) instead of Ji j and J ji). α(t) > 0, β(t) > 0 and µ(t) ∈ R are

parameters which (might) vary over time and thus produce different landscape over which

the point x moves. However, both in CIM and SB algorithm, parameters α and β are con-

stant in time. The crucial part is that µ(t) is time-dependent which causes the bifurcations

of the system. When talking about CIM and SB, a bifurcation refers to the emergence

of new or vanishing of some existing local minima of energy functional E. The second

part, −β(t)

2

∑

i, j Ji jxix j, corresponds to the value of the QUBO task and is the actual function

that we want to minimize but over the set {−1,+1}n. The first part,
α(t)

4

∑

i(x2
i − µ(t))2, thus

might be viewed as a penalty term. It penalizes xi’s whose magnitude is different than
√
µ

(whenever µ ≥ 0). More about penalty terms can be found in [46].

When µ is small enough, the only local and global minimum of E is the origin. As

µ increases, new local minima occur. For large enough µ, E will have 2n local minima

corresponding to (existing in the close vicinity of) the points {−√µ,+√µ}n. The value of

3.1. INTRODUCTION TO CIM AND SB 41

the energy functional E at such a point x =
√
µσ,σ ∈ {−1,+1}n is given by

E(
√
µσ;α, β, µ) = −βµ

2

∑

i, j

Ji jσiσ j

which is proportional to the function that we are minimizing over the discrete set.

Increasing the parameter µ from the starting value µ0 to the final value µ1 causes new

bifurcation of the system. As already stated, if we evolve the system long enough, i.e. until

µ crosses certain large enough value, E will have 2n local minima, each corresponding to

one feasible solution from {−1,+1}n. This is the statement of the next theorem.

Theorem 3.1.1. Let D ≔ maxi

∑n
j=1

∣

∣

∣βJi j

∣

∣

∣ For µ > 1
2α

(1 + 3
√

3)D, there exist 2n local

minima of function E, which are all in a one-to-one correspondence with the feasible set

{−1,+1}n. This correspondence is given by taking the sign of each component Ð for a local

minimum x, the corresponding element of the feasible set is σ = sign x.

Proof. The proof can be found in [37]. □

Let us calculate the second differential of E.

∂2E

∂x2
= 3α diag(x2

1, . . . , x
2
n) − αµI − βJ (3.3)

Proposition 3.1.2. The origin is a stationary point of E, meaning that ∂E
∂x

(0) = 0T , for all

µ ∈ R. For

µ < −β
α
λmax(J) (3.4)

the origin is a local minimum of E. For

µ > −β
α
λmax(J) (3.5)

the origin is not a local minimum of E.

Proof. Use formula (3.2) to see that the origin is stationary. The second differential of E

at the origin is
∂2E

∂x2
(0) = −αµI − βJ

If (3.4) holds, than λmin(∂
2E

∂x2 (0)) = −αµ−βλmax(J) > α
β

α
λmax(J)−βλmax(J) = 0 which means

that all eigenvalues of ∂2E

∂x2 are positive which implies that the origin is a local minimum of

E. Analogous argument shows that when (3.5) holds, the origin is not a local minimum

because at least one eigenvalue is negative. □

42 CHAPTER 3. ALGORITHMS

For

µ ≤ −β
α
λmax(J) (3.6)

we can actually analyze the second differential of E to see that

λmin

(

∂2E

∂x2

)

≥ [

Weyl’s inequality (2.3.1)
]

≥ λmin(3α diag(x2
1, . . . , x

2
n)) + λmin(−αµI − βJ)

= 3α min
i=1,...,n

x2
i − αµ − βλmax(J)

≥ −αµ − βλmax(J)

≥ αβ
α
λmax(J) − βλmax(J) = 0

(3.7)

So, when condition (3.6) is satisfied, we know from 2.3.2 and 3.1.2 that E is a convex

function with its global minimum centered at the origin.

The condition

µ = −β
α
λmax(J) (3.8)

is thus called the first bifurcation point.

It thus makes sense to increase µ, for example linearly, from certain starting value µ0 to

certain ending value µ1, while taking

µ0 ≥ −
β

α
λmax(J) (3.9)

because this is the point when bifurcations in landscape function E start to emerge. Se-

lecting the concrete value of µ0 and µ1 should be based on empirical evidence i.e. by

experimenting which parameter provides the best result.

Example 3.1.3. In this example we will observe what happens for the case n = 2. Since

the coupling matrix is symmetric and with zero diagonal elements, there are, up to scale,

two possibilities for the coupling matrix, and those are given by J =

[

0 ϵ

ϵ 0

]

, ϵ ∈ {−1,+1}.
Consider the QUBO task given by

max
σ1,σ2∈{−1,+1}

2
∑

i, j=1

Ji jσiσ j (3.10)

and define the corresponding energy landscape as in (3.1)

E =
α

4

2
∑

i=1

(x2
i − µ)2 − βϵx1x2 (3.11)

3.1. INTRODUCTION TO CIM AND SB 43

Diagonalization of J provides us with eigenvectors

[

1

−1

]

,

[

1

1

]

corresponding respec-

tively to eigenvalues −ϵ,+ϵ. First, we will determine stationary points of E for some fixed

µ.

αx1(µ − x2
1) + βϵx2 = 0

αx2(µ − x2
2) + βϵx1 = 0

(3.12)

which is, by summing and subtracting these equations, equivalent to

αµ(x1 + x2) − α(x1 + x2)(x2
1 − x1x2 + x2

2) + βϵ(x1 + x2) = 0

αµ(x1 − x2) − α(x1 − x2)(x2
1 + x1x2 + x2

2) − βϵ(x1 − x2) = 0
(3.13)

Case 1: x1 + x2 = 0, x1 − x2 = 0

This is the trivial case x1 = x2 = 0 which is the stationary point for all µ.

Case 2: x1 + x2 = 0, x1 − x2 , 0

From first equation we have x1 = −x2 so plugging it into the above we get

2αµx1 − 2αx3
1 − 2βϵx1 = 0

⇔ x2
1 = µ −

βϵ

α

(3.14)

From here we conclude that

−x2 = x1 = ±
√

µ − βϵ
α
, for µ ≥ βϵ

α
(3.15)

Case 3: x1 + x2 , 0, x1 − x2 = 0

From second equation we have x1 = x2 so plugging it into the above we get

2αµx1 − 2αx3
1 + 2βϵx1 = 0

⇔ x2
1 = µ +

βϵ

α

(3.16)

From here we conclude that

x2 = x1 = ±
√

µ +
βϵ

α
, for µ ≥ −βϵ

α
(3.17)

Case 4: x1 + x2 , 0, x1 − x2 , 0

This provides

αµ − α(x2
1 − x1x2 + x2

2) + βϵ = 0

αµ − α(x2
1 + x1x2 + x2

2) − βϵ = 0
(3.18)

44 CHAPTER 3. ALGORITHMS

⇔
x2

1 − x1x2 + x2
2 = µ +

βϵ

α

x2
1 + x1x2 + x2

2 = µ −
βϵ

α

(3.19)

⇔ [

by introducing y1 = x1 + x2, y2 = x1 − x2

]

⇔
y2

1 + 3y2
2 = 4(µ +

βϵ

α
)

3y2
1 + y2

2 = 4(µ − βϵ
α

)

(3.20)

which is a full-rank linear system with quadratic indeterminates whose solution is then

y2
1 =

1

2
[−(µ +

βϵ

α
) + 3(µ − βϵ

α
)] = µ − 2

βϵ

α

y2
2 =

1

2
[3(µ +

βϵ

α
) − (µ − βϵ

α
)] = µ + 2

βϵ

α

(3.21)

leading to 4 solutions

x1 =
1

2
[(−1)k

√

µ − 2βϵ

α
+ (−1)l

√

µ +
2βϵ

α
]

x2 =
1

2
[(−1)k

√

µ − 2βϵ

α
− (−1)l

√

µ +
2βϵ

α
]

, k, l ∈ {0, 1} (3.22)

which holds whenever µ ≥ |ϵ| 2β

α
.

First two non-trivial cases are local minima, which can be seen by taking the second

partial derivatives of E:

−∂
2E

∂x2
=

[

αµ − 3αx2
1

βϵ

βϵ αµ − 3αx2
2

]

(3.23)

If −∂2E

∂x2 is negative-definite (all of its eigenvalues are less than zero), then we have a local

minimum. Calculating the eigenvalues is straightforward for this 2 × 2 symmetric matrix,

and plugging in from first two cases the fact that x2
1
= x2

2
we obtain that E has local

minimum when

β |ϵ | < α(3x2
1 − µ) (3.24)

In table 3.1 we systematically write all the cases and conclude that those local minima

that correspond to optimum solution of the minimization problem (3.10) bifurcate earlier

than other local minima.

In figure 3.1 we can see how these local minima start to emerge as µ increases.

3.1. INTRODUCTION TO CIM AND SB 45

ϵ = +1 ϵ = −1

x1 = −x2

(case (3.15))
µ >

2β

α
µ > − β

α

x1 = x2

(case (3.17))
µ > − β

α
µ >

2β

α

solution for max
σ1,σ2∈{−1,+1}

2ϵσ1σ2 σ1 = σ2 σ1 = −σ2

Table 3.1: Behaviour of E on a system with two variables

We see that those local minima that correspond to the optimum solution (highlighted in

gray) bifurcate earlier than suboptimal local minima.

Figure 3.1: Visualization of energy landscape E for CIM and SB

Overview: This is a visual representation of energy landscape E for a system with two

variables and coupling term J12 = J21 = 1. Optimum solutions of the corresponding

QUBO problem are (+,+) and (-, -). As the parameter µ increases, it causes the qualitative

appearance of the landscape function E to change Ð new local minima emerge, and they

correspond to candidate solutions of QUBO. Notice that local minima corresponding to

optimum solutions of QUBO bifurcate earlier than suboptimal ones.

Details: The values of parameter µ are denoted on the top of each subplot. Red crosses

denote local minima of E. α = 1, β = 2.

46 CHAPTER 3. ALGORITHMS

3.2 Coherent Ising machine (CIM)

This section is based on [28] and [37].

Dynamics

CIM is a gradient dynamical system with time-dependent landscape function E defined

by equation 3.1. The vector field f describing this dynamical system is thus given by the

negative gradient of E, as defined by 3.2

f(x;α, β, µ) = −∂E

∂x

T

(x;α, β, µ)

= −α[x3
1, . . . , x

3
n]T + αµx + βJx

(3.25)

Parameters are written after the semicolon and those are α, β, µ. Time dependence is

achieved by varying parameters in time. In this algorithm only parameter µ is monotoni-

cally increased from certain initial value µ0 to certain final value µ1. Parameters α, β > 0

are kept constant.

The dynamical system describing CIM is thus given by

ẋ(t) = f(x(t);α, β, µ(t)) (3.26)

Written out component-wise without denoting the dependence on time

ẋi = fi = αxi(µ − x2
i) + β

∑

j

Ji jx j ; i = 1, . . . , n (3.27)

Algorithm

CIM algorithm is a simulation of the described dynamical system on a computer using

Euler method.

Algorithm 1 CIM

1: Initialize vector x randomly around 0

2: for k in range(0,Niter) do

3: xi ← xi +
[

αxi(µ(tk) − x2
i) + β

∑

j Ji jx j

]

· ∆t, i = 1, . . . , n

4: end for

In figure 3.2 we observe that as local minima bifurcate away from the origin, the system

follows some of these local minima. Local minima corresponding to (+,+) and (−,−) are

lower than those corresponding to (+,−) and (−,+) so it is more likely that the system

3.2. COHERENT ISING MACHINE (CIM) 47

will converge towards (+,+) or (−,−) that the other two minima. Also, local minima

corresponding to (+,+), (−,−) bifurcate earlier, i.e. for smaller values of µ, than the other

two local minima. That’s why in the middle subplot the system will surely converge to the

optimal solution, since other local minima have not yet even emerged.

Figure 3.2: CIM algorithm

Overview: This is a visual representation of CIM algorithm on a system with two

variables with coupling term J12 = J21 = 1. Optimum solutions of the corresponding

QUBO problem are (+,+) and (-, -). In the left subplot, the parameter µ did not cross the

first bifurcation point, so the dynamical system collapses towards the origin (starting far

away from it). As the time passes, µ increases, causing a change in the qualitative

appearance of landscape E. In the middle subplot, the origin splits into two local minima

(red crosses) which correspond to the solution of QUBO problem. In the right subplot,

two new local minima emerge, corresponding to suboptimal solutions of QUBO.

However, they are not as attractive for the dynamical system as the optimal solutions. In

both cases, the dynamical system ends up converging towards a local minimum

corresponding to an optimal solution of QUBO.

Details: The white line represents the trajectory obtained by running the CIM algorithm.

Red crosses denote local minima of E. Each subplot corresponds to a new run of the

algorithm. The parameters are α = 1, β = 2. The energy landscape E is plotted only for

the final value of µ, that is E(·;α, β, µ(T)) is plotted on each of the subplots. In each

subplot, µ increases linearly from starting to ending value. Starting and ending values are

respectively denoted as µ(0) and µ(T) on top of each subplot. Number of iterations is 400,

while ∆t = 0.01. Initial positions are x(0) = (1, 2) for the left subplot, x(0) = (0.5,−1.0)

for the middle subplot, and x(0) = (−0.3, 1.0) for the right subplot.

48 CHAPTER 3. ALGORITHMS

3.3 Gradient descent and momentum

Gradient descent algorithms are used extensively for various continuous optimization tasks,

such as for training neural networks in machine learning models. These algorithms could

be understood as Euler method applied to the gradient system where the gradient is taken

of the function which is being optimized. Suppose that we want to find a (local) minimum

of a function E : Rn → R. A gradient descent algorithm is then

x(0) = x0

x(k+1) = x(k) − ∂E

∂x
(x(k)) · ∆t, k = 0, . . . ,Niter − 1

(3.28)

where ∆t is a parameter called learning rate, Niter is the number of iterations, and x0 is

some initial position which is often randomly chosen, ideally in a close vicinity of the

target (local) minimum.

On top of this, there is a technique which is often used for improving the convergence

rate of such optimization algorithms, and it is called the momentum [47]. The momentum

acts in such a way that it accumulates the previous displacements and takes those into

account when performing the next update. The algorithm is the following

x(0) = x0

x(1) = x(0) − ∂E

∂x
(x(0)) · ∆t

x(k+1) = x(k) − ∂E

∂x
(x(k)) · ∆t + γ

(

x(k) − x(k−1)
)

, k = 1, . . . ,Niter − 1

(3.29)

where all parameters are as earlier, and γ ∈ [0, 1] is the momentum parameter. Adding the

momentum has been shown to increase the convergence rate significantly [47]. According

to [47], adding momentum is actually equivalent to the numerical simulation of a physical

system in which a Newtonian particle moves through a viscous medium under the influence

of a conservative force field. This interpretation is of special interest to us because we are

already dealing with continuous dynamical systems.

Now let’s return to the CIM algorithm.

Adding momentum to CIM

Since CIM is essentially a gradient descent algorithm, it might make sense to apply the

momentum to it for improving its performance.

Adding the momentum to algorithm 1, we get the following: First, choose the momen-

tum parameter 0 ≤ γ ≤ 1. Momenta will be stored in vector y. We could also initialize the

momentum vector randomly.

3.4. SIMULATED BIFURCATION (SB) 49

Algorithm 2 CIM with momentum

1: Initialize vectors x, y randomly around 0

2: for k in range(0,Niter) do

3: yi ← γ · yi + αxi(µ(tk) − x2
i) + β

∑

j Ji jx j, i = 1, . . . , n

4: xi ← xi + yi · ∆t, i = 1, . . . , n

5: end for

For momentum parameter γ = 0, CIM with momentum (algorithm 2) becomes pre-

cisely CIM (algorithm 1).

Remark 3.3.1. Throughout the rest of the thesis, ’CIM’ and ’CIM with momentum’ will

often be used interchangeably while referring to CIM with momentum, unless specified

otherwise.

3.4 Simulated Bifurcation (SB)

This section is based on [29].

Dynamics

Simulated Bifurcation (SB) is a Hamiltonian dynamical system with time-dependent Hamil-

tonian given by

H(x, y;α, β,m, µ) =
m

2

n
∑

i=1

y2
i + E(x;α, β, µ) (3.30)

where E is the potential function given by 3.1. The first part of the summation corresponds

to kinetic energy depending only on momenta y while the second part corresponds to po-

tential energy depending only on positions x. Parameters α, β,m > 0 will be kept constant

over time, while the parameter µ(t) ∈ R will monotonically increase from certain initial to

certain final value. The system of differential equations governing the dynamics for this

Hamiltonian system is thus given by

ẋ(t) =
∂H

∂y

T

(x(t), y(t);α, β,m, µ(t)) = my(t)

ẏ(t) = −∂H

∂x

T

(x(t), y(t);α, β,m, µ(t)) = f(x(t);α, β, µ(t))

(3.31)

50 CHAPTER 3. ALGORITHMS

where f is the negative gradient of E, defined by equation (3.2) i.e.

f(x;α, β, µ) = −∂E

∂x

T

(x;α, β, µ)

= −α[x3
1, . . . , x

3
n]T + αµx + βJx

(3.32)

Written out further component-wise and omitting the time variable we get

ẋi =
∂H

∂yi

= myi

ẏi = −
∂H

∂xi

= αxi(µ − x2
i) + β

∑

j

Ji jx j

(3.33)

Algorithm

SB algorithm is a numerical simulation of the above dynamical system on a computer. The

simulation is performed by symplectic Euler method rather than standard Euler method be-

cause it is more stable for simulating Hamiltonian systems. The update step with standard

symplectic Euler method would thus be

x
(k+1)

i
= x

(k)

i
+ my

(k)

i
· ∆t

y
(k+1)

i
= y

(k)

i
+ [αx

(k+1)

i
· (µ(tk) − (x

(k+1)

i
)2) + β

∑

j

Ji jx
(k+1)

j
] · ∆t

(3.34)

where tk = ∆tk is the time discretization, having ∆t fixed.

Additionally, as the authors proposed in the article [29], a modified symplectic Eu-

ler method provides even better results in terms of solution quality and computation speed.

Since the computation of
∑

j Ji jx
(k+1)

j
is computationally the most expensive part, the Hamil-

tonian is split into M + 1 parts

H(x, y;α, β,m, µ) = M
H1(x, y;α, β,m, µ)

M
+ H2(x, y;α, β,m, µ)

H1(x, y;α, β,m, µ) ≔
m

2

∑

i

y2
i +

α

4

∑

i

(x2
i − µ)2

H2(x, y;α, β,m, µ) ≔ −β
2

∑

i, j

Ji jxix j

(3.35)

M is some positive integer.

Applying arguments about symplectic maps, a modified explicit symplectic Euler method

for Simulated Bifurcation is obtained, which is called the SB algorithm.

3.4. SIMULATED BIFURCATION (SB) 51

Algorithm 3 SB

1: Initialize vectors x, y randomly around 0

2: for k in range(0,Niter) do

3: for l in range(0,M) do

4: xi ← xi + myiδt, i = 1, . . . , n

5: yi ← yi +
[

αxi · (µ(tk) − x2
i)
]

· δt, i = 1, . . . , n

6: end for

7: yi ← yi + β
∑n

j=1 Ji jx j · ∆t, i = 1, . . . , n

8: end for

∆t is fixed discretized time interval and δt is its smaller refinement given by δt =
∆t

M
.

Updates with respect to the first part of the Hamiltonian are refined by iterating m =

0, . . . ,M − 1 sub-updates with smaller time step δt.

In figure 3.3 we see a visualization of SB algorithm on a system with two variables.

52 CHAPTER 3. ALGORITHMS

Figure 3.3: SB algorithm

Overview: This is a visual representation of SB algorithm on a system with two variables

with coupling term J12 = J21 = 1. Optimum solutions of the corresponding QUBO

problem are (+,+) and (-, -). In the left subplot, the parameter µ did not cross the first

bifurcation point, so the dynamical system revolves around the origin. As the time passes,

µ increases, causing a change in the qualitative appearance of landscape E. In the middle

subplot, the origin splits into two local minima (red crossses) which correspond to the

solution of QUBO problem. In the right subplot, two new local minima emerge,

corresponding to suboptimal solutions of QUBO. However, they are not as attractive for

the dynamical system as the optimal solutions. In both cases, the dynamical system ends

up circulating through the area (red dashed line) corresponding to an optimal solution of

QUBO.

Details: The white line represents the trajectory obtained by running the SB algorithm.

Red crosses denote local minima of E. The red dotted line represents the boundary for the

feasible region of the Hamiltonian system, that is the level set of E at value equals to the

total energy of the system at that time instance. The parameters are α = 1, β = 2. Each

subplot corresponds to a new run of the algorithm. The energy landscape E is plotted only

for the final value of µ, that is E(·;α, β, µ(T)) is plotted on each of the subplots. In each

subplot, µ increases linearly from the starting to the ending value. Starting and ending

values are respectively denoted as µ(0) and µ(T) on top of each subplot. Initial positions

are x = (0, 0) in each subplot. For the leftmost subplot, initial positions are

x = [0.3,−0.3], initial momenta are y = [0.5, 0.5], ∆t = 0.1, and the number of iterations

is 100. For the middle subplot, initial positions are x = [0, 0], initial momenta are

y = [0.3,−0.4], ∆t = 0.05, and the number of iterations is 150. For the rightmost subplot,

initial positions are x = [0, 0], initial momenta are y = [0.3,−0.2], ∆t = 0.05, and the

number of iterations is 150.

3.5. MECHANISM OF CIM AND SB 53

3.5 Mechanism of CIM and SB

Let us explain the mechanism of CIM and SB. Although CIM and SB are nonautonomous

dynamical systems; in order to analyze them locally in time, it is sufficient to consider

them as autonomous systems with their vector fields frozen at some time instance of in-

terest. Indeed, using the connection theorem 2.1.9 and the fact that these vector fields

change relatively slowly in time, we have that the error made by such approximation will

be relatively small, especially for short time intervals.

The behaviour of these two systems around the first bifurcation point could be under-

stood in the light of examples 2.1.11 and 2.1.10 which provide solutions of linear gra-

dient and Hamiltonian systems. Indeed, by the Hartman-Grobman theorem 2.1.7, we

have that the qualitative behaviour of CIM and SB around the origin is equivalent to

the dynamics of the corresponding linearized systems. Thus, we need to analyze ∂f
∂x
=

−3α diag(x2
1
, . . . , x2

n)+αµI+βJ which at the origin is ∂f
∂x

(0) = αµI+βJ. To understand this,

we need to observe what happens in the reference frame which diagonalizes ∂f
∂x

(0). Before

the first bifurcation point, all eigenvalues of ∂f
∂x

(0) are smaller than 0, so CIM will collapse

towards the origin, while SB will revolve around it. As the time passes, and µ increases,

some of the largest eigenvalues of ∂f
∂x

(0) will cross 0 and become positive. Both the CIM

and SB will start to rapidly expand towards these directions, while staying bounded or even

contract in all other directions. Since these direction correspond to eigenvectors of J, both

CIM and SB provide good approximate solutions of the QUBO problem at early stages of

the algorithm.

After the system expands far enough from the origin, and as µ continues to increase, the

behaviour around the origin stops being relevant. Instead, new local minima of E emerge

and the system starts either converging towards them (CIM) or revolving around them (SB).

Under the assumption that local minima corresponding to better QUBO solutions emerge

earlier (for smaller µ) than other local minima, or that these local minima will have higher

attractivity, we expect that the system will be able to converge towards these local minima

and thus provide high-quality QUBO solutions.

As discussed in [37] for CIM, those variables which bifurcate from the origin at early

stages usually do not return to the origin nor change their sign anymore. This potentially

allows us to consider only the system reduced to those variables which did not bifurcate

yet, while keeping others frozen.

Analyzing the bifurcation pattern (the relative order of emergence of local minima)

would be essential for understanding the behavior of CIM. This would enable us to pre-

dict the performance of CIM and SB algorithms Ð provide us a way to tell when will

these algorithms provide good solutions of QUBO problem and when it will fail to do so.

However, it is not clear how to systematically treat and analyze this bifurcation pattern or

develop theory about it. Analyzing this further is out of the scope of this thesis.

54 CHAPTER 3. ALGORITHMS

3.6 Comparing CIM and SB

Bifurcation pattern

In the figure 3.4 we compare the bifurcation behaviour of a single-variable system and the

evolution of the dynamics through time.

Figure 3.4: Comparison of CIM and SB with one variable

Overview: This is a visual representation of CIM and SB algorithms performing on only

one variable. As the time evolves, and µ crosses the first bifurcation point (black dot), the

landscape function E changes its qualitative appearance and thus forces the dynamical

system to bifurcate towards one of the two stable branches (solid black lines).

Details: Solid black lines represent the positions of local minima of landscape function E.

Dashed line represents the position of an unstable stationary point. Black dot is the

bifurcation point. Blue lines represent the evolution of CIM and SB algorithms. These are

locally a good approximation of the exact solutions of CIM and SB dynamical systems.

The following parameters have been used. J = [0], α = 0.5, β = 0.5, µ0 = −0.3, µ1 = 1.0,

∆t = 0.1. The number of iterations is 1000. Initial conditions for CIM are x1(0) = 0.5,

while for SB are x1(0) = 0.0, y1(0) = 0.1. Momentum is not used for this CIM simulation.

3.6. COMPARING CIM AND SB 55

Relation between CIM and SB

Although the momentum parameter is usually kept smaller than 1, it is very interesting

what happens when γ = 1. In this case, CIM with momentum (algorithm 2) potentially

becomes a simulation of SB dynamical system. That is, we can choose hyperparameters

in CIM with momentum in such a way that the update step becomes a symplectic Euler

method applied to SB dynamics.

Let us distinguish between CIM’s and SB’s parameters with a superscript ’CIM’ and

’SB’.

For given parameters for SB algorithm αSB, µSB
0
, µSB

1
, βSB,∆SB

t ,mSB, and assuming that

MSB = 1, the SB algorithm could be written like this (notice that the order of equations

for xi and yi is flipped but this remains a correct numerical simulation of the dynamics as

described in section 2.2)

Algorithm 4 variant of SB with M = 1

1: Initialize vectors x, y randomly around 0

2: for k in range(0,Niter) do

3: yi ← yi +
[

αSBxi · (µSB(tk) − x2
i) + βSB

∑n
j=1 Ji jx j

]

· ∆SB
t , i = 1, . . . , n

4: xi ← xi + mSByi∆
SB
t , i = 1, . . . , n

5: end for

Define the parameters for CIM as follows

γCIM = 1 αCIM = αSB∆SB
t

βCIM = βSB∆SB
t µCIM = µSB

∆CIM
t = mSB∆S B

t

Plugging in the above parameters into CIM with momentum (algorithm 2), we obtain

Algorithm 5 CIM with momentum mimicking SB

1: Initialize vectors x, y randomly around 0

2: for k in range(0,Niter) do

3: yi ← yi + α
SB∆SB

t xi(µ
SB(tk) − x2

i) + βSB∆SB
t

∑n
j=1 Ji jx j, i = 1, . . . , n

4: xi ← xi + yi · mSB∆SB
t , i = 1, . . . , n

5: end for

which is precisely the above variant of SB, algorithm 4. Although these implementations of

CIM and SB are not completely equivalent, CIM with momentum has the ability to simulate

the dynamics of SB if the parameters are selected appropriately (especially γ = 1). In this

context, CIM with momentum is in some sense a generalization of SB algorithm.

56 CHAPTER 3. ALGORITHMS

3.7 Introduction to SimCIM and bSB

Let us define the following energy functional

E(x;α, β) =
α

2

∑

i

x2
i −

β

2

∑

i, j

Ji jxix j, for x ∈ [−1,+1]n (3.36)

E(x;α, β) = +∞, otherwise (3.37)

which will be used both in sections 3.8 and 3.9.

Let us define the corresponding vector field f as a negative gradient of the regular part

of E (3.36)

f(x;α, β) ≔ −∂E

∂x

T

(x;α, β)

= −αx + βJx

(3.38)

This energy functional is a function of position x and parameters α, β denoted after the

semicolon.

Remark 3.7.1. Sometimes when we choose and fix some concrete values for α and β, we

will pretend that E is only a function of position x and thus write E(x) ≡ E(x;α, β).

For SimCIM and bSB we will only be interested in the dynamics inside the region

[−1,+1]n, and we actually want to prevent the system from going outside of this region.

That’s why we formally define that E(x) = +∞ outside of [−1,+1]n. This potentially

complicates the mathematical formalism but it will not be an issue for the analysis because

we will only be interested in the local behaviour in time in the regular region. When some

components hit the wall, these components will be (temporarily) frozen so all the others

will evolve in their (restricted) regular region. That is why we further define the vector

field g which handles these boundary conditions, and will thus be suitable for defining

both SimCIM and bSB dynamical systems.

g(x;α, β) ≔ A(x;α, β) · f(x;α, β) (3.39)

where the diagonal matrix A regulates which components are allowed to evolve and which

should be paused because they hit the boundary and additionally their vector field compo-

nents point out of the regular region. That is, we have A(x;α, β) = diag(a1, . . . , an); ai = 1

if xi ∈ ⟨−1,+1⟩ or (xi ∈ {−1,+1} & xi fi < 0), ai = 0 otherwise.

It is essential to analyze the energy functional E with respect to parameters because it

defines vector fields f and g; and thus governs the SimCIM and bSB dynamical systems in

sections 3.8 and 3.9. This energy function will vary in time itself because the parameters

3.7. INTRODUCTION TO SIMCIM AND BSB 57

will vary in time. Concretely, β > 0 will be constant over time, while it is crucial that

α ≡ α(t) will decrease monotonically from some initial value α0 to some final value α1.

This decreasing regime varies among algorithms. In bSB, α(t) changes linearly, i.e. α(t) =

α0 − α0−α1

T
t. In the original SimCIM algorithm, α(t) is a sigmoid function given by the

hyperbolic tangent law α(t) = −(α1 − α0) tanh(A(t − T
2
)) + α1, where A > 0 is some

positive constant, for example A = 3. Although different regimes for α(t) produce different

solutions and some regimes might be better than the others, we cannot predict which regime

would be the best. The choice of the regime is not carved into the stone and it even seems

arbitrary to a certain degree. Nevertheless, what is important is that α(t) continuously,

monotonically, and relatively slowly decreases in time starting from α0 and ending with α1.

Thus, we will usually make α linearly decrease from α0 to α1, as it is originally proposed

for bSB.

Let us explain the behaviour of energy functional E for arbitrary α ∈ R. Since J is

symmetric, it is thus orthogonally diagonalizable. Let UT JU = Λ = diag(λ1, . . . , λn) be

the diagonalization of J such that eigenvalues of J are sorted in descending way λmax =

λ1 ≥ · · · ≥ λn = λmin. Denote the change of variables Åx ≔ UT x. We have that

E(x) =
α

2
xT x − β

2
xT Jx =

α

2
ÅxT Åx − β

2
ÅxTΛÅx = ÅxT (

α

2
I − β

2
Λ)Åx (3.40)

Here the nice thing is that (α
2
I − β

2
Λ) is a diagonal matrix so E represented in these trans-

formed coordinates is more comprehensible.

Let us further calculate the second differential of E.

∂2E

∂x2
= αI − βJ (3.41)

The eigenvalues of ∂2E

∂x2 are α− βλ1, . . . , α − βλn with corresponding eigenvectors being the

same as J’s. The sign of these eigenvalues will locally determine the qualitative behavior

of the dynamical systems which follow in the next sections.

Lemma 3.7.2. For α > βλmax, E is convex with the global minimum at the origin x0 = 0.

Proof. On one hand, E(0) = 0. Write E in the form E(x) = α
2
xT x − β

2
xT Jx so because

xT Jx ≤ λmaxxT x, we have

E(x) ≥ α

2
xT x − β

2
λmaxxT x =

1

2
(α − βλmax)xT x (3.42)

So, for x , 0, this implies E(x) > 0 i.e. the origin is the global minimum.

Taking the minimum eigenvalue of ∂2E

∂x2 provides us with

λmin(
∂2E

∂x2
) = α − βλmax(J) > 0

58 CHAPTER 3. ALGORITHMS

so all the eigenvalues of the second differential are positive, meaning that E is convex

(proposition 2.3.2). □

One more question which should be addressed are the starting and ending values α0 and

α1. There is some degree of freedom in choosing them, but nothing interesting happens

when α > βλmax as E is convex and centered at the origin. For α ≤ βλmax, E starts to

change because some of its eigenvalues start being negative.

The condition

α = βλmax(J) (3.43)

is thus called the first bifurcation point.

Thus, both for the gradient and for the Hamiltonian system with landscape E, it makes

sense starting the dynamics with

α0 ≤ βλmax(J) (3.44)

Selecting the concrete values of α0 and α1 should be determined by empirical evidence i.e.

by experimenting which parameter provides the best result.

3.7. INTRODUCTION TO SIMCIM AND BSB 59

Figure 3.5: Visualization of energy landscape E for SimCIM and bSB

Overview: This is a visual representation of energy landscape E for a system with two

variables and a coupling term J12 = J21 = 1. Optimum solutions of the corresponding

QUBO problem are (+,+) and (-, -). The landscape undergoes a qualitative change as α

decreases.

Details: β = 1. Values of α are denoted on top of each subplot. α = 1 and α = −1 are

critical values where some eigenvalues of D2E change their sign, thus qualitatively

changing the landscape. The gray border represents the wall beyond which the dynamics

cannot occur.

60 CHAPTER 3. ALGORITHMS

3.8 Simulated Coherent Ising machine (SimCIM)

This section is based on [30].

Dynamics

SimCIM is a gradient dynamical system with time-dependent landscape function E(x;α, β)

given by equation (3.36). Parameter β > 0 is kept constant through time but it is essential

that parameter α(t) is monotonically decreased in time as it will be responsible for gen-

erating bifurcations. The system of differential equations governing the dynamics for this

gradient system is thus given by

ẋ(t) = −∂E

∂x

T

(x(t), α(t), β) (3.45)

= g(x(t);α(t), β) (3.46)

where g is the vector field defined by equation (3.39). It is precisely equal to the negative

gradient of the landscape E in the interior region. On the boundary region, it is equal zero

for those components which point out of the allowed region [−1,+1]n, so the system will

always stay inside the allowed region.

Written out component-wise without denoting the dependence on time we get























ẋi = −αxi + β
∑

j Ji jx j,
when xi ∈ ⟨−1,+1⟩

or (xi ∈ {−1,+1} & xi fi < 0)

ẋi = 0, otherwise

(3.47)

Algorithm

SimCIM algorithm is a numerical simulation of the above dynamical system by Euler

method.

Algorithm 6 SimCIM

1: Initialize vector x(0) randomly around 0

2: for k in range(0, Niter) do

3: x
(k+1)

i
← x

(k)

i
+

(

−α(tk)x
(k)

i
+ β

∑n
j=1 Ji jx

(k)

j

)

∆t, i = 1, . . . , n

4: x
(k+1)

i
← ϕ(x

(k+1)

i
), i = 1, . . . , n

5: end for

3.8. SIMULATED COHERENT ISING MACHINE (SIMCIM) 61

In algorithm 6, ϕ is the clamping function defined by

ϕ(x) =



























−1, for x < −1

x, for − 1 ≤ x ≤ 1

1, for x > −1

(3.48)

In figure 3.6 we observe that until α crosses the first bifurcation point (α = 1), the sys-

tems collapses towards the origin. As α crosses the first bifurcation point, the landscape

function E changes such that the directions corresponding to (+,+) and (−,−) become

directions where E decreases, while directions (+,−) and (−,+) stay directions where E

increases. That’s why in the top-right and bottom-left subplots we have that the system

evolves straight to the point (−1,−1). In the bottom-middle figure the system also evolves

towards the (−,−) configuration, but it hits the wall y = −1 in the meantime and after that

continues evolving only in x component, and finally ends up in the state (−1,−1).

62 CHAPTER 3. ALGORITHMS

Figure 3.6: SimCIM algorithm

Overview: This is a visual representation of SimCIM algorithm on a system with two

variables with a coupling term J12 = J21 = 1. Optimum solutions of the corresponding

QUBO problem are (+,+) and (-, -). In the top-left and top-middle subplots, the parameter

α did not cross the first bifurcation point so the dynamical system collapses towards the

origin (starting far away from it). In all other subplots, the dynamical system starts close

to the origin, but converges to QUBO optimum solutions.

Details: The gray border represents the wall beyond which the dynamics cannot occur.

The white line represents the trajectory obtained by running the SimCIM algorithm. Each

subplot corresponds to a new run of the algorithm. The energy landscape E is plotted only

for the final value of α, that is E(·;α(T), β) is plotted on each of the subplots. β = 1. In

each subplot, α decreases linearly from the starting value (denoted as α(0)) to the ending

value (denoted as α(T)). The number of iterations is 200, and the step size is ∆t = 0.05.

Initial positions are x(0) = (0.4,−0.7) for upper left and upper middle subplot, while

x(0) = (0.1,−0.2) for other plots.

3.8. SIMULATED COHERENT ISING MACHINE (SIMCIM) 63

Adding momentum

Since SimCIM is essentially a gradient descent algorithm, it makes sense to add momentum

to it in order to make the convergence faster, similarly as it was done for CIM in section 3.3

(based on section 3.3 and [47]). Momentum is acutually proposed in the SimCIM article

[30] as well.

First we choose the momentum parameter 0 ≤ γ ≤ 1. Momenta will be stored in vector

y.

Algorithm 7 SimCIM with momentum

1: Initialize vectors x(0), y(0) randomly around 0

2: for k in range(0, Niter) do

3: y
(k+1)

i
← γy

(k)

i
+

(

−α(tk)x
(k)

i
+ β

∑n
j=1 Ji jx

(k)

j

)

, i = 1, . . . , n

4: x
(k+1)

i
← x

(k)

i
+ y

(k+1)

i
∆t, i = 1, . . . , n

5: y
(k+1)

i
← 0, if x

(k+1)

i
< [−1,+1], i = 1, . . . , n

6: x
(k+1)

i
← ϕ(x

(k+1)

i
), i = 1, . . . , n

7: end for

For momentum parameter γ = 0, SimCIM with momentum (algorithm 7) becomes

precisely SimCIM (algorithm 6).

Remark 3.8.1. ’SimCIM’ and ’SimCIM with momentum’ will often be used interchange-

ably, while referring to SimCIM with momentum, unless specified otherwise.

64 CHAPTER 3. ALGORITHMS

Exact solution

In this section, an exact solution of SimCIM dynamical system is derived. This solution

holds until the system hits the wall. After it hits the wall, a similar approach for deriving

the exact solution could be used but considering only those variables that did not hit the

wall, while fixing others.

Let us revise the dynamical system describing SimCIM (3.47) for the interior region

i.e. until none of the components hit the wall

ẋ = −αx + βJx (3.49)

Let UT JU = Λ be an orthogonal diagonalization of J and denote the change of variables

Åx = UT x. As described in the previous subsection, the system of coupled equations (3.49)

is brought down to

Å̇xi = −α Åxi + βλi Åxi, i = 1, . . . , n (3.50)

which is a system of uncoupled equations of the same form, so it is sufficient to consider

only single one of them. So we drop the index i in what follows. Suppose that α has the

linear form α(t) = α0 − α0−α1

T
t. We are thus interested in solving equation of the form

Å̇x(t) = (βλ − α0) Åx(t) +
α0 − α1

T
t Åx(t) (3.51)

But this is a linear equation of the first order, so it has the solution

Åx(t) = Åx(0) exp

(

α0 − α1

2T
t2 + (βλ − α0)t

)

(3.52)

Since α is decreasing, i.e. α0 > α1, we see from equation (3.52) that the solution will

eventually start rapidly increasing because of the t2 term. For α0 − βλ ≤ 0 the solution will

immediately start expanding, while for α0 − βλ > 0 the solution will first collapse towards

0 and then at some point in time start expanding.

Thus, SimCIM dynamical system has an exact component-wise solution given by (3.52)

in the reference frame which diagonalizes J. Changing the reference frame back to x = U Åx

we obtain the exact solution of SimCIM until it hits the wall.

3.9. BALLISTIC SIMULATED BIFURCATION (BSB) 65

3.9 Ballistic Simulated Bifurcation (bSB)

This section is based on [31].

Dynamics

Ballistic Simulated Bifurcation (bSB) is a Hamiltonian dynamical system with time-dependent

Hamiltonian given by

H(x, y;α, β,m) =
m

2

∑

i

y2
i + E(x;α, β) (3.53)

where E is the potential function given by equation (3.36). The first part of the summation

corresponds to the kinetic energy ± depending only on momenta y, while the second part

corresponds to the potential energy ± depending only on positions x. Parameters m, β > 0

are constant in time, while parameter α decreases monotonically (usually linearly) from

certain starting value α0 to certain ending value α1. The system of differential equations

governing the dynamics for this Hamiltonian system is thus given by

ẋ(t) =
∂H

∂y

T

(x(t), y(t);α(t), β,m)

= my

ẏ(t) = −∂H

∂x

T

(x(t), y(t);α(t), β)

= −∂E

∂x

T

(x(t), α(t), β,m)

= g(x, α(t), β)

(3.54)

and it holds when the system is in the interior region. g is the vector field defined by

equation (3.39). It is precisely equal to the negative gradient of the energy landscape E in

the interior region. On the boundary region, it is equal zero for those components which

point out of the allowed region [−1,+1]n.

Furthermore, in order to model the boundary of [−1,+1]n as a perfectly inelastic wall,

we do not only want to set the acceleration gi to zero, but we also need to set the velocity yi

to zero itself when certain component xi hits the boundary and the acceleration points out

of the allowed region. This will prevent the system from going out of the allowed region.

This way, the system loses kinetic energy as components hit the wall.

66 CHAPTER 3. ALGORITHMS

Written out further component-wise and omitting the time variable we get the system

of equations describing bSB completely



































ẋi = myi

ẏi = −αxi + β
∑

j Ji jx j,
when xi ∈ ⟨−1,+1⟩

or (xi ∈ {−1,+1} & xi fi < 0)

yi = 0, otherwise

(3.55)

Algorithm

Ballistic Simulated Bifurcation algorithm is a numerical simulation of the above dynamical

system. The simulation is performed by symplectic Euler method rather than standard

Euler method because it is more stable for simulating Hamiltonian systems.

Algorithm 8 bSB

1: Initialize vectors x(0), y(0) randomly around 0

2: for k in range(0, Niter) do

3: y
(k+1)

i
← y

(k)

i
+

(

−α(tk)x
(k)

i
+ β

∑n
j=1 Ji jx

(k)

j

)

∆t, i = 1, . . . , n

4: x
(k+1)

i
← x

(k)

i
+ my

(k+1)

i
∆t, i = 1, . . . , n

5: y
(k+1)

i
← 0, if x

(k+1)

i
< [−1,+1], i = 1, . . . , n

6: x
(k+1)

i
← ϕ(x

(k+1)

i
), i = 1, . . . , n

7: end for

In algorithm 8, ϕ is the clamping function defined by (3.48). Figure 3.7 shows the

behaviour of bSB algorithm.

3.9. BALLISTIC SIMULATED BIFURCATION (BSB) 67

Figure 3.7: bSB algorithm

Overview: This is a visual representation of bSB algorithm on a system with two

variables with coupling term J12 = J21 = 1. Optimum solutions of the corresponding

QUBO problem are (+,+) and (-, -). In the top-left and top-middle subplots, the parameter

α did not cross the first bifurcation point so the dynamical system circulates around the

origin. In the top-right subplot, and in the bottom subplots, the dynamical system

converges to QUBO optimum solutions.

Details: The gray border represents the wall beyond which the dynamics cannot occur.

The white line is the trajectory obtained by running the bSB algorithm. Each subplot

corresponds to a new run of the algorithm. The energy landscape E is plotted only for the

final value of α, that is E(·;α(T), β) is plotted on each of the subplots. β = 1. In each

subplot, α decreases linearly from the starting value (denoted α(0)) to the ending value

(denoted α(T)). The number of iterations is 250, and the step size is ∆t = 0.05. Initial

positions are x(0) = (0.0, 0.0) and initial momenta are y(0) = (0.2,−0.4).

68 CHAPTER 3. ALGORITHMS

Exact solution

In this section, an exact solution of the bSB dynamical system is provided. This solution

holds until the system hits the wall. After it hits the wall, a similar approach for deriving

the exact solution could be used but considering only those variables that did not hit the

wall, while fixing others.

Let us revise the dynamical system describing bSB in the interior region i.e. until none

of the components hit the wall

ẋ = my

ẏ = −αx + βJx
(3.56)

Let UT JU = Λ be an orthogonal diagonalization of J and denote the change of variables

Åx = UT x. By taking the second derivative, and changing the reference frame to Åx, the

system of coupled equations (3.56) is brought down to

ÈÅxi = m(βλi − α) Åxi, i = 1, . . . , n (3.57)

which is a system of uncoupled equations of the same form, so it is sufficient to consider

only single one of them. So we drop the index i in what follows. α is a linear function so

suppose it has the form α(t) = α0 − α0−α1

T
t . Now, we will shift and scale the solution to

reduce the problem to Airy equation (2.53). Define

x′(t) ≔ Åx













3

√

T

m(α0 − α1)
t +

(βλ − α0)T

α1 − α0













(3.58)

Now calculate

Èx′(t) =
3

√

T

m(α0 − α1)

2

ÈÅx













3

√

T

m(α0 − α1)
t +

(βλ − α0)T

α1 − α0













=
3

√

T

m(α0 − α1)

2

m













βλ − α0 −
α1 − α0

T













3

√

T

m(α0 − α1)
t +

(βλ − α0)T

α1 − α0

























· . . .

· Åx













3

√

T

m(α0 − α1)
t +

(βλ − α0)T

α1 − α0













= −α1 − α0

T

T

m(α0 − α1)
mtx′(t) + · · ·

+
3

√

T

m(α0 − α1)

2

m

(

βλ − α0 −
α1 − α0

T
· (βλ − α0)T

α1 − α0

)

x′(t)

= tx′(t)

(3.59)

3.9. BALLISTIC SIMULATED BIFURCATION (BSB) 69

so x′ solves the Airy equation (2.53).

Conversely, let x′(t) = C1A(t)+C2B(t) be any solution of Airy equation (2.53) (C1,C2 ∈
R are arbitrary constants, while A, B are linearly independent solutions of Airy equation).

By taking

Åx(t) = x′














3

√

m(α0 − α1)

T

(

t − (βλ − α0)T

α1 − α0

)















(3.60)

we get

ÈÅx(t) =
3

√

m(α0 − α1)

T

2

Èx′















3

√

m(α0 − α1)

T

(

t − (βλ − α0)T

α1 − α0

)















=
3

√

m(α0 − α1)

T

2

· . . .

·














3

√

m(α0 − α1)

T

(

t − (βλ − α0)T

α1 − α0

)















· x′














3

√

m(α0 − α1)

T

(

t − (βλ − α0)T

α1 − α0

)















=
m(α0 − α1)

T

(

t − (βλ − α0)T

α1 − α0

)

Åx(t)

= m

(

− (α1 − α0)

T
t + βλ − α0

)

Åx(t)

= m (βλ − α(t)) Åx(t)

(3.61)

which is exactly (3.57).

Thus, bSB dynamical system has an exact solution given by (3.60) in the reference

frame which diagonalizes J. Choosing constants C1,C2 such that initial conditions are

satisfied, and changing the reference frame back to x = U Åx we obtain an exact solution of

bSB until it hits the wall.

70 CHAPTER 3. ALGORITHMS

3.10 Mechanism of SimCIM and bSB

Let us explain the mechanism of SimCIM and bSB. Although SimCIM and bSB are nonau-

tonomous dynamical systems, by the connection theorem 2.1.9, in order to analyze such

system locally (in time), it is sufficient to consider it as an autonomous system with frozen

vector field at some time instance of interest. The mechanism of SimCIM and bSB can

now be understood in the light of examples 2.1.11 and 2.1.10 which provide solutions of

linear gradient and Hamiltonian systems. By changing the reference frame to the one that

diagonalizes the coupling matrix J, one obtains a comprehensible behaviour of the dynam-

ical system. As the parameter α decreases through time, the qualitative appearance of E

changes. That is, some of the largest eigenvalues of ∂2E

∂x2 = − ∂f
∂x

cross zero and become neg-

ative. Until that first bifurcation point, SimCIM dynamical system will collapse towards

the origin, and bSB will revolve around the origin. After the first bifurcation point, the

system will start to rapidly expand towards eigenvectors corresponding to smallest (now

negative) eigenvalues of ∂2E

∂x2 i.e. largest eigenvalues of J. This way, the system provides

good approximate solutions of QUBO at early stages of the algorithm. This behaviour

holds until some components hit the wall. After hitting the wall, this argument does not

hold anymore in the reference frame which diagonalizes J. However, a similar argument

can be applied, but one needs to consider only those components which have not hit the

wall yet and diagonalize such submatrix.

As discussed in [37] for CIM, those variables which bifurcate from the origin at early

stages usually do not return to the origin nor change their sign anymore. This seems con-

sistent with the clipping mechanism for SimCIM and bSB, and could be potentially used

for analyzing the system which is reduced to only those variables which did not hit the wall

yet.

There is one more mechanism applied both to SimCIM and bSB and it is regarding the

final state of the system. The moment when α(t) = 0 has a significant role because at that

point, if the system has bifurcated enough, it will provide a 1-opt solution. This will be

discussed in the following two sections. In terms of parameter settings, it would make sense

to stop the dynamics at that point and thus make α1 = 0. However, sometimes it is found

that making α1 slightly smaller than 0 provides better solution. It does not hurt making

α1 smaller than 0 as long as we track the best possible solution found, so we still have a

chance of capturing that 1-opt solution at α(t) = 0, but in case that required conditions are

not met at α(t) = 0, we still have a chance of finding better solution for α(t) < 0. Making

α1 too small however usually is not good because we want α(t) to change slowly in time,

in order for the system to be able to evolve properly.

Let us now explain why SimCIM and bSB have a tendency of generating 1-opt solutions

for QUBO.

3.11. RELATION BETWEEN SIMCIM AND BSB 71

Final state

Let us observe what happens at (usually the final) time α(t) = 0. Assume that the system

has bifurcated completely in a sense that ∀i, xi ∈ {−1,+1}. Assume also that the compo-

nent i has stopped in a sense that gi = 0. For SimCIM this means that the component

i has stopped, while for bSB it means that the component i has zero acceleration (which

combined with the fact that the boundary was hit means as well that this component has

stopped). This implies xi fi ≥ 0. The solution provided by SimCIM and bSB is, as usual,

σi ≔ sign xi which in this case provides σi = xi. We have, since α(t) = 0,

β

n
∑

j=1

Ji jσiσ j = xiβ

n
∑

j=1

Ji jx j = xi fi ≥ 0 (3.62)

Flipping the i-th binary variable provides a change in QUBO functional (see (1.22))

∆iQ = Q(σ1, . . . , σi−1,−σi, σi+1, . . . , σn) − Q(σ1, . . . , σi−1, σi, σi+1, . . . , σn)

= −4

n
∑

j=1

Ji jσiσ j

(3.63)

This, combined with (3.62), provides

∆iQ ≤ 0 (3.64)

so for the maximization task which we are interested in here, flipping the value of σi cannot

improve the solution. If (3.62) holds for each i, i.e. the system has stopped completely, then

the solution obtained by SimCIM or bSB algorithm is, by definition 1.1.3, a 1-opt solution.

That is why SimCIM and bSB have a tendency to provide QUBO solutions which are 1-opt.

3.11 Relation between SimCIM and bSB

The relation between SimCIM and bSB is completely analogous to the relation between

CIM and SB.

For momentum parameter γ = 0, SimCIM with momentum (algorithm 7) becomes

precisely SimCIM (algorithm 6).

Although the momentum parameter is usually kept smaller than 1, it is very interesting

what happens when γ = 1. In this case, SimCIM with momentum (algorithm 7) becomes

precisely bSB algorithm (algorithm 8). That is, we can choose hyperparameters in SimCIM

with momentum in such a way that the update step becomes exactly the same as the update

step of bSB algorithm.

Let us distinguish between SimCIM’s and bSB’s parameters with a superscript ºSimCIMº

and ºbSBº.

72 CHAPTER 3. ALGORITHMS

For given parameters for bSB algorithm, αbSB
0
, αbSB

1
, βbSB,∆bSB

t ,mbSB let us choose a

special set of parameters for SimCIM defined with

γSimCIM = 1

αSimCIM
0 = αbSB

0 · ∆bSB
t

αSimCIM
1 = αbSB

1 · ∆bSB
t

βSimCIM = βbSB · ∆bSB
t

∆SimCIM
t = mbSB∆bSB

t

(3.65)

Algorithm 9 bSB, revisited

1: Initialize vectors x(0), y(0) randomly around 0

2: for k in range(0, Niter) do

3: y
(k+1)

i
← y

(k)

i
+

(

−αbSB(tk)x
(k)

i
+ βbSB

∑n
j=1 Ji jx

(k)

j

)

∆bSB
t , i = 1, . . . , n

4: x
(k+1)

i
← x

(k)

i
+ mbSBy

(k+1)

i
∆bSB

t , i = 1, . . . , n

5: y
(k+1)

i
← 0, if x

(k+1)

i
< [−1,+1], i = 1, . . . , n

6: x
(k+1)

i
← ϕ(x

(k+1)

i
), i = 1, . . . , n

7: end for

Plugging in the above parameters into SimCIM with momentum (algorithm 7) we get

Algorithm 10 SimCIM with momentum mimicking bSB

1: Initialize vectors x(0), y(0) randomly around 0

2: for k in range(0, Niter) do

3: y
(k+1)

i
← y

(k)

i
+

(

−αbSB(tk)∆
bSB
t x

(k)

i
+ βbSB∆bSB

t

∑n
j=1 Ji jx

(k)

j

)

, i = 1, . . . , n

4: x
(k+1)

i
← x

(k)

i
+ y

(k+1)

i
mbSB∆bSB

t , i = 1, . . . , n

5: y
(k+1)

i
← 0, if x

(k+1)

i
< [−1,+1], i = 1, . . . , n

6: x
(k+1)

i
← ϕ(x

(k+1)

i
), i = 1, . . . , n

7: end for

This shows that SimCIM with momentum is able to exactly reproduce bSB steps if

parameters are chosen accordingly. In this context, SimCIM is a generalization of bSB

algorithm.

3.12. FIRST BIFURCATION POINT 73

3.12 First bifurcation point

As it was discussed earlier in this chapter, we want to chose parameters such that at the

beginning of the dynamics we are already at the first bifurcation point or have even crossed

it. Although the best parameter setting should be determined experimentally, by observing

empirical evidence for which parameter provides the best solution, we expect that it will

be something around the first bifurcation point.

Let us revise the first bifurcation points.

For CIM and SB this is equation 3.8 i.e.

µ = −β
α
λmax(J)

For SimCIM and bSB this is equation 3.43 i.e.

α = βλmax(J)

We see that both of these depend on the largest eigenvalue of the coupling matrix J.

So, how do we determine the first bifurcation point exactly?

The first approach would be to use some standard library with numerical algorithms

and use it to numerically approximate the largest eigenvalue of J. However, for real appli-

cations this might be undesirable (for example if the matrix is very large this will be time

consuming).

The workaround, proposed in [29], is to guess the approximation of the largest eigen-

value. As stated in [29], according to Wigner’s semicircle law in random matrix theory,

λmax is approximately given by

λmax ≈ 2
√

nσ (3.66)

where n is the number of variables and σ is the standard deviation of the nondiagonal

elements of J, which can be easily calculated from J.

3.13 Overview

In table 3.2 we summarize and systematically show all four dynamical systems discussed

in this thesis ± CIM, SB, SimCIM, and bSB.

7
4

C
H

A
P

T
E

R
3
.

A
L

G
O

R
IT

H
M

S

Table 3.2: Overview of physics-inspired dynamical systems for combinatorial optimization

Dynamical

system
Landscape & Vector field Allowed

region
Type Equations of motion

CIM

E(x;α, β, µ)

=
α

4

∑

i

(x2
i − µ)2 − β

2

∑

i, j

Ji j xi x j

fi(x;α, β, µ) = αxi(µ − x2
i) + β

∑

j

Ji j x j

x ∈ Rn

gradient ẋi = αxi(µ − x2
i) + β

∑

j

Ji j x j

SB Hamiltonian















ẋi = myi

ẏi = αxi(µ − x2
i
) + β

∑

j Ji j x j

SimCIM

E(x;α, β) =
α

2

∑

i

x2
i −

β

2

∑

i, j

Ji j xi x j

fi(x;α, β) = −αxi + β
∑

j

Ji j x j

x ∈ [−1,+1]n

gradient























ẋi = −αxi + β
∑

j Ji j x j,
when xi ∈ ⟨−1,+1⟩

or (xi ∈ {−1,+1} & xi fi < 0)

ẋi = 0, otherwise

bSB Hamiltonian



































ẋi = myi

ẏi = −αxi + β
∑

j Ji j x j,
when xi ∈ ⟨−1,+1⟩

or (xi ∈ {−1,+1} & xi fi < 0)

yi = 0, otherwise

Vector field f is equal to the negative gradient of landscape function E, i.e. f = (f1, . . . , fn) = ∂E
∂x

T
. For gradient systems, vector field f governs the dynamics. For Hamiltonian

systems, the Hamiltonian is defined as H = m
2

∑

i y2
i
+ E(x;α, β, µ), where the first part of the summation corresponds to the kinetic energy, and the second part to the potential

energy. The equations of motion for Hamiltonian systems are then ẋi =
∂H
∂yi
= myi, ẏi = − ∂H

∂xi
= fi. For SimCIM and bSB the dynamics is constrained inside the allowed region

[−1,+1]n so the boundary of this region is modeled as a wall. When some component i hits the wall, we set the velocity for that component to 0 ± meaning that for the gradient

system (SimCIM) we set ẋi = 0, and for the Hamiltonian system (bSB) we set yi = 0.

Chapter 4

Experiments

Physics-inspired dynamical systems presented in the previous chapter can be efficiently

simulated on conventional hardware devices such as a CPU. Furthermore, since they al-

most completely comprise of a vast amount of simple add/multiply operations, they can

be simulated even more efficiently on parallelized hardware devices such as GPUs or FP-

GAs. This enables them to easily scale to large instances of QUBO, MAX-CUT, and other

problems of interest.

This chapter focuses on presenting the results of various experiments, explaining them,

and discussing them further, all in order to investigate the performance of algorithms pre-

sented in chapter 3. These simulations include Coherent Ising Machine (CIM), Simulated

Bifurcation (SB), Simulated Coherent Ising Machine (SimCIM), and Ballistic Simulated

Bifurcation (bSB) algorithms. Besides these algorithms, some results obtained by classical

algorithms are provided for comparison.

Furthermore, the performance of the original CIM algorithm is compared to the version

of the algorithm where momentum is applied. Finally, a new technique called dropout is

presented. It acts as adding noise in a meaningful way to the above algorithms, often

providing improvement in solution quality.

4.1 GSet Dataset

GSet is a benchmark dataset publicly available on the link [48]. It consists of many

weighted graph instances with different graph topologies. On some instances, the edges’

weight is always 1, while on other instances, the edges’ weight can be either +1 or negative

−1.

Since the MAX-CUT problem is equivalent to QUBO problem 1.2.6, this dataset in

fact serves as a QUBO benchmark. The best known cut value for each graph instance is

provided according to the article [17], and will be referred to as ’max known cut’ in the

75

76 CHAPTER 4. EXPERIMENTS

following tables. These solutions are, in fact, also obtained by their heuristic algorithm

called Breakout Local Search (BLS).

The experiments will be run on first 21 instances of GSet, G1-G21. Every instance

G1-G21 has 800 nodes. The number of edges is denoted in the ’edge’ column. Weights

can be either always +1 or combined +1 and -1 which is denoted in the column ’weights’.

4.2 Method

This section explains details regarding experiment setup and execution.

Each experiment consists first of parameter fine-tuning and then testing. For each al-

gorithm, and for each GSet instance this process is started from scratch.

In order to fine-tune the parameters, some predetermined set of candidates is chosen for

each parameter. This set of candidates is chosen based on manual experimenting, and de-

termining which range for each parameter provides sensible behaviour in terms of stability

and solution quality. For example, in order to fine-tune the SimCIM or bSB algorithm, we

need to choose starting coefficient α0 ∈ R. If we choose β = 1, it makes sense to choose α0

to be at the first bifurcation point βλmax(J), or slightly less. So, for example, the candidates

for α0 could be chosen to be βλmax(J) · η, η ∈ {1.0, 0.9, 0.8, 0.5, 0.1}.
Note that the momentum was used both for CIM and SimCIM algorithms, with the pos-

sibility for the momentum parameter γ to be fine-tuned, including set to 0 (which for CIM

is the original algorithm without momentum). For example, for SimCIM the set of possi-

ble momentum parameters used was [0, 0.8, 0.9, 0.99, 1.0]. Both for SimCIM and CIM it

turned out that the algorithm consistently provided better results with momentum strictly

larger than 0. In section 4.4 we will provide an explicit comparison of the performance of

CIM with and without momentum.

After choosing the possible candidates for each parameter, the fine-tuning process be-

gins. For every parameter combination, selected in a grid-search fashion, the experiment

is run 5 times using different initial conditions. The result from each run is taken and the

mean value of these results is recorded. A parameter combination Ð which turned out

to be stable (in a sense that it succeeded in all 5 tries), and with the highest mean value

obtained Ð is chosen for testing, and will be referred to as fine-tuned parameters.

Next, a proper testing is performed. Using these fine-tuned parameters, the experiment

is run 50 times with various initial conditions. The result from each run is taken and the

minimum, mean, and maximum values are recorded, and presented in the following tables

in section 4.3 under the columns ’min’, ’mean’, and ’max’.

In order to remove the possible advantage of certain parameter combinations just be-

cause of luck, i.e. having better initial conditions, each parameter combination receives

the same initial conditions. In fact, 5 initial conditions are generated at the beginning, and

their copy is provided to each parameter combination at the beginning of their run.

4.3. BENCHMARKING 77

In order to remove the effect of approximating λmax by some proposed ways in chapter

3, for all of these experiments the value of λmax is calculated in advance using standard

numerical algorithms for obtaining spectral decomposition of a symmetric matrix.

4.3 Benchmarking

The following tables represent results obtained by each algorithm on instances G1-G21

of GSet. For each algorithm, for each graph instance, first the parameters are fine-tuned

as described in the previous section. Then, these fine-tuned parameters are selected and a

new experiment is performed with 50 tries. In each try, different initial conditions (initial

positions and initial momenta) are chosen. After performing these 50 tries, the minimum,

mean and maximum cut values found by the algorithm are denoted in the corresponding

columns ’min’, ’mean’, ’max’.

The following figures represent a single run of the experiment of each algorithm on

GSet instance G18. This shows how the algorithm performs through time (or actually

number of iterations). On x-axis, the number of iterations is plotted. On the Cut value

subplot, the value of the cut is plotted obtained by taking sign(x) as the partition of the

graph. The red dotted line in this plot represents the maximum known cut from the table.

For G18 it is equals to 992. On Landscape value E and Potential energy E subplots, the

value of the function E (defined in chapter 3) is plotted at each iteration step E(x(t); ·(t)).
Saturation graph represents how many variables have absolute value larger than 0.98. It

shows how many variables have moved from the origin. For SimCIM and bSB it actually

represents how many variables have (probably) stopped their motion. The subplots denoted

with α or µ represent the value of corresponding parameters changing through time. The

subplot denoted with Spins norm is the norm of vector x. The red dashed line represents

the norm of feasible set {−1,+1}n.

For SimCIM and CIM, the coupling matrices are normalized (not a necessary step) in a

sense that J/ ∥J∥ is taken in plance of J. That’s why the α and E might be scaled differently

than expected. The purpose of these plots is to see the overall behavior Ð the trend of each

function.

All of these plots could be used to analyze the performance of each algorithm and

potentially improve algorithms’ bottlenecks.

78 CHAPTER 4. EXPERIMENTS

instance edges weights max known cut min mean max

G1 19176 1 11624 11525 11561.2 11594

G2 19176 1 11620 11531 11565.9 11590

G3 19176 1 11622 11525 11566.8 11606

G4 19176 1 11646 11567 11608.3 11627

G5 19176 1 11631 11566 11594 11602

G6 19176 +1,-1 2178 2093 2142.7 2147

G7 19176 +1,-1 2006 1921 1955 1976

G8 19176 +1,-1 2005 1916 1950.3 1973

G9 19176 +1,-1 2054 1939 1990.9 2032

G10 19176 +1,-1 2000 1918 1947.4 1982

G11 1600 +1,-1 564 544 550.3 554

G12 1600 +1,-1 556 534 543.1 550

G13 1600 +1,-1 582 558 567.5 574

G14 4694 1 3064 2966 2986.2 3010

G15 4661 1 3050 2955 2975.4 2985

G16 4672 1 3052 2959 2974.2 2984

G17 4667 1 3047 2958 2975.4 2988

G18 4694 +1,-1 992 898 924.7 945

G19 4661 +1,-1 906 815 853.1 854

G20 4672 +1,-1 941 852 889.5 891

G21 4667 +1,-1 931 814 850.6 887

Table 4.1: CIM results on GSet

Figure 4.1: Single run of CIM algorithm on GSet instance G18

4.3. BENCHMARKING 79

instance edges weights max known cut min mean max

G1 19176 1 11624 11550 11582.2 11615

G2 19176 1 11620 11569 11580 11599

G3 19176 1 11622 11563 11589.8 11617

G4 19176 1 11646 11587 11614.5 11632

G5 19176 1 11631 11595 11607.2 11618

G6 19176 +1,-1 2178 2149 2158.7 2168

G7 19176 +1,-1 2006 1960 1978.1 1998

G8 19176 +1,-1 2005 1936 1977.8 1990

G9 19176 +1,-1 2054 2000 2020.7 2038

G10 19176 +1,-1 2000 1944 1968.6 1986

G11 1600 +1,-1 564 548 553.6 558

G12 1600 +1,-1 556 542 549.8 554

G13 1600 +1,-1 582 558 571.2 578

G14 4694 1 3064 3004 3016.5 3033

G15 4661 1 3050 2980 2996 3011

G16 4672 1 3052 2980 3000.7 3018

G17 4667 1 3047 2981 2993.7 3007

G18 4694 +1,-1 992 914 946.4 972

G19 4661 +1,-1 906 473 818 871

G20 4672 +1,-1 941 874 899.5 917

G21 4667 +1,-1 931 890 893.1 899

Table 4.2: SB results on GSet

Figure 4.2: Single run of SB algorithm on GSet instance G18

80 CHAPTER 4. EXPERIMENTS

instance edges weights max known cut min mean max

G1 19176 1 11624 11566 11608.8 11623

G2 19176 1 11620 11580 11595 11609

G3 19176 1 11622 11568 11618.7 11622

G4 19176 1 11646 11617 11636.8 11642

G5 19176 1 11631 11599 11624.2 11625

G6 19176 +1,-1 2178 2139 2172.6 2174

G7 19176 +1,-1 2006 1975 1986.9 2002

G8 19176 +1,-1 2005 1969 1986.6 2005

G9 19176 +1,-1 2054 2012 2035.9 2046

G10 19176 +1,-1 2000 1952 1975.6 1992

G11 1600 +1,-1 564 544 549.6 558

G12 1600 +1,-1 556 536 544.5 550

G13 1600 +1,-1 582 558 569.2 576

G14 4694 1 3064 3031 3033.6 3034

G15 4661 1 3050 3022 3022 3022

G16 4672 1 3052 3026 3027.3 3029

G17 4667 1 3047 3021 3021 3021

G18 4694 +1,-1 992 964 964.6 965

G19 4661 +1,-1 906 869 878.3 880

G20 4672 +1,-1 941 926 926.1 931

G21 4667 +1,-1 931 907 913.6 917

Table 4.3: SimCIM results on GSet

Figure 4.3: Single run of SimCIM algorithm on GSet instance G18

4.3. BENCHMARKING 81

instance edges weights max known cut min mean max

G1 19176 1 11624 11582 11608.5 11623

G2 19176 1 11620 11569 11595.6 11612

G3 19176 1 11622 11573 11619.1 11622

G4 19176 1 11646 11623 11637.6 11638

G5 19176 1 11631 11625 11625 11625

G6 19176 +1,-1 2178 2143 2171.3 2174

G7 19176 +1,-1 2006 1958 1985.2 1998

G8 19176 +1,-1 2005 1959 1985.7 2004

G9 19176 +1,-1 2054 2012 2031.9 2046

G10 19176 +1,-1 2000 1969 1982.9 1991

G11 1600 +1,-1 564 546 552.7 556

G12 1600 +1,-1 556 538 545.5 550

G13 1600 +1,-1 582 562 569.1 578

G14 4694 1 3064 3020 3028.6 3038

G15 4661 1 3050 3011 3021.3 3036

G16 4672 1 3052 3016 3025.3 3038

G17 4667 1 3047 3003 3017 3033

G18 4694 +1,-1 992 953 963.7 976

G19 4661 +1,-1 906 855 874.5 879

G20 4672 +1,-1 941 881 912.5 930

G21 4667 +1,-1 931 875 906.2 917

Table 4.4: bSB results on GSet

Figure 4.4: Single run of bSB algorithm on GSet instance G18

82 CHAPTER 4. EXPERIMENTS

instance edges weights
max known

cut

CIM

max

SB

max

SimCIM

max

bSB

max
Eigen cut

Random

cuts (1k)

G1 19176 1 11624 11594 11615 11623 11623 11265 9785

G2 19176 1 11620 11590 11599 11609 11612 11248 9819

G3 19176 1 11622 11606 11617 11622 11622 11264 9794

G4 19176 1 11646 11627 11632 11642 11638 11290 9806

G5 19176 1 11631 11602 11618 11625 11625 11326 9771

G6 19176 +1,-1 2178 2147 2168 2174 2174 1905 329

G7 19176 +1,-1 2006 1976 1998 2002 1998 1659 151

G8 19176 +1,-1 2005 1973 1990 2005 2004 1640 135

G9 19176 +1,-1 2054 2032 2038 2046 2046 1776 176

G10 19176 +1,-1 2000 1982 1986 1992 1991 1596 178

G11 1600 +1,-1 564 554 558 558 556 466 94

G12 1600 +1,-1 556 550 554 550 550 470 62

G13 1600 +1,-1 582 574 578 576 578 508 86

G14 4694 1 3064 3010 3033 3034 3038 2635 2462

G15 4661 1 3050 2985 3011 3022 3036 2550 2443

G16 4672 1 3052 2984 3018 3029 3038 2644 2442

G17 4667 1 3047 2988 3007 3021 3033 2493 2435

G18 4694 +1,-1 992 945 972 965 976 590 154

G19 4661 +1,-1 906 854 871 880 879 514 55

G20 4672 +1,-1 941 891 917 931 930 600 84

G21 4667 +1,-1 931 887 899 917 917 564 77

Table 4.5: Performance comparison of various algorithms on GSet

Table 4.5 compares performance of physics-inspired algorithms presented in this the-

sis. For all physics-inspired algorithms (CIM, SB, SimCIM, bSB), the maximum value

is shown, which is found among 50 tries with various initial conditions with fine-tuned

parameters as described earlier. Column ’max known cut’, as earlier, represents the best

known solution on particular instance, according to [17], which is also the solution found

by BLS heuristic. The column ’Eigen cut’ represents the cut value of the partition obtained

by taking the sign of each component of the eigenvector corresponding to smallest eigen-

value of the adjacency matrix (this is an obvious heuristic based on 1.1.2). The column

’Random cuts (1k)’ represents the maximum cut found among 1000 random cuts. These

last two columns are here as a reference for the lower bound which we definitely want to

beat.

4.4. MOMENTUM 83

4.4 Momentum

In table 4.6 we compare the performance of the original CIM (algorithm 1) and its version

with momentum (algorithm 2). The method is the same as described in section 4.2, except

that either we choose the momentum to be precisely 0 (denoted by ’m = 0’ in the table)

or we choose it from the set {0.5, 0.7, 0.8, 0.9, 1.0} (denoted by ’m > 0’ in the table).

For each of these momentum choices, a parameter fine-tuning procedure is performed as

described in 4.2. After the parameter fine-tuning, a full experiment was run, consisting of

50 tries with different initial conditions, and obtained cut values were recorded. Mean and

maximum of these recorded values is taken, for each momentum parameter. The maximum

among these 5 mean values is in the column ’m > 0 mean’. The maximum among these

5 max values is in the column ’m > 0 max’. Columns ’m = 0 mean’ and ’m = 0 max’

represent the corresponding values when momentum parameter is set to 0. ºDiffº column

represents the difference (m > 0) − (m = 0), so its positive value implies that adding

momentum increases the performance.

In order to remove the possible advantage of momentum results due to larger number

of total tries (because 5 different momentum parameters were tried), initial conditions are

taken exactly the same as for the experiment without momentum. Thus, 50 random initial

conditions were sampled at the beginning, and their copy was provided to each experiment.

The same was done during fine-tuning, but with 5 random initial conditions.

It can be concluded that introducing momentum to CIM algorithm significantly im-

proves its performance.

instance edges weights
max known

cut

m = 0

mean

m > 0

mean

mean

diff

m = 0

max

m > 0

max

max

diff

G11 1600 +1,-1 564 531.8 550.3 18.5 542 554 12

G12 1600 +1,-1 556 526 543.1 17 536 550 14

G13 1600 +1,-1 582 551 567.5 16.5 562 574 12

G14 4694 1 3064 2940.1 2986.2 46.1 2962 3010 48

G15 4661 1 3050 2932 2975.4 43.5 2948 2985 37

G18 4694 +1,-1 992 877.9 924.7 46.8 906 945 39

G19 4661 +1,-1 906 811.8 853.1 41.3 838 854 16

G20 4672 +1,-1 941 849.5 889.5 40.1 873 891 18

Table 4.6: Momentum results for CIM

84 CHAPTER 4. EXPERIMENTS

4.5 Dropout

This section describes a potential way of improving the performance of physics-inspired

algorithms, presented earlier in this chapter, by adding a special type of noise. This proce-

dure is discussed here in terms of graphs and MAX-CUT problem instead of variables and

QUBO (which is equivalent 1.2.6). There are certainly many ways to add noise, including

adding just white noise to the dynamical system, making it a stochastic dynamical sys-

tem. One possible way of adding noise in a sensible way is to perturb the graph somehow

in each step of the algorithm, for example by removing some vertices or edges from the

graph temporarily. This way, intuitively, the dynamical system should on average, at each

step, follow the same path, while opening the possibility to escape local minima or even

make some components bifurcate earlier by removing some of the opposite forces acting

on a single variable (often called frustration) . Indeed, random removal of vertices often

seems to improve the performance on GSet instances. This is done in the following way.

At each iteration of the algorithm (CIM, SB, SimCIM, bSB), instead of working with the

full adjacency matrix, one randomly and independently picks with probability p for each

vertex whether it will stay or it will be temporarily removed. If vertex i is removed, then all

edges connected to it are temporarily removed, until completing this iteration. Everything

else remains the same. There is a visual example of adding dropout in figure 4.5.

Let us observe what can happen to vertex i. Each of the algorithms has the term
∑

j Ji jx j

inside the update. If vertex i is not removed, then the summation
∑

j Ji jx j will not go

through all vertices, but rather through all vertices which are not removed. If vertex i is re-

moved itself, then the summation summation
∑

j Ji jx j will disappear. The rest of the update

step for this vertex can either be performed, or not, depending on the implementation.

This procedure is similar to adding dropout to machine learning models during training

[49]. This procedure will thus also be referred to as adding dropout.

For small dropout probabilities (p ≤ 0.1), the algorithm often obtains an increase in

performance.

In table 4.7, we see how adding dropout affects the performance of particular algorithm

on GSet instances. The experiments were performed in a similar fashion as described in

section 4.2. Dropout probabilities were selected from p ∈ {1%, 5%, 10%, 20%}. For each

of these dropout probability, a parameter fine-tuning procedure is performed as described

in 4.2. After parameter fine-tuning, a full experiment was run consisting of 50 tries with

different initial conditions, and the obtained cut values are recorder. Mean and maximum

of these recorded values is taken, for each dropout probability. The maximum among these

4 mean values is represented in the table under the column ’p > 0 mean’. The maximum

among these 4 max values is represented in the table under the column ’p > 0 max’.

Columns ’mean diff’ and ’max diff’ represent the difference between ’mean’ and ’max’

columns in this table and the corresponding columns in tables 4.1, 4.2, 4.3, and 4.4, where

4.5. DROPOUT 85

Figure 4.5: Dropout procedure

On the left we see a graph without applied dropout. Only the vertex 0 is chosen to be

dropped out. The effect of dropout is that all edges connected to this vertex are removed,

and it can be seen on the right.

there is no dropout Ð denoted as p = 0. Thus, the ’diff’ columns represent the difference

(p > 0)− (p = 0) for mean and max columns. So, if this difference is positive, it means that

applying dropout increased the performance. Otherwise, adding dropout did not impact

the performance, or worsened it.

In order to remove the possible advantage of dropout results due to larger number of

total tries (because 4 different dropout probabilities were tried), initial conditions are taken

exactly the same as for the experiment with no dropout. Thus, 50 random initial conditions

were sampled already for experiment with no dropout, and exactly these initial conditions

were used as 50 tries of each experiment with added dropout. The same was done during

fine-tuning, but with 5 random initial conditions.

8
6

C
H

A
P

T
E

R
4
.

E
X

P
E

R
IM

E
N

T
S

General info CIM SB SimCIM bSB

instance
max known

cut

p > 0

mean

mean

diff

p > 0

max

max

diff

p > 0

mean

mean

diff

p > 0

max

max

diff

p > 0

mean

mean

diff

p > 0

max

max

diff

p > 0

mean

mean

diff

p > 0

max

max

diff

G1 11624 11571.8 10.6 11615 21 11546.1 -36.1 11586 -29 11605.9 -2.9 11624 1 11608.3 -0.2 11624 1

G2 11620 11567.1 1.2 11596 6 11552.2 -27.8 11577 -22 11600.5 5.5 11616 7 11601.1 5.5 11615 3

G3 11622 11563.8 -3 11594 -12 11551 -38.7 11575 -42 11614.4 -4.3 11622 0 11612.6 -6.5 11622 0

G4 11646 11611.2 2.8 11628 1 11593.7 -20.8 11618 -14 11634.6 -2.2 11646 4 11637.2 -0.4 11646 8

G5 11631 11592.7 -1.3 11610 8 11582.9 -24.3 11608 -10 11622.1 -2.1 11627 2 11622.4 -2.6 11631 6

G6 2178 2141.5 -1.2 2155 8 2125 -33.7 2157 -11 2169.6 -3.1 2175 1 2172.5 1.2 2177 3

G7 2006 1957.6 2.6 1977 1 1947.5 -30.6 1969 -29 1987.8 0.9 2005 3 1990.7 5.5 2006 8

G8 2005 1949.1 -1.3 1976 3 1946.8 -31 1973 -17 1989.5 2.8 2005 0 1992 6.2 2005 1

G9 2054 2006.6 15.7 2026 -6 1997 -23.7 2024 -14 2038.2 2.2 2048 2 2039.2 7.3 2051 5

G10 2000 1954 6.6 1980 -2 1948.2 -20.4 1975 -11 1979.4 3.8 1995 3 1983.1 0.1 1996 5

G11 564 549.6 -0.6 558 4 549.6 -4 558 0 551.4 1.8 558 0 551.6 -1.1 556 0

G12 556 543.4 0.3 552 2 542.8 -7 554 0 545.5 1 552 2 545.8 0.3 552 2

G13 582 566.7 -0.8 576 2 567.5 -3.7 576 -2 570.1 0.9 576 0 569.2 0.1 576 -2

G14 3064 2990.3 4.1 3008 -2 2995.9 -20.6 3016 -17 3033.8 0.2 3048 14 3034.9 6.3 3049 11

G15 3050 2979.7 4.3 2992 7 2984.4 -11.6 2997 -14 3021.9 -0.1 3034 12 3021.1 -0.2 3037 1

G16 3052 2978.5 4.3 2999 15 2987.7 -13 2999 -19 3027.9 0.6 3042 13 3022.7 -2.5 3040 2

G17 3047 2978.4 3.1 2999 11 2985.3 -8.5 3003 -4 3019.7 -1.3 3038 17 3018.7 1.7 3035 2

G18 992 935.7 11.1 946 1 937.9 -8.5 953 -19 965.1 0.5 982 17 967.7 4 986 10

G19 906 854.2 1.1 860 6 849.9 31.8 864 -7 876.8 -1.6 892 12 877.8 3.3 899 20

G20 941 889.2 -0.4 902 11 889.5 -10 908 -9 927.7 1.6 932 1 919.3 6.8 938 8

G21 931 878.1 27.5 896 9 883.9 -9.1 904 5 909.7 -3.9 917 0 909.8 3.6 917 0

Table 4.7: Dropout results

4.5. DROPOUT 87

The results show that for CIM, SimCIM, and bSB algorithms, adding some amount

of dropout often increases the performance by some small extent. It rarely decreases the

performance, and most importantly, sometimes increases the performance significantly.

To further investigate whether adding dropout makes any significant difference, the

following was done. GSet instance G18 was picked, and bSB algorithm was run 10.000

times with various parameters, picked randomly from some sensible search space, and with

various random initial conditions, but with no dropout. The best cut value found was 982.

On the other hand, doing the same experiment with 1.000 tries, and while adding dropout

(this time with decreasing schedule of dropout probability), a cut with value 989 was found,

which is very close to the maximum known cut 992. Thus, it can be concluded that likely

it is the dropout which improved the performance of bSB algorithm on this instance.

Besides these improvements, it can be seen that adding dropout to SB algorithm makes

the opposite effect Ð it reduces the performance significantly. It is not clear why only

the SB algorithm suffers a performance loss, while CIM, SimCIM, and bSB obtain an

improvement. It was observed, however, that fine-tuned parameters for CIM often had

lower rates of momentum when p > 0 compared to the case when p = 0. This is consistent

with the results, since SB can be seen as having fixed momentum equal to 1 (see section

3.6).

While adding dropout by removing vertices increases the performance, it has been

observed that adding dropout in such a way as to remove random edges (each edge sampled

independently), does not seem to improve the performance.

A step towards analyzing the dropout

In order to analyze the mechanism of dropout, it would be nice to have some small instance

of a problem where dropout makes a significant improvement. Such an instance is provided

in this section.

Consider a graph G with the following adjacency matrix































































0 10 10 −1 −10 1 −10

10 0 −10 −1 −1 −1 −100

10 −10 0 −1 1 10 0

−1 −1 −1 0 0 −1 10

−10 −1 1 0 0 −100 0

1 −1 10 −1 −100 0 −1

−10 −100 0 10 0 −1 0































































MAX-CUT value for this graph is 26, and it is obtained for the cut (1, 0, 0, 1, 1, 1, 0).

Running 100 tries of SimCIM algorithm on this graph with various sensible parameters

and initial conditions (but with momentum 0 and taking the last state of the system instead

88 CHAPTER 4. EXPERIMENTS

of the best ± in order to remove unnecessary variance), we obtain the following distribution

of cut values.

Figure 4.6: Cut distribution obtained by SimCIM on the above example

Adding dropout to this example significantly shifts the distribution towards higher val-

ues of cuts. In fact, this serves as one more evidence that adding dropout might increase

the performance of the algorithm.

The question about how and why does adding dropout actually contribute to the per-

formance gain Ð is still unanswered. This question is out of the scope of this thesis, and

would require further testing and analysis.

Conclusion

Many combinatorial optimization problems are NP-hard, meaning that there is no (known)

efficient (polynomial time complexity) algorithm for solving them exactly. At the begin-

ning of this master’s thesis, in chapter 1, a few of these problems are presented. The most

attention throughout the thesis is devoted to two of them (which are in fact equivalent):

• Quadratic unconstrained binary optimization (QUBO) problem - A problem of mini-

mizing (or maximizing) a multivariable quadratic functional over the discrete domain

{−1,+1}n

• MAX-CUT problem - Given a graph, divide its vertices into two parts such that the

total edge weight between these parts (cut value) is maximized.

Since there is no known efficient algorithm for solving NP-hard problems exactly, var-

ious heuristic approaches are being developed to solve these problems approximately.

A relatively new paradigm for such heuristic algorithms are physics-inspired algo-

rithms, including Coherent Ising Machine (CIM), Simulated Bifurcation (SB), and their

variants (bSB and SimCIM). These algorithms are the central topic of this master’s thesis.

They are essentially numerical simulations of specific dynamical systems which encode

candidate solutions of the QUBO problem. If the dynamical system has the trajectory

x : [0,T]→ Rn, then this encoding is achieved by taking the sign of each variable at some

time instance, i.e. taking (sign x1, . . . , sign xn) as a candidate combinatorial solution. These

dynamical systems are designed in a way that they attract the system towards those areas

of space which correspond to high-quality solutions of QUBO problem. Although there is

no theoretical guarantee for the quality of obtained solutions, it has been empirically found

that these solutions indeed tend to be of high quality.

That these algorithms are physics-inspired means that they have been derived by ob-

serving certain physical systems capable of solving the QUBO problem (these physical

systems are called Ising machines in the literature [18]), and then writing a set of cou-

pled differential equations which approximately describe the physical system. The above

systems essentially turn out to be gradient (CIM and SimCIM) and Hamiltonian (SB and

bSB) dynamical systems over some time-dependent energy landscape function E. Study-

89

90 CONCLUSION

ing their behaviour thus boils down to analyzing the energy landscape E. Throughout

the thesis, these dynamical systems are analyzed from a purely mathematical perspective.

This way, one is able to clearly understand their mechanisms for generating high-quality

solutions, rather than just assume their similarity to the original physical systems.

Numerically simulating these dynamical systems on a computer provides us with heuris-

tic algorithms for solving the QUBO problem. A major advantage of these algorithms is

that they can be parallelized efficiently. Since computationally the most expensive part of

these algorithms are matrix-vector multiplications, these can be effectively handled by a

GPU. Implementing these algorithms is relatively straightforward using some framework

and library containing numerical algorithms (for example PyTorch). Then, it does not take

much more work to run them on a GPU or other parallelized architecture.

In the final part of the thesis, physics-inspired algorithms are benchmarked on the GSet

dataset. Along with that, some new techniques are proposed for improving the performance

of these existing algorithms.

The first technique is proposing momentum to CIM algorithm. Similarly as it was pro-

posed for SimCIM and other gradient-based systems, adding momentum to CIM algorithm

improves its performance. Adding momentum to gradient systems (CIM and SimCIM)

makes them some sort of generalization of the corresponding Hamiltonian systems (SB

and bSB). In fact, by setting the momentum parameter equal to 1, CIM and SimCIM are

able to reproduce the behaviour of SB and bSB algorithms.

The second proposed technique is dropout. This technique effectively adds some mean-

ingful noise to the dynamical systems. Although the exact mechanism of dropout needs to

be explained yet, there is empirical evidence found both on GSet dataset, and some other

examples, which show that adding dropout to CIM, SimCIM, and bSB might significantly

improve their performance (does not hold for SB). This technique is named according to a

similar procedure used when training machine learning models.

Some interesting questions and open problems for further research include the follow-

ing.

• What other dynamical systems are capable of approximately solving QUBO and

MAX-CUT? For example, there are variants of SB algorithm (not studied in this

thesis) called discrete simulated bifurcation (dSB) [31], and heated simulated bifur-

cation [45]. Except new variants of these algorithms, there might exist completely

new paradigms. These dynamical system are physics-inspired and turn out to use

mechanisms described in sections 3.5 and 3.10. Maybe some other mechanisms for

providing high-quality combinatorial solutions could be used as a starting point, then

transformed into a dynamical system which exploits such mechanisms.

• Are there any dynamical systems which would be capable of directly solving some

other combinatorial optimization problems, without the need of embedding them

CONCLUSION 91

into QUBO and imposing constraints on it? For example, a variant of SB algorithm

was proposed in [50] for binary optimization of polynomials with order higher than

quadratic.

• Is there some efficient way of handling constraints, without losing the performance?

• How and why does adding dropout to CIM, SimCIM, and bSB improve their perfor-

mance?

• Is there some other way to add noise which would improve the performance even

more? For example, using randomly modulated driving signals was proposed for

CIM already in [28]. Adding noise might improve the performance but there are

various ways for adding it and it requires further tuning.

• How to choose parameters efficiently for various instances of problems? How to

schedule the parameters (µ, α in sections 3.1 and 3.7) responsible for changing the

landscape E in time? This problem commonly also arises when training neural net-

works. Choosing the right set of hyperparameters is often an issue and it is not clear

how to do it in a good systematic way.

• Are there any theoretical guarantees for the solution quality obtained by these algo-

rithms?

Hopefully some of these and related questions will be answered soon, providing us

with better techniques for solving NP-hard combinatorial optimization problems.

Acknowledgements

First, I would like to express my gratitude to dr. sc. Daniel Ebler for the mentorship on this

thesis. He has introduced me to the field and patiently provided invaluable advice while

guiding and supporting my research activities.

Furthermore, I would like to thank assoc. prof. dr. sc. Ilja GogiÂc for his mentorship,

encouraging words, and unwavering support throughout my work on the thesis.

Finally, I would like to thank Juntao Wang and assoc. prof. dr. sc. Maja Resman

for their insightful discussions and brainstorming about various topics related to the thesis.

This has provided me with new insights and helped me to refine my ideas for the thesis.

93

Bibliography

[1] D. J. Laughhunn. Quadratic binary programming with application to capital-

budgeting problems. Operations Research, 18(3):454±461, 1970.

[2] M. R. Rao. Cluster analysis and mathematical programming. Journal of the American

Statistical Association, 66(335):622±626, 1971.

[3] Peter L. Hammer and Eliezer Shlifer. Applications of pseudo-boolean methods to

economic problems. Theory and Decision, pages 296±308, 1971.

[4] Jakob Krarup and Peter Pruzan. Computer-aided layout design. Math Program Study,

9:75±94, 07 2009.

[5] Francisco Barahona, Martin GrÈotschel, Michael JÈunger, and Gerhard Reinelt. An ap-

plication of combinatorial optimization to statistical physics and circuit layout design.

Operations Research, 36(3):493±513, 1988.

[6] Ising model. https://en.wikipedia.org/wiki/Ising_model. Accessed: 2023-

12-14.

[7] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng LÈu, Haibo

Wang, and Yang Wang. The unconstrained binary quadratic programming problem:

A survey. Journal of Combinatorial Optimization, 28, 07 2014.

[8] Universe age. https://en.wikipedia.org/wiki/Age_of_the_universe. Ac-

cessed: 2023-12-14.

[9] Quadratic unconstrained binary optimization, wiki. https://en.wikipedia.org/

wiki/Quadratic_unconstrained_binary_optimization,. Accessed: 2023-

12-14.

[10] Np-hardness. https://en.wikipedia.org/wiki/NP-hardness. Accessed:

2023-12-14.

95

96 BIBLIOGRAPHY

[11] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2,

2014.

[12] Fred Glover, Bahram Alidaee, and Gary Kochenberger. Adaptive memory tabu search

for binary quadratic programs. Management Science, 44:336±345, 1998.

[13] John E. Beasley. Heuristic algorithms for the unconstrained binary quadratic pro-

gramming problem. 1998.

[14] Talal M. Alkhamis, Merza Hasan, and Mohamed A. Ahmed. Simulated annealing for

the unconstrained quadratic pseudo-boolean function. European Journal of Opera-

tional Research, 108(3):641±652, 1998.

[15] Peter Merz and Bernd Freisleben. Genetic algorithms for binary quadratic program-

ming. 1999.

[16] Jiahai Wang, Ying Zhou, and Jian Yin. Combining tabu hopfield network and estima-

tion of distribution for unconstrained binary quadratic programming problem. Expert

Systems with Applications, 38(12):14870±14881, 2011.

[17] Una Benlic and Jin-Kao Hao. Breakout local search for the max-cutproblem. Engi-

neering Applications of Artificial Intelligence, 26(3):1162±1173, 2013.

[18] Naeimeh Mohseni, Peter L. McMahon, and Tim Byrnes. Ising machines as hard-

ware solvers of combinatorial optimization problems. Nature Reviews Physics, page

363±379, 2022.

[19] Scott Aaronson. Lecture notes on quantum computing (cst part ii) - lecture 15: Adi-

abatic quantum computing.

[20] Adiabatic theorem of quantum mechanics. https://en.wikipedia.org/wiki/

Adiabatic_theorem,. Accessed: 2023-12-14.

[21] Quantum states of the art. https://maolson.medium.com/

quantum-states-of-the-art-cebd84c6f5f0. Accessed: 2023-12-13.

[22] D-wave advantage. https://www.dwavesys.com/solutions-and-products/

systems/. Accessed: 2023-12-13.

[23] Alireza Marandi, Zhe Wang, Kenta Takata, Robert L. Byer, and Yoshihisa Yamamoto.

Network of time-multiplexed optical parametric oscillators as a coherent ising ma-

chine. Nature Photonics, pages 937±942, 2014.

BIBLIOGRAPHY 97

[24] Tianshi Wang and Jaijeet Roychowdhury. Oim: Oscillator-based ising machines for

solving combinatorial optimisation problems, 2019.

[25] Hayato Goto. Bifurcation-based adiabatic quantum computation with a nonlinear

oscillator network. Scientific Reports, 6(1), February 2016.

[26] Toshimori Honjo, Tomohiro Sonobe, Kensuke Inaba, Takahiro Inagaki, Takuya Ikuta,

Yasuhiro Yamada, Takushi Kazama, Koji Enbutsu, Takeshi Umeki, Ryoichi Kasa-

hara, Ken ichi Kawarabayashi, and Hiroki Takesue. 100,000-spin coherent ising ma-

chine. Science Advances, 7(40):eabh0952, 2021.

[27] Zhe Wang, Alireza Marandi, Kai Wen, Robert L. Byer, and Yoshihisa Yamamoto.

Coherent ising machine based on degenerate optical parametric oscillators. Physical

Review A, 88(6), December 2013.

[28] TimothÂee Leleu, Yoshihisa Yamamoto, Shoko Utsunomiya, and Kazuyuki Aihara.

Combinatorial optimization using dynamical phase transitions in driven-dissipative

systems. Phys. Rev. E, 95:022118, Feb 2017.

[29] Hayato Goto, Kosuke Tatsumura, and Alexander R. Dixon. Combinatorial optimiza-

tion by simulating adiabatic bifurcations in nonlinear hamiltonian systems. Science

Advances, 5(4):eaav2372, 2019.

[30] Egor S. Tiunov, Alexander E. Ulanov, and A. I. Lvovsky. Annealing by simulating

the coherent ising machine. Optics Express, 27(7):10288, March 2019.

[31] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei

Hamakawa, Ryo Hidaka, Masaya Yamasaki, and Kosuke Tatsumura. High-

performance combinatorial optimization based on classical mechanics. Science Ad-

vances, 7(6):eabe7953, 2021.

[32] Ptas. https://en.wikipedia.org/wiki/Polynomial-time_approximation_

scheme. Accessed: 2023-12-14.

[33] Apx. https://en.wikipedia.org/wiki/APX. Accessed: 2023-12-14.

[34] Maximum cut. https://en.wikipedia.org/wiki/Maximum_cut. Accessed:

2023-12-14.

[35] Michael X. Goemans and David P. Williamson. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming. J.

ACM, 42(6):1115±1145, nov 1995.

[36] Unique games conjecture. https://en.wikipedia.org/wiki/Unique_games_

conjecture,. Accessed: 2023-12-14.

[37] Juntao Wang, Daniel Ebler, K. Y. Michael Wong, David Hui, and Jie Sun. Bifurcation

behaviors shape how continuous physical dynamics solves discrete ising optimiza-

tion. Nature Communications, 14, 05 2023.

[38] Carmen Chicone. Ordinary Differential Equations with Applications. Springer, 2006.

[39] Kayo Ide, D. Small, and Stephen Wiggins. Distinguished hyperbolic trajectories in

time-dependent fluid flows: Analytical and computational approach for velocity fields

defined as data sets. Nonlinear Processes in Geophysics, 9, 05 2002.

[40] J. C. Butcher. Numerical methods for ordinary differential equations. Wiley, 2016.

[41] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cam-

bridge University Press, 2004.

[42] Semi-implicit euler method. https://en.wikipedia.org/wiki/

Semi-implicit_Euler_method#cite_note-hairer2003-1. Accessed:

2023-11-07.

[43] Weyl’s inequality. https://en.wikipedia.org/wiki/Weyl%27s_inequality,.

Accessed: 2023-12-14.

[44] Airy function. https://en.wikipedia.org/wiki/Airy_function. Accessed:

2023-12-14.

[45] Taro Kanao and Hayato Goto. Simulated bifurcation assisted by thermal fluctuation.

Communications Physics, 5(1), June 2022.

[46] Stephen J. Wright and Jorge Nocedal. Numerical Optimization. Springer, 2006.

[47] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural

Networks, 12(1):145±151, 1999.

[48] Gset dataset. https://web.stanford.edu/˜yyye/yyye/Gset/. Accessed:

2023-12-14.

[49] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint, 2012.

[50] Taro Kanao and Hayato Goto. Simulated bifurcation for higher-order cost functions.

Applied Physics Express, 16(1):014501, December 2022.

Summary

This thesis presents, analyzes, and finally proposes some improvements to physics-inspired

dynamical systems ± a novel paradigm of heuristic algorithms used for approximately solv-

ing NP-hard combinatorial optimization problems.

The thesis begins with a brief introduction to NP-hard combinatorial problems, with a

particular emphasis on the quadratic unconstrained binary optimization problem (QUBO)

and the MAX-CUT problem. Then, a brief overview is provided for the theory of dynami-

cal systems and other mathematical concepts which are important for analyzing the follow-

ing systems. At the core of this master’s thesis are physics-inspired dynamical systems for

solving combinatorial optimization problems. Numerical simulations of these dynamical

systems provide heuristic algorithms for approximately solving some NP-hard problems,

including the QUBO and the MAX-CUT problem. The algorithms that are covered in this

thesis are namely the Coherent Ising Machine (CIM), Simulated Bifurcation (SB), Simu-

lated Coherent Ising Machine (SimCIM), and Ballistic Simulated Bifurcation (bSB). The

mechanism of these heuristic algorithms is analyzed, and they are further benchmarked on

the GSet dataset. Finally, a few new techniques are proposed for improving the perfor-

mance of these algorithms.

Sažetak

Ovaj diplomski rad izlaže, analizira te naposljetku predlaže unaprjedenja dinamičkih sus-

tava inspiriranih fizikom ± novu vrstu heurističkih algoritama koji aproksimativno rješavaju

NP-teške kombinatorne probleme.

Diplomski rad započinje sažetim uvodom u NP-teške kombinatorne probleme, s poseb-

nim naglaskom na problem neograničene binarne optimizacije kvadratnog funkcionala

(eng. Quadratic Unconstrained Binary Optimization ± QUBO) te MAX-CUT problema.

Zatim se izlažu temeljni rezultati teorije dinamičkih sustava i ostalih matematičkih kon-

cepata koji Âce se koristiti u ostatku rada kako bi se analizirali sustavi koji slijede.

Glavni dio ovog rada su dinamički sustavi inspirirani fizikom koji rješavaju kombina-

torne probleme. Numeričke simulacije ovih dinamičkih sustava predstavljaju heurističke

algoritme za aproksimativno rješavanje NP-teških problema, uključujuÂci QUBO i MAX-

CUT. Algoritmi koji su obradeni u ovom radu su Coherent Ising Machine (CIM), Simulated

Bifurcation (SB), Simulated Coherent Ising Machine (SimCIM) i Ballistic Simulated Bi-

furcation (bSB). Analiziran je mehanizam ovih algoritama te je provedeno testirananje nji-

hovih performansi na skupu podataka GSet. Na kraju rada predloženo je nekoliko tehnika

koje unaprjeduju performanse navedenih algoritama.

Životopis

Roden sam 10. srpnja 1999. u Zagrebu. Školovanje sam započeo u Osnovnoj školi Josipa

RačiÂca, nakon čega sam 2014. godine upisao XV. gimnaziju u Zagrebu. Tijekom srednje

i osnovne škole sudjelovao sam na brojnim informatičkim natjecanjima. Nakon završenog

srednjoškolskog obrazovanja 2018. godine upisao sam preddiplomski studij Matematike

na Prirodoslovno-matematičkom fakultetu u Zagrebu. Nakon stjecanja akademskog naziva

sveučilišni prvostupnik 2021. godine upisujem diplomski studij Teorijska matematika na

istom fakultetu.

	Contents
	Introduction
	Quadratic Unconstrained Binary Optimization
	Analysis of the problem
	Applications

	Preliminary theory
	Dynamical systems
	Numerical simulations
	Other

	Algorithms
	Introduction to CIM and SB
	Coherent Ising machine (CIM)
	Gradient descent and momentum
	Simulated Bifurcation (SB)
	Mechanism of CIM and SB
	Comparing CIM and SB
	Introduction to SimCIM and bSB
	Simulated Coherent Ising machine (SimCIM)
	Ballistic Simulated Bifurcation (bSB)
	Mechanism of SimCIM and bSB
	Relation between SimCIM and bSB
	First bifurcation point
	Overview

	Experiments
	GSet Dataset
	Method
	Benchmarking
	Momentum
	Dropout

	Conclusion
	Acknowledgements
	Bibliography
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

