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Abstract

The study of the structure of the proton has been an ongoing effort ever since its first experimen-
tal discovery in 1917 by Rutherford. As experimental methods progressed, and the properties
of the proton, such as its mass, spin and charge, were uncovered, the question of its underlying
structure arose. Experiments conducted in 1969 at SLAC undoubtedly confirmed the fact that
the proton is not an elementary particle, but that it consists of smaller particles, which we now
recognize as quarks and gluons. From that point on, physicists tried to understand how exactly
the interplay of quarks and gluons inside the proton gives rise to its properties.

One of the ways we can experimentally study the proton is through hard exclusive pro-
cesses, such as deeply virtual Compton scattering (DVCS) and deeply virtual meson produc-
tion (DVMP), which give access to a class of functions called generalized parton distributions
(GPDs). GPDs describe the three dimensional structure of the proton, and they are a potential
solution to the proton spin puzzle. It is currently not possible to extract GPDs from measure-
ments directly, since they are convoluted with hard scattering amplitudes inside cross sections,
and deconvolution is in itself an ill-posed problem. These functions are also not possible to
calculate from first principles due to the non-perturbative nature of QCD, so we rely on mod-
eling and machine learning methods in order to extract them from measurements. In this work
we present recent results on the extraction of GPDs and relevant form factors from DVCS and
DVMP data. Using the more recent proton DVCS data, we extract the set of leading Compton
form factors (CFFs) with uncertainties and, by adding neutron DVCS data, we separate the con-
tributions of up and down quarks to the CFFH. We make simultaneous fits to high energy deep
inelastic scattering, DVCS and DVMP data at low x and study the impact of next-to-leading
order (NLO) corrections, as well as the possibility of a unique description of these processes
with twist-2 GPDs. We demonstrate a sizeable impact of NLO corrections and that extraction
of unique GPDs becomes possible at NLO.

Keywords: proton, generalized parton distributions, deeply virtual Compton scattering, Comp-
ton form factors



Prošireni sažetak

Proučavanje strukture protona započelo je prije više od 100 godina. Od prvog Rutherfordovog
otkrića 1917., kada se smatralo da je proton točkasta čestica, preko razumijevanja da ipak ima
podstrukturu, pa do mjerenja dubokog neelastičnog raspršenja 1969. na SLAC-u, gdje se potvr-
dilo da je ta podstruktura netrivijalna, proučavanje protona, osnovne grad̄evne jedinice svemira,
predstavlja uzbudljivo i rastuće područje u fizici.

U ovom radu bavit ćemo se strukturom protona kroz proučavanje generaliziranih partonskih
distribucija (GPD-ova). GPD-ovi predstavljaju interesantno područje istraživanja utoliko što
objašnjavaju trodimenzijsku raspodjelu kvarkova i gluona u protonu, daju rješenje zagonetke
protonskog spina, kao i mnoga druga svojstva.

Povijesni tijek eksperimentalnog ispitivanja svojstava protona krenuo je s elastičnim ras-
pršenjem. Nabijena proba, tipično elektron, sudara se s protonom i raspršuje se na njemu.
Elektromagnetska interakcija probe s protonom, koja se prenosi virtualnim fotonima, daje nam
uvid u raspodjelu električnog naboja protona. Već se ovakvim eksperimentom može vidjeti da
proton nije točkasta čestica, nego da posjeduje prostornu protežnost. Povećavanjem energije
elektrona dolazimo u režim neelastičnog raspršenja, gdje struktura protona apsorbira dio ener-
gije elektrona. Elektromagnetska svojstva protona razotkrivena ovim eksperimentom ne mogu
doći od elementarne čestice, čime se nazire netrivijalna podstruktura protona.

Prvi konkretniji uvid u sastavnice protona dobivamo putem dubokog neelastičnog raspršenja
(DIS, od engleskog deep inelastic scattering). Pri njemu je prijenos energije s elektrona na
proton toliko veliki da se proton razbije, što nam u konačnici ograničava koliko možemo saznati
o njegovoj podstrukturi. Ovaj proces simbolično pišemo kao

e− (k1)+N (P1)→ e− (k2)+X (P2) ,

gdje nam X označava sve čestice nad̄ene u konačnom stanju. Ovakvi procesi, gdje se ne detek-
tiraju pojedinačno čestice koje nastaju u reakciji, nazivaju se inkluzivnima. Varijable koje nam
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govore koliko je ovaj proces neelastičan nazivaju se Bjorkenov x, definiran kao

xB =
Q2

2P1 ·q
,

gdje je q = k2− k1, tj. Q2 =−q2 virtualnost fotona, i neelastičnost, definirana kao

y =
P1 ·q
P1 · k1

.

U naivnom Feynmanovom modelu, proton se sastoji od čestica skupnog naziva partoni, i u
prvom redu računa smetnje elektron med̄udjeluje s jednim od tih partona, za koje danas znamo
da odgovaraju kvarkovima, i izbija ga iz protona. U kinematičkom režimu u kojem se odvija
DIS, pokazuje se da xB odgovara frakciji longitudinalnog impulsa protona koju nosi udareni
parton x. Diferencijalni udarni presjek za ovakav opis DIS-a može se napisati kao

d2σ

dQ2 dx
=

4πα2

Q4

[
(1− y)+

y2

2

]
∑

i
Q2

i qp
i (x),

gdje je Qi naboj udarenog kvarka, a qp
i (x) je partonska distribucijska funkcija (PDF). Prethodno

navedeni udarni presjek sastoji se od dva dijela. Prvi je udarni presjek raspršenja elektrona na
kvarku okusa i, a drugi je vjerojatnost da kvark s kojim elektron med̄udjeluje ima udio longi-
tudinalnog impulsa protona x. U ovom izrazu vidimo faktorizaciju, moćan alat koji nam omo-
gućava proučavanje ovih procesa. U kvantnoj kromodinamici (QCD, od engleskog quantum

chromodynamics) konstanta vezanja αS ima takvu ovisnost o energetskoj skali procesa da raste
što je energija manja, odnosno pada kako energija raste, pa na dovoljno visokim energijama
QCD postaje efektivno slobodna teorija. Faktorizacija nam u suštini govori da DIS možemo
promatrati kao proces koji se sastoji od dijela definiranog na visokim energetskim skalama, što
znači da ga se može tretirati perturbativno, i od dijela koji je definiran na niskim skalama te se ne
može tretirati perturbativno. Dio na visokim, odnosno tvrdim skalama opisuje raspršenje elek-
trona na kvarku, dok PDF odgovara dijelu na mekanim skalama i objašnjava raspodjelu partona
u protonu. Budući da je PDF definiran na mekoj energetskoj skali, ne možemo ga izračunati
alatima perturbativne teorije polja, te nam je jedini način da pristupimo takvim funkcijama feno-
menološki, odnosno da pokušamo pretpostaviti nekakvu funkcionalnu ovisnost o kinematičkim
varijablama, pri čemu će takva funkcija imati nekolicinu slobodnih parametara koji se odred̄uju
numerički pri usporedbi s eksperimentalnim podacima, ili da se poslužimo metodama strojnog
učenja. Važno je napomenuti da, kako se odmičemo od prvog reda računa smetnje, PDF-ovi
ovise i o skali procesa, što je u ovom slučaju virtualnost fotona Q2. Fizikalno nam to govori da
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pri većim energijama virtualnog fotona imamo finiju probu za promatranje strukture protona,
koja vidi izmjene virtualnih čestica med̄u valentnim kvarkovima. Te izmjene dogad̄aju se na
kratkim vremenskim skalama i stvaraju u protonu more virtualnih kvarkova, antikvarkova i glu-
ona. Dakle, u protonu se ne nalaze samo tri statična valentna kvarka, već je situacija mnogo
kompleksnija, što nas potiče da istražujemo procese koji nam daju bogatiji pristup unutrašnjosti
protona.

U svrhu kompleksnijeg istraživanja protonske strukture, proučavamo u smislu strukture dva
ekvivalentna procesa, duboko virtualno komptonsko raspršenje (DVCS, od engleskog deeply

virtual Compton scattering) i duboko virtualnu mezonsku produkcija (DVMP, od engleskog
deeply virtual meson production). Ti su procesi ekvivalentni jer nam daju pristup istim funkci-
jama mekane energetske skale, generaliziranim partonskim distribucijama. GPD-ovi su funkcije
koje ovise o tri kinematičke varijable, te daju uvid u trodimenzijsku strukturu protona. DVCS
simbolično definiramo kao

`(k1)+N (P1)→ `(k2)+N (P2)+ γ(q2) ,

pri čemu je odlika procesa da se izlazni foton emitira iz samog protona, a ne iz ulaznog ili
izlaznog leptona. Kvadrat amplitude ovog procesa može se napisati kao

|TDVCS|2 =
2
(
2−2y+ y2)

y2Q2 (2− xB)
2

[
4(1− xB)

(
|H|2 + |H̃|2

)
−
(

x2
B +(2− xB)

2 ∆2

4M2

)
|E|2

−x2
B

(
HE∗+EH∗+ H̃Ẽ∗+ ẼH̃∗

)
− x2

B
∆2

4M2 |Ẽ |
2
]
,

i dan je pomoću funkcija koje nazivamo komptonski form faktori (CFF-ovi, od engleskog
Compton form factors), ovdje označeni kao H, E , H̃ i Ẽ . U CFF-ovima se primjenom faktori-
zacije mogu odvojiti aspekti procesa koji se odvijaju na tvrdoj, odnosno mekoj skali. Shodno
tome, CFF-ove možemo pisati kao

FA (
ξ,∆2,Q2)=

∫ 1

−1

dx
2ξ

AT
(

ξ+ x− iε
2(ξ− iε)

,ξ

∣∣∣∣αs (µR) ,
Q2

µ2
F

)
FA (x,ξ,∆2,µ2

F
)
,

gdje nam je tvrdi dio procesa dan koeficijentima raspršenja T , dok je mekani dio procesa dan
GPD-ovima FA ∈ {HA,EA, H̃A, ẼA}, A ∈ {q,G}. GPD-ovi su dani preko tri varijable, za koje
odabiremo x, koji se sada definira kao prosječni udio longitudinalnog impulsa koji nosi udareni
parton, t = (P1−P2)

2, koji daje prijenos impulsa na proton, i ξ = −∆ ·q/P ·q (uz P = P1 +P2

i q = (q1 +q2)/2), koji se naziva eng. skewness i mjeri koliko je proces nesimetričan u smislu
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početnog i konačnog impulsa udarenog partona. GPD-ovi takod̄er ovise o skali procesa, što je
opet odraz toga da se slika unutrašnjosti protona mijenja s energijom probe.

DVMP je simbolično dan izrazom

`(k1)+N (P1)→ `(k2)+N′ (P2)+M (q2) ,

gdje se sada umjesto fotona u konačnom stanju nalazi mezon M. Ukoliko se u ovom procesu
proizvode longitudinalno polarizirani vektorski mezoni, kvadrat amplitude dan je kao

∣∣T VL
∣∣2 = 16

1− y

y2 (2− xB)
2

[
4(1− xB) |H|2− x2

B (HE∗+EH∗)−
(

x2
B +(2− xB)

2 ∆2

4M2

)
|E|2

]
,

gdje se sada pojavljuju takozvani tranzicijski form faktori (TFF-ovi, od engleskog transition

form factors). TFF-ovi se faktoriziraju kao i CFF-ovi i možemo ih pisati kao

FA (
ξ,∆2,Q2)= fCF

QNc

∫ 1

−1

dx
2ξ

∫ 1

0
dvϕ(v)AT

(
ξ+ x− iε
2(ξ− iε)

,v,ξ
∣∣∣∣αs (µR) ,

Q2

µ2
F
,
Q2

µ2
ϕ

,
Q2

µ2
R

)
FA (x,ξ,∆2) .

Za razliku od CFF-ova, osim koeficijenata raspršenja na tvrdoj skali T i GPD-ova F , ovdje se
javljaju nove funkcije mekane skale ϕ(v), koje nazivamo distribucijske amplitude.

Formalno definiramo GPD-ove kao Fourierove transformate matričnih elemenata prijelaza
protona iz stanja impulsa P1 u stanje impulsa P2, odnosno

〈
P2
∣∣Oqq (−z−,z−

)∣∣P1
〉
=

∫ 1

−1
dxe−ixP+z− [h+Hq (x,ξ,∆2)+ e+Eq (x,ξ,∆2)] ,

〈
P2

∣∣∣Õqq (−z−,z−
)∣∣∣P1

〉
=

∫ 1

−1
dxe−ixP+z−

[
h̃+H̃q (x,ξ,∆2)+ ẽ+Ẽq (x,ξ,∆2)] ,

〈
P2
∣∣Ogg (−z−,z−

)∣∣P1
〉
=

1
4

P+
∫ 1

−1
dxe−ixP+z− [h+HG (x,ξ,∆2)+ e+EG (x,ξ,∆2)] ,

〈
P2

∣∣∣Õgg (−z−,z−
)∣∣∣P1

〉
=

1
4

P+
∫ 1

−1
dxe−ixP+z−

[
h̃+H̃G (x,ξ,∆2)+ ẽ+ẼG (x,ξ,∆2)] .

Na ovoj razini preciznosti imamo četiri kvarkovska i četiri gluonska GPD-a koji su definirani u
tzv. sustavu svjetlosnog stošca. Faktori uz GPD-ove u gornjim definicijama su elementi baze
bilinearnih spinornih kovarijanti.

GPD-ovi imaju mnoga svojstva, od kojih ćemo istaknuti povezanost s PDF-ovima, koja se

iv
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definira u režimu kada vrijedi P1 = P2, odnosno ∆ = 0 = ξ. Tada imamo

Hq (x,ξ = 0,∆2 = 0
)
= f q(x) = q(x)θ(x)−q(−x)θ(−x),

H̃q (x,ξ = 0,∆2 = 0
)
= ∆ f q(x) = ∆q(x)θ(x)+∆q(−x)θ(−x),

i ekvivalentno za gluone (HG, H̃G). Takod̄er dajemo definiciju distribucije partona u trodimen-
zijskom prostoru protona

q(x,b⊥) =
∫ d2∆⊥

(2π)2 e−ib⊥·∆⊥Hq (x,0, t =−∆
2
⊥
)
,

koja se dobiva Fourierovim transformatom GPD-ova, kao i Jijevo sumacijsko pravilo koje go-
vori kako kvarkovi i gluoni doprinose spinu protona

〈Jq
3〉=

1
2

∫
dxx [Hq(x,ξ, t)+Eq(x,ξ, t)] , 〈JG

3 〉=
1
2

∫
dx
[
HG(x,ξ, t)+EG(x,ξ, t)

]
.

Spomenuli smo da GPD-ovi ovise o skali procesa. Makar je ta ovisnost poznata i jednadžbe
koje opisuju tu ovisnost računaju se perturbativno, komplicirane su za implementirati numerički
i dovode do kompliciranog miješanja raznih GPD-ova. U svrhu pojednostavljenja transformi-
ramo GPD-ove, pa posljedično i CFF-ove i TFF-ove, u bazu konformnih momenata, odnosno
gradimo reprezentacije kolinearne podgrupe konformne grupe. U praktičnom smislu to uklju-
čuje razvoje GPD-ova u bazi Gegenbauerovih polinoma, tj.

Fq
n
(
ξ,∆2)=

∫ 1

−1
dxc3/2

n (x,ξ)Fq (x,ξ,∆2) ,

FG
n
(
ξ,∆2)=

∫ 1

−1
dxc5/2

n−1(x,ξ)F
G (x,ξ,∆2) .

Koristeći Mellin-Barnesovu reprezentaciju, pišemo CFF-ove i TFF-ove u sektoru singletnih
kvarkova mora i gluona

FS (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1

[
tan
cot

]
T I

j
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
,

FS
VL

(
ξ,∆2,Q2)= CF fV0

NcQ
1
2i

∫
c

d jξ− j−1

[
tan
cot

]
ϕk
(
µ2

0
) k
⊕

even
T I

jk
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
.
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Za GPD-ove koristimo razvoj po SO(3) parcijalnim valovima

Fa
j (ξ, t) =

j+1

∑
J=Jmin

even

Fa
j,J(t)ξ

j+1−J d̂J
α,β(ξ), J = j+1, j−1, j−3, . . . , a ∈ {q,G},

gdje koristimo aproksimaciju d̂J
α,β ≈ 1, prekidamo razvoj na trećem članu i pretpostavljamo da

su amplitude drugog i trećeg parcijalnog vala proporcionalne amplitudi prvog parcijalnog vala.
Tada imamo

Fa
j (ξ, t) =

(
1+ sa

2ξ
2 + sa

4ξ
4) f a

j (t),

gdje je

Fa
j, j+1(t)≡ f a

j (t) = Na
B
(
1−αa

0 + j,βa +1
)

B
(
2−αa

0,β
a +1

) 1+ j−αa
0

1+ j−αa
0−α′at

(
1− t

m2
a

)−2

.

Prvi faktor u ovoj definiciji je standardni ansatz za PDF-ove, dok je t ovisnost potaknuta razma-
tranjima iz Regge teorije.

Gornju reprezentaciju koristimo za istovremeni opis DIS, DVCS i DVMP procesa na malim
vrijednostima xB, odnosno na velikim vrijednostima Q2, što je standardna kinematika eksperi-
mentalnog postrojenja HERA u Njemačkoj. Slične analize provedene su u [1], gdje je pokazano
da GPD-ovi dobiveni prilagodbom na DVMP podatke daju dobre predikcije za DVCS podatke,
te u [2, 3, 4], gdje je napravljena istovremena prilagodba na DVCS i DVMP podatke u vodećem
i drugom redu računa smetnje. U ovom kinematičkom režimu dominiraju kvarkovi mora i glu-
oni, stoga zanemarujemo valentni sektor i provodimo analizu do drugog reda računa smetnje.
Udarni presjeci su tada dani samo CFF-om, odnosno TFF-om H, pri čemu se efektivno za-
nemaruje doprinos distribucijske amplitude. Rutinom najmanjih kvadrata MINUIT provodi se
prilagodba na podatke H1 i ZEUS kolaboracija, pri čemu se za DVMP uzima samo produkcija
ρ0 mezona. Ovom analizom testirala se mogućnost opisa sva tri procesa na razini gore spome-
nuta četiri CFF-a, odnosno TFF-a, kao i mogućnost dobivanja istih GPD-ova u tim procesima.
Takod̄er se ispitivao doprinos drugog reda računa smetnje i kvarkovsko-gluonska struktura pro-
tona. U ovoj analizi napravljeno je 6 modela, od kojih su tri u vodećem redu, a tri u drugom redu
računa smetnje. Za oba reda računa smetnje napravljen je jedan model prilagod̄en na mjerenja
sva tri procesa, jedan model prilagod̄en na DIS i DVCS, i jedan prilagod̄en na DIS i DVMP.
Kvaliteta tih modela kvantificirana je izračunom vrijednosti χ2/Npts, gdje je Npts broj točaka
mjerenja koju taj model pokušava opisati. Prilagodba na drugom redu računa smetnje dobro
opisuje podatke i pokazuje značajnu razliku od prilagodbe na vodećem redu računa smetnje
kod DVCS i DVMP procesa. Vrijednost χ2/Npts za najbolji model je 1.1. Univerzalnost GPD-

vi



Prošireni sažetak

ova i važnost implementacije drugog reda računa smetnje potvrd̄ena je računom takozvanog
skewness omjera

ra (Q2)= Ha (x,ξ = x, t = 0,Q2)

Ha (x,ξ = 0, t = 0,Q2)
,

za kojeg se očekuje da poprima vrijednosti

rQuark ≈ 1.65, rGluon ≈ 1.0.

Prikaz ovog omjera dan je na slici niže.
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Slika 1: Prikaz skewness omjera za x = 0.001 za kvarkove (lijevo) i gluone (desno) na vodećem redu
(tanke linije) i drugom redu računa smetnje (debele linije).

Svi kodovi potrebni za provedbu analize dostupni su javno u obliku softverskog paketa
Gepard, opisanog na https://gepard.phy.hr/index.html.

Drugi alat kojeg koristimo u analizi DVCS-a je strojno učenje, tj. neuronske mreže koje
se sastoje od više slojeva perceptrona. Učenje neuronskim mrežama provedeno je na DVCS
podacima, gdje se raspršenje elektrona odvijalo na protonu i neutronu. Cilj ove analize bio je
izdvajanje GPD-ova za gornje i donje kvarkove, što je moguće dodavanjem neutronskih poda-
taka i korištenjem izospinske simetrije, koja kaže Fu, proton = Fd, neutron ≡ Fu. Prvo je analiza
provedena samo na protonskim podacima, bez razmatranja različitih okusa. Zanemarena je evo-
lucija u skali i analiza je implementirana na vodećem redu računa smetnje. U modele su prvi
puta uvedene disperzijske relacije, koje povezuju realni i imaginarni dio CFF-ova na način

ReH
(
ξ, t,Q2)= 1

π
P.V.

∫ 1

0
dξ
′ImH

(
ξ
′, t,Q2)

(
1

ξ−ξ′
− 1

ξ+ξ′

)
+∆H

(
t,Q2) ,

gdje je ∆H(t,Q2) suptrakcijska konstanta koja ne ovisi o ξ. Implementacijom disperzijskih

vii
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relacija možemo modelirati samo imaginarne dijelove CFF-ova i jednu suptrakcijsku konstantu,
jer vrijedi ∆H = −∆E i ∆H̃ = ∆Ẽ = 0. Ovom metodom za sada nismo u mogućnosti izračunati
GPD-ove, pa računamo samo CFF-ove.

Radi usporedbe napravljena je i standardna prilagodba najmanjih kvadrata na podatke, gdje
je valentni sektor implementiran u x prostoru

Hval
q (x,x, t) =

nqrq

1+ x

(
2x

1+ x

)−αv(t)(1− x
1+ x

)bq 1

1− 1− x
1+ x

t
M2

q

, q = u,d,

s CFF-ovima
ImHval(ξ, t) = π ∑

q=u,d
Q2

q

[
Hval

q (ξ,ξ, t)−Hval
q (−ξ,ξ, t)

]
.

Prethodne formule vrijede ekvivalentno za sve GPD-ove i CFF-ove. Suptrakcijska konstanta
dana je modelom

∆F(t) =
C

(
1− t

M2
C

)2 .

CFF-ovi kvarkova mora i gluona dani su u konformnom prostoru, pa ovaj model nazivamo
hibridnim. Analiza je u ovom slučaju provedena na vodećem redu računa smetnje i evolucija
u skali zanemarena je za valentni sektor. Ovaj model nazivamo KM20. Vrijednosti χ2/Npts za
sve modele su izmed̄u 1.1 i 1.3, što smatramo vjernom reprezentacijom izmjerenih podataka.
Ekstrakcija 6 od 8 komponenti CFF-ova prikazana je na slici niže.
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Slika 2: Ekstrakcija CFF-ova na Q2 = 4 GeV2 i t = −0.2 GeV2 s modelima neuronskih mreža trenira-
nim na protonskim podacima s postrojenja JLab, NN20 i NNDR20, i s modelom dobivenim prilagodbom
najmanjih kvadrata na podatke s postrojenja JLab i HERA KM20 [5].

Za okusno razdvojene CFF-ove korišten je model dobiven prilagodbom na podatke gdje se
oslobad̄aju zasebni parametri za okuse kvarkova u valentnom sektoru. Ovaj model nazivamo
fKM20 i prilagod̄en je na protonske i neutronske podatke s postrojenja JLab. Iskorišten je model
neuronskih mreža s disperzijskim relacijama gdje su zasebno modelirane komponente CFF-ova
za svaki okus, dakle ImHu, ImHd , itd. Rezultati okusno razdvojenog CFF-aH dani su na slici
niže. Za ostale CFF-ove nije postignuta separacija okusa, no nada je da će se i to postići s više
mjerenja.
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Slika 3: Ekstrakcija (lijevo) i okusno razdvojeni (desno) imaginarni i realni dio CFF-aH dobiveni okus-
nim modelima fKM20 i fNNDR20 [5].

Budući da je u planu izgradnja novog postrojenja EIC (od engleskog Electron-Ion Colli-

der), kao i nadogradnja postojećih postrojenja JLab i Brookhaven, nadolazeća mjerenja će biti
sve preciznija, stoga će biti iznimno važno eliminirati što više neodred̄enosti prisutnih u našim
modelima. Neodred̄enosti uvedene raznim izborima i aproksimacijama nije lako kvantificirati,
zbog čega se u ovom radu za sve modele dobivene prilagodbom najmanjih kvadrata ni ne pri-
kazuju neodred̄enosti.

Ključne riječi: proton, generalizirane partonske distribucije, duboko virtualno komptonsko ras-
pršenje, komptonski form faktori
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Chapter 1

Introduction

Visualization of objects not visible to the naked eye has been one of the biggest pursuits of
physics. Be it the objects that are too far away from us, such as distant galaxies and black holes,
or objects that are too small in comparison to everyday life, we have been developing technology
that would allow us to bring these objects closer to us. From telescopes to microscopes, our
desire to uncover the world around us has yielded many technical and scientific discoveries.
One of the bigger technical advantages of modern physics is the building of particle accelerators,
which represent the next step in observing very small objects, i.e. they are in some sense very
large microscopes. They allow us to enter the very building blocks of all matter in our universe,
that is, they allow us to enter the proton.

So far we know most of the fundamental properties of the proton, such as its mass, electric
charge and spin. But what we do not know, is how these properties came to be. The proton
is not an elementary particle, but one that consists of many elementary particles, quarks and
gluons, and their interaction is described by quantum chromodynamics (QCD). The picture of
the proton has for a long time been the one of three static valence quarks, but adding up their
mass recovers only 1% of the total mass of the proton. For this reason we had to reject the
idea of the proton as having a static underlying structure, but as a dynamical system where the
quarks interact strongly, and this binding energy is what results in the mass of the proton. It is
also this interaction that gives rise to a sea of quark and antiquark pairs, and gluons as well. The
image of the proton now becomes much more complicated, not only due to so many interacting
particles, but also due to the nature of their interaction. QCD is a non-Abelian force with an
SU(3) color symmetry, and a coupling constant which becomes large at small energies, which
makes most calculations regarding strong interactions extremely difficult to carry out. Given
that the proton is a stable particle, it represents a perfect testing ground for various tenets of
QCD, such as confinement, which is still largely a mystery from a theoretical standpoint. Given
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Chapter 1. Introduction

that a lot of current research in the field of particle physics deals with the physics beyond the
standard model, it is paramount that the physics described by the standard model is described
very precisely, which is still not the case for many aspects of QCD.

One of the points of interest that drives our area of research is that it is unclear how the
spins and orbital angular momenta of partons inside the proton make up its spin. It was ex-
perimentally confirmed that the spin of all of the quarks, antiquarks and gluons makes up less
than half of the total spin of the proton. Ideally we would want to obtain a full description of
the phase space inside the proton, which would be enabled through the knowledge of Wigner
distributions, but since this object is currently almost completely unknown, we settle for simpler
distributions, which would illuminate the three-dimensional structure of partons, and how the
quarks and gluons individually contribute to the total spin of the proton. These distributions
are called generalized parton distributions (GPDs), and they are the main focus of this work.
Unfortunately, they are currently not directly accessible from experiments, but are hidden inside
an integral which goes into observables directly. The reason we are able to introduce GPDs in
the first place is owed to the so-called factorization theorems, which allow us to separate the
processes of interest into a part that can be described using perturbative field theory, the hard
part, and into a part that cannot be calculated perturbatively, the soft part. This soft part rep-
resents the various parton distributions of interest, GPDs included. Since we cannot calculate
GPDs from first principles, we approach this problem by modeling them in various ways and
fitting them to data. In this work, we will describe two main approaches we take in analyzing
processes that contain GPDs, which are deeply virtual Compton scattering (DVCS) and deeply
virtual meson production (DVMP).

This work is divided into three parts. The first part contains the description of the processes
we study, including also deep inelastic scattering (DIS), since GPDs reduce to parton distri-
bution functions (PDFs), which are the soft part of DIS, in a certain limit. This is detailed in
Chapter 2. In Chapter 3 we give all of the properties of GPDs necessary for our analysis, and for
understanding our motivation in studying them, such as Ji’s sum rule, their connection to PDFs
and elastic form factors, and how to obtain a three-dimensional distribution function from them.
In Chapter 4 we detail the conformal moments representation of GPDs, which allows us to more
easily implement QCD evolution of GPDs. Here we also give the Mellin-Barnes representation
of Compton form factors (CFFs), which are the convolutions of GPDs and the hard part of
DVCS, as well as transition form factors (TFFs), which are the equivalent convolutions present
in DVMP. Finally, in Chapter 5 we give a brief overview of the machine learning methods used
in this work, mainly focusing on neural networks.

In the second part we present our high energy simultaneous analysis of DIS, DVCS and
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DVMP using the conformal momentum representation of CFFs, TFFs and GPDs with an SO(3)
partial wave expansion in the singlet quark and gluon sector. We give the details of our GPD and
CFF/TFF model in Chapter 6. Through this analysis we test the twist-2 collinear description of
these processes. We also study the quark-gluon content of these two processes at leading order
(LO) and next-to-leading order (NLO). We test whether the twist-2 GPD description of these
processes is universal by calculating the skewness ratio. All of our models have been fit to data
taken at the HERA collider by the H1 and ZEUS collaborations. The analysis is presented in
Chapter 7.

In the last part we present our machine learning approach to the description of DVCS. In
Chapter 8 we extract CFFs from the proton DVCS data measured at Jefferson National Labora-
tory (JLab). This analysis is still not at the level of extracting GPDs, but it has proven successful
in extracting 6 out of 8 twist-2 CFFs at LO. By adding the neutron DVCS data, we are able to
separate the up and down quark contribution to the leading CFF H. In this analysis we also
perform standard hybrid model fits, where we also introduce a flavored model fit for compari-
son to the neural network extractions. In Chapter 9 we test the reliability of our neural network
extractions of CFFs by performing closure tests.
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Chapter 2

Probing the structure of the proton

There are many inclusive and exclusive processes that probe the structure of the proton in some
way, the most common being those where a lepton is scattered off the proton, and the interaction
between the two is mediated by a virtual photon. Historically, one of the first processes that
studied the structure of the proton is electron-proton elastic scattering, which is the dominant
process at lower energies. As technology advanced, higher energy lepton beams were being
produced at accelerators, which allowed for deeper probing of the structure of the proton. Some
of these processes are deep inelastic scattering, semi-inclusive deep inelastic scattering, deeply
virtual Compton scattering, deeply virtual meson production and many more. In this chapter
we will try to provide an intuitive and historical overview of the first processes that probed the
structure of the proton. Many books have been written on this subject and we refer the reader
to [6] and [7] for the introduction.

2.1 Elastic electron-proton scattering

As we know from quantum mechanics, the higher the energy of a particle, the smaller their de
Broglie wavelength, which means that we can probe the structure of matter more deeply. By
comparing the wavelength of the electron λe to the radius of the proton Rp, we can classify the
process e−p→ e−p into four categories:

i) when the wavelength of the electron is much larger than the radius of the proton, i.e.
λe� Rp, which occurs at lower electron energies, the proton looks essentially as a point-
particle. This kinematic regime does not provide much insight into the structure of the
proton;

ii) when the wavelength of the electron is similar in size to the radius of the proton, i.e. λe ∼
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Rp, we cannot treat the proton as a point-particle and have to include the non-localized
nature of the electric charge and magnetic moment distributions;

iii) when the wavelength of the electron is smaller than the radius of the proton, i.e. λe < Rp,
inelastic scattering becomes the dominant process;

iv) when the wavelength of the electron is much smaller than the radius of the proton, i.e.
λe� Rp, we can uncover the dynamical properties of the proton structure. We call this
regime deep inelastic scattering. This regime is described by an interaction of the virtual
photon with a spin 1/2 point-particle inside the proton.

In regime i), depending if we treat the electron as a relativistic particle or not, we obtain the
Mott or Rutherford scattering, respectively. In both of these we ignore the recoil of the proton.
The differential cross section for Mott scattering is given as

(
dσ

dΩ

)

Mott
=

α2

4E2 sin4(θ/2)
cos2 θ

2
, (2.1)

where E is the energy of the electron, and θ is the scattering angle. In this regime any spin-spin
interaction between the electron and the proton is negligible.

As we decrease the wavelength of the electron, we can no longer ignore the extended charge
and magnetic moment distributions and the proton does not look like a point-particle. The fact
that the proton has an extended charge distribution affects the wavefunction of the virtual photon
in the sense that various waves scatter off of various points on the proton, which results in phase
differences and the waves do not add up constructively, as they would when the wavelength is
much larger than the radius of the proton. In order to account for these phase differences, one
introduces a form factor so that the scattering amplitude can be written as the amplitude for
Mott scattering multiplied by the form factor, or in terms of the cross section

dσ

dΩ
=

(
dσ

dΩ

)

Mott
|F(q2)|2, (2.2)

where the form factor is defined as the Fourier transform of the charge distribution

F
(
q2)=

∫
ρ(r)eiq·rd3r. (2.3)

Here q = p1−p3 is the momentum transfer from the electron to the proton.
The form factor has to satisfy F(0) = 1, since the charge distribution is assumed to be

normalized. This value should also be recovered in the limit of a point-particle since there is
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no charge distribution to discern, and the process is reduced to Mott scattering. We expect the
same when the wavelength of the electron is very large, since we also effectively cannot see the
charge distribution of the proton. In both of these cases q · r ≈ 0. When the wavelength of the
electron is very small, the phase differences between the scattered waves will tend to cancel,
and in this regime we expect F(q2→∞) = 0. Equivalently, if the momentum transfer is infinite,
then the electron energy has to be infinite so no scattering will occur, the electron will not feel
the presence of the proton so the form factor has to vanish. This reflects the fact that the elastic
cross section drops off as q2 increases and inelastic scattering becomes dominant.

The next step in uncovering the structure of the proton would be to include the proton recoil
and its spin into the calculation of the cross section. If we write the most general Lorentz
covariant form of the current that describes the propagation of the proton in the scattering,
taking into account hermiticity and parity, we have

Jµ
∝ F1

(
q2)

γ
µ +

κ

2M
F2
(
q2) iσµνqν. (2.4)

The first term of the current is the helicity-conserving part, and the second is the helicity-flip
part. F1 is called the Dirac form factor, and F2 the Pauli form factor. They describe the spatial
charge distribution inside the proton and they depend on the four-momentum of the virtual
photon squared. For high energy transfer, q2 < 0 so we introduce Q2 = −q2. The limiting
values for the proton and neutron form factors are

F p
1 (0) = 1 (2.5)

Fn
1 (0) = 0 (2.6)

F p
2 (0) = κp = µp−1 (2.7)

Fn
2 (0) = κn = µn, (2.8)

where µp,n are the anomalous magnetic moments of the proton and the neutron.
The cross section in the laboratory frame can be written as

dσ

dQ2 =
4πα2

Q4

[(
1− y−

m2
py2

Q2

)
F2
(
Q2)+ 1

2
y2F1

(
Q2)

]
(2.9)

We can introduce a new set of form factors, GE(Q2) and GM(Q2), known as Sachs form factors,

7



2.2. Deep inelastic scattering Chapter 2. Probing the structure of the proton

which are connected to F1,2 as

GE
(
Q2)= F1

(
Q2)− τF2

(
Q2) (2.10)

GM
(
Q2)= F1

(
Q2)+F2

(
Q2) , (2.11)

where

τ =
Q2

4M2 . (2.12)

The cross section can then be written as

dσ

dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1

(
G2

E + τG2
M

(1+ τ)
cos2 θ

2
+2τG2

M sin2 θ

2

)
, (2.13)

which is known as the Rosenbluth formula. All of these form factors depend on Q2, which
means that we can no longer simply interpret them as in the case of elastic scattering. Sachs
form factors are more intuitive because they can be interpreted as Fourier transforms of charge
and magnetic moment distributions in the limit when the time-like component of Q2 is very
small, that is when Q2 ≈ q2. Both form factors can be measured in experiments and their value
at Q2 = 0 can be extrapolated. This showed that GM(0) = 2.79, which is directly connected to
the fact that the magnetic moment of the proton is not that of a Dirac point particle. From this
we can conclude that the proton possesses an underlying structure.

As we increase Q2, we expect the cross section to drop off because the proton has a finite
size. Even in the inelastic regime, where the proton is broken up, we would expect a steep
decrease in the cross section if the virtual photon still interacted with the proton as a whole, not
seeing its underlying structure. But experiments did not demonstrate this, which also confirmed
the fact that the proton has an underlying structure and that the virtual photon interacts with the
constituents inside the proton. In order to go deeper into the structure of the proton, we now
study deep inelastic scattering (DIS).

First experiments on this topic were conducted at Stanford in 1953 by Robert Hofstadter
[8, 9, 10]. For reviews on this matter see [11, 12, 13].

2.2 Deep inelastic scattering

As we increase the energy, electron-proton scattering is dominated by inelastic scattering, where
the proton is excited and or broken up into various particles, denoted symbolically by X . In the
case where we do not know all final products of the scattering, the scattering is denoted as
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inclusive, and we sum over all possible final states. This process is symbolically written as

e−(k1)+N(P1)→ e−(k2)+X(P2), (2.14)

and is depicted in figure 2.1 below.

e−

p

e−

P1

k1

q

P2

k2

X

θ

Figure 2.1: Deep inelastic scattering.

The first measurements of DIS were performed in 1969 at Stanford [14], and a Nobel prize
was awarded in 1990 to Freedman [15], Kendall [16], and Taylor [17].

The invariant mass of the hadronic system X is denoted as W , and from conservation of
energy and momentum we have

W 2 = P2
2 = (P1 +q)2. (2.15)

Since now the final state is not just one particle, the invariant mass W is not fully determined
and the final cross section will depend on two variables, the angle of scattering and W 2 6= M2,
as opposed to elastic scattering, where we only had one degree of freedom. We can choose
a variety of variables, one of which is typically Q2, with the same definition as in the case of
elastic scattering. The other variable could be the invariant mass W , Bjorken x, defined as

xB =
Q2

2P1 ·q
, (2.16)

inelasticity y, defined as

y =
P1 ·q
P1 · k1

, (2.17)
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or the variable
ν =

P1 ·q
M

. (2.18)

Only two out of these variables are independent. For example, we can write xB as

xB =
Q2

Q2 +W 2−m2
p
. (2.19)

Since we have a proton in the initial state, we need to have a baryon in the final state due to
baryon number conservation. The proton is the lightest baryon, so we always have W 2 ≥M2.
Therefore xB can take on the values

0≤ xB ≤ 1. (2.20)

In the limit of elastic scattering, W 2 = M2, and xB = 1. So the smaller the variable xB, the more
inelastic the scattering.

In the frame where the proton is at rest, the inelasticity can be written as

y = 1− E ′e
Ee

, (2.21)

which is the fractional loss of the electron energy. In this frame we have to have E ′p ≥M, which
implies, similarly as for xB, that y is in the range

0≤ y≤ 1. (2.22)

The scattering is more inelastic as y approaches 1. In this frame we can also write

ν = Ee−E ′e, (2.23)

which is just the loss of electron energy. Clearly y and ν cannot be independent. We can chose
any two of the previously defined variables, aside from y and ν, to describe inelastic scattering,
and we will chose xB as our second variable.

The final state X in inelastic scattering can be an excited state of the proton, such as the
baryon ∆+, which will subsequently decay into the proton, among other products. The kine-
matic regime where the invariant mass is higher than the mass of excited proton states and the
proton is broken up into a multitude of particles is called deep inelastic scattering.

The total cross section for DIS, which is the sum over all possible states X , can be written

10
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as

dσ
ep→eX =

1
4MEe

d3k2

(2π)22E ′e
∑
X

∫
dΠn|M(ep→ eX)|2(2π)4

δ
(4) (k1 +P1− k2−P2) . (2.24)

At leading order in QED we describe this process as a single photon exchange, so we can write
the cross section as

dσ ∝ LµLν†Wµν, (2.25)

where Lµ is the leptonic current

Lµ =
−i

q2 + iε
u(k2)γ

µu(k1) , (2.26)

and W µν is the hadronic tensor

Wµν(p1,q) =
1

2π
∑
X

∫
dΠn〈P1| j†

ν(q)|P2〉〈P2| jµ(q)|P1〉 · (2π)4
δ
(4) (k1 +P1− k2−P2) . (2.27)

Using the optical theorem, we can write the hadronic tensor as the imaginary part of the forward
Compton tensor

Wµν(p2,q) =
1
π
ImTµν(P1,q), (2.28)

where the forward Compton tensor, which describes the scattering γ(k)p(P)→ γ(k)p(P), is
given as

Tµν(p2,q) = i
∫

d4zeiq·z 〈P1
∣∣T
{

jµ(z) jν(0)
}∣∣P1

〉
. (2.29)

It can be shown that the cross section can be written in the same form as the elastic cross section
(2.9)

d2σ

dxB dQ2 ≈
4πα2

Q4

[
(1− y)

F2
(
xB,Q2)

xB
+ y2F1

(
xB,Q2)

]
, (2.30)

where we additionally use the approximation Q2� M2y2. We can notice one key difference,
and that is that the new form factors, F1,2, now depend on two variables, xB and Q2. These
functions are called structure functions, and we can no longer interpret them as the Fourier
transform of the electric and magnetic moment distributions. In order to interpret the meaning
of the structure functions, we observe DIS through the partonic model, developed by Feynman
[18].

At first order of perturbation theory, assuming that we have a very large energy and mo-
mentum transfer, we can describe this process as a virtual photon elastically scattering off a
parton that has been separated from the broken proton. For ease of calculation, one typically
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introduces the frame where the proton energy is very large, i.e. Ep�M, which is referred to as
the infinite momentum frame. In this frame the proton moves along the z-axis, and this allows
us to ignore the momentum components of the partons that are perpendicular to the z-axis. We
parametrize the momenta of the partons using the momentum of the proton

pq = xP1 + p⊥ ≈ xP1, (2.31)

where x is the longitudinal momentum fraction of the proton. We can use energy and momentum
conservation to write the 4-momentum of the final quark as p′q = pq+q≈ xP1+q. If we ignore
the mass of the quark, we have

p′q
2 ≈ 0≈ 2xq ·P1−Q2. (2.32)

Therefore, the definition of the momentum fraction x is

x =
Q2

2q ·P1
= xB. (2.33)

This means that in the infinite momentum frame the struck parton has the momentum fraction
equal to Bjorken x. The cross section for elastic electron-quark scattering at leading order is
given as

dσ

dQ2 =
4πα2Q2

q

Q4

[
(1− y)+

y2

2

]
. (2.34)

We can see that this expression has a similar structure to (2.30). In order to get the full picture,
that is, to include the hadronic part of the process, we must recognize that the partons inside the
proton interact via the strong nuclear force, i.e. through the exchange of gluons, which means
that the partons do not have a precisely determined momentum, but rather that the momenta of
the partons are given by probability distribution functions, called parton distribution functions

(PDFs). These distributions are defined in the sense that uP(x)δx gives the number of up quarks
within the proton that have a momentum fraction between x and x+ δx. They represent the
hadronic part of this process and at this point we do not have a way of calculating them from
first principles. This is because they describe the so-called soft part of the process, which is the
interaction of partons through QCD at low energies that does not allow for a description using
perturbation theory, since the strong coupling constant increases as the momentum transfer
decreases. The scattering of the virtual photon off the quark is the hard part of the process,
because it involves transfers of very large momenta, and it can be described using perturbation
theory, which gives us expression (2.34). The hard part of the process occurs at much higher
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energies, or equivalently at much smaller time-scales in comparison to the soft part. This means
that, at least at leading order (LO), the hard part does not interfere with the soft part, and we
can take them into consideration separately. This phenomenon is called factorization, and it
is a powerful tool that allows us to make calculations and predictions about DIS an similar
processes that probe the structure of nucleons, and it will be explained in more details later. The
fact that we can factorize DIS and other processes involving the structure of the proton is due to
the property of QCD called asymptotic freedom. This means that the strong coupling constant
tends to zero as the momentum transfer tends to infinity, so for high momentum transfer we can
expand the hard part of the process in terms of αS.

In order to write the full leading-order cross section, we need to multiply the e−q cross
section (2.34) by the number of quarks qi that have the momentum fraction x in the interval
[x,x+δx], which gives us

dσ

dQ2 =
4πα2

Q4

[
(1− y)+

y2

2

]
×Q2

i qp
i (x)δ(x), (2.35)

where Qi is the charge of the struck quark. Now the full double-differential cross section, which
sums over all quark flavors, is given as

d2σ

dQ2dx
=

4πα2

Q4

[
(1− y)+

y2

2

]
∑

i
Q2

i qp
i (x). (2.36)

If we compare to (2.30), we can identify the structure functions of the proton

Fep
2
(
x,Q2)= 2xFep

1
(
x,Q2)= x∑

i
Q2

i qp
i (x). (2.37)

We can make two conclusions from the partonic model. The first is that the structure functions
do not depend on two variables, but only on x. This is called Bjorken scalling, and it reflects the
assumption that the proton consists of point-like particles that carry its charge, rather than being
a continuous spatial charge distribution. The second conclusion is that the structure functions
are related to one another, which is called the Callan-Gross relation. This is a reflection of the
quarks being point-like spin-half Dirac particles, whose electric and magnetic contribution to
the interaction is fixed with respect to one another through the Dirac magnetic moment.

These two relations are only approximate. If we observe the static model of the proton, it
would appear that it only consists of two up and one down quarks, called the valence quarks, in
which case the PDFs would just be the delta function centered on x = 1/3. But this is of course
not the case, because the valence quarks interact via the exchange of gluons, which can also
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form quark-antiquark pairs, so in reality the proton consists of valence quarks, but also a sea
of virtual quarks, antiquarks and gluons. Since high energy partons are suppressed by the 1/q2

factor coming from the propagator, they can only be resolved at higher momentum transfers, or
equivalently at low xB. This is when the PDFs are more smeared and the dominating process
is not elastic scattering off a point-like particle. This is why we need a Q2 dependence in the
structure functions.

For reviews on this topic, see [19, 20].

2.3 Deeply virtual Compton scattering

Deeply virtual Compton scattering (DVCS) [21, 22] is a hard exclusive process, symbolically
written as

`(k1)+N(P1)→ `(k2)+N(P2)+ γ(q2). (2.38)

Hard means that there is a large momentum transfer from the initial lepton to the nucleon, and
exclusive means that we detect all of the products in the final state. This process represents the
next step in our pursuit of uncovering the structure of the proton. Like DIS, this process also
relies on factorization to the hard and soft part in order to extract the functions that describe
the structure of the proton. In this instance, the soft functions are called generalized parton

distributions (GPDs), which describe the transition from the initial nucleon to the final nucleon
state. The fact that we can access a richer description of the structure of nucleons is owed to the
fact that DVCS is an off-forward process, meaning that the initial and final nucleon do not have
the same impulse.

In DVCS the final state photon is emitted from the nucleon, but since the detectors only
measure the products of the scattering, this process interferes with another process with the same
initial and final state, called the Bethe-Heitler process. In the Bethe-Heitler process, the final
state photon is emitted from either the initial or the final lepton through Bremsstrahlung, and
the interaction between the virtual photon and the nucleon is described by the electromagnetic
form factors F1,2(Q2). Both of these processes are depicted in figure 2.2 below.

14



2.3. Deeply virtual Compton scattering Chapter 2. Probing the structure of the proton

e−

N

γ

N

e−

k1

P1

q1

γ∗ q2

P2

k2

e−

N

γ

N

e−

k1

P1

q1−q2 γ∗

q2

P2

k2
e−

N

γ

N

e−

k1

P1

q1−q2 γ∗
q2

P2

k2

a) DVCS b) B-H c) B-H

Figure 2.2: Deeply virtual Compton scattering and Bethe-Heitler process.

The amplitude for the process `N → `Nγ is the sum of the amplitudes for DVCS and the
Bethe-Heitler process, which means that the differential cross section is written as

dσ

dxBdyd |∆2|dφdϕ
=

α3xBy

16π2Q2
√

1+ ε2

∣∣∣∣
T
e3

∣∣∣∣
2

, (2.39)

where the amplitude is
|T |2 = |TDVCS|2 + |TBH|2 +I. (2.40)

The interference term is
I = T ∗DVCSTBH +TDVCST ∗BH. (2.41)

The cross section depends on 5 variables, because there are three particles in the final state
which have 5 degrees of freedom. Some of these variables were introduced before, namely the
opposite of the square four-momentum of the virtual photon Q2 = −q2

1, which now does not
correspond to the momentum transfer to the hadron, and the Bjorken x defined as in (2.16). The
square of the four-momentum transfer to the hadron is given as

t = ∆
2 = (P2−P1)

2. (2.42)

We also introduce the symmetric combinations of momenta

q =
1
2
(q1 +q2), P = P1 +P2. (2.43)

In order to describe the photon-proton scattering, we need three independent variables. We can
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choose from the following Lorentz scalars

Q2 =−q2, ξB =
Q2

P ·q , ξ =−∆ ·q
P ·q . (2.44)

Note the different font between Q2 and Q2. ξB is called the generalized Bjorken variable, and
ξ is called the skewness. Skewness tells us how much the process is off-forward, meaning how
much the struck parton momentum changes in the scattering. If the skewness is zero, we retrieve
the forward Compton amplitude, and ξB coincides with xB. If additionally ∆ = 0, we recover
deep inelastic scattering. We can also use the variables defined in DIS

xB =
Q2

2P1 ·q1
, W 2 = (P1 +q1)

2. (2.45)

In order to perturbatively approach this process, we employ the Bjorken limit, which is
given as

s = (P1 +q1)
2 ∼ q2

1→ ∞, −∆
2� s, xB = fixed, (2.46)

and for both DVCS and DVMP ξB ' ξ. In this limit we have

Q2 ' 2Q2, ξ' xB

2− xB
, s' 2P ·q. (2.47)

We also introduce the notation for the average fraction of the longitudinal momentum of the
proton carried by the struck parton x, which will be more precisely defined in the next chapter.

The limits on the momentum transfer are given by

∆
2
min,max =−

Q2

4xB (1− xB)+ ε2

[
2(1− xB)+ ε

2∓2(1− xB)
√

1+ ε2
]
, ε = 2xB

M
Q2 . (2.48)

The remaining two variables are the two angles φ and ϕ. In order to define them, we define the
leptonic plane, which is subtended by the initial and final lepton 3-momenta, and the hadronic
plane, which is subtended by the 3-momenta of the scattered nucleon and real photon. The
angle φ is the angle between the leptonic plane and the recoiled nucleon 3-momentum, and ϕ

is the angle between the scattered nucleon 3-momentum and its transverse polarization in the
case of a polarized target. This frame is called the BKM frame [23]. This frame of reference is
depicted in figure 2.3 below.
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Figure 2.3: BKM reference frame. Adapted from [23].

In this frame the terms in the cross section (2.39) can be written as a decomposition into
Fourier harmonics

|TBH|2 =
e6

x2
By2 (1+ ε2)

2
∆2P1(φ)P2(φ)

{
cBH

0 +
2

∑
n=1

cBH
n cos(nφ)+ sBH

1 sin(φ)

}
, (2.49)

|TDVCS|2 =
e6

y2Q2

{
cDVCS

0 +
2

∑
n=1

[
cDVCS

n cos(nφ)+ sDVCS
n sin(nφ)

]
}
, (2.50)

I = ±e6

xBy3∆2P1(φ)P2(φ)

{
cI

0 +
3

∑
n=1

[
cI

n cos(nφ)+ sI
n sin(nφ)

]
}
, (2.51)

where we only keep the first few harmonics. Higher harmonics are suppressed by factors of
1/Q, and this expansion will be explained later. The sign ambiguity in the interference term
comes from the charge sign of the leptom beam, + being for a negatively charged beam. The
term 1/P1(φ)P2(φ) in the interference term also has a φ dependence coming from the lepton
propagators, which makes the Fourier analysis of experimental data more complicated. The fact
that the Bethe-Heitler process, which we can describe sufficiently well at the level of precision
we have for DVCS, comes into the full `N→ `Nγ cross section provides a unique opportunity
to access GPDs linearly and quadratically. The problem is that we cannot access GPDs through
DVCS directly, but rather their convolution with the hard-scattering part of the amplitude. These
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convolutions are called Compton form factors (CFFs). This is not dissimilar to the extraction of
PDFs in DIS, where experiments probe structure functions, which are convolutions of PDFs and
the hard-scattering part as we move away from the naive parton model where gluon radiation
and transverse momentum of partons are ignored.

At leading order DVCS is described through the so-called hand-bag diagrams, which are
depicted in 2.4 below. In this part we observe only the hadronic part of the process, where at
leading order we have the scattering of a virtual photon off a quark (or equivalently antiquark),
which then emits a real photon and is absorbed back into the nucleon. Therefore, the initial
and final nucleon have to be the same. Alternatively, this process could also be thought of as
an emission of a quark-antiquark pair from the nucleon, which absorbs the virtual photon and
then annihilates into the final photon. If we accept the former interpretation, then we draw
the s- and u-channels, where the fermion propagator in the hard subprocess carries the s and u

four-momentum squared, respectively.

γ∗

N

γ

N
P1 P2

γ∗

N

γ

N
P1 P2

a) s-channel b) u-channel

Figure 2.4: Deeply virtual Compton scattering at leading order of perturbation theory.

Starting from the Compton tensor (note that this is not the case of forward scattering)

Tµν(q,P,∆) = i
∫

d4z d4we−iq1z+iq2w 〈P2
∣∣ jµ(z) jν(w)

∣∣P1
〉
, (2.52)
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we can obtain the differential cross section for this process, where the scattering amplitude is

|TDVCS|2 =
2
(
2−2y+ y2)

y2Q2 (2− xB)
2

[
4(1− xB)

(
|H|2 + |H̃|2

)
−
(

x2
B +(2− xB)

2 ∆2

4M2

)
|E|2 (2.53)

−x2
B

(
HE∗+EH∗+ H̃Ẽ∗+ ẼH̃∗

)
− x2

B
∆2

4M2 |Ẽ |
2
]
, y =

Q2

xs
.

The differential cross section is expressed in terms of several CFFs. Symbolically, we can write
CFFs as

FA (
ξ,∆2,Q2)= AT

(
ξ+ x− iε
2(ξ− iε)

,ξ

∣∣∣∣αs (µR) ,
Q2

µ2
F

)
x
⊗ FA (x,ξ,∆2,µ2

F
)
, (2.54)

where we introduce the notation for convolution

f (x)⊗g(x) =
∫ 1

−1

dx
2ξ

f (x)g(x). (2.55)

The index A denotes all parton contributions, so A∈ {u,d,s, . . .G}. We have four types of CFFs,
corresponding to the four GPDs that enter the amplitude at LO, which are F ∈ {H,E, H̃, Ẽ}.
The CFFs in the cross section are summed over all partons,

F = ∑
A

Q2
AFA, Q2

G =
1

N f
∑
q

Q2
q. (2.56)

The fact that we can write CFFs as a convolution of GPDs, which describe the soft part of the
process, and the hard-scattering amplitudes is a reflection of factorization, which was proven in
[24] for transversally polarized virtual photons. The definitions of GPDs and CFFs, as well as
their properties will be given in later chapters.

2.4 Deeply virtual meson production

Deeply virtual meson production (DVMP) is another hard exclusive process that gives access
to GPDs, and it is symbolically written as

`(k1)+N(P1)→ `(k2)+N′(P2)+M(q2). (2.57)

In the final state we now have a meson instead of a photon like in DVCS, and depending on the
meson, the final state hadron does not have to be the same as the initial hadron. The process is
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depicted in figure 2.5 below.

e−

N

M

N′

e−

k1

P1

q1

γ∗ q2

P2

k2

Figure 2.5: Deeply virtual meson production.

We again rely on factorization, which was proven for light pseudoscalar mesons and lon-
gitudinally polarized vector mesons in [25]. At LO, many channels have been studied [26,
27, 28, 29, 30, 31, 32, 33]. Some of these studies have been extended to NLO accuracy
[34, 35, 36, 37, 38].

At leading order, we observe two types of diagrams, depicted in figure 2.6 below.

γ∗

N N′

DADADADADADADADADADADADADADADADADA

ML

γ∗

N N′

DADADADADADADADADADADADADADADADADA

VL

a) quark subprocess b) gluon subprocess

Figure 2.6: Deeply virtual meson production at leading order of perturbation theory.
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Note that at LO DVMP has one less QED vertex in comparison to DVCS, because there is
no final-state photon. The DVMP cross section is therefore larger than the DVCS cross section.
Also, gluons enter DVMP at leading order, but for DVCS they appear in next-to-leading order
corrections. In the case of the quark subprocess, we need a gluon in order to bind a quark
and antiquark into the final meson state. This diagram can be observed in two ways. We can
look at it as a quark emitted from the nucleon, which absorbs the virtual photon and emits
a gluon, which then breaks up into a quark and antiquark. This quark is absorbed into the
nucleon, and the original quark binds to the antiquark emitted from the gluon into the final-
state meson. Alternatively, a quark-antiquark pair are emitted from the nucleon, they absorb
the virtual photon and bind into the final-state meson by exchanging a gluon. Both of these
processes can also be produced in the u-channel.

Due to charge parity conservation, only neutral vector mesons can be produced in the gluon
subprocess. This is because photons have charge parity−1, charge parity of the quark-antiquark
state is −1, and +1 for the double gluon-gluon state. Since the subprocesses are γ∗qq→M and
γ∗gg→M, the charge parity conservation gives

CγCqCq =+1 =CM, CγCGCG =−1 =CM. (2.58)

Neutral pseudoscalar mesons have charge parity +1, and neutral vector mesons have charge
parity −1, which explains why there can be no pseudoscalar mesons produced this way.

Since we only have one QED vertex, the amplitude is described by the transition amplitude

Aµ =
∫

d4ze−iq1z 〈q2P2
∣∣ jµ(z)

∣∣P1
〉
, (2.59)

which we use to calculate the cross section. This time the cross section, which is given as

d2σγ∗L 7−→MN′

d∆2 dφ
=

αemx2
By2

32πQ2
√

1+ ε2

1
1− y

∣∣T DVMP∣∣2 , (2.60)

with

∣∣T VL
∣∣2 = 16

1− y

y2 (2− xB)
2

[
4(1− xB) |H|2− x2

B (HE∗+EH∗)−
(

x2
B +(2− xB)

2 ∆2

4M2

)
|E|2

]

(2.61)
∣∣∣T PS

∣∣∣
2
= 16

1− y

y2 (2− xB)
2

[
4(1− xB) |H̃|2− x2

B

(
H̃Ẽ∗+ ẼH̃∗

)
− x2

B
∆2

4M2 |Ẽ |
2
]

(2.62)
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is given in terms of transition form factors (TFFs). Symbolically, we can write them as

FA (
ξ,∆2,Q2)= fCF

QNc
ϕ(v)

v
⊗ AT

(
ξ+ x− iε
2(ξ− iε)

,v,ξ
∣∣∣∣αs (µR) ,

Q2

µ2
F
,
Q2

µ2
ϕ

,
Q2

µ2
R

)
x
⊗ FA (x,ξ,∆2) .

(2.63)
The x integral is defined in (2.55), and the v integral is given as

f (v)
v
⊗ g(v) =

∫ 1

0
dv f (v)g(v). (2.64)

TFFs are factorized into three parts, one being the standard hard-scale amplitude T , another
being the soft-scale GPDs F , and the last one being the soft-scale distribution amplitude (DA)
φ(v). The distribution amplitude describes the transition from vacuum to the final-state meson.
The variable v is now the fraction of the longitudinal momentum of the meson. The distribution
amplitude represents another soft-scale component of the process which we cannot access from
first principles. The formal definition for TFFs and DAs will be given in later chapters.

Due to an intricate flavor structure of the final-state mesons, we can access several flavor
combinations of GPDs through various DVMP measurements. We expect these GPDs to be
universal for all DVCS and DVMP variations, as well as other processes that probe GPDs (or
more precisely, their convolutions).

Other exclusive processes that probe GPDs are for example time-like Compton scattering
(TCS) [39] and double DVCS (DDVCS) [40, 41, 42]. In TCS the incoming photon is real,
and the outgoing photon is virtual. This process has a similar hard-scale amplitude as DVCS
and its analysis could also offer a test for GPD universality. In DDVCS both the incoming and
outgoing photons are virtual, so DVCS and TCS are limiting cases of this process. Aside from
accessing different GPDs, these processes also offer access to different kinematic regions.

22



Chapter 3

Generalized parton distributions

We have so far given an overview of the experimental approach to studying the structure of
nucleons. We have come across several soft-scale functions which describe the distribution of
charge and momentum inside the nucleon. The first encounter with the properties of the proton
was through form factors, but these do not probe the inner structure of the proton. The simplest
description of the inner structure of the proton comes in the form of PDFs, which give us the
distribution of the longitudinal momentum of the proton into its constituents. PDFs allow us
to calculate structure functions, which give access to the 2D charge and magnetic momentum
distributions of the proton. Ideally, we would want a full 3D picture of the proton, as well as
how its spin and angular momentum are distributed among its constituents. One of the ways we
can uncover this is through GPDs. Before we give the formal definition of GPDs and all of their
relevant properties, we formalize the concept of factorization on the example of DIS, as well as
explain the expansion in terms of powers of 1/Q, called the operator product expansion.

3.1 Operator product expansion

A common mathematical structure in field theory is the product of operators that are spatially
separated, which we have seen in the amplitudes of DIS and DVCS, where a product of two
currents appears. This product is ill-defined as the separation between operators tends to zero.
But there is a systematic way of writing such a product of operators as a series of local operators,
where the coefficients of expansion depend on the distance between the operators and absorb
all the singularities of the product. Useful references on this matter are [19, 43, 44, 45].

Say that we have two operators separated by a distance x. Their product can be written as

O1(z)O2(0)→∑
n

Cn
12(z)On(0), (3.1)
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where the coefficients Cn
12(z), also called Wilson coefficients, are generally complex functions

that satisfy renormalization group equations. This is called the operator product expansion

(OPE) and it was originally proposed by Wilson [43].
We can apply OPE to the forward Compton tensor from DIS

Tµν(P,q) = i
∫

d4zeiq·z 〈P
∣∣T
{

jµ(z) jν(0)
}∣∣P
〉
, (3.2)

which contains a product of two currents with separation z. The OPE of the product of currents
is given as

iT
{

jµ(z) jν(0)
}
=

∞

∑
τ=2

∞

∑
n=0

Cτ,n,µν

(
z,µ2

F
)

zµ1 . . .zµnOτ
µ1...µn

(
µ2

F
)
, (3.3)

where n is the spin of the local operator, and µ2
F is the renormalization scale. The Wilson

coefficients scale as

Cτ,n (z)≈
(

1
|z|

)dCτ

, (3.4)

where the scaling power is given as

dCτ
= n−dO+2dJ =−τ+2dJ. (3.5)

Here we denote dJ as the mass dimension of the current, dO as the mass dimension of the local
operator, and τ is the so-called twist of the local operator. Twist is given by the dimension of
the local operator and its spin, and it governs the strength of the singularity of a term in OPE.
The lower the twist, the larger the singularity, which allows us to categorize the operators in
the expansion by the size of their contribution. We can also consider the expansion in terms of
powers of 1/Q2. The higher the momentum transfer in the process, the larger the suppression
of higher twist terms in the OPE.

We can now write the forward Compton tensor as

Tµν(P,q) = ∑
τ,n

C̃τ,n
(
Q2,µ2

F
)

Õτ
nµν

(
µ2

F
)( 1

xB

)n( 1
Q2

)τ/2−1

. (3.6)

By writing the cross section in terms of structure functions, we can connect them to the OPE
through the Compton tensor as

∫ 1

−1
dxxn−1F1

(
x,Q2)= C̃τ=2,n

(
Q2,µ2

F
)

Õτ=2
n
(
µ2

F
)
+O

(
1

Q4

)
, (3.7)

where we only keep the leading twist. If we transform the previous expression to obtain the
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structure function, and introduce∫
dyyn−1 f

(
y,µ2

F
)
= Õτ=2

n
(
µ2

F
)
, (3.8)∫

dzzn−1
σ
(
z,Q2,µ2

F
)
= C̃τ,n

(
Q2,µ2

F
)
, (3.9)

we can write
F1
(
x,Q2)=

∫ 1

x

dy
y

f
(
y,µ2

F
)

σ

(
x
y
,Q2,µ2

F

)
. (3.10)

Here we see that the Wilson coefficients give the hard-scale part of the process, i.e. the cross
section that describes the photon-parton scattering, and that the local operators give the soft-
scale part, which are PDFs in this case, denoted as f (y,µ2

F). We can see that in general structure
functions are convolutions of PDFs and the hard-scattering amplitude. Only at the leading
order of perturbation theory, where we ignore interactions between partons, can we deconvolute
expression (3.10).

OPE is useful because it naturally incorporates factorization at leading twist by connecting
Wilson coefficients to the short range part of the process, which is perturbative, and the local
operators to the long-range part, which are the PDFs and GPDs we are trying to uncover.

In our analysis of the three processes in this work, we only consider operators up to twist-2,
which in both DVCS and DVMP includes four GPDs, H, E, H̃ and Ẽ.

One more comment is in order. So far we have not discussed the fact that PDFs and GPDs,
as well as the hard-scattering coefficients depend on several energy scales, and the one that
is relevant to this discussion is the factorization scale µF . Several times we have mentioned
the factorization of the hard and soft part of a process, but it is not always clear where the
cut-off between these two scales is. The factorization scale is somewhat arbitrary and there-
fore the structure function, which is an observable, should not depend on it. It can however
make calculations easier if we chose a suitable factorization scale. This scale corresponds to the
renormalization scale of the bilocal operator present in cross section calculations, in the sense
that it represents the IR cut-off for the Wilson coefficients, and a UV cut-off for the distribu-
tions. It represents our ability to probe the structure of the proton because as it becomes higher,
we can resolve more virtual partons that are then included in the distributions. We typically
choose the renormalization scale to be close to the momentum transfer in the process, so that
the logarithmic corrections, which will be of the form ln

(
µ2

F/Q2)n, are not too large and do not
cause problems in the resummation. These large logarithms would appear due to the mismatch
of the scale at which the process is probed and the scale at which it is described.
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3.2 Formal definition

In this section we list all GPD properties relevant for this study. Reviews on GPD properties are
[46, 47].

In order to define GPDs, it is suitable to introduce light-cone coordinates. Using the standard
spacetime coordinates zµ = (z0,z1,z2,z3) and the Minkowski metric signature (+,−,−,−), we
can define

z± =
1√
2
(z0± z3), zµ

⊥ = (0,z1,z2,0). (3.11)

We can then decompose any 4-vector as

zµ = z+nµ + z−ñµ + zµ
⊥, (3.12)

where n and ñ are lightlike vectors which satisfy

n2 = ñ2 = 0, n · ñ = 1. (3.13)

We saw that in the calculation of cross sections for the aforementioned processes we have
bilocal operators, i.e. currents that flow from one spacetime point to another. At twist-2, the
relevant bilocal operators are

Oqq (z−1 ,z−2
)
= ψ

(
z−1
)

γ
+

ψ
(
z−2
)
, (3.14)

Õqq (z−1 ,z−2
)
= ψ

(
z−1
)

γ
+

γ
5
ψ
(
z−2
)
, (3.15)

Ogg (z−1 ,z−2
)
= F+µ

a
(
z−1
)

gµνFν+
b

(
z−2
)
, (3.16)

Õgg (z−1 ,z−2
)
= F+µ

a
(
z−1
)

iε⊥µνFν+
a
(
z−2
)
, (3.17)

where we introduced the transverse tensor

ε
αβ

T = ε
αβγδñγnδ, (3.18)

whose nonvanishing components are ε12
T = −ε21

T = 1, with the convention ε0123 = 1. The first
two operators describe quark subprocesses, and the second two gluon subprocesses. The first
and third operators are vector operators, and the second and last one are axial-vector operators.
In order to ensure gauge invariance, bilocal operators should include a Wilson line, but we will
mostly be working in the light-cone gauge, where the Wilson line is equal to unity.
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We also introduce a basis for spinor bilinears

hµ, eµ =
tνµ∆ν

MH1 +MH2

, h̃µ, ẽµ =− ∆µb̃
MH1 +MH2

, (3.19)

where

b =U (P2) U (P1) , b̃ =U (P2) γ
5U (P1) ,

hµ =U (P2)γ
µ U (P1) , h̃µ =U (P2)γ

µ
γ

5U (P1) ,

tµν =U (P2) iσµνU (P1) , t̃µν =U (P2) iσµν
γ

5U (P1) . (3.20)

Capitalized U denotes the hadron spinor, and MH1,2 denotes the mass of the incoming/outgoing
hadron.

We can now finally define twist-2 GPDs [21] in the quark sector

〈
P2
∣∣Oqq (−z−,z−

)∣∣P1
〉
=

∫ 1

−1
dxe−ixP+z− [h+Hq (x,ξ,∆2)+ e+Eq (x,ξ,∆2)] , (3.21)

〈
P2

∣∣∣Õqq (−z−,z−
)∣∣∣P1

〉
=

∫ 1

−1
dxe−ixP+z−

[
h̃+H̃q (x,ξ,∆2)+ ẽ+Ẽq (x,ξ,∆2)] , (3.22)

and in the gluon sector

〈
P2
∣∣Ogg (−z−,z−

)∣∣P1
〉
=

1
4

P+
∫ 1

−1
dxe−ixP+z− [h+HG (x,ξ,∆2)+ e+EG (x,ξ,∆2)] , (3.23)

〈
P2

∣∣∣Õgg (−z−,z−
)∣∣∣P1

〉
=

1
4

P+
∫ 1

−1
dxe−ixP+z−

[
h̃+H̃G (x,ξ,∆2)+ ẽ+ẼG (x,ξ,∆2)] . (3.24)

It should be noted that these are not the only twist-2 GPDs that exist, but are the only ones
that appear in DVCS and DVMP at the precision we will be studying them. All of the GPDs
defined in (3.21-3.24) are chiral-even, meaning that they describe processes where the helicity
of the struck parton does not change. There are also chiral-odd twist-2 GPDs, called transversity
GPDs, but we will not discuss them here and the reader is referred to [48].

We can introduce a target-independent, boost invariant form of GPDs. In the parity-even
sector we have

〈
P2
∣∣Oqq (−z−,z−

)∣∣P1
〉
= P+

∫ 1

−1
dxe−ixP+z−Fq (x,ξ,∆2) , (3.25)

〈
P2
∣∣Ogg (−z−,z−

)∣∣P1
〉
=

1
4
(
P+
)2

∫ 1

−1
dxe−ixP+z−Fg (x,ξ,∆2) , (3.26)
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where we introduce

FA (x,ξ,∆2)= h+

P+
HA (x,ξ,∆2)+ e+

P+
EA (x,ξ,∆2) , A ∈ {q,G}. (3.27)

and in the parity odd-sector

〈
P2

∣∣∣Õqq (−z−,z−
)∣∣∣P1

〉
= P+

∫ 1

−1
dxe−ixP·zFq (x,ξ,∆2) , (3.28)

〈
P2

∣∣∣Õgg (−z−,z−
)∣∣∣P1

〉
=

1
4
(
P+
)2

∫ 1

−1
dxe−ixP+z−Fg (x,ξ,∆2) , (3.29)

where we similarly introduce

FA (x,ξ,∆2)= h̃+

P+
H̃A (x,ξ,∆2)+ ẽ+

P+
ẼA (x,ξ,∆2) , A ∈ {q,G}. (3.30)

These GPDs can be written as Fourier transforms of matrix elements that describe the transition
of the hadron from the initial state to the final state through the quark or gluon channels

Fq (x,ξ,∆2)=
∫ dz−

2π
eixP+z− 〈P2 |Oqq(−z,z)|P1〉 , (3.31)

FG (x,ξ,∆2)= 4
P+

∫ dz−

2π
eixP+z− 〈P2 |Ogg(−z,z)|P1〉 . (3.32)

We can write analogous definitions for the parity-odd sector.

3.3 Partonic interpretation

We have seen in the previous chapter that GPDs appear in the description of the soft part of
some exclusive processes, but we did not clarify how they actually describe the structure of the
proton.

GPDs are functions of three variables, which we chose to be the Bjorken x, the skewness ξ

and the Mandelstam variable ∆2 = t. In light-cone coordinates, we have

x =
k+1 + k+2

P+
(3.33)

ξ =−∆+

P+
, (3.34)

where k1,2 are the struck parton momenta before and after the scattering. In the frame where
the hadron moves at near light-speed, its plus momentum component becomes very large and
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proportional to the energy, whereas the minus component tends to zero. We therefore typically
denote the plus component of the momentum as the forward or longitudinal, since it roughly
coincides with the 3-momentum. This means that we can express the forward momenta of the
struck parton as

k+1,2 =
x±ξ

2
P+. (3.35)

For DVCS and DVMP, the variable x takes values from −1 to 1 in order to account for anti-
quarks, for which x < 0. This means that GPDs are defined for (x,ξ)∈ [−1,1]2 [49]. Therefore,
the forward momenta of the struck parton can be either positive or negative, and we generally
recognize three regions:

• if x≥ |ξ|, then x±ξ are positive, which means that the struck parton is a quark;

• if x≤−|ξ|, then x±ξ are negative, which means that the struck parton is an antiquark;

• if −|ξ| ≤ x≤ |ξ|, then x+ξ is positive and x−ξ is negative, which means that the parton
carrying the forward momentum x+ ξ is a quark, and the parton carrying the forward
momentum x−ξ is an antiquark, and this process can be interpreted as an emission of a
quark-antiquark pair which annihilates into a photon or binds into a meson.

The first two regions are called DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) regions
[50, 51, 52, 53], and the last region is called the ERBL (Efremov-Radyushkin-Brodsky-Lepage)
region [54, 55]. These regions are governed by different QCD evolution equations for GPDs.
An example of these regions is given in figure 3.1 below.

N N′

x+ξ

2
P+ x−ξ

2
P+

N N′

ξ− x
2

P+
x+ξ

2
P+

N N′

ξ− x
2

P+ −x−ξ

2
P+

a) ξ≤ x≤ 1 b) −ξ≤ x≤ ξ c) −1≤ x≤−ξ

Figure 3.1: Partonic definition of GPDs for various values of x and ξ ≥ 0. In a) the struck parton is a
quark which is emitted and reabsorbed by the hadron. In b) a quark-antiquark pair are emitted. In c) the
struck parton is an antiquark which is also emitted and reabsorbed by the hadron.
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In the DGLAP region, GPDs are related to PDFs because they also depict a parton being
struck by a virtual photon, the only difference being that this parton is reabsorbed by the hardon.
There is no clear connection between GPDs and PDFs in the ERBL region.

Since the momenta of the struck parton and hadron before and after scattering are not the
same, we cannot interpret GPDs as a probability distribution in the same way we can PDFs.
GPDs represent the interference between amplitudes that describe different states of a nucleon,
which is evident in the light-cone wave function representation of GPDs [56].

The point x =±ξ, called the crossover line, warrants special consideration. This is the point
where the DGLAP and ERBL regions meet and where one of the partons, either in the initial
or the final hadron, has vanishing plus-momentum. This offers a unique insight into partons
with small momentum, which is different than the PDF description at small x. At LO in αS,
imaginary parts of both DVCS and DVMP amplitudes probe GPDs at x = ±ξ. Care must be
taken that at such a configuration the factorization theorems still hold, for which purpose we
need continuous GPDs. It was shown in [24] that GPDs can be decomposed into a part that is
analytic at x = ±ξ, and a part that is not analytic, but zero at x = ±ξ. There has been some
studies that have found discontinuous first derivatives of GPDs, such as [57].

3.4 Basic properties

3.4.1 Symmetry properties

In this section we discuss symmetry properties in the x and ξ variables.
Since x < 0 is introduced to incorporate antiparticle partons, and since gluons are their own

antiparticles, we expect HG and EG to be even in x, and H̃G and ẼG to be odd in x.
We cannot say the same for quarks, so we introduce charge even and odd functions

Fq(±) (x,ξ,∆2)≡ Fq (x,ξ,∆2)∓Fq (−x,ξ,∆2) , F ∈ {H,E}, (3.36)

Fq(±) (x,ξ,∆2)≡ Fq (x,ξ,∆2)±Fq (−x,ξ,∆2) , F ∈ {H̃, Ẽ}, (3.37)

which satisfy

Fq(±) (−x,ξ,∆2)=∓Fq(+)
(
x,ξ,∆2) , F ∈ {H,E}, (3.38)

Fq(±) (−x,ξ,∆2)=±Fq(+)
(
x,ξ,∆2) , F ∈ {H̃, Ẽ}. (3.39)

The charge-even GPDs correspond to an exchange of charge conjugation C = +1 in the t-
channel, and are sometimes referred to as singlet combinations. These GPDs appear in DVCS
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and vector meson DVMP. The charge-odd GPDs correspond to an exchange of charge conjuga-
tion C =−1 in the t-channel, and are sometimes referred to as non-singlet or valence combina-
tions. They appear in the production of pseudoscalar mesons.

Since GPDs are defined through matrix elements that describe the transition from the initial
to a final hadron state, they should be time-reversal invariant and hermitic. Time reversal gives

FA(x,−ξ, t) = FA(x,ξ, t), A ∈ {q,G}, F ∈ {H,E, H̃, Ẽ}, (3.40)

and hermiticity gives

[FA(x,−ξ, t)]∗ = FA(x,ξ, t), A ∈ {q,G}, F ∈ {H,E, H̃, Ẽ}. (3.41)

These two properties imply that all GPDs should be real-valued functions. Skewness symme-
try can be explained by noting that time reversal exchanges the initial and final states, which
changes the sign of the skewness because it changes the sign of the vector ∆.

3.4.2 Forward limit

In the case where P1 = P2, we have t = 0 and ξ = 0, which is called the forward limit. In this
limit, GPDs reduce to PDFs. Formally, only GPDs H and H̃ survive in this limit, because E and
Ẽ are multiplied by ∆ in their definition. This means that these two types of GPDs cannot be
accessed in processes where the cross section is calculated utilizing the optical theorem, only
from processes where there is a momentum transfer onto the target, i.e. where ∆ 6= 0.

We have for the quark sector

Hq (x,ξ = 0,∆2 = 0
)
= f q(x) = q(x)θ(x)−q(−x)θ(−x), (3.42)

H̃q (x,ξ = 0,∆2 = 0
)
= ∆ f q(x) = ∆q(x)θ(x)+∆q(−x)θ(−x), (3.43)

where ∆ f denotes polarized PDFs. For example, polarized quark distributions are defined as

∆q(x) = q↑(x)−q↓(x), (3.44)

which represents the difference between quarks whose helicity is parallel to that of the nucleon,
and quarks whose helicity is anti-parallel to that of the nucleon.
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For gluon GPDs we have in the forward limit

HG (x,ξ = 0,∆2 = 0
)
= f G(x) = xg(x)θ(x)− xg(−x)θ(−x), (3.45)

H̃G (x,ξ = 0,∆2 = 0
)
= ∆ f G(x) = x∆g(x)θ(x)+ x∆g(−x)θ(−x). (3.46)

Gluon PDFs inherit the x symmetry from gluon GPDs. Quark PDFs, like their corresponding
GPDs, do not have definite parity so we define

Hq(±)(x,0,0) = f q(±)(x) = f q(x)∓ f q(−x), f q(±)(−x) =∓ f q(±)(x), (3.47)

H̃q(±)(x,0,0) = ∆ f q(±)(x) = ∆ f q(x)±∆ f q(−x), ∆ f q(±)(−x) =± f q(±)(x). (3.48)

Another useful decomposition is into the valence and sea quark contributions. This is more
intuitively done in the case of PDFs, which then easily generalize for GPDs. We have

f q(x) = f q
val(x)+ f q

sea(x), ∆ f q(x) = ∆ f q
val(x)+∆ f q

sea(x), (3.49)

where the valence and sea quark contributions are defined as

f q
val(x) = [q(x)−q(x)]θ(x), ∆ f q

val(x) = [∆q(x)−∆q(x)]θ(x), (3.50)

f q
sea(x) = q(x)θ(x)−q(−x)θ(−x), ∆ f q

sea(x) = ∆q(x)θ(x)+∆q(−x)θ(−x). (3.51)

Since all of the sea quarks are created in quark-antiquark pairs, the difference between the total
quark and antiquark distributions cancels out all sea quarks, if we assume that qsea = qsea. All
antiquarks in nucleons are from the sea, so we can use them to define the distribution for sea
quarks x > 0 or antiquarks x < 0. In the context of charge definite PDFs, we can write

f q(+)(x) = f q
val (x)+2 f q

sea (x), ∆ f q(+)(x) = ∆ f q
val (x)+2∆ f q

sea (x), (3.52)

f q(−)(x) = f q
val (x), ∆ f q(−)(x) = ∆ f q

val (x). (3.53)

This is why we said that the charge odd distribution is called the valence distribution.

3.4.3 Link to elastic form factors

We have given the definition of elastic form factors in (2.4). We can define EFFs for each quark
flavor as

〈p2 |ψq(z)γµ
ψ

q(z)| p1〉=U (P2)

[
Fq

1 (t)γ
µ +Fq

2 (t)
iσµν∆ν

2M

]
U (P1) , (3.54)
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where the Pauli and Dirac form factors F1(t) and F2(t) are given as

F1(t) = ∑
q

eqFq
1 (t), F2(t) = ∑

q
eqFq

2 (t). (3.55)

In order to connect the EFFs to GPDs, we start from the definition of GPDs (3.31), and integrate
it over x

∫
∞

−∞

dx
1

P+
U(P2)

(
Hq (x,ξ,∆2)

γ
++

e+

P+
Eq (x,ξ,∆2) iσ+µ∆µ

2M

)
U(P1)

=
∫

∞

−∞

dx
∫ dz−

2π
eixP+z− 〈P2

∣∣ψ(−z)γ+ψ(z)
∣∣P1
〉

=
∫ dz−

2π

(∫
∞

−∞

dxeixP+z−
)

︸ ︷︷ ︸
2πδ(P+z−)

〈
P2
∣∣ψ(−z)γ+ψ(z)

∣∣P1
〉

=
∫ dz−

2π

2π

P+
δ(z−)

〈
P2
∣∣ψ(−z)γ+ψ(z)

∣∣P1
〉

=
1

P+

〈
P2
∣∣ψ(0)γ+ψ(0)

∣∣P1
〉
. (3.56)

We used the definition of the Dirac delta distribution δ, as well as the fact that GPDs are only
non-zero for |x| ≤ 1, so we can integrate over x ∈ R. We have also implicitly assumed that P+

is positive, which is always the case for on-shell particles. We have obtained a local operator
on the RHS, like in the definition of EFFs, so we can make the identification

∫ 1

−1
dxHq(x,ξ, t) = Fq

1 (t),
∫ 1

−1
dxEq(x,ξ, t) = Fq

2 (t). (3.57)

The previous result is ξ independent, which is due to Lorentz invariance. Integration over x

removes any dependence on the light-cone direction in which the hadron is moving, and this
direction defines ξ.

3.4.4 Domain and positivity bounds

The variables x and ξ both have the support [−1,1]. But since ξ is connected to ∆, the specific
kinematics of a process limit the value of ξ. Skewness is bound by the value of t as

|ξ| ≤
√−t√
−t +4M2

. (3.58)
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As we will see in further chapters, GPDs are connected to PDFs, and this connection sets
an upper bound on GPDs, which stems from the norm on the Hilbert space because we expect
some sort of probabilistic behavior. Without going into detail, we quote the bound for parity
even quark GPDs from [58]

∣∣∣∣
√

1−ξ2
(

Hq− ξ2

1−ξ2 Eq
)∣∣∣∣≤

1
2

(√
(q+∆q)in (q+∆q)out

+
√

(q−∆q)in (q−∆q)out

)
, (3.59)

∣∣∣∣
√

t0− t
2m

Eq
∣∣∣∣≤

1
2

(√
(q+∆q)in (q−∆q)out

+
√

(q−∆q)in (q+∆q)out

)
, (3.60)

where we used the notation (q+∆q)in = q(xin)+∆q(xin) and

xin =
x+ξ

1+ξ
, (3.61)

xout =
x−ξ

1−ξ
. (3.62)

Here the maximum value of t at a given ξ is defined as

t0 =−
4ξ2m2

1−ξ2 . (3.63)

3.4.5 Distribution amplitudes

Distribution amplitudes (DAs) describe the transition from vacuum to a hadron and vice versa.
If we set either the initial or the final momentum in GPDs to zero, we obtain DAs [59]

〈
P
∣∣ψ̄
(
z−1
)

γ
+

ψ
(
z−2
)∣∣0
〉
=−iP+ fM

∫ 1

0
dveiP+(vz−1 +v̄x−2 )ϕ(v). (3.64)
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Since we will be dealing with vector mesons, their DAs are given as

P+ fρ+

∫ 1

0
dveiP·(vz−1 +v̄z−2 )ϕρ+(v) =

〈
ρ
+
L (P)

∣∣ū
(
z−1
)

γ
+d
(
z−2
)∣∣0
〉
, (3.65)

P+ fρ0

∫ 1

0
dveiP·(vz−1 +v̄z−2 )ϕρ0(v) =

〈
ρ

0
L(P)

∣∣∣∣
1√
2

[
ū
(
z−1
)

γ
+u
(
z−2
)
− d̄
(
z−1
)

γ
+d
(
z−2
)]∣∣∣∣0

〉
,

(3.66)

P+ fω0

∫ 1

0
dveiP·(vz−1 +v̄z−2 )ϕω0(v) =

〈
ω

0
L(P)

∣∣∣∣
1√
2

[
ū
(
z−1
)

γ
+u
(
z−2
)
+ d̄
(
z−1
)

γ
+d
(
z−2
)]∣∣∣∣0

〉
,

(3.67)

P+ fφ

∫ 1

0
dveiP·(vz−1 +v̄z−2 )ϕφ(v) =

〈
φL(P)

∣∣s̄
(
z−1
)

γ
+s
(
z−2
)∣∣0
〉
. (3.68)

The evolution of DAs is given by the same ERBL evolution equations of GPDs.

3.4.6 Polynomiality

In this part we are interested in the polynomiality of GPDs in the skewness parameter ξ. We
will study the operators that enter at the twist-2 level, as well as the Mellin moment of GPDs.
Mellin moments are generally defined as

Fj =
∫ 1

−1
dxx jF(x). (3.69)

We have seen an example of this with EFFs, which are given as first moments of GPDs.
We start with writing the bi-local operators that appear in the definitions of GPDs in terms

of OPE

Oµµ1...µn
q = Sq̄γ

µi
↔
D

µ1
. . . i

↔
D

µn
q, (3.70)

Õµµ1...µn
q = Sq̄γ

µ
γ5i
↔
D

µ1
. . . i

↔
D

µn
q, (3.71)

Oµµ1...µnν

G = SFµαi
↔
D

µ1
. . . i

↔
D

µn
Fα

ν, (3.72)

Õµµ1...µnν

G = S(−i)Fµαi
↔
D

µ1
. . . i

↔
D

µn
F̃α

ν, (3.73)

where S denotes the symmetrization of all Lorentz indices and subtraction of trace terms. The
covariant left-right derivative is defined as

↔
D=

→
D−

←
D. To see how this is connected to the Mellin

moments of GPDs, we perform a similar calculation as with the connection between GPDs and
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EFFs, we just multiply the GPDs with xn and then take the integral over x

∫
∞

−∞

dxxnU(P2)

(
Hq (x,ξ,∆2)

γ
++

e+

P+
Eq (x,ξ,∆2) iσ+µ∆µ

2M

)
U(P1)

= (P+)n+1
∫

∞

−∞

dxxn
∫ dz−

2π
eixP+z− 〈P2

∣∣ψ(−z)γ+ψ(z)
∣∣P1
〉

= P+
∫ dz−

2π

∫
∞

−∞

dx
(

i
d

dz−

)n

eixP+z− 〈P2
∣∣ψ(−z)γ+ψ(z)

∣∣P1
〉

=

〈
P2

∣∣∣∣ψ(0)γ+
(

i
↔
∂
+

)n

ψ(0)
∣∣∣∣P1

〉
. (3.74)

Since we are working in the light-cone gauge and there is no Wilson line, we obtained a reg-
ular derivative in the previous expression. For a regular gauge, we need to replace the partial
derivative with a covariant derivative.

The matrix element of the quark parity-even twist-2 operators can be written in terms of
form factors

〈
P2
∣∣Oµµ1...µn

q (0)
∣∣P1
〉
= SU (P2)γ

µU(P1)
n

∑
i=0
even

Aq
n+1,i(t)∆

µ1 . . .∆µiPµi+1 . . .Pµn

+SU (P2)
iσµα∆α

2M
U(P1)

n

∑
i=0
even

Bq
n+1,i(t)∆

µ1 . . .∆µiPµi+1 . . .Pµn

+S
∆µ

M
U (P2)U(P1) mod (n,2)Cq

n+1(t)∆
µ1 . . .∆µn , (3.75)

where mod (n,2) is 1 for odd n and zero for even n. This was originally proposed in [60], but
we use the conventions from [46].The last term can be written in terms of bilinears that enter the
definition of GPDs using Gordon’s identity. We connect these form factors to Mellin momenta
of GPDs as ∫ +1

−1
dxxnHq(x,ξ, t) =

n

∑
i=0, even

ξ
iAq

n+1,i(t)+ mod (n,2)ξn+1Cq
n+1(t), (3.76)

∫ +1

−1
dxxnEq(x,ξ, t) =

n

∑
i=0, even

ξ
iBq

n+1,i(t)− mod (n,2)ξn+1Cq
n+1(t). (3.77)

We can see that the n-th momentum of quark GPDs is given as a polynomial in ξ of order n+1
if n is odd, or order n if n is even. A similar definition can be written for gluon GPDs, with the
only difference being in the fact that the n− 1 momentum is a polynomial in ξ of order n+ 1.
This is again a consequence of Lorentz invariance. We can perform a similar decomposition for
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gluon GPDs and all parity-odd GPDs. This shows that the n−1 gluon moment is the same as
the n-th quark moment, which means that quark and gluon operators mix under evolution.

Expressions for the other twist-2 GPDs can be obtained analogously, and can be found in
[46, 47].

3.5 Energy-momentum tensor

A remarkable feature of GPDs is that they are directly connected to the QCD energy-momentum
tensor (EMT). In order to see this, we can observe the quark contribution to the Belinfante EMT

T µν
q = qγ

(µi
↔
D ν)q. (3.78)

Here t(µν) = (tµν + tνµ)/2 denotes symmetrization of tensors. This expression is the leading-
twist operator in the non-local matrix element, as seen in (3.70). It can be shown [61, 62, 63]
that the EMT can be decomposed using the same form factors as the ones that enter the Mellin
moments of GPDs

〈P2 |T µν
a (0)|P1〉=U (P2)

{
PµPν

M
Aa(t)+

∆µ∆ν−ξµν∆2

M
Ca(t)+Mξ

µνCa
(t) (3.79)

+
P(µiσν)ρ∆ρ

2M
[Aa(t)+Ba(t)]+

P[µiσν]ρ∆ρ

2M
Da

GFF(t)
}

U (P1) , a ∈ {q,G},

where t [µν] = (tµν− tνµ)/2 denotes antisymmetrization of tensors. Here A, B and C coincide
with the form factors A2,0, B2,0 and C2 given in (3.76) and (3.77). These form factors are called
gravitational form factors (GFFs) and they are given in terms of moments of GPDs as [47]

∫ 1

−1
dxxHq(x,ξ, t) = Aq(t)+ξ

2Cq(t), (3.80)∫ 1

−1
dxxEq(x,ξ, t) = Bq(t)−ξ

2Cq(t), (3.81)

∑
q

∫ 1

−1
dxH̃q(x,ξ, t) =−∑

q
Dq

GFF(t), (3.82)

∫ 1

−1
dxHG(x,ξ, t) = AG(t)+4ξ

2CG(t), (3.83)∫ 1

−1
dxEG(x,ξ, t) = BG(t)−4ξ

2CG(t), (3.84)

DG
GFF(t) = 0. (3.85)
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We cannot access C in terms of twist-2 GPDs [62, 64, 65].

3.5.1 Sum rules and the spin puzzle

Sum rules refer to various integrals of distributions which can give us additional insight into
their properties. We can intuitively understand sum rules for PDFs, since we understand them
as number densities for partons inside the nucleon. We know that the proton has 2 up valence
quarks and one down, so the sum rules for valence PDFs give

∫ 1

0
dxup

val(x) = 2,
∫ 1

0
dxdp

val(x)x = 1. (3.86)

Structure functions also satisfy certain sum rules, which experimentally showed that only 20%
of the spin of the proton comes from quark spin. PDFs and structure functions cannot tell us
how the spin is distributed among the spins and orbital angular momenta of its constituents,
which motivates us to study more complex distributions, such as GPDs.

Another sum rule is the statement that all fractions of momenta of all partons inside the
nucleon have to add up to one

1 = ∑
a=q,q̄,G

∫ 1

0
dxxa(x). (3.87)

If we observe the highest contribution in terms of the power of ξ in the Mellin moments of
GPDs H and E, we can see that they are the same up to a sign. Therefore, the sum of n-th
moments of these two GPDs is a polynomial of degree n. The addition of their second moments
gives

Aq(t)+Bq(t) =
∫ 1

−1
dxx [Hq(x,ξ, t)+Eq(x,ξ, t)] , (3.88)

AG(t)+BG(t) =
∫ 1

0
dx
[
HG(x,ξ, t)+EG(x,ξ, t)

]
(3.89)

The reason we observe this is because we can connect these moments with the spin of the
nucleon.

The angular momentum density operator can be written in terms of the EMT as

Mαµν = T ανxµ−T αµxν, (3.90)
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where the angular momentum operator in the z direction is given as∫
d3xM012(x). (3.91)

Given that the angular momentum can be expressed through the EMT, which in turn is con-
nected to Mellin moments of GPDs, we can connect GPDs to the spin of the nucleon through
Ji’s sum rule [66]

〈
Jq

3
〉
=

1
2
[Aq(0)+Bq(0)] ,

〈
JG

3

〉
=

1
2

[
AG(0)+BG(0)

]
. (3.92)

This sum rule is similar to the sum rule for PDFs (3.87). The decomposition between quark and
gluon spin and orbital angular momentum is renormalization scale and scheme dependent. Dif-
ferent decompositions have been proposed by Ji, as well as Jaffe and Manohar in collaboration
[67, 68, 60].

3.5.2 Hadron tomography

Due to the off-forward nature of processes which feature GPDs, we cannot interpret GPDs as
probability distributions in the same way we can interpret PDFs. But there is a way to obtain
a probabilistic representation in the case where ξ = 0. If skewness is zero, then t = −∆2

⊥. If
we perform a Fourier transform with respect to ∆⊥, we obtain the so-called impact parameter
distribution (IPD) [69, 70]

q(x,b⊥) =
∫ d2∆⊥

(2π)2 e−ib⊥·∆⊥Hq (x,0, t =−∆
2
⊥
)
, (3.93)

where b⊥ is the impact parameter and is the Fourier conjugate variable to ∆⊥. Since ξ = 0,
the IPD can be interpreted as the number density of quarks of any helicity with a longitudinal
momentum fraction x an the transverse distance b⊥ from the center of plus-momentum of the
hadron. This means that GPDs allow for a 3D picture of the hadron in a hybrid space, one
component being the longitudinal momentum and the other two being the position in the plane
transversal to the direction of motion of the hadron. These distributions can be difficult to access
from experiments because we cannot access a large range of |t| values, since for higher values
of |t| in comparison to Q2, the twist-2 approximation tends to fall apart.
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3.5.3 Evolution of GPDs

As we have mentioned in our discussion of PDFs, they depend on the momentum transfer that
the virtual photon carries, which is a reflection of the fact that our ability to probe the structure
of a hadron depends on the wavefunction of our probe. The higher the energy of the virtual
photon, the higher the resolution, which means that at some point the hadron stops looking like
a collection of valence quarks. Instead, we start to see more and more processes that occur
between the valence quarks, such as emission of gluons, which then in turn radiate additional
gluons or quark-antiquark pairs. This results in a sea of quarks, antiquarks and gluons inside
a hadron. Luckily, we know how this dependence on the momentum transfer behaves through
evolution equations, which we are able to calculate perturbatively.

We can take again the example of PDFs. At leading order, we can have a struck quark that
emits a gluon, a struck gluon that emits a quark-antiquark pair, or a struck gluon that splits into
two gluons. Then we can write the DGLAP evolution equations for PDFs

d
dlnµ2 g(x,µ2) =

αS
(
µ2)

2π

∫ 1

x

dz
z

{
Pg←q(z)∑

q

[
q
(

x
z
,µ2
)
+q
(

x
z
,µ2
)]

(3.94)

+Pg←g(z)g
(

x
z
,µ2
)}

, (3.95)

d
dlnµ2 q(x,µ2) =

αS
(
µ2)

2π

∫ 1

x

dz
z

{
Pq←q(z)q

(
x
z
,µ2
)
+Pq←g(z)g

(
x
z
,µ2
)}

, (3.96)

d
dlnµ2 q(x,µ2) =

αS
(
µ2)

2π

∫ 1

x

dz
z

{
Pq←q(z)q

(
x
z
,µ2
)
+Pq←g(z)g

(
x
z
,µ2
)}

. (3.97)

Here the functions P are the splitting functions and they represent the probability that a parton
would emit another parton. They are labeled so that Pf←i describes a parton i which emits a
parton f .

For GPDs, we can generalize these evolution equations to obtain at LO

1
xpa

∂Ha (x,ξ, t,µ2)

∂ log(µ2)
= αS

(
µ2)

∑
b∈{q,G}

∫ 1

x

dz
ξ

Kab,(0)
(

z
ξ
,
ξ

x

)
Hb (z,ξ, t,µ2)

zpb
, a ∈ {q,G},

(3.98)
where pq = 0 and pG = 1. We can see that, just like for PDFs, there is a case of mixing of
different parton GPDs in the evolution equations. In the limit ξ = 0 the equation (3.98) reduces
to the DGLAP evolution equations of PDFs, whereas in the limit ξ→ 1 it reduces to ERBL
evolution equations.

In order to avoid this, we introduce the evolution basis as irreducible multiplets of SU(N f )
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group, where N f is the number of flavors we take into consideration, which is four in our case.
This basis consists of flavor non-singlet multiplets (F3,F8, . . . ,FN f−1), and a flavor singlet
multiplet F0. This are connected to the quark GPDs as

F0 = Fu +Fd +Fs +Fc, (3.99)

F3 = Fu−Fd, (3.100)

F8 = Fu +Fd−2Fs, (3.101)

F15 = Fu +Fd +Fs−3Fc. (3.102)

An arbitrary GPD can be decomposed into these two bases as

F = ĉuFu + ĉdFd + ĉsFs + ĉcFc (3.103)

= ĉ0F0 + ĉ3F3 + ĉ8F8 + ĉ15F15, (3.104)

where the coefficients are connected as

ĉ0 =
1
4

(
ĉu + ĉd + ĉs + ĉc

)
, (3.105)

ĉ3 =
1
2

(
ĉu− ĉd

)
, (3.106)

ĉ8 =
1
6

(
ĉu + ĉd−2ĉs

)
, (3.107)

ĉ15 =
1

12

(
ĉu + ĉd + ĉs−3ĉc

)
. (3.108)

This decomposition is the same for charge even and charge odd combinations of GPDs. When
we introduced charge even and odd GPDs in chapter (3.4.1), we referred to them as non-singlet
and singlet combinations. We can shed light onto this by connecting the evolution basis to the
partonic basis, which we can write as a vector

(
Fuval Fdval Fsea FG

)
. (3.109)

We expect the sea quark and anti-quark contributions to be the same for each flavor, and we
only consider DVCS and DVMP off a proton or neutron, so we only need up and down valence
contributions. The charge-positive singlet GPD is defined as

F0(+) = ∑
q

Fq(+) = Fuval +Fdval +Fsea. (3.110)
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This component together with the gluon GPD forms a singlet GPD vector

F Σ =

(
F0(+)

FG

)
. (3.111)

The charge-odd component does not have sea quark contributions, so we can write it as

Fq(−) = Fqval, (3.112)

and it does not mix with gluon GPDs, since gluons are charge even.
It is worth noting that any dependence on the renormalization/factorization scale µ should

cancel between the hard-scattering amplitudes and GPDs, since their convolutions make up
physical observables that cannot depend on any arbitrary scales. Evolution equations for PDFs
and GPDs can be understood as renormalization group equations for the corresponding light-
cone operators.

3.5.4 Other parton distributions

The goal of studying various parton distributions is to gain insight into the phase space of the
quarks and gluons inside hadrons. The study of the proton started with elastic scattering and
finding its total charge. But to uncover its internal structure, the first step was in the form of
PDFs, which allow us to calculate structure functions and two-dimensional charge and mag-
netic momentum distributions. The next functions that we studied are the GPDs, which depend
on three variables, and reduce to PDFs when ∆ = 0 or form factors when integrated over x. By
Fourier transforming GPDs with respect to ∆⊥, we obtain impact parameter distributions, which
give the probability of finding a parton with longitudinal momentum fraction x and distance
from the center of plus-momentum b⊥. We could equivalently be interested in the distribution
of partons with respect to their longitudinal momentum fraction x and perpendicular momentum
k⊥. This is what is given by transverse momentum dependent distribution functions (TMDs)
[71, 72], which, unlike GPDs, are probability distributions and do not need to be further trans-
formed. They reduce into PDFs when integrated over k2

⊥ and they can give insight into the
orbital angular momentum of partons, as well as spin-orbit correlations. When integrated over
x, they give transverse-momentum dependent spin densities (TMSDs). TMSDs and form fac-
tors give the total charge of the nucleon by integrating over k⊥ (TMSDs) or in the forward limit
(FFs). A comprehensive review on TMDs can be found here [73].

GPDs and TMDs both yield 3D probability distributions for partons inside nucleons. But
in order to obtain the full picture of the structure of a nucleon, we need to go a step further, to
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the quantum mechanical Wigner quasiprobability distribution [74, 75, 47]. It is a semi-classical
probability in the sense that it is not positive definite for states that do not have a classical
interpretation [76]. Of course, the standard quantum mechanical Wigner distribution needs a
field theory treatment. For asymmetric initial and final nucleon states we can define

Ŵ Γ

Λ,Λ′ (b⊥,k⊥,x) =
1
2

∫ d4z
(2π)4 eik·z

〈
P2,Λ2

∣∣∣∣ψ̄
(
−1

2
z
)

ΓW
(
−1

2
z,

1
2

z
∣∣∣∣n
)

ψ

(
1
2

z
)∣∣∣∣P1,Λ1

〉
,

(3.113)
where Λ1,2 are the initial and final helicities of the nucleon, and Γ is an operator from the
standard basis {1,γ5,γ

µ,γν,σµν,σµνγ5} This generalized parton correlation function depicts a
quark created at −z/2 and annihilated at z/2. This means that it propagates a finite distance
before rehadronizing, which allows us to access its momentum. W is the Wilson line between
these two light-cone points and it ensures color gauge invariance.

The functions that reduce into GPDs and TMDs are Fourier transforms of (3.113)

W Γ

Λ,Λ′ (∆⊥,k⊥,x) =
∫

d2b⊥e−i∆⊥·b⊥Ŵ Γ

Λ,Λ′ (b⊥,k⊥,x) (3.114)

and are called generalized transverse momentum dependent parton distributions (GTMDs) [77,
78, 79, 80, 81]. The connections between all of these distributions are given in figure (3.2)
below.
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GTMD

GPD

FF

TMD

TMSD

PDF

TMFF

Charge

→ Δ=0

∫ →   d k2
⊥

∫ →   dx

Figure 3.2: Hierarchy of parton distributions. Inspired by [82].

The kinematic dependences of the aforementioned distributions are depicted schematically
in figure 3.3 below.
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TMDs

PDFs

Wigner distributions

Fourier transforms 
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of form factors

kT

xP

xP

bTxP
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Figure 3.3: Depiction of kinematic dependences of various distributions.

3.5.5 Dispersion relations

Dispersion relations come from analyticity and causality considerations of Compton form fac-
tors and they relate their real and imaginary part [83, 84]. We give an example for the CFF
H

ReH
(
ξ, t,Q2)= 1

π
P.V.

∫ 1

0
dξ
′ImH

(
ξ
′, t,Q2)

(
1

ξ−ξ′
− 1

ξ+ξ′

)
+∆H

(
t,Q2) , (3.115)

where ∆H(t,Q2) is a subtraction constant that does not depend on the skewness. Expression
(3.115) is formally a dispersion relation with one subtraction, referring to the subtraction con-
stant ∆, which does not depend on the skewness. This subtraction constant is necessary to
cancel out divergences at the point ξ = 0 and x = 0 that occur in CFFs. It is worth noting that
the integral over ξ′ goes from 0 to 1, but skewness is bounded by (3.58) and for most exper-
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imental setups this means that the integral (3.115) will go out of the physical domain where
CFFs are defined. Therefore, analytic continuation is necessary in order to extract knowledge
on the subtraction constant.

3.6 Status of experiments

The first experiments that probed the inner structure of the proton were performed at SLAC
in collaboration with MIT [14] in 1969, which unequivocally showed that the proton has an
underlying structure. Since then, many experiments have been conducted at SLAC, CERN and
FNAL, using electron, muon and neutrino beams and a fixed target. Through technological ad-
vances, higher beam energies, higher Q2 and lower x were accomplished. Low x and diffraction
studies have been conducted at HERA by the H1 and ZEUS collaborations. Even though DIS
is not the focus of this work, some DIS measurements are still used for our analysis, such as the
H1 and ZEUS measurements of the structure function F2, because GPDs reduce to PDFs in the
forward limit.

First DVCS experiments were conducted at HERA and JLab. H1 and ZEUS collaborations
used a collider setup, and just like for DIS, they led studies into the low-x and high-Q2 regions.
They were able to accomplish x≈ 10−4 and Q2 ≈ 100 GeV2 kinematics, but unfortunately with
low statistics. DVMP was also studied by these two collaborations at similar kinematics. The
HERMES collaboration at HERA measured DVCS at intermediate kinematics in a fixed-target
setup, with x ranging between 0.04 and 0.1 and Q2 going up to 7 GeV2. HERA, the only
electron-proton collider to date, was shut down in 2007.

The COMPASS collaboration at CERN uses a fixed-target setup with positively and nega-
tively charged muons, and offers a kinematic coverage between that of HERMES and H1/ZEUS
collaborations.

At JLab, CLAS and Hall A collaborations also use a fixed-target setup, and their measure-
ments are taken at higher x and lower Q2, namely their x ranges between 0.1 and 0.5, and their
Q2 goes up to 4 GeV2. They are currently at the stage of a new 12 GeV beam upgrade and new
measurements with increased precision are being published.

The importance of studying the structure of the proton prompted several new experimental
programs, such as the future electron-ion collider (EIC), which will offer a higher luminosity
than currently existing experiments, in the region of small x and large Q2, similarly to the HERA
collider [85, 86]. Other projects are the Chinese electron-ion collider (EIcC) [87, 88] and the
hadron-electron collider (LHeC) [89].

Most of the current DVCS measurements are depicted in figure 3.4 below, as well as the
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promised EIC kinematics.

Q2=100 GeV 2
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Figure 3.4: Kinematic coverage of DVCS measurements. Taken from [86].

Similar programs were conducted for DVMP measurements. Again, more or less in the
same kinematics as DVCS, H1, ZEUS, HERMES, COMPASS and CLAS collaborations mea-
sured the production of various vector mesons, namely ρ0, φ, ω and J/ψ. HERMES, CLAS and
Hall C measured also the production of pseudoscalar mesons π0 and π+ [90, 91, 92, 93].

3.6.1 Observables

Using the experimental data for the differential cross section, total cross section and various
asymmetries for proton and neutron DVCS, we access the twist-two Compton form factors,
H, E , H̃, Ẽ . The asymmetries are generally denoted as ABT, where the first letter denotes the
polarization of the beam, and the second the polarization of the target, and they can have values
U for unpolarized, L for longitudinally polarized and T for transversally polarized.

One of these observables is the beam spin asymmetry, denoted BSA or ALU, where the beam
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is longitudinally polarized, and the target is unpolarized. It is defined as

ALU(φ) =
dσ↑(φ)−dσ↓(φ)
dσ↑(φ)+dσ↓(φ)

∝
α′ sinφ

1+ γcosφ
, (3.116)

where

α
′ =

xB

y

(
1+ ε

2)2 sI1
cBH

0
, γ =

ycBH
1 + xB

(
1+ ε2)2 cI1

ycBH
0

. (3.117)

Here σ↑ denotes the cross section where the beam is polarized in the direction of the flow of
leptons, and σ↓ denotes the cross section where the beam is polarized in the opposite direction
to the flow of leptons. For typical kinematics the first sine harmonic is dominant, so we have

ALU ∝ Im

{
F1H+ξ(F1 +F2)H̃−

∆2

4M2 F2E
}

sin(φ). (3.118)

This is why we usually perform a Fourier transform and just observe the amplitude of the BSA.
This quantity is particularly sensitive to the imaginary part of the CFFH.

Another set of data that is used is for longitudinal target spin asymmetry, denoted as TSA
or AUL, which is given as

AUL(φ) =
dσ⇒(φ)−dσ⇐(φ)
dσ⇒(φ)+dσ⇐(φ)

∼
sI1, LP

cBH
0, unp

sin(φ)

∝ Im
[
F1H̃+ξ(F1 +F2)

(
H+

xB

2
E
)
−ξ

(xB

2
F1 +

t
4M2 F2

)
Ẽ
]

sin(φ), (3.119)

where σ⇒ denotes the cross section where the target is polarized in the direction of the flow of
leptons, and σ⇐ denotes the cross section where the target is polarized in the opposite direction
to the flow of leptons. This quantity is sensitive to the imaginary parts ofH and H̃.
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The double spin asymmetry, denoted as BTSA or ALL, which is given as

ALL(φ) =
dσ↑⇑(φ)−dσ↓⇑(φ)−dσ↑⇓(φ)+dσ↓⇓(φ)
dσ↑⇑(φ)+dσ↓⇑(φ)+dσ↑⇓(φ)+dσ↓⇓(φ)

∼
cBH

0,LP + cI0,LP +
(

cBH
1,LP + cI1,LP

)
cosφ

cBH
0, unp

∝ Re
[
F1H̃+ξ(F1 +F2)

(
H+

xB

2
E
)
−ξ

(xB

2
F1 +

t
4M2 F2

)
Ẽ
]

cosφ+BH, (3.120)

is also used in the analysis. Here the arrow ↑ denotes that the spin of the leptons is polarized in
the direction of the beam, and ↓means that it is polarized in the opposite direction. The same is
valid for the spin of the target, denoted with the double arrow. This quantity is sensitive to the
Bethe-Heitler and interference contributions, but at certain kinematics it can be sensitive to real
parts ofH and H̃.

Other quantities that were used in our analysis are the beam spin sum BSS, which is unpo-
larized, and the beam spin difference BSD, which is helicity-dependent. They are given as

d4
σ =

1
2

[
d4

σ(λ =+1)
dQ2dxBdtdφ

+
d4

σ(λ =−1)
dQ2dxBdtdφ

]

∆
4
σ =

1
2

[
d4

σ(λ =+1)
dQ2dxBdtdφ

− d4
σ(λ =−1)

dQ2dxBdtdφ

]
.

The helicity-independent cross section depends mostly on the real part of the same coefficient
as the BSA, and the helicity-dependent cross section depends mostly on the imaginary part of
that coefficient.

For a set of kinematic variables given in Table 3.1 below, we can obtain the contributions of
CFFs to various observables, given in Table 3.2.

Experiment
Kinematics

xB Q2 [GeV2] t
[
GeV2]

HERMES 0.09 2.50 -0.12

CLAS 0.19 1.25 -0.19

HALL A 0.36 2.30 -0.23

HERA 0.001 8.00 -0.30

Table 3.1: Typical kinematics used for experiments. Taken from [1].
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Experiment Observable Normalized CFF dependence

HERMES

Acos0φ

C ReH+0.06ReE+0.24ReH̃
Acosφ

C ReH+0.05ReE+0.15ReH̃
Asinφ

LU,I ImH+0.05ImE+0.12ImH̃
A+,sinφ

UL ImH̃+0.10ImH+0.01ImE
A+,sin2φ

UL ImH̃−0.97ImH+0.49ImE −0.03Im Ẽ
A+,cos0φ

LL 1+0.05ReH̃+0.01ReH
A+,cosφ

LL 1+0.79ReH̃+0.11ImH
Asin(φ−φS)

UT,DVCS ImHReE − ImE ReH
Asin(φ−φS)cosφ

UT,I ImH−0.56ImE −0.12ImH̃

CLAS

A−,sinφ

LU ImH+0.06ImE+0.21ImH̃
A−,sinφ

UL ImH̃+0.12ImH+0.04ImE
A−,sin2φ

UL ImH̃−0.79ImH+0.30ImE −0.05Im Ẽ

HALL A

∆σsinφ ImH+0.07ImE+0.47ImH̃
σcos0φ 1+0.05ReH+0.007HH∗

σcosφ 1+0.12ReH+0.05ReH̃
HERA σDVCS HH∗+0.09EE∗+ H̃H̃∗

Table 3.2: Dependence of observables on CFFs, normalized to the highest coefficient. The coefficients
are evaluated at the kinematics from Table 3.1. Coefficients smaller than 1% are not kept, except for the
Hall A cross section. Taken from [1].
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Chapter 4

Conformal symmetry and conformal
moments

Conformal symmetry has had many uses in various fields of physics over the years. It is a max-
imal extension of the Poincaré group that leaves the light-cone invariant. It is also a symmetry
of QCD when the β function vanishes, i.e. for a free theory, which in our case takes the form
of a naive parton model. This is of course not always applicable and has therefore limited uses
in QCD. Nevertheless, there are certain advantages in implementing conformal symmetry in
QCD, one of which is the simplification of evolution equations (3.98). Evolution kernels and
anomalous dimension have been calculated up to NLO in [94, 95] and NNLO in [96], and the
operator product expansion for DVCS has been formalized in the conformal space in [97, 98].

We give a brief outline of the material presented in review [99] in order to introduce the
conformal group and its collinear subgroup. Here we show that the conformal operators cor-
responding to the bilocal operators in the definition of GPDs form irreducible representations
of the collinear subgroup. We obtain the conformal operator product expansion of a product of
two local conformal operators

Finally, we outline the conformal partial wave expansion of GPDs. We use the Mellin-
Barnes representation in order to achieve convergence of the expansion [100]. This is then
extended to the Mellin-Barnes representation of CFFs and TFFs [101, 37].

4.1 Conformal group and conformal towers

The conformal group is formed by operations that transform the metric by rescaling it

g′µν(x
′) = Ω

2gµν(x). (4.1)
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These transformations do not change angles and therefore conserve the light-cone. The Poincaré
transformations also belong in the group of conformal transformations since they do not change
the metric at all, so formally Ω = 1. Aside from transformations of the Poincaré group, the
conformal group also contains dilatations

D : xµ→ x′µ = λxµ, λ ∈ R, (4.2)

and special conformal transformations

Kµ : xµ→ x′µ =
xµ +aµx2

1+2a · x+a2x2 . (4.3)

Typically we observe the processes in this work in the regime where partons are collinear to
the nucleon, and they move close to the light-cone. This is why we use light-cone coordinates,
which naturally separate motion on the light-cone to the motion transversal to it. We consider a
special conformal transformation, a translation and a dilatation by a lightlike vector aµ = anµ

z−→ z′− =
z−

1+2az−
, z−→ z−+a−, z−→ az−. (4.4)

These transformations form the collinear subgroup of the conformal group, which is denoted as
SL(2,R). We will use the notation for fields that denote particles on the light-line

Φ(z)→Φ(αn)≡Φ(α). (4.5)

The fields Φ are typically called primary fields in this context.
We can write the algebra of the collinear subgroup as

[L0,L±] =±L±, [L−,L+] =−2L0. (4.6)

We want to construct a basis of operators that are eigenstates of the spin operator with a fixed
spin projection onto the plus-direction. It can be shown that a primary field at α = 0 satisfies

[L−,Φ(0)] = 0, [L0,Φ(0)] = jΦ(0). (4.7)

This state is a state with the highest weight and we use it to construct all other states of the
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representation as

O0 = Φ(0) (4.8)

O1 = [L+,Φ(0)] =− ∂+Φ(α)|
α=0 , (4.9)

...

Ok = [L+, . . . , [L+, [L+,Φ(0)]]] = (−∂+)
k
Φ(α)

∣∣∣
α=0

. (4.10)

We see that the operators L− and L+ play the role of lowering and raising operator, similarly to
standard raising and lowering operators for spin states of the SU(2) group. From the commuta-
tion relations one can deduce the action of L0 on the operator O0

[L0,O0] = jO0, [L0,O1] = ( j+1)O1, [L0,Ok+1] = ( j+ k)Ok, (4.11)

and the action of raising and lowering operators on the operators Ok

[L+,Ok] =Ok+1, [L−,Ok] =−k(2 j+ k−1)Ok−1. (4.12)

The primary field defined at an arbitrary coordinate α can be expanded in a Taylor series
over local conformal operators

Φ(α) =
∞

∑
k=0

(−α)k

k!

(
−∂

k
+

)
Φ(α)

∣∣∣∣∣
α=0

=
∞

∑
k=0

(−α)k

k!
Ok. (4.13)

This construction represents a conformal tower. The lowest operator in a conformal tower is
the highest weight vector in the space of representations, and higher operators are obtained by
adding total derivatives, each of which adds one unit to the conformal spin projection on the
zero light-cone axis.

Our goal is to build conformal towers for operators that appear in cross sections of processes
of interest to us. At twist-2 we often encounter the non-local operator built of a quark and
antiquark field at lightlike separation

Qµ (α1,α2) = ψ(α1)γµ [α1,α2]ψ(α2) , (4.14)

where the Wilson line is given as

[α1,α2] = Pexp
[

ig
∫

α1

α2

dtA+(t)
]
. (4.15)
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Expanding this operator at small distances gives rise to local operators of the form

ψ̄(0)
(←−

D+

)n1
γµ

(−→
D+

)n2
ψ(0), (4.16)

and our task is to find their conformal counterparts.
Since quark and antiquark spinors do not have a definite spin projection, we define pro-

jection operators ψ± with spin ±1/2, where ψ = ψ+ +ψ−. Considering that the canonical
dimension of the spinor is 3/2, the conformal spin for ψ± is j+ = 1 and j− = 1/2, and the
conformal twist is t+ = 1 and t− = 2. Different Lorentz components of the operator Qµ (α1,α2)

therefore include different spinor components and they have different properties under confor-
mal transformations

twist-2: Q+ = ψ̄+γ+ψ+ ≡ Q1,1, (4.17)

twist-3: Q⊥ = ψ̄+γ⊥ψ−+ ψ̄−γ⊥ψ+ ≡ Q1,1/2 +Q1/2,1, (4.18)

twist-4: Q− = ψ̄−γ−ψ− ≡ Q1/2,1/2. (4.19)

The superscripts on Q denote the conformal spin of the quark and antiquark, respectively. The
corresponding local operators are given as

Q1,1
n (x) = (i∂+)

n
[
ψ̄(x)γ+C3/2

n

(↔
D /∂+

)
ψ(x)

]
, (4.20)

Q1, 1
2

n (x) = (i∂+)
n
[
ψ̄(x)γ+γ⊥γ−P(1,0)

n

(↔
D /∂+

)
ψ(x)

]
, (4.21)

Q
1
2 ,

1
2

n (x) = (i∂+)
n
[
ψ̄(x)γ−C1/2

n

(↔
D /∂+

)
ψ(x)

]
, (4.22)

where
↔
D+=

−→
D+−

←−
D+, ∂+ =

−→
D+ +

←−
D+. Jacobi polynomials enter these expressions with

the same indices, so we introduce Gegenbauer polynomials which are given as P(1,1)
n ∼ C3/2

n ,
P(0,0)

n ∼ C1/2
n . Gegenbauer polynomials are orthogonal polynomials which form a complete

basis in the interval [−1,1] and are the only solution to the differential equation

d2

dx2

(
1− x2)C3/2

n (x) =−(n+1)(n+2)C3/2
n (x), (4.23)

which is finite at the singular points x =±1.
The same procedure can be applied for gluons, where the leading twist operator built from

two gluon fields is given as

G3/2,3/2
n (x) = (i∂+)

n
[
Ga
+⊥(x)C

5/2
n

(↔
D+ /∂+

)
Ga
+⊥(x)

]
. (4.24)
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4.2 Conformal operator product expansion

Conformal operator product expansion (COPE) was shown to provide powerful constraints on
the Wilson coefficients appearing in operator product expansion we used for amplitudes of DIS,
DVCS and DVMP. In this section we present the COPE of a product of two local conformal
operators following [102, 103, 104, 105].

We observe the product A(z)B(0) where operators A and B have conformal twist tA and tB,
and the spin projection onto the plus direction sA and sB, respectively. We expand this product
in the lightcone limit z+,z⊥ → 0, z− fixed, or equivalently z2 = 0, over a conformal tower
of operators and their derivatives, which we denote as O j−1, j2

n,n+k and which we assume to be a
complete basis. We ignore contributions of the unity operator and up to leading twist we have

A(z)B(0) =
∞

∑
n=0

(
1
z2

) tA+tB−tn
2 ∞

∑
k=0

Cn,kzn+k+∆
− O j1, j2

n,n+k(0). (4.25)

Here Cn,k are the Wilson coefficients, and ∆ = s1 + s2− sA− sB, where s1,2 are the spin projec-
tions of the constituents field of the operator O j1, j2

n,n+k. The singularity of the local operators is
determined by the twist tA + tB− tn, where tn = `n−n− s1− s2 = `1 + `2− s1− s2 is the twist
of the conformal operators O j1, j2

n,n+k.
We can use conformal symmetry to obtain Wilson coefficients Cn,k, with k = 1,2, . . . , which

correspond to operators with total derivatives, by using the coefficient of the highest weight
operator Cn ≡ Cn,k=0, which contains no total derivatives. We apply the lowering operator on
both sides of the equation (4.25). Using (4.12), we have

[
L−,O j1, j2

n,n+k(0)
]
=−k (k+2 jn−1)O j1, j2

n,n+k−1(0), jn = j1 + j2 +n, (4.26)

so the right-hand side becomes

∞

∑
n=0

(
1
z2

) tA+tB−tn
2 ∞

∑
k=0

( jA− jB + jn + k)Cn,k
(
z−
)n+k+∆+1O j1, j2

n,n+k(0), (4.27)

and the left-hand side becomes

[L−,A(z)B(0)] =
{

z− (2 jA + z ·∂z)A(z)− 1
2

z2ñ ·∂zA(z)
}

B(0)+ · · · , (4.28)

where the ellipsis denotes the higher-twist contributions. Comparing the previous two equa-
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tions, we obtain a solution for the Wilson coefficients

Cn,k = (−1)k ( jA− jB + jn)k
k!(2 jn)k

Cn, Cn ≡Cn,0. (4.29)

Here we used the Pochhammer symbol

(a)k =
Γ(a+ k)

Γ(a)
. (4.30)

The sum over k gives a hypergeometric function

∞

∑
k=0

(−1)k ( jA− jB + jn)k
k!(2 jn)k

(−z.∂)k = 1F1

(
jA− jB + jn

2 jn

∣∣∣∣z ·∂
)
. (4.31)

Using the integral representation for the hypergeometric function, we can write the twist-two
COPE

A(z)B(0) =
∞

∑
n=0

Cn

(
1
z2

) tA+tB−tn
2 (z−)n+∆

B( jA− jB + jn, jB− jA + jn)

×
∫ 1

0
duu jA− jB+ jn−1ū jB− jA+ jn−1O j1, j2

n
(
uz−
)
,

(4.32)

with the Euler Beta function
B(a,b) =

Γ(a)Γ(b)
Γ(a+b)

. (4.33)

As promised, we apply this procedure to the product of two currents found in the Compton
tensor

T (P,q,∆) = i
∫

d4zeiqz−i ∆

2 z 〈P1 |T { j⊥(z) j⊥(0)}|P2〉 , (4.34)

where at the tree level we only need transverse components of the currents, whose spin projec-
tion is zero. The currents have dimension 3 and consequently conformal twist 3. The operator
basis consists of quark operators Q1,1

n,n+k with twist tn = 2 and conformal spin jn = 2+ n. We
also have ∆ = 1. Conformal symmetry provides Wilson coefficients for DVCS using Wilson
coefficients for DIS [97, 98]. Plugging all of the parameters into the COPE (4.32) gives the
Compton tensor

T (P,q,∆) = i
∫

d4zeiqz−i ∆

2 z
∞

∑
n=0

Cn

(
1
z2

) 6−tn
2 (−iz−)n+1

B( jn, jn)

∫ 1

0
du(uū) jn−1 〈P2

∣∣Q1,1
n
(
uz−
)∣∣P1

〉
.

(4.35)
In an interacting theory the canonical dimension has to be replaced by the anomalous dimension
γn, so the conformal twist of the local operators is given as tn = 2+ γn.
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It can be shown that the previous equation can be written as

T (P,q,∆) =
∞

∑
n=0

c̃n

(
µ2

Q2

)γn/2

ξ
−n−1 2n+1+γn/2Γ(n+5/2+ γn/2)

Γ(3/2)Γ(n+3+ γn/2)
〈〈Qn(0)〉〉

(
ξ,∆2,µ2) , (4.36)

where we have introduced the notation

〈
P2
∣∣Q1,1

n
(
uz−
)∣∣P1

〉
= eiuξP.zPn+1

+

〈〈
Q1,1

n (0)
〉〉(

ξ,∆2,µ2) . (4.37)

The matrix elements in the Compton tensor are parametrized using GPDs, and our next step is
to derive the conformal moments of GPDs in the so-called momentum fraction representation.
This procedure is analogous to calculating inverse Mellin moments of PDFs.

4.3 Conformal partial wave expansion

In this work we approach GPD modeling in the space of conformal moments, and the goal of
this section is to derive a representation of GPDs in the conformal space. Analogous steps were
taken in modeling PDFs, where an expansion in terms of Mellin moments was used

f q
j =

∫ 1

−1
dxx j f q(x), f G

j =
∫ 1

−1
dxx j−1 f G(x). (4.38)

The inverse Mellin transform reads

f q(x) =
1

2πi

∫ c+i∞

c−i∞
d jx− j−1 f q

j , f G(x) =
1

2πi

∫ c+i∞

c−i∞
d jx− j f G

j , (4.39)

where the integration contour is chosen to lie to the right of all singularities of the PDF moments.
For details refer to [4] and references therein.

4.3.1 Generalized parton distributions

The goal of this section is to find the conformal moments of GPDs and to calculate the inverse
transformation in order to recover GPDs in the x space. We follow the derivation in [100].
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The conformal moments of quark and gluons are given by

Fq
n
(
ξ,∆2)=

∫ 1

−1
dxc3/2

n (x,ξ)Fq (x,ξ,∆2) , (4.40)

FG
n
(
ξ,∆2)=

∫ 1

−1
dxc5/2

n−1(x,ξ)F
G (x,ξ,∆2) , (4.41)

where the coefficients cλ
n contain Gegenbauer polynomials and normalization factors which

recover the Mellin moments of PDFs in the forward limit. The coefficients for quarks and
gluons are given as

c3/2
n (x,ξ) = ξ

n Γ(3/2)Γ(n+1)
2nΓ(n+3/2)

C3/2
n

(
x
ξ

)
, (4.42)

c5/2
n−1(x,ξ) = ξ

n−1 Γ(3/2)Γ(n+1)
2nΓ(n+3/2)

3
n

C5/2
n−1

(
x
ξ

)
, (4.43)

which we combine into a single expression

cλ
n(x,ξ) = ξ

n Γ(λ)Γ(n+1)
2nΓ(n+λ)

Cλ
n

(
x
ξ

)
, lim

ξ→0
cλ

n(x,ξ) = xn. (4.44)

For the vector sector, gluon GPDs are even under x→−x, so the corresponding Gegenbauer
polynomial is odd in n. For the axial-vector sector the gluon GPDs are odd under x→−x, and
the corresponding Gegenbauer polynomial is even in n. In order to analyze quark GPDs, which
do not have a definite x parity, we use quark GPDs with definite charge parity Fq(±), as defined
in (3.36) and (3.37). The degree of the Gegenbauer polynomials in n is even for charge odd
quark GPDs, and odd for charge even quark GPDs. Since the quark singlet GPD F0(+) mixes
with the gluon GPD under evolution, we have to shift the gluon polynomial degree by one unit
in order to match the indices n.

To study quarks and gluons simultaneously, we utilize the notation

FA
n
(
ξ,∆2)=

∫ 1

−1
dxcλ

n(x,ξ)F
A (x,ξ,∆2) , (4.45)

where A ∈ {q,G} and λ ∈ {3/2,5/2}. In order to match quark and gluon polynomial degrees,
we perform a shift n→ n−1 for gluons. We decompose quark GPDs into quark and antiquark
distributions

Fq(C)
(
x,ξ,∆2)= q

(
x,ξ,∆2)−σq̄

(
−x,ξ,∆2) , σ ∈ {−1,1}, (4.46)
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where −ξ≤ x≤ 1 for the first term, and −1≤ x≤ ξ for the second term. For the vector sector
we have C =±1 and σ =±1, and for the axial-vector sector C =±1 and σ =∓1.

For the gluon GPDs, which have definite x parity, we simply write

FG (x,ξ,∆2)= g
(
x,ξ,∆2)+σg

(
−x,ξ,∆2) . (4.47)

We can again treat both of these cases simultaneously by using

FA (x,ξ,∆2)= f A (x,ξ,∆2)−σ f̄ A (−x,ξ,∆2) , (4.48)

where
f q→ q, f̄ q→ q̄, f G→ g, f̄ G→−g. (4.49)

The conformal moments for the distributions f A and f̄ A are

f A
n
(
ξ,∆2)=

∫ 1

−ξ

dxcλ
n(x,ξ) f A (x,ξ,∆2) , (4.50)

f̄ A
n
(
ξ,∆2)=

∫ 1

−ξ

dxcλ
n(x,ξ) f̄ A (x,ξ,∆2) . (4.51)

In order to reconstruct GPDs from their conformal moments, we use the fact that the
Gegenbauer polynomials are orthogonal in the central region [−ξ,ξ] with the weight function
(1− x2)λ−1/2. We introduce polynomials pλ

n , which contain the weight and normalization, in
order to define the orthogonality relation

∫
ξ

−ξ

dxcλ
n(x,ξ)pλ

m(x,ξ) = (−1)n
δmn, (4.52)

where the polynomials explicitly read

pλ
n(x,ξ) =

1
ξn+1

2n−2λΓ(n+λ)

Γ(λ)Γ(n+1)
1

Nλ

k

Cλ
n

(
−x

ξ

)[
1−
(

x
ξ

)2
]λ− 1

2

. (4.53)

The definition of these polynomials allows us to expand GPDs in terms of Gegenbauer polyno-
mials as

f A (x,ξ,∆2)=
∞

∑
n=0

(−1)n pλ
n(x,ξ) f A

n
(
ξ,∆2) , (4.54)

which is evident from (4.50). Note that this expansion is defined in the central region only,
which means that it diverges for |ξ| < 1 when n→ ∞ due to the factor ξ−n−1. This means that
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terms for high n can have a high contribution to the GPD and the series cannot be truncated.
The issue is solved by performing a Sommerfeld-Watson transformation, which replaces the
infinite sum with a contour integral in the complex plane that includes the positive real axis.
We consider the unphysical region ξ > 1 and replace the integer indices n with the continuous
complex variable j, which yields

f A (x,ξ,∆2)= 1
2i

∮ (∞)

(0)
d j

1
sin(π j)

pλ
j (x,ξ) f A

j
(
ξ,∆2) . (4.55)

Using Cauchy’s residue theorem and the fact that the function 1/sin(π j) has poles at j ∈ N0

with residues (−1) j/π, we can easily show that (4.55) coincides with (4.54) if there are no other
singularities inside the contour of the integral. The task now lies in finding the appropriate
analytic continuation of the functions pλ

j and f A
j in order to obtain the resummation in the

unphysical region as well.
The polynomials p j can be written using the Schläfli integral

pλ
j (x,ξ) = (−1)λ− 1

2
Γ( j+λ+1)

Γ(1/2)Γ( j+λ+1/2)
· 1

2πi

∮ (1−ε)

(−1+ε)
du

(
u2−1

) j+λ− 1
2

(x+uξ) j+1 , (4.56)

where the integration contour is a unit circle with points±1 included. We fix ξ to be positive and
observe two cases. When x≤−ξ and−x/ξ≥ 1, the pole lies outside the integration contour and
the integral vanishes. In the case when x≥−ξ and−x/ξ≤ 1, the pole lies inside the integration
contour. In this case, for |x| ≤ ξ the pole is inside the interval [−x/ξ,1] and we can restrict the
integration contour, which is not possible for |x| ≥ ξ. We separate the previous expression into
the two non-vanishing cases

pλ
j (x,ξ) = (−1)λ+ 1

2
Γ( j+λ+1)

Γ(1/2)Γ( j+λ+1/2)
sin [π( j+λ−1/2)]

π

×


θ(ξ−|x|)

∫ 1

−x/ξ

du

(
1−u2) j+λ− 1

2

(x+uξ) j+1 +θ(x−ξ)
∫ 1

−1
du

(
1−u2) j+λ− 1

2

(x+uξ) j+1


 ,

(4.57)

which can be solved in terms of the hypergeometric function 2F1 as

pλ
j (x,ξ) = θ(ξ−|x|)ξ− j−1Pλ

j

(
x
ξ

)
+θ(x−ξ)ξ− j−1Qλ

j

(
x
ξ

)
, (4.58)
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where

Pλ
j (y) =

2 j+λ−1/2Γ( j+λ+1)
Γ(1/2)Γ( j+1)Γ(λ+1/2)

(1+ y)λ−1/2
2F1

(
− j−λ+1/2 j+λ+1/2

λ+1/2

∣∣∣∣
1+ y

2

)
,

(4.59)

Qλ
j (y) =−

sin(π j)
π

y− j−1
2F1

(
( j+1)/2 ( j+2)/2

j+λ+1

∣∣∣∣
1
y2

)
. (4.60)

On the crossover line these polynomials reduce to

pλ
j (x,ξ = x) = (−1)λ+1/22 j+2λ−1x− j−1 Γ(λ−1/2)Γ( j+λ+1)

Γ(1/2)Γ( j+2λ)

sin [π( j+λ−1/2)]
π

, (4.61)

and for zero skewness to

pλ
j (x,ξ = 0) = (−1)λ+1/2x− j−1 sin [π( j+λ−1/2)]

π
. (4.62)

Up to a few prefactors, this is the integral kernel for the inverse Mellin moments, which should
be the case because in the forward limit we need to recover PDFs.

The next step is to deform the contour in the Sommerfeld-Watson integral in order to follow
a straight vertical line in the complex plane, the choice of which depends on the poles of the
GPD moments. The idea is to have all of the poles coming from the GPD moments on the left
side of the vertical line so that they are not included in the contour. The contour is depicted in
figure 4.1 below.

Re j

Im j

Figure 4.1: Integral contour of the Mellin-Barnes representation of the GPD.
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We can write the Mellin-Barnes integral representation of GPDs

f A (x,ξ,∆2)= i
2

∫ c+i∞

c−i∞
d j

1
sinπ j

pλ
j (x,ξ) f A

j
(
ξ,∆2) , (4.63)

where the value of the constant c determines the position of the vertical line in the contour. This
contour includes two quarter circles whose contribution to the integral vanishes.

Let us derive the Mellin-Barnes representation for GPDs on the cross-over line x = ξ. We
first write the GPD representations for quarks and gluons

Fq(±) (x,ξ = x,∆2)= 1
2πi

∫ c+i∞

c−i∞
d j

2 j+1Γ( j+5/2)
Γ(3/2)Γ( j+3)

x− j−1Fq(±)
j

(
ξ,∆2) , (4.64)

FG (x,ξ = x,∆2)= 1
2πi

∫ c+i∞

c−i∞
d j

2 j+2Γ( j+5/2)
Γ(3/2)Γ( j+4)

x− jFG
j
(
ξ,∆2) . (4.65)

For ease of presentation we introduce the shorthand notation

Γ
3/2
j =

2 j+1Γ( j+5/2)
Γ(3/2)Γ( j+3)

, Γ
5/2
j =

2 j+2Γ( j+5/2)
Γ(3/2)Γ( j+4)

. (4.66)

The GPDs in the integral include the evolution operator, and for ease of calculation we use the
evolution basis defined in chapter 2. In that case, at NLO, the non-singlet contribution evolves
without mixing of quarks and gluons, and separately from the singlet contribution, where quarks
and gluons do mix. For the singlet quark and gluon GPD moments we introduce the vector

F j
(
ξ,∆2)=

(
F0(+)

j

FG
j

)
(
ξ,∆2) . (4.67)

In this work we evolve GPDs in the MS scheme, where we write the GPD evolution from the
input scale µ0 to the factorization scale µF for non-singlet GPDs as

FA
j
(
ξ,∆2,µ2

F
)
=

j

∑
k=0

1−σ(−1)k

2
σE jk (µF,µ0;ξ)FA

k
(
ξ,∆2,µ2

0
)
, (4.68)

where A ∈ {q(−),3(+),8(+),15(+)} and the factor σ is the same factor that we introduced
in the definition of charge even and odd GPDs. Notice that the evolution operator also has
a σ index, which signifies the need to replace all ambiguous factors (−1) j in the anomalous
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dimension with −σ. For the singlet GPD 4.67 the evolution is given as

F j
(
ξ,∆2,µ2

F
)
=

j

∑
k=0

1∓ (−1)k

2
E jk (µF,µ0;ξ)Fk

(
ξ,∆2,µ2

0
)
, (4.69)

where the evolution operator is a matrix. The detailed form of the evolution operator will be
given in Section 6.2.

For the non-singlet GPD we can write

FA (x,ξ = x,∆2,µ2
F
)
=

1
2πi

∫ c+i∞

c−i∞
d jx− j−1σ

Γ
3/2
j (µF,µ0)FA

j
(
ξ = x,∆2,µ2

0
)
, (4.70)

where we have combined the polynomials and the evolution operator as

σ
Γ

3/2
j (µF,µ0) = Γ

3/2
j

σE j, j (µF,µ0;1)− 1
4i

∫ d+i∞

d−i∞
dmcot

(
πm
2

)
Γ

3/2
j+m+2

σE j+m+2, j (µF,µ0;1) .

(4.71)
The evolution and conformal prefactors are written in the form of a Mellin-Barnes integral,
where due to the poles of cot(πm/2) at even integer values of m, we choose −2 < d < 0 [101].
For the singlet sector we write

F
(
x,ξ = x,∆2,µ2

F
)
=

1
2πi

∫ c+i∞

c−i∞
d jx− j−1

(
1 0
0 x

)
σΓ j (µF,µ0)F j

(
ξ = x,∆2,µ2

0
)
, (4.72)

where the mixing of quarks and gluons is given in terms of the evolution matrix

σΓ j (µF,µ0) =
∞

∑
m=0
even

(
Γ

3/2
j+m 0

0 Γ
5/2
j+m

)
σE j+m, j (µF,µ0;ξ = 1) . (4.73)

In order to control the convergence of the integrand and simplify numerical integration, the
integration contour can be deformed by introducing

j = c+ yeiφ, (4.74)

where y is now the integration variable. We do this in order to dampen the integrand for large
values of y due to the factor x−yexp(iφ), which can be accomplished by choosing φ > π/2. The
original contour is recovered for φ = π/2. The deformed contour is represented in figure 4.2
below.
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Re j

Im j

⊗ ⊗ ⊗ ⊗ φ

Figure 4.2: Deformed integral contour of the Mellin-Barnes integral.

The choice of φ and c should not change the final result, but care must be taken to avoid any
poles coming from GPD moments or the evolution operator, which are depicted in Figure 4.2
with ⊗ symbols.

Finally, the Schwarz reflection principle can be used to integrate only over one of the legs
in the deformed contour. This gives us GPDs at the crossover line in the Mellin-Barnes repre-
sentation

Fq(±) (x,ξ = x,∆2)= 1
π
Imeiφ

∫
∞

0
dy

2 j+1Γ( j+5/2)
Γ(3/2)Γ( j+3)

x− j−1Fq(±)
j
(
ξ = x,∆2)

∣∣∣∣
j=c+yeiφ

, (4.75)

FG (x,ξ = x,∆2)= 1
π
Imeiφ

∫
∞

0
dy

2 j+2Γ( j+5/2)
Γ(3/2)Γ( j+4)

x− jFG
j
(
ξ = x,∆2)

∣∣∣∣
j=c+yeiφ

. (4.76)

A similar procedure can be applied for GPDs evaluated at any ξ, but since we will only be using
GPDs at the crossover line, we just write the general Mellin-Barnes representation of GPDs

Fq(±) (x,ξ,∆2)= 1
2πi

∫ c+i∞

c−i∞
d j

p3/2
j (x,ξ)

sin(π j)
Fq(±)

j
(
ξ,∆2) , (4.77)

FG (x,ξ,∆2)= 1
2πi

∫ c+i∞

c−i∞
d j

p5/2
j−1(x,ξ)

sin(π j)
FG

j
(
ξ,∆2) , (4.78)

where the polynomials are given in (4.58).
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We have managed to reconstruct the GPDs in the x-space from conformal moments using
analytic continuation. The study of GPDs in the conformal space can be useful because the evo-
lution is simpler, it is multiplicative as opposed to it being a convolution, which is numerically
easier to treat.

4.4 Mellin-Barnes representation of scattering amplitudes

In this section we study the scattering amplitudes of DVCS and DVMP, which contain convolu-
tions of GPDs with the corresponding hard scattering part of the amplitude. The Mellin-Barnes
representation of GPDs can be used to directly calculate CFFs and TFFs without having to first
obtain GPDs in the x-space. As a primer, we observe structure functions which are also written
as convolutions of PDFs and the hard scattering part of the amplitude in the forward limit.

4.4.1 Structure functions

We have seen in (2.37) that at LO the structure functions are proportional to PDFs, but at NLO
the structure functions are convolutions of the hard and soft parts of the DIS, similarly to CFFs
in DVCS and TFFs in DVMP. We introduce the notation

Fl
(
xB,Q2)= ∑

q
Q2

qFq(+)
l

(
xB,Q2)+Q2

GFG
l
(
xB,Q2) , (4.79)

with QG defined in (2.56), and ` ∈ {1,2}. The structure functions are defined as

Fq(+)
l

(
xB,Q2)=

∫ 1

−1

dx
x

qT V
l

(
xB

x

∣∣∣∣αs (µR) ,
Q2

µ2
F

)
f q(+)

(
x,µ2

F
)
, (4.80)

FG
l
(
xB,Q2)=

∫ 1

−1

dx
x

GT V
l

(
xB

x

∣∣∣∣αS (µR) ,
Q2

µ2
F

)
f G (x,µ2

F
)
. (4.81)

At LO the hard-scattering amplitudes are

qT V(0)
l

(xB

x

)
=

1
π
Im

1
xB

x
−1− iε

= δ

(xB

x
−1
)
, GT V(0)

l

(xB

x

)
= 0, (4.82)

which reflects the fact that at LO we observe DIS as a scattering of a virtual photon off a point
particle which is one of the quarks inside the proton.
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Writing the PDFs in terms of Mellin moments gives

Fq(+)

l

(
xB,Q2)= 1

2πi

∫
c

d jx− j
B

qc̃V
l, j

(
αs (µR) ,

Q2

µ2
F

)
f q(+)

j
(
µ2

F
)
, (4.83)

FG
l
(
xB,Q2)= 1

2πi

∫
c

d jx− j
B

Gc̃V
l, j

(
αs (µR) ,

Q2

µ2
F

)
f G

j
(
µ2

F
)
. (4.84)

We denote the Mellin moments of the hard-scattering amplitude as c̃. At LO they are

qc̃V(0)
1, j = qc̃V(0)

2, j = 1, Gc̃V(0)
1, j = Gc̃V(0)

2, j = 0. (4.85)

Structure functions also mix under evolution, so we introduce the same evolution basis as for
CFFs and TFFs. The structure functions in this basis are given as

Fl (xB) = ∑
A

ĉA
γ FA

l (xB) , A ∈ {0(+),3(+),8(+),15(+),G}, (4.86)

with the same coefficients as for CFFs. For the non-singlet sector the Mellin-Barnes represen-
tation of the structure function yields

FA
l (xB) =

1
2πi

∫
c

d jx− j
B q̃V

l, j

(
αs (µR) ,

Q2

µ2
F

)
f A

j (µF) , A ∈ {3(+),8(+),15(+)}. (4.87)

The evolution is given as

FA
l (xB) =

1
2πi

∫
c

d jx− j
B

Ac̃V
l, j
(
Q2,Q2

0
)

f A
j
(
Q2

0
)
, (4.88)

where the hard-scattering coefficients and the evolution operator are written succinctly as

qc̃V
l, j
(
Q2,Q2

0
)
= qc̃V

l, j

(
αs (µR) ,

Q2

µ2
F

)
σE j, j (µF,Q0;0) . (4.89)

In the singlet sector we introduce the same vector as we did for GPDs

f j =

(
f 0(+)

j

f G
j

)
(4.90)

so that the Mellin-Barnes representation can be written as

FS
l
(
xB,Q2)= 1

2πi

∫
c

d jx− j
B c̃

V
l, j

(
αs (µR) ,

Q2

µ2
F

)
·f j
(
µ2

F
)
, (4.91)
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with the hard-scattering amplitude vector

c̃V
l, j =

(
qc̃V

l, j
Gc̃V

l, j

)
. (4.92)

The evolution in the Mellin-Barnes representation is incorporated as

FS
l
(
xB,Q2)= 1

2πi

∫
c

d jx− j
B c̃

V
l, j
(
Q2,µ2

0
)
·f j
(
µ2

F
)
, (4.93)

with the hard scattering vector and evolution operator written succinctly as

c̃V
l, j
(
Q2,µ2

0
)
= c̃V

l, j

(
αs (µR) ,

Q2

µ2
F

)
E j, j (µF,Q0;0) . (4.94)

4.4.2 Compton form factors

Compton form factors appear in the DVCS amplitude and due to the factorization theorem,
can be written as a convolution of the hard and soft scattering parts. The soft parts are GPDs,
and in this chapter we use their Mellin-Barnes representation in order to expand the CFFs in
conformal partial waves. The uniqueness of the analytic continuation n→ j is guaranteed by
Carlson’s theorem [106].

We start with the quark CFFs at LO

Fq (
ξ,∆2,Q2)=

∫ 1

−1
dx
[

1
ξ− x− iε

∓ 1
ξ− x− iε

]
Fq (x,ξ,∆2,Q2) , (4.95)

where the minus sign corresponds to the vector CFFs, and the plus sign corresponds to axial-
vector CFFs. Writing the GPDs in terms of quark and antiquark distributions and using the
Mellin-Barnes representation, we can integrate out the x dependence and write [100]

Fq (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1 2 j+1Γ( j+5/2)

Γ(3/2)Γ( j+3)

[
i±
{

tan
cot

}(
π j
2

)]
Fq

j
(
ξ,∆2,Q2) .

(4.96)
This can easily be expanded to include higher orders in perturbation theory, so we can write

Fq (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1 2 j+1Γ( j+5/2)

Γ(3/2)Γ( j+3)

[
i±
{

tan
cot

}(
π j
2

)]
qcI

jF
q
j
(
ξ,∆2,Q2) .

(4.97)
We adopt the convention for expansion of the hard-scattering coefficients in terms of the strong
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coupling constant

qcI
j

(
αs (µR) ,

Q2

µ2
F

)
= qcI(0)

j +
α2

s (µR)

2π

qcI(1)
j

(
αs (µR) ,

Q2

µ2
F

)
+O

(
α

4
s
)
. (4.98)

For the purposes of easier evolution, we work with quark GPDs with definite charge symmetry.
For example, the GPD Fq(+) is antisymmetric for vector GPDs and symmetric for axial-vector
GPDs, which in turn means that their conformal moments are odd and even, respectively. Un-
der charge parity the conformal moments obtain a factor (−1)n, which cannot be analytically
continued in an unambiguous way when we make the transition n→ j. This is why we intro-
duce a replacement (−1)n→−σ for the non-singlet CFFs, where σ =+1 for the vector sector,
and σ = −1 for the axial-vector sector. We already encountered this in the definition of GPD
evolution operators. The signature for all GPDs is given in Table 4.1 below.

GPD C σ moments MBR

Hq(C), Eq(C)
+ + odd tan

- - even cot

HG, EG + + odd tan

H̃q(C), Ẽq(C)
+ - even cot

- + even tan

H̃G, ẼG - - odd cot

Table 4.1: Charge parity, signature, conformal momenta and Mellin-Barnes representation factors for all
GPDs occurring in CFFs and TFFs.

We define the conformal moments with a definite signature

σTj =
1−σ(−1) j

2
qTj, (4.99)

which allows for the same Mellin-Barnes representation of CFFs for any choice of the hard-
scattering amplitude.

In order to implement the evolution, we observe the quantities that make up the CFFs,
namely the hard-scattering amplitudes, the evolution operators and the GPDs, we reshuffle the
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summation indices in order to obtain

T j
(
. . .Q2/µ2 . . .

) j
⊗E jl (µ,µ0;ξ)

l
⊗Hl

(
. . .µ2

0
)
=Tl

(
. . .Q2/µ2 . . .

) l
⊗El j (µ,µ0;ξ)

j
⊗H j

(
. . .µ2

0
)
.

(4.100)
This formality switches the evolution operator from GPDs to the hard-scattering coefficients,
allowing us to store the "evolved" hard-scattering coefficients into computer memory and to
call them up during fitting of GPDs to data. By using the same procedure as for writing the
Mellin-Barnes representation of GPDs, we can transform the summation over l into an integral,
so that the expression (4.100) is written as

T j
(
. . .Q2/µ2 . . .

) j
⊗H j

(
. . .µ2)= T j

(
. . .Q2/µ2 . . . ;{µ,µ0}

) j
⊗H j

(
. . .µ2

0
)
, (4.101)

where we introduced

T j

(
. . .

Q2

µ2 . . . ;{µ,µ0}
)
= T j

(
. . .Q2/µ2 . . .

)
E j j (µ,µ0;1)

− 1
4i

∫ c′+i∞

c′−i∞
dl cot

(
πl
2

)
T j+l+2

(
. . .Q2/µ2 . . .

)
E j+l+2, j (µ,µ0;1) , (4.102)

similar to (4.71), and
j
⊗

Tj(. . .)
j
⊗ H j(. . .)≡

1
2i

∫ c+i∞

c−i∞
d jξ− j−1

[
i+ tan

(
π j
2

)]
Tj(. . .)H j(. . .). (4.103)

In this work we will use c′ = −0.25. This form is applicable to both the vector and axial-
vector GPDs. By writing the hard-scattering amplitude in this way, we can access the gluon
contribution already at LO. This way we can also asses the contributions of quarks and gluons
at the input scale since they are all written under one expression, and not separated into hard-
scattering coefficients and evolution.

Without going into detail, we write the final form of the Mellin-Barnes representation of
non-singlet and singlet CFFs in the evolution basis

FA (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1

[
tan
cot

]
σT

I
j
(
Q2,µ2

0
)

FA
j
(
ξ,∆2,µ2

0
)
, (4.104)

FS (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1

[
tan
cot

]
T

I
j
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
, (4.105)
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where the singlet hard-scattering amplitude is given as a row vector

T I
j =

2n+1Γ(n+5/2)
Γ(3/2)Γ(n+3)

(
qcI

j
2

j+3
GcI

j

)
, (4.106)

with the index I denoting the order of perturbation, and where we introduce the short-hand
notation [

i±
{

tan
cot

}(
π j
2

)]
=

[
tan
cot

]
. (4.107)

The tan factor corresponds to the vector GPDs, and the cot factor to the axial-vector GPDs.
Here we again wrote the hard scattering part together with the evolution operator.

4.4.3 Transition form factors

We now apply the same procedure for the Mellin-Barnes representation of transition form fac-
tors, which appear in the cross section of DVMP. Here we have an additional complication
because of the presence of distribution amplitudes. We have shown the expansion of DAs and
GPDs in terms of conformal moments, so we write the TFFs as an infinite sum over the confor-
mal moments

Fq(±) (
ξ,∆2,Q2)= fCF

QNc

∞

∑
n,k=0

ξ
−n−1

ϕk

(
µ2

ϕ

)
qT I

nk

(
Q2

µ2
F
,
Q2

µ2
ϕ

,
Q2

µ2
R

)
Fq(±)

n
(
ξ,∆2,µ2

F
)
, (4.108)

FG (
ξ,∆2,Q2)= f

QNc

∞

∑
n,k=0

ξ
−n−1

ϕk

(
µ2

ϕ

)
GT I

nk

(
Q2

µ2
F
,
Q2

µ2
ϕ

,
Q2

µ2
R

)
FG

n
(
ξ,∆2,µ2

F
)
. (4.109)

Note that we now have a dependence on the factorization scale of the DA, so we denote the
factorization scales for GPDs (µF) and DAs (µφ) differently.

We again need to introduce the signature for non-singlet quark hard-scattering coefficients

qTnk→ σTnk. (4.110)

We observe the TFFs in the same evolution basis as we did the CFFs, and we observe the
non-singlet and singlet sectors separately. This time we also need to include the evolution of
DAs

ϕk

(
µ2

ϕ

)
=

k

∑
l=0

Ekl
(
µϕ,µ0

)
ϕl
(
µ2

0
)
, (4.111)

which are evolved by the non-singlet evolution operator. The hard-scattering coefficients can
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be written as a row vector

T I
jk =

2n+1Γ(n+5/2)
Γ(3/2)Γ(n+3)

·3 ·
(

1
Nf

+cI
jk +

pScI
jk

1
CF

2
j+3

GcI
jk

)
. (4.112)

Here we have the factor coming from the color structure

CF =
N2

c −1
2Nc

. (4.113)

In the case of TFFs, as opposed to CFFs, we have an addition of DAs and their evolution.
By expanding the DA in terms of conformal moments, often only a finite number of effective
conformal moments is taken into consideration, so at LO in evolution we have a finite sum. At
NLO, there is a mixing between DA moments, which introduces another infinite sum. Since
higher conformal moments are suppressed, this sum is in practice truncated. We can then em-
ploy the same procedure as for CFFs and calculate both evolution operators together with the
hard-scattering amplitude

T jk

(
. . .

Q2

µ2
F
,
Q2

µ2
ϕ

;{µF,µ0} ,
{

µφ,µ′0
}
)

=

[
Tlm

(
. . . ,

Q2

µ2
F
,
Q2

µ2
ϕ

)
m
⊗ Emk

(
µϕ,µ′0

)
]

l
⊗ El j (µF,µ0;ξ) .

(4.114)

Here the first evolution operator is the DA one, which is evident in the lack of skewness depen-
dence. In practice one often takes µ0 = µ′0.

The non-singlet TFF is therefore

FA
PS
(
ξ,∆2,Q2)= fCF

QNc

1
2i

∫
c

d jξ− j−1

[
tan
cot

]
ϕk
(
µ2

0
) k
⊕

even
σT I

jk
(
Q2,µ2

0
)

FA
j
(
ξ,∆2,µ2

0
)
,

(4.115)

where
k
⊕ denotes the summation over the index k. In the singlet sector we have similarly

FS
V
(
ξ,∆2,Q2)= CF fV0

NcQ
1
2i

∫
c

d jξ− j−1

[
tan
cot

]
ϕk
(
µ2

0
) k
⊕

even
T I

jk
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
.

(4.116)
It is worth noting that the expressions for CFFs and TFFs derived in this chapter incorporate

the dispersion relation (3.115) without the subtraction constant.
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Chapter 5

Machine learning methods

Artificial intelligence (AI) encompasses a vast set of computer techniques that seek to replicate
what is currently considered to be the most sophisticated form of natural intelligence - the hu-
man brain. Humans process vast amounts of data every second, categorize, make decisions and
are able to learn how to solve problems without having prior programming to do so. Learning
is one of the key elements that AI tries to tackle in replicating the human behavior. One of
the subsets of AI is machine learning (ML), which uses statistical methods in order to train a
computer algorithm how to perform tasks and self-improve by processing a large set of data.

We currently know that the human brain contains a multitude of neurons, which process
sensory data from our surroundings in a parallel manner and send it to one another. This behav-
ior is sought to be replicated by artificial neural networks, or simply neural nets (NN), which
fall under the category of machine learning.

There are currently many resources regarding this topic. The reader is referred to [107, 108]
for more details.

5.1 Artificial neuron

The first attempt in simulating the actions of a biological neuron came in the form of an algo-
rithm called a perceptron [109, 110], which was used for binary classification.

The perceptron mimics human biology in the sense that it takes an input, which we label as
xi, the same way a neuron takes inputs through its dendrites. It then produces an output signal
which is sent through the axon. While being sent to other neurons, the signal is multiplied by a
weight wk,i at the synapse, which mimics the strength of the connection between neurons. Here
the index i denotes the signal, and the index k denotes the perceptron/neuron. These synaptic
strengths, or weights, are the learnable part of machine learning and they tell the perceptron
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how important each signal is. All of the input signals multiplied by their weights are summed
in the cell body. This part is called a linear combiner. If this sum exceeds a certain threshold,
the neuron fires the signal through the axon. For computational purposes we implement an
activation function at this point, which squashes the amplitude of the output. Often times we
chose this function to give us an output in the range [0,1] or [−1,1]. At this point we can also
add a bias bk to the linear combiner in order to shift the weighted sum to include a broader
spectrum of possible outputs.

Mathematically, a perceptron k can be described by the equation of the linear combiner

uk =
m

∑
i=1

wk,ixi, (5.1)

and the output
yk = f (uk +bk), (5.2)

where xi are the inputs in the perceptron, wk,i are the weights of each input, uk is the linear
combiner output, f is the activation function, bk is the bias on this perceptron, and yk is the
output of this perceptron. We see that the bias applies an affine transformation to the output.
The input and output are related linearly in this model.

The original perceptron was used for binary classification, therefore it utilized a threshold
activation function, i.e. a Heaviside step function. This model of the perceptron is depicted in
figure 5.1 below.
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Figure 5.1: Model of a perceptron.
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5.2 Neural networks

Neural networks used in this work can be thought of as multilayered perceptrons, with the ex-
ception that the activation function is typically non-linear. There are several types of activation
functions. In modern applications we often see a sigmoid function, more specifically a logistic
sigmoid function with saturating properties for large and small values of x

f (x) =
1

1+ e−x , (5.3)

which is the one we will be using in this work. It is depicted in figure 5.2 below.
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Figure 5.2: Sigmoid activation function.

Neural network models can be depicted by signal-flow graphs, which are networks of di-
rected links or branches that are interconnected at various points called nodes. An example of
that is depicted in figure 5.1. These graphs depict the layout of the neural network, which is
commonly referred to as an architecture.

There are many types of neural network architectures, depending on the type of problem
they are trying to solve. One of them is a multilayer feedforward network, in which neurons are
organized into layers. We can consider the simplest perceptron as having an input and output
layer, where the flow of information is from the input to the output, and not vice versa. This is
a feedforward or acyclic type of network. Multilayer networks have additional layers between
the input and output layer, called hidden layers. This yields a more complex model which is
able to achieve higher order statistics. The outputs of the previous layer represent inputs for the
next layer, and typically the input comes only from the preceding layer. In figure 5.3 below we
have an example of a multilayer feedforward perceptron network with two hidden layers. This
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architecture is sometimes denoted as 3-4-4-1, which symbolizes three source neurons or nodes,
four neurons in the first hidden layer, four neurons in the second hidden layer, and one neuron
in the output. This type of network is also completely connected, meaning that each neuron is
connected to all neurons from the preceding and following layer.

input 
layer

hidden 
layer 1

hidden 
layer 2

output
layer

Figure 5.3: Example of a neural network architecture.

Say that we have a neural network with m layers, not including the input layer, and the
number of nodes in layer l is denoted as Nl , with l = 1,2, . . . ,m. The inputs can be written as a
vector x = (x1,x2, . . . ,xn)

T. In the first hidden layer layer, each neuron acts on the inputs with
weights wk,1,wk,2, . . . ,wk,n, where k denotes the neuron in the first hidden layer. After the action
of the activation function in the first layer, we denote the outputs as hk,1, where k again denotes
the neuron in the first layer. Since the first layer has N1 nodes, we have N1 equations for the
outputs of each neuron

hk,1 = f

(
n

∑
i=1

wk,ixi +bk,1

)
. (5.4)

We can introduce the notation
h1 = f (W1x+b1) , (5.5)

where we assume the convention that the activation function acts elementwise on each compo-
nent of the input vector. The first output vector is h1 = (h1,1,h2,1, . . . ,hN1,1)

T and the bias vector
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is b1 = (b1,1,b2,1, . . . ,bN1,1). The weight matrix for the first layer is

W1 =




w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
... . . .

wN1,1 wN1,2 . . . wN1,n



. (5.6)

We see that the first layer introduces N1× n weights and N1 biases, which is (n+ 1)N1 free
parameters.

The outputs of the second layer can now be compactly written as

h2 = f (W2h1 +b2) , (5.7)

using the same conventions as for the first layer. The vectors h2 and b2 have dimension N2, and
the matrix W2 has dimension N2×N1. This layer has (N1 +1)N2 free parameters.

We write the rest of the hidden layers in the same manner, until we reach the output layer,
which is the m-th layer. We denote the outputs as ŷ = (ŷ1, ŷ2, . . . , ŷNm). The dimension of the
output vector is determined by the dimension of the function we are trying to replicate. The
equation for the output layer is

ŷ = f (Wmhm−1 +bm) . (5.8)

This network has
(n+1)N1 +(N1 +1)N2 + . . .+(Nm−1 +1)Nm (5.9)

free parameters in total. The architecture from figure 5.3 has (3+1)4+(4+1)4+(4+1)1= 41
free parameters.

Such a neural network can have several applications, such as classification of input data into
groups, or regression, i.e. modeling of functions. The latter is the application we are interested
in.

5.2.1 Backpropagation

We have mentioned so far the free parameters that one finds in a typical architecture, namely
the weights and biases. These are the parts of a network that constitute learning, and since
a typical network has many parameters, it is important to develop an efficient algorithm for
their learning. These algorithms typically utilize backpropagation, wherein a loss function is
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calculated, which tells us the difference between the predicted and expected value, its gradient
is obtained in dependence to all the parameters, and then each parameter is corrected in a way
that reduces the gradient, since a negative gradient means that the loss function is decreasing.
This method relies on the chain rule for derivations to recognize which parameter, i.e. which
neuron is responsible for the value of the loss function. In this way we work from the loss
function backward through the layers, hence the name backpropagation. This is an example of
a gradient descent.

There are several ways we can implement a gradient descent: a full-batch gradient descent,
where we update the parameter every time the whole input dataset passes through the network
and back; a mini-batch gradient descent, where we pass a subset of data through the net and
back and then update the parameters after each batch; a stochastic gradient descent, where the
parameters are updated after each datapoint passes through the network and back. This method
increases our chances of escaping a local minimum or saddle point of the loss function. Note
that for a multidimensional space, the probability of encountering a saddle point is much higher
than for a local minimum.

The batch gradient descent calculates the actual gradient, but it is the slowest, whereas the
stochastic gradient descent calculates an approximate value of the gradient, but it is the fastest.
The mini-batch gradient descent is a compromise between these two options. An example
of how a full-batch gradient descent method finds a minimum in comparison to a stochastic
gradient descent is given in figure 5.4 below.

Figure 5.4: Black line represents the full-batch gradient descent, and the green line represents the stochas-
tic gradient descent.
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Let us demonstrate how the backpropagation algorithm adjusts the weights in the last layer.
Say that the loss function is denoted as L. The weights in the last layer are wm,i j, where m is the
index of the last layer, i is the index of the i-th output neuron, i.e. it corresponds to the output
ŷi, and j is the index of the j-th neuron in the second to last layer, i.e. it is the j-th input into the
last layer hm−1, j. We will additionally denote oi =Wihi−1 +bi and fi, j = f (oi, j), where fi, j is
the j-th component of the activation function vector fi, i is the index of the network layer, and
j denotes the j-th component of the vector oi. For the hidden layers we have fi = hi, and for
the last layer fm = ŷ.

The change in the weight can be written using the chain rule of derivatives as

∆wm,i j =
∂L

∂wm,i j
=

∂L
∂ fm,i

∂ fm,i

∂om,i

∂om,i

∂wm,i j
. (5.10)

Using the definition of o and f , we can write the last term as

∂ok,i

∂wk,i j
=

∂

∂wk,i j

(
∑

l
wk,il fk−1,l +bk,i

)
= fk−1, j. (5.11)

The change in the weight is therefore

∆wm,i j =
∂L

∂ fm,i

∂ fm,i

∂om,i
fm−1, j = L′ ( fm,i) f ′ (om,i) fm−1, j. (5.12)

Both of the derivatives in the last expression are known since we are the ones choosing the
activation and loss functions.

For the weights in the inner hidden layers, it is more difficult to determine the derivative of
the loss function because it depends on all the neurons that take input from the layer in question,
i.e. the derivative in layer k is given as

∂L
∂ fk,i

=
Nk+1

∑
l=1

∂L
∂ fk+1,l

∂ fk+1,l

∂ fk,i
. (5.13)

If we introduce the notation

δk,i =
∂L

∂ fk,i

∂ fk,i

∂ok,i
= f ′

(
ok,i
)
×





∑
Nk+1
l=1 wk+1,liδk+1,l inner neuron

L′
(

fk,i
)

output neuron ,
(5.14)
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we can write the change in the weights as

∆wk,i j = δk,i fk−1, j. (5.15)

We can see from the recursive equation (5.14) that by determining the derivatives in one layer,
the calculations for the layer preceding it is greatly simplified. This procedure can be repeated
for the biases, or we can add the biases to the output of each neuron and treat it as a (k+1)-th
weight.

5.2.2 Network training

While training a neural network on data, we need a way to produce a model that gives predic-
tions on data it has never seen, while still predicting the data it is trained on. We do not want a
model which performs artificially well on the data it learned from, only to have it fail on new
data.

The way a neural network is trained is by dividing the data set into three sets, the training
set, validation set and testing set. The model is first trained on the training set, which determines
some values for the weights an biases. This model is then validated on the validation set, which
helps us determine the so-called hyperparameters, which are the number of layers and neurons
in each layer. By validating the model, we determine whether or not we need to change the
hyperparameters and retrain our net. But by doing this several times, we cause an information
leak from the validation set into the training set. Even though the net is not directly trained
on the validation set, it still knows information about it which can result in overfitting onto
the validation set, i.e. the network becomes tailored to the validation set and can have limited
predicting power on a broader dataset. This model then needs to be tested against a whole new
set, called the test set. The network should not have any prior knowledge of the test set. This
procedure is called cross-validation.

In the case of underfitting, as we make more passes, also called epochs, through the training
and validation sets, the loss function decreases on both the sets, so the generalizing ability of
the model is probably very low. This occurs when the model is too simple and does not have
enough parameters to adjust to the data, especially data it has not seen, so it becomes too biased
to the training and validation sets.

On the other hand, overfitting occurs when the model is too complex and starts learning the
noise in the data. In this instance the loss function constantly decreases on the training set, but
on the validation set it decreases up until a certain point, and then starts to increase. This model
has a large variance and is not specific enough to the problem we are trying to solve.
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Examples of overfitting, underfitting and achieving a good fit are given in figure 5.5 below.

Time

Values

Time Time

Values Values

Underfitted OverfittedGood fit

Figure 5.5: Example of an underfitted network, a good fit and an overfitted network.

An optimal model is the one between these two cases, which strikes a balance between a
large bias and a large variance, called the bias-variance trade-off. One way we can determine
when our model performs optimally is to use a model with a lot of parameters and determine
after how many epochs the loss function on the validation set starts to increase. This is when
we stop training the network. The loss function on the training and validation sets is depicted
in figure 5.6 below.

Figure 5.6: Example of loss function for an overfitted model.
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The methods described in this chapter are going to be used to predict Compton form factors.
We can rely on these methods and their predictive power due to the universal approximation
theorem [111, 112] which states that a feedforward neural network with one hidden layer and a
finite number of neurons can approximate any continuous function on a compact subset of Rn

with arbitrary precision. So in theory we can extract reliable CFFs, but in practice we need to
find a suitable number of parameters not to overfit to the data, and we need to make sure that
our model does not end up in a local minimum.
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Chapter 6

Conformal partial wave parametrization

In chapter 4 we introduced the conformal moments of GPDs and the Mellin-Barnes represen-
tation of CFFs and TFFs. Now we will write full expressions for evolution, hard-scattering
amplitudes and GPD moments that we use in our numerical analysis at low x. In the case of
DVMP, we will only observe neutral vector mesons, so we will only give expressions for those
mesons here.

So far we have calculated the Mellin-Barnes representation of CFFs and TFFs. In our analy-
sis of small-x data we will only model the sea quarks and gluons in the conformal space, which
make up the singlet sector. We therefore repeat expressions for the singlet CFF (4.105)

FS (
ξ,∆2,Q2)= 1

2i

∫ c+i∞

c−i∞
d jξ− j−1

[
tan
cot

]
T I

j
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
, (6.1)

and the singlet TFF (4.116)

FS
VL

(
ξ,∆2,Q2)= CF fV0

NcQ
1
2i

∫
c

d jξ− j−1

[
tan
cot

]
ϕk
(
µ2

0
) k
⊕

even
T I

jk
(
Q2,µ2

0
)
F j
(
ξ,∆2,µ2

0
)
. (6.2)

The index S denotes the quark singlet and gluon sectors combined.
We assume that the sea quarks are symmetric since they are created in quark-antiquark pairs,

and we ignore the fact that more massive quarks have a somewhat smaller presence, as well as
any mass corrections necessary for describing heavier quarks. We therefore write

Hsea(x, . . .)≈ HΣ(x, . . .)≡ ∑
q=u,d,s,...

Hq(x, . . .)−Hq(−x, . . .). (6.3)

The t-dependent differential cross sections for DVCS (γ∗p→ γp) and DVMP (γ∗p→ VL p) at
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twist-2 are given as

dσγ

dt
= πα

2
em

x2
B

Q4

{∣∣H
(
ξ, t,Q2)∣∣2− t

4M2

∣∣E
(
ξ, t,Q2)∣∣2 +

∣∣∣H̃
(
ξ, t,Q2)∣∣∣

2
}
, (6.4)

dσVL

dt
= 4π

2
αem

x2
B

Q4

{∣∣HVL

(
ξ, t,Q2)∣∣2− t

4M2

∣∣EVL

(
ξ, t,Q2)∣∣2

}
, (6.5)

where we have ignored contributions proportional to x2
B from (2.53) and (2.61). We can intro-

duce further simplifications by using arguments from Regge theory, which suggest the small-x
behavior H ∼ 1/x and H̃ ∼ 1/

√
x, which in turn implies the same behavior of CFFs. H̃ therefore

rises slower at low x and we can ignore the H̃ contribution to the DVCS cross section (6.4). We
can see that in both cross section the CFF/TFF E contributes with the prefactor t/4M2. For the
kinematics we are studying, this prefactor is of the order 10−2, which allows us to ignore E as
well. Therefore, the cross sections for both processes depend only on the CFF/TFF H and we
have

dσγ

dt
= πα

2
em

x2
B

Q4

∣∣H
(
ξ, t,Q2)∣∣2 , (6.6)

dσVL

dt
= 4π

2
αem

x2
B

Q4

∣∣HVL

(
ξ, t,Q2)∣∣2 , (6.7)

where αem is the electromagnetic fine structure constant. Note that for DVCS and DVMP at
low x we have x≈ ξ≈ xB/2.

The CFFs and TFFs are given in terms of the singlet and non-singlet contributions as

H= Q2
NSHNS +Q2

SHS = Q2
NSHNS +Q2

S
(
HΣ +HG) , (6.8)

HV0
L
=HNS

V0
L
+QV0

L
HS

V0
L
=HNS

v0
L
+QV0

L

(
HΣ

V0
L
+HG

V0
L

)
, (6.9)

where for four active flavors we have

Q2
NS =

1
6
, Q2

S =
5

18
. (6.10)

QV 0
L

depends on the produced meson, and we have

Qρ0 =
1√
2
, Qφ =−

1
3
. (6.11)

As we already mentioned, we will only be observing the singlet sector.
Our analysis of low-x DVCS and DVMP data will be extended up to NLO in the strong

84



6.1. Hard-scattering amplitudes Chapter 6. Conformal partial wave parametrization

coupling constant. The beta function, which dictates the scale dependence of the coupling
constant is itself expanded up to NLO. The scale dependence of αS is given with the equation

das

dlnµ2 = β0a2
S +β1a3

S, (6.12)

where as = αS/4π, and

β0 =
2
3

Nf−
11
3

CA, β1 =
10
3

CANf +2CFNf−
34
3

C2
A. (6.13)

For the value of αS at LO we use the analytically obtained value αS(µ0)/2π = 0.0606, and
at NLO we utilize the numerical fourth-order Runge-Kutta integration to obtain αS(µ0)/2π =

0.0518, where the input scale is µ2
0 = 2.5 GeV2, and we take the number of active flavors to be

Nf = 4.

6.1 Hard-scattering amplitudes

In this section we give the conformal hard-scattering amplitude for DVCS and DVMP in the
MS scheme up to NLO.

6.1.1 DVCS

The DVCS hard-scattering amplitude up to NLO in perturbation theory for the singlet parity
even sector in the MS scheme can be written as [101, 113]

TDVCS
j

(
αs (µR) ,

Q2

µ2
R
,
Q2

µ2
F

)
=

2 j+1Γ( j+5/2)
Γ(3/2)Γ( j+3)

[
c
(0)
j +

αs (µR)

2π
c
(1)
j
(
Q2/µ2

F
)
+O

(
α

2
s
)]

.

(6.14)
At LO, the coefficients are given as

Σc(0)j = 1, Gc(0)j = 0, (6.15)

and at NLO

Σc(1)j
(
Q2/µ2

F
)
=CF

[
2S2

1(1+ j)− 9
2
+

5−4S1( j+1)
2( j+1)2

+
1

[( j+1)2]
2

]
−

ΣΣγ
(0)
j

2
ln

Q2

µ2
F

(6.16)

Gc(1)j
(
Q2/µ2

F
)
=−Nf

(
4+3 j+ j2) [S1( j)+S1( j+2)]+2+3 j+ j2

(1+ j)3
−

ΣGγ
(0)
j

2
ln

Q2

µ2
F
. (6.17)
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Here ( j)n is the Pochhamer symbol

( j)n =
Γ( j+n)

Γ( j)
=

n−1

∏
k=0

( j+ k), (6.18)

and S1( j) is the harmonic number

S1( j) =
d
d j

lnΓ( j+1)+ γE, (6.19)

with the Euler-Mascheroni constant γE = 0.57721566. We have elements of the LO anomalous
dimension matrix, namely ΣGγ

(0)
j and ΣΣγ

(0)
j , which will be defined in Section 6.2.

Up to NLO, the hard-scattering amplitude for the non-singlet sector is identical to the singlet
quark one. Similarly, the amplitude for the CFF E is also the same as the one listed here. Note
that the strong coupling constant αS comes into the expression at NLO, since at LO the gluons
contribute only through the evolution.

6.1.2 DVMP

Here we list the contributions to the singlet hard-scattering amplitude up to NLO of perturbation
theory for the production of neutral vector mesons in the parity even sector

T
DVV0

LP
jk

(
αs (µR) ,

Q2

µ2
R
,
Q2

µ2
F
,
Q2

µ2
ϕ

)
(6.20)

= 3
2 j+1Γ( j+5/2)
Γ(3/2)Γ( j+3)

[
αs (µR)c

(0)
jk +

α2
s (µR)

2π
c
(1)
jk

(
Q2/µ2

R,Q
2/µ2

F,Q
2/µ2

ϕ

)
+O

(
α

3
s
)]

,

where the factor 3 comes from the normalization of the DA. At LO we have

Σc(0)jk =
1

N f
, Gc(0)jk =

2
CF( j+3)

. (6.21)

At NLO we have a slightly different anatomy of the coefficients

c
(1)
jk (. . .) =

(
1
Nf

qc(1)jk

(
Q2

µ2
R
,
Q2

µ2
F
,
Q2

µ2
ϕ

)
+ pSc(1)jk

(
Q2

µ2
F

)
,

2
CF( j+3)

Gc(1)jk

(
Q2

µ2
R
,
Q2

µ2
F
,
Q2

µ2
ϕ

))
,

(6.22)
where we now have a combination of the non-singlet contribution qc jk and the pure singlet con-
tribution pSc jk, which does not appear in DVCS at this order in perturbation theory. Typically
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the contributions are separated in terms of color

qc(1)jk (. . .) =CFc(1, F)
jk

(
Q2

µ2
F
,

Q2

µ2
DA

)
+β0c(1,β)jk

(
Q2

µ2
R

)
+CGc(1,G)

jk , (6.23)

pSc(1)jk (. . .) =
pSc(1)jk

(
Q2

µ2
F

)
, (6.24)

Gc(1)jk (. . .) =CF
Gc(1, F)

jk

(
Q2

µ2
F
,

Q2

µ2
DA

)
+CA

Gc(1, A)
jk

(
Q2

µ2
F

)
+

β0

2
ln

µ2
R

µ2
F
, (6.25)

where
CF =

4
3
, CA = 3, CG =CF−

CA

2
=−1

6
, (6.26)

and β0 is given in (6.13). Here the non-singlet contributions c(1, F)
jk , c(1,β)jk and c(1,G)

jk , the pure

singlet contribution pSc jk and the gluon contributions Gc(1,F)jk and Gc(1,A)
jk are given in [37]. As

it was shown in [38], the factorization of the gluon contributions used in [37] was not the same
for DVMP as it was for DVCS and DIS, and corrections were necessary to the pure singlet and
gluon contributions. The two corrected expressions from [38] are

pSc(1)jk (. . .) =

[
− ln

Q2

µ2
F
−1+2S1( j+1)+2S1(k+1)−1

] GΣγ
(0)
j

CF( j+3)

−
[

1
2
+

1
( j+1)2

+
1

(k+1)2

]
2

( j+1)2
+ pS

∆c(1)jk , (6.27)

and

Gc(1, F)
jk (. . .) =

[
− ln

Q2

µ2
ϕ

+S1( j+1)+S1(k+1)− 3
4
− 1

2(k+1)2
− 1

( j+1)2

]
ΣΣγ

(0)
k

2CF

+

[
− ln

Q2

µ2
F
+1+3S1( j+1)− 1

2
+

2S1( j+1)−1
(k+1)2

− 1
( j+1)2

]
j+3

2

ΣGγ
(0)
j /Nf

2

−
[

35− [(k+1)2 +2]∆S2

(
k+1

2

)
+

4

[(k+1)2]
2

]
1
8

+

[
[(k+1)2 +2]S1( j+1)

(k+1)2
+1
]

1
( j+1)2

+G
∆c(1, F)

jk . (6.28)

Here ∆S2 is the difference of second order harmonic sums

∆S2

(
n+1

2

)
≡ S2

(
n+1

2

)
−S2

(n
2

)
, (6.29)
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defined as

S2(n) =
n

∑
i=1

1
i2
. (6.30)

The rest of the coefficients are listed in [37], and are the same for the TFF EVL0 . For the parity
odd sector, the coefficients are given in [38].

We can see that the strong coupling constant is present at LO in the hard-scattering coeffi-
cients, and that the gluon coefficient is non-zero at LO, in contrast to DVCS where there are no
gluons at LO. We can also notice that the gluon contribution to DVCS at NLO (6.17) is negative,
where the dominant contribution to the amplitude is

−Nf
S1( j+2)
(1+ j)3

, (6.31)

which in the x-space corresponds to the most singular part of the amplitude

ln2(x−ξ)

x−ξ
. (6.32)

This means that the gluon contribution can suppress the quark contribution, which is positive.
This will be tested by our analysis.

6.2 Evolution of GPDs and DAs

In this section we give the evolution operator mentioned in chapter 4. One of the main reasons
we model CFFs and TFFs in the conformal space is to avoid the convolution (3.98) that enters
these functions once we introduce QCD evolution. A code for LO evolution in the x-space has
existed for a long time [114]. New advances in the x-space evolution have been made in [115]
and are being implemented in the PARTONS framework [116]. Likewise, there is a code for
NLO x-space evolution implemented in [117].

In the conformal partial wave expansion, the evolution at LO is diagonal and there is no
mixing between conformal moments. At NLO, there is mixing in the singlet sector, and mixing
of different conformal moments, but nevertheless, evolution is multiplicative and closed analytic
expressions exist for all components up to NLO. For DVCS, there have been results that extend
this framework up to NNLO in the conformal scheme [118, 101, 37], and in the MS scheme
[119, 120, 96, 121].

We again present the singlet case, where the evolution of the previously introduced singlet
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GPD vector is given as

(
HΣ

j
(
ξ, t,µ2)

HG
j
(
ξ, t,µ2)

)
= E jl (µ,µ0;ξ)

(
HΣ

l

(
ξ, t,µ2

0
)

HG
l

(
ξ, t,µ2

0
)
)
, (6.33)

with the evolution operator

E jl (µ,µ0;ξ) = ∑
a,b=±

[
δabP

a
j δ jl+

+
αS(µ)

2π

(
A(1)ab

j (µ,µ0)δ jl +B(1)ab
jl (µ,µ0)ξ

j−l
)
+O

(
α

2
s
)][ αs(µ)

αs (µ0)

]− λb
l

β0
. (6.34)

The evolution operator up to NLO accuracy in the MS scheme lives in the two-dimensional fla-
vor space (Σ,G), and the infinitely dimensional conformal space, and it is non-diagonal in both
of them. The summation in the definition of the evolution operator goes over the eigenstates
a,b ∈ {+,−} of the LO evolution operator in the (Σ,G) space, where the projectors onto the
eigenvalue states P±j are

P±j =
±1

λ
+
j −λ

−
j

(
γ
(0)
j −λ

∓
j 1
)
. (6.35)

We can see that the first term in (6.34), which is the LO contribution, is diagonal by design in
both spaces due to the two Kronecker symbols. The NLO contribution, which is proportional
to αS, has a term diagonal in the conformal moments, and a non-diagonal term. Both of them
are non-diagonal in the (Σ,G) space.

The anomalous dimensions are organized into a 2× 2 matrix γ
(0)
j , and in the parity even

sector we have [122, 123]

ΣΣ
γ
(0)
j =−CF

(
3+

2
( j+1)( j+2)

−4S1( j+1)
)
, (6.36)

ΣG
γ
(0)
j =−4NfTF

4+3 j+ j2

( j+1)( j+2)( j+3)
, (6.37)

GΣ
γ
(0)
j =−2CF

4+3 j+ j2

j( j+1)( j+2)
, (6.38)

GG
γ
(0)
j =−CA

(
− 4
( j+1)( j+2)

+
12

j( j+3)
−4S1( j+1)

)
+β0, (6.39)
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where TF = 1/2 and the eigenvalues are

λ
±
j =

1
2


ΣΣ

γ
(0)
j +GG

γ
(0)
j ∓

(
ΣΣ

γ
(0)
j −GG

γ
(0)
j

)
√√√√√1+

4ΣGγ
(0)GΣ

j γ
(0)
j(

ΣΣγ
(0)
j −GGγ

(0)
j

)2


 . (6.40)

The diagonal term in the NLO part of the evolution operator is given as

A(1)ab
j = Rab

j j (µ,µ0)P
a
j

[
β1

2β0
γ
(0)
j − γ

(1)
j

]
P b

j , (6.41)

with

Rab
jl (µ,µ0) =

1
β0 +λa

j −λb
l


1−

(
αs (µ0)

αs(µ)

) β0+λa
j−λb

l
β0


 . (6.42)

Here β0 and β1 are given in (6.13), and the NLO anomalous dimension is given in [124]. The
part of the NLO evolution operator that introduces mixing between conformal moments is given
as

B(1)ab
jl (µ,µ0) =−Rab

jl (µ,µ0)
(

λ
a
j −λ

b
l

)[(
β0−λ

b
l

)
P a

j d jlP
b
l +P a

j g jlP
b
l

]
, (6.43)

with matrices [125]

d jk =−
2kΓ( j+1)Γ(k+3/2)
2 jΓ(k+1)Γ( j+3/2)

2k+3
( j− k)( j+ k+3)

(
1 0
0 k/ j

)
(6.44)

g jk =
2kΓ( j+1)Γ(k+3/2)
2 jΓ(k+1)Γ( j+3/2)

(
ΣΣg jk k/6ΣGg jk

6/ jGΣg jk k/ jGGg jk

)
. (6.45)
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The matrix elements in (6.45) are

ΣΣg jk =−CF
4(2k+3)

( j− k)( j+ k+3)

{
−
(

1+
( j− k)( j+ k+3)
(k+1)(k+2)

)
S1( j+1)

+

(
1+

( j− k)( j+ k+3)
2(k+1)(k+2)

)[
S1

(
j+ k+2

2

)
+S1

(
j− k−1

2

)
+ ln(4)

]}
, (6.46)

ΣGg jk = 0, (6.47)

GΣg jk =−CF
(3+2k)

3(k+1)(k+2)
, (6.48)

GGg jk =−CA
4(2k+3)

( j− k)( j+ k+3)

{
−( j)4

(k)4
S1( j+1)+

( j− k)( j+ k+3)
(k)4

+
1
2

(
1+

( j)4

(k)4

)[
S1

(
j+ k+2

2

)
+S1

(
j− k−1

2

)
+ ln(4)

]}
. (6.49)

The non-singlet evolution operator is obtained from previously written quantities by reduc-
ing the matrix-valued quantities to scalar ones associated with quark components ΣΣ, i.e.

γ j→ NS
γ j,

a
λ j→ NS

γ
(0)
j = ΣΣ

γ
(0)
j , aP j→ 1,

γ jk→ NS
γ jk =

ΣΣ
γ jk, g jk→ NSg jk =

ΣΣg jk, d jk→ NSd jk =
ΣΣd jk. (6.50)

See [101] for details. The non-singlet anomalous dimension up to NLO accuracy used here is
equal to the quark-quark anomalous dimension.

The evolution operator of DAs is given by the non-singlet evolution operator for GPDs
evaluated at ξ = 1, i.e.

ϕk
(
µ2)= Ekm (µ,µ0)ϕm

(
µ2

0
)
, (6.51)

with
γk =

NS
γk, Ekm (µ,µ0) = Ekm (µ,µ0;1) . (6.52)

The DA can be written in terms of conformal moments as [54, 55]

ϕ(u) = 6uū
∞

∑
n=0

C3/2
n (2u−1)ϕn, (6.53)

where the normalization condition gives ϕ0 = 1. Since DAs are relatively poorly known, in our
study we choose their asymptotic form

ϕVL,0 = 1, ϕVL,k>0 = 0, (6.54)
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with the evolution operator components

E(0)
0,0
(
µϕ,µ0

)
= 1, E(1)

0,0
(
µϕ,µ0

)
=

1
β0

[
β1

β0

NS
γ
(0)
0 −NS

γ
(1)
0

]
. (6.55)

We do not include the NLO evolution component since it would be a pretty small contribution
to the numerical values of TFFs. For this reason our analysis is not technically fully at NLO, but
for the asymptotic form of DAs that we use here, we do not expect big effect from the evolution.
This effectively means that we include no contributions from the DA and its evolution, so the
TFFs take on the same form as CFFs, just with different hard-scattering coefficients.

6.3 Modeling GPDs

In this chapter we will present our approach to modeling GPDs in the conformal space, which
will be utilized in simultaneous global fits to DIS, DVCS and DVMP at low x in this chapter, and
for proton and neutron DVCS fits in the next. Much of our assumptions will rely on conclusions
drawn from Regge theory and studies performed on PDFs.

We have seen that GPDs depend on three variables, which we choose to be x, ξ and t. When
we expand the x-space GPDs in the conformal space, the GPD conformal moments depend on ξ

and t. We adopt the approach where the skewness dependence is expanded via t-channel SO(3)
partial waves, meaning that our GPDs have a double partial wave (PW) expansion. Formally
we have

Fa
j (ξ, t) =

j+1

∑
J=Jmin

even

Fa
j,J(t)ξ

j+1−J d̂J
α,β(ξ), J = j+1, j−1, j−3, . . . , a ∈ {q,G}, (6.56)

where J is the angular momentum in the t-channel, and d̂J
α,β(ξ) are the crossed version of

Wigner’s reduced rotation matrices. The reason we call this a t-channel expansion is that it
comes about naturally in the process which is the crossed process of DVCS. If we write DVCS
symbolically as a virtual photon scattering off a hadron in the s-channel

γ
∗(q)+h(p)→ γ

(
q′
)
+h
(

p′
)
, (6.57)

its t-channel counterpart is the process

γ
∗(q)+ γ

(
−q′
)
→ h

(
p′
)
+ h̄(−p). (6.58)
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Here the scattering amplitude is given by meson GPDs, which can be expanded into irreducible
SO(3) representations labeled by the orbital angular momentum quantum number. By crossing
this expansion back onto DVCS, we need to introduce the substitution

cosθt →−
1
ξ
+O

(
1/Q2) , (6.59)

where θt is the t-channel center-of-mass scattering angle. We can therefore describe a process
in the s−channel by an exchange in the t-channel.

The partial wave amplitude Fj, j+1 is the Mellin moment of the zero-skewness GPD, and
the subleading amplitudes, with J smaller than j+ 1, are suppressed by the factor ξ j+1−J . By
considering helicities and spins of the involved particles, one can conclude that two Wigner
matrices contribute to the expansion (6.56), which are d̂J

0,0 and d̂J
0,1, which are given in terms of

the Gegenbauer polynomials with indices 1/2 and 3/2, respectively. Equivalently, they can also
be expressed in terms of the hypergeometric function 2F1

d̂J
0,0(ξ) =

Γ(1/2)Γ(J+1)
2JΓ(J+1/2)

ξ
JC1/2

J

(
1
ξ

)
=

Γ(1/2)Γ(J+1)
2JΓ(J+1/2)

ξ
J

2F1

(
−J J+1

1

∣∣∣∣
ξ−1

2ξ

)
,

(6.60)

d̂J
0,1(ξ) =

Γ(1/2)Γ(J)
2JΓ(J+1/2)

ξ
J−1C3/2

J−1

(
1
ξ

)
=

Γ(3/2)Γ(J+1)
2JΓ(J+1/2)

ξ
J−1

2F1

(
−J+1 J+2

2

∣∣∣∣
ξ−1

2ξ

)
.

(6.61)

We can find a basis where the amplitudes do not mix, which are linear combinations of
GPDs H j and E j. The t-channel helicity conserving, or "electric" combination [46]

Ha
j +

t
4M2 Ea

j , a ∈ {q,G} (6.62)

is given in terms of d̂J
0,0, and the t-channel helicity flip, or "magnetic" combination

Ha
j +Ea

j , a ∈ {q,G} (6.63)

is given in terms of d̂J
0,1.

For more details see [101, 126] and references therein. It was shown in [101] that for the
kinematics we are interested in, roughly ξ ≤ 0.3, which corresponds to x ≤ 0.46, we can ap-
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proximate the coefficients in the expansion (6.56) as

d̂J
α,β(ξ)≈ 1. (6.64)

In the forward limit ξ = 0, the leading amplitude in the PW expansion should reduce to the
Mellin moment of the corresponding PDF

Fa
j, j+1(0) = f a

j =
∫ 1

0
dxx j f a(x). (6.65)

This prompts us to use the known PDF ansatz to model the leading amplitude in the PW expan-
sion. But in this approach we do not use state-of-the-art results for PDFs obtained from experi-
ment, since current methods for modeling PDFs are more sophisticated than our approach and
could lead to inconsistencies. Instead, we use a well-known ansatz for PDFs

f a(x) =
Na

B
(
2−αa

0,β
a +1

)x−αa
0(1− x)βa

, (6.66)

which in the conformal space corresponds to

f a
j = Na

B
(
1−αa

0 + j,βa +1
)

B
(
2−αa

0,β
a +1

) . (6.67)

The 1−x part of the PDF describes its high x behavior, which we cannot access in our analysis.
We therefore rely on counting results to fix βsea = 8 and βG = 6. In (6.66) and (6.67) the
normalization is chosen so that Na corresponds to the average longitudinal momentum fraction
of parton a. All of these factors need to sum up to 1, i.e.

Nsea +Nval +NG = 1. (6.68)

In order to introduce the t dependence, which factorizes from the x dependence at low x

[127], we take note from Regge phenomenology to complete the Regge trajectory

α
a
0→ α

a(t) = α
a
0 +α

′at. (6.69)

We use this trajectory to decorate the forward GPDs with a factor

1

1− t
(ma

j)
2

, (ma
j)

2 =
1+ j−αa

0
α′a

. (6.70)
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Regge theory tells us that at high energies the scattering amplitude behaves as Γ(−α(t))sα(t),
where α(t) is a trajectory in the complex j space which contains all particles in the t-channel
exchange, and for each of these particles α(t) = j+ 1, where j is a non-negative integer. The
exchange of these particles induces poles in the amplitude and these poles are here modeled as
a monopole factor (6.70). We then add a residual t-dependence in the form of a dipole impact
factor

β(t) =
(

1− t
m2

a

)−2

, (6.71)

where we ignore all j dependence of the mass parameter m2
a since this dependence cannot be

discerned at low x.
The final GPD form is therefore

Fa
j, j+1(t)≡ f a

j (t) = f a
j

1+ j−αa
0

1+ j−αa
0−α′at

(
1− t

m2
a

)−2

, (6.72)

with f a
j given in (6.67). Another possibility for the residual t-dependence is an exponential

function
β(t) = eBt , (6.73)

but it is unlikely that such a t-dependence would come about naturally from a field theoretical
standpoint. However, for low values of x both of the residual functions similarly reproduce data.

Using previous analyses, it was shown that the data we will be working with does not distin-
guish between the t dependencies of the different partial waves, and that the description works
sufficiently well by truncating (6.56) after the second subleading PW [128]. Our full model is
therefore

Fa
j (ξ, t) =

(
1+ sa

2ξ
2 + sa

4ξ
4) f a

j (t), (6.74)

where the parameters s2 and s4 are determined in fits. In the Mellin-Barnes representation we
can shift the terms in the subleading partial waves by j→ j− 2 and j→ j− 4 so that we can
write the CFFs/TFFs as

H=
1
2i

∫ c+i∞

c−i∞
d jξ− j−1

[
i+ tan

(
π j
2

)][
T

I
j +s2T

I
j+2 +s4T

I
j+4

]
H j. (6.75)

In the former expression the subtraction constant is set to zero, since for such a small range of
kinematic variable values we cannot extract its form.

A similar model has already been used in [3], with the difference of having more parameters
due to not taking the subleading partial waves to be proportional to the leading one, but having
different parameters for each partial wave. In this model, the normalization for DVMP cross
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sections was also considered as a free parameter in fits. A model with more parameters offers
more flexibility, but our model has proven sufficiently flexible for the low-x analysis presented
here.

All of the expressions listed here and many more are implemented into the Python software
Gepard, which will be detailed in Section 7.2.4.
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Chapter 7

Multichannel fits

In this chapter we present the application of the model described in chapter 6 onto low-x data.
Similar analyses in terms of simultaneous fits were conducted at LO in [1], where a fit to DVMP
data reasonably reproduces DVCS observables, specifically HERA data, and at NLO in [2, 3, 4],
where a simultaneous fit to DVCS and DVMP was obtained with HERA data. In the latter case,
the analyses did not include correct hard-scattering expressions, as explained in Chapter 6.1.2,
and their model had more parameters, as mentioned in the previous section.

For this analysis we use H1 and ZEUS measurements obtained with the HERA collider
since they have measured these processes at the lowest x and highest photon virtuality Q2. The
data we will be using is:

• H1 measurements of the DIS structure function F2(x,Q2) from [129];

• H1 and ZEUS measurements of the DVCS photoproduction cross section σ(γ∗p→ γp)

from [130, 131, 132, 133];

• H1 and ZEUS measurements of the DVMP photoproduction cross section for the produc-
tion of the ρ0 meson σ(γ∗p→ ρ0 p) from [134, 135].

In order to be certain that the twist-2 and low-x approximations we introduce reproduce the
data reliably, we make cuts on the kinematics. Namely, we make a cut at Q2 > 5 GeV2 for
DVCS and at Q2 > 10 GeV2 for DVMP. Because our model takes only sea quark and gluon
contributions into consideration, it can easily be generalized to the production of other mesons,
such as the φ meson. We just replace the meson specific prefactors that come into the definition
of TFFs to obtain

σ(γ∗p→ φp) =

(√
2 fφ

3 fρ0

)2

σ
(
γ
∗p→ ρ

0p
)
, (7.1)
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where the meson decay constants are fρ0 = 0.209 GeV and fφ = 0.221 GeV. As we will see
later, this relation does not represent the data accurately, because if we multiply the φ production
measurements with the same prefactor as in (7.1), we obtain values that are consistently smaller
than the ρ0 measurements. We therefore omit the φ production measurements from fits, and
keep only the measurements for ρ0 production with good statistics.

For the sake of simplicity, we set the renormalization and factorization scales to be equal to
the photon virtuality

µF = µR = µϕ = Q, (7.2)

and the initial evolution scale to Q0 = 2 GeV.

7.1 L/T separation

The goal of this study is to asses the validity of a collinear twist-2 approach to describe the
longitudinal meson production, because the factorization theorem was proven for this case.
Unlike DVCS, where the twist-2 approximation is dominant, it is known that DVMP has a
substantial higher-twist contribution from the exchange of transversally polarized photons [136,
137]. In order to asses the accuracy of our model, we need to work with the longitudinal cross
section, which we denote as σ

ρ0

L =σ
(
γ∗L p→ ρ0

L p
)
. It is impossible to determine the polarization

of the virtual photon experimentally, so in practice the polarization of the out-going meson is
measured, and is equated to the polarization of the virtual photon under the s-channel helicity
conservation (SCHC) assumption. Under this assumption we have σ

ρ0

L ≈ σρ0
L = σ

(
γ∗p→ ρ0

L p
)

and ignore transitions where the helicity changes. The SCHC assumption has been discussed in
[134] and references therein.

The SCHC assumption is experimentally tested by measuring the spin density matrix ele-
ments (SDMEs) [138], which are used to calculate the ratio of the longitudinal and transverse
cross section

R≡ σ
ρ0

L

σ
ρ0

T

. (7.3)

Both H1 and ZEUS collaborations have studied this ratio and its kinematic dependencies. The
H1 results from [134] have shown that R depends on Q2, that it has some dependence on t at
higher values of Q2, and that it has no clear dependence on W within uncertainties.

In [134] the values for σ
ρ0

L and σ
ρ0

T have been measured, but they were binned only in Q2.
Since we are modeling GPDs, which depend on three variables, we need the values of the cross
section in terms of three variables, such as W and t, in addition to the Q2 dependence. To extract
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the values for σ
ρ0

L , we use the measurements for R and the total cross section σρ0
L , which is given

as
σ

ρ0
L = σ

ρ0

T + εσ
ρ0

L , (7.4)

with the flux ratio of longitudinal to transverse photons ε(y)

ε≈ 1− y

1− y+
1
2

y2
, y =

W 2 +Q2−M2

s−M2 . (7.5)

An issue we run into is that the measurements for R and σρ0
L were not taken at the same kine-

matic points, so we need to model R in terms of all kinematic variables and interpolate its values
for the same kinematic points that σρ0

L is measured at.
Some analysis of R has been previously made in [2], where any W and t dependence is

ignored and the following model is proposed

R
(
Q2)= Q2

m2
ρ0

(
1+a

Q2

m2
ρ0

)−p

, (7.6)

where a and p are fitting parameters, and mρ0 = 0.776 GeV is the mass of the ρ0 meson. This

is a modification to the expectation that σ
ρ0

L ∝ 1/Q6 and σ
ρ0

T ∝ 1/Q8 [139].
In [2, 4, 3] the model (7.6) was tested against H1 and ZEUS data and the parameters a

and p were obtained. As we have mentioned, we observe kinematics with large Q2, where the
uncertainties of R measurements are larger and it is unclear whether there is a W dependence.
This is illustrated in Fig. 39 in [134].

In this work, we added a W dependence to R to obtain

R
(
W,Q2)= Q2

m2
ρ0

(
1+a

Q2

m2
ρ0

)−p(
1+b

Q2

W

)
, (7.7)

where b is an additional parameter to be obtained in fits. A similar argument could be made
for the t dependence, which is also evident at higher Q2 values, as shown in measurements
of light vector meson production at slightly higher xB made by the COMPASS collaboration,
specifically measurements depicted in Fig. 11b in [140]. Since the HERA measurements of R(t)

were taken at Q2 < 10 GeV2, which is the cut-off we are working with, we cannot determine
the t dependence and therefore choose not to work with dσ

ρ0

L /dt, but only with DVMP cross
section measurements integrated over t.
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It is evident that H1 and ZEUS measurements show some disagreement in R for higher
values of Q2, so we fit the function R separately to H1 and ZEUS data. The parameters we
obtain are

H1: a =3±29 p = 1.0±0.6 b =−82±780 GeV−1, (7.8)

ZEUS: a =2±4 p = 0.44±0.26 b = 0.3±1.1 GeV−1. (7.9)

Notice that the parameter b is not dimensionless, which is a choice purely for the sake of
avoiding W 2 in the denominator for numerical efficiency. The functions R

(
W,Q2)

H1 and
R
(
W,Q2)

ZEUS, as well as the functions R(Q2) obtained in [3], are given in figure 7.1 below.

5 10 15 20 25

Q2 [GeV2]

0

2

4

6

8

10

R
=
σ

V
,L
/
σ

V
,T

arXiv:1312.5493

This work

H1, W = 75 GeV

10 20 30 40

Q2 [GeV2]

arXiv:1312.5493

This work

ZEUS, W = 90 GeV

Figure 7.1: Comparison of R
(
W,Q2

)
H1 to measurements from [134] (left) and R

(
W,Q2

)
ZEUS to mea-

surements in [135] (right). Both measurements are compared to the function R(Q2) from [2], which is
plotted in green.

7.2 Results

7.2.1 Fits and parameters

As previously mentioned, the goal of this study is to asses the NLO corrections to the processes
we are analyzing, as well as verifying the universality of the GPD description of DVCS and
DVMP. For this purpose we perform six different fits. We perform three fits at LO accuracy,
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and three fits at NLO accuracy. For the LO and NLO fits we perform a fit to all DIS, DVCS and
DVMP data mentioned at the beginning of this discussion, a fit to DIS and DVCS data, and a fit
to DIS and DVMP data. Since all fits contain DIS data, in the labeling of these fits we will omit
the DIS label, so the fits will be labeled as (N)LO-DVCS-DVMP, (N)LO-DVCS and (N)LO-DVMP.
All of the models and the data they have been fitted to are listed in Table 7.1 below.

model name order DIS DVCS DVMP

LO-DVCS LO X X

LO-DVMP LO X X

LO-DVCS-DVMP LO X X X

NLO-DVCS NLO X X

NLO-DVMP NLO X X

NLO-DVCS-DVMP NLO X X X

Table 7.1: List of models used in this work, order of perturbation theory, and datasets to which the model
was fitted. References to used DIS, DVCS and DVMP experimental data are given in Table 7.2.

We perform the fits to all data by first fitting to DIS F2 data and fixing the parameters relevant
to PDFs, i.e. relevant in the forward limit of GPDs

{
Nsea ,α

sea
0 ,αG

0
}
. (7.10)

Using the results of DIS analysis, we set Nval = 0.4, which was mentioned in (6.68). We do this
because we expect that valence quarks have a negligible contribution, so the data will not be
sensitive to the valence sector parameters. From (6.68) it follows that only one normalization
parameter is free, and we choose Nsea , which fixes NG. With the parameters (7.10) fixed,
the models are fitted to the rest of the datasets, either DVCS, DVMP, or both, releasing the
parameters {

α
′
sea,α

′
G,m

2
sea ,m

2
G,s

sea
2 ,sG

2 ,s
sea
4 ,sG

4
}
. (7.11)

At some point in the analysis the fitting was done in three steps in case of the (N)LO-DVCS-DVMP
models, where the last fitting was performed to all three datasets, but the difference in the results
was negligible. For the fitting we used the least square fitting routine MINUIT [141, 142].

The way we asses the quality of the fits is by using the χ2 goodness of fit test. It is a way of
comparing the model predictions to observed data by calculating the χ2 value of the model as

χ
2 = ∑

i

(oi− ei)
2

∆o2
i

, (7.12)
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where oi are the observed values, which are in our case the measurements, and ei are the ex-
pected values, which are our model predictions of the measurements. The χ2 itself does not
asses the quality of the fit since it depends on the number of datapoints we are comparing the
model to, so we usually calculate χ2/Nd.o.f., where Nd.o.f. is the number of degrees of freedom.
Ideally, we would want this number to be as small as possible, but realistically if this number is
close to 1, we consider the fit to be sufficiently accurate in representing the data. The degrees
of freedom are in some cases taken to be as the number of datapoints, and in others this num-
ber is decreased by the number of free parameters in the fits. It is sometimes not clear how to
determine the degrees of freedom in a dataset, such as in the fits to DIS+DVCS or DIS+DVMP,
since the 9 parameters that are released in the second step of the fitting procedure (7.11) come
from GPDs which are present in both DVCS and DVMP. We can obtain the degrees of freedom
in the case of the fits to the total dataset by subtracting the parameters from the total number of
datapoints, so we give χ2/Nd.o.f.

χ
2/Nd.o.f.(LO-DVCS-DVMP) = 1.5, χ

2/Nd.o.f.(NLO-DVCS-DVMP) = 1.2. (7.13)

The values of χ2/npts for all six of the models tested on all four sets of datapoints, DIS,
DIS+DVCS, DIS+DVMP and DIS+DVCS+DVMP are given in Table 7.2 below.

Dataset Refs. Npts
LO- NLO-

DVCS DVMP DVCS-DVMP DVCS DVMP DVCS-DVMP

DIS [129] 85 0.6 0.6 0.6 0.8 0.8 0.8
DVCS [130, 131, 132, 133] 27 0.4 � 1 0.6 0.6 � 1 0.8
DVMP [134, 135] 45 � 1 3.1 3.3 � 1 1.5 1.8
Total 157 � 1 � 1 1.4 3.7 � 1 1.1

Table 7.2: Values of χ2/Npts for all of the six models described in this section (columns) tested against
four different datasets (rows). The values denoted by� 1 are greater than 10.

We can see that models that have not been fitted to a certain dataset exhibit χ2/Npts larger
than 10, as denoted by� 1. This is not unexpected, since with all of the intricacies of modeling
these processes, it would be highly unlikely that a model accidentally describes data it has never
seen accurately. Both the LO and NLO models to all datasets describe the data sufficiently well,
especially the NLO model, which we deem to perform the best out of all six models. The LO
fits to DIS and DVCS are satisfactory, but not so much to DVMP.

All of the fits were also performed by using a universal function R(W,Q2) fitted together to
the H1 and ZEUS data, and the value of χ2/nd.o.f.(NLO-DVCS-DVMP) changes from 1.2 to 1.3.
All of the predictions made with this model are practically the same as with the model with two
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different R(W,Q2) functions.
The parameters of the best model are given in Table 7.3 below. The first row gives the initial

values we used for the parameters. We set all of the subleading wave parameters to zero, except
for ssea

2 , which was set to a negative value because this value was favoured by previous LO
DVCS models [128]. Using the knowledge of Regge phenomenology, we set the intercepts αa

0

to 1 and the slopes α′a to 0.15 for both sea quarks and gluons.
In order to achieve stable fits, we needed to restrict some parameters. For physical reasons,

we limit the squares of masses m2
a and Regge slopes α′a to positive values of order one. Negative

values of α′a enable discontinuous values of the form factors as a function of t, which we want
to avoid. We also want a natural hierarchy of the subleading partial wave normalizations in
comparison to the leading one, i.e. 1� ssea

2 � ssea
4 . We would want the same for the gluon

sector, but imposing such a strict limit does not yield satisfactory fits. As can be seen from Table
7.3, by leaving the gluon partial wave normalizations more flexible, they turn out relatively
large. This has been the case in previous models [143] and it remains to be seen with more data
whether the problem lies with this type of model.

The second row in Table 7.3 gives the values of the parameters of the best models, and the
last row gives their uncertainties, also obtained by the MINUIT routine.

parameter Nsea αsea
0 α′sea m2

sea ssea
2 ssea

4 αG
0 α′G m2

G sG
2 sG

4

unit 1 GeV−2 GeV2 1 1 1 GeV−2 GeV2 1 1

initial 0.15 1.00 0.15 0.70 -0.20 0.00 1.00 0.15 0.70 0.00 0.00

limits (0.0,1.0) (0,3) (-0.3,0.3) (-0.1,0.1) (0.0,1.0) (0,3) (-3.0,3.0) (-1.0,1.0)

final 0.168 1.128 0.125 0.412 0.280 -0.044 1.099 0.000 0.145 2.958 -0.951

uncert. 0.002 0.011 0.043 0.056 0.037 0.012 0.011 0.011 0.008 0.032 0.023

Table 7.3: The initial values of the parameters and their limits are given in the first two rows. The final
fitted values and their uncertainties (one standard deviation) of the best NLO-DVCS-DVMP model are given
in the last two rows. The values of χ2/npts are given in the last column of Table 7.2.

We also observed the correlations between the parameters of the model. The parameters α′sea

and m2
sea have the highest correlation of 0.937, which indicates that the t-dependence coming

from the Regge trajectory is indistinguishable from the residual t-dependence controlled by the
parameter m2

sea. Due to this high correlation we cannot observe the shrinkage effect, where for
high x we observe a flattening of the proton in the transversal direction. This is to be expected
since we are observing low-x kinematics. The subleading partial wave normalizations show a
strong anticorrelation, where ssea

2 and ssea
4 have an anticorrelation of -0.940, and sG

2 and sG
4 have

an anticorrelation of -0.931, which suggests that we cannot distinguish between contributions
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from the second and third SO(3) partial wave in neither the sea quark nor the gluon sector.

7.2.2 Data representation

In this section we depict graphically all of the predictions of the models described in the pre-
vious section. Note that we do not draw error bands for any of the model predictions, which
is due to the fact that we currently have no way to asses the errors incurred by all of the spe-
cific choices made in modeling CFFs and TFFs, which are also called systematic errors. We
could include the statistic errors propagated from the measurements, but we believe they would
grossly underestimate the overall error of these models, so we omit the errors all together.

In all of our models we perform fits to DIS data, instead of matching the obtained GPDs
to the previously known PDFs in the forward limit. Aside from the current methods of fitting
PDFs being more sophisticated than our methods, it is also a good confirmation that the models
can reproduce DIS data given all of the specific choices made. The first row of Table 7.2 shows
that all models have a very good description of DIS, which is also evident in Figure 7.2 below.
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Figure 7.2: Description of H1 measurements [129] of the structure function F2(xB,Q2) at LO (thin line)
and NLO (thick line).

Figure 7.3 shows the description of H1 and ZEUS DVCS cross section data by (N)LO-DVCS

and (N)LO-DVCS-DVMP models. Some difficulties are encountered at low Q2, such as in the
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upper right panel, but these kinematic points were excluded from fits so it is not unexpected
that the models perform somewhat worse. These results are reflected in the second row in Table
7.2, which gives the χ2/npts values for all six models.
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Figure 7.3: Description of H1 [130, 131] and ZEUS [132, 133] measurements of the cross section de-
pendence on t, W and Q2. The LO (thin lines) and NLO (thick lines) models fitted to DIS+DVCS (blue
dashed), and DIS+DVCS+DVMP (red solid) are compared to the data. The three H1 lines on the left
panels correspond, from top to bottom, to Q2 = 8, 15.5 and 25 GeV2, respectively.

Figures 7.4 and 7.5 depict the model predictions of H1 and ZEUS DVMP cross section
measurements, respectively. Here we show the predictions made by models (N)LO-DVMP and
(N)LO-DVCS-DVMP. We can see in the left panels of both figures that the LO description does
not perform well for Q2 > 30 GeV2, and from the right panels we see that it does not perform
well in the description of the W dependence, especially for the ZEUS data. This is also reflected
in the third row of Table 7.2. However, the NLO description improves significantly, specially
in the left panels. The slope for the W dependent cross sections is somewhat too steep, but
overall the description is satisfactory. This answers the questions we set out to answer, which is
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whether or not it is possible to describe DVMP at the twist-2 collinear level.
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Figure 7.4: Description of H1 DVMP measurements [134] of the cross section dependence on Q2 and W
by LO (thin lines) and NLO (thick lines) models fitted to H1 and ZEUS DVMP data (green dot-dashed),
as well as DVCS data (red solid).

20 40 60 80 100

Q2 [GeV2]

10−2

10−1

100

101

102

σ
(γ
∗ L
p
→
ρ

0
p

)
[n

b
]

LO DVMP

LO DVCS+DVMP

NLO DVMP

NLO DVCS+DVMP

ZEUS+R, W = 90 GeV

50 75 100 125 150 175 200

W [GeV]

Q2 = 13.5 GeV2

32.0 GeV2

Figure 7.5: Description of ZEUS DVMP measurements [135] of the cross section dependence on Q2

and W by LO (thin lines) and NLO (thick lines) models fitted to H1 and ZEUS DVMP data (green
dot-dashed), as well as DVCS data (red solid).

We also check if the models reproduce the φ production H1 data [134], even though we did
not fit to this data. The predictions of all four models fitted to DVMP data are given below in
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Figure 7.6. The models are not too precise, which is to be expected because we did not fit to this
data, but another reason could also be our choice of the DA, which does not discern between
the final-state mesons.

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

Q2 [GeV2]

10−1

100

101

102

σ
(γ
∗ L
p
→
φ

p
)

[n
b

]

LO DVMP

LO DVCS+DVMP

NLO DVMP

NLO DVCS+DVMP

H1+R, W = 75 GeV

Figure 7.6: Description of H1 DVMP measurements of φ production [134] of the cross section depen-
dence on Q2 and W by LO (thin lines) and NLO (thick lines) models fitted to H1 and ZEUS DVMP data
(green dot-dashed), as well as DVCS data (red solid).

Another point of interest is the Q2 scaling of the DVMP cross section. Theoretical expres-
sions (6.2) and (6.5) suggest that the longitudinal cross section at fixed x scales as Q−6, but
experimental results for the total cross section suggest a scaling Q−4. It is important to discern
between the longitudinal and transversal contributions to the total cross section in this analysis.
If we fit the data in the left panel of Figure 7.4, which has a fixed value of W , to the function
σ

ρ0

L ∝ Q−w, we reproduce the value

w = 5.1±0.1, (7.14)

but if we fit the same function to the data that has a fixed value of x, we obtain

w = 3.8±0.2. (7.15)
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This result is quite different from w = 6 predicted by the collinear twist-2 QCD approach, and
it is a good test for our models.

By using the L/T separation function (7.7) and observing the prediction for the few H1
datapoints with fixed x that are available, we also reproduce the behavior σ

ρ0

L ∝ Q−4 in the
experimental region. We can see in Figure 7.7 that both the LO-DVMP and NLO-DVMP models
reproduce a Q−4 scaling within the experimental errors for the H1 measurements. At higher Q2

both models predict the expected Q−6 scaling.
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Figure 7.7: Prediction for the H1 longitudinal cross section from [134] at fixed x = 0.0018 by LO-DVMP

(thin) and NLO-DVMP (thick) models.

A more reliable assessment of the Q2 scaling can be done for the fixed-W data, which we
have more of. The fit to fixed-W data (7.14) suggests a scaling Q−5, so we depict Q5σ

ρ0

L data
for the production of ρ0 and φ mesons in Figure 7.8, alongside the four fits to DVMP data. The
prediction for the φ production is obtained using (7.1), and the data for the φ production has
been rescaled using the same parameter. We can see that only the NLO fits can reproduce the
correct scaling for large Q2. We can also see that the predictions for φ production are too large.
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For a final consistency check, we plot the t-dependent data, even though we do not fit to it nor
do we consider it since there is no clarity on the t-dependent L/T separation. We depict the H1
t-dependent data for the ρ0 meson production in Figure 7.9, and compare it to the four models
fitted to DVMP data. The points with Q2 = 6.6 GeV2 have no lines running through them since
they are below the kinematic cut-off. This plot serves as a check that there is no pathological
behavior in the t variable. We can see that the only model that has a somewhat acceptable
prediction is NLO-DVMP. Some previous iterations of this model with fewer constraints displayed
unphysical behavior in the t variable.

7.2.3 Quark and gluon contributions

In the last section we explored the idea of describing DVMP at the twist-2 collinear level. If we
accept the models obtained above as satisfactory, we can now observe the quark-gluon structure
of the proton and how it changes in the transition from an LO to an NLO description. This is
enabled because we have added DVMP to our analysis, which offers access to gluons at LO,
and, unlike DIS and DVCS, offers access to a richer flavor structure due to the meson probe.
This allows for a cleaner separation of different quark flavor and gluon GPDs. We can study the
quark and gluon contributions more easily because we consider the hard-scattering amplitude
as the one being evolved by the GPD evolution operator. In the figures below, we have studied
the quark and gluon contributions to DIS, DVCS and DVMP both at LO and NLO.

In Figure 7.10 we can see the quark and gluon contributions to the structure function F2 for
x = 0.001 at LO, which is depicted in the left panel, and at NLO, which is depicted in the right
panel. We can see that at the initial scale Q2

0 = 4 GeV2 there is no gluon contribution at LO,
which is to be expected since at LO DIS is described in terms of the naive parton model where
the virtual photon scatters off a quark. We expect that at LO gluons will only contribute through
the QCD evolution, which is evident in the left panel. The contributions from quarks and gluons
become equal at Q2 ∼ 50 GeV2. The figure remains fairly similar at NLO, aside from a small
contribution of gluons at the input scale.
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Figure 7.10: Separation of quark (blue dot-dashed) and gluon (red dashed) contributions to the DIS
structure function F2 (black solid) at LO (left) and NLO (right) for x = 0.001.

In Figure 7.11 we depict the quark and gluon contributions to the CFFH for x = 0.001 and
t = 0 at LO, which is depicted in the left panel, and at NLO, which is depicted in the right panel.
We separately observe the imaginary part, which is given in the top panels, and the real part,
which is given in the bottom panels. We notice a similar configuration to DIS at LO, in the sense
that the gluons only contribute through evolution and that they equal the quark contribution at
Q2 ∼ 50 GeV2. For the imaginary part, which is what the experiments are more sensitive to,
we see that the gluons have a significant and negative contribution at NLO immediately at the
initial scale Q2

0 = 4 GeV2, even though they are suppressed by αS/2π. Therefore, the quark
contribution has to be twice as large as the LO contribution in order to reproduce the correct
CFF. This has already been confirmed in [144, 145]. This behavior does not show up in the real
component of the CFFH, but it is difficult to draw conclusions for this component because the
data are not sensitive to it as much as they are to the imaginary component.
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Figure 7.11: Separation of quark (blue dot-dashed) and gluon (red dashed) contributions to the real (top)
and imaginary (bottom) CFF H (black solid) with models LO-DVCS-DVMP (left) and NLO-DVCS-DVMP

(right) for x = 0.001 and t = 0.

In Figure 7.12 we depict the quark and gluon contributions to the TFFHρ for x = 0.001 and
t = 0 at LO, which is depicted in the left panel, and at NLO, which is depicted in the right panel.
We separately observe the imaginary part, which is given in the top panels, and the real part,
which is given in the bottom panels. We have a confirmation that gluons contribute to DVMP at
LO, and quite strongly so. For the imaginary part the configuration does not change significantly
when going to NLO, but we can notice a relative suppression of the real component when going
to NLO. We can see in all four panels that the gluon contribution dominates the amplitude and
would likely be sufficient to describe DVMP at high energies.
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Figure 7.12: Separation of quark (blue dot-dashed) and gluon (red dashed) contributions to the real (top)
and imaginary (bottom) TFF Hρ (black solid) with models LO-DVCS-DVMP (left) and NLO-DVCS-DVMP

(right) for x = 0.001 and t = 0.

These results can be reframed in the context of the so-called skewness ratio of GPDs at the
crossover line and the corresponding PDFs

ra (Q2)= Ha (x,ξ = x, t = 0,Q2)

Ha (x,ξ = 0, t = 0,Q2)
, (7.16)

which for small values of x does not depend on x. According to [146, 147], for a fixed t this
value should be completely determined by the value of the corresponding PDF and take on the
values

rΣ
con =

2λΓ(3/2+λ)

Γ(3/2)Γ(2+λ)
, rG

con =
21+λΓ(3/2+λ)

Γ(3/2)Γ(3+λ)
. (7.17)

We call it the conformal ratio because it is a Clebsch-Gordan coefficient occurring in the COPE
of the product of two currents. It was obtained by taking a simple power-like ansatz for PDFs,
performing a Shuvaev transform [148] and comparing to previously obtained global PDF fits to
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obtain the parameter λ. It was concluded that the skewness ratios take on the fixed values

rQuark ≈ 1.65, rGluon ≈ 1.0. (7.18)

A similar result was obtained by the popular Radyushkin’s double distribution ansatz [149, 150].
These predictions were obtained using several assumptions and simplifications, so we do not
expect them to hold exactly. We have seen from Figures 7.11 and 7.12 that the NLO description
differs significantly from the LO description, which is not the case for DIS, and so we expect
the skewness ratio to differ as well.

In Figure 7.13 we have plotted the skewness ratio at x = 0.001 for quarks and gluons ob-
tained by all six models. We can see that for both quarks, which are depicted in the left panel,
and gluons, which are depicted in the right panel, the LO description is not consistent and varies
greatly with the process. Once we go to NLO, the skewness ratio starts to agree much more be-
tween processes and comes relatively close to the values in (7.18). This is a confirmation that a
universal GPD description of DVCS and DVMP emerges at NLO. We can see that the skewness
ratios predicted by the NLO models are somewhat higher than the conformal ones. For quarks,
all three lines sit right above the value 2, and for gluons they sit roughly above the value 1.5.
For gluons we can also notice that the NLO fit to all datapoints and the NLO fit to DIS+DVMP
give a similar value, while the NLO fit to DIS+DVCS somewhat disagrees with them, which
could be due to the stronger presence of gluons in DVMP.

5 10 20 50

Q2 [GeV2]

0

1

2

3

4

5

sk
ew

n
es

s
ra

ti
o
H

(x
,x

)/
H

(x
,0

)

x = 0.001

Quarks

5 10 20 50

Q2 [GeV2]

−3

−2

−1

0

1

2
Gluons

LO DVCS

LO DVMP

LO DVCS+DVMP

NLO DVCS

NLO DVMP

NLO DVCS+DVMP

Figure 7.13: Depiction of skewness ration at x = 0.001 for quark (left) and gluon (right) GPD H for three
LO (thin) and three NLO (thick) models from Table 7.1.
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Through this analysis we conclude that at low x and Q2 > 10 GeV2 a collinear twist-2
description of DVMP is possible once NLO corrections are included. We have also shown that
at NLO a simultaneous fit to DIS, DVCS and DVMP is possible, thus uncovering a universal
GPD description of the proton structure.

7.2.4 Gepard

Gepard is a software used to perform all of the numerical calculations and to plot all of the
graphs. The software was predominantly coded by prof. K. Kumerički, and parts of it were
independently verified by various people. Specifically, the full DVMP cross section with evolu-
tion was coded and cross-checked with Gepard by the author of this thesis. Gepard is available
publicly as a Python package that can be installed in the same way as any other. The detailed
documentation and instructions on its use are given in the website https://gepard.phy.hr/

index.html. On the website you can also find a GPD server which directly plots and generates
GPD or CFF values for a given model.

We give here a short tutorial on how to use it. After installing it, you can import it as
any other package. The first step for calculating anything is to choose a model and define the
kinematics you are interested in. Say that we want to use an already defined model such as
KM15, which is one of the more popular models. We define a datapoint in the JLab kinematics
that can be used to calculate the DVCS cross section. The code for importing Gepard, the model
KM15 and defining a datapoint is given bellow.

import gepard as g

from gepard.fits import th_KM15

pt = g.DataPoint(xB=0.348, t=-0.3, Q2=3., phi=0.3,

process=’ep2epgamma’, exptype=’fixed target’,

in1energy=6., in1charge=-1, in1polarization=+1,

observable=’XS’, val=0.21, err=0.01)

If we want to calculate the observable defined in the datapoint, we simply write

th_KM15.predict(pt)

and if we want to calculate another observable given at the same kinematics, such as the charge
asymmetry, we write

th_KM15.AC(pt)

We can calculate CFFs as
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th_KM15.ImH(pt)

If we want to build our own theory by taking various analytical expressions for GPDs, CFFs/TFFs
and observables, we can write

import gepard as g

class MyTheory(g.PWNormGPD, g.MellinBarnesCFF, g.DIS, g.BMK, g.DVCS,

g.MellinBarnesTFF, g.DVMP):

pass

th = MyTheory()

For example, our two-step fit was performed as

f = g.MinuitFitter(DISpoints, th)

f.release_parameters(’ns’, ’al0s’, ’al0g’)

f.fit()

f.fix_parameters(’ALL’)

f = g.MinuitFitter(th.fitpoints, th)

f.release_parameters(’ms2’, ’alps’, ’secs’, ’this’, ’mg2’, ’alpg’,

’secg’, ’thig’)

f.limit_parameters(pars_range)

f.fit()

where th denotes the six models described in this chapter. The datapoints and the parameter
ranges were also defined in this chapter.

There are more aspects to Gepard, such as our neural network framework, which we explain
in the next chapter.
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Neural network parametrization
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Chapter 8

Neural network extraction of CFFs

In this chapter we use the methods detailed in Chapter 5 to extract Compton form factors from
DVCS data, and to obtain flavored contributions to CFFs. The results given here were published
in [5].

8.1 Neural network framework

We are currently in the intermediate stage of studying DVCS through machine learning meth-
ods, meaning that we cannot yet deconvolute the GPDs inside of the CFFs, so we presently only
extract CFFs from the data. We do this by utilizing neural network algorithms, where we input
the kinematic points from the measurements and train the CFFs found in theoretical expressions
for observables on the measurements. More formally, the steps in obtaining a neural network
extraction of CFFs are:

i) the values for xB and t from the measurements are fed into input neurons with two layers,
datapoint by datapoint;

ii) (xB, t) values are propagated through the network with certain weights and activation
functions, where the weights in the first iteration are set to random values;

iii) the net calculates the values of the real and imaginary CFF components as functions of
xB and t;

iv) the predicted values of CFFs are used to calculate observables, which are then compared
to actual measurements using the squared error utilized in the calculation of χ2;

v) the error obtained in the previous step is weighted by the inverse uncertainty of the mea-
surement, if possible, and then used to modify the network through backpropagation;
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vi) the process is repeated through the entire training dataset.

This is called a training epoch, and an example of a neural net architecture used for extrac-
tion of CFFs is given in Figure 8.1 below.

...... ...

...

Figure 8.1: Example of a neural network architecture that parametrizes CFFs as functions of xB and t.

The reason we only use xB and t as input values, and not also the virtuality of the process,
is because the analysis we perform is on a dataset with a very narrow span of Q2 values, so
we do not expect that the Q2 dependence would have a significant impact. We therefore do not
implement QCD evolution in this framework.

This procedure is equivalent to a least squares fit in the sense that a neural network is basi-
cally a non-linear multi-parameter function, and its training is equivalent to least-square fitting.
There are several advantages to using a neural network framework. One is the fact that a neural
network approach is unbiased because we do not suggest any functional form of the CFFs. Also,
neural networks can arbitrarily accurately approximate any smooth function due to the univer-
sal approximation theorem, as mentioned before. This process is also algorithmically efficient
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because the backpropagation of errors uses values and gradients of the activation function only
from the immediate neighborhood of a given layer.

Another advantage of this method is the ease of propagating experimental uncertainties and
their correlations into the final result using the Monte Carlo method [151, 152, 153]. The way
this method is utilized in this approach is by interpolating a replica dataset. A random set of
datapoints is generated using a Gaussian probability distribution with a width determined by
the error bars of the measured data. We generate a large set of these replicas Nrep, where the
family of the resulting neural nets F (1), . . . ,F (Nrep) defines the probability distribution of CFFs
F(xB, t) and their functionals F [F ]. The value of a functional of CFFs and its variance is given
as

〈F [F ]〉= 1
Nrep

Nrep

∑
k=1

F
[
F (k)

]
, (8.1)

(∆F [F ])2 =
〈
F [F ]2

〉
−〈F [F ]〉2. (8.2)

The Monte Carlo method is a general method for propagating errors, and is not just applicable
to neural network methods.

All of our numerical studies were done in the Python programming language, where the
neural network parametrization was implemented using the PyBrain software library, which
has shown great flexibility for our purposes. One of the extenuating circumstances when using
preexisting neural network softwares for our analysis is that most readily available softwares
compare the output of the net directly to data for error calculation, which is not applicable in
our case, where the network predicts CFFs. The outputs have to be transformed into DVCS
observables we are training on, which adds another step and we therefore needed to adapt the
PyBrain library for our needs.

One aspect of a neural network algorithm is the correction of the network with respect to
the error between the net predictions and data. Several types of error propagating networks
are in use in this field of study, from a simple backpropagation algorithm described in Chapter
5, to genetic algorithms used by the NNPDF group [154, 152]. The algorithm used in our
studies is the resilient backpropagation algorithm [155], which is a modification of the standard
backpropagaton algorithm in the sense that it only uses the signs of the derivatives of the error
functions, and not their magnitude, in order to correct the weights in the network. Because
it only uses the signs of the derivatives, it is fast and does not depend on the parameters of
the network nor the learning process, but it is still very reliable. It would not be sophisticated
enough if the relationship between the network output and observables were very non-linear,
which would be the case if we tried to parametrize GPDs.
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Another choice we have to make is the number of hidden layers and neurons in each layer.
It was shown in several studies [128, 156] that CFFs, at least the ones that had been extracted at
that point, are relatively well-behaved functions and there is no need for deep learning studies
and many hidden layers with many neurons. Also, we do not work with a large number of
datapoints. In the models described here we will use one to two hidden layers.

8.2 Extraction of CFFs

This study was prompted by the proton and neutron DVCS measurements made with the 6 GeV
upgrade at JLab’s Hall A Collaboration [157, 158]. Aside from a higher precision coming from
the increased beam energy, these measurements enabled us to extract the u an d quark flavor
contributions to CFFs. The first part of our study attempts to extract all 8 CFFs from the new
proton DVCS data, and to add the constraint of dispersion relations (3.115) in order to reduce
the uncertainties of the neural network predictions.

For the purpose of this study, we perform both neural network fits and standard model least-
square fits described in Chapter 6.

8.2.1 Model fits

Since JLab data is not measured at low x and high Q2 like HERA data, we cannot make the
same approximations as in the previous chapter. Specifically, in this study we cannot ignore
the valence quark sector, nor the presence of CFFs other than H. The model presented in this
section was detailed in [128, 159, 160].

Given that our computer codes do not have the valence sector implemented in the conformal
space, the model is a hybrid one. The valence sector is modeled in the x-space on the crossover
line x = η

Hval
q (x,x, t) =

nqrq

1+ x

(
2x

1+ x

)−αv(t)(1− x
1+ x

)bq 1

1− 1− x
1+ x

t
M2

q

, q = u,d. (8.3)

This model is based on the same arguments made for the conformal moments of GPDs in
Section 6.3. Now the Regge trajectory is not a parameter, but is given by the Reggeon exchange

αv(t) = 0.43+0.85t/GeV2. (8.4)

The parameter nq is the normalization known from PDF studies, and rq parametrizes the skew-
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ness ratio given in (7.16).
We argued the use of conformal moments in our description of GPDs due to easier im-

plementation of evolution. Given the difficulties, we do not implement QCD evolution in the
valence sector, and we also remain at the LO level, where the imaginary part of the valence CFF
H is given simply as

ImHval(ξ, t) = π ∑
q=u,d

Q2
q

[
Hval

q (ξ,ξ, t)−Hval
q (−ξ,ξ, t)

]
. (8.5)

For the analysis of proton data, a simple model was used Fval
u = 2Fval

d .
This model also includes dispersion relations, where we cannot ignore the subtraction con-

stant. We model it separately as

∆F(t) =
C

(
1− t

M2
C

)2 , (8.6)

also ignoring its dependence on Q2. The implementation of dispersion relations allows us to
model only the imaginary parts of CFFs and one subtraction constant, since ∆H = −∆E and
∆H̃ = ∆Ẽ = 0. In principle, this reduces the number of functions to model from 8 to 5, and the
subtraction constant depends only on one kinematic variable. The free parameters of this sector
are therefore rq, bq, Mq, C and MC.

The sea quark and gluon GPDs are modeled in the conformal space as explained in Chapter
6, also at LO to match the valence sector, with the QCD evolution implemented.

By observing Table 3.2, we can see that the influence of CFFs E and Ẽ is kinematically
suppressed in most proton DVCS observables, therefore in our models we set ImE and ImẼ
to zero. This is not to say that these CFF components are small, but rather that they are not
accessible from the data we are observing. The real component of the CFF E is given by the
subtraction constant −∆H, but the CFF Ẽ has an additional contribution from the pion pole,
which yields a real contribution. This phenomenon occurs due to an exchange of a virtual pion
inside the nucleon, which decays into the qq pair probed by the photon in the ERBL region. For
small |t|, the pion is only weakly off-shell, and for t = m2

π we have an exchange of an on-shell
particle, which results in a pole contribution because the pion propagator diverges. The pion
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pole contribution is equal to [161]

ReẼ = 1
ξ

2gAM2rπ

m2
π− t

1
(

1− t
M2

π

)2 . (8.7)

Here gA ≈ 1.26 is the axial charge of the nucleon, M is the nucleon mass, mπ is the mass of the
pion expressed in GeV, and Mπ is a free parameter. In the case of the neutron, this contribution
has an opposite sign. This model therefore parametrizes 3 CFF components and one subtraction
constant.

This model is of the type usually denoted as KM, so we denote it as KM20. It was obtained by
using the sea quark and gluon parameters from a previously obtained model KM15, which was
fitted to H1, ZEUS, HERMES, and JLab data, and then releasing the valence parameters on the
same dataset, with added 2017 Hall A [157] measurements. This model is the only one in this
analysis that is truly global because it describes both the low-x measurements from H1, ZEUS
and HERMES, as well as the intermediate-x data from JLab. The singlet quark and gluon sector
parameters are set to

Nsea = 0.152, α
sea
0 = 1.158, α

′
sea = 0.15, m2

sea = 0.482, ssea
2 = 1.071, ssea

4 =−0.366,

NG = 0.5, α
G
0 = 1.247, α

′
G = 0.15, m2

G = 0.7, sG
2 =−2.990, sG

4 =−0.905. (8.8)

In the KM15 model the parameters α′a and m2
G were not released for fits, but kept fixed to their

initial values obtained from previous studies, and the norm NG is fixed by the summation rule
(6.68). The valence parameters obtained by fitting are

rv = 0.754, bv = 0.062, C = 2.070, Mv = 1.040,

r̃v = 1.02, b̃v = 0.555, M̃v = 3.31, rπ = 2.78, Mπ = 5.36. (8.9)

Note that we have taken the valence parameters to be flavor independent. The constants fixed
by the forward limit are nval = 1.35 and ñval = 0.6. The parameters rπ and Mπ describe the pion
pole.

8.2.2 Neural network models

As for the neural network fits, the method was described in the first section of this chapter. One
type of model was obtained by taking the values of xB and t as inputs, and giving the values
of 6 out of 8 leading twist-2 CFF components. The training and validation sets are separated
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randomly, but we do not have enough data to also have a separate test set. When doing some
preliminary studies with a reduced dataset, it was shown that ReH̃ and ReẼ were consistent
with zero and have negligible influence on the goodness of fit, as was shown in [162], meaning
that the data are not sensitive to these components. In order to simplify the model and reduce
variance, they were excluded from all fits to the whole dataset. This model will be denoted as
NN20. The other type of the model is constrained by dispersion relations (DR), and we denote it
as NNDR20. This model outputs 4 imaginary components of CFFs and one subtraction constant,
while ReH and ReE are calculated from (3.115). By introducing DRs, this model is more
constrained and so we expect narrower error bands, but it is also more biased. The architecture
of this model is depicted in Figure 8.1.

The experimental errors are propagated using the Monte Carlo method explained in the first
section of this chapter. For this study we had to determine how many replicas are necessary
for reliable results, so we made preliminary studies to a reduced dataset with 10 replicas, as
well as 80 replicas. By comparing the results, we found that they differ by less than 5%. We
have therefore settled on 20 replicas for each model, partially motivated by the fact that the DR
constrained models take a longer time to train because they have to evaluate the principal value
of the integral in (3.115).

Similar preliminary studies showed that there is no need for deep learning methods with
many layers and neurons. The architecture for the NN20 model is 2-13-6, and for NNDR20 it is
2-13-4, while for the calculation of the subtraction constant it is 1-5-1. So all of these models
have just one hidden layer.

As mentioned at the beginning of this chapter, none of the neural network models implement
QCD evolution.

8.2.3 Experimental data and results

In order to be safe from any QCD evolution aspects, we only fit the neural network models
to JLab’s CLAS and Hall A Collaboration data, which are measured in a narrow span of Q2

values. We compare these results to the KM20 model, which was fitted to HERA data as well,
so only the comparison for higher values of x has merit. We used the data for the unpolarized
cross section and various beam and target asymmetries

dσλ,Λ = dσ(1+λALU +ΛAUL +λΛALL) , (8.10)
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as well as the data for the helicity-dependent cross section

∆σ≡ dσALU. (8.11)

Here λ/2 is the helicity of the electron, and Λ/2 is the longitudinal spin of the nucleon.
As was detailed in Section 3.6.1, all of these observables can be expanded as a truncated

Fourier series in the angle φ at the twist-2 level. We have therefore Fourier transformed all of the
data and kept only the first one or two harmonics, which we call the n-space. We then used this
data for fits for several reasons, one being their efficiency. Another reason concerns the statistics
of error propagation. Namely, we mentioned that the Fourier series of most observables is
truncated at the level of the first or second harmonic, which is because higher harmonics are
suppressed by Q2 factors. But current experimental setups are incapable of discerning any
higher harmonics from the data, which means that it would be inconsistent to keep any higher
harmonics in the theoretical expressions. We have propagated experimental uncertainties using
the Monte Carlo method explained before, and have indeed verified that no harmonics higher
than the second one are discernible from the data with any statistical significance. Since in
most observables only the first harmonic is present, both theoretically and experimentally, the
agreement between data and models regarding the phase and frequency of φ-oscillations will be
trivial. This can then skew χ2 values because it can build up good description of datapoints in
trivial points such as at sine or cosine zeros. Also, if some measurements are available in the
φ-space, and some in the n-space, there would be a mismatch in statistical weights because there
are many more datapoints in the φ-space. Therefore, for current purposes only the amplitude
will carry any relevant information regarding GPD extraction.

In this study we again check the quality of the fit by calculating χ2/Npts for each dataset and
all of the data together. The results and all of the data used are given in Table 8.1 below. Even
though we fit only to the harmonics, as explained above, calculating the χ2 values on these data
would lead to inaccurate interpretations of the quality of the fit. This is due to the difficulty
of propagating systematic errors in fitting procedures because errors that are uncorrelated are
treated differently than errors which correlate for different values of φ. Uncorrelated system-
atic uncertainties are added in quadrature to the statistical ones, before a Fourier transform is
performed, and correlated systematic uncertainties should in principle be added to systematic
ones after the Fourier transform. In many analyses these uncertainties are combined into one
uncertainty under the name "normalization uncertainty", which removes all possibility to asses
which errors could be correlated. In order to avoid this problem, we assess the quality of fits by
calculating χ2 values in the φ-space. For more details, see [163].
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Observable Npts KM20 NN20 NNDR20

# CFFs + ∆s 3+1 6 4+1

Total (harmonics) 277 1.3 1.6 1.7

CLAS [164] ALU 162 0.9 1.0 1.1

CLAS [164] AUL 160 1.5 1.7 1.8

CLAS [164] ALL 166 1.3 3.9 0.8

CLAS [165] dσ 1014 1.1 1.0 1.2

CLAS [165] ∆σ 1012 0.9 0.9 1.0

Hall A [166] dσ 240 1.2 1.9 1.7

Hall A [166] ∆σ 358 0.7 0.8 0.8

Hall A [157] dσ 450 1.5 1.6 1.7

Hall A [157] ∆σ 360 1.6 2.2 2.2

Total (φ-space) 4018 1.1 1.3 1.3

Table 8.1: Values of χ2/Npts for presented models and for each set of JLab DVCS measurements used
in this study (φ-space). First row specifies the number of real independent CFFs plus the number of
subtraction constants. Second row gives the total value for leading harmonics of Fourier-transformed
data, to which we actually fit.

We can see that a few of the datasets are not well described, but the overall values of
χ2/Npts = 1.1− 1.3 are satisfactory and would indicate that the obtained CFFs are realistic.
We can also see that we have a similar description between different models, which could im-
ply some correlations between different CFFs. Of course, the real and imaginary parts of each
CFF are correlated through dispersion relations, which we would consider as intrinsic correla-
tions, but some correlations are brought on by the specifics of the current data and they might
be broken with more upcoming measurements.

In Figure 8.2 below we depict the six extracted CFFs obtained by the standard neural net-
work model NN20, a dispersion relations constrained neural network model NNDR20, and a stan-
dard hybrid model fit KM20. The CFFs are depicted in dependence to ξ at Q2 = 4 GeV2 and
t =−0.2 GeV2.
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Figure 8.2: Extraction of CFFs at Q2 = 4 GeV2 and t =−0.2 GeV2 by two neural network models fitted
to JLab proton data, NN20 and NNDR20, as well as a standard model fit KM20 [5].

The reason we implemented dispersion relations into the neural network framework is the
hope of reduced uncertainties, which is visible in ImH, ReH and ImẼ . The mean values for
ReH and ReE are shifted, even changing the sign of ReE . In model NNDR20, the value of ReE is
positive, which is reproduced in [167], but the popular models Vanderhaeghen-Guichon-Guidal
(VGG) [168] and Goloskokov-Kroll (GK) [169] give a negative sign, as is predicted by model
NN20. The model NNDR20 is in a somewhat better agreement with KM20, since they are both
constrained by dispersion relations. As mentioned before, the model KM20 was fit to low-x data
as well, so it is to be expected that its low-x behavior differs from the neural net models, which
have never seen low-x data, and it is therefore unlikely for them to reproduce it.

The CFFs extracted using the model NNDR20 agree with the extraction obtained by a disper-
sion relation constrained model fit from [167], the only difference being the sign of ImE . This
CFF has the largest uncertainties, so we hope that with more data this sign discrepancy will be
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resolved. In [162], a global neural network extraction was performed, and it is in agreement
with our extraction within uncertainties. The agreement is better with model NN20, because it
is also not constrained by dispersion relations, so these models predict the same sign for ReE .

8.3 Flavor separation of CFFs

In this section we fit our models to the same data as in the previous chapter, but we add the
neutron DVCS data from [158]. The goal of this study is to use the proton and neutron DVCS
data to extract the flavor contributions to CFFs by using the isospin symmetry of GPDs

Fu,proton = Fd,neutron ≡ Fu. (8.12)

For the model fit we implement the flavor separated GPDs by leaving the sea quark sector the
same as in previous models, but separately parametrizing flavored valence GPDs Fval

u and Fval
d

by using parameters ru 6= rd , bu 6= bd , and Mu 6= Md . Since our goal is flavor separation, and
there are very few neutron datapoints in comparison to the whole dataset, we perform flavored
fits only to JLab data. We denote this fit as fKM20. The total proton and neutron GPDs, and
equivalently CFFs, are written in terms of flavored GPDs as

F p,n =
4
9

Fu,d +
1
9

Fd,u. (8.13)

This model parametrizes 5 CFF components, ImHu, ImHd , ImH̃u, ImH̃d and ReE , which is
the same for up and down quarks, up to a sign. We also parametrize 2 subtraction constants,
∆u and ∆d . Previous models, such as KM15, could treat neutron data by using a simple isospin
rotation

Fval
n =

2Q2
d +Q2

u

2Q2
u +Q2

d
Fval

p =
2
3
Fval

p , F sea
n = F sea

p , (8.14)

which did not prove to be complex enough to predict neutron DVCS data accurately.
Since the analysis of proton-only data revealed that the model NNDR20 is preferred, we only

fit this type of model to proton and neutron data. Flavor separation is introduced by considering
flavored CFFs as separate functions to be parametrized by the nets, i.e. our outputs are now
ImFu and ImFd for all four types of twist-2 CFFs, and the proton and neutron CFFs are also
given using (8.13). There are also two subtraction constants.

The results for χ2/Npts for all datasets and models fKM20 and fNNDR20 are given in Table 8.2
below. We can see similar results as in Table 8.1, which could again be due to some correlations
between CFFs. The new neutron data is also well described by both models.
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Observable Npts fKM20 fNNDR20

# CFFs + ∆s 5+2 8+2

Total (harmonics) 277 1.7 1.8

CLAS [164] ALU 162 1.2 1.3

CLAS [164] AUL 160 1.8 2.0

CLAS [164] ALL 166 1.1 1.6

CLAS [165] dσ 1014 1.2 1.1

CLAS [165] ∆σ 1012 0.9 1.1

Hall A [166] dσ 240 0.9 1.3

Hall A [166] ∆σ 358 0.7 0.7

Hall A [157] dσ 450 1.9 2.0

Hall A [157] ∆σ 360 1.9 1.7

Hall A [158] dσn 96 1.2 0.9

Total (φ-space) 4018 1.2 1.3

Table 8.2: Values of χ2/Npts for flavor separated models. See the caption of Table 8.1 for details.

The good χ2 values are confirmed by Figure 8.3 below, where we compare the proton and
neutron DVCS measurements from [158]. We plot the cross section, which is in the top panels,
and its first cosine harmonic, which is on the bottom panels, at beam energies 4.45 GeV, which
is on the left, and 5.55 GeV, which is on the right. We can see a somewhat worse model fit
prediction for the first cosine harmonic in the proton DVCS at higher |t|, which has been a
common problem with many KM models and is currently still unresolved.
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Figure 8.3: Predictions of Hall A proton (red) and neutron (blue) cross section (up) and its first cosine
harmonic (down) by models fKM20 (black line) and fNNDR20 (green band) at beam energies 4.45 GeV
(left) and 5.55 GeV (right) [5].

We now observe flavor separated CFFs. In Figure 8.4 below, we plot the up and down
components of the real and imaginary parts of the CFF H at Q2 = 4 GeV2 and xB = 0.36. In
the left panels we first compare the predictions of models fKM20 and fNNDR20 for total CFFs.
These models have now both been fitted to JLab data, so they are expectedly in better agreement
across the whole measured kinematic range. In the right panels, we see a clear separation of the
flavor components for both the real and imaginary part.
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Figure 8.4: Extraction (left) and flavor separation (right) of the real and imaginary components of the
CFFH predicted by the flavored models fKM20 andfNNDR20 [5].

For the purpose of comparison, we plot the predictions of fKM20 for flavored contributions
to ImH and we see a decent agreement. In magnitude, the up quark contribution in both real
and imaginary components is roughly twice as large as the down quark contribution.

The flavor separation of the CFF E is depicted in Figure 8.5 below. We can see that flavor
separation of neither the real nor the imaginary part is possible, which is also the case for the
other two CFFs.
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Figure 8.5: Extraction (left) and flavor separation (right) of the real and imaginary components of the
CFF E predicted by the flavored models fKM20 andfNNDR20.

For both flavor separated CFFs the uncertainties are much larger than for the total CFF. It
is also unclear if the flavored components have a different t-slope, which is connected to the
spatial distribution of quarks, so we cannot say if the up and down quarks have a different
spatial distribution.

Overall, we have managed to extract 6 out of the 8 twist-2 CFF components, and to obtain
a clear flavor separation of the real and imaginary parts of the CFF H. Hopefully further data
will allow us to separate other CFFs, as well as to extract all 8 CFF components.

We note that the models obtained here are not available in Gepard at this point.
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Chapter 9

Closure tests

We have so far detailed the extraction of CFFs using neural network methods. We have also
mentioned that there are several undergoing experimental efforts to obtain more precise data,
both currently, with various JLab updates, and in the long run, such as at the EIC. As new
measurements with higher precision come out, it is important to eliminate potential sources of
uncertainty in our methodology, in order to obtain reliable error bands, and in general to obtain
physical CFFs. In order to verify that our method can be applied to a broad range of data, we
employ the so-called closure tests. These tests have long been implemented in the NNPDF
framework [170], as well as the PARTONS framework, where they are called feasibility tests
[162].

All of our NN type models were implemented using the PyBrain library, where it took each
replica of the neural network between a few hours and a day of training on a single thread CPU
of a 2.4 GHz Intel Xeon processor. The longer time was necessary for the DR-constrained
models. In order to reduce this time, the whole neural network framework we use has been
transferred into the PyTorch framework from the Torch library [171], which allowed us to re-
duce the training time significantly. This framework is now available in Gepard.

The potential steps where we can introduce errors are in the choice of the fitting function,
which introduces a theoretical bias, leading to a systematic error, and in the propagation of
errors from experiments, because these errors are not always Gaussian as we take them to be
when generating replicas. There are of course many more theoretical biases we introduce that
increase uncertainties, such as the order in perturbation theory, twist, choice of scales, etc., but
since GPDs are functions of three variables, not including the scale dependence, and since they
are not directly probed in measurements, the space of possible functions that reproduce the
measured observables is very large, and this introduces a much more serious uncertainty that
for example in PDFs.
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The way we implement closure tests is the following:

1. take some GPD or CFF model as the ground truth;

2. generate simulated data by calculating observables in a certain kinematic range, which
may coincide with actual measurements;

3. apply a fitting and extraction procedure to the simulated data;

4. check that the result of the fitting and extraction procedure is consistent with the ground
truth.

9.1 Testing the extraction of CFFs

For this demonstration, we will take the model KM15 as the ground truth. We will use this model
to generate data which roughly coincides with CLAS6 (beam energy around 6 GeV) kinematics.
The observables we will generate in this study are the helicity dependent and independent cross
sections, which we denote as XLU and XUU, respectively, the beam spin asymmetry ALU, the
beam charge asymmetry AC, which may be possible in the future, and the transversal target spin
asymmetry AUT. In Figure 9.1 below we can see the kinematics at which we randomly simulate
data.

Figure 9.1: Kinematics of the simulated data in comparison to CLAS data kinematics.
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We will start off simple by simulating only XLU data and extracting ImH(xB = 0.2, t),
where we fixed the value of xB to 0.2. In Figure 9.2 below we depict the mock data, where
the x-axis gives the ordinal number of the datapoint, and it represents the t-axis. We generated
20 datapoints for −t ∈ [0.1,0.6], where the errorbars were simulated symmetrically for each
datapoint using the formula

error = 0.2 ·value+0.0001. (9.1)

In this model no noise was included, so the simulated data were given strictly by the KM15

model.
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just-a-bunch-of-data

Figure 9.2: Simulated data for the helicity-dependent cross section XLU.

We then trained a neural network model with 10 replicas on this data, where the replicas
were trained between 20 and 35 epochs, and their output was ImH(t). Their prediction of the
simulated observable is given in Figure 9.3 below.
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Figure 9.3: Prediction of simulated data for the helicity-dependent cross section XLU by a neural net
model, which is depicted as a red band.

We can see that the neural networks reproduce the data well. Now we must verify that the
CFF they extracted is physical, which in this case means that it agrees with the one predicted by
the KM15 model. This comparison is given in Figure 9.4 below for values xB = 0.1, which is on
the left, and 0.2, which is on the right, and Q2 = 4 GeV2. For this purpose we draw the average
value of the net predictions with a symmetric standard deviation instead of drawing each of the
nets.
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Figure 9.4: Comparison of ImH(t) obtained by the KM15 model (green line) and the neural net model
(red band) trained on simulated data at xB = 0.1 (left) and 0.2 (right), and Q2 = 4 GeV2.

136



9.1. Testing the extraction of CFFs Chapter 9. Closure tests

The nets do not contain the CFF at xB = 0.1, which is to be expected since the nets were not
trained at this value. At xB = 0.2, where the nets were trained, the models coincide well.

We now test various more complicated scenarios. We can add noise to the simulated data
using a Gaussian distribution. The error of the datapoints is given as

error = 0.1 ·value+0.0002, (9.2)

and the value of each datapoint is obtained by adding to its calculated value a value obtained
randomly from a Gaussian distribution centered around zero with a standard deviation equal to
the error of the datapoint. We then train a neural network model on this data with 5 nets for
simplicity. The simulated data and the neural network prediction are given in Figure 9.5 below,
where we again only model the t dependence at xB = 0.2. We now generated 20 datapoints with
−t between 0.1 and 0.5.
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Figure 9.5: Prediction of simulated data for the helicity-dependent cross section XLU with added noise
by a neural net model.

This time around it is a bit more difficult to predict the data, as is the case in real life with
real measurements. The extraction of ImH(t) is compared to the prediction by model KM15 in
Figure 9.6 below.
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Figure 9.6: Comparison of ImH(t) modeled by the KM15 model (green line) and extracted by the neural
net model (red band) from simulated XLU data with noise at xB = 0.1 (left) and 0.2 (right), and Q2 =

4 GeV2.

We can see that the errorbands are now larger and the average value of the nets does not
coincide with the ground truth CFF, but overall, the prediction is not too bad.

We can now add more CFF components, the xB dependence to the CFFs, and more observ-
ables.
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Figure 9.7: Comparison of simulated XLU and AC data and the neural network predictions.

In Figure 9.7 we added the xB dependence and simulated data for XLU and AC by modeling
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ImH and ReE . We also added noise to this data in the same way as in the previous example.
The data is generated for six values of t in the same interval as before, and for four xB values
between 0.1 and 0.25. The figure depicts simulated data and neural network predictions. For
this purpose we generated 30 neural nets.

We compare the predictions of the neural network to the ground truth in Figure 9.8 below
for two values of xB. We can see that the neural network extraction mostly contains the CFFs
calculated by the KM15 model. We can attempt to extrapolate the obtained CFFs to the entire ξ

domain. The results for this extrapolation are depicted in Figure 9.9 below at t = −0.2 GeV2.
We do not expect a good agreement between the KM15 model and the neural network model
since the neural nets were not trained at very high and very low xB. The agreement is closest at
values of ξ where the nets were trained.
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Figure 9.8: Comparison of ImH(xB, t) and ReE(xB, t) modeled by the KM15 model and extracted by the
neural net model trained on simulated XLU and AC data with noise at Q2 = 4 GeV2 and xB = 0.1 (left)
and xB = 0.2 (right).
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Figure 9.9: Extrapolation of CFFs extracted in Figure 9.8 to the entire domain of ξ at t =−0.2 GeV2.

The last example we will observe is simulating data for XUU, XLU, XUL, AC and AUT with
CFFs ImH, ReH, ImE , ReE and ImH̃. The data is simulated at the same points as the previous
example, with the same errorbars, and it has the same added noise. In Figure 9.10 below we
depict the simulated data and the neural network predictions. We generated 20 neural nets in
this instance.
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Figure 9.10: Comparison of simulated XLU, AC and AUT data and the neural network predictions.

The comparison of the CFFs extracted by the neural net model and the KM15 model are given
in Figure 9.11 below for xB = 0.1 and xB = 0.2.
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Figure 9.11: Comparison of ImH, ReH, ImE , ReE modeled by the KM15 model (green line) and ex-
tracted by the neural net model (red band) trained on simulated XUU, XLU, XUL, AC and AUT data with
noise at Q2 = 4 GeV2, and xB = 0.1 (left) and xB = 0.2 (right).
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We can see that the neural net extractions coincide with the KM15 predictions well. The only
disagreement is for the real and imaginary components of the CFF E at xB = 0.2. We have seen
from the analysis in the previous chapter that ImE had the biggest uncertainties, and we had
the biggest discrepancies between the ReE obtained by the DR-constrained and unconstrained
model, so this CFF is difficult to model with data at this kinematics.

From this analysis we conclude that our methodology is reliable and robust enough to extract
most of the CFFs from the presently available data.

9.2 Testing the flavor separation of CFFs

As a last test, we turn our attention to the flavor separation of CFFs performed in Section 8.3.
For the first example, we simulate proton and neutron XUU and XLU data by modeling CFFs
ImHu, ImHd , ReHu and ReHd . Since the model KM15 treats neutron data using a simple
isospin rotation of the proton CFFs, it does not predict neutron data reliably. We will use a
random smooth single neural net trained on simulated proton and neutron data as the ground
truth, because the model fKM20 has some GPDs set to zero. We show an example with simulated
ALU and AUU. In Figure 9.12 below we can see the agreement between the CFFs randomly
extracted from real data and the neural network prediction of these CFFs. We again show the
comparison at Q2 = 4 GeV2, and xB = 0.1 and xB = 0.2. The flavor separation of the CFF ImH
seems to be successful for this kinematic regime, but it fails for ReH. We also attempted to
extract flavored contributions of the imaginary part of the CFF E alongside the imaginary part
of the CFFH, which was somewhat successful for smaller xB. The flavor separation fails when
only proton DVCS data is used, which is to be expected. Overall, this method confirms that it
is indeed possible to reliably separate the CFFH with presently available data.
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Figure 9.12: Comparison of the extraction of flavor separated imaginary and real components of the
CFF H obtained by a neural network fit (red band) and a random single net extraction (green line) at
Q2 = 4 GeV2, and xB = 0.1 (left) and xB = 0.2 (right).
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Chapter 10

Thesis summary and outlook

In this thesis we presented two main approaches to GPD phenomenology, one being a model
fit of GPDs in the conformal space, and the other being an extraction of CFFs using machine
learning methods. Both of these approaches are used in complement. One is grounded in
physics and offers a direct test of our physical assumptions, while the other is an unbiased
approach which offers a more realistic way of obtaining uncertainties of extracted CFFs, and
GPDs in the future. The experimental coverage of exclusive processes, which probe GPDs, is
entering an unprecedented high-precision era, and therefore reducing as many sources of errors
in our models is of great importance.

In the first part we have given an overview of the processes we study in this work, namely
DIS, DVCS and DVMP, and their experimental coverage, as well as some of the properties
of GPDs relevant for their understanding in the context of our analysis. We have also given
a presentation of the procedure of obtaining a conformal moments representation of GPDs,
CFFs and TFFs using Mellin-Barnes integration. Finally, we gave a brief overview of machine
learning methods required for this analysis.

In the second part, we applied the conformal moment representation of GPDs in order to
simultaneously describe DIS, DVCS and DVMP data at low x. This work is a continuation of
the unpublished work presented in [3], which was based on the methods developed in [101,
37]. This analysis was extended to NLO of perturbation theory, allowing us to asses the NLO
corrections, and to study the quark and gluon contributions and how they change when we
transition from LO to NLO. The main goal of this analysis is to see whether or not we can
obtain a simultaneous fit at the twist-2 collinear level. In this analysis we only described the
production of the vector meson ρ0 using only the singlet sea quark and gluon GPDs, so the
next step would be to add the non-singlet GPDs. Even though this analysis was performed only
using the GPD H, the description is satisfactory and seems to stabilize at NLO, giving rise to a
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universal GPD description of all three processes.
In the third part, we present our results for CFF extraction obtained using machine learning

methods, specifically neural networks [5]. In this work we studied the proton and neutron DVCS
data obtained with the JLab 6 GeV beam upgrade [157, 158]. We used this data, alongside
previous proton DVCS data obtained at JLab to extract 6 out of the 8 twist-2 CFFs. The novelty
in this analysis was the implementation of dispersion relation constraints, which so far have
not been present in our neural network extraction of CFFs. These constraints allowed us to
reduce the uncertainties for the CFFs to which the data are most sensitive, but they introduced a
significant discrepancy in the prediction of ReE between the DR-constrained and unconstrained
model. This should be alleviated with more data. These results were compared to the standard
model fit, which was trained to HERA and JLab data. The other purpose of this analysis was to
obtain a flavor separation of CFFs by adding neutron data and using isospin symmetry. Both a
flavored model fit and a neural network model were fitted to this data, and a flavor separation
of the real and imaginary parts of the CFF H has been achieved. The flavor separation fails for
the other CFFs, which we hope to remedy with more data.

Given that one of our main concerns is the reliability of our predictions, especially their
uncertainties, we have conducted closure tests of the type present in PDF analysis, as well as in
the PARTONS framework for studying GPDs. These tests rely on the ability of neural network
models to reproduce models which were used to generate simulated data used for training the
neural nets. Most of our tests were successful, giving us hope that our methods give reliable
results grounded in physics, and that these models will be able to work with the incoming data
from JLab upgrades and the data that will come from the upcoming EIC.

The motivation to study GPDs lies in their potential to describe the three-dimensional struc-
ture of nucleons, and to tell us how the angular momentum of the nucleon is distributed amongst
its constituents. We are currently quite far from solving this problem, because even if we set
aside the fact that we cannot deconvolute the GPDs from the CFFs, the experimental data does
not give access to the full domain of the kinematic variables that the GPDs depend on. For this
purpose we need to study different processes, such as DDVCS, that probe GPDs away from the
cross-over line. Some of the next steps we are going to take in this approach are de-hybridizing
the KM-type models and taking the whole analysis to NLO level. We also need to find a way of
assessing the systematic errors introduced by various choices we make in modeling GPDs and
CFFs.
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[38] Duplančić G., Müller D., Passek-Kumerički K., 2017, Physics Letters B, 771, 603, Next-to-leading order
corrections to deeply virtual production of pseudoscalar mesons

[39] Berger E. R., Diehl M., Pire B., 2002, Eur. Phys. J. C, 23, 675, Time - like Compton scattering: Exclusive
photoproduction of lepton pairs

[40] Guidal M., Vanderhaeghen M., 2003, Phys. Rev. Lett., 90, 012001, Double deeply virtual compton scattering
off the nucleon

[41] Belitsky A. V., Müller D., 2003, Phys. Rev. Lett., 90, 022001, Exclusive electroproduction of lepton pairs as
a probe of nucleon structure

[42] Pire B., Szymanowski L., Wagner J., 2011, Phys. Rev. D, 83, 034009, Next-to-leading order corrections to
timelike, spacelike, and double deeply virtual compton scattering

[43] Wilson K. G., Zimmermann W., 1972, Commun. Math. Phys., 2, 87, Operator product expansions and
composite field operators in the general framework of quantum field theory

[44] Peskin M. E., Schroeder D. V., 1995, An Introduction to quantum field theory. Addison-Wesley, Reading,
USA

[45] Collins J., 2013, Foundations of perturbative qcd. Vol. 32, Cambridge University Press,
doi:10.1017/9781009401845

[46] Diehl M., 2003, Physics Reports, 388, 41, Generalized parton distributions
[47] Belitsky A., Radyushkin A., 2005, Physics Reports, 418, 1, Unraveling hadron structure with generalized

parton distributions
[48] Ivanov D., Pire B., Szymanowski L., Teryaev O., 2002, Physics Letters B, 550, 65, Probing chiral-odd gpds

in diffractive electroproduction of two vector mesons
[49] Diehl M., Gousset T., 1998, Physics Letters B, 428, 359, Time ordering in off-diagonal parton distributions

147

http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://dx.doi.org/10.1103/PhysRevD.57.512
http://dx.doi.org/10.1103/PhysRevD.60.014010
http://dx.doi.org/10.1103/PhysRevLett.84.2589
http://dx.doi.org/10.1007/s100529900045
http://dx.doi.org/10.1007/s100520050253
http://dx.doi.org/10.1103/PhysRevD.59.017501
http://dx.doi.org/https://doi.org/10.1016/0370-2693(96)00844-1
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(01)00751-1
http://dx.doi.org/10.1140/epjc/s10052-007-0423-3
http://dx.doi.org/10.1134/S0021364015120073
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2014.04.012
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2017.05.097
http://dx.doi.org/10.1007/s100520200917
http://dx.doi.org/10.1103/PhysRevLett.90.012001
http://dx.doi.org/10.1103/PhysRevLett.90.022001
http://dx.doi.org/10.1103/PhysRevD.83.034009
http://dx.doi.org/10.1007/BF01878448
http://dx.doi.org/10.1017/9781009401845
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2005.06.002
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(02)02856-3
http://dx.doi.org/https://doi.org/10.1016/S0370-2693(98)00439-0


References References

[50] Gribov V. N., Lipatov L. N., 1972, Sov. J. Nucl. Phys., 15, 438, Deep inelastic e p scattering in perturbation
theory

[51] Lipatov L. N., 1974, Yad. Fiz., 20, 181, The parton model and perturbation theory
[52] Altarelli G., Parisi G., 1977, Nuclear Physics B, 126, 298, Asymptotic freedom in parton language
[53] Dokshitzer Y. L., 1977, Sov. Phys. JETP, 46, 641, Calculation of the Structure Functions for Deep Inelastic

Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics.
[54] Efremov A., Radyushkin A., 1980, Physics Letters B, 94, 245, Factorization and asymptotic behaviour of

pion form factor in qcd
[55] Peter Lepage G., Brodsky S. J., 1979, Physics Letters B, 87, 359, Exclusive processes in quantum chromody-

namics: Evolution equations for hadronic wavefunctions and the form factors of mesons
[56] Diehl M., Feldmann T., Jakob R., Kroll P., 2001, Nuclear Physics B, 605, 647, Erratum to: “the overlap

representation of skewed quark and gluon distributions”: [nucl. phys. b 596 (2001) 33–65]
[57] Radyushkin A. V., 1997, Phys. Rev. D, 56, 5524, Nonforward parton distributions
[58] Pobylitsa P. V., 2002, Phys. Rev. D, 65, 114015, Disentangling positivity constraints for generalized parton

distributions
[59] Lepage G. P., Brodsky S. J., 1980, Phys. Rev. D, 22, 2157, Exclusive processes in perturbative quantum

chromodynamics
[60] Ji X.-D., 1998, J. Phys. G, 24, 1181, Off forward parton distributions
[61] Bakker B. L. G., Leader E., Trueman T. L., 2004, Phys. Rev. D, 70, 114001, Critique of the angular momen-

tum sum rules and a new angular momentum sum rule
[62] Leader E., Lorcé C., 2014, Physics Reports, 541, 163, The angular momentum controversy: What’s it all

about and does it matter?
[63] Lorcé C., 2015, JHEP, 08, 045, The light-front gauge-invariant energy-momentum tensor
[64] Leader E., 2013, Physics Letters B, 720, 120, A critical assessment of the angular momentum sum rules
[65] Tanaka K., 2018, Phys. Rev. D, 98, 034009, Operator relations for gravitational form factors of a spin-0

hadron
[66] Ji X., 1998, Phys. Rev. D, 58, 056003, Lorentz symmetry and the internal structure of the nucleon
[67] Jaffe R., Manohar A., 1990, Nuclear Physics B, 337, 509, The g1 problem: Deep inelastic electron scattering

and the spin of the proton
[68] Ji X., 1997, Phys. Rev. Lett., 78, 610, Gauge-invariant decomposition of nucleon spin
[69] Burkardt M., 2002, Phys. Rev. D, 66, 119903, Erratum: Impact parameter dependent parton distributions

and off-forward parton distributions for
→
ζ= 0 [phys. rev. d 62, 071503(r) (2000)]

[70] Diehl M., 2002, Eur. Phys. J. C, 25, 223, Generalized parton distributions in impact parameter space
[71] Collins J. C., Soper D. E., 1981, Nuclear Physics B, 193, 381, Back-to-back jets in qcd
[72] Bacchetta A., Conti F., Radici M., 2008, Phys. Rev. D, 78, 074010, Transverse-momentum distributions in a

diquark spectator model
[73] Boussarie R., et al., 2023, TMD Handbook
[74] Ji X., 2003, Phys. Rev. Lett., 91, 062001, Viewing the proton through “color” filters
[75] Belitsky A., Ji X., Yuan F., 2004, Phys. Rev. D, 69, 074014, Quark imaging in the proton via quantum

phase-space distributions
[76] Wigner E., 1932, Phys. Rev., 40, 749, On the quantum correction for thermodynamic equilibrium
[77] Meissner S., Metz A., Schlegel M., 2008, in 16th International Workshop on Deep Inelastic Scattering and

Related Subjects. p. 99 (arXiv:0807.1154), doi:10.3360/dis.2008.99
[78] Meissner S., Metz A., Schlegel M., Goeke K., 2008, JHEP, 08, 038, Generalized parton correlation functions

for a spin-0 hadron
[79] Meissner S., Metz A., Schlegel M., 2009, JHEP, 08, 056, Generalized parton correlation functions for a

spin-1/2 hadron

148

http://dx.doi.org/https://doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/https://doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/https://doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(01)00183-3
http://dx.doi.org/10.1103/PhysRevD.56.5524
http://dx.doi.org/10.1103/PhysRevD.65.114015
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1088/0954-3899/24/7/002
http://dx.doi.org/10.1103/PhysRevD.70.114001
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2014.02.010
http://dx.doi.org/10.1007/JHEP08(2015)045
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2013.01.050
http://dx.doi.org/10.1103/PhysRevD.98.034009
http://dx.doi.org/10.1103/PhysRevD.58.056003
http://dx.doi.org/https://doi.org/10.1016/0550-3213(90)90506-9
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1103/PhysRevD.66.119903
http://dx.doi.org/10.1007/s10052-002-1016-9
http://dx.doi.org/https://doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevLett.91.062001
http://dx.doi.org/10.1103/PhysRevD.69.074014
http://dx.doi.org/10.1103/PhysRev.40.749
http://arxiv.org/abs/0807.1154
http://dx.doi.org/10.3360/dis.2008.99
http://dx.doi.org/10.1088/1126-6708/2008/08/038
http://dx.doi.org/10.1088/1126-6708/2009/08/056


References References

[80] Kanazawa K., Lorcé C., Metz A., Pasquini B., Schlegel M., 2014, Phys. Rev. D, 90, 014028, Twist-2 gener-
alized transverse-momentum dependent parton distributions and the spin/orbital structure of the nucleon

[81] Echevarria M. G., Idilbi A., Kanazawa K., Lorcé C., Metz A., Pasquini B., Schlegel M., 2016, Physics Letters
B, 759, 336, Proper definition and evolution of generalized transverse momentum dependent distributions

[82] Lorce C., Pasquini B., Vanderhaeghen M., 2011, JHEP, 05, 041, Unified framework for generalized and
transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon

[83] Anikin I. V., Teryaev O. V., 2007, Phys. Rev. D, 76, 056007, Dispersion relations and subtractions in hard
exclusive processes

[84] Diehl M., Ivanov D. Y., 2007, Eur. Phys. J. C, 52, 919, Dispersion representations for hard exclusive pro-
cesses: beyond the Born approximation

[85] Accardi A., et al., 2016, Eur. Phys. J. A, 52, 268, Electron Ion Collider: The Next QCD Frontier: Under-
standing the glue that binds us all

[86] Abdul Khalek R., et al., 2022, Nuclear Physics A, 1026, 122447, Science requirements and detector concepts
for the electron-ion collider: Eic yellow report

[87] Chen X., 2018, PoS, DIS2018, 170, A Plan for Electron Ion Collider in China
[88] Anderle D. P., et al., 2021, Front. Phys. (Beijing), 16, 64701, Electron-ion collider in China
[89] Abelleira Fernandez J. L., et al., 2012, J. Phys. G, 39, 075001, A Large Hadron Electron Collider at CERN:

Report on the Physics and Design Concepts for Machine and Detector
[90] Capua M., 2012, in 3rd International Workshop on Multiple Partonic Interactions at the LHC. pp 137–143

(arXiv:1202.2828), doi:10.3204/DESY-PROC-2012-03/58
[91] Movsisyan, Aram 2015, EPJ Web of Conferences, 85, 02035, Overview of hermes results on exclusive pro-

cesses
[92] Kim, Andrey 2015, EPJ Web of Conferences, 85, 02034, Exclusive processes at jlab at 6 gev
[93] Ferrero A., (on behalf ofthe COMPASS collaboration) 2011, Journal of Physics: Conference Series, 295,

012039, Study of dvcs and dvmp processes at compass
[94] Belitsky A., Müller D., 1998, Nuclear Physics B, 527, 207, Next-to-leading order evolution of twist-two

conformal operators: The abelian case
[95] Belitsky A., Müller D., 1999, Nuclear Physics B, 537, 397, Broken conformal invariance and spectrum of

anomalous dimensions in qcd
[96] Braun V. M., Manashov A. N., Moch S., Strohmaier M., 2017, JHEP, 06, 037, Three-loop evolution equation

for flavor-nonsinglet operators in off-forward kinematics
[97] Müller D., 1998, Phys. Rev. D, 58, 054005, Restricted conformal invariance in qcd and its predictive power

for virtual two-photon processes
[98] Belitsky A., Müller D., 1998, Physics Letters B, 417, 129, Predictions from conformal algebra for the deeply

virtual compton scattering
[99] Braun V., Korchemsky G., Müller D., 2003, Progress in Particle and Nuclear Physics, 51, 311, The uses of

conformal symmetry in qcd
[100] Müller D., Schäfer A., 2006, Nuclear Physics B, 739, 1, Complex conformal spin partial wave expansion of

generalized parton distributions and distribution amplitudes
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