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Introduction

Artificial Neural Networks are a mathematical model originally developed to simulate the

human brain. Their development began soon after the advent of computers in the fifties and

sixties, and at the time they were referred to as electronic or artificial brains and thinking

machines. Today, artificial neural networks are used in Machine Learning tasks by treating

the computational units in a learning model as brain neurons. Although the biological

analogy of neural networks is an exciting one and evokes comparisons with science fiction,

the mathematical understanding of artificial neural networks is more mundane.

Artificial neural networks are theoretically capable of learning any mathematical func-

tion with sufficient training data. Some variants like Recurrent Neural Networks are known

to be Turing complete, meaning that they can simulate any learning algorithm given suf-

ficient data. The biggest obstacle is that the amount of data required to learn even simple

tasks is often extraordinarily large, which causes a corresponding increase in computa-

tion time. Nevertheless, given that the speed of computers is increasing rapidly and more

powerful paradigms like quantum computing are on the horizon, the computational issues

might not turn out to be as critical as imagined.

Major events in Artificial Intelligence (AI) research can be found in Figure 0.1, along

with indications of the first AI winter and the current AI summer. Topics covered in this

thesis are:

1943: The McCulloch-Pitts Neuron The first mathematical model of a biological neuron

1957: The Rosenblatt’s Perceptron The first hardware implementation of a mathemati-

cal neuron model

1959: ADALINE The first learning model developed in terms of optimization

1976: Backpropagation algorithm A recursive algorithm allowing efficient training of

multilayered networks

1986: Multilayer Perceptron A classic multilayered artificial neural network model used

even today

1



INTRODUCTION 2

Figure 0.1: AI Timeline

Thesis outline

The main goal of this thesis is to explore artificial neural networks in a binary classification

setting. This includes defining the statistical models, deriving their training algorithms, and

justifying their use even through statistical learning theory. By unifying many important

works in the field into a cohesive unit, this thesis provides a self-consistent introduction to

the field of artificial neural networks. It is separated into two main chapters that comprise

its title.

Chapter 1 describes the workings of Biological Neural Networks and their mechanisms,

setting the stage for artificial neural networks. Through early artificial neural networks, we

reach the Multilayer Perceptron and the Backpropagation learning algorithm, which are

the principal components of the chapter.

Chapter 2 describes the foundations of Statistical Learning Theory, focusing on artifi-

cial neural networks. It justifies the models presented in Chapter 1 in a theoretical setting

and presents interesting results concerning the learning process of neural networks.



Chapter 1

Neural Networks

1.1 Biological Neural Networks

The neuron (or nerve cell) is the fundamental anatomical and functional unit of the nervous

system. It is an extension of a simple cell with two types of appendages (protrusions from

the cell surface): multiple dendrites and an axon. Four main components of a neuron are

the dendrites, the axon, the soma (cell body), and the synapse. They are shown in Fig.

1.1. The average human brain consists of nearly 1011 neurons of various types: unipolar,

bipolar, multipolar, and pseudounipolar.

Figure 1.1: Schematic drawing of a multipolar neuron

The soma contains the cell nucleus. Dendrites branch into a short bushy network around

the cell to receive input from other neurons, whereas the axon stretches out for a longer

distance. The axon is an output channel to other neurons; it branches into strands and

3



CHAPTER 1. NEURAL NETWORKS 4

substrands to connect to the dendrites and cell bodies of other neurons. The connecting

junction is called a synapse, and each neuron has 104 − 105 synaptic connections. For that

reason, the biological neural network models are called connectionist models. Dendrites

receive signals from other neurons and pass them onto the cell body to be processed, and

the resulting signal is transferred through an axon. This process goes on and on throughout

the entire neural network.

Figure 1.2: Synaptic connections

Like any other cell, neurons have a membrane potential, that is, an electric potential dif-

ference between the cell’s interior and exterior. The cell membrane has an electrical resting

potential of −70mV , however, unlike an ordinary cell, the neuron is excitable. Because of

inputs from the dendrites, the cell may not be able to maintain the −70mV resting potential,

resulting in an action potential – an electrical pulse transmitted down the axon. Signals are

thus propagated from neuron to neuron by a complicated electrochemical reaction.
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When the potential is above a threshold, an electrical pulse (action potential) is sent

along the axon. After releasing the pulse, the neuron returns to its resting potential. The

action potential causes a release of certain biochemical agents for transmitting messages to

the dendrites of nearby neurons. These biochemical transmitters may have either an exci-

tatory or inhibitory effect on neighboring neurons. A synapse that increases the potential

is excitatory, whereas a synapse that decreases it is inhibitory.

Synaptic connections exhibit plasticity – a long-term change in the strength of connec-

tions in response to the pattern of stimulation, where neurons can also form new connec-

tions with other neurons. Synaptic plasticity is a basic biological mechanism underlying

learning and memory.

1.2 Artificial Neural Networks

As mentioned, this thesis covers artificial neural networks as a machine learning algorithm

in supervised learning setting, used for binary classification. Meaning, that we are provided

with a training set consisting of input-output pairs (labelled data), with the output values

being strictly 0 or 1 in this thesis. Also common output values are −1 and 1.

Section 1.1 was purposely detailed to show the upcoming similarity between biologi-

cal neural networks (BNNs) and artificial neural networks (ANNs). Later, we will see how

ANNs are a natural progression and generalisation of simpler machine learning algorithms

such as Linear regression or Logistic regression. In other words, motivation from biol-

ogy may seem unnecessary. However, major biological breakthroughs in discovering the

workings of the human brain often led to significant improvements in ANNs as well.

The aforementioned bio-mechanisms of BNNs are simulated in ANNs. Let’s recap;

The human nervous system contains cells, which are referred to as neurons. The neurons

are connected with axons and dendrites, and the connecting regions between them are

called synapses. These connections are illustrated in Fig. 1.2. The strengths of these

synaptic connections change through time in response to external stimuli. This change is

how learning takes place in living organisms.

In ANNs, the computational units are the artificial neurons, but for simplicity, we’ll re-

fer to them as neurons from now on. Neurons are connected through weights, which serve

the same role as the strengths of synaptic connections in biological neurons. The sign of

the weight often corresponds to excitatory and inhibitory effects on the receiving neurons.

Each neuron receives inputs scaled with weights and computes a certain activation func-

tion, equivalent to chemical signal processing in soma once it receives signals from other

brain neurons through its dendrites. The output of a neuron is the value of the activation

function (usually a number between 0 and 1 in our setting) and it is sent out to be received

by other neurons as an input parameter (once scaled with an according weight), just like an

electrical pulse through the axon.
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An artificial neural network computes a function of the inputs by propagating the com-

puted values from the input neurons to the output neuron(s) using the weights as intermedi-

ate parameters, the same way the signals are propagated from neuron to neuron in a BNN.

Learning occurs by changing the weights connecting the neurons, analogous to synaptic

plasticity. Just as external stimuli are needed for learning in biological organisms, the arti-

ficial neural networks are provided by the training data containing examples of input-output

pairs of the function that is to be learned.

The training data provides feedback on the correctness of the weights based on how

well the predicted output matches the true output label in the training data. One can view

the errors made by the ANN as a kind of unpleasant feedback in a biological organism,

such as pain or discomfort. This negative feedback is what leads to an adjustment in

the synaptic strengths. Similarly, the weights between neurons are adjusted in a neural

network in response to prediction errors. The weights are changed (or updated) to make

more precise predictions in future iteration, mimicking learning in biological organisms.

This duality between BNNs and ANNs is shown in Table 1.1.

Table 1.1: Simplified comparison of ANN’s and BNN’s components

The biological comparison is often criticized as a very poor replication of the workings

of the human brain. Nevertheless, the principles of neuroscience have often been useful

in designing neural network architectures. A different view is that neural networks are

built as higher-level abstractions of the classical models that are commonly used in ma-

chine learning. The most basic units of computation in the neural network (perceptrons)

are inspired by traditional machine learning algorithms like linear regression and logistic

regression, and artificial neural networks gain their power by combining many such basic

computational units.
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From this point of view, a neural network can be viewed as a computational graph of

elementary units in which greater power is gained by connecting them in particular ways.

By combining multiple units, one is increasing the power of the model to learn more com-

plicated functions. How these units are combined also plays a role. Designing the network

architecture requires some understanding and insight from the analyst. Furthermore, suf-

ficient training data is also required to learn a larger number of weights in these expanded

computational graphs.

Many neural network architectures that have shown extraordinary performance were

not created by randomly connecting computational units. Deep neural networks them-

selves mirror the fact that biological neural networks gain much of their power from depth

as well. Furthermore, biological networks are connected in ways we don’t fully under-

stand yet, and in the few cases that the biological structure is understood at some level,

significant breakthroughs have been achieved by designing artificial neural networks along

those lines. A classical example of this type of architecture are the convolutional neural

networks, used mostly for image recognition.

Short history of ANN development

Before moving to ANN models, let’s mention some important historical events we’ll cover

in the next section related to their development.

In their 1943 paper, ”A logical calculus of the ideas immanent in nervous activity”,

McCulloch and Pitts [12] proposed that a neuron can be modelled as a simple threshold

device to perform a logic function. Later, in 1949, Hebb [6] proposed the Hebbian rule

to describe how learning affects the synapses between neurons. He stated that synaptic

connections could adapt to different stimuli over time, where the connections that were

used frequently together would gradually become stronger, while those that were not used

would fade away. In 1952, based on the physical properties of cell membranes, Hodgkin

and Huxley [7] modelled neuronal firing and action potential as a set of evolution equations,

receiving a Nobel Prize in 1963 for their work. In the late 1950s, Rosenblatt [16] proposed

the perceptron model, and Widrow and Hoff [19] proposed the ADALINE (adaptive linear

element) model, trained with a least mean squares (LMS) method. Finally, in their 1969

book ”Perceptrons”, Minsky and Papert [13] mathematically proved that the perceptron

cannot be used for a more complex logic function, also known as the XOR problem. This,

in conjunction with the Lighthill1 report [10] led to a lack of funding in the field of neural

networks and the stagnation in AI research known as the first AI winter, lasting from early

1970s through 1980s.

1The Lighthill Debate of 1973: https://www.youtube.com/watch?v=yReDbeY7ZMU&list=

PLhThm05V6bZPbfpbAyzFEU-qVT-OkpwLA (visited on 16.04.2024).



CHAPTER 1. NEURAL NETWORKS 8

1.3 McCulloch–Pitts Neuron Model

We are starting with the simplest ANN model called the McCulloch–Pitts Neuron Model

or the M-P Neuron, also referred to as a Linear Threshold Gate. It’s the earliest model

proposed, and generally used for implementing logic functions. This is due to a limited

understanding of the workings of the human brain at the time. Neurons were modelled as

computing elements described in propositional logic: ”. . . neural events and the relations

among them can be treated by means of propositional logic” [12].

The McCulloch–Pitts neuron model consists of a single neuron called the M-P neuron.

It takes an n-dimensional boolean vector2 X = [x
1
, x

2
, . . . , xn]T ∈ {0, 1}n as its input. For

each input xi , there is a corresponding weight wi , and we denote the vector of weights by

W = [w1,w2, . . . ,wn]T ∈ {−1, 1}n. Values −1 and 1 represent the inhibitory and excitatory

behaviour respectively. The threshold parameter ¹ sets the threshold value for neuron ac-

tivation. The McCulloch-Pitts neuron processes information by aggregating the weighted

inputs and assessing whether their sum surpasses the threshold using an activation function

ϕ. The resulting output of the M-P neuron is y ∈ {0, 1}.

Schematics of the M-P Neuron model are shown in Figure 1.3. It has two layers, the

input and the output layer. Since it’s only the output layer that does the calculations, we say

that the M-P neuron has one computational layer. For this reason, it would be considered

a single-layer network.

Figure 1.3: The McCulloch-Pitts neuron

For k, n ∈ N, set X ¦ Rn denotes the input space, set Y the output space, and Ω ¦ Rk

the set of network states. If unspecified, we take X and Ω to be Rn, and Y to be {0, 1}.

The output space in the binary classification setting can generally be any set {a, b} ¦ R

such that a , b, but in this thesis is fixed to {0, 1}. The input space X is the set of allowed

input values of real numbers. While this may seem restricting, more often than not prob-

lems have inputs that can be encoded in real numbers. Examples are images, sound etc.

2By vector we mean a column vector and we’ll identify column vectors with n-tuples: Rn ≡ Rn×1.
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The set of network states represents the possible values of network parameters, usually

presented as vectors and matrices. In the case of the M-P neuron, the set of network states

comprises all possible values for weights and the threshold.

Definition 1.3.1. Any Borel measurable function f : R −→ R is called an activation

function.

Definition 1.3.2. Function ϕ : R −→ [0, 1] defined as

ϕ(x) =















1, if x g 0

0, if x < 0

is called the threshold activation function or the hard-limiter activation function.

Remark 1.3.3. The threshold activation function is an activation function, justifying the

name. Its preimage is always a Borel set; either ∅, ï−∞, 0ð , ï0,+∞] or R.

Definition 1.3.4. Let ϕ be the threshold activation function, n ∈ N any natural number,

X = {0, 1}n the input space, Y = {0, 1} the output space, and Ω ¦ {−1, 1}n × R the set of

network states. Function y : Ω × X −→ Y defined as

y(W, ¹, X) = ϕ
(

WT X − ¹
)

is called the McCulloch-Pitts Neuron or the M-P Neuron.

There isn’t a training phase for the McCulloch-Pitts neuron model. The weights and

the threshold parameter are not being learned in this setting, but rather chosen prematurely

to solve a specific problem, such as implementing a logic (or boolean) function.

Definition 1.3.5. For n ∈ N, boolean functions AND, OR, XOR : {0, 1}n −→ {0, 1} are

defined as:

AND(x1, x2, . . . , xn) =















1, ∀i ∈ {1, 2, . . . , n} xi = 1

0, otherwise
,

OR(x1, x2, . . . , xn) =















1, ∃i ∈ {1, 2, . . . , n} xi , 0

0, otherwise
,

XOR(x1, x2, . . . , xn) =















1, x1 + x2 + · · · + xn is odd

0, otherwise
.
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(a) AND function (b) OR function (c) XOR function

Figure 1.4: Graphical representation of boolean functions

Provided inputs are two-dimensional, we can visualise these functions in a 2D plane

using colours green and red to represent the TRUE and FALSE values respectively.

Implementing the AND & OR logical functions with M-P neurons is simple, and the

solution is not unique.

Proposition 1.3.6. Let n ∈ N be any natural number,X = {0, 1}n the input space,Y = {0, 1}

the output space, and Ω = {−1, 1}n × R the set of network states. Then, there exist

(W1, ¹1), (W2, ¹2) ∈ Ω such that the M-P neuron y : Ω × X −→ Y satisfies

y(W1, ¹1, X) = AND(X),

y(W2, ¹2, X) = OR(X),

for all X ∈ X.

Proof. Let n ∈ N be arbitrary. To implement the AND function, we set the vector of

weights to W1 = 1n, where 1n = [1, 1, . . . , 1]T ∈ Rn, and the threshold parameter to

¹1 = n − 0.5. The M-P neuron therefore assesses whether the number of incoming input

signals is greater than n − 0.5, which can only be true in case of X = 1n.

Similarly, for the OR function, we use the same vector of weights W2 = 1n, and set the

threshold parameter to ¹2 = 0.5. The threshold will be surpassed in case the M-P neuron

receives at least one signal from the input, or X , 0 · 1n.

Therefore, (W1, ¹1) = (1n, n − 0.5), and (W2, ¹2) = (1n, 0.5) give a solution.

□

The solution is not unique. Interestingly, there are no parameters (W, ¹) ∈ Ω such that

the M-P neuron implements the XOR function even in the simples case when n = 2. This

implies that a more advanced approach is necessary in order to solve the XOR problem.
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The XOR problem

Looking at the geometry of the M-P neuron model, one can easily see why it can’t imple-

ment the XOR function. To reach said geometry, let’s look at the following format the M-P

neurons output denoted simply by y, given X, W, and ¹:

y =















1, WT X − ¹ g 0

0, WT X − ¹ < 0
.

In 2D case, the equation w1x1 + w2x2 − ¹ = 0 is a line equation. This line serves as a

decision boundary of a 2D plane, splitting it into 2 regions. When implementing boolean

functions, we are essentially looking for weights W and threshold ¹ such that each decision

region made by the decision boundary contains strictly all TRUE or all FALSE values. An

example of such decision regions for the AND & OR boolean functions is shown below.

(a) AND function (b) OR function

Figure 1.5: Decision regions of boolean functions

Definition 1.3.7. Let n ∈ N and A, B ¦ Rn. We say that A and B are linearly separable in

R
n if there exists a vector w ∈ Rn and a real number ¹, such that wT a−¹ > 0 and wT b−¹ < 0

for all a ∈ A, b ∈ B. Otherwise, sets A and B are called linearly inseparable.

Definition 1.3.8. For any two linearly separable sets in Rn and their given w and ¹ from

definition 1.3.7, the set {x ∈ Rn : wT x − ¹ = 0} is called the (linear) decision boundary

(or a separating hyperplane), and the two halfspaces it divides the Rn into are called the

decision regions. Such vector w is called the normal (to the separating hyperplane).

Definition 1.3.9. We say that a function f : Rn § D −→ {0, 1} is linearly separable in Rn if

the preimages f −1({0}), f −1({1}) ¦ Rn are linearly separable in Rn.
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Since its decision boundary is a line, the M-P neuron can only be used to implement

linearly separable functions. From their graphs, it’s obvious that AND & OR functions

are linearly separable, and the decision boundaries from Proposition 1.3.6 are shown in

Figure 1.5. Conversely, the graph of the XOR function from Figure 1.4c shows how any

decision region containing points (0, 1) and (1, 0) will contain at least one more point from

{(0, 0), (1, 1)}.

As mentioned, this realisation led to stagnation in ANN research after the initial excite-

ment. However, it is possible to solve the XOR problem, but it requires combining multi-

ple M-P neurons, allowing the network to encompass more complicated boolean functions.

The true power of ANNs comes from combining multiple neurons, together with using a

non-linear activation function.

To overcome the limitations of the M-P neuron, Frank Rosenblatt proposed the classical

perception model in 1957 [15]. It is a more generalised computational model compared to

the McCulloch-Pitts neuron, where real-valued weights can be learned over time.

1.4 Rosenblatt’s Perceptron

At the time, there were two approaches to brain information storage and memory: the

coded representations approach and the connectionist approach.

The coded representation approach states that sensory information is stored in the form

of coded representations – a one-to-one mapping between the sensory stimuli and the stored

pattern. Meaning, that information is precisely stored in the brain in a way you would be

able to retrieve it from a particular location. So precisely in fact, that you could tell the

contents encoded in the neurons by looking at how they are connected.

The connectionist approach Roseblatt advocated states that there is no unique cluster

of neurons, wired in a specific way such that they encode the memory. Instead, memory

is a series of associations among a set of neurons that tend to react in the presence of any

familiar stimuli.

Rosenblatt’s perceptron, the so-called photo-perceptron, was intended to emulate the

functionality of the human eye. In today’s terms, we would say it was designed for image

recognition.3 It consisted of three ”systems” composed of individual units (neurons): the

S-system (sensory system), the A-system (association system), and the R-system (response

system).

Stimuli would hit the retina sensory units (S-units) generating a binary response. The

S-system was essentially the input layer and it was connected with fixed weights to the

A-system at random. Signs of the weights had the same excitatory/inhibitory interpretation

3Demonstration of the photo-perceptron: www.youtube.com/watch?v=cNxadbrN_aI&t=1s (visited

on 16.04.2024).
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as the M-P neuron. Each A-unit in the following system receives an impulse from several

S-units and transmits an output to one or more R-units. The S-units were connected at

random to the R-units as well, as that seemed to have been observed in actual biological

neurons.

The A-units are connected to the R-units with adjustable weights. They were adjustable

resistors (potentiometers) controlled by small electrical motors. It was the turning of hun-

dreds of these motors, making adjustments to the weights, that made up the learning phase

of the system. Due to this weight update paradigm, Rosenblatt proposed the R-system

serves a memory function of the machine.

The R-system was the output system, usually containing a smaller number of units. It

served two purposes: displaying the result in some way (e.g. lights), and feeding back

impulses to the A-system with the intent of learning the correct weights. Rosenblatt [16]

called this feedback paradigm the ”back-propagating error correction”.

Figure 1.6: Rosenblatt’s photo-perceptron architecture

Rosenblatt experimented with many different perceptron models and called this

three-layered perceptron network the alpha-perceptron. The first implementation was in

software for the IBM 704 computer, but was subsequently implemented in custom-built

hardware in 1957 called the ”Mark I Perceptron”. In today’s terms, the alpha-perceptron

would closely resemble a feed-forward three-layer neural network with two hidden layers.

We refer to all layers between the input and the output layers as hidden layers. The feed-

forward type of neural network architecture is characterised by data flowing from the input

to the output through multiple in-between layers in a sequential matter.
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Figure 1.7: Mark I Perceptron displayed at the Smithsonian musem

Solving the XOR problem

Let’s show how a simple extension of the M-P neuron can solve the XOR problem. We

will construct a multilayered neural network capable of implementing the boolean XOR

function with two inputs. It will be highly motivated by Rosenblatt’s alpha-perceptron, but

still within the M-P neuron’s restrictions.

The XOR function can be written as a composition of AND, OR, and NOT functions.

Definition 1.4.1. Boolean function NOT : {0, 1} −→ {0, 1} is defined as

NOT (x) =















1, x = 0

0, x = 1
.

We can also write it as NOT (x) = 1 − x, and its implementation with the M-P neuron is

immediately clear. By setting W = [w1] = −1, and ¹ = −1 we obtain the solution.

It follows from mathematical logic that for statements A and B, their XOR function can

be written as A · B = AB ( AB, where · stands for the XOR function, multiplication for

the AND function, ( for the OR function, and (·) for the NOT function. Rewriting it to fit

our setting we get

XOR(x1, x2) = OR(AND(x1,NOT (x2)), AND(x2))

= OR ◦ (AND, AND) ◦ ((x1,NOT (x2)), (NOT (x1), x2)).
(1.1)
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From Section 1.3 we know how to implement the AND and the OR functions. For the

threshold activation function ϕ we have:

AND(x1, x2) = ϕ(x1 + x2 − 1.5)

OR(x1, x2) = ϕ(x1 + x2 − 0.5)

NOT (x1) = 1 − x1.

(1.2)

The solution combines equations (1.1) and (1.2), and is shown in a tree-like structure here:

ϕ(ϕ(x1 + (1 − x2) − 1.5) + ϕ((1 − x1) + x2 − 1.5) − 0.5)

OR

ϕ(x1 + (1 − x2) − 1.5)

AND

x1 1 − x2

NOT

x2

ϕ((1 − x1) + x2 − 1.5)

AND

1 − x1

NOT

x1

x2

(1.3)

Some expressions inside the activation functions can be simplified, leading to desired

weights and threshold parameters in the neural network. The tree structure from above

rotated 90° clockwise would give us an ANN-like structure. Figure 1.8 shows a generalised

version of such a neural network.

When constructing a neural network, we keep track of all parameters in vectors and ma-

trices. Regarding the network from Figure 1.8, the first weight matrix, containing weights

connecting the input layer to the hidden layer, is W1 ∈ {−1, 1}2×2. Matrix W2 ∈ {−1, 1}2×1

contains weights connecting the hidden layer to the output layer, and the threshold vectors

¹1 ∈ R
2×1, ¹2 ∈ R contain the threshold parameters for the first and second layer respec-

tively. Finally, we mark the vector of intermediate values calculated by the hidden layer

with H ∈ {0, 1}2×1, the input vector with X ∈ Rn, and the output with y ∈ R.

Vectors and matrices are of the following form:

X =

[

x1

x2

]

, H =

[

h1

h2

]

, W1 =















w
(1)

11
w

(1)

12

w
(1)

21
w

(1)

22















, W2 =















w
(2)

11

w
(2)

21















, ¹1 =















¹
(1)

1

¹
(1)

2















, ¹2 =
[

¹
(2)

1

]

.

Note 1.4.2. We extend the definition of a real function f : R −→ R to matrices by letting

f (M) = [ f (mi j)] ∈ R
m×n for any matrix M = [mi j] ∈ R

m×n.
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Figure 1.8: Schematics of a two-layer neural network

Values calculated by the hidden layer and the output layer are:

H = ϕ(WT
1 X − ¹1),

y = ϕ(WT
2 H − ¹2)

= ϕ(WT
2 ϕ(W

T
2 X − ¹1) − ¹2).

(1.4)

Note 1.4.3. Matrix multiplication WX is more often seen in the literature instead of WT X,

along with indexing the weight matrices by W (l), instead of Wl used here due to it being

transposed. In that case, the weight of the connection of the i-th neuron in the l-th layer

and the j-th neuron in the (l + 1)-th layer be represented by w
(l)

ji
, instead of the current w

(l)

i j
.

Finally, setting the weights and thresholds to the following values gives us the solution

to the XOR problem:

W1 =

[

1 −1

−1 1

]

, W2 =

[

1

1

]

, ¹1 =

[

0.5

0.5

]

, ¹2 =
[

0.5
]

.

We’ll use the logic truth table to check the results by evaluating all possible values of

x1 and x2 on the equations given by (1.3), going from the bottom to the top. The top node

of the tree is essentially the neural network y from relation (1.4).

Looking at the last row of the h1 and h2 columns in Table 1.2, we notice how the

original pair (x1, x2) = (1, 1) was transformed into (h1, h2) = (0, 0) by the hidden layer.

This in-between step allowed us to transform the original dataset into a linearly separable

one, shown in Figure 1.9b.
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Table 1.2: XOR truth table with intermediate parameter calculation

Figure 1.9c shows the decision regions of the original dataset, the untransformed XOR

function. The decision regions look a bit odd, but this is due to the restrictions on weights

in the M-P neuron model.

(a) XOR function (b) XOR transformed (c) XOR decision regions

Any logic function can be implemented using a network of M-P neurons. This is be-

cause we can implement the universal NAND function, which is a negated AND function.

The NAND function possesses a property called the functional completeness, meaning that

any boolean function can be implemented using only a composition of NAND functions.

Minsky and Papert knew that multiple layers would be able to solve the XOR problem,

even suggesting ”. . . a universal computer could be built entirely out of linear threshold

modules.” in their 1969 book Perceptrons [13]. Why was their book such devastation to

AI research, contributing to the first AI winter and the ”end of connectionism”? They

had conjectured, based on their ”intuitive judgment” [13, p. 232], that extensions of the

perceptron architecture would be subject to limitations similar to those suffered by one-

layer perceptrons. Another major concern at the time was the lack of efficient training

algorithms for multi-layered networks. This consequently led to disbelief in the capabilities

of even the multilayered ANNs, which were known to be able to solve more complicated

problems, as it seemed they couldn’t be trained.



CHAPTER 1. NEURAL NETWORKS 18

Perceptron Learning Algorithm

The earliest learning algorithm was the perceptron learning algorithm, proposed by Rosen-

blatt. It wasn’t presented in terms of optimization, but the goal was always to minimize the

number of misclassifications.

Figure 1.3 shows the basic structure of the perceptron. Using a common feature engi-

neering trick, we can remove the parameter ¹ by introducing an additional bias neuron. It

has a fixed output value of 1, and the weight wn+1 that scales it will take the place of ¹. In

many settings, ¹ is called the bias. Generally, we won’t distinguish this added neuron and

the weight wn+1 from others in any particular way, and the term ”bias” won’t be explicitly

used. Figure 1.10 shows the schematics. Additionally, we’ll denote the output of the per-

ceptron with ŷ as it’s no longer used for function implementation, but rather a prediction

of the true output value y.

Figure 1.10: Perceptron with added bias neuron

Definition 1.4.4. Let ϕ be the threshold activation function, n ∈ N any natural number,

X,Ω ¦ Rn an input space and the set of network states respectively, and Y = {0, 1} the

output space. Function ŷ : Ω × X −→ Y defined as

ŷ(W, X) = ϕ
(

WT X
)

is called the perceptron.

Definition 1.4.5. Let X be an input space and Y an output space. Any finite subset T ¦

X × Y is called a training set.

For X ¦ Rn and Y = {0, 1}, we say that a training set T ¦ X × Y is linearly separable

in Rn if sets T0 and T1 are linearly separable in Rn, where

T0 = {X ∈ R
n : (X, 0) ∈ T }, and T1 = {X ∈ R

n : (X, 1) ∈ T }.
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Let T = {(X1, y1), (X2, y2), . . . , (XN , yN)} be a training set. Our goal is to minimize

the number of misclassifications made by the perceptron ŷ on the training set T . Let

M(W) ¦ T denote the set of misclassified input-output pairs made by the perceptron in

state W ∈ Ω. Assuming the perceptron misclassified some input-output pair (Xi, yi) ∈ T

using the weight matrix W (meaning that ϕ(WT Xi) = ŷi , yi), there are two possibilities:

1. WT Xi g 0 =⇒ ŷi = 1 and yi = 0,

2. WT Xi < 0 =⇒ ŷi = 0 and yi = 1.

Denoting the error of i-the prediction by ei = yi − ŷi, we observe that ei · sgn(WT Xi) is

always a negative integer in case of misclassification.4 The number of misclassifications

|M(W)| is given by

|M(W)| = −
∑

T

ei · sgn(WT Xi).

We are looking for an optimal weight matrix W∗ that minimizes the number of misclassifi-

cations |M(W)|. It should possess the following property:

W∗ ∈ arg min
W∈Ω

|M(W)|,

where arg min(·) represents the set of all optimal matrices, as it is not necessarily unique.

Since the sign function is not especially optimizable, we aim to find a differentiable

function in terms of W that optimizes the same problem. By omitting the sign function

entirely, we are also minimizing the number of misclassifications. This is because by

minimizing −eiW
T Xi we minimize its sign as well, and in case of misclassification we

have sgn(−eiW
T Xi) = −ei sgn(WT Xi) = 1. The task now is finding W∗ such that

W∗ ∈ arg min
W∈Ω

∑

T

−eiW
T Xi . (1.5)

Relation (1.5) is called the perceptron criterion.

Optimization is achieved through epochs. Each time an algorithm passes through the

entire training set, it’s said to have completed an epoch. It can be thought of as an instance

of a for-loop moving through the entire dataset. The perceptron learning algorithm doesn’t

minimize the sum from (1.5) directly, but rather goes through the entire training set in one

epoch, and upon encountering a misclassification, updates the weight matrix by following

some weight update rule. Assuming that at some moment k ∈ N, the perceptron in state

Wk misclassifies Xi , we wish to update the weight matrix Wk with the intent of minimizing

the function f (W) = −eiW
T Xi . In case the weight matrix has been updated in the current

epoch, the process repeats until no misclassifications are made in the entire epoch.

4For our purposes, sgn(x) = 1 for x g 0, and sgn(x) = −1 for x < 0.
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The weight update rule is simply a gradient descent method for finding a minimum of a

function. The gradient of a function is the direction of the quickest ascend, and by moving

in the opposite direction by some step ¸ > 0, called the learning rate, we’re hoping for the

quickest descent to a minimum. Iterating this process gives the gradient descent algorithm,

and for some differentiable real or vector function f , the iterations are given by

xk+1 = xk − ¸ · ∇ f (xk) .

While dependent on W, the error of i-the prediction ei only serves as a normalizing

constant, and it will be considered as such when differentiating. For some fixed constants

ei ∈ R and Xi ∈ R
n, function f : Rn −→ R defined as f (W) = −eiW

T Xi satisfies

∇ f (W) = −eiXi .

Let Wk represent the vector of weights after k updates. Then, upon encountering the

misclassified pair (Xi, yi) ∈ T , the weights are updated by the following rule:

Wk+1 = Wk − ¸(−eiXi)

= Wk + ¸eiXi .

Let Mk ¦ T denote all misclassified data points at some moment k, made by the

perceptron ŷ in state Wk. We’ll use thisMk notation to simplify the algorithm in writing.

Algorithm 1: The perceptron learning algorithm

Input: Training set T , Learning rate ¸

Initialize: k = 0,M0 = T , W0 = 0 · 1n

Algorithm:

while |Mk| > 0 do

Pick (Xi, yi) ∈ Mk at random ;

Wk+1 = Wk + ¸eiXi ;

Mk+1 = {(Xi, yi) ∈ T : eiW
T
k+1

Xi < 0} ;

k ← k + 1 ;

end

W∗ ← Wk ;

k∗ ← k ;

Output: W∗ , k∗

Number k∗ ∈ N is the number of weight updates required before optimal W∗ is found.

Such W∗ clearly satisfies the perceptron criterion (1.5), as |M(W∗)| = 0. We’ll show how

the perceptron learning algorithm terminates in the case of a linearly separable training set,

and specify an upper bound on the required number of iterations.
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Reminder. The Cauchy-Schwartz inequality states that XT Y f ||X|| ||Y ||, for all X,Y ∈ Rn.

Theorem 1.4.6 (Novikoff). Let T = {(X1, y1), . . . , (XN , yN)} be linearly separable training

set, and W a unit vector such that ϕ(WT Xi) = yi for all i = 1, 2, . . . ,N. Let R = maxi ||Xi||,

and µ = mini |W
T Xi|. Then the perceptron learning algorithm outputs k∗ f R2/µ2.

Proof. Let W1,W2, . . . ,Wk be a sequence of iterates generated by the Algorithm 1, and

(Xi, yi) the training pair from the k-th update Wk = Wk−1 + ¸eiXi . Then,

WT Wk = WT Wk−1 + ¸eiW
T Xi ⇒

{eiW
T Xi g µ by assumption, since 0 f eiW

T Xi = |W
T Xi|} ⇒

WT Wk g WT Wk−1 + ¸µ ⇒

{recursion and W0 = 0} ⇒

WT Wk g k¸µ.

Using the Cauchy-Schwartz inequality we get

||W || ||Wk|| g WT Wk g k¸µ ⇒

{||W || = 1 by assumption} ⇒

||Wk|| g k¸µ ⇒

||Wk||
2 g k2¸2µ2. (1.6)

On the other hand,

||Wk||
2 = WT

k Wk = (Wk−1 + ¸eiXi)
T (Wk−1 + ¸eiXi)⇒

||Wk||
2 = ||Wk−1||

2 + 2¸eiW
T
k−1Xi + ¸

2e2
i ||Xi||

2 ⇒

{eiW
T
k−1Xi f 0 due to misclassification, e2

i = 1, ||Xi||
2 f R2} ⇒

||Wk||
2 f ||Wk−1||

2 + ¸2R2 ⇒

{recursion and W0 = 0} ⇒

||Wk||
2 f k¸2R2. (1.7)

Combining (1.6) and (1.7) we get

k2¸2µ2 f ||Wk||
2 f k¸2R2 ⇒

k f
R2

µ2
.

□

Algorithm 1 does not terminate for a linearly inseparable training sets, and the weights

Wk may exhibit a cyclic behaviour. Lastly, it’s worth noting that the learning rate ¸ does

not affect the stability of the perceptron learning algorithm, and affects the convergence

rate only for nonzero initial weight vector. A common value of ¸ is 0.5 [4].
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1.5 Adaptive Linear Neuron Model

Adaptive Linear Neuron, or ADALINE (also referred to as the LMS learning) is a learning

algorithm developed by Bernard Widrow and Ted Hoff at Stanford University in 1959 [19].

It was the first approach to the problem of learning from an optimization point of view. The

method was a direct application of linear regression to binary target values.

For a training set T and (Xi, yi) ∈ T , ADALINE uses ŷ(W, Xi) = WT Xi as its prediction

of yi , and works with this linear function through the entire training process. Once the

training is finished and optimal weights are found, only then do we apply an activation

function to classify the inputs. Meaning, that ADALINE adjusts the weights before apply-

ing the activation function, while the perceptron learning algorithm adjusts weights after

applying the activation function.

In the perceptron learning algorithm, the errors take values only in {−1, 0, 1}, while in

the case of ADALINE, the errors can be arbitrary real values, suggesting that ADALINE

may learn from the ”correct” predictions as well. This does come with a downside: the

perceptron learning algorithm refrains from penalizing excessively large (absolute) values

of WT Xi since they are equally squashed to 0 or 1 as those near the threshold. This is due to

the ”all-or-none” behaviour of the threshold activation function. On the other hand, using

real-valued predictions will inappropriately penalize such points of over-performance.

ADALINE learns by minimizing a cost function rather than the number of misclassifi-

cations. The cost function measures the error made by the prediction model on a given set

of examples, and the most commonly seen one is the Mean Squared Error. While often

synonymous, in this thesis, we differentiate between a cost function and a loss function.

Definition 1.5.1. Any non-negative Borel measurable function L : R2 −→ R is called a

loss function.

Definition 1.5.2. Let X be an input space, Y an output space, Ω the set of network states,

N ∈ N, and L a loss function. For any (parametric) prediction ŷ : Ω × X −→ R of y ∈ Y,

function C : Ω × (X ×Y)N −→ R defined as

C(W,T ) =
1

|T |

∑

(X,y)∈T

L(y, ŷ(W, X))

is called a cost function.

Remark 1.5.3. Regarding the above definition, the training set T of size N is considered

as an element of (X × Y)N to satisfy the definition of a cost function. Additionally, we’ll

denote the cost function by CT (W) when differentiating with respect to W.

Loss function L defined by L(y, ŷ) = (y − ŷ)2 is called the squared loss, and the cost

function associated with the squared loss is the Mean Square Error or the MSE cost func-

tion.



CHAPTER 1. NEURAL NETWORKS 23

Ideally, we would minimize the cost function using a gradient descent method, how-

ever, it may be too computationally demanding. The learning algorithm would need to

compute the prediction for every input pattern in the training set, and then average the

squared error for all training instances in each iteration. This is likely infeasible for larger

training sets and a different method is needed.

One approach is to split the training set into the so-called mini-batches by partition-

ing it into equally sized subsets. In a given epoch, the training algorithm will go through

the training set mini-batch by mini-batch, and update the weights based on the gradient of

the cost function evaluated on a mini-batch instead of the entire training set. The train-

ing set is randomly partitioned into mini-batches at the beginning of each epoch. The

mini-batch size, denoted by b, is an important hyperparameter in learning methods. Due

to the architectures of processors, mini-batch size is often picked as a power of 2, with

recommendations5 of not going too large and staying somewhere in the b = 32 range [11].

Note 1.5.4. If it’s not possible to partition the training set into equally sized parts, either

one subset will be of a different size, or the training set will be randomly resized in each

epoch. For this reason, we’ll assume that the size of the training set is always divisible by

the mini-match size b.

The approach described is called the mini-batch learning or mini-batch gradient de-

scent. In case the entire training set T is used for the cost function calculation, meaning

that b = |T | and the ”mini-batch” is the entire training set, the method is called the batch

learning or the batch gradient descent. Another special case is b = 1, in which case the

method is called the stochastic gradient descent or SGD. SGD is stochastic because the

mini-batches are always chosen randomly, meaning that in every epoch the algorithm goes

through the training set randomly instead of deterministically.

For training set T , a cost function C, and a b-sized mini-batch T(b) of T , the mini-batch

gradient descent method with a learning rate ¸ > 0 gives the weight update rule as

Wk+1 = Wk − ¸ · ∇CT(b)
(Wk) , k g 0.

The loss function will often be denoted by LW when evaluating a parametric prediction

ŷ of y given the state W. Due to the linearity of a differential and the definition of a cost

function, we have the following relation:

∇CT(b)
(W) =

1

|T(b)|

∑

(X,y)∈T(b)

∇LW(y, ŷ(W, X)).

For this reason, it’s sufficient to calculate ∇LW(y, ŷ(W, X)) when deriving a mini-batch gra-

dient descent algorithm for any particular cost function.
5Yann LeCun: ”Training with large minibatches is bad for your health. More importantly, it’s bad

for your test error. Friends don’t let friends use mini-batches larger than 32.” - https://twitter.com/

ylecun/status/989610208497360896?lang=en (visited on 16.04.2024).
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ADALINE Learning Algorithm

Widrow and Hoff’s ADALINE learning algorithm is the SGD method with the MSE cost

function and a linear prediction ŷ(W, X) = WT X of an output y. For each input-output

pair (Xi, yi) ∈ T = {(X1, y1), (X2, y2), . . . , (XN , yN)}, we’ll denote the prediction ŷ(W, Xi) of

yi by ŷi(W) = WT Xi . For the squared loss LW we denote the loss at the i-th example by

Li(W) = LW(yi, ŷi) = (yi − ŷi(W))2 = (yi −WT Xi)
2. Then,

MSET (W) =
1

|T |

∑

(X,y)∈T

LW(y, ŷ(W, X)) =
1

N

N
∑

i=1

Li(W) . (1.8)

For one-sized mini-batch T(1) = {(Xi, yi)} we have

MSET(1)
(W) =

1

|T(1)|

∑

(X,y)∈T(1)

(y − ŷ(W, X))2

= (yi − ŷi(W))2 = (yi −WT Xi)
2

= Li(W),

and

∇MSET(1)
(W) = ∇Li(W) = −2(yi −WT Xi)Xi .

Ignoring the constant 2, as it is multiplied by the learning rate ¸, a single instance of the

SGD weight update rule is given by

Wk+1 = Wk + ¸(yi −WT
k Xi)Xi .

For a sufficiently small learning rate ¸S GD , it’s possible to show that SGD minimizes the

global MSE error of batch learning, and if the learning rate ¸batch is also sufficiently small,

SGD approaches batch learning and the two methods produce the same result [4].

The test error is a measure of an error made by the prediction model on an independent

set of input-output pairs called the test set, denoted by Ttest . As the test set is not used

during the model’s training phase, it provides a better metric for assessing how well a

model generalizes to unseen data. The value of the test error is the cost function evaluated

on a test set, and similarly, the cost function evaluated on the training set is called the

training error. While the training error will always decrease in gradient descent methods,

the test error will decrease to a minimum and then begin to rise again, since after a certain

point the network is being overtrained.

A procedure called the early stopping rule can deal with the issue of ovetraining (or

overfitting), and is therefore a form of regularization. It states that the learning algorithm

should halt once the test error increases or does not significantly decrease for s epochs. The

non-significant decrease of the test error is measured by a relative difference between test
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errors of the two successive epochs. It’s denoted by r, and its insignificance means that r is

smaller than some relative error lower bound r∗. The ADALINE learning algorithm will

terminate in case a maximum number of epochs kmax is reached, or by an early stopping

rule which does not select the last parameter just before the algorithm terminates, but rather

the one with the lowest test error (ignoring those among the final s epochs that might have

caused an insignificant decrease in the test error).

Algorithm 2: The ADALINE Learning Algorithm

Input: Training set T = {(X1, y1), (X2, y1), . . . , (XN , yN)}, Test set Ttest ,

Learning rate ¸, Maximum number of epochs kmax ,

Relative error lower bound r∗, Early stopping parameter s

Initialize: k∗ = k = j = 0, W0 = RAND, ε0 = MSE(W0,Ttest) , r0 = r∗ + 1

Algorithm:

while k < kmax and j < s do

Randomly shuflle T ⇒ T = {(X(1), y(1)), (X(2), y(2)), . . . , (X(N), y(N))} ;

for i = 1, 2, . . . ,N do

WNk+i = WNk+i−1 + ¸(y(i) −WT
Nk+i−1

X(i))X(i) ;

end

k ← k + 1 ;

εk = MSE(WNk+i ,Ttest) ;

dk = εk∗ − εk ;

rk = |dk|/εk ;

if dk f 0 or rk < r∗ then /* No significant improvement */

j← j + 1 ;

continue ; /* Move on to the next epoch */

else

k∗ ← k ; /* Memorize the new best epoch */

W∗ ← WNk ;

j← 0 ; /* Reset the early stopping parameter */

end

end

Output: W∗

Using the learning rate 0 < ¸ < 2/maxi ||Xi||
2 ensures convergence. The ³-LMS learn-

ing rule is a modification to the ADALINE (LMS learning rule) obtained by normalizing

the input vector so that the weights change independently of its magnitude:

Wk+1 = Wk + ¸(yi −WT
k Xi)

Xi

||Xi||
.

For the convergence of the ³-LMS rule, ¸ should be selected as 0 < ¸ < 2 [20].
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The number WT
∗ Xi is interpreted as the probability of Xi belonging to class 1, and in

case it’s larger than 0.5, the output is predicted as 1, and 0 otherwise. The class prediction

of yi is therefore given by ϕ(WT
∗ Xi−0.5). This 0.5 threshold isn’t fixed, and can be adjusted

for various reasons. The probability interpretation is somewhat misleading, as the values

of WT
∗ Xi are not strictly in [0, 1]. Of course, logistic regression was known at the time

and would be a more appropriate method to use in this situation, but Algorithm 2 is what

Widrow6 and Hoff implemented in their machine at the time. Their main contribution

wasn’t the model itself, but rather an optimization approach to the problem of learning,

and ADALINE had a major impact on the field of adaptive signal processing.

1.6 Multilayer Perceptron

The perceptrons presented in Section 1.4 are types of a single-layer perceptron. In defining

the single-layer perceptron we allow arbitrary activation function. An important nonlinear

activation function often used is the sigmoid activation function.

Definition 1.6.1. Let Φ be any activation function, n ∈ N any natural number, X,Ω ¦ Rn

an input space and the set of network states respectively, and Y ¦ R an output space.

Function ŷ : Ω × X −→ Y defined as

ŷ(W, X) = Φ(WT X)

is called a Single-Layer Perceptron or SLP.

Definition 1.6.2. For any ´ > 0 we define a sigmoid activation function (or logistic activa-

tion function) Ã´ : R −→ [0, 1] as

Ã´(x) =
1

1 + e−´x
.

For ´ = 1, function Ã1 is denoted by Ã.

The threshold activation function can be thought of as a discrete estimate of the sigmoid

activation function. In fact, both functions belong to the same class of activation functions

called the sigmoidal activation functions.

Definition 1.6.3. Any non-decreasing function Ψ : R −→ [0, 1] with the property

lim
x→−∞

Ψ(x) = 0, lim
x→+∞

Ψ(x) = 1

is called a sigmoidal function.

6Video lectures and demonstration of the ADALINE by Bernard Widrow: https://www.

youtube.com/watch?v=hc2Zj55j1zU , https://www.youtube.com/watch?v=skfNlwEbqck (visited

on 16.04.2024).
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Remark 1.6.4. Sigmoidal functions are measurable as non-decreasing functions, and are

therefore activation functions. We’ll refer to any activation function with a sigmoidal prop-

erty as a sigmoidal activation function.

Figure 1.11: Sigmoidal functions Ã1, Ã5, Ã20, and the threshold activation function ϕ

Multilayer neural networks contain more than one computational layer. The additional

intermediate layers between the input and the output layer are referred to as hidden layers.

The Multilayer perceptron combines SLPs in the same way the M-P neural network in

Section 1.4, constructed to solve the XOR problem, combines multiple M-P neurons. All

adjacent layers are fully connected one to another, meaning that every neuron in a given

layer connects to all neurons of the following layer. Additionally, all neurons in the same

layer use the same activation function.

Let’s assume there are k hidden layers in the multilayer perceptron, and the l-th hidden

layer contains Jl neurons and uses Φl as its activation function. The weights connecting

the input layer with n neurons to the first hidden layer are contained in matrix W1 ∈ R
n×J1 ,

whereas the weights connecting the l-th to the (l + 1)-th hidden layer are contained in

matrix Wl+1 ∈ R
Jl×Jl+1 . The output layer contains only a single neuron and uses Φk+1 as its

activation function. The final matrix Wk+1 ∈ R
Jk×1 contains the weights connecting the last

Jk-th hidden layer to the output layer. We’ll use a vector representation to denote the values

outputted by the l-th hidden layer and denote it by Hl = Φl(W
T
l

Hl−1) = [h
(l)

1
, h

(l)

2
, . . . , h

(l)

Jl
]T ,

where l = 1, 2, . . . , k. Definition of the l-th hidden layer may be extended to l = 0 by setting

H0 = X, where X is the input vector. This will prove useful for various definitions.
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Figure 1.12: Schematics of the Multilayer Perceptron

Definition 1.6.5 (Multilayer Perceptron). For any n, k ∈ N, let X ¦ Rn be an input space,

Y ¦ R an output space, and let Φ1,Φ2, . . . ,Φk+1 be arbitrary activation functions. For

J1, . . . , Jk ∈ N, let Ω ¦ Rn×J1 × RJ1×J2 × RJ2×J3 × . . . × RJk−1×Jk × RJk×1 be the set of network

states. Function ŷ : Ω × X −→ Y defined by the following recursion:

H1 = Φ1(WT
1 X) for W1 ∈ R

n×J1 ,

Hl+1 = Φl+1(WT
l+1Hl) for Wl+1 ∈ R

Jl×Jl+1 , l = 1, 2, . . . , k ,

ŷ(É, X) = Φk+1(WT
k+1Hk) for Wk+1 ∈ R

Jk×1,

is called the Multilayer perceptron or MLP.

Remark 1.6.6. The network state É is given by an array of matrices (W1,W2, . . . ,Wk+1)

representing the weights of connections between successive layers. For l = 1, 2, . . . , k + 1,

vector Zl = WT
l

Hl−1 ∈ R
Jl is called the l-th vector of pre-activation values, and vector

Hl = Φl(Zl) ∈ R
Jl is called the l-th vector of post-activation values.

Backpropagation Learning Algorithm

The Backpropagation Learning Algorithm (or simply Backpropagation) once again uses a

gradient descent method to update the network state É through epochs, with the goal of

minimizing a cost function. The name ”backpropagation” is interpreted as follows: after

providing an input pattern, the output calculated by the network is compared with a given

target and the error is propagated backwards, updating the weights (in backward order) and

establishing a closed-loop control system.
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Unlike single-layer networks, in the case of multilayer networks, the cost function is a

complicated composition of multiple weight matrices composed with activation functions

throughout all layers. Backpropagation allows the extension of neural networks to many

layers by providing an efficient way of calculating the gradient of the cost function with

respect to the weights. Dynamic programming is used to effectively calculate the deriva-

tive of the cost function with respect to each weight, and the Generalised Chain Rule of

differential calculus plays a major role. The Backpropagation Learning Algorithm contains

two main phases, referred to as the forward pass and backward pass.

1. Forward pass: The network state É is fixed in the forward pass. The input training

examples are fed into the neural network, resulting in a forward cascade of compu-

tations across the network and the output prediction.

2. Backward pass: The input-output training pairs, and their predictions given the net-

work state É are fixed, with É now being variable. The gradients of the cost function

with respect to all the different weights are calculated and used to update the weights.

Since these gradients are calculated in the backward direction, starting from the out-

put node, this process is referred to as the backward pass.

Note 1.6.7. A differential of a function f : Rm −→ Rn at some point a ∈ Rm is most often

denoted by Da f or by D f (a) in literature. However, we will use the following notation:

d f

da
= Da f .

The differential above is not to be confused with the Leibniz-style notation of a derivative

in real analysis, in which, the above term would represent a mapping a 7−→ f ′(a).

Theorem 1.6.8 (Generalised Chain Rule [17]). Let m, n, p ∈ N, and A ¦ Rm be any

open set such that f : A −→ Rn is differentiable in a ∈ A. Let B ¦ Rn be an open set,

f (A) ¦ B and g : B −→ Rp differentiable function in f (a) = b ∈ B. Then the composition

g ◦ f : A −→ Rp is differentiable in a ∈ A and

d(g ◦ f )

da
=

dg( f (a))

d f (a)

d f (a)

da
.

□

Remark 1.6.9. We’ll often use a shorthand notation

dg

d f

d f

da
=

dg( f (a))

d f (a)

d f (a)

da
,

dropping the argument f (a) (and subsequently a), whenever they are long compositions

of functions themselves and hinder the readability. A major drawback of this notation is
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the fact that ’ f ’ is treated both as a point and as a function. However, it allows for a more

elegant derivation of backpropagation. In terms of Jacobian matrices, the generalised chain

rule states that

∇(g ◦ f )(a) = ∇g( f (a)) · ∇ f (a) C ∇g( f ) · ∇ f (a) .

Informal Overview of Backpropagation

Consider an arbitrary MLP ŷ from Definition 1.6.5. Let K = k + 1 be the total num-

ber of computational layers, and JK = 1. Let L be any differentiable loss function and

T = {(X1, y1), (X2, y2), . . . , (XN , yN)} a training set. Additionally, the output layer will be

denoted by HK (along with ŷ), and given a state É = (W
1
,W

2
, . . . ,WK), we can write it as:

HK(É, X) = ΦK(WT
KΦK−1(WT

K−1 · · ·W
T
2 Φ1(WT

1 X))). (1.9)

Let (X, y) ∈ T be fixed. In Remark 1.6.6, we’ve defined the vectors of pre and post1-

activation values for all l =, 2, . . . ,K and H0 = X as Zl = WT
l

Hl−1 and Hl = Φl(Zl). To

provide an intuitive overview of the idea behind backpropagation, we will consider each

vector Zl as a function of the state É and keep the input vector X that generated it in the

forward pass fixed. This is what happens in the backward pass of the backpropagation.

Specifically, let’s consider the value of the weight in Wl at index (i, j) as the only variable

in each Zl and (informally) calculate the differential of HK at w
(l)

i j
. By using the chain rule

and the Equation (1.9), we may presume that

dHK

dw
(l)

i j

=
dHK

dZK

dZK

dHK−1

dHK−1

dZK−1

· · ·
dHl+1

dZl+1

dZl+1

dHl

dHl

dZl

dZl

dw
(l)

i j

. (1.10)

Given a training example (X, y), the loss function at (X, y) is the function Ly : R −→ R

defined by Ly(x) = L(y, x). We now calculate the differential of (L ◦ HK) at w
(l)

i j
as

d(L ◦ HK)

dw
(l)

i j

=
dL

dHK

dHK

dw
(l)

i j

(1.10)
=

dL

dHK

dHK

dZK

dZK

dHK−1

· · ·
dZl+1

dHl

dHl

dZl

dZl

dw
(l)

i j

. (1.11)

While it is possible to compute this derivative for each weight independently, such an

approach is inefficient. Equation (1.11) shows how the beginning part of the expression is

constantly repeated, and how it grows as we move to shallower layers (smaller l). This is

the key observation that leads us to the idea of calculating the Jacobian of the loss function

layer by layer, starting from the output layer and moving backwards toward the input layer,

with each new calculation using some prior information from the layers that came before.

Expressions (1.10) and (1.11) are presented in terms of vectors of pre-activation values

Zl and vectors post-activation values and Hl, and such derivatives are not strictly defined.

For this reason, we’ll represent the MLP as a true function in the language of calculus,

rather than a cascade of matrix multiplications. Then, by applying the generalised chain

rule to such an MLP, we will obtain the differentials of interest.
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Multilayer Perceptron as a Function

To represent an MLP as a function, first, we will define the pre-activation functions Zl for

some fixed weight matrices Wl ∈ R
Jl−1×Jl to mimic l-th vector of pre-activation values given

by the matrix multiplication WT
l

Hl−1. Then, to mimic the l-th vector of post-activation

values Φl(W
T
l

Hl−1) for some fixed activation function Φl, we define the post-activation

functions Hl. Their iterative composition will be the MLP from Definition 1.6.5.

Note 1.6.10. There won’t be any confusion between the l-th pre-activation function Zl and

the vector of l-th pre-activation values with the same notation Zl. The vector of l-th pre-

activation values will always be associated with some training example (Xp, yp), and in such

case will be denoted by Z
(p)

l
, as it is essentially some matrix multiplying Xp. On the other

hand, the l-th pre-activation function Zl will be defined as a general function, independent

of training examples (and dependent only on some fixed matrix Wl).

Definition 1.6.11. Let m, n ∈ N, and W ∈ Rm×n. The pre-activation function given (a

matrix) W is a function ZW : Rm −→ Rn, ZW = (z(W)

1
, z(W)

2
, . . . , z(W)

n ), where each component

z(W)

i
: Rm −→ R is defined as

z(W)

i
(x1, x2, . . . , xm) =

m
∑

k=1

xkwki , i = 1, 2, . . . , n .

Proposition 1.6.12. Let m, n ∈ N, W ∈ Rm×n, and ZW : Rm −→ Rn be any pre-activation

function given a matrix W. Then,

∇ZW(x1, x2, . . . , xn) = WT ∈ Rn×m .

Proof.

∂z(W)

i

∂x j

=
∂

∂x j

m
∑

k=1

xkwki = w ji =⇒ ∇ZW(x1, x2, . . . , xn) = WT ∈ Rn×m .

□

To formally define the post-activation functions, we need to use pojections.

Definition 1.6.13. Let n ∈ N and i ∈ {1, 2, . . . , n}. Function Ãi : Rn −→ R defined as

Ãi(x1, x2, . . . , xn) = xi

is called a projection onto the i-the coordinate.
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Proposition 1.6.14. For any n ∈ N and any i ∈ {1, 2, . . . , n}, let Ãi : Rn −→ R be a

projection onto the i-the coordinate. Then

∂Ãi

∂x j

= ¶i j ,

where ¶i j the Kronecker delta function.

Proof.
∂Ãi

∂x j

=
∂

∂x j

Ãi(x1, x2, . . . , xn) =
∂

∂x j

xi = ¶i j

□

Definition 1.6.15. Let n ∈ N. For any activation function Φ, we define the post-activation

function given (an activation function) Φ as HΦ : Rn −→ Rn, HΦ = (hΦ
1
, hΦ

2
, . . . , hΦn ), where

each component hΦi : Rn −→ R is defined as

hΦi (x1, x2, . . . , xn) = (Φ ◦ Ãi)(x1, x2, . . . , xn) = Φ(xi) , i = 1, 2, . . . , n .

Proposition 1.6.16. Let Φ be any differentiable activation function, n ∈ N any natural

number, and HΦ : Rn −→ Rn a post-activation function given Φ. Then

∇HΦ(x1, x2, . . . , xn) =



































Φ′(x1) 0 . . . 0

0 Φ′(x2) . . . 0
...

. . .
...

0 . . . 0 Φ′(xn)



































C diag(Φ′(X)) ∈ Rn×n .

Proof.
∂hΦi

∂x j

=
∂

∂x j

(Φ ◦ Ãi)(X) =
∂Φ(Ãi(X))

∂Ãi(X)

∂Ãi(X)

∂x j

= ¶i jΦ
′(xi)

□

The MLP can now be expressed as a function ŷ : Rn −→ R. For J0 = n, JK = 1 and

matrices Wl ∈ R
Jl−1×Jl , l = 1, 2, . . . ,K, we’ll denote the l-th pre-activation function given a

matrix Wl by Zl instead of ZWl
, and similarly, the post-activation functions given activation

function Φl will be denoted by Hl . The MLP in a state (W
1
,W

2
, . . . ,WK) is defined as

ŷ(X) = (HK ◦ ZK ◦ HK−1 ◦ ZK−1 ◦ · · · ◦ H2 ◦ Z2 ◦ H1 ◦ Z1)(X) . (1.12)

From now on, we assume all activation functions Φl are differentiable. We can now derive

the expression for the differential of MLP ŷ at any point X ∈ Rn using the chain rule:

dŷ

dX
=

dHK

dZK

dZK

dHK−1

dHK−1

dZK−1

· · ·
dH2

dZ2

dZ2

dH1

dH1

dZ1

dZ1

dX
. (1.13)



CHAPTER 1. NEURAL NETWORKS 33

Deriving the backpropagation Learning Algorithm

Our differential of interest is similar to that in (1.13), however, once we reach the l-th layer

and the l-th pre-activation function Zl, we consider it as a function of a single variable.

The variable in question will be the value of the weight w
(l)

i j
in the matrix Wl. Such a

mapping will be denoted by Z
(i j)

l
: R −→ R, and will always be associated with the (l−1)-th

vector of post-activation values. This is reasonable, as these vectors always precede the l-th

pre-activation function in the forward propagation, and we may consider them available.

In short, Z
(i j)

l
is the l-th pre-activation function Zl evaluated at the l − 1-th post-activation

vector, except that the matrix Wl is variable at index (i, j). To be precise,

Z
(i j)

l
(x) =

































Jl−1
∑

k=1

h
(l−1)

k
w

(l)

k1
, . . . ,

Jl−1
∑

k = 1

k , i

h
(l−1)

k
w

(l)

k j
+ h

(l−1)

i
x , . . . ,

Jl−1
∑

k=1

h
(l−1)

k
w

(l)

kJl

































∈ RJl . (1.14)

We can immediately see that ∇Z
(i j)

l
(x) =

[

0, . . . , 0, h
(l−1)

i
, 0, . . . , 0

]T
= h

(l−1)

i
e j ∈ R

Jl×1.

As mentioned in the Note 1.6.10, the l-th vectors of pre and post-activation values are

always associated with some training example (Xp, yp) ∈ T . As such, we denote them

by Z
(p)

l
and H

(p)

l
, where Z

(p)

l
= Zl(Xp) and H

(p)

l
= Hl(Xp). Let Z

(i, j)

p,l
: R −→ RJl be the

function defined by (1.14), only now associated with the post-activation vector H
(p)

l−1
. The

loss function at (Xp, yp) is defined as Lp(x) = L(yp, x), and the composition of functions

Lp ◦ HK ◦ ZK ◦ · · · ◦ Zl+1 ◦ Hl ◦ Z
(i, j)

p,l
. (1.15)

is well-defined for all l = 1, 2, . . . ,K, i = 1, 2, . . . , Jl−1, j = 1, 2, . . . , Jl and p = 1, 2, . . . ,N.

We define the following matrices for all possible indices l, (i, j), and all (Xp, yp) ∈ T :

[

∆Lp(Wl)
]

i j
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
) · · · ∇Zl+1(H

(p)

l
)∇Hl(Z

(p)

l
)∇Z

(i, j)

p,l
(w

(l)

i j
). (1.16)

Now, we move on to the main idea behind the backpropagation. For fixed indices p, i, j,

we once again observe that the beginning part of the Equation (1.16) is being repeated, and

expands for smaller values of l. We define the parameter ¶
(p)

l
, often referred to as the local

gradient at (Xp, yp), as the beginning part of the Equation (1.16):

¶
(p)

l
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)∇ZK(H

(p)

K−1
) · · · ∇Zl+1(H

(p)

l
)∇Hl(Z

(p)

l
). (1.17)

The local gradients allow us to simplify the matrix definition from (1.16):

[

∆Lp(Wl)
]

i j
= ¶

(p)

l
∇Z

(i, j)

p,l
(w

(l)

i j
). (1.18)
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The following recursion emerges for the local gradients:

¶
(p)

K
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)

¶
(p)

K−1
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)∇ZK(H

(p)

K−1
)∇HK−1(Z

(p)

K−1
)

= ¶
(p)

K
∇ZK(H

(p)

K−1
)∇HK−1(Z

(p)

K−1
)

...

¶
(p)

l
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)∇ZK(H

(p)

K−1
) · · · ∇Zl+1(H

(p)

l
)∇Hl(Z

(p)

l
)

= ¶
(p)

l+1
∇Zl+1(H

(p)

l
)∇Hl(Z

(p)

l
)

...

¶
(p)

2
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)∇ZK(H

(p)

K−1
) · · · ∇Z3(H

(p)

2
)∇H2(Z

(p)

2
)

= ¶
(p)

3
∇Z3(H

(p)

2
)∇H2(Z

(p)

2
)

¶
p

1
= ∇Lp(H

(p)

K
)∇HK(Z

(p)

K
)∇ZK(H

(p)

K−1
) · · · ∇Z3(H

(p)

2
)∇H2(Z

(p)

2
)∇Z2(H

(p)

1
)∇H1(Z

(p)

1
)

= ¶
(p)

2
∇Z2(H

(p)

1
)∇H1(Z

(p)

1
).

It allows us to efficiently calculate the matrix ∆Lp(Wl) for each training example (Xp, yp).

Given a training set T = {(X1, y1), (X2, y2), . . . , (XN , yN)} and a cost function CT associ-

ated with the loss function L, we define a matrix

∆CT (Wl) =
1

N

N
∑

p=1

∆Lp(Wl). (1.19)

Both matrices are purposely denoted by ∆, as they allow us to use them in the update step

of a gradient descent method to update the elements of the matrix Wl all at once, and the

gradient descent itself is often referred to as a delta rule. Given a learning rate ¸ > 0, the

weight update step in the gradient descent method can now be stated as

W
(k+1)

l
= W

(k)

l
+ ¸ · ∆CT (W

(k)

l
), k g 0 . (1.20)

The backpropagation works as follows: In a single epoch, the algorithm performs the

forward propagation on every training example in order to calculate all vectors of pre and

post-activation values. Additionally, during this forward pass, the algorithm evaluates all

necessary derivatives that constitute the elements of the local gradients. Now, the backward

pass starts and the local gradients are all calculated in the backward direction for each

training example. Once the algorithm goes through the entire training set, the matrices

from (1.18) and (1.19) are calculated, and the weights are updated via the delta rule (1.20).

The stopping rule of the backpropagation algorithm is the same as the ADALINE’s,

that is, the algorithm halts either after reaching the maximum number of epochs, or by an

early stopping procedure.
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Mini-batch Backpropagation Learning Algorithm

Lastly, the backpropagation learning algorithm is presented in the most general mini-batch

gradient descent optimization setting. We will need a slightly different notation. Let

P[b](T ) =
{

T 1
(b),T

2
(b), . . . ,T

M
(b)

}

be a partition of T into M b-sized mini-batches. For every m = 1, 2, . . . ,M and every

p = 1, 2, . . . , b we denote the p-th training exmaple in the m-th mini-batch by (X
(m)
p , y

(m)
p ).

The associated l-th vectors of pre and post-activation values are denoted by Z
(m,p)

l
and

H
(m,p)

l
, and they are the results of the forward propagation on training examples (X

(m)
p , y

(m)
p ).

The pre and post-activation functions Zl and Hl remain unchanged as they are in no way

dependent on the training set. On the other hand, Z
(i, j)

(m,p),l
: R −→ RJl is the function defined

by (1.14), only now associated with the vector of post-activation values H
(m,p)

l−1
. The loss

function at (X
(m)
p , y

(m)
p ) is defined as

L(m,p)(x) = L(y(m)
p , x),

and we examine the following composition of functions:

L(m,p) ◦ HK ◦ ZK ◦ · · · ◦ Zl+1 ◦ Hl ◦ Z
(i, j)

(m,p),l
.

The local gradients ¶
(m,p)

l
at (X

(m)
p , y

(m)
p ) are defined by

¶
(m,p)

l
= ∇L(m,p)(H

(m,p)

K
)∇HK(Z

(m,p)

K
) · · · ∇Zl+1(H

(m,p)

l
)∇Hl(Z

(m,p)

l
).

Naturally, they satisfy the same recurrence relation. Lastly, the matrices of interest are

defined as
[

∆L(m,p)(Wl)
]

i j
= ¶

(m,p)

l
∇Z

(i, j)

(m,p),l
(w

(l)

i j
), (1.21)

and

∆C
T

(m)

(b)
(Wl) =

1

b

b
∑

p=1

∆L(m,p)(Wl). (1.22)

The mini-batch backpropagation learning algorithm has the following weight update

rule for each mini-batch T
(m)

(b)
∈ P[b](T ), where m = 1, 2, . . . ,M:

W
(k+1)

l
= W

(k)

l
+ ¸·∆C

T
(m)

(b)
(W

(k)

l
), k g 0 . (1.23)

The weight matrices are updated M times in a given epoch, once for each mini-batch. The

algorithm is essentially the same as the (batch) backpropagation described earlier, and it’s

presented in Algorithm 3.
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Algorithm 3: The Mini-batch Backpropagation Learning Algorithm

Input: Training set T = {(X1, y1), (X2, y2), . . . , (XN , yN)}, Test set Ttest,

Batch size b, Learning rate ¸, Maximum number of epochs tmax,

Relative error lower bound r∗, Early stopping parameter s

Initialize: k= t∗= t= j=0, É0=RAND, ε0 = CTtest
(É0), r0=r∗+1, M = N/b

Algorithm:

while t < tmax or j < s do

P[b](T )← {T 1
(b)
,T 2

(b)
, . . . ,T M

(b)
} ; /* Randomly Partition T */

for m = 1, 2, . . . ,M do /* For each mini-batch */

for p = 1, 2, . . . , b do /* For each training example */

for l = 1, 2, . . . ,K do /* Forward pass */

Z
(m,p)

l
= WT

l
H

(m,p)

l−1
; /* H

(m,p)

0
= X

(m)
p */

H
(m,p)

l
= Φl(Z

(m,p)

l
) ;

∇Hl(Z
(m,p)

l
) = diag(Φ′(Z

(m,p)

l
)) ;

end

¶
(m,p)

K
= ∇L(m,p)(H

(m,p)

K
)∇HK(Z

(m,p)

K
) ;

[

∆L(m,p)(WK)
]

i j
= ¶

(m,p)

K
∇Z

(i, j)

(m,p),K
(w

(K)

i j
) ; /* ∇L(m,p)(WK) */

for l = K − 1, . . . , 1 do /* Backward pass */

¶
(m,p)

l
= ¶

(m,p)

l+1
∇Zl+1(H

(m,p)

l
)∇Hl(Z

(m,p)

l
) ;

[

∆L(m,p)(Wl)
]

i j
= ¶

(m,p)

l
∇Z

(i, j)

(m,p),l
(w

(l)

i j
) ; /* ∇L(m,p)(Wl) */

end

end

for l = 1, 2, . . . ,K do /* Update the network state É */

∆CTm
(b)

(Wl) =
1
b

∑b
p=1 ∆L(m,p)(Wl) ;

W
(k+1)

l
= W

(k)

l
+ ¸ · ∆CTm

(b)
(W

(k)

l
) ;

end

k ← k + 1 ;

end

t ← t + 1 ; εt = CTtest
(Ék) ; dt = εt∗ − εt ; rt = |dt|/εt ;

if dt f 0 or rt < r∗ then

j← j + 1 ;

continue ; /* Continue on to the next epoch */

else

t∗ ← t ; /* Memorize the new best epoch */

É∗ ← Ék ;

j← 0 ; /* Reset the early stopping parameter */

end

end

Output: É∗
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Universal Approximation Theorem

In this section we explore the approximation capabilities of the MLP class of functions.

MLP is often referred to as a universal function approximator, and can be used for classifi-

cation of linearly inseparable patterns and function approximation in regression problems.

By approximating a function defining some decision boundary, we can convert the clas-

sification problem into a regression problem. This leads us to cases of approximating a

classification function directly or approximating the decision boundary, and from it defin-

ing a classifier.

Sets Cn and Mn are defined as follows:

Cn = { f : Rn −→ R | f is continuous} , Mn = { f : Rn −→ R | f is Borel measurable} .

Consider the MLP Definition 1.6.5. For any n ∈ N, let An(Ψ) denote a set of all

MLPs with one hidden layer of arbitrary width (k = 1, J1 ∈ N), defined on the input

space X = Rn, and set of network states Ω = Rn×J1 × RJ1×1, with Φ1 = Ψ being any

sigmoidal activation function and Φ2 an identity function. Such MLPs are of the form

ŷ(W1,W2, X) = Φ2(WT
2
Φ1(WT

1
X)) = WT

2
Ψ(WT

1
X), andAn(Ψ) can be written as:

An(Ψ) =
{

X 7→ WT
2 Ψ(WT

1 X) : X ∈ Rn, J1 ∈ N, W1 ∈ R
n×J1 , W2 ∈ R

J1

}

.

The final scalar product can be more conveniently written in a summation form, result-

ing in a more interpretable definition of setAn(Ψ):

An(Ψ) =















X 7→

N
∑

i=1

³iΨ(WT X) : X,W ∈ Rn, N ∈ N, ³i ∈ R ∀i = 1, 2, . . . ,N















.

An(Ψ) contains all finite linear combinations of a fixed sigmoidal function Ψ composed

with any linear function of X. Such functions are measurable, meaning that An(Ψ) ¦ Mn,

and for a continuous sigmoidal function Ψ we haveAn(Ψ) ¦ Cn.

Definition 1.6.17. For any n ∈ N, K ¦ Rn, and f , g : R −→ R we define ÄK( f , g) as

ÄK( f , g) = sup
x∈K

| f (x) − g(x)|.

Definition 1.6.18. Let n ∈ N. Given a probability measure µ on Borel measure space

(Rn, Bn) and measurable functions f , g : R −→ R we define Äµ( f , g) as

Äµ( f , g) = inf
ε>0
µ({x ∈ Rn : | f (x) − g(x)| > ε}) < ε .

Note 1.6.19. Both ÄK and Äµ are metrics in metric spaces of functions (Cn, ÄK) for compact

sets K and (Mn, Äµ), and the following theorem is generally stated in terms of density of

An(Ψ) in those metric spaces. For simplicity, we deter from the use of such terminology.
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Theorem 1.6.20 (Universal Approximation Theorem). Let Ψ be any sigmoidal function

and n ∈ N. Then the following is true:

1. ∀ε > 0∀ f ∈ Cn ∃g ∈ An(Ψ) such that

ÄK( f , g) < ε

for any compact set K ¦ Rn.

2. ∀ε > 0 ∀ f ∈ Mn ∃g ∈ An(Ψ) such that

Äµ( f , g) < ε

for any probability measure µ on (Rn, Bn).

□

Note 1.6.21. Any finite measure instead of a probability measure would have sufficed,

however, we are exploring neural networks in a probabilistic context.

Universal Approximation Theorem states that MLP with only a single hidden layer can

approximate any continuous function uniformly on any compact set and any measurable

function arbitrarily well with respect to Äµ, regardless of the sigmoidal activation function

(continuous or not), regardless of the dimension of the input space n, and regardless of the

probability measure µ.

It’s worth noting that the Universal Approximation Theorem is purely an existence

theorem, providing no instructions on how to construct such a network or the necessary

boundaries on the number of hidden units. It’s referred to as an arbitary width case in a

class of universal approximation theorems concerning neural networks.

Ideally, we would have the same uniform approximation result for measurable functions

as well, as it is a stronger result. This proves to be too demanding, but the following

theorem shows we can come arbitrarily close to the desired result.

Theorem 1.6.22. Let Ψ be any sigmoidal function, n ∈ N, and µ any probability measure

on (Rn, Bn). For every ε > 0 and every measurable function f ∈ Mn there exists a compact

set K ¦ Rn and g ∈ An(Ψ) such that µ(K) g 1 − ε , and for every x ∈ K we have

| f (x) − g(x)| < ε. □

Theorem 1.6.22 shows that for any measurable function, there is a single hidden layer

MLP that approximates it to any desired degree of accuracy on some compact set K span-

ning any desirable percentage of the input space. In the case of a classifier, this result states

that the total measure of the incorrectly classified points can be made arbitrarily small.
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Let’s assume a binary classification function f , defined on some compact set D ¦ Rn,

is of the form ÇK for some closed set K ¦ D, where ÇK is the characteristic function of the

set K. Then the function ∆ defined as

∆(x,K) = inf
y∈K
|x − y|

is a continuous function of x, and measures the distance of any point x ∈ Rn to set K.

Setting

fε(x) = max

{

0,
ε − ∆(x,K)

ε

}

we get fε(x) = 1 for x ∈ K and fε(x) = 0 for points x farther than ε away from K. Moreover,

fε(x) continuous for all x ∈ D.

By universal approximation theorem, there exists a function g ∈ An(Ψ) such that

|g(x) − fε(x)| < 0.5 on the entire domain D. We can use this g as an approximate deci-

sion function: g(x) g 0.5 guesses that x ∈ K, while g(x) < 0.5 guesses that x ∈ Kc. This

decision procedure is correct for all x ∈ K and for all x at a distance at least ε away from

K, since fϵ is exactly ÇK for such points, and g is less than 0.5 distance from fε. Meaning,

that g(x) > 0.5 on K, and g(x) < 0.5 for all points x at least ε away from K. If x is within ε

distance of K, its classification depends on the particular choice of g. These observations

say that points sufficiently far away from, and points inside the closed decision region can

be classified correctly. In contrast, Theorem 1.6.22 says that there is an MLP that makes

the measure of incorrectly classified points as small as desired but does not guarantee their

location.

The Universal Approximation Theorem 1.6.20 presented in this section is an adapta-

tion of Theorem 2.4 from Hornik et al. (1989) [8], where its proof can be found, along

with the proof of Theorem 1.6.22. Very similar universal approximation results were inde-

pendently proved the same year by both Cybenko [3] and Funahashi [5]. One might ask

how important is the use of sigmoidal activation functions for universal approximation, and

whether an arbitrary activation function would have sufficed. Interestingly, Leshno et al.

in 1993 [9] and later Pinkus in 1999 [14] showed that the universal approximation property

is equivalent to having a nonpolynomial activation function.

Why are deep neural networks so widely used if a single hidden layer is enough for

universal approximation? The failures in practical applications of the Universal Approxi-

mation Theorem can be attributed to inadequate learning, an insufficient number of hidden

units, insufficient training data or the presence of a stochastic rather than a determinis-

tic relationship between input and output. Deep neural networks provide a more efficient

way of encompassing high non-linearity with the use of additional hidden layers, while a

single hidden layer network essentially approximates a function with step (or Heaviside)

functions – which is theoretically achievable, but not very practical.



Chapter 2

Statistical Learning theory

Chapter 2 is still within the restricted framework mentioned in the Introduction , that is,

the use of artificial neural networks for supervised learning problems in a binary classifica-

tion setting, with the output label being either 0 or 1. Results presented in this chapter are

entirely adapted from Anthony and Bartlett’s Neural Network Learning: Theoretical Fun-

dations [2] (Part one: Pattern Classification with Binary-Output Neural Networks), where

the proof of each statement can be found.

Understanding the behaviour of machine learning models and algorithms used for solv-

ing information processing problems (like pattern recognition and prediction) is crucial for

the design of effective learning systems. Three main questions naturally arise.

The first one addresses the approximation properties of a learning system: we associate

a class of mappings between the input patterns and the output labels with every learning

system, and the question is whether this class is sufficiently powerful to accurately ap-

proximate the ”true relationship” between the input patterns and their labels. This ”true

relationship” isn’t necessarily a mapping from an input space to the output space. The sec-

ond key issue is a statistical one, concerning estimation: since the underlying relationship

between the input patterns and their labels is unknown, and we receive only a finite amount

of data (regarding said relationship) through the training set, how much data suffices to

model the relationship with the desired accuracy? The third key question concerns the

computational efficiency of learning algorithms: how efficiently can we make use of the

training data to choose an accurate model of the underlying relationship?

This chapter focuses on the estimation question. The question of approximation was

discussed in Chapter 1, with the perceptron’s approximation capabilities being rather lim-

ited, as shown by the XOR problem in Section 1.3. On the other hand, we’ve shown how

the MLP possesses the universal approximation property. Additionally, we’ve touched

upon the computational efficiency of the perceptron learning algorithm by establishing an

upper bound on the number of required update steps before finding the optimal weights.

40
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2.1 The Learning Problem

The notion of learning is formally defined in the language of probability theory, but first,

we motivate the definition with a less technical discussion. The notation throughout this

chapter is the same as in Chapter 1, with the input space being denoted by X, the set of

network states by Ω, and the output space by Y.

In a supervised learning environment, a learning algorithm describes how to change the

state of the network in response to training data. We’ll assume that the training set is a finite

sample drawn randomly from a fixed probability distribution P onX×Y, whereY = {0, 1}.

As such, for a given X ∈ X, both (X, 0) and (X, 1) may have positive probabilities, meaning

that neither 0 or 1 is the ”correct” label for that X. Therefore, there isn’t necessarily an

underlying classification function f : X −→ Y such that P({(X, f (X)) : X ∈ X}) = 1. Even

if such a function representing the ”true relationship” did exist, we do not assume that

the neural network is capable of computing it. This is a more general approach, allowing

a classification problem in which some inputs are ambiguous, or in which there is some

noise corrupting the input patterns or the output labels. The aim of successful learning is

that, after training on a large enough sequence of labelled examples, the neural network

computes a function that matches, almost as closely as it can, the process generating the

data; that is, we hope that the classification of subsequent unseen examples is close to the

best performance that the network can possibly manage.

As mentioned, in statistical learning theory, the training set is considered to be a re-

alisation of a random sample generated by an unknown distribution P on X × Y. More

precisely, let I be a Ã-algebra on the input space X, and O a Ã-algebra on the output space

Y. For Z = X × Y and a product Ã-algebraV = I ¹ O on Z, let P be a probability on a

measure space (Z,V). Functions X : Z −→ X and y : Z −→ Y defined by X(i, o) = i and

y(i, o) = o are random variables, and (X, y) is a random vector with distribution P.

Similarly, given a probability space (Zm,Vm,Pm), we define the m-sized random sam-

ple Z1 = (X1, y1), Z2 = (X2, y2), . . . ,ZN = (Xm, ym) by Xk((i1, o1), (i2, o2), . . . , (im, om)) = ik,

and yk((i1, o1), (i2, o2), . . . , (im, om)) = ok. Now, Z
1
,Z

2
, . . . ,Zm are independent identically

distributed random variables with distribution P, and we assume they generate our training

set T , now represented by z ∈ Zm – a realisation of a random vector Z = (Z
1
,Z

2
, . . . ,Zm).

Note 2.1.1. In Chapter 2, random vectors (X, y) and (Xk, yk) have the same notation as

elements of a training set T in Chapter 1. This shouldn’t cause any confusion since the

random sample vector ((X1, y1), (X2, y2), . . . , (Xm, ym)) is denoted by Z = (Z
1
,Z

2
, . . . ,Zm),

and its realisation representing (an instance of) a training set T by z = (z
1
, z

2
, . . . , zm).

Therefore, vectors (X, y) and (Xk, yk) aren’t needed to represent the training data points,

and are here strictly used as random vectors.
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The notion of a loss function is slightly modified to fit the statistical learning frame-

work, in that, we restrict its domain to Y × Y. Now, a loss function is any non-negative

mapping L : Y ×Y −→ R that is (O ¹ O, B(R))-measurable.

For any loss function L and probability distribution P on (Z,V), we define a class of

functionsHP,L as

HP,L = {h : X −→ Y | E(L(y, h(X)) < +∞} , (2.1)

where E is mathematical expectation with respect to P. Elements of HP,L are often called

hypotheses, and for any hypothesis h ∈ HP,L, we define the error of h with respect to P and

L (simply called the error of h) as

erP,L(h) = E(L(y, h(X)).

The error erP,L(h) measures how accurately h approximates the relationship between the

input patterns and their labels generated by P, with respect to some loss function L. Since

the distribution P is unknown, we will approximate the error of h with respect to P and

L on an m-sized sample z = (z
1
, z

2
, . . . , zm) ∈ Zm drawn from (Zm,Vm,Pm), where

zk = (ik, ok) ∈ Z, by defining the sample error function êrm,L : Zm ×HL −→ R as

êrm,L(z, h) = êrm,L(z1, z2, . . . , zm, h) =
1

m

m
∑

i=k

L(ok, h(ik)).

The sample error êrm,L is an unbiased and strongly consistent estimator of the true error

erP,L, once evaluated on random sample vector Z = (Z
1
,Z

2
, . . . ,Zm).

For anyH ¦ HP,L the approximation error of classH is defined as

optP,L(H) = inf
h∈H

erP,L(h).

The approximation error describes how accurately the best function in H approximates

the relationship between X and y determined by the probability distribution P. For any

predetermined ε ∈ (0, 1) called the accuracy parameter, the learning algorithm aims to

produce near-optimal h∗ ∈ H , such that

erP,L(h∗) < optP,L(H) + ε.

We say that such h∗ is ε-good for P.

It is possible that an unrepresentative training sample will be drawn and mislead a

learning algorithm. Therefore, no learning algorithm can guarantee that a computed hy-

pothesis will always be ε-good. Instead, we wish to find a sufficiently large training sample

to ensure that the computed hypothesis will be ε-good with a probability of at least 1 − ¶,

for some predetermined ¶ ∈ (0, 1) called the confidence parameter. This is formalised into

a notion called the Probably Approximately Correct learning.
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Formal Definition of Learning

For any loss function L, letHL denote the following class of functions:

HL =
⋂

P

HP,L ,

where P is a probability distribution on (Z,V). This function class is used to define a

learning algorithm as a mapping invariant of the (unknown) distribution P.

Definition 2.1.2 (PAC learning). LetH ¦ HL ba any class of functions. A mapping

A :

∞
⋃

m=1

Zm −→ H

is a learning algorithm for H if for every ε ∈ (0, 1) and for every ¶ ∈ (0, 1) there exists

m0 ∈ N such that for every m g m0 and every probability distribution P on (Z,V), function

erP,L(A(·)) : Zm −→ [0,+∞ð is measurable and

P
m (

erP,L(A(Z)) < optP,L(H) + ε
)

g 1 − ¶.

We say that H is (PAC) learnable if there exists a learning algorithm for H , and the

quantity m0(ε, ¶) is called the sufficient sample size for (ε, ¶)-learning of H by A. A mea-

sure of the efficiency of a learning algorithm is the smallest sufficient sample size for

(ε, ¶)-learning ofH by A, called a sample complexity of A and defined as

mA,H (ε, ¶) = min
{

m ∈ N : m is sufficient sample size for (ε, ¶)-learning ofH by A
}

.

The inherent sample complexity of H is defined as mH (ε, ¶) = minA mA,H (ε, ¶), where the

minimum is taken over all learning algorithms for H . The inherent sample complexity

mH (ε, ¶) provides an absolute lower bound on the sample size needed for (ε, ¶)-learning of

H , regardless of the learning algorithm.

An equivalent definition of PAC learning states that a function A is a learning algorithm

for H if for every m ∈ N and every ¶ ∈ (0, 1) there exists ε0 ∈ (0, 1) such that for every

probability distribution P on (Z,V) the following holds:

P
m (

erP,L(A(Z)) < optP,L(H) + ε0(m, ¶)
)

g 1 − ¶,

and limm ε0(m, ¶) = 0 for every ¶ ∈ (0, 1). We refer to such ε0(m, ¶) as an estimation error

bound for algorithm A, and define the estimation error εA,H (m, ¶) of A to be the smallest

possible estimation error bound allowing the (m, ¶)-learning ofH by an algorithm A. Also,

the inherent estimation error ofH is analogously defined as εH (m, ¶) = minA εA,H (m, ¶).
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It’s worth noting that the function class HL is not PAC learnable. The central question

of this chapter is to determine under which conditions is a given class of functionsH ¦ HL

learnable and, if so, how to design a learning algorithm for H . In analysing learning

algorithms, the results are often presented either in the form of sample complexity bounds

or estimation error bounds. It is usually straightforward to transform between the two.

2.2 Learning Finite Function Classes

The aim of learning is to produce a function h∗ ∈ H having a near-minimum error erP,L(h∗),

as close as possible to the optimum class approximation error optP,L(H). Given that the

true errors of the functions in H are unknown, it seems natural to use the sample error as

its estimate, hoping that if a function h has a small sample error, then it has a small true

error as well. In this section, we show that this is true for finite function classes.

For any loss function L and any (possibly infinite) function class H ¦ HL we define a

sample error minimization (SEM) algorithm for a function class H and a loss function L

to be any function A :
⋃∞

m=1Z
m −→ H , such that for every m ∈ N and every z ∈ Zm

A(z) ∈ arg min
h∈H

êrm,L(z, h).

So far, every definition allowed for a general output spaceY and a general loss function

L : Y×Y −→ R. This is because statistical learning theory is similarly developed in differ-

ent learning settings. For the rest of this chapter, however, we concentrate on developing

a learning theory strictly for the binary classification setting where Y = {0, 1}, and for a

specific loss function L : {0, 1}2 −→ R called the 0−1 loss function and defined by

L(i, j) = 1 − ¶i j = Çi, j ,

where ¶i j is the Kronceker’s delta function. From now on, the output space is fixed to {0, 1}.

For any (I,O)-measurable function h : X −→ Y and the 0−1 loss function L, mathe-

matical expectation E(L(y, h(X))) is always finite. Since E( ÇA) = P(A) f 1 for every event

A ∈ V, we have

E(L(y, h(X))) = E( Çy,h(X)) = P(y , h(X)) f 1. (2.2)

In such case, the function class HP,L defined in (2.1), and subsequently the function class

HL , is simply the set of all (I,O)-measurable functions h : X −→ Y.

Theorem 2.2.1. Let L be the 0−1 loss function,H ¦ HL any finite class of functions, and

A any SEM algorithm forH and the 0−1 loss function L . Then A is a learning algorithm

forH with sample complexity

mA,L(ε, ¶) f
2

ε2
ln

(

2 |H|

¶

)

.

□
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Applications to Perceptrons

Let n ∈ N be any natural number. The M-P neuron from Definition 1.3.4 is a function

F : Ω × X −→ Y defined by F(W, ¹, X) = ϕ(WT X − ¹), where ϕ is the threshold activation

function, X = {0, 1}n the input space, Ω ¦ {−1, 1}n × R the set of network states, and Y the

output space. We’ll consider these parameters fixed throughout this subsection.

The threshold parameter ¹ can generally be an arbitrary real number. However, this

assumption is too relaxed for implementing boolean functions. We can significantly reduce

the number of possible threshold parameters without the M-P neuron losing any of its

representation capabilities. Since the M-P neuron essentially adds and subtracts at most

n zeros and ones, any whole integer in [−n − 1, n + 1] will surely suffice as the threshold

parameter. We’ll denote said integers by Zn = [−n − 1, n + 1] ∩ Z, and the set of network

states for the M-P neuron is now defined by Ωn = {−1, 1}n × Zn. Such M-P neurons form

the following function class:

HM-P = {hÉ : X −→ Y | É ∈ Ωn and hÉ(X) = F(É, X)} .

The cardinality ofHM-P can be calculated as |HM-P| = |Ω| = |{0, 1}
n|·|Zn| = 2n(2n + 3).

A generalised version of the described M-P neuron is the k-bit perceptron, where the

weights and threshold are expressible in binary as arrays of k zeros and ones. Let Hk-bit

denote the set of all k-bit perceptrons of n inputs. Since there are 2k possibilities for each

weight and threshold, we have |Hk-bit| = 2k(n+1).

By using the relation (2.2) and the fact that all functions in both HM-P and Hk-bit are

measurable, Theorem 2.2.1 guarantees that these function classes are learnable by any

SEM algorithm given the 0−1 loss function.

Corollary 2.2.1.1. Let L be the 0−1 loss function, A any SEM algorithm for the function

classes HM-P and L , and A′ any SEM algorithm for the function classes Hk-bit and L .

Then, A and A′ are learning algorithms forHM-P and Hk-bit respectively. Additionally, the

following bound on the sample complexity holds forHM-P

mA,HM-P
(ε, ¶) f

2

ε2

(

n ln(2) + ln(2n + 3) + ln

(

2

¶

))

,

and similarly, for the k-bit perceptron function classHk-bit

mA′,Hk-bit
f

2

ε2

(

k(n + 1) ln(2) + ln

(

2

¶

))

.

□
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2.3 Vapnik-Chervonenkis Dimension

The previous section showed how finite classes of functions are learnable. However, many

interesting function classes are not finite. For example, the number of functions computed

by the perceptron with real-valued weights is infinite. Many other neural networks, such as

MLPs, can also be represented as a parameterized function class with an infinite parameter

set. We’ll see that learning is possible provided the function class is not too complex, and

the measure of complexity we examine is the Vapnik-Chervonenkis dimension.

For any finite S ¦ X we define the restriction ofH = {h | h : X −→ Y} to the set S by

H|S = {h|S : h ∈ H}. IfH|S is the set of all possible functions from S to {0, 1}, then clearly,

H is as powerful as it can be in classifying the points in S . We can view the cardinality

of H|S (and in particular how it compares with 2|S |) as a measure of the classification

complexity ofH with respect to the set S . Since we are in the binary classification setting,

it holds that |H|S | f 2|S | with possible strict inequality.

Definition 2.3.1 (VC-dimension). Let H = {h | h : X −→ Y} be an arbitrary class of

functions. We define the Vapnik-Chervonenkis dimension (or VC-dimension) ofH as

VCdim(H) = sup
S¦X
|S |=p

{p ∈ N : |H|S | = 2p}.

For any finite-dimensional vector space of functions V = { f | f : X −→ R} and any

function g : X −→ R we define the function class Hg(V) = {ϕ( f + g) : f ∈ V}, where ϕ is

the threshold activation function. The following theorem shows the connection between the

VC-dimension of function classHg(V) and the dimension of the associated vector space V .

Theorem 2.3.2. Let V = { f | f : X −→ R} be a finite-dimensional vector space and

g : X −→ R any function. Then VCdim(Hg(V)) = dim(V).

□

We can apply Theorem 2.3.2 to the (real-weight) perceptron from Definition 1.4.4.

For the threshold activation function ϕ, we denote the class of functions calculated by the

perceptron of n inputs by

Pn = {hW : X −→ Y | hW(X) = ϕ(WT X), W ∈ Rn}.

A perceptron is clearly a thresholded dot product of vectors X,W ∈ Rn. If we consider the

dual vector space of Rn, by Riesz representation theorem we know that each f ∈ (Rn)∗ can

be represented as a unique dot product such that f (X) = fW(X) = WT X. Now, since

Pn = {ϕ( f ) : f ∈ (Rn)∗} = H0((Rn)∗),

we have

VCdim(Pn) = VCdim(H0((Rn)∗)) = dim((Rn)∗) = n.
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Sample Error Minimization

For an m-sized random sample vector Z = (Z
1
,Z

2
, . . . ,Zm) from (Zm,Vm,Pm), the sample

error êrm,L(Z, h) is an unbiased and strongly consistent estimator of the true error erP,L(h).

This leads to the following result showing uniform convergence property of sample error

on any function class with a finite VC-dimnsion.

Theorem 2.3.3 (Uniform Convergence). Let L be a 0−1 loss function and H ¦ HL any

function class with a finite VC-dimension d. Then, for every ε ∈ (0, 1) and every m ∈ N

such that m g d, it holds that

P
m

(

sup
h∈H

∣

∣

∣erP,L(h) − êrm,L(Z, h)
∣

∣

∣ > ε

)

<
(

md + 1
)

exp

(

−
ε2m

8

)

for every probability distribution P on (Z,V).

□

The upper bound in Theorem 2.3.3 tends to zero as m tends to infinity, which essentially

leads any function class with a finite VC-dimension being PAC learnable by any SEM al-

gorithm. Additionally, VC-dimension will replace the cardinality of finite function classes

in the upper bounds on estimation error and sample complexity in the learning problem of

infinite function classes.

Theorem 2.3.4. Let L be a 0−1 loss function andH ¦ HL any function class with a finite

VC-dimension d. Let A be any sample error minimization algorithm forH and L . Then A

is a learning algorithm forH and its sample complexity satisfies

mA,H (ε, ¶) f
64

ε2

(

2d ln

(

12

ε

)

+ ln

(

4

¶

))

,

and for every m g d/2 the estimation error of A satisfies

εA,H (m, ¶) f

(

32

m

(

d ln

(

2em

d

)

+ ln

(

4

¶

)))1/2

.

□

Corollary 2.3.4.1. Let L be a 0− 1 loss function and Pn ¦ HL the class of functions

calculated by a perceptron on n inputs. Then, any sample error minimization algorithm A

for Pn and L is a learning algorithm for Pn. Furthermore, A has sample complexity

mA,Pn
(ε, ¶) f

64

ε2

(

2n ln

(

12

ε

)

+ ln

(

4

¶

))

.

□
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Any k-bit perceptron is a perceptron, and specifically, for the k-bit perceptron of n

inputs we haveHk-bit ¦ Pn. Let S ¦ X be an arbitrary finite set. Then,

(Hk-bit)|S ¦ (Pn)|S =⇒ VCdim(Hk-bit) f VCdim(Pn) = n.

We may compare the upper bounds on sample complexities of Corrolary 2.3.4.1, given in

terms of VC-dimension, and that of Corrolary 2.2.1.1 given in terms of a finite function

class cardinality, that is, |Hk-bit|. Corrolary 2.2.1.1 gives an upper bound of

mA,L(ε, ¶) f
2

ε2
ln

(

2 |Hk-bit|

¶

)

=
2

ε2

(

k(n + 1) + ln

(

2

¶

))

(2.3)

on the sample complexity of any SEM learning algorithm for the k-bit perceptron of n

inputs. On the other hand, Corrolary 2.3.4.1 gives the sample complexity bound of

mA,L(ε, ¶) f
64

ε2

(

2 VCdim(Hk-bit) ln

(

12

ε

)

+ ln

(

4

¶

))

=
64

ε2

(

2n ln

(

12

ε

)

+ ln

(

4

¶

))

(2.4)

for any SEM algorithm. Sample complexity from (2.4), given in terms of VC-dimension,

in no way depends on k, the number of bits used for the binary representation of the values

of weights and thresholds. For many values of ε and ¶, relation (2.4) gives the worse

sample complexity bound between the two. However, as it has no explicit dependency on

k, interestingly, for large enough values of k, there exist ranges of ε and ¶ for which the

bound from in terms of VC-dimension is better than the bound given in terms of |Hk-bit|.

2.4 Fundamental Theorem of Statistical Learning

Can the upper bound on the sample complexity of an SEM algorithm be significantly

lower? To answer this, we need to provide a lower bound on the sample complexity of

an SEM algorithm as well. Additionally, might there exist some non-SEM algorithm with

significantly lower sample complexity bound, compared to that of an SEM algorithm, also

adequate for PAC learning? The following Theorem resolves these questions.

Theorem 2.4.1. Let L be a 0−1 loss function andH ¦ HL any class of functions. ThenH

is learnable if and only if it has a finite VC-dimension. Furthermore, there exist constants

c1, c2 > 0 such that the inherent sample complexity of the learning problem forH satisfies

c1

ε2

(

VCdim(H) + ln

(

1

¶

))

f mH (ε, ¶) f
c2

ε2

(

VCdim(H) + ln

(

1

¶

))

for all 0 < ε < 1/40 and 0 < ¶ < 1/20.

□
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Remark 2.4.2. We’ll use the big Θ notation1 to describe the conclusion of the Theo-

rem 2.4.1. Let f : Rn −→ R be any function. If there exisit some real constants c1, c2 > 0,

a constant vector a = (a
1
, a

2
, . . . , an) ∈ Rn, and a function g : Rn −→ R such that

c1 g(x) f f (x) f c2 g(x) for all x ∈ Rn such that xi g ai, we write f (x) = Θ(g(x)).

Theorem 2.4.1 shows how no PAC learning algorithm can significantly outperform the

SEM algorithm, and how the inherent sample complexity of any function class with a finite

VC-dimensionH satisfies

mH (ε, ¶) = Θ

(

1

ε2

(

ln

(

1

¶

)))

.

Another important consequence of Theorem 2.4.1 is the fact that if a class of functions is

learnable, then it necessarily has a finite VC-dimension.

Combining all of the results so far, we obtain the central theorem of this chapter.

Theorem 2.4.3 (Fundamental Theorem of Statistical Learning). For the 0−1 loss function

L and any function classH ¦ HL , the following statements are equivalent.

1. H is PAC learnable.

2. VCdim(H) < ∞.

3. H has the following uniform convergence property of the sample error function:

For every m ∈ N and every ¶ ∈ (0, 1) there exists ε0 ∈ (0, 1) such that

P
m

(

sup
h∈H

∣

∣

∣erP,L(h) − êrm,L(Z, h)
∣

∣

∣ > ε0(m, ¶)

)

< ¶,

for every probability distribution P on (Z,V), and

εH (m, ¶) = Θ













(

1

m
ln

(

1

¶

))1/2










m→∞
−−−−−−→ 0.

4. The inherent sample complexity ofH satisfies

mH (ε, ¶) = Θ

(

1

ε2
ln

(

1

¶

))

.

5. The inherent estimation error ofH satisfies

εH (m, ¶) = Θ













(

1

m
ln

(

1

¶

))1/2










.

□

1Big Θ notation is simply the combination of the standard big O and big Ω notation, where

f (x) = Θ(g(x)) if and only if f (x) = O(g(x)) and f (x) = Ω(g(x)).
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2.5 Vapnik-Chervonenkis Dimension of Multillayer

Networks

Lastly, we calculate the VC-dimensions of multilayer networks. While the theorems that

follow apply to a larger class of neural networks called the feed-foreward networks, we’ll

present them in terms of the most general neural network defined in Chapter 1 – the MLP.

Reminder. Concerning the MLP Definition 1.6.5, let n, k ∈ N and J
1
, J

2
, . . . , J

k
∈ N be

arbitrary natural numbers. Additionally, let p ∈ N denote the total number of adjustable

parameters and c ∈ N denote the number of computational units of an MLP. Whenever

all of the activation functions Φ
1
,Φ

2
, . . . ,Φ

k+1
are the threshold activation function ϕ, we

refer to such an MLP as a Linear Threshold Network. On the other hand, whenever all of

the activation functions Φ
1
,Φ

2
, . . . ,Φ

k+1
are the sigmoid activation function Ã, we refer to

such an MLP as a Sigmoid Network. For the threshold activation function ϕ and a sigmoid

network f , we refer to the composition F(X) = ϕ( f (X)−0.5) as a Binary Sigmoid Network.

A linear threshold network with one computational unit (c = 1) and n adjustable pa-

rameters (p = n) is exactly the perceptron of n inputs, known to have the VC-dimesion

exactly n, which is equal to the number of parameters p. The following Theorem gives a

general upper bound on the VC-dimension of any linear threshold network.

Theorem 2.5.1. Let HLTN be the class of functions computable by a linear threshold net-

work with p adjustable parameters and c computation units. Then

VCdim(HLTN) f 2p log2

(

2c

ln(2)

)

.

□

The following theorem provides an upper bound on the VC-dimension of binary sig-

moid networks in terms of the number of adjustable parameters p and the number of com-

putational units c.

Theorem 2.5.2. LetHBSN be the class of functions computable by a binary sigmoid network

with p adjustable parameters and c computation units. Then

VCdim(HBSN) f (pc)2 + 11pc log2(18pc2).

□

The Fundamental Theorem of Statistical Learning guarantees that function classes

HLTN and HBSN are PAC learnable with respect to the 0−1 loss function. This integrates

every artificial neural network encountered in Chapter 1 into the statistical learning theory

developed in this chapter.
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Sažetak

Prvo poglavlje započinjemo s principima rada neurona i bioloških neuronskih mreža. Na-

kon dane motivacije, započinjemo s njihovim matematičkim modeliranjem umjetnim ne-

uronskim mrežama. Prvo se susrećemo s McCulloch-Pittsovim neuronom – prvim ma-

tematičkim modelom neurona. Kako ima odredene nedostatke, uvodimo perceptron kao

općenitiji model umjetnog neurona. Uz perceptrona dolazi algoritam perceptronskog uče-

nja te ADALINE algoritam učenja. Nadalje, uvodimo višeslojni perceptron kao mate-

matički model bioloških neuronskih mreža te predstavljamo tzv. ”Backpropagation” algo-

ritam učenja.

Drugo poglavlje formalizira problem učenja jezikom Teorije Vjerojatnosti. Problem

učenja smatramo pronalaskom optimalnih parametara umjetne neuronske mreže. Svaka

umjetna neuronska mreža, kao parametarska funkcija, generira odredenu klasu funkcija

koje dobivamo variranjem njenih parametara. Cilj drugog poglavlja je odgovoriti na pi-

tanje ima li smisla tražiti optimalne parametre modela unutar dane klase funkcija koju

sam model generira. Pokazuje se da je odgovor potvrdan. Naime, postoji metrika zvana

Vapnik-Chervonenkisova dimenzija, pridružena proizvoljnoj klasi funkcija, čija konačnost

u potpunosti karakterizira naučivost same klase. Ovaj rezultat je iskazan kao Osnovni

Teorem Statističkog Učenja. Na samom kraju pokazujemo kako sve klase funkcija koje

generiraju umjetne neuronske mreže definirane u prvom poglavlju imaju konačnu Vap-

nik-Chervonenkisovu dimenziju.



Summary

We start the first chapter by explaining the workings of neurons and biological neural

networks. After providing some motivation, we begin their mathematical modelling with

artificial neural networks. We define the McCulloch-Pitts neuron – the first mathematical

model of a neuron. As it has certain limitations, we introduce the perceptron as a more

general model of an artificial neuron. Along with the perceptron come the perceptron

learning algorithm and the ADALINE learning algorithm. Furthermore, we introduce the

multilayer perceptron as a mathematical model of biological neural networks and present

the so-called ”Backpropagation” learning algorithm.

The second chapter formalizes the problem of learning in the language of Probability

Theory. We consider the learning problem as the search for the optimal parameters of an

artificial neural network. Each artificial neural network, as a parametric function, generates

a certain class of functions that we obtain by varying its parameters. The goal of the second

chapter is to answer the question of whether it makes sense to search for the optimal model

parameters within a given class of functions generated by the model itself. It turns out that

the answer is yes. Namely, there is a metric called the Vapnik-Chervonenkis dimension,

associated with an arbitrary class of functions, whose finiteness completely characterizes

the learnability of said class. This result is stated as the Fundamental Theorem of Statistical

Learning. At the very end, we show how all classes of functions generated by artificial

neural networks defined in the first chapter have a finite Vapnik-Chervonenkis dimension.
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