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Thermodynamics and geometry of black

holes in the presence of nonlinear

electromagnetic fields

DOCTORAL DISSERTATION

Supervisor:
assoc. prof. dr. sc. Ivica Smolić
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Abstract

Nonlinear electrodynamics (NLE) is an umbrella term for nonlinear modifica-

tions of Maxwell’s theory. The first NLE theories appeared as quantum corrections

to Maxwell’s electrodynamics or in order to cure point charge singularities. Our fo-

cus is on NLE fields in the context of gravitational theory, their impact on the laws

of black hole thermodynamics and the general geometric properties of spacetimes.

Using a perturbative approach, we show that the solution for the Schwarzschild black

hole placed in an asymptotically homogeneous test magnetic field in the Born–Infeld

and Euler–Heisenberg theories receives NLE corrections. We prove that the well-

known results from Maxwell’s theory, such as no-soliton theorems and the absence

of null electromagnetic fields in static spacetimes, still hold in the NLE case but may

be circumvented by stealth field configurations. In the form of several no-go theo-

rems, we summarise the general obstructions that limit the possibility of black hole

regularisation using NLE fields. Our results suggest that physically plausible NLE

theories do not give rise to singularity-free solutions. Furthermore, we formulate

the sufficient conditions that imply the isometry-compatible block-diagonal form of

the metric for theories consisting of solely NLE fields and NLE fields combined with

scalar fields. Finally, we revisit the laws of black hole thermodynamics with NLE

fields and derive the first law by means of the covariant phase space approach. With

a special emphasis on the treatment of NLE Lagrangian parameters, we resolve the

tension between the generalised Smarr formula and the first law of black hole ther-

modynamics in a general case.

Keywords: nonlinear electromagnetic fields, black hole electrodynamics, black hole

thermodynamics, spacetime singularities, regular black holes



Prošireni sažetak

Ključne riječi: nelinearna elektromagnetska polja, elektrodinamika crnih rupa,

termodinamika crnih rupa, prostornovremenski singulariteti, regularne crne rupe

Uvod

Nelinearna elektrodinamika (NLE) pojam je koji obuhvaća raznovrsna poopćenja

klasične Maxwellove teorije, a definirana je lagranžijanima koji su glatke funkcije

dviju temeljnih elektromagnetskih invarijanti,

F := FabF
ab i G := Fab⋆F

ab. (1)

Promatrat ćemo minimalno vezanje NLE lagranžijana L (F,G) i gravitacijske akcije

L (g), tako da je ukupna 4-forma L jednaka

L =
1

16π

(
L (g) + 4L (F,G)

)
ϵ . (2)

Generalizirane Maxwellove jednadžbe mogu se kompaktno zapisati kao

dF = 0 i d⋆Z = 4π⋆J , (3)

gdje je J 1-forma električne struje, a Z je pomoćna 2-forma1, Z := −4 (LFF + LG ⋆F).

Budući da je tenzor energije i impulsa oblika

Tab = −4LFT
(Max)
ab +

1

4
Tgab , (4)

u NLE slučaju moguće je definirati tzv. prikrivena polja (eng. stealth) [171] za

koja vrijedi Tab = 0, ali Fab ̸= 0. S obzirom na vektorsko polje Xa, možemo

definirati električnu i magnetsku 1-formu E = −iXF i B = iX⋆F te “nelinearne”

1-forme D = −iXZ i H = iX⋆Z. Električni i magnetski naboji definirani su pomoću

1Notacija: LX = ∂XL , LXY = ∂Y ∂XL , itd.
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Komarovih integrala [96] izvrijednjenih na kompaktnoj, zatvorenoj 2-plohi S,

QS :=
1

4π

∮
S

⋆Z and PS :=
1

4π

∮
S

F . (5)

Prve NLE teorije, Euler–Heisenbergova [86] i Born–Infeldova [20, 21], pojavile su se

1930-ih godina u ranim fazama razvoja kvantne teorije polja. U narednim deset-

ljećima konstruirana su brojna poopćenja Maxwellove elektrodinamike, često moti-

virana traženjem novih rješenja vezanih Einstein-NLE jednadžbi. Osim u kontekstu

gravitacijskih teorija, NLE polja relevantna su i u kozmologiji, gdje se pojavljuju kao

mogući mehanizam regularizacije početnog singulariteta [48, 31, 65] te objašnjenje

ubrzanog širenja svemira [135, 139]. Kompaktni astrofizikalni objekti kao što su

magnetari, čija magnetska polja dosežu jačinu od 1011T [184], mogu predstavljati

pogodno okruženje za testiranje nelinearnih efekata.

Euler–Heisenbergov lagranžijan [86] efektivna je teorija koja uzima u obzir kvan-

tne korekcije klasične Maxwellove elektrodinamike na nivou jedne petlje. Kvantni

fenomen koji se može opisati u okviru Euler–Heisenbergove teorije je γγ → γγ

raspršenje, čije je eksperimentalno opažanje nedavno potvrdeno na LHC-u [1]. U

limesu slabih polja, Euler–Heisenbergov lagranžijan poprima oblik

L (EH) = −1

4
F +

α2

360m4
e

(
4F2 + 7G2

)
+O(α3) . (6)

Born–Infeldov lagranžijan [20, 21],

L (BI) = b2

(
1 −

√
1 +

F

2b2
− G2

16b4

)
, (7)

konstruiran je s ciljem regularizacije singulariteta u električnom polju i energiji

točkastog naboja. Kasnije se pojavio i kao efektivna teorija u niskoenergijskim

limesima bozonskih teorija struna i supersimetričnih teorija [62, 165]. ModMax

lagranžijan [8, 61],

L (MM) =
1

4

(
−F cosh γ +

√
F2 + G2 sinh γ

)
, (8)

čuva originalne simetrije Maxwellove teorije, konformalnu invarijantnost (T = 0) te

invarijantnost na SO(2) elektromagnetske rotacije.

Naš je cilj proučiti utjecaj NLE polja na različite aspekte gravitacijske teorije,

uključujući termodinamiku crnih rupa, mogućnost regularizacije crnih rupa te poop-

ćenje niza problema iz Einstein-Maxwellove teorije.

ii



Schwarzschildova crna rupa u probnom NLE polju

Waldovo rješenje [189] opisuje rotirajuću, osnosimetričnu crnu rupu uronjenu

u asimptotski homogeno magnetsko polje. Takav scenarij relevantan je za astro-

fizičke crne rupe okružene elektromagnetskim poljima akrecijskih diskova ili dru-

gih galaktičkih objekata. Waldovo rješenje temelji se na Papapetrouovom ansatzu

[141] po kojem Killingovo vektorsko polje u funkciji baždarnog potencijala zado-

voljava Maxwellove jednadžbe u vakuumu. Pripadna elektromagnetska polja ne

utječu na metriku pa ih nazivamo probnima. U slučaju nelinearne elektrodinamike,

Waldova konstrukcija ne zadovoljava generalizirane Maxwellove jednadžbe. Budući

da nismo uspjeli pronaći način koji bi omogućio pronalaženje egzaktnog rješenja,

primijenili smo perturbativni razvoj oko originalnog Waldovog rješenja [16]. Euler–

Heisenbergova i Born–Infeldova teorija mogu se prikazati u obliku razvoja s obzirom

na konstantu vezanja λ kao

L (F,G) = −1

4
F + λℓ(F,G) +O(λ2) . (9)

Baždarni potencijal možemo prikazati kao dominantni “Waldov” član i perturba-

tivnu korekciju va, Aa = Ka +λva +O(λ2). Jednadžba koju perturbativna korekcija

mora zadovoljiti (proizlazi iz (3)) je

d⋆dv = 4(ℓFF dF)0 ∧ ⋆dK− 4(ℓGG dG)0 ∧ dK . (10)

Izloženi problem riješit ćemo u Schwarzschildovom prostorvremenu. Kao osnovni

ansatz, za baždarni potencijal biramo aksijalno Killingovo vektorsko polje, Ka =

ma = (∂/∂ϕ)a. Naknadno se se može pokazati da taj odabir uistinu odgovara ho-

mogenom magnetskom polju. Pozivajući se na simetrije prostorvremena, jednadžbu

(10) možemo riješiti ansatzom oblika v = h(r, θ)dϕ. Ukupno rješenje dano je s

v =
(ℓFF)0

4
B3

∞M
(

4(2r − 5M) cos(2θ) + (M − 2r)
(
3 + cos(4θ)

))
dφ . (11)

Perturbativna korekcija va trne dovoljno brzo, tako da ne mijenja asimptotsko

ponašanje osnovog ansatza. Takoder, va ne uvodi električni ili magnetski naboj, što

se može provjeriti računom Komarovih integrala. Alternativno, problemu možemo

pristupiti pomoću skalarnog magnetskog potencijala, definiranog kao H = −dΥ.

U slučaju kada je električno polje odsutno, magnetske 1-forme B i H povezane su
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relacijom H[k]a = −4LFB[k]a. Maxwellova jednadžba može se zapisati kao

∇a

(
H[k]a

NLF

)
= 0 , (12)

te ju potom razvijamo do prvog reda u λ. Magnetski skalarni potencijal takoder

prikazujemo u obliku razvoja, Υ = Ψ0 +λΨ1 +O(λ2), gdje Ψ0 odgovara originalnom

Waldovom rješenju. Ponovno, pogodnim odabirom ansatza možemo pronaći rješenje

te pokazati da je konzistentno s prijašnjim pristupom.

Primjenjivost aproksimacije testnog polja ovisi o relevantnim skalama promatra-

nog problema. Može se pokazati da u ovom slučaju postoji raspon energija u kojem

su polja dovoljno snažna da do izražaja dolaze nelinearni efekti, ali su svejedno

dovoljno slaba da metriku možemo smatrati fiksnom.

Umjesto crne rupe, možemo promatrati neutronsku zvijezdu uronjenu u probno

NLE polje, uz prikladno postavljene rubne uvjete. Pretpostavljamo idealizirani

model sfernosimetrične i savršeno vodljive neutronske zvijezde. Skalarni potencijal

mora zadovoljiti Neumannov rubni uvjet, na∇aΥ = 0, gdje je na normala plohe S

koja predstavlja rub zvijezde. Medutim, rješenje jednadžbe (12) dano je kao netri-

vijalna suma funkcija ovisnih o radijalnoj koordinati, što onemogućuje nametanje

rubnih uvjeta.

Odsustvo elektromagnetskih solitona

Poznato je da u Einstein-Maxwellovoj teoriji nije moguće konstruirati strogo sta-

cionarno, asimptotski ravno, regularno rješenje, što je rezultat poznat kao “odsustvo

elektromagnetskih solitona” [40]. U širem kontekstu, pozivajući se na regularnost i

lokaliziranost, solitoni se mogu smatrati primjerima Wheelerovih geona [196]. Do-

kazi teorema provode se pomoću Lichnerowiczevog argumenta [120]: ako uspijemo

konstruirati nenegativnu veličinu čiji je integral na promatranoj domeni nepozitivan,

ta veličina mora identički ǐsčezavati. U nastavku predstavljamo dva teorema koja

ograničavaju postojanje NLE solitona [15]. Oba teorema oslanjaju se na pogodno

odabrane identitete s divergencijama te nekoliko osnovnih tehničkih pretpostavki.

Prvi teorem odnosi se na statična prostorvremena te NLE teorije čiji tenzor energije

i impulsa zadovoljava svjetlosni energijski uvjet, LF ≤ 0. Vrijedi za proizvoljne

gravitacijske teorije dok god divergencija pripadnog gravitacijskog tenzora ǐsčezava,

a vezanje elektromagnetske i gravitacijske akcije je minimalno. Ključni identitet pri

dokazu teorema ∫
Σ

LF

V
(EaE

a +BaB
a) ϵ̂ = 0 , (13)

iv



proizlazi iz sume dva vektorska identiteta koju integriramo po prostornoj hiper-

plohi Σ uz pretpostavljeno odgovarajuće asimptotsko ponašanje polja i pripadnih

potencijala. Iz (13) možemo zaključiti da mora vrijediti ili Fab = 0 ili je polje prikri-

venog tipa. Drugi teorem ne zahtijeva statičnost prostorvremena, već samo strogu

stacionarnost. Oslanja se na jači, dominantni energijski uvjet (LF ≤ 0 i T ≤ 0)

te netrivijalni teorem o pozitivnosti mase [197]. Dokaz teorema ponovno slijedi iz

nekoliko vektorskih identiteta koji vode na izraz

M = − 1

16π

∫
Σ

∇aW
a ⋆k +

1

2

∫
Σ

T ⋆k . (14)

Prvi član ponovo ǐsčezava zbog rubnih uvjeta, dok drugi po energijskom uvjetu

mora biti nepozitivan, što je u kontradikciji s teoremom o pozitivnosti mase. Tada

zaključujemo da je prostorvrijeme izometrično prosotrvremenu Minkowskog ili je

elektromagnetsko polje prikrivenog tipa. Teoreme možemo parcijalno generalizirati

na vǐsedimenzionalne slučajeve te uz prisutnost nabijene materije.

Regularizacija crnih rupa pomoću NLE polja

Budući da su poznati primjeri regularnih crnih rupa koje su rješenja Einstein-

NLE jednadžbi [9], prirodno se nametnulo pitanje koja su općenita ograničenja

na mogućnost regularizacije uz NLE polja. Prvu sistematičnu analizu za NLE la-

granžijane koji su funkcija invarijante F napravio je Bronnikov [27]. Slijedeći njegov

pristup, pokušali smo obuhvatiti širu klasu lagranžijana, one koji ovise o obje elek-

tromagnetske invarijante [18]. “No-go” teoremi ove vrste temelje se na pronalaženju

barem jednog neomedenog skalara zakrivljenosti, što automatski čini prostorvrijeme

singularnim [56]. Veza izmedu skalara zakrivljenosti i elektromagnetskih invarijanti

može se uspostaviti pomoću Einsteinove jednadžbe,

R− 4Λ = −8πT , (15)

RabR
ab + 2Λ(2Λ −R) = (8π)2 TabT

ab , (16)

gdje je 4π2T a
b T

b
a = π2T 2+L 2

F (F2+G2). Uzastopne kontrakcije većeg broja tenzora

energije i impulsa ne daju nove neovisne kombinacije invarijanti. Ako je prostorvri-

jeme regularno u smislu omedenih skalara zakrivljenosti, tada isto mora vrijediti i

za TabT
ab i T , odnosno za LFF, LFG i T . Budući da rezultati ne ovise o asimp-

totskom ponašanju prostorvremena, zbog općenitosti možemo zadržati kozmološku

konstantu Λ. Najsnažnije ograničenje sadržano je u sljedećem teoremu.
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Teorem: Pretpostavimo da je prostorvrijeme statično i sfernosimetrično rješenje

Einstein-NLE sustava jednadžbi te da promatrana NLE teorija pripada FG-klasi i

poštuje Maxwellov limes za slaba polja2. Tada, za električno nabijene crne rupe,

Riccijev skalar R i “kvadrirani” Riccijev tenzor RabR
ab ne mogu oboje biti regularni

kada r → 0.

Ako su prisutna oba naboja ili samo magnetski naboj, ne možemo formulirati

univerzalni teorem koji bi obuhvatio sve lagranžijane FG-klase koji poštuju Maxwel-

lov limes za slaba polja. Razlog je taj što invarijante F i G ne teže istovremeno u

nulu kada r → 0, čime gubimo mogućnost provjere Maxwellovog limesa. Medutim,

možemo obuhvatiti neke fizikalno relevantne slučajeve, kao što su kvadratični la-

granžijan inspiriran Euler–Heisenbergovim, Born–Infeldov ili ModMax. Svi rezultati

sumirani su u tablici ispod.

Pregled “no-go” teorema, ✗ označava slučajeve singularnih prostorvremena

Q ̸= 0, P ̸= 0 Q = 0, P ̸= 0

lagranžijani F-klase ✗

kvadratični lagranžijani

L = −1
4
F + aF2 + bFG + cG2 ✗ ✗

L = −1
4
F + h(G) ✗ ✗

L = −1
4
F + aFsGu, s, u ≥ 1 ✗

Born-Infeld lagranžijan ✗ ✗

ModMax lagranžijan ✗ ✗

Uvjeti integrabilnosti

Metrički tenzor može poprimiti blok-dijagonalni oblik koji je kompatibilan s izo-

metrijama promatranog prostorvremena. Potrebni uvjeti sadržani su u Frobeniuso-

vom teoremu [119] te se odnose na integrabilnost dviju distribucija definiranih Kil-

lingovim vektorskim poljima. Distribuciju D čine Killingova vektorska polja {Ka
(1),

. . . , Ka
(n)} te je integrabilna ako vrijedi [K(i), K(j)]

a ∈ D za sve i, j ∈ {1, . . . , n},

što nije strogo ograničenje. Distribuciju D⊥ čine vektorska polja Xa definirana

pomoću K
(i)
a Xa = 0 za svaki i ∈ {1, . . . , n}. Ako uvedemo pomoćnu n-formu

α := K(1) ∧ . . . ∧ K(n), distribucija D⊥ je integrabilna ako i samo ako vrijedi

α ∧ dK(i) = 0 za svaki i ∈ {1, . . . , n}. Dokazivanje integrabilnosti D⊥ temelji

2LF → −1/4 i LG → 0 kada (F,G) → (0, 0).
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se na identitetu

d⋆(α ∧ dK(i)) = 2 ⋆(α ∧R(K(i))) = 16π⋆(α ∧T(K(i))). (17)

Ako za danu teoriju uspijemo pokazati α ∧ T(K(i)) = 0, uz dodatne pretpostavke

slijedi uvjet integrabilnosti, α∧dK(i) = 0. Za NLE polja dokazali smo sljedeće tvrd-

nje [17]. Pretpostavimo da m-dimenzionalno prostorvrijeme (M, gab) sadrži m − 2

medusobno komutirajuća Killingova vektorska polja {Ka
(1), . . . , K

a
(m−2)} s nepraznim

skupom nultočaka Z ⊆M . Nadalje, pretpostavimo da je definirana elektromagnet-

ska 2-forma Fab koja naslijeduje simetrije prostorvremena, £K(i)
Fab = 0 za svaki i.

Tada za teorije čiji su lagranžijani dani s

a) L (F,G)ϵ + µA ∧ F(m−1)/2,

b) L (F,G) − (Daϕ)∗(Daϕ) − U (ϕ∗ϕ), uz pretpostavke £K(i)
ϕ = 0 i α ∧ J = 0,

c) f(ϕ)L (F,G) − 1
2
∇aϕ∇aϕ− U (ϕ), uz pretpostavku £K(i)

ϕ = 0,

vrijedi α ∧T(K(i)) = 0 za svaki i na bilo kojem otvorenom skupu koji dijeli rub sa

skupom nultočaka Z .

Odsustvo elektromagnetskih polja svjetlosnog tipa

U Einstein-Maxwellovoj teoriji, elektromagnetsko polje svjetlosnog tipa3 ne može

postojati u statičnom prostorvremenu [181]. Predstavljamo poopćenje navedenog

teorema, u kojem je generalizacija postignuta u nekoliko aspekata [17]. Maxwel-

lovu elektrodinamiku zamijenit ćemo nelinearnim teorijama te promatrati pros-

torvremena dimenzije različite od četiri. Dimenzionalno poopćenje dolazi s neko-

liko tehničkih poteškoća. Naime, invarijanta G ostaje skalar samo ako je dimen-

zija prostorvremena jednaka četiri, što ukazuje na nužnu redefiniciju elektromag-

netskih polja svjetlosnog tipa. Ekvivalent svjetlosnih elektromagnetskih polja u

vǐsedimenzionalnim slučajevima predstavljaju polja N tipa u Petrovljevoj klasifika-

ciji [172, 137]. Drugi dio općenitosti očituje se u primjenjivosti na širu klasu gra-

vitacijskih teorija, onih u kojima je pripadni gravitacijski tenzor “neparnog tipa”.

Naime, skalare možemo tvoriti tako da općeniti tenzor ranga k kontrahiramo sa s

Killingovih vektora te k − s vektora koji pripadaju distribuciji D⊥. Ako je s ne-

paran te dobiveni skalar ǐsčezava na integrabilnoj domeni, takav tenzor nazivamo

neparnim. Uzevši sve navedene pretpostavke u obzir, uspjeli smo dokazati da niti

u NLE slučaju statičnost prostorvremena nije kompatibilna sa svjetlosnim elektro-

magnetskim poljima, osim ako su ona prikrivenog tipa.

3U četverodimenzionalnom prostorvremenu za elektromagnetska polja svjetlosnog tipa mora
vrijediti F = 0 = G.
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Zakoni termodinamike uz NLE polja

Termodinamika crnih rupa poveznica je izmedu gravitacije u jakim režimima i

kvatnih fenomena te pruža uvid u mikroskopsku prirodu prostorvremena. Klasični

zakoni termodinamike oblikom su istovjetni zakonima mehanike crnih rupa [10, 12,

13]. Teorijsko otkriće Hawkingovog zračenja [83] potvrdilo je da nije riječ samo o

formalnoj analogiji te uspostavilo fizikalnu vezu izmedu veličina koje opisuju crne

rupe i termodinamičkih veličina. Po nultom zakonu mehanike, stacionarne crne rupe

imaju konstantnu površinsku gravitaciju κ koja igra ulogu temperature. Definirana

je preko χb∇aχb = −κχa, gdje je χa Killingovo vektorsko polje koje generira hori-

zont. Uz njega je blisko vezan nulti zakon elektrodinamike crnih rupa po kojem su

električni i magnetski skalarni potencijali konstantni na horizontu crnih rupa. Prvi

zakon mehanike iskazuje očuvanje energije te se za nabijene crne rupe u Einstein–

Maxwellovoj teoriji može zapisati kao

δM =
1

8π
κδA + ΩHδJ + ΦδQ+ ΨδP , (18)

gdje suM i A masa i površina horizonta crne rupe, ΩH i J angularna brzina horizonta

i angularni moment crne rupe te Q i P električni i magnetski naboj crne rupe.

Oblik prvog zakona sugerira identifikaciju površine horizonta A i termodinamičke

entropije. Navedenu tvrdnju podupire drugi zakon mehanike crnih rupa po kojem

se površina horizonta ne smanjuje u vremenu, δA ≥ 0. Za stacionarne crne rupe

vrijedi i analogon klasične Gibbs–Duhemove relacije, tzv. Smarrova formula,

M =
κ

4π
A+ 2ΩHJ + ΦQ+ ΨP . (19)

Može se izvesti direktnim, geometrijskim pristupom ili iz prvog zakona procesom

“skaliranja veličina”.

Budući da je analiza za NLE teorije još uvijek nepotpuna, dokazali smo nulti za-

kon elektrodinamike uz NLE polja na nekoliko komplementarnih načina. Izveli smo

prvi zakon termodinamike koristeći matematički rigorozni formalizam kovarijantnog

faznog prostora. Za razliku od postojećih rezultata u literaturi koji se odnose na

specifične teorije, naša analiza obuhvaća proizvoljni NLE lagranžijan koji je funk-

cija obje elektromagnetske invarijante. Na kraju smo izveli generaliziranu Smarrovu

formulu kako bismo potvrdili konzistentnost cijelog pristupa [14].

Nulti zakon elektrodinamike crnih rupa

Konstantnost električnog i magnetskog skalarnog potencijala na horizontu crnih
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rupa može se dokazati na nekoliko načina, ovisno o općenitosti koju želimo postići.

Jedan pristup oslanja se na Einsteinovu jednadžbu [151], no njegov je nedostatak

taj što nije primjenjiv na generalizirane gravitacijske teorije. Najjednostavniji način

dokaza temelji se na postojanju bifurkacijske plohe, medutim, postoje primjeri cr-

nih rupa (npr. ekstremalne) kod kojih takva ploha ne postoji. Treći način bazira

se na geometrijskom, Frobeniusovom uvjetu integrabilnosti te vrijedi za cirkularna

prostorvremena [168, 169, 11]. Za statična prostorvremena dokaz je moguće provesti

samo uz dodatne pretpostavke.

Prvi zakon termodinamike crnih rupa

Formalizam kovarijantnog faznog prostora pristup je blizak Hamiltonovoj meha-

nici u kojem su očuvane veličine sadržane u rubnim članovima [192, 118, 104, 149].

Dinamika sustava povezana je s predsimplektičkom formom koja je jednaka varija-

ciji Hamiltonijana. Nakon variranja Einstein–Hilbertove i NLE akcije, identifikacije

rubnih članova pomoću Komarovih integrala te uzimajući u obzir nulti zakon elek-

trodinamike, kao konačan oblik prvog zakona dobivamo [14]

δM =
κ

8π
δA + ΩH δJ + ΦHδQ+Ki

χ δβi , (20)

gdje je

Ki
χ := − 1

4π

∫
Σ

∂L

∂βi
⋆χ , (21)

a βi parametar NLE lagranžijana. Interpretacija novog člana ovisi o promatranoj

teoriji. Na primjer, oslanjajući se na dimenzionalnu analizu, za Born–Infeldovu i

Euler–Heisenbergovu teoriju veličina Ki
χ može se shvatiti kao vakuumska polariza-

cija [72]. Konceptualno drugačiji način izvodenja prvog zakona koji smo takoder

primijenili na NLE slučaj svodi se na promatranje fizikalnog procesa u kojem ma-

terija upada u crnu rupu [63].

Generalizirana Smarrova formula

Obzirom da u literaturi postoje oprečni rezultati u vezi prisutnosti dodatnog

člana u prvom zakonu, provjerit ćemo konzistentnost s generaliziranom Smarrovom

formulom. Prvo poopćenje Smarrove formule za NLE polja [71], izvedeno neovisno o

prvom zakonu, ukazuje na prisutnost člana s parametrima NLE lagranžijana. Poka-

zali smo da se isti rezultat može dobiti iz prvog zakona termodinamike (20) postup-

kom skaliranja. Ako je (gab,A) početno rješenje Einstein-NLE jednadžbi, možemo

pokazati da reskalirana polja (λ2gab, λA) zadovoljavaju iste jednadžbe. Iz te infor-

macije možemo odrediti i konzistentna skaliranja svih veličina koje ulaze u Smarrovu
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formulu. Konačno, za generaliziranu Smarrovu formulu dobivamo [14]

M =
κ

4π
A + 2ΩHJ + ΦHQ+

∑
i

biK
i
χβi , (22)

gdje je bi faktor skaliranja parametra βi. Drugo pitanje koje se nameće je koje NLE

teorije ostavljaju Smarrovu formulu u linearnom obliku. Predloženi nužni uvjet je

dan kao

L = a(LFF + LGG) + b
(
2LFLGF + (L 2

G − L 2
F )G
)

+ cG . (23)

Od primjera iz literature, navedeni uvjet zadovoljava Maxwellova teorija, ali i power-

Maxwell [78] (L (pM) = CFs) i ModMax lagranžijani.

Zaključak

Koristeći aproksimaciju testnih polja, izračunali smo perturbativnu NLE ko-

rekciju za statični slučaj Waldovog rješenja. Sljedeći korak bilo bi poopćenje na

rotirajuću, Kerrovu crnu rupu. Medutim, u tom se slučaju kompliciraju izrazi za

elektromagnetske invarijante, što posljedično otežava rješavanje jednadžbe koja defi-

nira korekciju. Teoremi o nepostojanju elektromagnetskih solitona vrijede i za NLE

polja, a mogu ih zaobići jedino prikrivena polja. Njihova moguća generalizacija leži

u oslabljivanju početnih pretpostavki. Navedene teoreme nadopunjuju teoremi o

nemogućnosti regularizacije crnih rupa pomoću NLE polja. Naši rezultati ukazuju

na to da fizikalno realistične NLE teorije ne mogu ukloniti singularitet kod sferno-

simetričnih rješenja. Najvažnije otvoreno pitanje je kako teoremima obuhvatiti još

općenitije lagranžijane koji ovise o F i G, a potencijalno i one koji ovise o derivaci-

jama invarijanti. Definirali smo uvjete koji omogućuju blok-dijagonalizaciju metrike

u slučaju NLE teorija te NLE teorija kombiniranih sa skalarnim poljima. Teoremi

vrijede za Einstein–Hilbertovu akciju pa se kao moguće poopćenje nameće proma-

tranje modificiranih gravitacijskih teorija. Dokazali smo da teorem o nepostojanju

elektromagnetskih polja u statičnom prostorvremenu vrijedi i u NLE slučaju, sve

dok polja nisu prikrivenog tipa. Izvedeni prvi zakon termodinamike uz NLE polja

sadrži dodatni član s varijacijama parametara lagranžijana. Taj je oblik prvog za-

kona kompatibilan s ranije izvedenom generaliziranom Smarrovom formulom. Nije

sasvim jasno ima li proširenje faznog prostora dodatnim parametrima značajniju

fizikalnu interpretaciju. Zbog svoje primjenjivosti u raznim granama fizike, NLE

polja će i dalje biti važna stavka budućih istraživanja. U tome bi od pomoći mogla

biti neka od ovdje predstavljenih otvorenih pitanja.
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Chapter 1

Introduction

Although Maxwell’s electrodynamics is a successful theory whose predictions

have been precisely verified over the decades, it still has to be tested in different

energy regimes. Namely, it is expected that nonlinearities in electromagnetic inter-

actions should reveal themselves at high energy scales. Nonlinear electrodynamics

(NLE) is a hypernym that encompasses various nonlinear modifications of classi-

cal Maxwell’s electrodynamics, usually given by a Lagrangian constructed from two

electromagnetic invariants, FabF
ab and Fab ⋆F

ab. The two earliest NLE theories,

Born–Infeld [20, 21] and Euler–Heisenberg [86] electrodynamics, were formulated in

the 1930s and ignited interest due to their unique properties. A vast number of

various NLE theories have emerged since then, often intertwined with developments

in gravitational physics.

Recent measurements at LHC [1] show evidence for light-by-light scattering, a

quantum phenomenon that may be explained only within the framework of nonlin-

ear theories. These results enabled posing stronger constraints on the parameters of

NLE Lagrangians [133, 57]. Apart from collider experiments, nonlinear electromag-

netic interactions are being tested by a new generation of ultraintense lasers at the

Extreme Light Infrastructure [179].

Many different factors, such as their implications for theoretical gravitational

physics, cosmology and astrophysics, contributed to the growing interest in NLE

theories. For example, it is widely believed that in its early phase, the universe was

permeated by strong magnetic fields exceeding 1011T. The strength of these fields

exceeds the range of applicability of Maxwell’s theory, implying that cosmological

models should take nonlinear effects into account [65]. Furthermore, observational

cosmological data may disclose whether the accelerated expansion of the universe at

its different stages may be attributed to NLE theories [25]. The proposed neutrino

tests could shed some light on the influence of NLE fields on supernovae dynamics
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[130]. Certain compact astrophysical objects could also represent a suitable domain

for testing nonlinearities. Magnetars, a special type of neutron stars, harbour strong

magnetic fields, reaching up to 1011T at the surface [184]. The role of nonlinear

QED effects on neutron star spin-down, the so-called quantum vacuum friction, is

still being debated [156]. Supermassive black holes in the centres of galaxies eject

powerful jets, whose formation may be caused by surrounding strong electromagnetic

fields.

The venue we shall explore is NLE fields’ influence on various aspects of gravi-

tational theory. Some NLE models proved to be successful in removing black hole

singularities, however, this prospect has been limited by several constraints [27].

The role of NLE Lagrangian parameters in the formulation of the fundamental laws

of black hole thermodynamics has not been completely resolved yet. Furthermore, a

number of results from Maxwell’s theory are still devoid of their NLE counterparts.

The thesis is organised as follows. First, we lay out the fundamentals of nonlinear

electrodynamics in general and in the context of gravitational theory, including

an overview of prominent NLE theories and known exact gravitational solutions.

Additionally, we reexamine the energy conditions for NLE fields and complement

the existing results from the literature. The main part of the thesis addresses a

number of separate problems related to the geometric and thermodynamic properties

of spacetimes coupled to NLE theories:

� We revisit Wald’s solution for a black hole immersed in a homogeneous mag-

netic field and perturbatively find the lowest order NLE correction in a static

case. We also discuss highly conducting stars in the same setting.

� We present a generalisation of the canonical no-soliton result from Einstein-

Maxwell theory to a wide class of NLE theories. Additionally, we consider

theories with charged matter and different number of spacetime dimensions.

� Building on the previous no-go results, we examine the constraints on black

hole regularisation using NLE fields. We extend the existing theorems by

considering more general NLE Lagrangians.

� Since it is known that the metric may be brought into a block-diagonal form

compatible with the isometries of a given spacetime, we formulate the con-

ditions that ensure such splitting for NLE fields themselves and NLE fields

combined with scalar and gauge Chern-Simons terms.

� We present a multifold generalisation of the theorem on the absence of null

electromagnetic fields.
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� We turn to the laws of black hole thermodynamics with nonlinear electro-

magnetic fields. After a mathematical introduction to covariant phase space

formalism, we derive the first law using two approaches. Besides that, we

prove the zeroth law in several different ways and discuss the linearity of the

generalised Smarr formula.

Notation and conventions. We will use the “mostly plus” metric signature and

the natural system of units with G = c = 4πϵ0 = 1. Spacetime is defined as an

ordered pair (M , gab) that consists of a connected, smooth manifold M and a smooth

Lorentzian metric gab. We will denote differential forms by boldface letters with

omitted indices, abstract index notation or a combination of both. The volume form

will be denoted by ϵ. The result of the contraction of a symmetric tensor Sab with

a vector Xa is a 1-form SabX
b, represented by S(X). The commutator between two

vector fields, Xa and Y a is given by the Lie bracket [X, Y ]a = Xb∇bY
a − Y a∇bX

a.

We will use ≈ sign for equalities evaluated on-shell. When referring to a set S, we

will denote its interior, boundary and closure by S◦, ∂S and S̄, respectively, while

the − sign will stand for the difference between two sets, A−B.

3



Chapter 2

An overview of NLE

2.1 NLE fields coupled to gravity

As a prelude, we introduce all the basic ingredients of a coupled gravitational-

NLE system of equations. We start by giving a precise mathematical definition of

an NLE Lagrangian and its relation to the gravitational part of the action. Our next

task is to derive modified Maxwell’s equations from a general NLE Lagrangian and

the energy-momentum tensor of the corresponding NLE theory to obtain a full set

of equations. Furthermore, we point out new features otherwise absent in Maxwell’s

theory.

2.1.1 Fundamentals

Using the electromagnetic 2-form F, we can construct two independent quadratic

electromagnetic invariants,

F := FabF
ab and G := Fab ⋆F

ab. (2.1)

It can be shown, using identities (A.23) and (A.24), that any scalar formed by

contracting three or more 2-forms F or ⋆F (for example, F a
bF

b
cF

c
a or F a

b ⋆F
b
cF

c
a )

can be in fact reduced to a function of two basic invariants F and G. Thus, with

the 2-form F at our disposal, no new independent invariants can be formed unless

we include its covariant derivatives.

Maxwell’s Lagrangian density is a linear function of invariant F only, defined as

L (Max) = −1

4
F , (2.2)

while we assume that the NLE Lagrangian density is a C2 function of electromagnetic
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invariants F and G. Given an NLE Lagrangian density L (F,G), we will consider

minimal coupling to the gravitational sector, defined with some diffeomorphism

covariant Lagrangian density L (g). Then, the total Lagrangian 4-form is equal to

L =
1

16π

(
L (g) + 4L (F,G)

)
ϵ . (2.3)

Partial derivatives of the NLE Lagrangian density L will be denoted by abbrevia-

tions such as LF = ∂FL , LG = ∂GL , LFG = ∂G∂FL , and so on. The corresponding

gravitational field equation emanating from (2.3) is

Eab = 8πTab , (2.4)

where Eab is some symmetric, divergence-free gravitational tensor, ∇aEba = 0. For

Einstein–Hilbert action, we have L (g) = R and Eab = Gab = Rab − 1
2
Rgab. On the

right hand side of the gravitational equation (2.4) is the NLE energy-momentum

tensor, whose form can be obtained by using variational calculus (see Appendix C)1

Tab = − 1

4π

(
(LGG− L ) gab + 4LFFacF

c
b

)
. (2.5)

Generalised Maxwell’s equations emerging from an NLE Lagrangian L (F,G) are

dF = 0 and d⋆Z = 4π⋆J , (2.6)

where J is the electric current and Z is the auxiliary 2-form given by

Z := −4 (LFF + LG ⋆F) . (2.7)

The first generalised Maxwell’s equation is in fact a topological Bianchi’s identity,

so it remains unaltered by introducing nonlinear electromagnetic fields. The second

one is derived by varying the electromagnetic Lagrangian with respect to the gauge

potential Aa, as shown in Appendix C.

In four-dimensional spacetime, another way of expressing the NLE energy-momentum

1For a Lagrangian 4-form L = ς
(
L (g) + 4L (em)

)
ϵ,where ς > 0 is a normalisation factor, the

electromagnetic energy-momentum tensor is defined as

T (em)

ab := − 1

8πς

1√
−g

δS(em)

δgab
, with S(em) = 4ς

∫
L (em)ϵ .

Our choice ς = 1/(16π) agrees with, for example, [80, 63], whereas ς = 1 normalisation is used in
[187].
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tensor is to separate it into the “Maxwell” part and the trace part

Tab = −4LFT̃ab +
1

4
Tgab , (2.8)

where T̃ab is Maxwell’s energy-momentum tensor2,

T̃ab :=
1

4π

(
FacF

c
b − 1

4
gabF

)
(2.9)

and the trace T is given by

T := gabTab =
1

π
(L − LFF − LGG) . (2.10)

Also, using the identity (A.24), the NLE energy-momentum tensor can be written

via the auxiliary 2-form Zab,

Tab =
1

4π

(
ZacF

c
b + L gab

)
. (2.11)

One novelty compared to classical Maxwell’s electrodynamics are stealth fields,

whose properties are summarised in the following definition.

Definition 2.1. We say that an electromagnetic field is stealth at a point p if the

electromagnetic field tensor Fab is nonzero, but the corresponding energy-momentum

tensor Tab vanishes at a given point.

Consequently, such fields do not affect the spacetime metric. In the NLE case,

fields are stealth if and only if T = 0 and LF = 0. If we suppose that T = 0, LF = 0

and Fab ̸= 0, it follows immediately from the form of the energy-momentum tensor

(2.8) that Tab = 0. Conversely, assuming that Tab = 0, we immediately have T = 0.

Then, we are left with LFT̃ab = 0. By theorem B.4, Fab ̸= 0 implies T̃ab ̸= 0, so the

only possibility left is LF = 0.

With respect to a vector field Xa with the norm N = XaXa, we may define the

electric and magnetic 1-forms,

E = −iXF and B = iX⋆F . (2.12)

Then, the electromagnetic tensor F can be decomposed with respect to the electric

and magnetic fields as

−NF = X ∧ E + ⋆(X ∧B) , (2.13)

2We will denote Maxwell’s energy-momentum tensor either by T (Max)

ab or T̃ab to keep notation
simpler.
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which enables us to express the electromagnetic invariants in terms of the fields,

F =
2

N
(EaE

a −BaB
a) , (2.14)

G = − 4

N
EaBa . (2.15)

In the nonlinear case, we can introduce the “nonlinear” electric 1-form D = −iXZ
and the nonlinear magnetic 1-form H = iX⋆Z. They are related to E and B via

D = −4 (LF E− LG B) , (2.16)

H = −4 (LF B + LG E) . (2.17)

It is often convenient to set Xa = ξa, where ξa is the Killing vector field. Fur-

thermore, if we assume that the electromagnetic fields are symmetry inheriting and

generalised source-free Maxwell’s equations (2.6) hold, the electric form E and mag-

netic form H are closed,

dE = (−£ξ + iξd)F = 0 , (2.18)

dH = (£ξ − iξd)⋆Z = 0 . (2.19)

Then, on a simply connected domain, we may introduce the corresponding scalar

potentials defined by

E = −dΦ and H = −dΨ . (2.20)

The question of symmetry inheritance for electromagnetic fields is nontrivial, as

examples of electrovacuum spacetimes with symmetry noninheriting electromagnetic

fields can be found within both Maxwell’s theory [127] and NLE generalisations

[171]. The Lie derivative of the electromagnetic 2-form F can be written as a linear

combination a⋆F+bF, where b = 0 in Maxwell’s theory. Thus, symmetry inheritance

comes down to the question of finding sufficient assumptions that force the functions

a and b to vanish. Maxwell’s theory has been extensively analysed in this regard

[127, 200, 199, 42, 152, 186, 185, 181, 46], while the study for the NLE case has been

conducted in [11].

The electric and magnetic charges are defined by Komar integrals evaluated over

a compact closed 2-surface S,

QS :=
1

4π

∮
S

⋆Z and PS :=
1

4π

∮
S

F . (2.21)

Charges evaluated at infinity are denoted by Q := QS∞ and P := PS∞ . When con-
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sidering source-free Maxwell’s equations, the choice of the sphere is irrelevant up to

possible technical obstacles, for example, finding a regular coordinate system on the

black hole horizon. Note that for a globally well-defined gauge potential A, Stokes’

theorem implies PS = 0. Therefore, magnetic charge comes as a consequence of a

topologically nontrivial electromagnetic field.

2.1.2 Spherically symmetric spacetimes

As the simplest case, we consider static, spherically symmetric spacetime sourced

by some general NLE Lagrangian [18]. The line element can be written as [187]

ds2 = −α(r) dt2 + β(r) dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (2.22)

whenever ∇ar ̸= 0. For further convenience, we introduce the abbreviation w =√
α(r)β(r). In our case, the condition T t

t = T r
r is satisfied, which is sufficient to

take w = 1, i.e., α(r) = 1/β(r) = f(r), at least for Einstein’s field equation [105].

Nevertheless, sometimes it is favourable to keep the function w(r) undetermined

because of possible generalisations beyond the Einstein’s gravitational theory.

The electromagnetic 2-form F which inherits the spacetime symmetries can be

put in the form

F = −Er(r) dt ∧ dr −Br(r) ⋆(dt ∧ dr) =

= −Er(r) dt ∧ dr +
Br(r)

w(r)
r2 sin θ dθ ∧ dφ , (2.23)

while its Hodge dual is given by

⋆F =
Er(r)

w(r)
r2 sin θ dθ ∧ dφ+Br(r) dt ∧ dr . (2.24)

To make the notation clearer, we introduce the rescaled electric and magnetic 1-

forms,

Ẽa :=
Ea

w
, B̃a :=

Ba

w
. (2.25)

Then, the electromagnetic invariants are equal to

F = 2(B̃2
r − Ẽ2

r ) and G = 4ẼrB̃r . (2.26)

8



Generalised source-free Maxwell’s equations are

∂µ(
√
−g ⋆F µν) = 0 , (2.27)

∂µ

(√
−g (LF F

µν + LG ⋆F
µν)
)

= 0 . (2.28)

The only nontrivial components in the spherically symmetric case are ν = t, which

can be integrated to give

B̃r =
P

r2
, (2.29)

LFẼr − LGB̃r = − Q

4r2
, (2.30)

where the integration constants are fixed by the definition of Komar integrals (2.21).

There are two linearly independent components of Einstein’s equation, which, for

w = 1, read

(r(f − 1))′ = 2r2
(
L + 4(LFEr − LGBr)Er

)
, (2.31)

(r2f ′)′ = 4r2
(
L − 4(LFBr + LGEr)Br

)
. (2.32)

2.2 NLE Lagrangians

We can systematically categorise NLE Lagrangians into two classes: Lagrangians

that depend on invariant F only belong to the F-class, while Lagrangians that

depend on both F and G invariants are members of the FG-class. One could argue

that physically reasonable NLE theories should behave as Maxwell’s when the fields

are weak. Formally, we say that the Lagrangian density obeys the Maxwellian weak

field limit if LF → −1/4 and LG → 0 as (F,G) → (0, 0).

Maxwell’s theory exhibits two symmetries, invariance with respect to SO(2) elec-

tromagnetic duality rotations and conformal invariance in four dimensions. Gener-

alised electrodynamic theories will not necessarily share these properties, implying

that the underlying symmetries will exist only if additional constraints are imposed.

In the context of nonlinear electrodynamics, SO(2) rotations correspond to

Z ′
ab = Zab cos θ + ⋆Fab sin θ ,

⋆F ′
ab = ⋆Fab cos θ − Zab sin θ. (2.33)

Such transformations will not necessarily convert generalised Maxwell’s equations

into each other due to a nonlinear relation between Zab and Fab. The question of
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SO(2) invariance boils down to finding the condition that leaves Z ′
ab in the same

functional form, i.e., Z ′
ab(F

′) = Zab(F ). We recapitulate the derivation of the nec-

essary and sufficient condition following the steps presented in [68]. For an NLE

Lagrangian defined as a function of F and G, we have

∂L

∂Fab

= LF

∂F

∂Fab

+ LG

∂G

∂Fab

. (2.34)

If we consider Fab and Fba as linearly dependent, i.e.,

∂Fcd

∂Fab

= δ a
c δ

b
d − δ b

c δ
a

d , (2.35)

we get

∂F

∂Fab

= gcegdf
∂(FcdFef )

∂Fab

= 4F ab, (2.36)

∂G

∂Fab

=
1

2
ϵcdef

∂(FcdFef )

∂Fab

= 4⋆F ab. (2.37)

Using these expressions, we can relate (2.34) to Zab,

∂L

∂Fab

= −Zab. (2.38)

By varying the Eq. (2.38), we arrive at

1

2
δFcd

∂

∂Fcd

(
∂L

∂Fab

)
= −δZab, (2.39)

since δ = d/dθ. Infinitesimal transformations (2.33) are of the form

δFab = ⋆Zab , (2.40)

δZab = ⋆Fab . (2.41)

Then, Eq. (2.39) becomes

⋆F ab = −1

2
⋆Zcd

∂2L

∂Fcd∂Fab

=

= −1

4
ϵcdefZ

ef ∂2L

∂Fcd∂Fab

=

=
1

4
ϵcdef

∂L

∂Fef

∂2L

∂Fcd∂Fab

=

=
1

8

∂

∂Fab

(
ϵcdef

∂L

∂Fcd

∂L

∂Fef

)
=

10



= −1

4

∂

∂Fab

(
⋆Zcd

∂L

∂Fcd

)
, (2.42)

where we used the symmetries of the Levi-Civita tensor to show that ϵcdef = ϵefcd.

After the integration of (2.42) we get the SO(2) invariance condition,

⋆ZabZ
ab − G = C , (2.43)

where C is a constant that necessarily vanishes for Lagrangians obeying the Maxwellian

weak field limit.

Conformal transformations are defined as gab(x) → g̃ab(x) = Ω2(x)gab(x), where

Ω(x) is some smooth function. The important consequence of conformal invariance is

the vanishing of the trace of the energy-momentum tensor, at least for classical fields

[131]. The variation of the action under an infinitesimal conformal transformation,

δgab(x) = −2gab(x)δΩ(x), gives us

δS =

∫
δS

δgab
δgabϵ = −

∫
2
δS

δgab
gabδΩϵ =

∫ √
−gTabgabδΩϵ , (2.44)

where in the last step we recognised the definition of the energy-momentum tensor

(C.1). If the action is conformally invariant, we have δS = 0 and it follows that T =

Tabg
ab = 0 since the function δΩ is arbitrary. Conversely, T = 0 immediately implies

conformal invariance. Note that conformal transformation should be distingushed

from conformal isometry associated to a diffeomorphism of a given manifold M (for

details, see Appendix D of [187]).

In the rest of the section, we list the most prominent examples of NLE theories,

discuss their motivation and main properties.

2.2.1 FG-class Lagrangians

Euler-Heisenberg Lagrangian

Euler and Heisenberg considered 1-loop QED corrections to classical Maxwell’s

theory and formulated a nonlinear electromagnetic Lagrangian that describes vac-

uum polarisation effects [86]. A paradigmatic process described within Euler-Heisen-

berg effective theory is light by light scattering, γγ → γγ, recently observed ex-

perimentally by the ATLAS Collaboration [1]. We will derive the effective Euler-

Heisenberg Lagrangian in the low energy limit [52]. The complete result at the

one-loop level, obtained by Euler and Heisenberg, is given in the integral form as

L =
1

2(2π)2

∫ ∞

0

ds

s3

(
e2EBs2coth(esE)cot(esB)−

11



− 1 − e2

3
(E2 −B2)s2

)
eis(m

2
e−iη), (2.45)

where e is the electron charge, me its mass and E and B are the electric and magnetic

fields, respectively. In the weak field regime, we have

coth(eEs)cot(eBs) ≈
(

1

eEs
+
eEs

3
+

(eEs)3

45
+ ...

)
×

×
(

1

eBs
− eBs

3
− (eBs)3

45
+ ...

)
. (2.46)

We see that the integral (2.45) is already regularised since the divergent terms

proportional to s−3 and s−1 are cancelled by corresponding counterterms, which

leaves us with

L = − e4

360π2

∫ ∞

0

dsse−is(m2
e−iη)(B4 + 5B2E2 + E4) =

=
α2

360m4
e

(
4F2 + 7G2

)
, (2.47)

where α = e2/(4π) is the fine structure constant. In the last step we took the limit

in which the regularising parameter η goes to zero. The total effective Lagrangian

is given by the Maxwell term and the calculated one-loop correction,

L (EH) = −1

4
F +

α2

360m4
e

(
4F2 + 7G2

)
+O(α3) . (2.48)

Even though the electric field of a point charge in Euler–Heisenberg theory diverges

as r → 0, its self energy is finite [43]. Accordance with the Maxwellian weak field

limit is obvious from the form of the Lagrangian (2.48).

Born-Infeld Lagrangian

In order to regularise singularities in the electric field and the energy of a point

charge appearing within Maxwell’s electrodynamics, Max Born proposed a phe-

nomenological F-class NLE Lagrangian [20]

L (tBI) = b2

(
1 −

√
1 +

F

2b2

)
, (2.49)

which he subsequently, together with Leopold Infeld, extended to an FG-class NLE

12



Lagrangian [21] of the form

L (BI) = b2

(
1 −

√
1 +

F

2b2
− G2

16b4

)
. (2.50)

We can prove the finiteness of the electric field and the energy of the point charge

explicitly. The electromagnetic field tensor corresponding to a spherically symmetric

and static configuration with only electric charge present is

F = −E(r)dt ∧ dr , ⋆F = E(r)r2 sin2 θ dθ ∧ dϕ . (2.51)

In the absence of the magnetic field, the derivative of L (BI) with respect to F is

equal to

LF = −1

4

1√
1 + F

2b2

= −1

4

1√
1 − E(r)2

b2

. (2.52)

The 2-form F (2.51) has to satisfy generalised Maxwell’s equations, the second of

which becomes

d

(
E(r)r2√

1 − E(r)2/b2

)
= 0 , (2.53)

and implies that the term in parenthesis is a constant with its value defined by

Komar’s integral for electric charge (2.21). Finally, we obtain the electric field

E(r) =
Q√

r4 + (Q/b)2
, (2.54)

which is manifestly finite as r → 0. This expression gives a clear physical interpreta-

tion of the regularising parameter b as the upper limit of the electric field strength.

To calculate the total energy ϵ, defined as ϵ = 4π
∫∞
0
T 00r2dr, first we have to

evaluate the relevant component of the energy-momentum tensor,

T 00 =
1

4π

(
−b2

(
1 −

√
1 − E(r)2/b2

)
+

E(r)2√
1 − E(r)2/b2

)
. (2.55)

The solution of the integral is given in terms of gamma functions and can be nu-

merically evaluated,

ϵ = −
√
bQ3/2

2
√
π

Γ

(
−3

4

)
Γ

(
5

4

)
= 1.236 , (2.56)
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thereby demonstrating that the total self-energy of a point charge is finite.

The interest in Born-Infeld Lagrangian was reignited when it appeared as an

effective action in the low energy limit of bosonic string theory and various su-

persymmetric theories [62, 165]. The string tension α′ is inversely related to the

Born-Infeld parameter b via 2πα′ = 1/b [183]. It is worth noticing that the Born-

Infeld Lagrangian behaves in accordance with the Maxwellian weak field limit and

is invariant with respect to electromagnetic duality rotations (2.33).

ModMax Lagrangian

The guiding principle in deriving the novel ModMax Lagrangian [8, 61] was the

preservation of the original symmetries of Maxwell’s electrodynamics. It is a unique

1-parameter modification of Maxwell’s theory that is both conformally invariant and

invariant with respect to SO(2) duality transformations,

L (MM) =
1

4

(
−F cosh γ +

√
F2 + G2 sinh γ

)
. (2.57)

To preserve causality, the dimensionless parameter γ should be nonnegative [8].

Notice that for γ = 0 we recover Maxwell’s Lagrangian.

Although the original derivation of ModMax theory is based on Hamiltonian

formalism [8], we will follow a more direct approach [111]. First, we impose the

conformal invariance condition, that is, T = 0, which for NLE theories becomes

L − LFF − LGG = 0 . (2.58)

The electromagnetic duality invariance (2.43) condition with constant C set to zero

yields

16L 2
FG− 32LFLGF − 16L 2

G G = G . (2.59)

After multiplying it by G and eliminating LG by using (2.58), we have

16(
√

F2 + G2LF − L )(
√
F2 + G2LF + L ) = G2 . (2.60)

The equation above defines a nonlinear partial differential equation, which can be

easily solved with an ansatz of the form

L = αu+ βv , (2.61)

where u =
√
F2 + G2 and v = F. New variables u and v are independent everywhere

except at G = 0, which is a singular point of the SO(2) invariance condition. That
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being the case, u and v are well adapted to the problem in question. Since the

trace T vanishes, the sought Lagrangian satisfies Euler’s theorem for homogeneous

functions of degree 1 in variables F and G. This assertion justifies our choice of

ansatz (2.61). Taking into account that LF = β + (v/u)α and inserting the ansatz

back into (2.60), we have

16(α2 − β2)(v2 − u2) = u2 − v2. (2.62)

The solution of the equation above is

α = ±1

4
sinhγ, β = ±1

4
coshγ. (2.63)

If both α and β are negative, such Lagrangian is unbounded from below, so we dis-

card this solution. The choice β = 1/4 is not consistent with Maxwell’s Lagrangian,

which should be restored for γ = 0. The only possibility left is α =
1

4
sinhγ and

β = −1

4
coshγ, and eventually, we obtain ModMax Lagrangian (2.57).

2.2.2 F-class Lagrangians

Ayón-Beato-Garćıa Lagrangian

For many years after its proposal, the regular Bardeen black hole [9] was devoid

of a proper physical interpretation. Eventually, Ayón–Beato and Garćıa identified

the matter source that gives rise to the Bardeen solution as an F-class NLE theory,

L (ABG) =
3µ

g3

(
g
√

2F

2 + g
√

2F

)5
2

. (2.64)

Ayón-Beato-Garćıa Lagrangian contains two parameters, µ and g, which can a pos-

teriori be equated with the black hole mass M and magnetic charge P , respectively.

Power Maxwell Lagrangian

The conformal invariance of Maxwell’s theory is lost whenever the number of

spacetime dimensions differs from four. Therefore, in order to derive the higher-

dimensional analogues of Reissner–Nordström black holes, a new conformally in-

variant source was proposed in [78]. As its name suggests, the power-Maxwell La-
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grangian is equal to the arbitrary power of invariant F,

L (pM) = CFs , (2.65)

where C and s are real constants. The conformal invariance is achieved if s is set to

d/4, where d stands for the spacetime dimension. In that case, the power-Maxwell

energy-momentum tensor

Tab =
C

4π
(Fd/4gab − dFd/4−1FacF

c
b ) , (2.66)

is indeed traceless, which confirms the former claim. The authors in [78] pointed

out that this is the only conformally invariant F-class NLE Lagrangian, a unique

solution of the equation πT = 0 = dL − 4LFF. On the other hand, by discarding

the conformal invariance condition, i.e., by allowing s to attain arbitrary values, one

can find a richer variety of black hole solutions [79].

Null-electromagnetic fields in power-Maxwell theory [78, 79] are examples of

stealth field solutions [171], and they also belong to a larger family of the so-called

universal electromagnetic fields [137, 138, 94]. These configurations got their name

due to the fact that they automatically solve equations within various generalisa-

tions of Maxwell’s theory.

Other NLE Lagrangians

The family of NLE Lagrangians has grown significantly since the appearance

of Born–Infeld and Euler–Heisenberg theories during the infant stage of quantum

field theory. Motivation often stems from searching for gravitating solutions with

intriguing characteristics. For example, rational [115] and exponential [112] F-class

Lagrangians render regular magnetically charged black hole solutions, while hyper-

bolic tangent Lagrangian [5] gives a regular electrically charged black hole, with the

caveat that it does not respect the Maxwellian weak field limit. New NLE theories

have also been constructed with the purpose of altering the properties of existing

cosmological models. Important classes of gravitational solutions can be found ana-

lytically within the newly introduced RegMax Lagrangian [178, 75], which is another

example of a NLE theory that regularises point charge singularities.

2.3 Exact solutions

Various uniqueness theorems limit the diversity of black hole spacetimes in

Einstein-Maxwell theory [103, 126]. These constraints may be circumvented by
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replacing Maxwell’s electrodynamics with its NLE modifications, which enable the

construction of novel charged black hole solutions. In the following section, we give

an overview of exact solutions sourced by NLE fields, including examples of regular

black holes, black holes emerging from well-motivated NLE theories and discuss the

implications of NLE fields on cosmological spacetimes.

Bardeen black hole and its generalizations

In an attempt to address the question of how general the formation of black

hole singularities is, Bardeen [9] wrote an “ad hoc” ansatz that represents a regular

modification of the Schwarzschild black hole,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2θdϕ2) , (2.67)

with

f(r) = 1 − 2µr2

(r2 + g2)3/2
. (2.68)

The absence of a Schwarzschild-like curvature singularity can be confirmed by eval-

uating scalar quantities such as Ricci scalar R, “Ricci squared” RabR
ab and Kre-

tschmann scalar RabcdR
abcd. The asymptotic expansion of the metric function

gtt = −1 + 2µ/r − 3µg2/r3 +O(1/r5)

allows one to interpret parameter µ as the black hole’s mass M , while the meaning

of the regularising parameter g is not immediately clear.

One physical explanation of this solution came in the form of the aforementioned

Ayón-Beato-Garćıa Largangian [6]. The Bardeen black hole can be derived starting

from a standard ansatz representing static and spherically symmetric spacetime

(2.22) and the electromagnetic field tensor with only the magnetic part present

(2.23),

F = Brr
2 sin θ dθ ∧ dϕ . (2.69)

The first Maxwell’s equation,

dF =
∂(Br(r)r

2)

∂r
sin θ dr ∧ dθ ∧ dϕ = 0 , (2.70)

is satisfied if Br(r)r
2 = const. We may set the arbitrary constant to g and calculate

the Komar integral

P =
1

4π

∮
S

F =
g

4π

∫ 2π

0

∫ π

0

sinθdθdϕ = g, (2.71)
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in order to identify g with the magnetic charge P . After inserting the Lagrangian

(2.64) into the Gt
t = T t

t component of the gravitational-NLE equation (2.31),

(r(f(r) − 1))′ = 2r2L (F) =
6Mr2

g6

(
Pg

r2 + Pg

)5/2

, (2.72)

and demanding that limr→∞f(r) = 1, integration of (2.72) gives us

f(r) = 1 − 2Mr2

(P 2 + r2)3/2
. (2.73)

Following the steps from [6], we successfully recovered the Bardeen metric, hence

confirming its interrelation with the Ayón-Beato-Garćıa Lagrangian.

A regular electrically charged black hole may be constructed by modifying the

Bardeen metric,

f(r) = 1 − 2µr2

(r2 + q2)3/2
+

q2r2

(r2 + q2)2
, (2.74)

and evaluating the corresponding NLE Lagrangian as a function of the electro-

magnetic invariant F [4]. This construction, however, implicitly uses different La-

grangians in different areas of spacetime, as was pointed out in [27].

ModMax black holes

We are looking into the effects that ModMax theory exerts on Reissner-Nordström-

like black holes. The static and spherically symmetric solutions of the Einstein-

ModMax equation

Rµν −
1

2
gµνR = 8π

(
coshγ − sinhγ

F√
F2 + G2

)
T̃µν (2.75)

were derived in [61].

a) Electrically charged black hole

The electrically charged solution can be obtained without solving the complete

equation of motion explicitly. Namely, in spherically symmetric spacetime, P =

0 implies the vanishing of the magnetic field (2.29), hence G = 0. The second

Maxwell’s equation (2.30) returns the electric field,

Er =
Qe−γ

r2
, (2.76)
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while ModMax Lagrangian attains the form

L (MM) = −1

4
F(coshγ + sinhγ) =

Q2e−γ

2r4
. (2.77)

For the purpose of finding the black hole solution, we can make the identifica-

tion L (MM) = e−γL (Max) = e−γQ2/(2r4), where Q is the charge of the Reissner-

Nordström black hole. This in turn implies that the charge of the ModMax black

hole gets redefined and we can simply read it off from (2.77) as Q̃ = Qe−γ/2. Con-

sequently, the metric function remains the same as in the Reissner-Nordström case,

provided that we make the substitution Q→ Q̃,

fe(r) = 1 − 2M

r
+
Q2e−γ

r2
. (2.78)

Constant γ can be interpreted as a charge screening factor.

b) Magnetically charged black hole

After setting Er = 0 in (2.23) and evaluating ModMax Lagrangian density as

L (MM) = −e−γP 2/(2r4), we may solve the Einstein-NLE equation (2.31) to get

fm(r) = 1 − 2M

r
+
P 2e−γ

r2
. (2.79)

Again, the charge screening effect is apparent.

c) Dyonic black hole

Due to the electromagnetic duality invariance, we may immediately superpose

the electric and magnetic solution to obtain

fd(r) = 1 − 2M

r
+

(Q2 + P 2)e−γ

r2
. (2.80)

Although the mass of the Reissner-Nordström black hole must exceed its charge to

avoid the formation of naked singularities, for the ModMax black hole there is no

such restriction. The inner and outer horizons of the electrically charged ModMax

black hole are defined by

r± = M ±
√
M2 − (Q2 + P 2)e−γ , (2.81)

which implies that the extremal configuration has Mext =
√
Q2 + P 2e−γ/2. For

γ > 0, the charge of the black hole is greater than its mass.

Notice that neither of these black holes is regular in the sense of the absence of

curvature singularities.
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Born–Infeld black holes

Due to its regularising effect on electrodynamics, it was speculated that Born–

Infeld theory might smooth out curvature singularities when coupled to gravitation.

Exact black hole solutions found in a series of papers [64, 160, 51, 60, 30, 85] exclude

this option and disclose other implications of Born–Infeld theory.

The solution describing the electrically charged Born-Infeld black hole adapted

to the standard ansatz (2.22) is given by

f(r) = 1 − 2M

r
+

2b2r2

3

(
1 −

√
1 +

Q2

b2r4

)
+

4Q2

3r2
2F1

(
1

4
,
1

2
,
5

4
,− Q2

b2r4

)
, (2.82)

where 2F1(a, b, c; z) is the hypergeometric function. In the asymptotic regime, the

first correction to the Reissner-Nordström behaviour is of the order r−6 and propor-

tional to the parameter b.

A similar solution in terms of hypergeometric function is obtained for the mag-

netically charged Born-Infeld black hole,

f(r) = 1 − 2M

r
− 2b2r2

3

(
2F1

(
−3

4
,−1

2
,
1

4
,− P 2

b2r4

)
− 1

)
. (2.83)

The results can be generalised by considering an arbitrary number of spacetime di-

mensions [30, 51] or modified gravitational theories [87, 203]. An exhaustive study

on thermodynamic properties and phase transitions of (A)dS Born-Infeld black holes

has been conducted in [30, 51].

Euler–Heisenberg black holes

The influence of the effective Euler-Heisenberg Lagrangian on nonrotating and

asymptotically flat black holes has been studied in [202, 159]. Compared to the

standard Maxwell case, black hole quantities such as horizon area and energy acquire

QED corrections represented by a series expansion in powers of α. Starting from

the metric (2.22) with w(r) = 1, we will single out three distinct cases and truncate

the results at the leading order of α [159].

a) Electrically charged black holes

The approximate solution of Maxwell’s equation (2.30) up to the α2 order is

given by

E(r) =
Q

r2
− α2

360m4
e

64Q3

r6
+O(α3) . (2.84)
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Integration of Einstein’s equation (2.31) determines the metric function f(r),

f(r) = 1 − 2M

r
+
Q2

r2
− α2

360m4
e

32Q4

5r6
+O(α3) . (2.85)

Euler-Heisenberg Lagrangian introduces a charge-screening effect emerging from the

vacuum polarisation. Consequently, the black hole horizon area increases compared

to the Reissner-Nordström one, while the total energy decreases [159]. Further

generalisation of this solution can be made by including the cosmological constant

[122].

b) Magnetically charged black holes

For Er = 0 and magnetic field given by (2.29), the metric function f(r) is equal

to

f(r) = 1 − 2M

r
+
P 2

r2
− α2

360m4
e

32P 4

5r6
+O(α3). (2.86)

Again, the horizon area increases in comparison with the magnetically charged

Reissner-Nordström black hole, while the total energy is smaller due to the vac-

uum polarisation effect.

c) Dyonic black holes

With both types of charges present and LG ̸= 0, the electric and magnetic fields

are no longer independent (2.30). Evaluation of the NLE Maxwell’s equations up to

the α2 order returns

E(r) =
Q

r2
− α2

360m4
e

64Q3

r6
− α2

360m4
e

160QP 2

r6
+O(α3) , (2.87)

B(r) =
P

r2
, (2.88)

while Einstein’s equation (2.31) gives us

f(r) = 1 − 2M

r
+
Q2

r2
+
P 2

r2
− α2

360m4
e

32(P 4 + 5P 2Q2 +Q4)

5r6
+O(α3) . (2.89)

If both charges are equal,we get

f(r) = 1 − 2M

r
+

2Q2

r2
− α2

360m4
e

224Q4

5r6
+O(α3) , (2.90)

which shows that the QED correction is greater than in the individual electric or

magnetic cases because of the combined screening effect on both charges.
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Cosmological solutions

In the context of cosmology, some NLE theories have appeared as dark energy

mimickers or have succeeded in regularising the initial cosmological singularity. As

an illustration, we may take the Friedman–Robertson–Walker model

ds2 = −dt2 + a2(t)

(
dr2

1 + kr2
+ r2dθ2 + sin2θdϕ2

)
, (2.91)

where a(t) is the scale factor and k ∈ {−1, 0, 1}, depending on whether the universe

is closed, flat or open. The evolution of the scale factor depends on the density ρ

and pressure p of the matter permeating the universe,

ä

a
= −4π

3
(ρ+ 3p) . (2.92)

Since NLE theories may violate some of the energy conditions, the sign of the com-

bination ρ + 3p is not predetermined, which will be important in discussing the

accelerated expansion of the universe.

A singularity will necessarily form at the initial time t0 whenever a(t0) = 0,

which is the case in Maxwell’s electrodynamics [48]. In [48] and [31], the authors

considered a FRW universe filled by an Euler–Heisenberg-like matter source

L = −1

4
F + αF2 + βG2 , (2.93)

where α and β are constants. In the simplest case, with the energy-momentum

tensor identified as a perfect fluid, the scale factor can be expressed in a closed form

a2(t) ∼
√

(t2 + α) . (2.94)

Since the scale factor is always nonzero, the cosmological singularity is absent.

Another concept can be demonstrated in this example. At the early stages, the

sum ρ+ 3p becomes negative, which is the mechanism responsible for the inflation.

The same effect has been noticed for different types of F-class NLE Lagrangians

[135, 139]. Apart from highly symmetric FRLW universes, some anisotropic Bianchi

spaces with Born-Infeld NLE Lagrangian are also singularity-free [65].

Power-Maxwell black holes

A class of static and spherically symmetric higher-dimensional black holes emerg-

ing from the conformally invariant power-Maxwell Lagrangian was derived in [78].
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The line element in d = 4 + 4p dimensions with p ∈ N is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

4p+2 , (2.95)

where dΩ2
4p+2 denotes the metric of a unit (4p+ 2)-dimensional sphere. Solving the

coupled Einstein-NLE system of equations yields the metric function

f(r) = 1 − A

r4p+1
+

B

r4p+2
, (2.96)

which is split into mass and charge terms, and the radial electric field

E =
C

r2
. (2.97)

Curiously, the electric field is independent of the spacetime dimension; moreover, its

form agrees with the Reissner-Nordström solution. The unknown constants A, B

and C are determined via Komar integrals for mass [110] and charge (2.21). Finally,

to ensure that the obtained solution really represents a black hole, the values of the

constants have to be further constrained. With the appropriate choice, there are

two horizons shielding a curvature singularity at r = 0.

Power-Maxwell black holes differ from charged Tangherlini solutions [180], which

are higer-dimensional Einstein-Maxwell black holes, in two main points. Tangherlini

black holes do not have vanishing scalar curvature as their source is not conformally

invariant in d > 4, also, the exponent of the charge term in the metric function

differs from the one in the power-Maxwell solution.

By dropping the conformal invariance condition, one may find a wide range of

black hole spacetimes with different asymptotic behaviour [79]. Among them are

solutions that asymptotically approach Minkowski spacetime with various powers of

1/rn, non-asymptotically flat solutions that generalise Schwarzschild-(anti)-de-Sitter

spacetimes and solutions containing logarithmic dependence in metric coefficients.

Other black hole solutions

The family of charged black hole solutions is proliferating further in parallel

with the introduction of new NLE theories. The associated black hole solutions

are analysed from different perspectives, including their thermodynamic properties,

stability and, as emphasised before, regularity. Another often-adopted recipe for

finding new solutions consists of imposing a certain metric ansatz, evaluating the

energy-momentum tensor and reconstructing the NLE theory in a coordinate form

rather than as a functional of electromagnetic invariants. Unfortunately, the phys-
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ical significance of Lagrangians engineered in this manner, apart from producing

specific solutions, is generally unclear.

2.4 Energy conditions

There is strong experimental evidence that supports the local positivity of energy

density and its prevalence over pressure. These ideas are encapsulated by mathemat-

ical statements known as energy conditions [45]. We say that the energy-momentum

tensor obeys:

a) dominant energy condition (DEC) if Tabu
avb ≥ 0 for all future directed timelike

vectors ua and va. Equivalently, −T a
b v

b is future directed and causal for any future

directed timelike vector va,

b) weak energy condition (WEC) if Tabv
avb ≥ 0 for any timelike vector va,

c) strong energy condition (SEC) if Tabv
avb ≥ 1

2
Tgabv

avb for any timelike vector va,

d) null energy condition (NEC) if Tabl
alb ≥ 0 for any null vector la.

Not all energy conditions are mutually independent but are related by the following

implications:

DEC ⇒ WEC ⇒ NEC ⇐ SEC.

Maxwell’s energy-momentum tensor satisfies DEC and, since it is traceless, SEC.

The proof is most easily carried out using spinorial approach. For any pair of spinors

κA, λA and the corresponding pair of future directed null vectors, kAA′
= κAκA

′
and

lAA′
= λAλ

A′

, we have

T (Max)

ABA′B′k
AA′

ℓBB′
=

1

2π
ϕABϕA′B′κAκA

′
λBλ

B′

=

=
1

2π

∣∣ϕABκ
AλB

∣∣2 ≥ 0 . (2.98)

Since any future directed causal vector is a sum of a pair of future directed null

vectors, it follows that T (Max)

ab uavb ≥ 0 for any pair of future directed causal vectors

ua and va. Note that by the implications, Maxwell’s energy momentum tensor

satisfies all of the energy conditions listed.

Energy conditions are the pillars of many foundational results in gravitational

theory, such as the laws of black hole thermodynamics and singularity theorems.

For this reason, they have to be closely examined in the case of NLE fields. Com-

plementing the previous results [146, 50], we have proven the following theorem for

the NLE-energy momentum tensor [14].
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Theorem 2.1. The NLE energy-momentum tensor, in η = −1 signature 3 satisfies

� NEC if and only if LF ≤ 0;

� DEC if and only if LF ≤ 0 and T ≤ 0;

� SEC if LF ≤ 0 and T ≥ 0.

Proof:

Contraction of the energy-momentum tensor (2.8) with two null vectors la is

Tabl
alb = −4LFT̃abl

alb +
1

4
Tgabl

alb = −4LFT̃abl
alb. (2.99)

Then, recalling the fact that Maxwell’s energy-momentum tensor obeys NEC, it

immediately follows that for LF ≤ 0, Tab satisfies NEC. The same reasoning holds

for the “if” direction in DEC and SEC cases. Namely, for the pair of future-directed

timelike vectors ua and va we have

Tabu
avb = −4LFT̃abu

avb +
1

4
Tgabu

avb . (2.100)

Since uava ≤ 0 for future-directed timelike vectors and Maxwell’s tensor satisfies

DEC, if LF ≤ 0 and T ≤ 0, the total NLE energy momentum tensor also obeys

DEC. By the analogous arguments, given that LF ≤ 0 and T ≥ 0 hold, we have the

following inequality for the future-directed timelike vector va,

Tabv
avb − 1

2
Tgabv

avb ≥ −4LFT̃abv
avb − 1

4
Tgabv

avb ≥ 0, (2.101)

which demonstrates the validity of SEC.

For the converse direction in the NEC case, we have to prove the existence

of a future directed null vector ℓa, such that T̃abℓ
aℓb > 0. By employing spinor

representation (the details are presented in Appendix B), we decompose both the

electromagnetic spinor as ϕAB = α(AβB) and the vector la as ℓAA′
= ±λAλA

′

, where

the sign is chosen such that la is future directed. In the algebraically general case

we can choose an auxiliary spinor λA = αA +βA, such that λAαA ̸= 0 ̸= λAβA, while

in the algebraically special case λA may be any spinor such that λAαA ̸= 0. In both

cases we have 2πT̃abℓ
aℓb =

∣∣ϕABλ
AλB

∣∣2 > 0. Finally, assuming that NEC holds, it

follows that 0 ≤ Tabℓ
aℓb = −4LFT̃abℓ

aℓb, which implies LF ≤ 0.

If the NLE energy-momentum tensor obeys either DEC or SEC, it immediately

satisfies NEC and consequently LF ≤ 0. It remains to prove that DEC implies

3For the discussion on the metric signature in the spinorial approach see Appendix B.
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T ≤ 0, which has already been discussed in [146]. The case when LF = 0 is

trivial as DEC immediately demands T ≤ 0, so we assume that LF < 0. Using

the Newman–Penrose null tetrad (B.19), we may decompose a timelike vector va as

va = aℓa + bna + cma + cma where (a, b, c) are complex numbers. For the sake of

simplicity, the normalisation is chosen such that ab = 1 + |c|2 and vav
a = −2. DEC

can be written as (T a
b v

b)(Tacv
c) ≤ 0, which is after a lengthy calculation reduced

to an inequality

S + (1 + 2|c|2)LFT ≥ 0, (2.102)

where S is a quantity which does not depend on the parameters (a, b, c). We will

present the main points of its derivation. The idea is to build the Newman–Penrose

tetrad (B.19) from the principal spinors of the symmetric electromagnetic spinor

ϕAB = α(AβB),

ℓa = αAαA′
, na = βAβ

A′

, ma = αAβ
A′

, ma = βAαA′
. (2.103)

Then, we have to calculate the following terms,

(T a
b v

b)(Tacv
c) = 16L 2

F T̃
a
b T̃acv

bvc − 2LFT T̃abv
avb +

1

16
T 2vava. (2.104)

From the auxiliary result,

T̃abv
a =

1

8π
(αAβB + αBβA)

(
αA′βB′ + αB′βA′

)
vAA′

=

=
1

8π
(ℓanb +mamb +mamb + naℓb) (aℓa + bna + cma + cma) =

=
1

8π
(−aℓb − bnb + cmb + cmb), (2.105)

we get

T̃abv
avb =

1

4π
(ab+ |c|2) =

1

4π
(1 + 2|c|2) (2.106)

and

T̃ a
b T̃acv

bvc =
1

32π2
(−ab+ |c|2) = − 1

32π2
. (2.107)

Setting T > 0 in (2.102) would lead to a contradiction as we may choose arbitrarily

large |c|.
We can examine the implications of theorem 2.1. on two prominent NLE theories.

In Born-Infeld theory, we have the following expressions,

L (BI)

F = − 1

4W
, πT (BI) =

4b2(W− 1) − F

4W
, (2.108)
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with

W :=

√
1 +

F

2b2
− G2

16b4
. (2.109)

It can be easily seen that LF ≤ 0, so NEC is satisfied. As 2
√
x− y ̸= 2

√
x ̸= x+ 1

for nonnegative x and y ̸= x, we have 2W ≤ 2 + (F/2b2), implying that T (BI) ≤ 0.

Born-Infeld theory also obeys DEC.

In Euler-Heisenberg theory, we have

L (EH)

F = −1

4
+

8α2

360m4
e

F

and

πT (EH) = − α2

360m4
e

(
4F2 + 7G2

)
. (2.110)

We can conclude that Euler-Heisenberg theory obeys both DEC and NEC for elec-

tromagnetic fields with F ≤ 45me
4/4α2. Fields whose strength is above this limit

are not of interest, as they exceed the weak field regime in which the effective Euler-

Heisenberg Lagrangian is valid.

Furthermore, SEC is satisfied for null electromagnetic fields in both theories.

Generally, we can add an arbitrary constant to a NLE Lagrangian such that L (0, 0) =

0. Then, if L is differentiable at the origin of the F–G plane, the trace of the

energy-momentum tensor vanishes for null electromagnetic fields. In other words,

null electromagnetic fields in theories obeying LF ≤ 0 immediately satisfy both

DEC and SEC.
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Chapter 3

Schwarzschild spacetime immersed

in NLE fields

3.1 Wald’s solution

Electrovacuum uniqueness theorems pioneered by Israel [103] and Mazur [126]

are established for black hole configurations that harbour their own electromag-

netic fields. Here we are interested in a different scenario in which a black hole

is surrounded by external electromagnetic sources. Apart from purely theoretical

interest, this setting is relevant for astrophysical black holes surrounded by elec-

tromagnetic fields emanating from accretion discs or a wider galactic environment.

The behaviour of external electromagnetic fields on a black hole background with

a certain degree of symmetry was studied by Wald [189], who derived an analytic

form of the electromagnetic field tensor for a rotating black hole placed in an initially

uniform magnetic field. We will briefly recapitulate Wald’s approach for Maxwell’s

case before turning to the NLE challenges.

Wald’s solution is based on the fact that the Killing vector fields can be used as

gauge potential in vacuum spacetimes, as was shown by Papapetrou [141]. To see

this, we have to prove that they satisfy source-free Maxwell’s equations:

dF = 0 and d⋆F = 0 . (3.1)

Let Ka be a Killing vector field defined on a spacetime (M, gab) and F = dK a

corresponding electromagnetic 2-form. The first Maxwell’s equation is immediately

satisfied as F is an exact form. To prove the latter claim, we invoke the Killing
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lemma which relates the Killing vector fields to the Ricci curvature tensor [187],

d⋆dK = 2⋆R(K) . (3.2)

In a vacuum spacetime, the Ricci tensor vanishes and we obtain the second Maxwell’s

equation (3.1). The electromagnetic fields constructed in this way are called test

fields since they do not affect the spacetime metric.

Wald imposed several physical constraints that uniquely determine the electro-

magnetic field tensor F. First, it is assumed that the spacetime admits two mutually

commuting Killing vector fields, timelike and axial, denoted respectively by ka and

ma. Furthermore, suppose that the electric and magnetic fields are symmetry in-

heriting, therefore implying that F has to be stationary and axially symmetric. In

the asymptotic region, F has to represent a uniform magnetic field of strength B0.

Matter fields, and consequently, F, have to be regular on the black hole horizon and

in the exterior region. As test fields should not alter the charges of a background

spacetime, both the electric and magnetic charges, defined by Komar’s integrals,

have to vanish.

Let us first construct the electromagnetic tensor F using the axial Killing vector

ma, Fm = dm, and check its physical interpretation [189]. As it is stationary and

axially symmetric, with [k,m]a = 0, we have

£mFm = £mdm = d£mm = 0 , (3.3)

£kFm = £kdm = d£km = 0 . (3.4)

The calculation of Komar’s charges (2.21) over a sphere at infinity gives us

P∞ =
1

4π

∮
S∞

Fm = 0 , (3.5)

Q∞ =
1

4π

∮
S∞

⋆Fm =
1

4π

∮
S∞

⋆dm = 4J , (3.6)

where in the last equality we recognise the definition of angular momentum given

by the corresponding Komar integral [96]. The electromagnetic tensor generated by

the axial Killing vector represents a stationary, axially symmetric electromagnetic

field that asymptotically behaves as a uniform magnetic field, with a nonvanishing

electric charge.

We can repeat the same procedure for the electromagnetic field tensor defined

with respect to the stationary Killing vector field, Fk = dk [189]. Again, the mag-
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netic monopole charge vanishes, but the electric charge is

Q∞ =
1

4π

∮
S∞

⋆Fk =
1

4π

∮
S∞

⋆dk = −2M , (3.7)

where the last equality is the definition of Komar’s mass. This electromagnetic

tensor differs from the former in two main points: it represents asymptotically van-

ishing electromagnetic field and the value of the electric charge is altered. Taking

into account that both electric and magnetic charges must vanish, the total elec-

tromagnetic field tensor is given as the appropriate linear combination of Fk and

Fm

F =
1

2
B∞ (2a dk + dm) , (3.8)

where the coefficients were adjusted to ensure that the Komar charges are indeed

zero. Since a = J/M , we have

Q∞ =
1

4π

∮
S∞

⋆F = B∞(−2aM + 2J) = 0 , (3.9)

and

P∞ =
1

4π

∮
S∞

F = 0 . (3.10)

This solution holds for generic axially symmetric, stationary and asymptotically

flat black holes. It can be explicitly evaluated for Kerr spacetime [189], in which

the rotation of the black hole gives rise to a nonzero electric field, reflecting as

nonvanishing invariant G.

The following sections that deal with the NLE case are based on the paper [16].

3.2 NLE case

If we wish to generalise this result to the NLE fields, we encounter several ob-

stacles. Papapetrou’s ansatz cannot be used to solve both generalised Maxwell’s

equations simultaneously. Namely, after setting F = dK, the second generalised

source-free Maxwell’s equation (2.6) is reduced to

dLF ∧ ⋆F− dLG ∧ F = 0 , (3.11)

which can be expanded further by noticing that

dLF = LFF dF + LFG dG and dLG = LGF dF + LGG dG . (3.12)
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The equation (3.11) then contains terms proportional to dF ∧ F, dG ∧ F, dF ∧ ⋆F
and dG ∧ ⋆F, which generally do not vanish. As an illustration, we have

⋆(dF ∧ ⋆F) = −iXF = −iXdK = (diX −£X)K , (3.13)

with an auxiliary vector field Xa = ∇aF. The first term vanishes since

iXK = Ka∇aF = £KF = 0 , (3.14)

as well as the Lie derivative of a Killing vector field with respect to X,

£XK
a = −£KX

a = −£K∇aF = −gab∇a£KF = 0 , (3.15)

but the same does not hold for the associated Killing 1-form,

£XKa = £X(gabK
b) = Kb£Xgab . (3.16)

It is very improbable that all such terms in equation (3.11) will cancel each other. An

alternate idea is to define the electromagnetic field tensor using a rescaled Killing

vector field, so that F = d(ψK), where ψ is some auxiliary function. The first

generalised Maxwell’s equation (2.6) is immediately satisfied, while the second one

with the current form set to zero gives

(LF ⋆dK + dLG ∧K) ∧ dψ + dLF ∧ iK⋆dψ+

+LF(⋆d£Kψ − (□ψ) ⋆K) + (dLF ∧ ⋆dK− dLG ∧ dK)ψ = 0 . (3.17)

Since both electromagnetic invariants are quadratic in ψ, (3.17) amounts to a highly

nonlinear differential equation for ψ. Being unable to find a fruitful approach that

would provide an exact solution, we resort to the perturbative scheme, expanding

around Wald’s solution.

3.2.1 Perturbative approach

Motivated by the examples from the literature, we assume that the NLE La-

grangian density is a function that allows a double Taylor series expansion,

L (F,G) =
∞∑

m,n=0

cmn F
mGn, (3.18)
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with real coefficients cmn. Terms corresponding to c00 and c01 are non-dynamical,

hence these constants can be set to zero. In accordance with the Maxwellian weak

field limit, we shall take c0 = −1/4. In a general case, a CP-violating term c11 can

be present.

Assuming that the NLE Lagrangian may be expanded with respect to the cou-

pling constant λ, we have

L (F,G) = −1

4
F + λℓ(F,G) +O(λ2) . (3.19)

Our focus will be on two prominent examples, Euler–Heisenberg and Born–Infeld

Lagrangians. Regarding the expansion in (3.19), we can make the following identi-

fications for Euler-Heisenberg theory (2.48),

ℓ(EH) = 4F2 + 7G2 and λ(EH) =
α2

360m4
e

. (3.20)

Born-Infeld theory (2.50) can be represented in the form of Eq. (3.19) after expan-

sion with respect to the coupling constant b,

L (BI) = −1

4
F +

1

32b2
(
F2 + G2

)
+ . . . , (3.21)

with

ℓ(BI) = F2 + G2 and λ(BI) =
1

32b2
. (3.22)

The similar ansatz can be used for other electromagnetic quantities, so the gauge

field Aa may be written as

Aa = Ka + λva +O(λ2) , (3.23)

where Ka is the Wald’s term and va is the sought perturbative correction. The

electromagnetic tensor is, by its definition F = dA, equal to

F = F0 + λ dv +O(λ2) , (3.24)

with F0 = dK.

This construction must satisfy generalised Maxwell’s equations at the O(λ1)

order. The first Maxwell’s equation is satisfied since

dF = dF0 + λd2v = 0 , (3.25)
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while the second one becomes

d⋆Z = −4 d(LF ⋆F− LG F) = 0 . (3.26)

The terms LF and LG can be expanded accordingly as

LF = −1

4
+ λℓF +O(λ2) , LG = λℓG +O(λ2) , (3.27)

after which we get

d⋆Z = λ (d⋆dv − 4 dℓF ∧ ⋆dK + 4 dℓG ∧ dK) +O(λ2) . (3.28)

It remains to simplify the dℓF and dℓG terms, which are the functions of the electro-

magnetic invariants F and G,

dℓF = ℓFF dF + ℓFG dG , (3.29)

dℓG = ℓGF dF + ℓGG dG . (3.30)

The electromagnetic invariants can be expanded in the same manner,

F = F0 + 2λ(dK)ab(dv)ab +O(λ2) , (3.31)

G = G0 + 2λ(⋆dK)ab(dv)ab +O(λ2) . (3.32)

The obtained master equation for va is

d⋆dv = ⋆Jeff , (3.33)

with the effective current 1-form Jeff defined by

⋆Jeff = 4(ℓFF dF + ℓFG dG)0 ∧ ⋆dK− 4(ℓGF dF + ℓGG dG)0 ∧ dK . (3.34)

The subscript “0” denotes terms evaluated for Wald’s ansatz F0 = dK, which is the

solution at the zeroth order.

As a consistency check, we can prove that ⋆Jeff is a closed form,

1

4
d⋆Jeff = (ℓFFGdG ∧ dF + ℓFGFdF ∧ dG)0 ∧ ⋆dK−

− (ℓGFGdG ∧ dF + ℓGGFdF ∧ dG)0 ∧ dK = 0 . (3.35)

The claim follows since partial derivatives commute and dF ∧ dG = −dG ∧ dF.
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The master equation can be simplified further if we notice that ℓFG term vanishes

for the model Lagrangians (2.48) and (2.50),

d⋆dv = 4(ℓFF dF)0 ∧ ⋆dK− 4(ℓGG dG)0 ∧ dK . (3.36)

One can ask whether the use of test field approximation is justified when dealing

with nonlinear electromagnetic fields, whose effects are noticed on higher energy

scales. By simple estimations of order of magnitude, we will show that there exists

a range of energies in which the electromagnetic field is strong enough to exhibit

nonlinear effects, but still weak enough not to alter the spacetime metric. If Ein-

stein’s tensor Gab is of order L−2
g , where Lg is the relevant gravitational length scale

for the problem, and the energy density of the magnetic field is B2/(2µ0), test field

approximation will hold if

L−2
g ≫ 4πGB2/(c4µ0) , (3.37)

which was obtained from Einstein’s equation. As a characteristic gravitational

length scale, we can choose the Schwarzschild radius, Lg ∼ 3(M/M⊙) · 103m,

where M⊙ is the Solar mass. The condition on the magnetic field strength is

|B| ≪ (M⊙/M) · 1015T, implying that even the strongest known magnetic fields

are within the test field regime when the black hole mass is below the order of

104M⊙.

3.2.2 Solution in Schwarzschild spacetime

Schwarzschild spacetime represents a static, spherically symmetric solution of

the vacuum Einstein’s equation. Its metric in (t, r, θ, ϕ) coordinates can be written

as [187]

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, (3.38)

with

f(r) = 1 − 2M

r
. (3.39)

We consider the general Killing vector field composed as a linear combination of a

timelike Killing vector field ka and an axial Killing vector field ma

Ka = αka + βma , (3.40)
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where α and β are real constants. The electromagnetic invariants calculated at the

zeroth order, for F0 = dK, are equal to

F0 = −8M2

r4
α2 + 8

(
1 − 2M

r
sin2 θ

)
β2 (3.41)

and

G0 = −16M
cos θ

r2
αβ . (3.42)

In Wald’s solution, parameter α was proportional to the angular momentum of a

black hole. In the case of a static spacetime, the angular momentum is equal to zero

so we may set α = 0. This choice will also a posteriori prove to be the appropriate

one for our problem. Notice that we automatically have G0 = 0, so with these

simplifications, the master equation becomes

d⋆dv = 4β(ℓFF dF)0 ∧ ⋆dm . (3.43)

A simple calculation gives us

dF0 =
16M

r2
β2 sin2 θdr − 32M

r
β2 sin θ cos θdθ , (3.44)

and finally, using (A.39),

dF0 ∧ ⋆dm =
32Mβ2 sin θ

r

(
f(r) sin2 θ − 2 cos2 θ

)
dt ∧ dr ∧ dθ . (3.45)

Relying on the symmetries of the spacetime, the appropriate ansatz for va is v =

h(r, θ) dφ. The solution is given by

v = C
(

4(2r − 5M) cos(2θ) + (M − 2r)
(
3 + cos(4θ)

))
dφ , (3.46)

with an unknown constant C. But, as

d⋆dv =
64C sin θ

r

(
f(r) sin2 θ − 2 cos2 θ

)
dt ∧ dr ∧ dθ (3.47)

it follows that C = 2β3M(ℓFF)0. We still have one undetermined constant β,

which can be fixed by the boundary conditions. On physical grounds, our solution

must respect several conditions. First, we have to check whether it really repre-

sents an asymptotically homogeneous magnetic field. Wald’s solution evaluated for
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Schwarzschild spacetime is given by

F0 =
1

2
B∞ dm = B∞

(
r sin2 θ dr ∧ dφ+ r2 cos θ sin θ dθ ∧ dφ

)
. (3.48)

The homogeneous magnetic field in Minkowski spacetime can be written as B∞dz =

B∞d(r cos θ), while the electromagnetic field tensor is

F∞ = B∞
(
r sin2 θ dr ∧ dφ+ r2 cos θ sin θ dθ ∧ dφ

)
, (3.49)

which has the same form as (3.48). Since Schwarzschild spacetime is asymptotically

flat, the expression (3.48) represents a homogeneous magnetic field. The corrected

electromagnetic tensor F = F0 + λdv will asymptotically behave as Wald’s F0,

provided that

lim
r→∞

(dv)rφ
(F0)rφ

= 0 and lim
r→∞

(dv)θφ
(F0)θφ

= 0 , (3.50)

which is fulfilled since dv is equal to

dv = − 32β3M(ℓFF)0
(

sin4 θ dr ∧ dφ+

+ (2r − 5M + (M − 2r) cos(2θ)) sin θ cos θ dθ ∧ dφ
)
. (3.51)

By comparison with Wald’s solution, we can set the normalisation to β = B∞/2, so

the final form of perturbative correction va is given by

v =
(ℓFF)0

4
B3

∞M
(

4(2r − 5M) cos(2θ) + (M − 2r)
(
3 + cos(4θ)

))
dφ . (3.52)

We also demand that the electric and magnetic charges, defined by Komar integrals,

remain equal to zero at the O(λ1) level. Since they both vanish for the basic ansatz

F0 = dK, the perturbative correction must not contribute to the integrals. The

term appearing in the definition of the electric charge is

⋆Z = ⋆F0 +
(

4(−ℓF⋆F + ℓGF)0 + ⋆dv
)
λ+O(λ2) . (3.53)

Using the fact that ℓF = 2F, ℓG = 2G, limr→∞ F0 = 8β2, (⋆F0)θφ = 0 and (⋆dv)θφ =

0, the electric charge Q∞ is zero at the O(λ1) order. The magnetic charge is defined

with respect to dF = λdv, while the relevant component that contributes to it

is (dv)θϕ, given in (3.51). Terms proportional to sin(2θ) and sin(4θ) vanish after

integration over the interval [0, π]. Hence, the magnetic charge is also unaltered by

the perturbative correction.

An alternate way of solving this problem is by introducing the magnetic scalar
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potential [168, 169, 71]. If the electromagnetic field is symmetry inheriting [199, 200,

127, 42, 152, 186, 185, 181, 46, 11] and the source-free Maxwell’s equation d⋆F = 0

holds, the magnetic field 1-form is closed,

dB[K] = diK⋆F = (£K − iKd) ⋆F = 0 . (3.54)

Then, we can locally write B = −dΨ, where Ψ is magnetic scalar potential. Fur-

thermore, if the black hole exterior is simply connected, magnetic scalar potential

is globally well-defined. As an illustration of the method, we can calculate the mag-

netic field for Wald’s solution and its corresponding scalar potential. The magnetic

field, defined with respect to the timelike Killing vector field k = ∂/∂t is

B0[k] = B∞ (cos θ dr − rf(r) sin θ dθ) , (3.55)

and the magnetic scalar potential is

Ψ0 = −B∞f(r) r cos θ . (3.56)

Note that the scalar potential is constant over the horizon, analogously to the sur-

face gravity κ [168, 169]. In this case, the gauge is chosen such that the potential

vanishes at the horizon, limr→2M Ψ0 = 0, while at the spatial infinity it approaches

limr→∞ Ψ0 = −B∞z. The NLE case can be treated in the same manner, with the

caveat that the magnetic form B is no longer closed. Nevertheless, we can define a

nonlinear 1-form H (2.17), which is closed since

dH[K] = diK⋆Z = (£K − iKd) ⋆Z = 0 , (3.57)

and its associated scalar potential Υ, via H[K] = −dΥ. A divergence identity that

defines the equation for the scalar potential can be derived in a few steps. Starting

from the auxiliary expression

δB = δik⋆F = −⋆d(F ∧ k) = −⋆(dF ∧ k) − ⋆(F ∧ dk) =

=
1

N
⋆(k ∧ E ∧ dk + ⋆(k ∧B) ∧ dk) =

1

N
iE⋆(k ∧ dk)−

− 1

N
(k ∧B|dk) = − 1

N
(B|ikdk) =

1

N
(B|dN), (3.58)

where N = kaka, dF = 0 and twist one-form ωk = −⋆(k ∧ dk) is set to zero, we
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have

∇a

(
B[k]a

N

)
=

∇aBa

N
− 1

N2
Ba(dN)a = 0. (3.59)

If we introduce a differential operator L equal to L[Ψ] = −r2f(r)∇a((∇aΨ)/N) in

Schwarzschild spacetime, the equation for axially symmetric potential Ψ is

L[Ψ] := f(r)
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0 . (3.60)

The equation can be solved by separation of variables, Ψ(r, θ) = R(r)P (cos θ). The

angular part is a Legendre differential equation, while the radial part is of the form

Rℓ(r) =
( r

2M
− 1
)(

aℓP
′
ℓ

( r
M

− 1
)

+ bℓQ
′
ℓ

( r
M

− 1
))

, (3.61)

where Pℓ is a Legendre polynomial and Qℓ is a Legendre function of the second kind.

In the NLE case, the equation (3.59) still holds, but it has to be expressed via

the nonlinear magnetic field H which is related to the magnetic scalar potential Υ.

For a purely magnetic solution, i.e. kbFab = 0, there exists a simple relation between

forms H and B:

H[k]a = kb⋆Zba = −4LFk
b⋆Fba = −4LFB[k]a , (3.62)

which gives

∇a

(
H[k]a

NLF

)
= 0 . (3.63)

Again we expand electromagnetic quantities with respect to the coupling constant

λ. We compactly write ℓ = pF2 + qG2, where (p, q) = (4, 7) for Euler–Heisenberg

Lagrangian and (p, q) = (1, 1) for Born–Infeld Lagrangian. Since LF = −1/4+2pF,

the divergence identity (3.63) gives us

∇a

(
Ha

N

)
− 16pλ∇a

(
HbH

b

N2
Ha

)
+O(λ2) = 0 . (3.64)

The expanded form of magnetic scalar potential

Υ = Ψ0 + λΨ1 +O(λ2) (3.65)

may be used in the divergence identity (3.64). This gives us a zeroth order equation
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∇a((∇aΨ0)/N) = 0, while at λ order we have

∇a

(
∇aΨ1

N

)
= 16p∇a

(
(∇bΨ0)(∇bΨ0)

N2
∇aΨ0

)
+O(λ2). (3.66)

Inserting Wald’s solution (3.56) into (3.66) yields

L[Ψ1] = 48pMB3
∞f(r) sin(2θ) sin θ . (3.67)

The suitable ansatz is of the form

Ψ1(r, θ) = f(r)
(
a(r) + b(r) cos(2θ)

)
cos θ. (3.68)

After discarding the part that grows faster than O(r1) at spatial infinity, we have

Ψ1(r, θ) = 4pB3
∞ f(r)

(
4r − 5M +M cos(2θ)

)
cos θ . (3.69)

It is straightforward but tedious to show that the magnetic field calculated from

(3.46) corresponds to the one given by the magnetic scalar potential. Combining

the two definitions of field H provides the relation between F and Υ,

−4LFk
b⋆F ba = −dΥ. (3.70)

We may perform expansion with respect to λ and compare the terms order by order.

On the left hand side of (3.70) we have

−4
(
− 1

4
+ λℓF

)
(kb(⋆dm)ba + λkb(⋆dv)ba) +O(λ2) =

=kb(⋆dm)ba − 4λℓFβk
b(⋆dm)ba + λkb(⋆dv)ba +O(λ2) =

=kb(⋆dm)ba − 8λpF0βk
b(⋆dm)ba + λkb(⋆dv)ba +O(λ2) (3.71)

By referring to (A.39) and (A.41), it is not difficult to see that the O(λ0) term is

equal to −dΨ0, while the term proportional to λ returns −dΨ1.

We can analyse the obtained correction from many different angles. For example,

we could look at the expansion of the magnetic field defined with respect to the

Killing vector field ka,

B[k] = B0[k] + λB1[k] , B1[k] := ik⋆dv , (3.72)
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explicitly, the NLE contribution is

B1[k] =4M(ℓFF)0B
3
∞

(
f(r) sin3 θ dθ−

− cos θ

r
(2r − 5M + (M − 2r) cos(2θ)) dr

)
. (3.73)

However, the magnetic field is an observer-dependent quantity. For example, the

static observer moving with the 4-velocity ua = ka/
√
−N would measure the field

B[u]a =
1√
f(r)

B[k]a . (3.74)

Therefore, it is better to analyse observer-invariant quantities, such as electro-

magnetic invariants. The first electromagnetic invariant can be decomposed as

F = F0 + δF, where δF is the first order correction. To put all the prefactors

aside, we introduce the rescaled correction

F̂1 := − 1

16B3
∞M(ℓFF)0

(dm)ab(dv)ab , (3.75)

so that

δF = −16λB4
∞M(ℓFF)0 F̂1 +O(λ2) . (3.76)

Direct calculation gives

F̂1 =
1

r
f(r) sin4 θ +

cos2 θ

r

(
(3 + f(r)) sin2 θ − 2(1 − f(r))

)
. (3.77)

Since F̂1 remains bounded as r → 2M , the solution is regular at the black hole hori-

zon. Figure1 3.1 shows the contour plots of F̂1. In the figure, it can be noticed that

there are two local maxima along circles at (rc, θ±). Their values can be obtained

analytically. From ∂rF̂1 = 0 and ∂θF̂1 = 0, we get a system of equations

48M − 7r + 4(r + 4M) cos(2θ) + 3r cos(4θ) = 0 , (3.78)

(r + 2M + 3r cos(2θ)) sin(2θ) = 0 , (3.79)

which can be simplified with a substitution x = cos(2θ). The solution in the black

hole exterior, r > 2M is

rc =
4 +

√
13

2
M , cos(2θ±) =

4
√

13 − 19

9
. (3.80)

1© IOP Publishing. Reproduced with permission. All rights reserved.
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(a) Contour plot of F̂1 [16].
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(b) Contour plot of rescaled relative correction

8β2F̂1/F0 [16].

Figure 3.1: Contour plots in r − θ plane with M = 1. The black circle in the middle

represents black hole horizon.

Approximately, these are rc ≈ 3.8M , θ+ ≈ 60.3◦ and, as cos(2(π − θ)) = cos(2θ),

θ− ≈ 119.7◦. An intriguing question is whether the astrophysical tests could de-

termine the influence of these maxima on the trajectories of the charged particles

around black holes.

If an NLE model contains a c11 term in the expansion, but the G0 = 0 condition
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is still valid, the additional term appears in the master equation,

dF0 ∧ dm = 96β2M sin3 θ cos θ dr ∧ dθ ∧ dφ . (3.81)

The new solution can be obtained by a simple modification of ansatz, Aa = βma +

λ(va + ṽa), which gives

ṽ = 2Mf(r)(cos(3θ) − 9 cos θ) dt . (3.82)

This solution does not introduce any additional charges and the magnetic field stays

asymptotically homogeneous, but alongside it there is a nonvanishing electric field

manifesting as kbFab ̸= 0, even as r → ∞.

3.2.3 Comment on neutron stars

Instead of a black hole, we can consider an idealised neutron star immersed

in a test magnetic field. The basic setup of the problem remains the same, up

to the boundary conditions which have to be matched at the star’s surface. Our

model assumes a spherically symmetric, perfectly conducting star. We neglect the

fact that the electric conductivity varies between the layers of the star, from the

superconducting core to the less conducting outer parts [39, 148].

It is well known that superconducting materials show the Meissner effect, the

total expulsion of the external magnetic field. When a superconducting ball of

radius R is placed in an external magnetic field of strength B∞, the total field is a

superposition of the external field and the one originating from the induced surface

currents, in the form of a dipole field. Junction condition B · n̂|r=R = 0, continuity

of the normal component of the magnetic field, gives the induced magnetic dipole

moment, which is in Minkowski spacetime equal to µ = −B∞R
3/2.

Let us discuss the junction condition in detail. Suppose that a static spacetime

can be foliated by spacelike hypersurfaces Σ, each of which contains a compact

spacelike 2-surface S ⊆ Σ with a normal na, representing the star’s boundary. If

the norm of the Killing vector N is continuous at S, from the divergence identity

(3.59) it follows that the normal component of the magnetic field, naBa, also has

to be continuous at S. For a superconducting star, magnetic field vanishes in its

interior, translating the condition into naBa = 0 at S. The scalar potential satisfies

the Neumann boundary condition, na∇aΨ = 0 at S.

Ginzburg and Ozernoy discussed the problem of the magnetic dipole field in

Schwarzschild spacetime [69]. Their solution is equal to the ℓ = 1 term in the scalar
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potential,

ΨGO(r, θ) =
3µ

(2M)2

(
1 + f(r) +

r

M
f(r) ln f(r)

)
cos θ . (3.83)

The lowest order term in the asymptotic expansion for large r is just a standard

dipole potential in Minkowski spacetime,

ΨGO(r, θ) =
(
r−2 +O(r−3)

)
µ cos θ . (3.84)

We can superpose (3.84) and Wald’s solution as we are considering an asymptotically

homogeneous magnetic field,

Ψ = Ψ0 + ΨGO . (3.85)

The boundary condition on the surface of a superconducting ball of radius R > 2M

is of the Neumann type,
∂Ψ(R, θ)

∂r
= 0 , (3.86)

from which we infer the induced magnetic dipole moment

µ =
(2M)2B∞

3

(
3 − f(R)

R
+

1

M
ln f(R)

)−1

. (3.87)

In order to compare this result with the flat case, the dipole moment µ can be

understood as a function of mass M and expanded in Taylor series around M = 0,

µ(M) = −B∞R
3

2
+

3B∞R
2

4
M +O(M2) . (3.88)

The two results coincide since limM→0 µ(M) = −B∞R
3/2. The linearity of Max-

well’s equations enables us to superpose an internal star’s magnetic field to this

solution.

The nonlinear case demands special care, as we have to adjust the boundary

condition. Namely, the relation between 1-forms B and H is given by (3.62). If LF

is finite at S, the boundary condition naBa = 0 at S implies naHa = 0. Written with

respect to the potential, the boundary condition becomes na∇aΥ = 0. As the seed

solution we may take Ψ = R(r) cos θ, then the linearized equation for the potential

(3.66) becomes

L[Ψ1] = −4p sin(2θ)

f(r)
(ρ+(r) + ρ−(r) cos(2θ)) , (3.89)
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with two auxiliary functions,

ρ±(r) = ±
(
r(r − 2M)R′′ − 2MR′ − 4R

)
R2+

+ r(r − 2M)
(

(r − 2M)(3rR′′ + 2R′) + (−2 ± 4)R
)
R′2 . (3.90)

This equation can be solved with the help of Mathematica package. However, the

solution is given in a rather involved form, as an infinite series with terms consisting

of nontrivial functions of a radial coordinate. In this form, imposing the boundary

conditions is a daunting task, so this problem remains open.
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Chapter 4

NLE fields in strictly stationary

spacetimes

4.1 Gravitating solitons

In an attempt to capture the idea of localised, singularity-free and self-consistent

objects, Wheeler [196] proposed the existence of geons, where the term geon stands

for gravitational electromagnetic entities. Geons would emerge as solutions of cou-

pled gravitational and Maxwell’s field equations and be sustained by their own

gravitational pull. As an illustration of a concept, Wheeler suggested a standing

electromagnetic wave wound in a specific toroidal configuration, representing an en-

ergy clump held together by its own gravity. Two nontrivial questions, which would

either rule out geons or work in favour of their viability, arise: Do they constitute

stable configurations and what are the exact solutions representing geons. After

a search for electromagnetic [58] and purely gravitational geons [26], the canonical

stand is that topologically trivial, vacuum or electrovacuum, stable geons do not

exist within the framework of general relativity [145]. Therefore, if one insists on

the initial definition of a geon as an object composed of self-gravitating standing

waves, it seems highly likely that such a structure will be unstable.

The quest for finding geon-like configurations in general relativity is closely re-

lated to the classification of the solutions of Einstein’s equation. Obtaining the

complete picture which would encompass all the solutions is, even under additional

constraints, a formidable problem. One can then resort to idealisations in terms of

spacetimes admitting symmetries, such as stationary spacetimes. The physical sig-

nificance of this class of solutions is that time-independent spacetimes represent equi-

librium field states. Prominent examples are stationary black hole solutions, whose

variety is limited by several uniqueness and no-hair theorems [96, 40, 95, 35, 36].
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The proofs of the theorems are based on Lichnerowicz’s argument [120]: if the inte-

gral of a conveniently constructed non-negative quantity is non-positive over a given

domain, the quantity has to be equal to zero. A similar idea may be employed to

formulate another type of constraints known as no-soliton theorems. In this context,

solitons are defined as stationary, asymptotically flat, everywhere regular solutions

of Einstein’s equation, thus representing examples of Wheeler’s geons in a broader

sense. The existence of vacuum solitons in general relativity is prohibited by the

argument presented in [3]. However, instances of self-gravitating solitons may be

found if massive fields of different spin are coupled to gravity. Solutions represent-

ing scalar, Dirac and Proca stars were obtained numerically for both static [91] and

rotating cases [90].

Classification can be further simplified by demanding strict stationarity, which

is a more stringent condition on the causal structure of the spacetime. It implies

that the timelike Killing vector field does not change its causal behaviour through-

out spacetime. Static black hole solutions violate this criterion since the Killing

vector field corresponding to the stationary isometry becomes spacelike inside the

Killing horizons, while the same situation occurs inside the ergoregions of rotating

black holes. A well-established fact is the absence of electromagnetic solitons in

Einstein-Maxwell theory, precisely, there are no strictly stationary, globally regular,

asymptotically flat solutions with a nontrivial electromagnetic field [40]. No-soliton

theorems apply also to the case when various scalar fields are added to the Einstein-

Maxwell system [88, 89, 166]. The first generalisation of the no-soliton theorem for

NLE fields was established for the truncated Born-Infeld and power-Maxwell theo-

ries [32]. Our goal is to formulate a broad extension of this result which would cover

all NLE Lagrangians belonging to the FG-class. Additionally, we pave the way for

dealing with sources represented as charged matter fields and explore the possibili-

ties if the number of spacetime dimensions is different than four. The results of this

chapter were presented in [15].

4.2 No-go theorems for NLE fields

We present two no-soliton theorems that apply to slightly different spacetime

setups. However, both theorems refer to strictly stationary spacetimes, meaning that

spacetimes containing black holes or cosmological horizons are excluded. To prove

the theorems, we will invoke two energy conditions: the null energy condition (NEC),

which holds if and only if LF ≤ 0 and the dominant energy condition (DEC), valid

if and only if LF ≤ 0 and T ≤ 0 [14, 146]. The first theorem holds for an arbitrary
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gravitational theory whose corresponding field tensor is divergence-free, as long as

the coupling between the electromagnetic and gravitational Lagrangian is minimal.

Its limitation lies in the fact that it is applicable to static spacetimes only. The

second theorem remains valid in nonstatic spacetimes, but its generality is reduced

since it relies on Einstein’s gravitational field equation and positive energy theorem

(for an overview see [47]). Given that the energy density is locally nonnegative,

the positive energy theorem states that the total energy associated to the isolated

gravitating system is nonnegative, where the zero value coincides with Minkowski

spacetime. Shoen and Yau proved it in a series of papers, each of which gradually

relaxed the initial assumptions needed for the proof [162, 161, 164, 163]. Witten [197]

took another approach based on spinor calculus and presented a simpler proof via

the construction of a nonnegative integral which represents the energy of a system.

The mathematical technicalities of Witten’s proof were further polished by Parker

and Taubes [142].

Our two main results are based on several common technical assumptions, listed

below.

(1) The spacetime is a four-dimensional smooth, simply connected manifold M with

a smooth Lorentzian metric gab and a smooth electromagnetic 2-form Fab which are

solutions of the gravitational-NLE field equations, with the NLE Lagrangian density

L obeying the Maxwellian weak field limit

(2) The spacetime admits a strictly timelike Killing vector field ka, meaning that its

norm does not change sign throughout the spacetime, precisely kaka < 0 on M .

(3) The electromagnetic field is symmetry inheriting, so that £kFab = 0 [181, 46, 11].

(4) Through each point p ∈ M passes at least one complete oriented spacelike

hypersurface Σ with induced metric hij and the associated extrinsic curvature Kij,

asymptotically flat so that the following fall-off conditions are met on each of its

ends: 1 + kαkα = O∞(r−1), kαgαi = O∞(r−1), γij = O∞(r−1) and Kij = O∞(r−2)

[40, 142, 47]. The electromagnetic 2-form Fab asymptotically behaves as kαFαi =

O∞(r−2) and kα⋆Fαi = O∞(r−2), so that the associated potentials are of order1

O∞(r−1).

The two no-soliton theorems are formulated as follows.

Theorem 4.1. Suppose that a spacetime with an electromagnetic field satisfies basic

assumptions, with the electromagnetic energy-momentum tensor obeying the null

energy condition, and where the Killing vector field ka is hypersurface orthogonal.

Then the electromagnetic field is at each point of the spacetime either trivial, Fab = 0,

1Following reference [40], we write f = O(r−k) when f is of order O(r−k) as r → ∞ and
f = O∞(r−k) when ∂i1 . . . ∂iℓf = O(r−k−ℓ) for an arbitrary set of coordinate indices {i1, . . . , iℓ}.
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or stealth.

Theorem 4.2. Suppose that a spacetime with the electromagnetic field satisfies basic

assumptions and the gravitational part of the action is the Einstein–Hilbert’s with

the electromagnetic energy-momentum tensor obeying the dominant energy condi-

tion. Then the spacetime is isometric to the Minkowski spacetime (R4, ηab) and the

electromagnetic field is at each point of the spacetime either trivial, Fab = 0, or

stealth.

4.2.1 Preliminaries and divergence identities

The theorems apply to spacetimes with a strictly timelike Killing vector field ka,

whose norm is related to the function V := −kaka > 0. The associated twist 1-form

ω = −⋆(k ∧ dk) (4.1)

“measures” the deviation from the case in which ka is hypersurface orthogonal.

Consequently, the twist 1-form vanishes in static spacetimes. The prefactors in the

definitions of ω differ throughout the literature, for example, Heusler [96] introduces

a twist 1-form ω̃ such that ω = −2ω̃. Our choice is motivated by its simple form

in the abstract index notation, ωa = ϵ bcd
a kb∇ckd, without any additional factors

present.

The integral parts of the proofs are appropriately constructed divergence identi-

ties. First, we derive an auxilliary result,

d

(
k

V

)
=

1

V 2
(V dk− dV ∧ k) = − 1

V 2
ik(k ∧ dk) =

= − 1

V 2
⋆(⋆(k ∧ dk) ∧ k) =

1

V 2
⋆(ω ∧ k) . (4.2)

Using the formula above together with the second generalised source-free Maxwell’s

equation (d⋆Z = 0), we get

∇a

(
Da

V

)
= −⋆d⋆

(
− 1

V
ikZ

)
= −⋆d

(
1

V
k ∧ ⋆Z

)
=

= −⋆
(

1

V 2
⋆(ω ∧ k) ∧ ⋆Z

)
=

1

V 2
(⋆Z | ω ∧ k) =

= − 1

V 2
(ω | ik⋆Z) , (4.3)

48



where the second equality was derived from

−⋆ ikZ = ⋆ ik⋆⋆Z = k ∧ ⋆Z . (4.4)

Taking everything into account, it follows that

∇a

(
Da

V

)
= −ωaH

a

V 2
. (4.5)

An analogous identity can be obtained for the magnetic field,

∇a

(
Ba

V

)
= −⋆d⋆

(
1

V
ik⋆F

)
= −⋆d

(
1

V
k ∧ F

)
=

= −⋆
(

1

V 2
⋆(ω ∧ k) ∧ F

)
=

1

V 2
(F | ω ∧ k) =

= − 1

V 2
(ω | ikF) , (4.6)

finally,

∇a

(
Ba

V

)
=
ωaE

a

V 2
. (4.7)

Particularly useful identities are the ones involving squares of the fields, derived

using (4.5) and (4.7),

∇a

(
Φ

V
Da

)
=

4

V
(LFEaE

a − LGEaB
a) − Φ

ωaH
a

V 2
, (4.8)

∇a

(
Ψ

V
Ba

)
=

4

V
(LFBaB

a + LGEaB
a) + Ψ

ωaE
a

V 2
, (4.9)

where Φ and Ψ are scalar potentials defined in (2.20). If we focus on Einstein-

Hilbert’s gravitational action and invoke the Killing lemma [187], d⋆dk = 2⋆R(k),

the exterior derivative of the twist 1-fom is

dω = −d⋆(k ∧ dk) = −dik⋆dk = 2ik⋆R(k) = −2⋆(k ∧R(k)) . (4.10)

Einstein’s equation provides the relation between the Ricci tensor and the energy-

momentum tensor,

dω = −2⋆(k ∧R(k)) = 64πLF ⋆(k ∧T(Max)(k)) = 4E ∧H , (4.11)

where the last equality is calculated as follows:

16πLF⋆(k ∧T(Max)(k)) = 4LF⋆(k ∧ iEF) = −4LFik⋆iEF =
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= 4LFik(E ∧ ⋆F) = −4LFE ∧B = E ∧H . (4.12)

We may recast this expression using the electromagnetic scalar potentials as

dω = −4(dΦ ∧H) = −4(E ∧ dΨ) , (4.13)

to obtain two closed 1-forms, ω + 4ΦH and ω − 4ΨE. Then, we can introduce two

new scalar potentials, UE and UH related to the twist 1-form,

ω = −4ΦH + dUH = 4ΨE + dUE . (4.14)

The assumption (1), i.e. the simple connectedness of the manifold M , guarantees

that the scalar potentials are globally well-defined. By construction, it immediately

follows that £kUE = 0 and £kUH = 0. Another fundamental identity,

∇a
(ωa

V 2

)
= 0 , (4.15)

easily follows if one uses the previous result (4.2) and Eq. (A.17),

k ∧ δ
( ω

V 2

)
= −δ

(
k ∧ ω

V 2

)
= ⋆d⋆

(
k ∧ ω

V 2

)
= 0 . (4.16)

The Eq. (4.15) enables deriving another two divergence identities,

∇a
(
UE

ωa

V 2

)
=
ωa∇aUE

V 2
, (4.17)

∇a
(
UH

ωa

V 2

)
=
ωa∇aUH

V 2
. (4.18)

4.2.2 Proofs of the theorems

Now that all the main tools are presented, we can apply them to prove the

theorems.

Proof of theorem 4.1. The considered domain may be split into two parts depending

on the value of LF, governed by the energy conditions. In this regard, we introduce

an auxiliary open set

O := {x ∈ M | LF(x) ̸= 0} . (4.19)

Due to the null energy condition, LF < 0 for all x ∈ O and LF = 0 for all y ∈ M−O.

The set O is nonempty since the electromagnetic field decays along each end and

the Lagrangian density obeys the Maxwellian weak field limit.

The gravitational field equation (2.4) at each point of the set M − O comes
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down to Eab = 2πTgab. Due to the vanishing divergence of the gravitational tensor,

∇aEab = 0, the trace T is constant on each connected component of the interior of

the domain, (M − O)◦. As we assume staticity, ω = 0 and ka is a hypersurface

orthogonal Killing vector field. Integration is performed over an arbitrary spacelike

hypersurface Σ defined in technical assumption (4). Inserting 1-forms α = D/V

and α = B/V , which satisfy £kα = 0 in (A.18), gives us∫
∂Σ

1

V
⋆(k ∧D) = 0 ,

∫
∂Σ

1

V
⋆(k ∧B) = 0 . (4.20)

The boundary of Σ may be understood as the “sphere at infinity” and the integral

is calculated in the limiting sense. For the 1-forms α = ΦD/V and α = ΨB/V we

get, respectively,

∇a

(
Φ

V
Da

)
=

4

V
(LFEaE

a − LGEaB
a) (4.21)

and

∇a

(
Ψ

V
Ba

)
=

4

V
(LFBaB

a + LGEaB
a) . (4.22)

The sum of these two divergence identities,

∇a

(
Φ

V
Da +

Ψ

V
Ba

)
=

4

V
(LFEaE

a + LFBaB
a) , (4.23)

may be integrated over the hypersurface Σ. The boundary term produced on the

left hand side vanishes with the aid of identities (4.20) and the assumed fall-off

conditions of the scalar potentials Φ and Ψ, leaving us with∫
Σ

LF

V
(EaE

a +BaB
a) ϵ̂ = 0 , (4.24)

where ϵ̂ is the induced volume 3-form. Since ka is a strictly timelike vector field

and kaEa = 0 = kaB
a, neither Ea nor Ba can be causal. Thus, the integrand is

nonpositive on O ∩ Σ and zero on (M − O) ∩ Σ. The total integral is zero, so

Ea = 0 = Ba and, as2 L (0, 0) = 0, the trace T vanishes on O ∩ Σ. By continuity,

the trace is zero also on O ∩ Σ and hence on the whole Σ. To conclude, at each

point of the set O ∩ Σ we have Fab = 0, while at each point of (M −O) ∩ Σ stealth

configurations are also possible besides trivial electromagnetic field.

The generality of the theorem is reflected in the fact that the details of the

gravitational action are not specified. The only requirements are that the tensor Eab

is divergence-free and the coupling between matter and gravitational sector minimal.

2We can always add a constant to the Lagrangian density that renders L (0, 0) = 0.
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In accordance with the theorem, examples of nontrivial stealth electromagnetic fields

in static spacetimes can be found for LF = 0 [171].

Proof of theorem 4.2. We start from a conveniently constructed 1-form defined as

W :=
UE + UH

V 2
ω +

4

V
(ΦD + ΨB) . (4.25)

Its covariant divergence can be written compactly if we notice that

ωaω
a = −4ΦωaH

a + ωa∇aUH = 4ΨωaE
a + ωa∇aUE (4.26)

and use the basic divergence identities (4.8) and (4.9),

∇aW
a =

16

V
LF (EaE

a +BaB
a) + 2

ωaω
a

V 2
. (4.27)

Furthermore, it can be cast in a more suitable form by making use of Einstein’s field

equation

Rab = 8π

(
Tab −

1

2
Tgab

)
, (4.28)

and relation between Maxwell’s energy-momentum tensor and electromagnetic fields,

8πT (Max)

ab kakb = EaE
a +BaB

a . (4.29)

Then, we get

4

V
Rabk

akb =
32π

V

(
−4LFT

(Max)
ab kakb

)
+ 8πT = −∇aW

a + 2
ωaω

a

V 2
+ 8πT , (4.30)

which can be related to Heusler’s mass formula as follows [95]. We contract ⋆dω =

2k ∧R(k) with ka and take the Hodge dual,

⋆ik⋆dω = −2V ⋆R(k) − 2Rabk
akb⋆k . (4.31)

On the other hand, we have

⋆ik⋆dω = ⋆⋆(dω ∧ k) = k ∧ dω . (4.32)

Combination of the two terms returns

−⋆R(k) =
Rabk

akb

V
⋆k +

1

2V
k ∧ dω . (4.33)
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The last term in (4.33) can be expressed via

−d

(
1

V
k ∧ ω

)
= − 1

V 2
⋆(ω ∧ k) ∧ ω +

1

V
k ∧ dω =

=
1

V 2
⋆iω(ω ∧ k) +

1

V
k ∧ dω =

=
ωaω

a

V 2
⋆k +

1

V
k ∧ dω , (4.34)

so that we finally get

−⋆R(k) =

(
Rabk

akb

V
− ωaω

a

2V 2

)
⋆k− d

(
1

2V
k ∧ ω

)
. (4.35)

The fall-off properties of the twist 1-form ω which follow from the technical assump-

tion (4) enable us to write Komar’s mass as

M = − 1

4π

∫
Σ

⋆R(k) =
1

4π

∫
Σ

(
Rabk

akb

V
− ωaω

a

2V 2

)
⋆k . (4.36)

Finally, combined with equation (4.30) we have

M = − 1

16π

∫
Σ

∇aW
a ⋆k +

1

2

∫
Σ

T ⋆k . (4.37)

The first term is again a boundary term that vanishes at infinity as a consequence

of the imposed fall-off conditions. The trace term is nonpositive due to the assumed

dominant energy condition. On the other hand, the positive energy theorem states

that M ≥ 0 and M = 0 if and only if the spacetime is Minkowski. In our case, it fol-

lows that M = 0, which in turn implies Tab = 0, signifying that the electromagnetic

field is either zero or stealth.

4.3 Further generalisations

After considering a four-dimensional case with only NLE fields present, we ex-

plore two possible routes of generalisation. The first possibility is the addition of

charged matter, which comes with the difficulty of treating the current term in

the generalised Maxwell’s equation. As our model, we may choose a complex scalar

field ϕ minimally coupled to the electromagnetic field, such that the total Lagrangian

density is given by

L (tot) = L (F,G) − (Daϕ)∗(Daϕ) − U (ϕ∗ϕ) , (4.38)
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where Da = ∇a + iqAa is the covariant gauge derivative and U the scalar potential.

The second generalised Maxwell’s equation has a source term,

d⋆Z = 4π ⋆J , (4.39)

where the current 1-form reads as

Ja =
iq

4π

(
ϕ∗Daϕ− ϕ(Daϕ)∗

)
. (4.40)

First, we focus on the strictly static case with ω = 0 and rederive the divergence

identities taking into account the equation (4.39),

∇a

(
1

V
Da

)
=

1

V
⋆ (k ∧ d⋆Z) =

4π

V
⋆ (k ∧ ⋆J) = −4π

V
kaJa , (4.41)

∇a

(
Φ

V
Da

)
=

4

V
(LFEaE

a − LGEaB
a) − 4πΦ

V
kaJa , (4.42)

∇a

(
1

V
Ba

)
= 0 . (4.43)

There are two major obstacles that prevent us from repeating the same argument as

above. An additional term proportional to ΦkaJa, which is a priori neither positive

nor negative definite, appears in the divergence identity (4.42). In order to fix its

sign, we assume that the scalar field is symmetry inheriting, £kϕ = 0 and choose a

gauge in which £kA = 0. Taking into account that

d(Φ + ikA) = −E + (£k − ikd)A = 0 , (4.44)

and if both Φ and kaAa vanish at infinity, we can set Φ = −kaAa. Under these

assumptions, the “problematic” term becomes nonnegative,

ΦkaJa =
(qΦ)2

2π
ϕ∗ϕ ≥ 0 . (4.45)

The magnetic scalar potential uncovers another caveat. On the domain with non-

vanishing electric current, the magnetic field 1-form H is no longer closed as

dH = 4π⋆(k ∧ J) , (4.46)

signifying that the scalar potential cannot be defined in the usual way. Consequently,

the proof of the theorem can be carried out only in specific scenarios. For example,

if k ∧ J = 0 (in other words, if the current is proportional to k), the magnetic
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scalar potential can be introduced in the same manner as before and the divergence

identity (4.22) remains valid. The second option is to consider a purely electric

system in which B = 0 so that the proof relies on Eq. (4.42).

Whenever one of the conditions above is met, we may repeat the proof and

deduce that the electromagnetic field on the domain given by the set O is trivial.

For F-class theories we may again use the Eq. (4.42) to conclude that E = 0 on O,

however, nothing can be said about the magnetic field B without invoking one of

the aforementioned conditions.

On the interior (M −O)◦, the divergence of the gravitational field equation re-

duces to ∇aT = 4J bFba. From the decomposition V F = k ∧ E + ⋆(k ∧B) and

ka∇aT = 0 since all the fields are symmetry inheriting, we can conclude that

V∇aT = 4(kbJb)Ea. Setting B = 0 implies D = 0 on the set (M − O)◦, while

divergence identities give kaJa = 0. Finally, we may conclude that the trace T

is constant on each connected component of the set (M − O)◦. It is not obvious

whether the same holds in the more general case when B ̸= 0.

One way of evading this no-go theorem is by considering symmetry noninheriting

scalar fields, as is the case with spacetimes containing charged boson stars. The

scalar field sourcing such solutions is often time dependent, typically of the form

ϕ(t, r) = f(r)eiωt, so that £kϕ = iωϕ and the term ΦkaJa generally has no definite

sign.

The theorem 4.2 can be readily generalised in the case of Lagrangian density

(4.38) if one includes one additional restriction. Its corresponding energy-momentum

tensor is equal to

Tab = −4LFT̃ab+
1

4
Tgab+

1

2π
(D(aϕ)∗Db)ϕ−

1

4π

(
(Dcϕ)∗(Dcϕ)+U (ϕ∗ϕ)

)
gab , (4.47)

therefore, compared to the purely NLE case (4.11), the exterior derivative of ω

contains an extra term,

dω = −2⋆(k ∧R(k)) = 64πLF ⋆(k ∧T(Max)(k)) + 16π(ikA) ⋆ (k ∧ J) . (4.48)

When deriving the equation (4.48), we again assumed that the scalar field is sym-

metry inheriting in order to dispose of the ka∇aϕ terms. If the “spacelike” current

is absent, k∧ J = 0, one may proceed with the proof in the same manner as before.

Notice that the theorem applies also to the symmetry noninheriting complex scalar

fields for which £kϕ = iωϕ, since

2kb(D(aϕ)∗Db)ϕ = 4π((ω/q) − kbAb)Ja . (4.49)
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Another direction of generalisation lies in considering higher-dimensional theories,

with a focus on the spacetimes of dimension m ≥ 5. By definition, the invariant G

is no longer a scalar when m ̸= 4 so we only deal with F-class Lagrangians. We will

define the twist (m − 3)-form as ω := (−1)m+1⋆(k ∧ dk) in order to keep its form

in abstract indices intact,

ωa1...am−3 = ϵ bcd
a1...am−3

kb∇ckd . (4.50)

The 1-form D = −ikZ can be rewritten as

D = (−1)m⋆(k ∧ ⋆Z) , (4.51)

so that we get an auxiliary result

∇a

(
Da

V

)
=

1

(m− 2)!V 2
(ω ∧ k)a1...am−2 ⋆Z

a1...am−2 . (4.52)

The divergence identity in strictly static spacetime becomes

∇a

(
Φ

V
Da

)
=

4

V
LF EaE

a . (4.53)

Relying on the natural fall-off conditions, Φ = O(r−(m−3)) and D = O(r−(m−2)) [136],

the proof proceeds as before and E = 0 on the set O. An additional challenge comes

with treating the magnetic field forms B and H. In an m-dimensional spacetime

they become (m− 3)-forms, which makes divergence identities more involved.
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Chapter 5

Constraints on singularity

resolution by NLE fields

5.1 Singularities in gravitational theory

The first exact solution of Einstein’s equation revealed a perplexing feature in

the behaviour of the metric. The apparent divergences of the metric components

raised a question about their physical interpretation. Taking the Schwarzschild met-

ric as an example, two different types of divergences can be singled out, a removable

coordinate singularity representing the black hole horizon and a physical spacetime

singularity. This in turn begged for a precise definition and a systematic classifi-

cation of spacetime singularities. Following the nomenclature given by Ellis and

Schmidt [56], the two most common types are non-scalar and scalar singularities.

The latter occur in a further non-extendible spacetime and imply “badly behaved”

curvature scalars, while the former manifest themselves as geodesically incomplete

spacetimes without problematic curvature invariants. In regular spacetime, the cur-

vature scalars must be bounded since they are coordinate-independent, but the

converse statement does not hold. The subtlety lies in the fact that the absence

of unbounded curvature scalars does not immediately imply the regularity of the

spacetime as there are examples of geodesically incomplete spacetimes with van-

ishing curvature scalars [187]. The problem of determining regularity conditions is

even more complex as one can find a geodesically complete spacetime that contains

an incomplete nongeodesic timelike curve of bounded acceleration [66].

The existence of the spacetime singularities brought into question the generality

of their formation. Namely, the first solutions of Einstein’s equation were highly sym-

metric, thus eliciting the suspicion that their singular behaviour is an artefact of the

artificially imposed symmetry. The formulation of Hawking-Penrose singularity the-
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orems [84, 143, 81], whose backbone are energy conditions and certain requirements

on the causal structure of the spacetime, disputed this doubt. Although generic,

these assumptions are strong enough to imply the existence of incomplete geodesics,

consequently confirming that the spacetime singularities are not “by-products” of

idealised symmetric solutions.

Before resorting to the quantum extensions of the classical gravitational theory,

which are expected to resolve the spacetime singularities [44], there are other options

worth exploring. For example, one option is to prove the quantum completeness of

the otherwise geodesically incomplete spacetime, which is done by replacing the

classical probe with the quantum one [190, 101]. Also, one could utilise the semi-

classical backreaction to dress the singularity [73, 38, 37, 106, 97]. Another option is

to consider the possibility of regularisation by coupling the classical matter fields to

gravitational action. This will be our direction of the investigation, with the matter

sector consisting of NLE fields.

Singularities are also encountered in Maxwell’s electrodynamics, demonstrating

as divergences in the electric field and the self-energy of a point charge. Some of the

NLE theories may cure those singularities. For instance, Born–Infeld Lagrangian

[21, 20] was constructed with this specific aim, while Euler–Heisenberg Lagrangian

[86] removes only the singularity in the energy of a point charge. The electrostatic

quantities of a point charge are not regularised within ModMax theory [8], but some

of its further modifications are successful in this aspect [114].

Motivated by the examples from electromagnetism, there was a hope that a sim-

ilar analogy may be established in gravitational theory, i.e. that the regularisation

of the spacetime singularities may be achieved by coupling the NLE fields to the

gravitational action. This idea blossomed after the proposed regular Bardeen black

hole [9] got an interpretation in terms of an NLE Lagrangian [6]. The systematic ap-

proach to the problem of regularisation using NLE fields was advised by Bronnikov

[27], who gave a general criterion under which a static, spherically symmetric solu-

tion sourced by an NLE Lagrangian given as a function of invariant F and obeying

Maxwellian weak field limit will be globally regular. The main result is that black

holes endowed with electric charge cannot have a regular centre and regularised black

holes can only be found among magnetically charged solutions. This conclusion was

supported by many examples of regular magnetically charged black holes emanating

from NLE Lagrangians with MWF limit [125, 121, 2, 115, 113, 112] Bronnikov’s

theorems can be evaded by relaxing the assumptions, precisely, by discarding the

MWF limit condition. In that case, even the electrically charged black holes may

be regular, due to the presence of a “de Sitter core” (de Sitter behaviour as r → 0)
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[53, 29, 7]. Another way of avoiding Bronnikov’s constraints is to construct a specific

solution with a core simulating a phase transition [28].

Bronnikov’s idea is based on examining the behaviour of curvature scalars ex-

pressed via electromagnetic invariants and charges. If there exists at least one un-

bounded curvature invariant, the spacetime is immediately labelled as singular. For

this reason, scalar singularities bear enough information to formulate a no-go the-

orem. Our goal is to extend Bronnikov’s theorems to encompass a larger class of

NLE Lagrangians, those depending on both invariants F and G [18].

5.2 Electromagnetic invariants

Following Bronnikov’s approach, we have to infer how many different invariants

may be formed out of the contractions of the energy-momentum tensor. Einstein’s

field equation,

Rab −
1

2
Rgab + Λgab = 8πTab , (5.1)

will provide a direct link between calculated matter quantities on one side and

curvature invariants on the gravitational side.

The evaluation of relevant electromagnetic invariants can be carried out straight-

forwardly using spinor calculus [144, 173] (see Appendix B). For notational simplic-

ity, we introduce the shorthand notation (Xn)ab := Xa
c1
Xc1

c2
· · ·Xcn−1

b for any

rank-2 tensor Xa
b and n ∈ N. The trace of the odd number of Maxwell’s energy-

momentum vanishes since such term is proportional to the contraction of the sym-

metric spinor ϕAB with the antisymmetric spinor ϵAB ,

(T̃ 2n+1)aa = 0 . (5.2)

The trace of the even number of Maxwell’s energy-momentum tensors attains a

simple form (for a more detailed derivation, see Appendix B),

(4π)2n(T̃ 2n)aa =
1

42n−1
(F2 + G2)n . (5.3)

Combining the expressions above, the contraction of two NLE energy-momentum

tensors (2.8) can be expressed in terms of two invariants, the trace T and L 2
F (F2 +

G2),

4π2T a
b T

b
a = π2T 2 + L 2

F (F2 + G2) . (5.4)

The question is whether a new, independent invariant can be extracted from the

consequtive contractions of more NLE energy-momentum tensors. Using the bino-
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mial formula and Eq. (2.8), the expression (5.4) can be generalised for the trace of

an arbitrary number of NLE energy-momentum tensors,

(T n)aa = 4(T/4)n +
n∑

k=1

(
n

k

)
42k−n(−LF)kT n−k(T̃ k)aa , (5.5)

where the trace term T n is written separately for clarity. From the derived formula

(5.5) it is obvious that no new invariants can be constructed in this manner. All

of the contractions reduce to the higher powers of two fundamental invariants, the

trace T and L 2
F (F2 + G2).

The relation between the curvature invariants and the electromagnetic invariants

can be established via Einstein’s equation (5.1), resulting in

R− 4Λ = −8πT , (5.6)

RabR
ab + 2Λ(2Λ −R) = (8π)2 TabT

ab . (5.7)

If the spacetime is regular in the sense of bounded curvature invariants, i.e. Ricci

scalar R and Ricci squared RabR
ab are bounded, then the same has to hold for

matter invariants, TabT
ab and T . This in turn implies that LFF and LFG also have

to stay bounded. Since our arguments do not depend on the asymptotic behaviour

of the spacetime, cosmological constant Λ is kept just for the sake of generality.

5.3 Application to the spherically symmetric space-

time

As a test model, we take the most simple, spherically symmetric spacetime. No

generality is lost with this choice since a candidate NLE theory should successfully

regularise an arbitrary black hole solution, with no additional parameters (for in-

stance, angular momentum) that may be adjusted to aid this cause. The metric of

a static and spherically symmetric spacetime can be written as [187]

ds2 = −α(r) dt2 + β(r) dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (5.8)

if ∇ar ̸= 0. We assume that the radial coordinate has a minimum r = 0, which

we will refer to as a centre. Also, we suppose that the function w(r) =
√
α(r)β(r)

has no zeros for points with 0 < r < rw, where rw > 0. This condition states

that there are no horizons at least in some neighbourhood of the centre. Without

loss of generality, some specific spacetime configurations such as wormhole or “horn”
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(infinitely long tube of a fixed finite radius) solutions can be discarded, as guaranteed

by Bronnikov’s theorem 2 [27]. Namely, the aforementioned theorem states that

if the spherically symmetric spacetime is sourced by the energy-momentum tensor

which satisfies the condition T t
t = T r

r , then the spactime cannot contain a horn and

the radial coordinate cannot have a regular minimum. The latter condition excludes

wormhole solutions, since in that case the radial coordinate attains a regular and

finite minimum at the wormhole throat.

We consider the regularisation of the problematic point, which is the centre,

possible if the curvature scalars are bounded as r → 0. The exact meaning of this

assertion is defined precisely below.

Definition 5.1. We say that some scalar ψ(r) is bounded as r → 0 if there is a real

constant M > 0 and a radius r0 > 0, such that |ψ(r)| ≤M for all 0 < r < r0.

Such definition of boundedness does not impose a very strong constraint, as it

may happen that the limit limr→0 ψ(r) does not exist. For example, function of the

form ψ ∼ sin(1/r) widely oscillates as r → 0, but stays bounded in the same limit

according to the definition above. Therefore, there is a possibility that the invariants

in a certain spacetime obey the Definition 5.1, but that does not guarantee that they

are well-behaved in a neighbourhood of the centre.

For completeness, we repeat the final form of NLE Maxwell’s equations in spher-

ically symmetric spacetime, which were derived in Chapter 2,

B̃r =
P

r2
, (5.9)

LFẼr − LGB̃r = − Q

4r2
. (5.10)

The general idea behind formulating no-go theorems is to assume that both R and

RabR
ab are bounded as r → 0, which translates, using Eqs. (5.6), (5.7) and (5.4),

into boundedness of LFF, LFG and T in the same limit. As we will demonstrate,

the contradiction stems from the fact that the regularity assumption is often incom-

patible with the Maxwellian weak field limit. However, it can happen that both R

and RabR
ab are bounded, while other curvature invariants diverge. For example, the

Kretschmann scalar RabcdR
abcd cannot be directly controlled via Einstein’s equation

and related to the matter fields. Nevertheless, our mild demands are strong enough

to pose serious limitations for many physically relevant cases.
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5.3.1 Electric case

Since magnetic monopoles are still of theoretical interest only, the most impor-

tant cases are black holes equipped with electric charge. We present a complete

generalisation of Bronnikov’s theorem that covers all FG-class Lagrangians with

Maxwellian weak field limit.

Theorem 5.1. Suppose that the spacetime is a static, spherically symmetric solu-

tion of the Einstein–NLE field equations with FG-class NLE Lagrangian obeying the

Maxwellian weak field limit. Then, in the electrically charged case, that is P = 0

and Q ̸= 0, Ricci scalar R and Ricci squared RabR
ab cannot both remain bounded as

r → 0.

Notice that theorem 5.1 immediately applies to all F-class Lagrangians.

Proof of theorem 5.1. When the magnetic charge is absent, it immediately fol-

lows from (5.9) that Br = 0. Then, the second Maxwell’s equation (5.10) can be

rearranged as
F

r3
= − 8

Q2
(FLF)2r . (5.11)

Assuming that both R and RabR
ab are bounded, the same has to apply for FLF,

meaning that1 F = o(r3) as r → 0. The invariant G is identically equal to zero as

we have Br = 0. Since L 2
F = −Q2/(8Fr4), LF is unbounded as r → 0 which is in

direct contradiction with the assumed Mawellian weak field limit. It is important to

stress that the contradiction with the Maxwellian weak field limit is manifest due

to a fortunate circumstance: the r → 0 limit coincides with the weak field limit in

which both F and G approach zero.

Our conclusion is backed up by the known solutions; electrically charged Born–

Infeld [160, 60, 51, 64] and Euler–Hesienberg black holes [202, 159] are not regular.

5.3.2 Dyonic case

The same procedure cannot be applied directly to the dyonic case, in which both

Q ̸= 0 and P ̸= 0. The main obstacle comes from the fact that the Maxwellian weak

field limit does not correspond to the r → 0 limit. This can be easily seen if we

rewrite the electromagnetic invariant F in terms of the other invariant G,

F = 2

(
P 2

r4
− r4

16P 2
G2

)
. (5.12)

1Throughout the chapter we use Landau’s little-o notation to denote the behaviour of a certain
quantity as r → 0.
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The expression above implies that both invariants F and G cannot simultaneously

go to zero as we approach the centre and the opportunity to test the Maxwellian

weak field limit is lost. Nevertheless, a useful conclusion can be drawn from Eq.

(5.12). Namely, if we manage to prove that both F and G should remain bounded

as r → 0, it immediately leads to a contradiction.

From Maxwell’s equations (5.9)-(5.10) and the definition of invariant G we get

LFẼr = LFG
r2

4P
= LGB̃r −

Q

4r2
=

1

r2

(
LGP − Q

4

)
, (5.13)

which can be restated as

1

r3

(
LGP − Q

4

)
=

LFG

4P
r . (5.14)

If the spacetime is regular, LFG and consequently the right hand side remain

bounded as r → 0. This in turn fixes the behaviour of LG,

LG =
Q

4P
+ o(r3) as r → 0 . (5.15)

The fact that the invariant LG is bounded simplifies proofs in the dyonic case.

First, we revisit Bronnikov’s theorem [27] and prove it in a slightly different

manner.

Theorem 5.2. Suppose that the spacetime is a static, spherically symmetric solution

of the Einstein–NLE field equations with the F-class NLE Lagrangian. Then, in the

dyonic case, that is P ̸= 0 and Q ̸= 0, Ricci scalar R and Ricci squared RabR
ab

cannot both remain bounded as r → 0.

Proof of theorem 5.2. If both R and RabR
ab are bounded as r → 0, the same

holds for LFF and LFG. Maxwell’s equation for F-class Lagrangians is

LFG
r2

4P
= LFẼr = − Q

4r2
, (5.16)

which leads to a contradiction as LFG should remain bounded as r → 0.

Theorem 5.2 relies only partly on the Maxwellian weak field limit as we do not

invoke the condition LF → −1/4 as (F,G) → (0, 0), but we have LG = 0 identically.

Since the Maxwellian weak field limit is not necessarily attained as the radial

coordinate approaches the centre, we cannot derive a general constraint valid for all

FG-class Lagrangians using this approach. Instead, we will consider some particular

classes of NLE theories. Without loss of generality, FG-class Lagrangian can be put
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in the following form

L = −1

4
F + h(F,G) , (5.17)

where h is a C1-class function.

The theorems can be easily formulated for two specific subclasses of NLE theories,

the first of which is valid both for dyonic and strictly magnetically charged solutions.

Theorem 5.3. Suppose that the spacetime is a static, spherically symmetric solution

of the Einstein–NLE field equations with the NLE Lagrangian (5.17), such that h =

h(G). Then, given that P ̸= 0, Ricci scalar R and Ricci squared RabR
ab cannot both

remain bounded as r → 0.

Proof of theorem 5.3. Since LF = −1/4, if we demand that LFF and LFG

are bounded, then F and G should also be bounded as r → 0, which leads to a

contradiction.

Similarly to the theorem 5.2, we do not need to invoke the full form of Maxwellian

weak field limit. We have identically LF = −1/4, but the condition LG → 0 as

(F,G) → (0, 0) is not necessary for the proof.

Theorem 5.4. Suppose that the spacetime is a static, spherically symmetric solu-

tion of the Einstein–NLE field equations with the NLE Lagrangian (5.17), such that

h(F,G) = aFsGu, with a real constant a ̸= 0 and integers s, u ≥ 1. Then, in the

dyonic case, that is P ̸= 0 and Q ̸= 0, Ricci scalar R and Ricci squared RabR
ab

cannot both remain bounded as r → 0.

Proof of theorem 5.4. Explicit evaluation of invariant LF gives us

LFF = −1

4
F + sh , (5.18)

and the second invariant useful for this theory is the trace of the energy-momentum

tensor, which is equal to

πT = (1 − s− u)h . (5.19)

Then, boundedness of T and LFF imply boundedness of h and F as r → 0. From

LGG = uh, (5.20)

and (5.15), it follows that G has to be bounded as r → 0 which is in a contradiction

with (5.12).

Motivated by the form of Euler–Heisenberg Lagrangian, we turn to Lagrangians

in which the function h is a quadratic polynomial in electromagnetic invariants.
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Theorem 5.5. Suppose that the spacetime is a static, spherically symmetric solu-

tion of the Einstein–NLE field equations with the NLE Lagrangian (5.17), such that

h(F,G) = aF2 + bFG+ cG2, where a, b and c are real constants. Then, in the dyonic

case, that is P ̸= 0 and Q ̸= 0, Ricci scalar R and Ricci squared RabR
ab cannot both

remain bounded as r → 0.

Proof of theorem 5.5. The derivatives LF and LG define a linear system of

equations in F and G,

LF +
1

4
= 2aF + bG , (5.21)

LG = bF + 2cG . (5.22)

Using expression (5.15), we have

(bF + 2cG)LF =

(
Q

4P
+ o(r3)

)
LF . (5.23)

If FLF and LFG should remain bounded as r → 0, the same has to be valid for LF

itself.

Depending on the determinant of the linear system above, ∆ = 4ac − b2, there

are two different cases. First, in the nondegenerate case (∆ ̸= 0), boundedness

of LF and LG implies boundedness of F and G as r → 0, which is an immediate

contradiction. In the degenerate case, that is ∆ = 0, we have to consider several

subcases. If we set c = 0, then b = 0, and the resulting Lagrangian belongs to the

F-class, which is already covered by the theorem 5.2. If a = 0, then b = 0, and we

return to the theorem 5.3. Thus, the only new subcase is a ̸= 0 ̸= c. Multiplying

both sides of

LF = −1

4
+

2a

b
LG (5.24)

by F and using (5.15) gives us

FLF =

(
−1

4
+

aQ

2bP
+ o(r3)

)
F as r → 0 . (5.25)

If the right hand side does not vanish as r → 0, i.e. 2aQ ̸= bP , we can conclude

that F is bounded as r → 0. Furthermore, from Eq. (5.22) we may deduce that the

invariant G is also bounded as r → 0, which leads to a contradiction.

In the subcase with 2aQ = bP , equations (5.21)-(5.22) imply

PLG −QLF =
Q

4
. (5.26)
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Using Eq. (5.14), the invariant G can be expressed as

G =
4P

LFr4

(
PLG −

Q

4

)
=

4QP

r4
, (5.27)

while the invariant F via Eq. (5.12) becomes

F =
2

r4
(P 2 −Q2) . (5.28)

Inserting these expressions into (5.22) gives us

LG =
2b

r4
(Q2 + P 2) . (5.29)

The right-hand-side is unbounded as r → 0, which is in a direct contradiction with

the Eq. (5.15).

Two prominent examples of NLE theories not covered by the theorems above are

Born–Infeld (2.50) and ModMax (2.57) Lagrangians. The constraints that apply to

these theories are summarised in the theorem below.

Theorem 5.6. Suppose that the spacetime is a static, spherically symmetric so-

lution of the Einstein–NLE field equations with the Born–Infeld or ModMax NLE

Lagrangian. Then, given that P ̸= 0, Ricci scalar R and Ricci squared RabR
ab cannot

both remain bounded as r → 0.

Proof of theorem 5.6. First, we assume that Q ̸= 0 and consider Born–Infeld

Lagrangian. The terms FLF and LG,

FLF = −1

4

F√
1 + F

2b2
− G2

16b4

, (5.30)

LG =
1

16b2
G√

1 + F
2b2

− G2

16b4

, (5.31)

can be interpreted as a system in G, which can be solved in a few steps. Combining

(5.30) and (5.31) in order to eliminate the square root gives the relation

4b2LGF = −(LFF)G , (5.32)

and after squaring (5.31), we get

G2(1 + 16L 2
G ) = (16b2LG)2

(
1 +

F

2b2

)
. (5.33)

66



The two auxiliary expressions, (5.32) and (5.33), together define a quadratic equation

for G with the solution 2

G = −16LG

FLF ±W

1 + 16L 2
G

, (5.34)

where W is defined as

W :=
√

(FLF)2 + b4(1 + 16L 2
G ) . (5.35)

If we demand that RabR
ab and R are bounded, then G has to be bounded as r → 0.

Recalling the Eq. (5.32), we deduce that F is also bounded as r → 0, which leads

to a contradiction. In the purely magnetic case, after evaluating Maxwell’s equation

(5.10), (
1 +

P 2

b2r4

)
LFẼr = 0 , (5.36)

we can infer that LFẼr = 0 for all points where r > 0. We show that the case in

which LF has zeros on this domain can be excluded from consideration. Since

LG = − P

(br)2
LFẼr , (5.37)

it follows that LG = 0. Given that both the trace T and the invariant FLF should

be bounded, the same must hold for the Lagrangian (2.50) itself. Thus, LF has no

zeros for r > 0 and the only possibility left is Ẽr = 0. Then G = 0 and F = 2P 2/r4

so that the invariant

FLF = − bP 2

2r2
√
P 2 + b2r4

, (5.38)

is manifestly unbounded as r → 0.

In the dyonic case of ModMax theory, we have

Ẽr =
Qe−γ

r2
, B̃r =

P

r2
. (5.39)

Direct evaluation gives us

FLF =
Q2 + P 2

2eγr4
Q2 − P 2e2γ

Q2 + P 2e2γ
, (5.40)

GLF = −PQ
r4

Q2 + P 2

Q2 + P 2e2γ
, (5.41)

Both invariants are bounded as r → 0 only in the trivial case, that is P = 0 = Q.

2Sign cannot be chosen unambiguously as F, LF and LG do not determine G uniquely. However,
our result remains unaffected.
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Theorem 5.6 implies that static, spherically symmetric, either dyonic or magnetic

Born–Infeld and ModMax black holes suffer from unbounded curvature invariants

as we approach the centre, meaning that the singularity is still present. If we recall

the results from the literature [61, 60, 30, 64], this conclusion comes as no surprise.

5.3.3 Magnetic case

Due to the severe constraints on the electric and dyonic black holes, the only pos-

sibility left are strictly magnetically charged solutions, with the caveat that magnetic

charge has not yet been observed. A representative example is the regular Bardeen

black hole [9], sourced by the reverse-engineered F-class Lagrangian which violates

the Maxwellian weak field limit [6]. The family of regular magnetically charged black

holes has expanded after Bronnikov [27] noticed under which conditions the central

singularity may be absent, even if it is demanded that F-class Lagrangian respects

the Maxwellian weak field limit. The argument goes as follows. With the metric

function set to f(r) = 1 − 2M(r)/r, the relation between the NLE Lagrangian and

function M(r) provided via (2.31) returns

M(r) = −
∫

L (F)r2dr , (5.42)

where F = 2P 2/r4. Then, if the limit limF→∞ L (F) exists and is finite, the space-

time can be regular as r → 0. The Maxwellian weak field limit guarantees the

convergence of the integral M(∞) obtained by integrating over the full range of

radial coordinate, since in the asymptotic region, that is r → ∞, Lagrangian takes

the value L = −P 2/(2r4) +O(r−5).

Before proceeding, we derive two expressions useful for magnetic case. The

second NLE Maxwell’s equation (5.10) with Q = 0, when multiplied by Ẽr gives us(
P 2

r4
− 1

2
F

)
LF =

1

4
LGG , (5.43)

while multiplication by B̃r leads to

1

4
LFG =

P 2

r4
LG . (5.44)

Previously proved theorems 5.3 and 5.6 apply also to the purely magnetically charged

black holes. We reexamine the prominent class of quadratic NLE Lagrangians,

appearing in the low energy limits of quantum field theories, this time with the

electric charge set to zero.
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Theorem 5.7. Suppose that the spacetime is a static, spherically symmetric solu-

tion of the Einstein–NLE field equations with the NLE Lagrangian (5.17), such that

h(F,G) = aF2 +bFG+cG2, where a, b and c are real constants, such that the ordered

pair (b, c) ̸= (0, 0). Then, in the magnetically charged case, that is P ̸= 0 and Q = 0,

Ricci scalar R and Ricci squared RabR
ab cannot both remain bounded as r → 0.

Proof of theorem 5.7. The proof can be divided into two subcases.

a) Assume that b = 0. If a = 0, we are back at the theorem 5.3, so we will

suppose that a ̸= 0. From (5.44), we get(
LF − 8cP 2

r4

)
G = 0 . (5.45)

At each point where G = 0, we have Ẽr = 0 and

LFF =

(
−1

4
+

4aP 2

r4

)
2P 2

r4
, (5.46)

while at each point where G ̸= 0, we have LF = 8cP 2/r4, while

F =
1

2a

(
1

4
+

8cP 2

r4

)
(5.47)

and

LFF =

(
1

4
+

8cP 2

r4

)
4cP 2

ar4
. (5.48)

So, at either type of points, the invariant FLF is unbounded as r → 0, in contra-

diction with the assumption that RabR
ab and R are bounded.

b) Assume that b ̸= 0. From (5.44), we have

F =
r4

4bP 2
LFG− 2c

b
G . (5.49)

Inserting the expression above into (5.43) gives us

(
4P 2(b2 − 4ac) − br4LG

)
G = bP 2 + 2r4

(
bLFF − aLFG

)
. (5.50)

This case is branching further into two subcases. If b2 ̸= 4ac, G is bounded as

r → 0 and the contradiction follows from (5.49) which implies that F should also be

bounded. On the other hand, if b2 = 4ac (notice that the case c = 0 is immediately

excluded), LF and LG are related through

LF = −1

4
+

b

2c
LG , (5.51)
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which implies via (5.44) that LF is bounded as r → 0. Since

LFG =

(
−1

4
+

b

2c
LG

)
G , (5.52)

the same applies to G. The relation

bF = LG − 2cG (5.53)

suggests that F is also bounded as r → 0 and we again reach a contradiction.

Theorem 5.7 does not cover quadratic F-class Lagrangian of the form L (F) =

−F/4 + aF2. From Eq. (5.44) we see that one option is to take G = 0 and obtain

the contradiction by repeating the proof above. Alternatively, we may set LF = 0,

which translates into F = 1/(8a). Maxwell’s equations are automatically satisfied,

with

Ẽ2
r =

P 2

r4
− 1

16a
and B̃r =

P

r2
. (5.54)

The Einstein’s equation can be written as

Rab −
1

2
Rgab + λgab = 0 , (5.55)

where the introduced effective cosmological constant is

λ := Λ +
1

32a
. (5.56)

Static and spherically symmetric solutions of Eq. (5.55) are Schwarzschild-(anti-)

de Sitter black holes [23, 124]. Although the curvature invariants R = 4λ and

RabR
ab = 4λ2 are constant and thus trivially bounded, the Kretschmann scalar

RabcdR
abcd suffers from the standard Schwarzschild-like singular behaviour as r →

0. An interesting feature of this solution is that the electromagnetic field enters

the field equations as a part of the cosmological constant and manifests itself as

a nonvanishing magnetic charge P . In principle, one could glue the solution with

G = 0 to the one with LF = 0 along the overlapping hypersurface r4 = 16aP 2.

Unfortunately, this construction carries over the original spacetime irregularities.

The no-go theorems for dyonic and magnetic cases are summarised in Table 5.1.
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Table 5.1: A concise overview of no-go theorems with the ✗ sign labelling singular cases.

Dyonic Magnetic

F-class Lagrangians ✗

quadratic Lagrangians

L = −1
4
F + aF2 + bFG + cG2 ✗ ✗

L = −1
4
F + h(G) ✗ ✗

L = −1
4
F + aFsGu, s, u ≥ 1 ✗

Born-Infeld Lagrangian ✗ ✗

ModMax Lagrangian ✗ ✗

5.3.4 Neutral case

Finally, we consider the neutral case in which Q = 0 = P . From the first

Maxwell’s equation (5.9), it follows that B̃r = 0, while the second one (5.10) is

reduced to LFẼr = 0. Hence, at each point, we have either trivial fields or LF =

0. In the latter case, the NLE energy-momentum tensor is proportional to the

metric, Tab = (T/4)gab, so its contribution is in the form of the effective cosmological

constant. The solutions are again Schwarzschild-(anti)-de Sitter black holes, which,

by the arguments given at the end of the previous chapter, are not regular in the

sense of bounded curvature invariants. This subcase is more of a curiosity since for

most of the NLE Lagrangians the function LF does not have zeros [171].

71



Chapter 6

Spacetime block-diagonalisation

with NLE fields

6.1 The problem of integrability and symmetries

Spacetimes with symmetries provide a suitable arena for establishing various

uniqueness and black hole no-hair theorems. This mathematically convenient re-

duction has a physical justification, as near-equilibrium gravitating configurations

should correspond to these idealised states. A further simplification is achieved

if the symmetries force the metric to attain a block-diagonal form, with coordi-

nates adapted to the corresponding Killing vector fields. We are interested in the

conditions that guarantee block diagonalisation of the metric, encapsulated in the

Frobenius’ theorem. A central element in the statement of the theorem are distri-

butions defined by Killing vector fields {Ka
(1), . . . , Ka

(n)} on a smooth, orientable

m-manifold M with a smooth Lorentzian metric gab. To set aside the trivial cases,

we assume that the Killing vector fields are linearly independent on a nonempty

open subset N ⊆ M and that m ≥ 3 and n ≥ 1. Linear independence breaks down

on the set M − N , which consists of, for example, the axis of axial symmetry or

bifurcation surfaces of the Killing horizons.

Killing vector fields enable defining two distributions, whose integrability in turn

implies block-diagonal metric form. A distribution D , spanned by the n linearly

independent vector fieldsKa
(1), . . . , Ka

(n), is a smooth rank-n subbundle of the tangent

bundle TN . By the metric isomorphism, each of the Killing vector fields has an

associated 1-form K(i), whose components are given by K
(i)
a := gabK

b
(i). Set of these

1-forms {K(1), . . . , K(n)} defines the second distribution D⊥, a smooth (m − n)-

subbundle of the tangent bundle TN , such that D⊥|p := KerK(1)|p ∩· · ·∩ KerK(n)|p,
at each point p ∈ M . Hence, the distribution D⊥ consists of the vector fields Xa
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for which K
(i)
a Xa = 0 at point p ∈ M for all i ∈ {1, . . . , n}. The products of the

Killing vector fields and the set of their zeros will be denoted by κij := gabK
a
(i)K

b
(j)

and Z := {p ∈ M | (∃ i) : Ka
(i)|p = 0}, respectively. The Killing vector fields define

a decomposable n-form,

α := K(1) ∧ . . . ∧K(n), (6.1)

which is by definition nonzero on the set N .

The problem of the integrability of the distributions comes down to the ques-

tion of whether there are nonempty immersed submanifolds whose tangent space

coincides with a given distribution at each point. The answer is given by the Frobe-

nius’ theorem [119]: D is integrable if and only if it is involutive, meaning that

[K(i), K(j)]
a ∈ D for all i, j ∈ {1, . . . , n}, while D⊥ is integrable if and only if

α ∧ dK(i) = 0 for all i ∈ {1, . . . , n}. Involutivity of D does not pose a stringent

condition since the commutator of two Killing vector fields is again a Killing vector

field and a number of independent Killing vector fields has a maximum value of

m(m + 1)/2 [187]. A stronger condition is commuting of the Killing vector fields,

which enables choosing local coordinates in which they take the form K(i) = ∂/∂zi

for all i ∈ {1, ..., n} [119]. In general, this will not be the case, but a procedure

given by Carter [34] and Szabados [176] provides a recipe for constructing commut-

ing Killing vector fields from given ones. Integration of the pull-back of a nonspace-

like Killing vector field Ka
(1) along the orbits of a spacelike Killing vector field with

compact orbits Ka
(2) produces a new nonspacelike Killing vector field that commutes

with Ka
(2). This result is often called upon in stationary and axially symmetric

spacetimes, where we assume that the timelike Killing vector field and axial Killing

vector field are commuting.

The nontrivial step is proving the integrability of D⊥. A basic idea [117, 141, 194]

relies on the identity

d⋆(α ∧ dK(i)) = 2 ⋆(α ∧R(K(i))) , (6.2)

which can be derived in a few steps, with the aid of the Killing lemma d⋆dK =

2⋆R(K) [187],

d⋆(α ∧ dK(i)) = diK(n)
· · · iK(1)

⋆dK(i) =

= (−1)niK(n)
· · · iK(1)

d⋆dK(i) =

= (−1)n2iK(n)
· · · iK(1)

⋆R(K(i)) =

= 2 ⋆(α ∧R(K(i))) .
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Here we can distinguish two subcases. First, the vacuum Einstein’s equation

Rab −
1

2
Rgab + Λgab = 0 , (6.3)

implies that the Ricci tensor is proportional to the metric, precisely (m − 2)Rab =

2Λgab and the (m− n− 2)-form ⋆(α ∧ dK(i)) is closed for each i. In the case when

m = n+ 2, the situation is especially simple since ⋆(α ∧ dK(i)) is a scalar, constant

on each connected component of N . If the set M −N is nonempty, this constant is

by continuity zero on each connected component of N with a nonempty boundary

and, consequently, D⊥ is integrable. If there are fewer symmetries in the spacetime

(m > n+ 2), the form ⋆(α ∧ dK(i)) is no longer a scalar and the integrability of D⊥

may be established using appropriate divergence identities [96].

Our focus will be on the other scenario, when the metric is a solution of the

non-vacuum Einstein’s equation

Rab = 8πTab +
2Λ − 8πgcdTcd

m− 2
gab . (6.4)

Then, the integrability of D⊥ translates to vanishing of the (n+1)-form α∧T(K(i))

since

d⋆(α ∧ dK(i)) = 2 ⋆(α ∧R(K(i))) = 16π⋆(α ∧T(K(i))) , (6.5)

where the relation between Rab and Tab follows from (6.4). Notice that the second

term is absent in the final expression since it is of the form α ∧K(i).

To illustrate the introduced concepts, we can single out two prominent classes of

spacetimes with symmetries. An m-dimensional spacetime is static if it is stationary

and the timelike Killing vector field satisfies the Frobenius’ condition k∧dk = 0. A

four-dimensional spacetime is circular if it is stationary and axially symmetric, i.e.

admits a timelike Killing vector field ka and an axial Killing vector field ma, such

that [k,m]a = 0 and the Frobenius’ conditions k∧m∧ dk = 0 and k∧m∧ dm = 0

are satisfied.

Once the integrability of both distributions has been established and TpM =

D |p ⊕ D⊥|p at each point p of some open subset of N , then this open set may be

covered by local coordinate charts of the form (U ; z1, . . . , zn, yn+1, . . . , ym), where

(z1, . . . , zn) are the coordinates for the integral manifold of D and (yn+1, . . . , ym)

are the coordinates for the integral manifold of D⊥. Since g(∂/∂zi, ∂/∂yj) = 0,

the spacetime metric in the matrix representation attains a block-diagonal form.

However, this construction is spoiled at each point q where a nonzero vector ℓa such

that ℓa ∈ D |q ∩ D⊥|q exists. If a vector belongs both to D and D⊥, it is a linear
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combination of Killing vectors Ka
(i) and orthogonal to all of them at the same time,

thus ℓa has to be null. To distinguish the two scenarios, we define the orthogonal-

transitive domain of the spacetime as an open set O on which both distributions are

integrable.

So far, integrability conditions have been established for a number of theories.

In the case of the stationary, axially symmetric four-dimensional solution of the

Einstein-Maxwell system, a mild assumption (for instance, the nonempty axis of

rotation) is enough to ensure metric block-diagonalisation. As stated earlier, we say

that such spacetime is circular, i.e. foliated by 2-surfaces to which the timelike and

axial Killing vector fields are orthogonal. On the other hand, a stationary solution

of gravitational field equations does not even have to be axially symmetric. Some

of the counterexamples are Majumdar-Papapetrou spacetime [140, 123, 77, 132],

representing an electrovacuum multi-black hole solution, and black holes endowed

with electromagnetic and massive vector fields [154, 153]. Nevertheless, an asymp-

totically flat and analytic solution of vacuum Einstein’s equation will necessarily

be axially symmetric, as proven by Hawking’s rigidity theorem [82], which was fur-

ther generalised to higher-dimensional cases and theories beyond general relativity

[98, 99, 100].

We analyse the needed integrability conditions for various theories containing

NLE fields, including solely NLE Lagrangians and theories in which NLE fields are

either minimally or nonminimally coupled to scalar fields [17].

6.2 Integrability imposed by the NLE fields

With the matter sector consisting of purely electromagnetic fields, we consider

a threefold generalisation of Maxwell’s theory which is performed by replacing

Maxwell’s Lagrangian with NLE theories while allowing the spacetime dimension

to be different than four and by adding the gauge Chern–Simons term (gCS). Pre-

cisely, if we restrict the spacetime dimension to m = 4, the NLE Lagrangian density

may belong to the FG-class, while for m ̸= 4 we consider F-class Lagrangians only

since the invariant G is no longer a scalar in that case. When the spacetime dimen-

sion is odd, an additional gCS term of the form1 µA ∧ F(m−1)/2 may be present

in the action, where µ is the coupling constant. Although originally of geometric

origin, Chern–Simons terms found their place in many different areas of physics,

such as topological quantum field theory, quantum Hall effect or the study of quan-

1Notation: F(m−1)/2 := F ∧ ... ∧ F︸ ︷︷ ︸
(m−1)/2 times
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tum anomalies. Here we are interested in their effects on the Einstein-NLE field

equations and block-diagonalisability of the corresponding metric.

The total electromagnetic Lagrangian with gCS contribution is

L(em) = L ϵ + µA ∧ F(m−1)/2 . (6.6)

Variation with respect to the gauge potential A returns the generalised source-free

Maxwell’s (gMax) equations

dF = 0 , d⋆Z =
m+ 1

2
µF(m−1)/2 . (6.7)

The form Z in dimensions different than four is given by Z := −4∂FL F. For even

m, the right hand side of the second gMax equation (6.7) is zero by definition.

The corresponding energy-momentum tensor stays unaltered by the presence of the

Chern-Simons term in the electromagnetic action,

T
(em)
ab =

1

4π
(ZacF

c
b + L gab) . (6.8)

Theorem 6.1. Suppose that the m-dimensional spacetime (M, gab) admits m − 2

smooth pairwise commuting Killing vector fields {Ka
(1), . . . , K

a
(m−2)}, with the corre-

sponding nonempty set of zeros Z ⊆ M . Furthermore, suppose that this spacetime

contains the electromagnetic 2-form Fab which inherits the symmetries, £K(i)
Fab = 0

for all i. Then, given that gab and Fab are solutions of the Einstein-gMax field equa-

tions defined above, it follows that α∧T(K(i)) = 0 for all i on any open set sharing

a boundary with the zero set Z .

Proof of theorem 6.1. The form T(K(i)) consists of two terms, the nontrivial one

being ζ := iEZ, while the other is proportional to K(i) and therefore vanishes after

taking the wedge product with an n-form α. With the aid of (A.7), for the 1-form

ζ we have

⋆(α ∧ ζ) = (−1)n iK(n)
· · · iK(1)

⋆ζ =

= (−1)m+n iK(n)
· · · iK(1)

(⋆Z ∧ iK(i)
F) , (6.9)

so that the integrability depends on the behaviour of the scalar iK(i)
iK(j)

F and the

(m− n− 2)-form iK(n)
· · · iK(1)

⋆Z. In a special case when m = n+ 2, we are dealing

with two scalar quantities. For a symmetry inheriting form F, £K(i)
F = 0 for all i,
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so that we get

d(iK(i)
iK(j)

F) = iK(i)
iK(j)

dF , (6.10)

d(iK(n)
· · · iK(1)

⋆Z) = (−1)niK(n)
· · · iK(1)

d⋆Z . (6.11)

Using the first gMax equation, we may deduce that the scalars iK(i)
iK(j)

F are locally

constant and vanish on any open set sharing a boundary with the set of the zeros

Z . By the second gMax equation, the same holds for the scalar iK(n)
· · · iK(1)

⋆Z and

α ∧T(K(i)) = 0 for all i.

Before treating the multifield cases in which the electromagnetic fields are inter-

twined with scalar fields, we prove the integrability of scalar fields solely. A large

class of theories is covered assuming that the energy-momentum tensor of the scalar

field is given by

T
(rs)
ab = F (gcd, ϕ,∇cϕ, . . . )∇aϕ∇bϕ+G(gcd, ϕ,∇cϕ, . . . )gab , (6.12)

where F and G are some real functions. For example, the canonical case is recovered

if F = 1 and G = −(∇aϕ∇aϕ)/2 − U (ϕ), with a potential function U , while more

general choices produce some of the k-essence theories. If a scalar field is symmetry

inheriting, Ka
(i)∇aϕ = 0 for all i, it is not difficult to see that α ∧ T(K(i)) = 0

immediately holds. The same argument applies to the complex scalar fields whose

energy-momentum tensor has the following form

T
(cs)
ab = F (gcd, ϕ, ϕ

∗, . . . )∇(aϕ
∗∇b)ϕ+G(gcd, ϕ, ϕ

∗, . . . )gab . (6.13)

For noninteracting scalar and electromagnetic fields, the integrability easily follows

from the given arguments since the total energy-momentum tensor is just a sum

of the electromagnetic and scalar parts. Interacting fields pose a more challenging

task. First, we consider a theory in which the nonlinear electromagnetic field is

coupled to the complex scalar field, given by the following Lagrangian

L (ϕ,em) = L (F,G) − (Daϕ)∗(Daϕ) − U (ϕ∗ϕ) , (6.14)

where Da = ∇a+iqAa is a covariant gauge derivative. The NLE Maxwell’s equations

are of the form

dF = 0 and d⋆Z = 4π⋆J , (6.15)
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where the current 1-form is given by

Ja =
iq

4π
(ϕ∗Daϕ− ϕ(Daϕ)∗) . (6.16)

The total energy-momentum tensor is equal to

4πTab = ZacF
c

b + L gab + 2(D(aϕ)∗Db)ϕ−
(
(Dcϕ)∗(Dcϕ) + U (ϕ∗ϕ)

)
gab . (6.17)

The main complication comes from the current term in the NLE Maxwell’s equa-

tions, so the theorem will still hold only under an additional assumption.

Theorem 6.2. Suppose that the m-dimensional spacetime (M, gab) admits m − 2

smooth pairwise commuting Killing vector fields {Ka
(1), . . . , K

a
(m−2)}, with the corre-

sponding nonempty set of zeros Z ⊆ M . Furthermore, suppose that this spacetime

contains complex scalar field ϕ and electromagnetic 2-form Fab, both of which inherit

the spacetime symmetries, £K(i)
ϕ = 0 and £K(i)

Fab = 0 for all i, and α ∧ J = 0.

Then, given that gab, ϕ and Fab are solutions of the Einstein-NLE-Maxwell-scalar

field equations defined above, it follows that α ∧ T(K(i)) = 0 for all i on any open

set sharing a boundary with the zero set Z .

Proof of theorem 6.2. The relevant terms contained in the form T(K(i)), i.e.

the ones not proportional to any of the Killing vectors Ka
(i), are ζa := ZacF

c
b K

b
(i)

and 2Kb
(i)(D(aϕ)∗Db)ϕ. The former term is the same one appearing in the theorem

6.1 and can be handled in the identical way, while the latter is proportional to the

current Ja since

2Kb
(i)(D(aϕ)∗Db)ϕ = iqϕ(Daϕ)∗Kb

(i)Ab − iqϕ∗(Daϕ)Kb
(i)Ab =

= iqKb
(i)Ab(ϕ(Daϕ)∗ − ϕ∗Daϕ) =

= −4π(Kb
(i)Ab)Ja , (6.18)

where the first equality follows from the symmetry inheritance of the scalar field,

Ka
(i)∇aϕ = 0. Then, if α ∧ J = 0, we also have α ∧T(K(i)) = 0 for all i.

Let us briefly comment on the possible relaxation of the assumptions. Since

there are hairy black hole solutions harbouring symmetry non-inheriting scalar

fields [92], we will consider that case specifically, while keeping the other assump-

tions unchanged. The only possible complex scalar field hair is of Herdeiro-Radu

type, i.e. £K(i)ϕ = iαiϕ with some real constants αi ∈ R, for which we have

2Kb
(i)(D(aϕ)∗Db)ϕ = 4π((αi/q) − Kb

(i)Ab)Ja. The “problematic” term is again pro-

portional to the current 1-form, implying that the theorem 6.2 still holds under given
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conditions and the solution is forced to attain a block-diagonal metric. The anal-

ysis for more general forms of symmetry non-inheriting fields needs to be carefully

examined, which we leave for future work.

As a second example of the theory containing interacting fields, we take real

scalar fields nonminimally coupled to the NLE fields. A prominent example are

dilatons [67], whose Lagrangian density is

L (dil,em) = f(ϕ)L (F,G) − 1

2
∇aϕ∇aϕ− U (ϕ) , (6.19)

where f and U are some smooth functions of the dilaton field ϕ. The equations

governing the electromagnetic and dilaton fields are

dF = 0 , d⋆(f(ϕ)Z) = 0 , (6.20)

□ϕ− U ′(ϕ) + f ′(ϕ)L (F,G) = 0 . (6.21)

The corresponding energy-momentum tensor reads

4πTab = 4πf(ϕ)T
(em)
ab + ∇aϕ∇bϕ−

(
1

2
∇cϕ∇cϕ+ U (ϕ)

)
gab . (6.22)

Theorem 6.3. Suppose that the m-dimensional spacetime (M, gab) admits m − 2

smooth pairwise commuting Killing vector fields {Ka
(1), . . . , K

a
(m−2)}, with the corre-

sponding nonempty set of zeros Z ⊆ M . Furthermore, suppose that this spacetime

contains the dilaton field ϕ and the electromagnetic 2-form Fab, both of which inherit

the spacetime symmetries, £K(i)
ϕ = 0 and £K(i)

Fab = 0 for all i. Then, given that

gab, ϕ and Fab are solutions of the Einstein-dilaton-Maxwell field equations defined

above, it follows that α ∧T(K(i)) = 0 for all i on any open set sharing a boundary

with the zero set Z .

Proof of theorem 6.3. Since the dilaton field is by assumption symmetry inher-

iting, the only nontrivial term is of the form ζa := f(ϕ)ZacF
c

b K
b
(i). Using equation

(6.20), we have

d(iK(n)
· · · iK(1)

⋆f(ϕ)Z) = (−1)niK(n)
· · · iK(1)

d⋆(f(ϕ)Z) = 0 , (6.23)

so that the scalar iK(n)
· · · iK(1)

⋆f(ϕ)Z is constant and zero on each open set sharing

a boundary with the set Z .
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6.3 No-go theorem for null electromagnetic fields

in static spactimes

In the 4-dimensional spacetime, the null electromagnetic fields are naturally de-

fined as those for which both electromagnetic invariants vanish, i.e. F = G = 0. A

well-established result within Einstein-Maxwell theory is that such fields are absent

in the static spacetime. We briefly repeat the simple proof carried out by employing

the spinor approach presented in [181]. The metric of a static spacetime can be

decomposed into time slices as

g = −V 2dt2 + hij(x
k)dxidxj , (6.24)

with defined hypersurface orthogonal timelike Killing vector field ka. The gravita-

tional field equation implies T̃ti = 0, which in a covariant form becomes

T̃abk
b = f(xi)ka , (6.25)

where f is some nonpositive function, as guaranteed by the dominant energy condi-

tion obeyed by Maxwell’s energy-momentum tensor. In the spinor language, equa-

tion (6.25) becomes

ϕABϕA′B′kBB′
= 2πfkAA′ . (6.26)

Contraction with ϕA
C gives us

ϕABϕ
A
CϕA′B′kBB′

= 2πfkAA′ϕA
C . (6.27)

With the aid of identity (B.10), we get

ϕA′B′kBB′
ϵBC(ϕEFϕ

EF ) = 4πfkAA′ϕA
C ,

(ϕEFϕ
EF )ϕA′B′k B′

C = 4πfkAA′ϕA
C . (6.28)

For the null electromagnetic fields, it follows that ϕEFϕ
EF = 0 (see theorem B.3)

which leaves us with

fkAA′ϕA
C = 0 . (6.29)

The equation (6.29) will be satisfied if either f = 0 or kAA′ϕA
C = 0. In the latter

case, contraction with ϕ
A′C′

gives

ϕABϕA′B′kBB′
= 0 . (6.30)
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The same condition holds in the former case, as follows from (6.26). To complete

the proof, it remains to show that the timelike character of the Killing vector field is

incompatible with null electromagnetic fields. The null electromagnetic spinor can

be decomposed in terms of principal spinors as ϕAB = αAαB, as stated in theorem

B.1. Then the expression (6.30) becomes

αAαBαA′αB′kBB′
= 0 , (6.31)

while after introducing the corresponding null vector field la = lAA′
= αAαA′

, it

attains a simple form

lalbk
b = 0 . (6.32)

Assuming that la ̸= 0 and adopting a local inertial coordinate system, lbk
b = 0

implies

−k0l0 + k · l = l0(−k0 + |k| cos θ) = 0 , (6.33)

where cos θ = k̂ · l̂. For a timelike Killing vector ka we have the following inequal-

ities, k0 > |k| ≥ |k| cos θ, which contradict the equation above. However, null

electromagnetic fields can exist in circular spacetimes [74].

We present an extended version of the theorem, where the generalisation is

achieved in three aspects [17]. It remains valid for a broader class of both grav-

itational and electromagnetic theories and also in spacetimes of dimension different

from four. Generality in the sense of gravitational theories is achieved by relying on

Carter’s classification [33] of tensors into even and odd orthogonal-transitive types

(shortened as even/odd “o-t tensors”). The idea is to observe the behaviour of

scalars formed by contracting the rank-k tensor T a...
b... with s Killing vectors Ka

(i)

and k−s vectors from D⊥ on the orthogonal-transitive domain O. If all such scalars

for which s is even vanish, we say that the tensor T a...
b... is of even o-t type. Simi-

larly, if s is odd and all these scalars are zero, the tensor T a...
b... is of odd o-t type.

The concept can be illustrated by taking Ricci tensor as an example. Contraction

of the expression α ∧R(K(i)) = 0, which is valid on O, with a vector Y(j) = ∂/∂yj

belonging to D⊥ implies R(K(i), Y(j)) = 0, thus proving that Ricci tensor is of odd

o-t type. Riemann tensor and its covariant derivatives are also odd o-t tensors [201].

As a consequence, field equations of Lovelock gravity and f(R) theories are of the

same type [170]. Bach tensor, given by Bab = 2∇c∇dC
c d
ab + RcdC

c d
ab , where Cabcd

is Weyl tensor, is a further example of an odd o-t tensor. It emerges as a part of

equations of motion in “quadratic gravity” theories [175]. We singled out examples

of odd o-t tensors since our result is valid for field equations of this type.

An obstacle encountered in the dimensional generalisation of the theorem comes
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from the fact that the form ⋆F is no longer a 2-form. Consequently, the scalar G

cannot be defined whenever m ̸= 4 and the definition of null electromagnetic fields

has to be replaced accordingly. The suitable extension comes in the form of the

N-type fields within the generalised Petrov classification [172, 137].

Definition 6.1. We say that an electromagnetic field is of type N at a point p ∈M

if there is a null vector ℓa ∈ TpM such that

iℓF = 0 and ℓ ∧ F = 0 (6.34)

at this point.

Notice that in four dimensions F is of type N if and only if it is null (see theorem

B.3).

On the tangent space TpM we can introduce a basis (ℓa, na, sa(1), . . . , s
a
(m−2)) con-

sisting of two null vectors, ℓa and na, and spacelike vectors sa(i), normalised such

that ℓana = −1 and gabs
a
(i)s

b
(j) = δij, while all other products vanish. A naturally

associated dual basis of the cotangent space T ∗
pM is (ℓ,n, s(1), . . . , s(m−2)). Electro-

magnetic 2-form of type N can be written as

F = fi ℓ ∧ s(i) , (6.35)

where fi are the components in the introduced basis. Let us briefly comment on

the uniqueness of this decomposition. From the second condition in (6.34) it follows

that F has to be proportional to ℓ, while the first one implies it has be wedged by

s(i), due to the normalisation of the basis vectors.

The gravitational field equation sourced by the NLE energy-momentum tensor

is

Eab = 8π

(
−4LF T

(Max)

ab +
1

m
(gcdTcd) gab −

1

4πm
LFF(m− 4)gab

)
, (6.36)

where Eab is a symmetric tensor of the odd o-t type, possibly belonging to some

extended gravitational theory. The additional gCS term may be added to the elec-

tromagnetic action since it does not change the energy-momentum tensor, while the

modified gMax equations (6.7) are irrelevant for the proof.

Theorem 6.4. Suppose that the spacetime metric gab and the electromagnetic field

Fab are solutions of the gravitational field equation (6.36) with the odd o-t type tensor

Eab. If the metric gab admits a Killing vector field ka, hypersurface orthogonal on the

open set O ⊆M , then at each point of O where F ̸= 0, F is of type N and LF ̸= 0,

vector ka cannot be timelike.
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Proof of theorem 6.4. The electromagnetic 2-form F may be decomposed as

−kaka F = k ∧ E + ⋆(k ∧B) , (6.37)

where E := −ikF is the electric 1-form and B := ik⋆F is the magnetic (m-3)-

form. By the assumptions of the theorem, the timelike Killing vector field ka is

hypersurface orthogonal and the tensor E is of odd o-t type, implying that

k ∧ E(k) = 0 . (6.38)

Field equation (6.36) and the decomposition (6.37) allow us to express this condition

via electromagnetic fields as

LF B ∧ E = 0 . (6.39)

The decomposition (6.35) allows us to write the electric and magnetic forms as

E = (kas(i)a )fi ℓ− (kaℓa)fi s
(i) , (6.40)

B = fi ⋆(ℓ ∧ s(i) ∧ k) . (6.41)

From the definition of the forms E and B and taking into account that kaEa =

ℓaEa = 0 and Eas
(i)
a = −(kaℓa)fi, we get

⋆(B ∧ E) = iE ⋆B = (−1)m
(∑

i

f 2
i

)
(kaℓa) ℓ ∧ k . (6.42)

At the points where LF ̸= 0, the equation (6.42) implies ⋆(B ∧ E) = 0, while

the assumption F ̸= 0 translates to
∑

i f
2
i ̸= 0. Finally, we can conclude that

(kaℓa) ℓ ∧ k = 0, which is a contradiction for a timelike Killing vector ka.

The theorem can be circumvented if the assumptions are relaxed, in particular,

if we do not demand that LF ̸= 0. Examples are null electromagnetic stealth fields

in power-Maxwell theory which can be found in static spacetimes [171].
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Chapter 7

Black hole thermodynamics in the

presence of NLE fields

7.1 The laws of black hole mechanics

Black hole thermodynamics represents a meeting point of strong regime grav-

ity and quantum phenomena, along with providing an insight into the microscopic

description of spacetime. Although classical laws of black hole mechanics [10] bear

resemblance with the basic laws of thermodynamics [12, 13], it was not clear whether

this correspondence is just a mathematical formality. The underlying physics be-

hind it was revealed by Hawking’s prediction that black holes emit radiation [83],

indicating that black hole quantities can be identified with thermodynamic variables.

One relevant quantity that may be assigned to stationary black holes is surface

gravity κ defined on the horizon via

χa∇aχ
b = κχb, (7.1)

where χa is a horizon-generating Killing vector field. The zeroth law of black hole

mechanics states that κ attains a constant value over the black hole horizon. It can

be proved using various approaches that apply to different scenarios. One possibility

is to rely on Einstein’s gravitational field equations and dominant energy condition

[187]. Another, most elegant proof is based solely on the presence of bifurcate Killing

horizons [108]. The third option is to impose additional geometric restrictions, such

as integrability conditions that ensure staticity and circularity [150, 96]. The Planck

spectrum of emitted particles from the black hole [83] suggests that κ/(2π) plays

the role of the black hole’s temperature, thus strengthening the thermodynamic

analogy. The zeroth law of black hole electrodynamics, the constancy of electro-
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magnetic scalar potentials over the black hole horizon, may be established using

similar methods, at least for Maxwell’s theory [168, 169].

Energy conservation is essentially encapsulated in the first law of black hole

mechanics, which constrains the mass of stationary black holes upon perturbations.

For charged black holes within Maxwell’s electrodynamics, it can be brought to a

form

δM =
1

8π
κδA + ΩHδJ + ΦδQ+ ΨδP , (7.2)

where A stands for the area of the black hole horizon, ΩH is the angular velocity of

the horizon, J is black hole’s angular momentum, while Φ, Ψ, Q and P are electric

and magnetic scalar potentials and charges, respectively. Again, the form of the first

law implies that A/4 should be interpreted as the entropy of the black hole. This

conjecture is backed up not only by Hawking’s radiation, but also by the second law

of black hole mechanics. Given that certain energy conditions hold, it states that

the horizon area does not decrease with time, δA ≥ 0.

Stationary black holes also obey the analogue of the classical Gibbs–Duhem

relation, known as the Smarr formula,

M =
κ

4π
A+ 2ΩHJ + ΦQ+ ΨP . (7.3)

It can be derived from the Bardeen-Carter-Hawking mass formula [10], without any

reference to the first law. The original derivation for the Kerr-Newman black hole

[167] was based on Euler’s theorem for homogeneous functions [119]. The starting

point was the assumption that the black hole mass M(A, J,Q2) is a homogeneous

function of degree 1/2 to which one can readily apply the theorem. However, the

shortcoming of the Eulerian approach is its inapplicability to a wider range of theo-

ries. Namely, in these cases, there is no a priori guarantee that the black hole mass

will preserve its homogeneity [102]. Once the first law is obtained, one can use it to

derive the Smarr formula via the so-called scaling procedure, which we will discuss

in detail later.

Over the decades, significant progress has been made in understanding the ther-

modynamical aspects of Einstein-Maxwell black holes. The central result is Wald’s

entropy formula [192], which enabled defining entropy as a local, geometric quan-

tity related to the Noether charge. The original Wald’s formula holds for general

diffeomorphism-invariant Lagrangians, while its later generalisations apply to theo-

ries with gravitational Chern–Simons terms present [177, 19]. As far as NLE theo-

ries are concerned, thermodynamic analysis is still incomplete and mostly deals with

specific scenarios without providing a universal picture.
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The early study of black hole thermodynamics with NLE fields [151] contains

proof of the zeroth law of black hole electrodynamics via Einstein’s field equation, a

partial derivation of the first law of black hole thermodynamics and a vague state-

ment that the Smarr formula does not hold. However, as later analyses will show, the

presented form of the first law lacks the crucial NLE terms, which also modify the

usual Smarr formula. Thermodynamic properties of static and spherically symmetric

black holes have been analysed for particular NLE theories such as power-Maxwell

in an arbitrary number of dimensions [70], Euler–Heisenberg [122] and Born–Infeld

[72, 204, 30]. The Smarr formula for specific black hole solutions has been derived

in [24] via scaling arguments, while the same procedure has been applied to gen-

eral F-class Lagrangians in [59]. The authors in [128, 129] derived the first law for

F-class Lagrangians using mathematically well-defined covariant phase space for-

malism. Their result was devoid of additional NLE terms, in contrast to the first

complete generalisation of the Smarr formula for FG-class Lagrangians [71]. Since

the first law and the Smarr formula have to be mutually consistent, this conundrum

has to be resolved. The derivation of the first law for F-class theories [205] based

on the variation of the Bardeen-Carter-Hawking mass formula suggests that these

terms play a vital role.

We aim to obtain a consistent framework of thermodynamics with NLE fields,

with a clear presentation of all the technical details that are often brushed aside [14].

Special emphasis will be put on the rigorous derivation of the first law for FG-class

Lagrangians and the implications of the NLE Lagrangian parameters [14].

7.2 The zeroth law of black hole electrodynamics

The constancy of electric and magnetic scalar potentials over the stationary black

hole horizon can be proven in several different ways, depending on the generality we

wish to achieve. Analogously to establishing the zeroth law of black hole thermody-

namics, one can rely on specific gravitational field equations without going into the

details of the underlying geometric setup or consider black holes with particular geo-

metric properties that are independent of the field equations. These techniques have

already been successfully applied to Maxwell’s electrodynamics [168, 169]. Since the

analysis for NLE fields is still incomplete, our aim is to fill in the existing gaps in

the literature.

Throughout the section, we will assume that the spacetime (M , gab) admits a

smooth Killing vector field ξa and that the electromagnetic field F is symmetry

inheriting, £ξF = 0. The introduced assumptions enable us to define 1-forms E =
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−iξF and H = iξ⋆Z (2.17) and their associated scalar potentials Φ and Ψ (2.20).

Also, we can define 1-forms B = iξ⋆F and D = −iξZ (2.16), which are generally

not closed. The electromagnetic invariants are given by the usual expressions,

(ξaξa)F = 2(EaE
a −BaB

a) , (7.4)

(ξaξa)G = −4EaB
a . (7.5)

The scalar potentials Ψ and Φ are constant along the orbits of the Killing vector

field ξa since

£ξΦ = −iξE = 0 and £ξΨ = −iξH = 0 . (7.6)

The constancy of the scalar potentials over the horizon H[ξ] can be easily proven

given that expressions

ξ ∧ E
H
= 0 and ξ ∧H

H
= 0 (7.7)

hold under certain assumptions. Contraction of (7.7) with a tangent vector Xa ∈
TpH[ξ] results in

(£XΦ) ξ = 0 and (£XΨ) ξ = 0 . (7.8)

At each point where ξ ̸= 0, we have £XΦ = 0 and £XΨ = 0, while at points where

ξa = 0 we have dΦ = 0 and dΨ = 0 by construction. There are several approaches

that lead to (7.7), which we list below.

a) Einstein’s field equation method [151].

Starting from the identity that holds on the black hole horizon [96],

Rabξ
aξb

H
= 0 , (7.9)

and can be converted to the contraction of the energy-momentum tensor using Ein-

stein’s equation,

πTabξ
aξb

H
= −LFEaE

a , (7.10)

we can conclude that the electric field Ea is null at each nondegenerate point1 of the

horizon H[ξ]. By definition, we have ξaEa = 0, and since any two orthogonal null

vectors are necessarily proportional, ξ ∧E = 0. Then, from (7.4) it follows that the

magnetic field Ba is also null on H[ξ], so ξ ∧ B = 0. Once these two relations are

established, the same holds for the nonlinear magnetic 1-form, ξ ∧H
H
= 0.

Although simple, the disadvantage of this approach lies in the fact that it cannot

be repeated for more general gravitational theories, as the central identity (7.10) is

derived from Einstein’s field equation.

1We say that a point x ∈ M is nondegenerate if LF(x) ̸= 0.
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b) Bifurcate horizon method.

The most elegant proof can be performed assuming that the black hole horizon

is of bifurcate type. The horizon-generating Killing vector field ξa vanishes on the

bifurcation surface B ⊆ H[ξ]. Then the potentials Φ and Ψ are constant over

the bifurcation surface B and over each component of the horizon connected to it.

However, this proof cannot be applied to all scenarios, as there are examples of

horizons that are not of bifurcate type, such as those belonging to the extremal

black holes.

c) Frobenius approach [168, 169, 11].

Assume that the spacetime is both stationary and axially symmetric and pos-

sesses a mutually commuting timelike Killing vector field ka and an axial Killing

vector field ma, [k,m]a = 0, which satisfy the Frobenius condition [119]

k ∧m ∧ dk = 0 = k ∧m ∧ dm . (7.11)

The Killing horizon H[χ] is generated by the Killing vector field given as a linear

combination of vector fields ka and ma, defined as χa = ka + ΩHm
a, where the

constant ΩH is the angular velocity of the horizon. Several identities hold at the

black hole horizon since ka and ma are tangent to H[χ] and χa is normal to H[χ]

[96],

kak
a + ΩH kbm

b H
= 0 , (7.12)

kam
a + ΩHmbm

b H
= 0 , (7.13)

(kak
a)(mam

a)
H
= (kam

a)2 . (7.14)

We also assume that the electromagnetic field inherits both symmetries, £kF = 0

and £mF = 0. After setting Xa = ka and Y a = ma in the auxiliary identity

iX£Y − iY£X = iXiY d − diXiY + i[X,Y ] , (7.15)

and applying it to F and ⋆Z, we can conclude that Fabk
amb and ⋆Zabk

amb are

constant. These constants are equal to zero on any connected domain of spacetime

containing the points where either ka or ma vanish, one of the examples being the

rotation axis. It immediately follows that ⋆F abk
amb = 0 on each nondegenerate

point of the same domain. These conditions can be restated as

k ∧m ∧ ⋆F = 0 and k ∧m ∧ F = 0 , (7.16)
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since k ∧m ∧ ⋆F = −k ∧ ⋆imF = −⋆ikimF and k ∧m ∧ F = ⋆ikim⋆F.

Contracting the expressions (7.16) with imik, together with the aid of equations

(7.12)-(7.14), results in

imik(k ∧m ∧ ⋆F) = (ikk)(imm)⋆F− (ikk)m ∧ im⋆F− (ikm)(imk)⋆F+

+ (ikm)k ∧ im⋆F + (imk)m ∧ ik⋆F− (imm)k ∧ ik⋆F =

= −imm(k ∧ ik⋆F + ΩHk ∧ im⋆F + ΩHm ∧ ik⋆F + Ω2
Hm ∧ im⋆F) =

= −(imm)χ ∧ iχ⋆F = −(imm)χ ∧B = 0 , (7.17)

similarly, we have

imik(k ∧m ∧ F) = (imm)χ ∧ E = 0 , (7.18)

and we arrive at (7.7) on each nondegenerate point of the horizon where mam
a ̸= 0.

Points at which mam
a = 0 represent the intersection of the rotation axis and the

horizon and the constancy of a potential over the horizon follows directly from the

continuity of the potential.

The same strategy cannot be directly applied to the static, but not axially sym-

metric spacetime with hypersurface orthogonal Killing vector field ka which satisfies

the Frobenius condition k ∧ dk = 0. Namely, one would need the relations of the

form

k ∧ ⋆F = 0 and k ∧ Z = 0 , (7.19)

which do not hold for the dyonic configurations. However, the same procedure can

be repeated for specific subcases with certain simplifications.

(e1) “Purely electric case” in the sense that B = 0. Then, by the expression (7.4),

E is null on the horizon H[k] and the proof follows as in the approach (a).

(e2) “Purely electric case” in the sense that H = 0. In this case, since H = ik⋆Z,

the relation k ∧ Z = 0 holds. Contracting it with ka gives

LF k ∧ E− LG k ∧B
H
= 0 , (7.20)

while k ∧H = 0 implies

LG k ∧ E + LF k ∧B = 0 . (7.21)

If (LF)2 + (LG)2 ̸= 0, the expression (7.7) is valid, thus completing the proof.

(m1) “Purely magnetic case” in the sense that E = 0. Again, (7.4) implies that B

is null on the horizon H[k], and the proof can be performed in the same manner as

in (a) approach.
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(m2) “Purely magnetic case” in the sense that D = 0. By the definition of D, we

immediately have k ∧ ⋆Z = 0, which after contraction with ka reads

LG k ∧ E + LF k ∧B
H
= 0 . (7.22)

Another useful expression is k ∧D = 0 which gives

LF k ∧ E− LG k ∧B = 0 . (7.23)

Whenever (LF)2 + (LG)2 ̸= 0, we may deduce (7.7).

For the test electromagnetic fields whose contribution to the gravitational equa-

tion may be neglected, any method except approach (a) may be used to carry out

the proof.

7.3 The first law of black hole mechanics

There are several different approaches to deriving the first law of black hole ther-

modynamics, differing in the physical interpretation and the level of mathematical

rigour. Adopting the nomenclature from [188], we can make the following classifi-

cation:

(1) Equilibrium state version.

We are comparing two stationary black hole configurations that are “nearby” in

an abstract phase space. It can be subdivided further into two varieties:

(1a) Variation of the Bardeen-Carter-Hawking mass formula [10]

(1b) Covariant phase space formalism [192, 118, 104, 149].

Mathematically precise approach closely related to Hamiltonian mechanics in

which conserved quantities are extracted from the boundary terms.

(2) Physical process version [63].

We are considering a physical, quasistatic process in which matter is falling into

a black hole.

Our objective is to derive the first law by employing approaches (1b) and (2) to

rotating, stationary and axially symmetric black holes within FG-class NLE theories.

The fundamental assumption underlying the first law is that spacetime is a so-

lution of a coupled Einstein-NLE system with the metric gab corresponding to a

stationary, axially symmetric and asymptotically flat black hole and a symmetry

inheriting electromagnetic field F. The spacetime admits two Killing vector fields,

ka = (∂/∂t)a, which is timelike at infinity, and axial ma = (∂/∂ϕ), with compact

orbits. Without loss of generality, it can be assumed that the introduced vectors are
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mutually commuting, [k,m]a = 0, [34, 176] and satisfy Frobenius conditions (7.11).

One technical difference between the equilibrium state and the physical process

version is reflected in the properties of Cauchy surfaces intersecting the black holes.

In the former case, we assume that the black hole possesses a Killing horizon H[χ]

which is of a bifurcate type. Precisely, H[χ] is a pair of null hypersurfaces gener-

ated by the Killing vector field χa = ka + ΩHm
a, where the constant ΩH denotes

the angular velocity and the horizon’s corresponding surface gravity κ is a nonzero

constant. It intersects the bifurcation surface B, which is a smooth, compact, em-

bedded 2-surface on which the Killing vector field χa vanishes. In the equilibrium

state version, the integration of the relevant quantities is performed over a spacelike

Cauchy surface Σ ⊂ M , smoothly embedded in M and possessing a nowhere van-

ishing normal, whose boundary ∂Σ is composed of an asymptotically flat end and

bifurcation surface B = Σ∩H[χ]. Conversely, the derivation of the first law based on

the physical process version does not demand the presence of a bifurcation surface.

In that case, the setup consists of two spacelike Cauchy surfaces terminating at the

horizon.

The quantities describing black holes, the Komar mass MS and the Komar angu-

lar momentum JS [110], are defined by the integrals over a smooth closed 2-surface

S

MS := − 1

8π

∮
S

⋆dk and JS :=
1

16π

∮
S

⋆dm . (7.24)

If the integrals are performed over a sphere at infinity S∞ (formally, we look at

the limit in which the radius of the sphere goes to infinity), we use the symbols

M := MS∞ and J := JS∞ for the corresponding quantities. In our setting, which is

stationary and asymptotically flat spacetime, the ADM and Komar mass coincide

[187, 96]. Other two quantities relevant for black hole description are the electric

and magnetic charges given by (2.21).

7.3.1 Covariant phase space formalism

Before reviewing the fundamental aspects of covariant phase space formalism, we

need to discuss the influence of Lagrangian parameters on the first law of black hole

mechanics. Let us assume that the NLE Lagrangian contains a finite number of real

parameters, {β1, ...βn}. If we consider these parameters constant under the varia-

tions, the obtained version of the first law would not be in agreement with the NLE

version of the Smarr formula. This conflict has to be resolved since the generalised

Smarr formula can be derived independently of the first law [71]. One of the options

is to extend the phase space by including the Lagrangian parameters in a way that
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they get varied but remain constant on a given spacetime, ∇aβi = 0. Formally,

within the variational procedure, the NLE Lagrangian is understood as a function

of both electromagnetic invariants and parameters, L (F,G; {βi}). This approach

is similar to the treatment of the cosmological constant Λ in a thermodynamical

context, where it corresponds to the pressure in the V dp term [107, 116].

The other, more general option is to promote the parameters to spacetime-

dependent functions [155], ∇aβi ̸= 0. Using (2.11) together with identities (A.32)

and (A.34), we can evaluate the covariant divergence of the energy-momentum ten-

sor,

4π∇aT
a
b = ∇a (ZacFbc + L δab) =

= (∇aZ
ac)Fbc + Zac(dF )abc +

n∑
i=1

Lβi
∇bβi , (7.25)

which generally does not vanish on-shell for nonconstant parameters βi. This signals

that one needs to derive the equations of motion for parameters in a given theory.

However, we will follow the first approach without pursuing such generalisations.

Given that the above-introduced assumptions are satisfied, we move on to em-

ploying the covariant phase space formalism. All dynamical fields, which in our case

comprise metric gab and gauge field A, will be collectively denoted by ϕ, without

additional indices. The indices of the coupling parameters βi will be omitted in

arguments of the functions but will be explicitly stated in sums involving variations

δβi. The “variation operator” δ acts on fields ϕ and parameters βi as

δϕ(x) :=
∂ϕ(x;λ)

∂λ

∣∣∣
λ=0

and δβi :=
∂βi(λ)

∂λ
, (7.26)

where ϕ(x;λ) and βi(λ) are smooth 1-parameter configurations of fields and NLE

parameters [187, 118]. The variation of the metric is related to the variation of its

inverse,

δgab = −gacgbd δgcd , (7.27)

while the variation of the volume form is given by (C.3)

δϵ = −1

2
ϵ gab δg

ab . (7.28)

After integration by parts, the variation of the Lagrangian 4-form with respect to

the dynamical degrees of freedom can generally be expressed as [104]

δL[ϕ; β] = E[ϕ; β] δϕ+ Λi[ϕ; β] δβi + dΘ[ϕ, δϕ; β] . (7.29)
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Field equations are contained in the 4-form E, variation of the Lagrangian with

respect to the coupling parameter βi is denoted by Λi, while the boundary terms

are gathered in the symplectic potential 3-form Θ. We associate the Noether current

3-form Jξ to an arbitrary fixed vector field ξa,

Jξ := Θ[ϕ,£ξϕ; β] − iξL[ϕ; β] . (7.30)

The current 3-form is closed on-shell, dJξ ≈ 0, since

dJξ = dΘ−£ξL = −E[ϕ; β]£ξϕ−Λi[ϕ; β]£ξβi (7.31)

and £ξβi = 0. At least locally, there exists a 2-form Qξ such that Jξ ≈ dQξ [191].

This enables us to write the Noether current as

Jξ = iξC + dQξ , (7.32)

where C is a 4-form that vanishes on shell, C ≈ 0. In our case, the Lagrangian is a

sum of the gravitational and electromagnetic parts, so the 3-form Θ and the 2-form

Qξ decompose accordingly,

Θ = Θ(g) + Θ(em) and Qξ = Q(g)

ξ + Q(em)

ξ .

The symplectic current 3-form is introduced via two variations δ1 and δ2,

ω[ϕ, δ1ϕ, δ2ϕ; β] := δ1Θ[ϕ, δ2ϕ; β] − δ2Θ[ϕ, δ1ϕ; β] , (7.33)

while its integral over a spacelike Cauchy surface Σ defines the presymplectic form

ΩΣ,

ΩΣ[ϕ, δ1ϕ, δ2ϕ; β] :=

∫
Σ

ω[ϕ, δ1ϕ, δ2ϕ; β] . (7.34)

Here we implicitly assumed that the volume form on Σ is equal to the pullback

of iñϵ, where ña is a unit, future directed timelike normal vector field on Σ. Using

expression (7.32), the variation of the Noether current is given by δJξ = iξδC+dδQξ,

since δξa = 0 for a fixed vector field ξa. On the other hand, the same variation can

be calculated from the initial definition (7.30),

δJξ = δΘ[ϕ, δϕ; β] − iξδL[ϕ; β] =

= δΘ[ϕ, δϕ; β] − iξE[ϕ; β]δϕ− iξΛ[ϕ; β]δβi − iξdΘ[ϕ, δϕ; β] =

= −iξE[ϕ; β]δϕ+ ω[ϕ, δϕ,£ξϕ; β] + diξΘ[ϕ, δϕ; β] − iξΛ
i[ϕ; β] δβi , (7.35)
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where we used Eq. (7.29) in the second line and the definition of ω[ϕ, δϕ,£ξϕ; β]

(7.33) in the last step. The combination of the two expressions enables us to extract

the symplectic current 3-form,

ω[ϕ, δϕ,£ξϕ; β] = iξ(E δϕ+ δC)+

+ d(δQξ − iξΘ[ϕ, δϕ; β]) + iξΛ
i[ϕ; β] δβi , (7.36)

which, after integration over Σ and using Stokes’ theorem (see Appendix D), be-

comes

ΩΣ[ϕ, δϕ,£ξϕ; β] =

∫
Σ

iξ(E δϕ+ δC)+

+

∫
∂Σ

(δQξ − iξΘ[ϕ, δϕ; β]) −Ki
ξ(β) δβi , (7.37)

where we have introduced the auxiliary functions Ki
ξ,

Ki
ξ(β) := −

∫
Σ

iξΛ
i[ϕ; β] . (7.38)

The formal question is whether it is possible to rewrite the last term as a boundary

integral. The criterion for determining the exactness of a given differential form is

related to the properties of de Rham cohomology groups. As the top compactly

supported de Rham cohomology group is trivial for smooth and oriented (both

compact and noncompact) manifolds with nonempty boundary (see for example

theorems 8.3.10 and 8.4.8 in [195]), the pullback of the iξΛ
i to Σ is globally exact,

at least if the fields themselves are compactly supported. Then, one can apply

Stokes’ theorem and convert the Ki
ξ term to an integral over ∂Σ. However, if Σ is

noncompact and fields decay at infinity but are not compactly supported, there is

no immediate guarantee that Ki
ξ can be written as a boundary term.

In order to establish the link with Hamiltonian mechanics, summarised in relation

δHξ = ΩΣ[ϕ, δϕ,£ξϕ; β] , (7.39)

we briefly review its fundamentals. Hamiltonian mechanics is built upon a phase

space manifold with local canonical coordinates sµ = (q1, ..., p1, ...) and a symplectic

2-form ω, which is both closed and nondegenerate. Every smooth function f induces

a vector field Xf via df = −iXf
ω such that

Xf = (∂f/∂pi)∂qi − (∂f/∂qi)∂pi . (7.40)
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Hamiltonian H defines the dynamics of the system in the sense that the integral

curves of XH represent its time evolution, and we have ḟ = XH(f) for every function

f . Its variation is δH = (∇µH)δsµ = ωµνδs
µṡν = ω(δs, ṡ), which bears resemblance

with (7.39). Without the contributions of Ki
ξδβi terms, Hamiltonian Hξ conjugate

to ξa will exist [193] if and only if∫
∂Σ

iξω[ϕ, δ1ϕ, δ2ϕ] = 0 (7.41)

for any two variations, δ1 and δ2. The first integral in (7.37) is zero for fields ϕ

that satisfy field equations (E = 0) and perturbations δϕ that solve the linearized

equations of motion (δC = 0). If the Hamiltonian exists, one can write the remaining

terms as variations of some other forms. As shown in [104], this is possible for the

Einstein–Hilbert contribution to the iξΘ term, which can be written as∫
∂Σ

iξΘ
(g) = δ

∫
∂Σ

iξb , (7.42)

with the aid of a 3-form b. Lastly, we have to comment on the integrability of

the NLE term Ki
ξδβi. Mild smoothness assumptions are enough to satisfy the local

integrability condition ∂βi
Kj

ξ = ∂βj
Ki

ξ, emerging from ∂βi
∂βj

L = ∂βj
∂βi

L . That

being the case, we know that Iξ(β) such that δIξ = Ki
ξδβi exists. If there is only

one coupling parameter, Iξ is a primitive function of Kξ. Notice that the on-shell

Hamiltonian is a purely surface term.

Now we apply the formalism to the geometric scenario described in the intro-

duction of the subsection. First, we promote the smooth vector field ξa to a Killing

vector field and assume that all the dynamical fields inherit the symmetry, £ξϕ = 0.

Then, we have ΩΣ[ϕ, δϕ,£ξϕ; β] = 0, which follows immediately from the definition

of the symplectic current (7.33) with δ1 = δ and δ2 = £ξ,

ω[ϕ, δϕ,£ξϕ; β] = δΘ(g)[ϕ, δϕ,£ξϕ; β] + δΘ(em)[ϕ, δϕ,£ξϕ; β]−

−£ξΘ
(em)[ϕ, δϕ,£ξϕ; β] −£ξΘ

(g)[ϕ, δϕ,£ξϕ; β]. (7.43)

Namely, since 3-forms Θ(g) and Θ(em) are constructed out of the symmetry inheriting

fields, the last two terms immediately vanish, while explicit calculation for Einstein-

Hilbert and NLE Lagrangians will show that the same holds for the first two terms.

However, this reasoning demands careful justification in a more general case [104].
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The relation (7.36) evaluated on shell reads

δ

∮
S∞

(Qξ − iξb) − δ

∮
B

(Qξ − iξb) −Ki
ξ δβi ≈ 0 . (7.44)

Also, we assume that ξa = χa = ka + ΩHm
a and calculate contributions to the

boundary integrals.

The gravitational part of the Lagrangian is given by the standard Einstein–

Hilbert term, whose variation is presented in detail in Appendix C,

1

16π
δ(Rϵ) =

1

16π
Gab δg

abϵ + dΘ(g) , Θ(g) :=
1

16π
⋆v , (7.45)

where 1-form v is given by

va := ∇bδgab − gcd∇aδgcd . (7.46)

The explicit evaluation of the current 3-form (7.30) yields

16πJabc = ϵdabc(vd −Rξd) = ϵdabc(∇e∇dξe + ∇e∇eξd − 2∇d∇eξ
e −Rξd) =

= ϵdabc(∇e∇dξe + ∇e∇eξ
d − 2∇e∇dξe + 2R d

e ξe −Rξd) =

= 2ϵdabc(∇e∇[eξd] +G d
e ξe) , (7.47)

from which we can extract the gravitational Noether charge

Q(g)

ξ = − 1

16π
⋆dξ . (7.48)

We identify two gravitational contributions over a sphere at infinity as the mass and

angular momentum of a black hole, defined respectively by

M =

∮
S∞

(Q(g)

k − ikb) and J = −
∮
S∞

Q(g)

m , (7.49)

where we took into account that the pullback of imb to a surface tangent to ma

vanishes. The difference in normalisations of Komar integrals for mass and angular

momentum is directly related to the absence of the imb term in the integral for the

angular momentum [104]. Gravitational contribution on the horizon is the entropy

term [192]

δ

∮
B

Q(g)

ξ =
κ

8π
δA , (7.50)

where A is the area of the bifurcation surface B. Altogether, the current form of
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the first law reads

δM − ΩH δJ + δ

∮
S∞

Q(em)

χ =
κ

8π
δA + δ

∮
B

Q(em)

χ +Ki
χ δβi . (7.51)

In the following subsection, we will confirm that the iξΘ
(em) term vanishes due to

the boundary conditions and gauge choices.

7.3.2 Equilibrium state first law

To obtain the complete form of the first law of black hole thermodynamics, we

turn to the calculation of the electromagnetic contributions. After recalling the

definition of the trace of the energy-momentum tensor (2.10), the variation of the

NLE Lagrangian

δ(L ϵ) = LF δF ϵ + LG δG ϵ + L δϵ +
n∑

i=1

Lβi
δβi ϵ (7.52)

can be written as

δ(L ϵ) = LF δ(Fϵ) + LG δ(Gϵ) + πTδϵ +
n∑

i=1

Lβi
δβi ϵ . (7.53)

The first term in (7.53) can be expanded further,

LF δ(Fϵ) = 8πLFT
(Max)

ab δgabϵ− 4LF∇aF
abδAbϵ + +4LF∇a(F b

a δAb)ϵ , (7.54)

and contains the standard Maxwellian contribution, up to the LF factor. The first

term in (7.54) and the third term in (7.53), which are proportional to the variation

of the metric, define the NLE energy-momentum tensor,

8πLFT
(Max)

ab δgabϵ + πT δϵ = −2πTabδg
abϵ . (7.55)

Using the auxiliary expression

−LF∇aF
abδAb + LF∇a(F

abδAb) = −∇a(LFF
ab)δAb + ∇a(LFF

b
a δAb) , (7.56)

the sum of the first and the third term in (7.53) may be written as

LF δ(Fϵ) + πTδϵ = −2πTabδg
abϵ− 4∇a(LFF

ab)δAbϵ + 4∇a(LFF
b

a δAb)ϵ . (7.57)
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With the aid of the identity (A.28), the second term in (7.53) can be written con-

veniently as

LGδ(Gϵ) = 4LG

(
∇a((⋆F

ab) δAb) − (∇a⋆F
ab)δAb

)
ϵ =

= 4
(
∇a(LG (⋆F b

a ) δAb) −∇a(LG ⋆F
ab)δAb

)
ϵ . (7.58)

Combining all the obtained expressions, we get the final form of the variation of the

Lagrangian 4-form

1

4π
δ(L ϵ) =

1

16π

(
− 8πTab δg

ab + 4(∇aZ
ab)δAb + 4

∑
i

Lβi
δβi

)
ϵ + dΘ(em), (7.59)

which consists of the energy-momentum tensor term, gauge field equation of motion,

additional term proportional to the variation of the NLE Lagrangian parameters and

the boundary term. The 3-form Θ can be written compactly as

Θ(em) :=
1

16π
⋆w , wa = −4Z b

a δAb , (7.60)

where the 1-from w may be represented as w = −4 ⋆(⋆Z ∧ δA) in differential form

notation. If the electromagnetic field F is of class O(r−2) and perturbation δA of

class O(r−1) as r → ∞, the 3-form Θ(em) is irrelevant for the integral at S∞.

The Noether current 3-form is given by

16πJξ = ⋆(v + w) − (R + 4L ) ⋆ξ . (7.61)

In order to rewrite it in a suitable way, we need a series of manipulations. Starting

from the identity

∇b∇bξa −∇a∇bξb = R(ξ)a − (⋆d⋆dξ)a , (7.62)

we see that the auxiliary 1-form v for a variation given by the Lie derivative δ = £ξ

is equal to

∇b£ξgab − gcd∇a£ξgcd = 2R(ξ)a − (⋆d⋆dξ)a . (7.63)

For the same variation, the 1-form w is proportional to Z b
a £ξAb. Hence, we have to

find objects containing that contraction in order to recast w in a more convenient

form. One obvious starting point is the electric field 1-form which contains the Lie

derivative term,

E = −iξF = −iξdA = −£ξA + diξA . (7.64)
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The electric field can be further contracted with Z, resulting in

4iEZ = −4⋆(⋆Z ∧ E) = 4⋆(⋆Z ∧£ξA) − 4⋆(⋆Z ∧ diξA) =

= −w − 4⋆d((iξA)⋆Z) + 4(iξA)⋆d⋆Z . (7.65)

On the other hand, the same contraction can be expressed as

4iEZ = −16 (LF iEF + LG iE⋆F) = 16πT(ξ) − 4L ξ , (7.66)

where the second equality follows since

16πT(ξ) = −16LFiEF + 4LFFξ + 4πTξ =

= −16LFiEF + 4L ξ − 4LGGξ =

= −16LFiEF + 4L ξ − 16LGiE ⋆F . (7.67)

In the last step, we used an auxiliary identity that follows directly from (A.24),

iE ⋆F =
1

4
G ξ . (7.68)

Finally, we can write the difference of the two terms in J as

w − 4L ξ = −16πT(ξ) − 4⋆d((iξA)⋆Z) + 4(iξA) ⋆d⋆Z . (7.69)

Next, we are interested in finding a relation between the gauge 1-form A and scalar

potential while taking the gauge freedom into account. Assuming that the elec-

tromagnetic field is symmetry inheriting, £ξF = 0, and F = dA0 for the initial

gauge choice, it does not necessarily hold that £ξA0 ̸= 0. Still, d£ξA0 is a closed

form, which can be seen from d£ξA0 = £ξF = 0. On a simply connected domain,

there exists a function α, such that £ξA0 = dα. We may choose a gauge function

λ such that £ξλ = −α. Then the initial and final gauge forms differ by a closed

form A = A0 + dλ, and we have £ξA = 0. Still, even after this procedure, there is

residual gauge freedom since £ξ(A+ dµ) = 0, as long as the function µ inherits the

symmetry, £ξµ = 0. Noting that Φ and −iξA differ by a constant, as follows from

d(Φ + iξA) = −E + (£ξ − iξd)A = 0 , (7.70)

we may write Φ = −iξA + Φ0, for some Φ0 ∈ R. The final form of the Noether
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current 3-form is given by

Jξ =
1

8π
⋆(G(ξ) − 8πT(ξ)) − Φ − Φ0

4π
d⋆Z + d(Q(g)

ξ + Q(em)

ξ ) , (7.71)

with

Q(g)

ξ = − 1

16π
⋆dξ and Q(em)

ξ =
1

4π
(Φ − Φ0) ⋆Z . (7.72)

The 4-form C is equal to

Cabcd =
1

8π
(G e

a − 8πT e
a − 2Aa∇rZ

re)ϵebcd , (7.73)

which confirms that the Noether current Jξ is closed on-shell, dJξ ≈ 0, and Jξ ≈
dQξ.

Before evaluating the first law, we have to show that the contribution of the

electromagnetic term Q(em)

ξ does not depend on the choice of gauge. If we choose A

so that the iξA term does not vanish at the bifurcation surface, we are implicitly

using a gauge field that diverges there. The idea is easily illustrated by taking

the Reissner–Nordström black hole as an example. Analysis of gauge field 1-form

at bifurcation surface is performed by introducing tortoise radial coordinate dr∗ =

dr/f(r), switching to Eddington-Finkelstein coordinates u = t − r∗ and v = t +

r∗ and using them to define Kruskal coordinates U = −e−κu and V = eκv. In

new coordinates, the Killing horizon is generated by the Killing vector field k =

κ (V ∂V − U∂U). The gauge field which vanishes at infinity is given by

A = −Q
r

dt = − Q

2κr

(
1

V
dV − 1

U
dU

)
, (7.74)

and is manifestly divergent at the bifurcation surface defined by (U, V ) = (0, 0). In

a different gauge,

A′ = − Q

2κ

(
1

r
− 1

r+

)(
1

V
dV − 1

U
dU

)
, (7.75)

where r+ is the radius of the outer horizon, the gauge field 1-form is regular on the

horizon. Our gauge choice will be the one in which A is finite and smooth at H[χ]

and Φ vanishes at infinity. Then iξA|B = 0, the constant Φ0 is equal to the value of

the potential over the horizon, so that −iξA = Φ−ΦH and iξA|∞ = ΦH . The Q(em)

ξ

term makes no contribution at the bifurcation surface, while at infinity it amounts

to

δ

∮
S∞

Q(em)

ξ = −ΦH δQ . (7.76)
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Thus, the final form of the first law of black hole mechanics in the presence of NLE

fields is

δM =
κ

8π
δA + ΩH δJ + ΦHδQ+Ki

χ δβi , (7.77)

with a new thermodynamic variable Ki
χ conjugate to the NLE parameters βi,

Ki
χ := − 1

4π

∫
Σ

Lβi
⋆χ . (7.78)

The obtained formula (7.77) does not contain the often included magnetic term

ΨHδP due to the tacit assumption that the gauge field A is globally well-defined.

The canonical covariant phase space approach does not offer a formal procedure

for its inclusion. However, the reference [109] addressed this problem by taking into

account contributions from several spacetime patches with changing gauge potential

along their edges. The ΨHδP term appears in mass formula variation procedure (1a)

[205, 96], which does not deal with the precise definition of the gauge potential. On

the other hand, the authors in [149] argue that the magnetic charge is of a topological

nature and therefore invariant under perturbations.

Some of the early treatments of black hole thermodynamics with NLE fields

seem inconsistent with the formula (7.77) owing to the absence of the Ki
ξδβi term.

For example, in [93] the nonrotating dyonic black hole is obtained from the NLE

Lagrangian L = L (Max) + αG2 and the first law is presented in the form δM =

κδA/(8π) + ΦHδQ + ΨHδP . However, one should take this result with certain

reservations, as the variation of the NLE parameter α related to the magnetic charge

is kept fixed under the variation.

By establishing a parallel with the analysis of black hole thermodynamics with

the cosmological constant [107], the black hole mass in (7.77) can be understood

as a generalised enthalpy. It is related to the internal energy E by means of the

Legendre transformation M = E +Ki
χβi, so that

δE =
κ

8π
δA + ΩH δJ + ΦH δQ− βi δK

i
χ . (7.79)

The physical interpretation of the Ki
ξ quantity is not univocal and depends on the

Lagrangian in question. In the case when the coupling parameter βi is of the same

dimension as F1/2, which is also the dimension of the electric field, the corresponding

Ki
ξ may be interpreted as an NLE vacuum polarisation. This was already noted for

Born–Infeld theory with β = b [72] and is also applicable to the Euler–Heisenberg

theory where β = m2
e/α.

Now we turn to the alternate way of deriving the first law of black hole thermo-
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dynamics, the physical process approach.

7.3.3 Physical process first law

In contrast to the “equilibrium state” derivation, which does not address the

physical background of the perturbations, here we are looking at the process in

which matter is thrown into a black hole. The geometric setting consists of two

smooth, spacelike, asymptotically flat Cauchy surfaces, Σ0 and Σ1, which, respec-

tively, represent the initial and final states of the process. The two surfaces terminate

on the horizon H[ξ] which does not have to be of the bifurcate type. The part of

the horizon between Σ0 ∩H[ξ] and Σ1 ∩H[ξ] may be denoted by H. A schematic

depiction of the setting is shown in the Figure2 7.1.

Σ0

Σ1

H

Figure 7.1: Spacelike hypersurfaces Σ0 and Σ1, horizon portion H and infalling matter

denoted by gray area [14].

The process starts with the initial stationary black hole, which is then perturbed

by adding a small amount of charged matter. After some time, it settles into a final

stationary state. The charged matter is composed of fields with compact support

which intersects Σ0 and H[ξ], but is disjoint from both Σ0∩H[ξ] and Σ1. The latter

claim follows since we suppose that the matter is initially away from the black hole

and that there is no residual matter on the final hypersurface once the process is

finished.

The sources consist of the electromagnetic 4-current ja and two contributions to

the energy-momentum tensor, the electromagnetic one Tab and the one unrelated to

the electromagnetic fields, T̂ab. The gravitational-NLE system of equations is

Gab − 8πTab = 8πT̂ab , ∇bZ
ab = 4πja . (7.80)

We assume that (gab,A) is a solution of the source-free coupled Einstein-NLE equa-

tions and the perturbations (δgab, δA) are the solutions of the linearized equations

2© 2021 American Physical Society
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with sources δT̂ab and δja,

δ(Gab − 8πTab) = 8πδT̂ab , δ(∇bZ
ab) = 4πδja . (7.81)

Variations of the relevant quantities were already calculated within the covariant

phase space formalism, with a caveat that additional source terms appear in this

approach. Variation of the 4-form C (7.73) no longer vanishes on-shell but is equal

to

δCabcd ≈
(
δT̂ e

a + Aaδj
e
)
ϵebcd , (7.82)

since the term δ(Aa∇rZ
re) reflects the presence of the sources,

δ(Aa∇rZ
re) = (δAa)∇rZ

re + Aaδ∇rZ
re = 0 − 4πAaδj

e. (7.83)

Using the definitions of mass and angular momentum (7.49) together with the as-

sumption that field perturbations vanish at Σ0 ∩H[χ], after inserting ξa = χa into

(7.37), we get

δM − ΩH δJ −Ki
χ δβi = −

∫
(Σ0,−ϵ̂)

⋆αχ . (7.84)

The auxiliary 1-form α, which contains sources, is defined by

αξ := ⋆(iξδC) = δT̂(ξ) + (iξA) δj , (7.85)

for any Killing vector field ξa. The orientation of the hypersurface Σ0 in (7.84) is

opposite of the induced Stokes’ orientation ϵ̂ (see the discussion in Appendix D).

The 1-form α is conserved in a sense that

d⋆αξ = diξδC = (£ξ − iξd)δC = 0 , (7.86)

since all fields and perturbations are symmetry inheriting. In the rest of the deriva-

tion, we will suppress the additional index on α for notational clarity. Application

of the Stokes’ theorem (D.6) on a four-dimensional submanifold whose boundaries

consist of hypersurfaces Σ0 and Σ1, horizon portion H and a far-away timelike hy-

persurface S on which perturbations δja and δT̂ab vanish, leads us to

0 =

∫
(Σ0,ϵ̂)

(ñaαa)ϵ̂ +

∫
(H,ϵ̂)

(−ℓaαa)ϵ̂ . (7.87)

As shall be proven later, a convenient choice of the null vector field ℓa is ℓa = ζa,

which is a vector field tangent to the affinely parametrized null generators of the

103



unperturbed Killing horizon H[ξ]. Now we may shift the integral in (7.84) from the

initial hypersurface Σ0 to the black hole horizon ,

−
∫
(Σ0,−inϵ)

⋆α = −
∫
(Σ0,−inϵ)

(−naαa)(inϵ) =

=

∫
(H,inϵ)

(ζaαa)(inϵ) , (7.88)

where we omitted the pullback symbols for notational simplicity. So far we get a

partial result of the form

δM − ΩH δJ −Ki
χ δβi =

∫
H

ζaαa ϵ̂ . (7.89)

This integral has two contributions, one of which will add to the electromagnetic

section of the first law, and the other of which corresponds to the area term. Let

us first evaluate the electromagnetic part. The gauge choice is chosen such that

both Φ and A vanish at infinity and consequently Φ0 = 0 and −iξA = ΦH on

the horizon. With the positive infalling charge, δQ ≥ 0 , we have ζaδja ≤ 0 on

the horizon since δja is on the physical grounds assumed to be causal and future-

directed (sign would be reversed for the negatively charged infalling matter). Taking

the arguments presented above into account, we get

δM − ΩH δJ − ΦH δQ−Ki
χ δβi =

∫
H

ζaχb(δT̂ab) ϵ̂ . (7.90)

Now we have to show that the remaining term in (7.90) is indeed the area term.

This will be done by employing the Raychaudhuri equation, which governs the ex-

pansion of a family of nonintersecting geodesics, collectively called a congruence.

As anticipated, we consider a family of horizon-generating, affinely parametrized

null geodesics, whose tangent vector field is ζa and whose corresponding parame-

ter is denoted by V . Notice that the Killing vector field χa satisfies a nonaffinely

parametrized geodesic equation χa∇aχ
b = κχb. However, the standard transforma-

tion of the form V = exp(κv) converts the Killing vector field parameter v to an

affine parameter V . Then, the two vector fields are related by

ζa =

(
∂

∂V

)a

=
1

κV

(
∂

∂v

)a

=
1

κV
χa. (7.91)

For extremal black holes with κ = 0, the Killing vector field χa is tangent to the

affinely parametrized geodesic horizon generators. The expansion scalar θ has a

convenient geometric interpretation; it measures the change in the congruence’s
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cross-sectional area as one moves along the geodesics,

θ =
1

A

dA

dV
. (7.92)

The Raychaudhuri equation for the null congruence [147]

dθ

dV
= −1

2
θ2 − σabσ

ab −Rabζ
aζb , (7.93)

gets simplified in the case of the stationary background, where the shear tensor σab

and the expansion θ both vanish. Furthermore, taking into account the Einstein’s

equation, the Raychaudhuri equation becomes

dθ

dV
= −8π

(
Tab + T̂ab

)
ζaζb . (7.94)

To obtain the change in area, we need the perturbed Raychaudhuri equation. Dif-

feomorphism invariance provides one useful simplification. We may choose a gauge

in which the null generators of the unperturbed and perturbed black horizons co-

incide so that δζa ∼ ζa on the horizon. Since Rabζ
aζb|H = 0 [187], the perturbed

Raychaudhuri equation [63] reduces to

dδθ

dV
= −8π

(
δTab + δT̂ab

)
ζaζb

∣∣
H
. (7.95)

A closer look at the first term on the right-hand side of (7.95) reveals it consists of

three terms,

δTabζ
aζb = −4(δLF)T (Max)

ab ζaζb−

− 4LF δT
(Max)

ab ζaζb +
1

4
δ(Tgab)ζ

aζb , (7.96)

which all vanish on the horizon. The last term is equal to zero since ζa is null

in both perturbed and unperturbed spacetimes. The other two terms also make

no contribution since the electric field is null on the horizon, as was shown while

proving the zeroth law,

4πT (Max)

ab ζaζb|H = (κV )−2EaE
a|H = 0 , (7.97)

4πδT (Max)

ab ζaζb|H = (κV )−2δ(EaEa)|H = 0 . (7.98)

Thus, the perturbed Raychaudhuri equation (7.95) reduces even further and by
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rewriting ζa in terms of the Killing vector field χa, we get

κV
dδθ

dV
= −8πζaχbδT̂ab

∣∣
H
. (7.99)

Integration over the H returns exactly the change in horizon area δA∫
H

ζaχb(δT̂ab) ϵ̂ =
κ

8π
δA . (7.100)

We can elaborate on this fact in a few steps [188]. The volume form on the horizon

portion H can be split into the cross section surface element d2S and the time part

dV . Integration by parts gives us∫
d2S

(∫ ∞

0

V
dδθ

dV
dV

)
=

∫
d2S(δθV )

∣∣∣∣∞
0

−
∫
d2S

∫ ∞

0

δθdV (7.101)

The first term vanishes when evaluated at the lower limit because we have V = 0,

while at the upper limit θ goes to zero since it has to decay faster than 1/V as

V → ∞ if the final black hole has a finite area. By the definition (7.92), the second

term in (7.101) is up to a sign equal to the change in area of the black hole horizon.

Finally, we obtain the physical process version of the first law

δM =
κ

8π
δA + ΩH δJ + ΦH δQ+Ki

χ δβi , (7.102)

which is consistent with the one derived following the equilibrium state approach

(7.77).

7.4 Smarr formula

The Smarr formula for stationary and axially symmetric rotating black holes

within FG-class theories can be derived independently of the first law by utilising

the Bardeen-Carter-Hawking mass formula. This approach has been employed in

[71], yielding an interim result

M =
κ

4π
A + 2ΩHJ + ΦHQH + ΨHPH +

1

2

∫
Σ

T ⋆χ . (7.103)

The key difference between the NLE and Maxwell cases is the presence of the trace

term, which is absent in Maxwell’s theory but generally exists in the NLE case.

Given that the NLE Lagrangian can be written as L = σ−1f(σF, σG), with some

parameter σ and a real function f , the trace of the energy-momentum tensor be-
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comes T = −(σ/π)∂σL . One can then, at least formally, interpret the novel NLE

term as a product of mutually conjugate thermodynamic variables [71].

Another way of deriving the Smarr formula relies on the first law and its per-

turbation, which is defined as a path in the phase space of the solutions given by

the consistently rescaled fields [174]. This idea has been used in [205] to derive the

Smarr relation for F-class theories. We will use the same approach to rederive the

Smarr formula for FG-class theories, which will provide an independent consistency

check.

7.4.1 Smarr formula from the first law

Let (gab,A) denote an initial solution of the gNLE field equations. We are inter-

ested in finding rescaled fields (λ2gab, λ
νA), where λ and ν are real constants, chosen

such that the family of rescaled field configurations satisfies the same equations.

First, we have to find consistent scalings of the relevant fields entering the Smarr

formula. If the metric is rescaled according to gab → λ2gab, it follows that the

metric inverse rescales as gab → λ−2gab, while volume form and the area of the black

hole horizon change as ϵ → λ4ϵ and A → λ2A, respectively. The metric rescaling

immediately defines the rules for the curvature tensors,

Ra
bcd → Ra

bcd , Rab → Rab , R → λ−2R , Gab → Gab.

Killing vector ka is timelike at infinity with normalisation given as gabk
akb = −1, so

that ka → λ−1ka and k → λk. The axial Killing vector ma is normalised along its

closed orbits C as ∮
C

1

mama
m = 2π, (7.104)

implying that ma → ma and m → λ2m. Consistency of the horizon-generating

Killing vector field χa = ka + ΩHm
a sets ΩH → λ−1ΩH. The appropriate rule for

surface gravity κ follows from the geodesic equation χb∇bχ
a = κχa and is given

by κ → λ−1κ. From the Komar integrals (7.24), we may deduce M → λM and

J → λ2J . This completes the gravitational sector, so we turn to the electromagnetic

quantities.

Starting from the scaling of the gauge field, A → λνA, we have F → λνF

and ⋆F → λν⋆F. Then, the electromagnetic invariants obey F → λ2(ν−2)F and

G → λ2(ν−2)G. The electric and magnetic 1-forms defined with respect to the Killing

vector field χa scale as E → λν−1E and B → λν−1B. For their associated scalar

potentials, we have Φ → λν−1Φ and Ψ → λν−1Ψ. The energy-momentum tensor

107



is scale invariant, Tab → Tab, which follows from Einstein’s field equation Gab =

8πTab. From the expression for the energy-momentum tensor in terms of Lagrangian

density (2.11), we see that consistency implies L → λ−2L . For Maxwell’s case,

this condition sets ν = 1. Taking this scaling as universal, the same applies to all

NLE electromagnetic Lagrangians. Also, it constrains the scalings of the additional

parameters in NLE Lagrangians, which will generally be of the form βi → λbiβi for

some real exponents bi. For example, in the Born-Infeld theory, we have b → λ−1b

and α → λα in the Euler-Heisenberg theory. Komar charges defined in (2.21) imply

Q → λQ and P → λP , while (7.78) gives Ki → λ1−biKi. The scaling exponents

are summarised in Table 7.1 below. Note that this is not a necessary but rather

a consistent set of scaling transformations that allows us to apply the first law of

black hole thermodynamics. The quantities that are varied in the first law of black

Table 7.1: Scaling exponents for various fields and charges appearing in Einstein-NLE

theory.

Scaling exponent
−2 gab, R, F, G
−1 κ, ΩH

0 Ra
bcd, Rab, Gab, E, B, Φ, Ψ

1 M , k, A, F, ⋆F, Q, P
2 gab, m, A, J
4 ϵ

hole mechanics depend on the parameter λ and attain a form

Q(λ) = λqQ(1) , (7.105)

where q is some scaling exponent. Then, if we denote the original, unperturbed

state by the abbreviation Q = Q(1), we get the relation between the perturbed and

initial quantity,

δQ =
dQ(λ)

dλ

∣∣∣
λ=1

= qQ . (7.106)

Finally, following this approach, we recover the generalised Smarr formula

M =
κ

4π
A + 2ΩHJ + ΦHQ+

∑
i

biK
i
χβi , (7.107)

and confirm the previous, independently obtained result [71]. The only seeming

discrepancy is the absence of the magnetic term ΨHP in (7.107). It can be attributed

to the form of the first law used for the derivation of the generalised Smarr formula

(7.77), which is devoid of the magnetic charge term since it emanates from the
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covariant phase space formalism. A direct derivation done in [71] circumvents the

use of the first law, so there is no physical contradiction between the two methods.

One advantage of the scaling procedure stressed in [205] is its generality in the

sense that it can treat the NLE Lagrangians with multiple coupling parameters.

The only such example that we encountered is the Ayón–Beato–Garćıa Lagrangian

(2.64) which, as was remarked in [71], can be put in the form L = µ̃α−1f(αF), with

µ̃ = µ/g and α = g2. Its parameters scale as µ → λµ and g → λg, meaning that

the parameter µ̃ is scale invariant and Ayón–Beato–Garćıa Lagrangian is covered

by the approach employed in [71]. The authors in [71] also consider more general

Lagrangians of the form L (σ,F,G) = σ−1L̃ (σF, σG), with a real parameter σ

that scales as σ → λ2σ. This condition is fulfilled for physically sensible NLE

Lagrangians, consisting of Maxwell’s term and expansion in the coupling parameter

σ in the weak field limit,

L = −1

4
F + σ

(
c20F

2 + 2c11FG + c02G
2
)

+O(σ2) , (7.108)

where cij are dimensionless constants, irrelevant for the discussion. A simple alge-

braic manipulation

L =
1

σ

(
− 1

4
(σF) + c20(σF)2 + 2c11(σF)(σG) + c02(σG)2 +O(σ3)

)
(7.109)

brings the Lagrangian to the above-mentioned form.

7.4.2 Linearity of the Smarr formula

Finally, we can inspect the (non-)linearity of the Smarr formula and address the

question which NLE theories leave it in the form

c1M = c2κA + c3ΩHJ + c4ΦHQ+ c5ΨHP + c6ΦHP + c7ΨHQ , (7.110)

where {c1, . . . , c7} is the set of some real constants. The idea is to find the terms that

would produce the desired products of potentials and charges after the integration of

the 3-form T⋆χ over Σ. Our analysis is based on a number of suitably constructed

equations,

d(Φ ⋆Z) = −E ∧ ⋆Z = ⋆iEZ =
1

2
⋆R(χ) + (2πT − L ) ⋆χ , (7.111)

d(ΨF) = −H ∧ F =
1

2
⋆R(χ) + L ⋆χ , (7.112)

d(ΦF) =
1

2
iχ(F ∧ F) = −1

4
G ⋆χ , (7.113)
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d(Ψ ⋆Z) = −1

2
iχ(⋆Z ∧ ⋆Z) = 4

(
2LFLGF + (L 2

G − L 2
F )G
)
⋆χ . (7.114)

The first equation is derived by contracting the Einstein’s equation with χa while

using the energy-momentum tensor in the form (2.11),

Rabχ
b + 4πTχa = 8πTabχ

b = 2(ZacF
c

b χ
b + L χa) . (7.115)

The second one follows from the contraction of (A.29) with χa and combining it

with the previous result (7.111),

F ∧ iχ⋆Z + iχF ∧ ⋆Z = −2(LFF + LGG)⋆χ = −2(L − πT )⋆χ , (7.116)

H ∧ F− E ∧ ⋆Z = −2(L − πT )⋆χ . (7.117)

The last two equations follow from contractions of (A.28) and (A.31) with χa re-

spectively,

iχ(F ∧ F) = −2E ∧ F = −1

2
G⋆χ , (7.118)

iχ(⋆Z ∧ ⋆Z) = 2H ∧ ⋆Z = 8((L 2
F − L 2

G )G− 2LFLGF)⋆χ . (7.119)

Without a strict argument, it seems plausible that a necesary condition for the

linearity of the Smarr formula is

L = a(LFF + LGG) + b
(
2LFLGF + (L 2

G − L 2
F )G
)

+ cG , (7.120)

with real constants a, b and c. This form enables one to convert a linear combination

of ⋆R(χ) and T ⋆ χ into a linear combination of d(Φ⋆Z), d(ΨF), d(ΦF) and d(Ψ⋆Z),

while the remaining terms cancel. Without loss of generality, we can set c = 0 as

the G term is nondynamical. The expression (7.120) may be regarded as a nonlinear

partial differential equation for the Lagrangian L (F,G). Unfortunately, we do not

know how to obtain the solution in full generality, so we may examine some special

cases.

One simplification lies in considering the NLE theories which admit invariance

under SO(2) electromagnetic duality rotations, defined by (2.33). The necessary

and sufficient condition that ensures this invariance (2.43) translates into the con-

stancy of 2LFLGF + (L 2
G − L 2

F )G + (G/16). Then, for duality-invariant NLE the-

ories, we may take b = c = 0 and deal with the simpler, linear partial differential

equation L = a(LFF + LGG). Its characteristics in the F − G plane, defined by

(Ḟ, Ġ) = (F,G), are just lines through the origin. Along a characteristic, the partial
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differential equation turns into an ordinary differential equation aL̇ − L = 0. Its

general solution on a domain where F ̸= 0 is L = F1/af(G/F), while on a domain

where G ̸= 0 it attains a similar form, L = G1/ag(F/G), with some differentiable

functions f and g. Another prominent class of examples consists of NLE theories

with traceless energy-momentum tensor, satisfying the (a, b, c) = (1, 0, 0) case. Its

member is ModMax theory (2.57), which can be put in a suitable form by setting

f = −coshγ(1/4− tanhγ
√

1 + (G/F)2). Since the linearity of the Smarr formula for

power-Maxwell Lagrangian was confirmed in [71], we have to be able to reconstruct

it from our general solution. Indeed, by setting a = 1/s and function f to a constant,

we recover precisely the power-Maxwell family of NLE Lagrangians (2.65).

Another physically relevant simplification may be obtained by demanding that

the NLE Lagrangian has the Maxwellian weak field limit. Partial derivatives of

(7.120) with respect to F and G evaluated at (F,G) = (0, 0) are

−1

4
= LF(0, 0) = −1

4
a and 0 = LG(0, 0) = − 1

16
b ,

so that we recover the linear case with (a, b) = (1, 0). Again, the solution can be

written either as L = Ff(G/F) or L = Gg(F/G). In the former case, along the

lines with G = pF, where p is a real parameter, we have LF = f(p) − pf ′(p) and

LG = f ′(p). The Maxwellian weak field limit implies f(p) = −1/4 for any p ∈ R.

In the latter case, the analogous reasoning gives us g(p) = −p/4 for any p ∈ R
along the lines defined by F = pG. Under the assumption that the condition (7.120)

holds, the only NLE theory that preserves the linearity of the Smarr formula and

simultaneously satisfies the Maxwellian weak field limit is Maxwell’s electrodynamics

itself.
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Chapter 8

Discussion and conclusion

Even though we have resolved several problems related to the properties of space-

times coupled to NLE theories, each of them has raised new questions, which may

outline future investigations.

Using test field approximation, we calculated the first order perturbative NLE

correction to the static case of Wald’s solution, which represents a black hole sur-

rounded by an external, asymptotically homogeneous magnetic field. The consis-

tency of the approach is confirmed since results obtained either directly from gener-

alised Maxwell’s equation or by introducing magnetic scalar potential are mutually

agreeable. In principle, the same procedure, albeit with a different boundary con-

dition, can be repeated for a compact, highly conducting star. However, it seems

that the corresponding solution cannot be written in a closed form, thus making it

unclear how to impose the needed boundary condition. The question is whether one

can find a more advantageous approach to this problem. Another further advance-

ment would be to look at the rotating Kerr black hole solution in the same setting.

However, in that case the invariants F0 and G0 get considerably more involved, and

consequently, solving the master equation becomes a highly nontrivial problem.

Our results indicate that a four-dimensional, strictly stationary, regular, and

asymptotically flat spacetime cannot support a nontrivial NLE field. The only

exception comes in the form of somewhat exotic stealth field solutions, absent in

most of the physically significant NLE theories. In the presence of charged matter

described by a complex scalar field, generalisations of the theorems are possible if we

introduce new assumptions on scalar fields and their corresponding current. These

limitations are expected as there are known solitonic-like bosonic star solutions

emerging from symmetry non-inheriting scalar fields [91, 90]. The challenge that

comes with higher-dimensional cases is the increased rank of the magnetic field

form. Naturally arising question is whether the assumptions of the theorems can be
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further relaxed. We were relying on the simple connectedness of the manifold M to

ensure the existence of scalar potentials Φ, Ψ, UE and UH . Without this condition,

one would have to adopt either of the following approaches: impose some boundary

conditions that guarantee the existence of scalar potentials or construct different

divergence identities that do not involve them. The Maxwellian weak field limit

assumption, together with the fall-off conditions of metric components and fields,

was essential in the elimination of the boundary terms at asymptotic ends. A weaker,

but still effective condition, is that partial derivatives LF and LG are well-defined

and finite at the origin of the F–G plane. NLE theories such as power-Maxwell (for

powers less than 1) [78, 79] and ModMax [8, 111] do not conform to such behaviour.

The notion of asymptotic flatness and appropriate fall-off conditions have to be

reexamined in these cases. In the (1+2)-dimensional case, although we still have

divergence identity (4.53) and the lower-dimensional positive energy theorem [198]

at disposal, the natural logarithmic behaviour of the scalar potential O(lnr) in the

asymptotic region prevents the elimination of the boundary terms.

The presented theorems on the absence of regular solitonic solutions have been

complemented by no-go theorems for black hole regularisation using NLE fields,

which exclude most of the physically plausible NLE theories as candidates for reso-

lution of singularities. Electrically charged black holes emanating from either F or

FG-class Lagrangians with Maxwellian weak field limit cannot be regular, so in order

to find a singularity-free solution, one has to rely on theoretically proposed magnetic

charges. However, even in that case our theorems pose serious limitations to this ob-

jective. Examples often encountered in the literature, such as Born–Infeld, ModMax

and Euler–Heisenberg-like quadratic Lagrangians, have also proved to be unsuccess-

ful in regularisation, regardless of the charges present. Regular magnetically charged

black holes are often found by using ad hoc constructed F-class Lagrangians, whose

origin is not well-motivated. Alternatively, regular solutions may be generated by

choosing a specific metric and explicitly evaluating the associated NLE Lagrangian

as a function of coordinates rather than via electromagnetic invariants (e.g.[182]).

The main open question left is whether the no-go theorems for dyonic and magnetic

cases can be further extended to cover a larger portion of FG-class Lagrangians.

Since our theorems apply to Einstein–Hilbert action, one venue of inquiry could be

dealing with some type of modified gravitational action. Taking f(R) gravitational

theory as an example [158, 157, 134], the main difficulty is incorporating regularity

conditions on higher derivative curvature invariants. Another way of generalising

the results is to allow nonminimal coupling between gravitation and NLE fields or

include Lagrangians that depend on derivatives of invariants, which may arise from
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generalised uncertainty principle [22] or noncommutative field theories [73, 76, 41].

When it comes to energy conditions, defined by the signs of the derivative LF and

the trace T [146, 14], our approach based on the boundedness of curvature invari-

ants remains inconclusive. Although Einstein’s field equation relates derivatives of

the metric function f(r), LF and T , no information can be extracted unless one

imposes assumptions about the convexity of the function f(r) “by hand”, since it is

not obvious which condition would represent the natural choice. NLE theories have

also been tested as a way of evading cosmological singularities. In fact, it is possible

to obtain regularised FRW universes [48, 31, 135] or Bianchi spaces [65] with various

NLE theories. Although the outlook seems better in the context of cosmology, the

possible underlying constraints have still not been systematically explored.

By inspecting the integrability of the distribution D⊥, we gave the criteria that

guarantee the isometry-compatible block diagonalisation of the metric for general

NLE theories, NLE theories with the added Chern-Simons term and NLE theories

(non)-minimally coupled to scalar fields. Our results hold for an m-dimensional

spacetime, which is a solution of Einstein’s field equation and admits (m−2) pairwise

commuting Killing vector fields. Moreover, we showed that the theorem on the

absence of null fields in static spacetimes remains valid for NLE theories coupled to

any odd “o-t” type gravitational field equation in m dimensions, up to stealth field

solutions. A further step forward would be to consider the integrability of theories

beyond General Relativity or a more careful analysis for symmetry non-inheriting

fields. From a phenomenological point of view, new black hole observational data

may enable inspecting the deviations from circularity [49, 55, 54].

We reexamined the main building blocks of black hole thermodynamics in which

Maxwell’s theory is replaced by its NLE generalizations. To derive the first law of

black hole thermodynamics with NLE fields, we utilised the previously developed co-

variant phase space approach and applied it to two conceptually distinct variations,

the equilibrium and the physical process versions. The imprint of NLE theories

reveals itself as a novel pair of conjugate thermodynamic variables (βi, K
i
ξ), consist-

ing of NLE Lagrangian parameters βi and the Ki
ξ term which can, by dimensional

argument, be interpreted as vacuum polarisation for some theories. Similarly, in an

earlier analysis of black hole thermodynamics, the cosmological constant appears

as a variable conjugate to volume [107, 116]. The derivation of the first law would

not be possible without the auxiliary result, the constancy of the electromagnetic

scalar potentials on the horizon. We proved this statement, known as the zeroth

law of black hole electrodynamics, in several different complementary ways. Various

authors in the literature took opposing stands on the question of whether NLE La-
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grangian parameters should be varied in the first law. To resolve the dilemma, one

may use the generalised Smarr formula as a guiding principle. Namely, the result we

obtained via scaling procedure agrees with the generalised Smarr formula derived

independently of the first law [71], thus confirming the necessity of the novel NLE

term. Finally, we gave an argument that suggests that the Smarr formula remains

linear in Maxwell’s theory or for a class of NLE theories which violate Maxwellian

weak field limit.

There are several possible generalisations of our results. By dropping the asymp-

totic flatness condition, we may include the cosmological constant term via the

standard procedure presented, for example, in [116, 107]. Covariant phase space

formalism may treat modified gravitational theories, as long as the coupling of elec-

tromagnetic and gravitational parts is minimal, although the induced corrections

may not be easily evaluated [177, 19]. Generalisations for higher or lower dimen-

sional spacetimes can be carried out straightforwardly, provided that one excludes

invariant G, since F and ⋆F are 2-forms only in four spacetime dimensions. Deal-

ing with NLE theories nonminimally coupled to gravity or Lagrangians contain-

ing derivatives of electromagnetic invariants presents a much greater computational

challenge. It is not yet clear if the extension of the phase space by NLE parameters

is just an algebraic formality or may be of greater physical significance.

Due to their versatile applicability in numerous areas of physics, NLE theories

will continue to inspire further investigations. It can be expected that this pursuit

will lead to many interesting developments. The open questions presented here may

pave the way for some future endeavours.
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Appendix A

Useful identities

A.1 Differential forms

Let (M , gab) be a smooth m-dimensional manifold with a metric gab whose sig-

nature is s and ω a p-form. We list the frequently used identities within differential

form calculus.

Hodge dual ⋆, contraction with a vector Xa and exterior derivative d are, re-

spectively, defined as

(⋆ω)ap+1...am =
1

p!
ωa1...apϵ

a1...ap
ap+1...am

, (A.1)

(iXω)a1...ap−1 = Xb ωba1...ap−1 , (A.2)

(dω)a1...ap+1 = (p+ 1)∇[a1ωa2...ap+1] . (A.3)

Hodge dual applied twice returns the initial form up to a sign,

⋆⋆ω = (−1)p(m−p)+s ω . (A.4)

A convenient operation is the so-called “flipping over the Hodge”,

iX⋆ω = ⋆(ω ∧X) , (A.5)

where X on the left side denotes the vector Xa and on the right side is its associated

1-form, Xa = gabX
b. Special care has to be taken of the order of the forms when

calculating multiple contractions with different vectors. For example, for vectors Xa

and Y a we have

iXiY ⋆ω = iX⋆(ω ∧Y) = ⋆(ω ∧Y ∧X) , (A.6)
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and in a general case,

iX(1)
· · · iX(n)

⋆ω = ⋆(ω ∧X(n) ∧ . . . ∧X(1)) . (A.7)

Lie derivative £X can be defined via Cartan’s formula,

iXd + diX = £X . (A.8)

Other identities involving Lie derivative can be summarised as follows:

£Xd = d£X , (A.9)

£XiY − iY£X = i[X,Y ] , (A.10)

£K⋆ = ⋆£K , (A.11)

where Xa and Y a are smooth vector fields and Ka is a smooth Killing vector field.

Notice that the contraction with a vector Xa, exterior derivative d and Lie

derivative £X satisfy the Leibniz rule,

iX(α ∧ β) = iXα ∧ β + (−1)pα ∧ iXβ , (A.12)

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) , (A.13)

£X(α ∧ β) = £Xα ∧ β + α ∧£Xβ , (A.14)

for a p-form α and a q-form β. The coderivative operator δ acts on a p-form ω as

δω := (−1)m(p+1)+s ⋆d⋆ω , (A.15)

which in an abstract index notation takes a form

δωa1...ap−1 = ∇bωba1...ap−1 . (A.16)

Lie derivative along a Killing vector field Ka can be expressed in terms of the

coderivative operator as

£Kω = δ(K ∧ ω) + K ∧ δω . (A.17)

The expression above is especially useful in the case when ω is a 1-form that inherits

the spacetime symmetries, so that £Kω = 0. Then, after integration over a smooth
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hypersurface Σ and application of the generalised Stokes’ theorem, we get∫
Σ

(δω) ⋆K =

∫
∂Σ

⋆(K ∧ ω) , (A.18)

where we omitted the pullback symbol for the sake of simplicity. The volume form

ϵ satisfies the following identities:

⋆1 = ϵ , ⋆ϵ = (−1)s, iXϵ = ⋆X , £X(fϵ) = δ(fX)ϵ , (A.19)

where f is a scalar function. For a 1-form α we have ⋆d⋆α = −∇aαa and d⋆α =

(−1)s∇aαaϵ.

The inner product of two p-forms is defined as

(α|ω) =
1

p!
αa1..apω

a1...ap , (A.20)

and admits a number of useful identities:

(α|ω)ϵ = α ∧ ⋆ω = ω ∧ ⋆α = (−1)s(⋆α|⋆ω)ϵ , (A.21)

(X ∧ γ|α) = (γ|iXα) , (A.22)

where γ is a (p− 1)-form.

A.2 Electromagnetic field tensor identities

For any 2-form F, we have two elementary results

FacF
c
b − ⋆F ac⋆F

c
b = −1

2
Fgab , (A.23)

Fac ⋆F
c
b = ⋆F ac F

c
b = −1

4
Ggab . (A.24)

The first identity follows directly from rewriting the second term as

⋆F ac⋆F
c
b = −1

4
F efFghgdbϵcefaϵ

cghd =
3!

4
F efFghgdbδ

[g
e δ h

f δ d]
a , (A.25)

and performing all the contractions with products of Kronecker delta tensors. The

second one can be derived by applying the similar trick. Starting from Fac = −⋆⋆Fac,

we have

Fac ⋆F
c
b = −3!

8
FghFkmgbnϵ

ghefδ [k
e δ m

f δ n]
a . (A.26)
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After proceeding with the calculation, one arrives at the sought identity.

Using the general identity (A.21), we can easily derive the following expressions,

F ∧ ⋆F =
1

2
F ϵ , (A.27)

F ∧ F = −1

2
G ϵ , (A.28)

F ∧ ⋆Z = −2(FLF + GLG) ϵ , (A.29)

F ∧ Z = −2(FLG − GLF) ϵ , (A.30)

⋆Z ∧ ⋆Z = 8
(
(L 2

F − L 2
G )G− 2LFLGF

)
ϵ . (A.31)

Taking into account that dF = 0, we have

F ac∇aFbc =
1

4
∇bF , (A.32)

since

∇b(FacF
ac) = 2F ac∇bFac = 2F ac(∇cFab + ∇aFbc) = 4F ac∇aFbc . (A.33)

Similarly, as ⋆F ab∇cFab = F ab∇c⋆Fab, it follows that

⋆F ac∇aFbc = F ac∇a⋆F bc =
1

4
∇bG . (A.34)

A.3 Schwarzschild spacetime

In Chapter 3, we repeatedly used Hodge duals of 2-forms in Schwarzschild space-

time, so it is convenient to gather them in one place

⋆(dt ∧ dr) = −r2 sin θ dθ ∧ dφ , ⋆(dθ ∧ dφ) =
1

r2 sin θ
dt ∧ dr (A.35)

⋆(dt ∧ dθ) =
sin θ

f(r)
dr ∧ dφ , ⋆(dr ∧ dφ) = −f(r)

sin θ
dt ∧ dθ (A.36)

⋆(dt ∧ dφ) = − 1

f(r) sin θ
dr ∧ dθ , ⋆(dr ∧ dθ) = f(r) sin θ dt ∧ dφ (A.37)

For the 1-form m associated to the axial Killing vector field, we have

1

2
dm = r sin2 θ dr ∧ dφ+ r2 cos θ sin θ dθ ∧ dφ , (A.38)

and
1

2
⋆dm = cos θ dt ∧ dr − rf(r) sin θ dt ∧ dθ . (A.39)
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The exterior derivative of w = v/C, where va is given by (3.46), and its Hodge dual

are equal to

dw = − 16 sin4 θ dr ∧ dφ−

− 8 sin(2θ)
(

2r − 5M + (M − 2r) cos(2θ)
)

dθ ∧ dφ , (A.40)

⋆dw =16f(r) sin3 θ dt ∧ dθ−

− 16
cos θ

r2

(
2r − 5M + (M − 2r) cos(2θ)

)
dt ∧ dr . (A.41)
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Appendix B

Spinors

B.1 Fundamentals and conventions

The fundamental, naturally arising objects in general relativity are tensor fields

living on a real, four-dimensional spacetime. However, the theory can be formulated

in terms of 2-spinors defined on a 2-dimensional complex vector space [144, 173].

We will denote it by S and its dual, which consists of maps ω : S → C, by S∗. To

complete the setup, we introduce a complex conjugate dual space S
∗
, consisting of

antilinear maps ω : S → C, and finally, a complex conjugate space S dual to it. An

essential object on spin space is the symplectic structure, a nondegenerate bilinear

2-form defined as

[ , ] : S × S → C , [ξ, ϕ] = −[ϕ, ξ] . (B.1)

Symplectic structure belongs to S∗ × S∗ and is denoted by ϵAB = −ϵBA.

The spin basis for S is built out of two nonzero vectors o, ı ∈ S normalised

such that [o, ı] = 1. Then each vector ξA ∈ S admits a unique decomposition

ξA = ξ0oA + ξ1ıA.

The role of the metric tensor as a map that provides a natural isomorphism from

tangent space to its dual is now taken by the symplectic structure in an analogous

way. It acts on the objects from S and sends them to S∗ via ξA = ϵBAξ
B. Similarly,

there is an inverse operation from S∗ to S defined as ξA = ϵABξB. In other words, we

use the first index in ϵAB to lower the indices and the second one in ϵAB to raise the

indices. The elements of S are written as ξ
A′

and analogously for lowered indices.

Conventionally, ϵAB is denoted by ϵA′B′ instead of ϵA′B′ . It is normalised according

to ϵABϵ
AB = 2 and can be used to split the Levi-Civita tensor as

ϵabcd = ϵABCDA′B′C′D′ = i(ϵACϵBDϵA′D′ϵB′C′ − ϵADϵBCϵA′C′ϵB′D′) . (B.2)
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One should be aware of the differences in conventions used throughout the literature

as spinor formalism is usually formulated using the “mostly minus” metric signature.

In order to keep track of the signs and cover both scenarios, we introduce η =

sgn(η00). Then, the spacetime metric is equal to spinor gABA′B′ = ηϵABϵA′B′ .

Next, we list a few results that will prove important in future discussions [144,

173].

Lemma B.1. Any spinor with two indices τAB may be decomposed as

τAB = τ(AB) +
1

2
ϵABτ

C
C . (B.3)

More generally, the analogous result is valid for spinors with multiple indices.

Theorem B.1. Let τA...B be a totally symmetric spinor. Then there exist univalent

spinors {αA, ...ζA} such that

τA...Z = α(A...ζZ) , (B.4)

where the spinors {αA, ...ζA} are called principal spinors of τ .

Theorem B.2. Every real null vector ka can be written as ka = ±κAκA′
, where the

sign determines whether it is future or past directed.

B.2 Electrodynamics in spinor formalism

In our case, the most important application of the spinor approach is within

the electromagnetic theories. The fundamental object, the antisymmetric electro-

magnetic field tensor Fab, becomes Fab = FABA′B′ = −FBAB′A′ in spinor formalism.

However, electromagnetism is usually formulated in terms of a symmetric spinor

ϕAB defined by

ϕAB =
1

2
F C′

ABC′ = −1

2
F C′

BA C′ =
1

2
F C′

BAC′ = ϕBA . (B.5)

Our goal is to show that Fab and ϕAB can be treated on an equal footing since they

contain the same information. As a basic consistency check, one may prove that

both objects contain the same number of degrees of freedom. In a four-dimensional

spacetime, Fab has six independent degrees of freedom due to the antisymmetry,

while the symmetric spinor ϕAB has three independent complex components that in

total carry six degrees of freedom.
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Using the result of lemma B.1, we can derive the general form of FABA′B′ in

terms of ϕAB,

FABA′B′ = FAB(A′B′) + ϵA′B′ϕAB = F(AB)(A′B′) + ϵABϕA′B′ + ϕABϵA′B′ . (B.6)

Due to the antisymmetry, F(AB)(A′B′) = 0 and the final expression is

FABA′B′ = ϵABϕA′B′ + ϕABϵA′B′ . (B.7)

The dual of Fab is calculated straightforwardly using the spinor equivalent of its

standard definition,

⋆FABA′B′ =
1

2
ϵ CD C′D′

AB A′B′ FCDC′D′ =

= i(ϵ C
A ϵ D

B ϵ D′

A′ ϵ C′

B′ − ϵ D
A ϵ C

B ϵ C′

A′ ϵ D′

B′ )FCDC′D′ , (B.8)

finally resulting in

⋆FABA′B′ = i
(
ϵABϕA′B′ − ϕABϵA′B′

)
. (B.9)

Lemma B.2. FABA′B′ = 0 iff ϕAB = 0. Then, it follows that FABA′B′ ̸= 0 iff

ϕAB ̸= 0.

Proof of lemma B.2. If ϕAB = 0, we have FABA′B′ = 0 by definition. Conversely, if

FABA′B′ = 0, by contraction of (B.7) with ϵA
′B′

we get ϕAB = 0.

The term ϕAC ϕ
C

B is antisymmetric in A and B and thus proportional to ϵAB,

as follows from lemma B.1,

ϕAC ϕ
C

B =
1

2
ϵAB ϕDCϕ

DC . (B.10)

The identity (B.10) will be particularly useful in deriving the spinor forms of other

electromagnetic quantities. The two quadratic electromagnetic invariants are calcu-

lated as follows,

F =
(
ϵABϕA′B′ + ϕABϵA′B′

) (
ϵABϕ

A′B′

+ ϕABϵA
′B′
)

=

= 2
(
ϕABϕAB + ϕ

A′B′

ϕA′B′

)
, (B.11)

where the cross terms vanish due to the contraction of symmetric and antisymmetric

tensors, and similarly, for the invariant G, we get

G = −2i
(
ϕABϕAB − ϕ

A′B′

ϕA′B′

)
. (B.12)
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Adopting the standard normalisation of Maxwell’s energy-momentum tensor

T (Max)

ab := −η 1

4π

(
FacF

c
b − 1

4
gabFcdF

cd

)
, (B.13)

the first term, with the aid of identity (B.10), becomes

FacF
c

b = ηFACA′C′F C C′

B B′ =

= η

(
−2ϕAB ϕA′B′ +

1

2
ϵAB ϵA′B′

(
ϕCD ϕ

CD + ϕC′D′ ϕ
C′D′))

. (B.14)

After combining it with the spinor equivalent of the metric tensor and expression

(B.11), the final spinor representation of T (Max)

ab is

T (Max)

ABA′B′ =
1

2π
ϕABϕA′B′ , (B.15)

manifestly independent of the metric sign convention.

According to theorem B.1 a nontrivial ϕAB can be decomposed as ϕAB = α(AβB).

Here, we can discern two distinct cases. If α and β are not proportional, ϕAB is

algebraically general or of type I in the Petrov classification. In the other case,

when α and β are proportional, we refer to ϕAB as algebraically special or of type

N. In the latter case, ϕAB represents a null electromagnetic field (F = 0 = G), as

summarised in the theorem below.

Theorem B.3. The electromagnetic field Fab is null iff ϕABϕ
AB = 0, which corre-

sponds to the type N fields.

Proof of theorem B.3. If ϕABϕ
AB = 0, we immediately have F = 0 = G. Conversely,

if F = 0 = G, solving the system in ϕABϕ
AB gives a trivial solution. For type N

fields we have ϕABϕ
AB = αAαBα

AαB = 0.

In some cases, the spinor approach provides an elegant method of performing oth-

erwise tedious calculations. Its simplicity is illustrated in the proof of the following

theorem.

Theorem B.4. In Maxwell’s electrodynamics, there are no stealth electromagnetic

fields, T (Max)

ab = 0 iff Fab = 0.

Proof of theorem B.4. If Fab = 0, T (Max)

ab immediately vanishes. To prove the other

direction of the claim, we suppose that T (Max)

ab = 0 and Fab ̸= 0, which also implies

that ϕAB ̸= 0 by lemma B.2. In that case, there exist spinors αA and βA for which
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ϕABα
AβB ̸= 0. Then, we have

1

2π
ϕABϕA′B′αA′

β
B′

̸= 0 , (B.16)

which is in a contradiction with the initial assumption that T (Max)

ab = 0. Therefore,

ϕAB has to be trivial.

Furthermore, the spinor approach enables relatively simple derivation of a general

formula for the consecutive contractions of Maxwell’s energy-momentum tensors

(5.3). For an illustration, we will consider cases with n = 1 and n = 2, from which

one can already draw a universal rule. Using the identity (B.10), the normalisation

of the symplectic structure and the spinor forms of invariants F (B.11) and G (B.12),

for n = 1 we have

T̃abT̃
ba =

1

(2π)2
ϕABϕA′B′ϕBAϕ

B′A′

=

=
1

(2π)2
(
ϕABϕ

AB
) (
ϕA′B′ϕ

A′B′)
=

=
1

(4π)2
1

4
(F2 + G2) , (B.17)

and for n = 2,

T̃abT̃
bcT̃cdT̃

da =
1

(2π)4

(
ϕABϕA′B′ϕBCϕ

B′C′)(
ϕCDϕC′D′ϕDAϕ

D′A′)
=

=
1

(4π)4

(
ϵAC

(
ϕEFϕ

EF
)
ϵA′C′

(
ϕE′F ′ϕ

E′F ′))
×

×
(
ϵAC

(
ϕGHϕ

GH
)
ϵA

′C′
(
ϕG′H′ϕ

G′H′))
=

=
1

(4π)4
1

43
(F2 + G2)2 . (B.18)

B.3 Newman-Penrose tetrad

For calculational convenience, it would be advantageous if one could use a basis

consisting of four null vectors instead of the usual one timelike and three space-

like vectors. However, taking into account real vectors only, it is not possible to

construct four linearly independent null vectors. The solution to this obstacle lies

in considering complex tangent space. The spin basis {oA, ıA} enables defining the

Newman-Penrose null tetrad composed of vectors {la, na,ma,ma},

la = oAoA
′
, na = ıAıA

′
, ma = oAıA

′
, ma = ıAoA

′
, (B.19)
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with normalisation (using the “mostly plus” metric signature) given as

lala = nana = mama = mama = 0 , (B.20)

lana = −1 = −mama ,

lama = lama = nama = nama = 0 .

The vectors la and na are real, while ma and ma are complex conjugates of each

other. The directional derivatives are denoted by

D = la∇a , ∆ = na∇a , δ = ma∇a , δ = ma∇a . (B.21)

The introduced elements provide basic building blocks for rewriting gravitational

and Maxwell’s equations in Newman-Penrose formalism [144, 173].
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Appendix C

Calculation of variations

Starting from a general NLE Lagrangian, which is a smooth function of invariants

F and G, we will derive the corresponding energy-momentum tensor and generalised

Maxwell’s equations by means of variational procedure.

The energy-momentum tensor is defined with respect to the variation of the

action as

Tab = − 2√
−g

δS(em)

δgab
, (C.1)

where the electromagnetic action is

4πS(em) =

∫
L (em)(F,G)

√
−gdnx . (C.2)

The variation of the square root of the metric determinant is

δ(
√
−g) =

1

2

√
−ggabδgab = −1

2

√
−ggabδgab, (C.3)

as ∂a(ln|detA|) =
∑

b,c(A
−1)bc∂aAcb for a general invertible matrix A and δ(gabg

ab) =

0.

The variation of the action splits into two terms,

δ(L (em)
√
−g)

δgab
=
δL (em)

δgab
√
−g − 1

2

√
−ggabL (em). (C.4)

Since the second term is in the desired form, we will focus on the first one,

δL (em)

δgab
= LF

δF

δgab
+ LG

δG

δgab
, (C.5)

and calculate variations of the invariants while keeping the terms proportional to
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δgab only,

δF = δ(FabF
ab) = δ(FabFcdg

acgbd) =

= FabFcdδg
acgbd + FabFcdg

acδgbd =

= 2FacFbdg
cdδgab = 2FacF

c
b δg

ab , (C.6)

δG = δFab⋆F
ab = δ(Fab⋆Fcdg

acgbd) =

= Fab⋆Fcdδg
acgbd + Fab⋆Fcdg

acδgbd +
1

2
gacgbdFabFefδϵ

ef
cd =

= 2Fac⋆Fbdg
cdδgab +

1

2
gacgbdFabFefδϵ

ef
cd =

=
1

2
Ggabδg

ab +
1

2
gacgbdFabFefδϵ

ef
cd , (C.7)

where we have used the auxiliary identity (A.24) in the last step. Before proceeding

further, we will show that the second term in the expression above vanishes. First,

we calculate the variation,

δϵefcd = δ(geqgfhϵqhcd) =

= δgeqgfhϵqhcd + geqδgfhϵqhcd + geqgfh(δ
√
−g)εqhcd =

= δgeqgfhϵqhcd + geqδgfhϵqhcd −
1

2

√
−ggeqgfhgklδgklεqhcd =

= δgeqgfhϵqhcd + geqδgfhϵqhcd −
1

2
geqgfhgklδg

klϵqhcd , (C.8)

then the complete term

1

2
gacgbdFabFef

(
δgeqgfhϵqhcd + geqδgfhϵqhcd −

1

2
geqgfhgklδg

klϵqhcd

)
=

=
1

2
FeqFafg

cegdqgfhϵbhcdδg
ab +

1

2
FfhFeag

eqgcfgdhϵqbcdδg
ab−

− 1

4
FklFefg

ckgdlgfhgeqgabδg
abϵqhcd =

=
1

2

(
F cdF h

a ϵbhcd + F cdF q
a ϵqbcd −

1

2
F cdF qhgabϵqhcd

)
δgab =

=

(
⋆FbhF

h
a + ⋆FqbF

q
a − 1

2
F cd⋆Fcdgab

)
δgab = 0 , (C.9)

where we have again used the identity (A.24). Notice that εabcd in (C.8) denotes the

Levi-Civita symbol, while we reserve ϵabcd for the Levi-Civita tensor, which contains

the square root of the metric determinant.
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Taking everything into account, the final expression is

Tab = − 1

4π
((LGG− L )gab + 4LFFacF

c
b ) . (C.10)

To derive generalised Maxwell’s equations, we perform variation of the action

with respect to the gauge potential Aa,

δ(L (em)
√
−g)

δAa
= LF

δ(F
√
−g)

δAa
+ LG

δ(G
√
−g)

δAa
. (C.11)

The variation of the first term is

LFδ(F
√
−g) = LFδ(FabF

ab
√
−g) = LFδ(FabFcdg

acgbd
√
−g) =

= LFδ((∂aAb − ∂bAa)(∂cAd − ∂dAc)g
acgbd

√
−g) =

= LF(∂aδAb∂cAd + ∂aAb∂cδAd − ∂aδAb∂dAc−

− ∂aAb∂dδAc − ∂bδAa∂cAd − ∂bAa∂cδAd+

+ ∂bδAa∂dAc + ∂bAa∂dδAc)g
acgbd

√
−g , (C.12)

which we obtained using the commutation property of variations and partial deriva-

tives. The expression can be rearranged via the Leibniz rule,

∂a(LFδAb∂cAdg
acgbd

√
−g) − ∂a(LF∂cAdg

acgbd
√
−g)δAb , (C.13)

which we apply to all of the terms. The total derivative contributions may be

discarded and we get

LFδ(F
√
−g) = − ∂a(LFFcdg

acgbd
√
−g)δAb + ∂b(LFFcdg

acgbd
√
−g)δAa−

− ∂c(LFFabg
acgbd

√
−g)δAd + ∂d(LFFbag

acgbd
√
−g)δAc =

= −4∂a(
√
−gLFF

ab)δAb = −4
√
−g∇a(LFF

ab)δAb =

= 4
√
−g∇b(LFFab)δA

a , (C.14)

where in the last step we used the divergence identity for antisymmetric tensors,

√
−g∇bF

ab = ∂b(
√
−gF ab) . (C.15)

The analogous calculation can be carried out for the second term in (C.11),

LGδ(G
√
−g) = LGδ(Fab⋆F

ab
√
−g) = LGδ(Fab⋆Fcdg

acgbd
√
−g) =

=
1

2
LGδ(FabFefg

acgbdϵefcd
√
−g) =
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=
1

2
LGδ((∂aAb − ∂bAa)(∂eAf − ∂fAe)ϵ

ef
cdg

acgbd
√
−g) =

=
1

2
LG(∂aδAb∂eAf + ∂aAb∂eδAf − ∂aδAb∂fAe−

− ∂aAb∂fδAe − ∂bδAa∂eAf − ∂bAa∂eδAf+

+ ∂bδAa∂fAe + ∂bAa∂fδAe)ϵ
ef

cdg
acgbd

√
−g . (C.16)

After using the Lebniz rule, we have

LGδ(G
√
−g) = −1

2
∂a(LGϵ

ef
cdg

acgbd
√
−gFef )δAb+

+
1

2
∂e(LGϵ

ef
cdg

acgbd
√
−gFba)δAf+

+
1

2
∂f (LGϵ

ef
cdg

acgbd
√
−gFab)δAe−

− 1

2
∂b(LGϵ

ef
cdg

acgbd
√
−gFfe)δAa =

= −∂a(LG⋆F
ab
√
−g)δAb + ∂b(LG⋆F

ab
√
−g)δAa−

− ∂e(LG⋆F
ef
√
−g)δAf + ∂f (LG⋆F

ef
√
−g)δAe =

= −4∂a(LG⋆F
ab
√
−g)δAb = −4

√
−g∇a(LG⋆F

ab)δAb =

= 4
√
−g∇b(LG⋆Fab)δA

a . (C.17)

Putting all the terms together, the total equation is

−4∇a(LFFab + LG⋆Fab) = 0 , (C.18)

which in the language of the differential forms becomes,

δ(LFF + LG⋆F) = 0 . (C.19)

It can be written more compactly by introducing 2-form Z (2.7) and taking into ac-

count the relation between the exterior derivative and coderivative operators (A.15),

d⋆Z = 0 . (C.20)

So far we considered only the source-free case, now we will add the current-gauge

coupling term of the form AaJa to the initial NLE Lagrangian. After performing

a simple variation of the additional term, the generalised Maxwell’s equation with

source Ja becomes

−4∇a(LFFab + LG⋆Fab) + 4πJa = 0 . (C.21)
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In differential form notation,

d⋆Z = 4π⋆J . (C.22)

In order to derive the boundary term (7.45) needed for the extraction of the con-

served quantities, we calculate the variation of classical gravitational action,

L (grav) =
1

16π
R
√
−g . (C.23)

The variation consists of three terms:

δL (grav)

δgab
=
δ(
√
−ggcdRcd)

δgab
=
δ
√
−g

δgab
R +

√
−g δg

cd

δgab
Rcd +

√
−ggcd δRcd

δgab
, (C.24)

where the first two terms produce Einstein’s equation,

1

2

√
−ggabR−

√
−ggacgbdRcd = −

√
−g
(
Rab − 1

2
gabR

)
= −

√
−gGab. (C.25)

It remains to show that the last term is a total derivative. The variation of the Ricci

tensor can be expressed in terms of variations of Christoffel symbols

δRab = δ(∂cΓ
c
ba − ∂aΓ

c
bc + Γc

cdΓ
d
ab − Γc

adΓ
d
cb) =

= ∂cδΓ
c
ba − δΓc

adΓ
d
cb + Γc

cdδΓ
d
ab − (∂aδΓ

c
bc + Γc

adδΓ
d
cb − δΓc

cdΓ
d
ab)+

+ Γd
acδΓ

c
bd − Γd

acδΓ
c
bd = ∇cδΓ

c
ab −∇bδΓ

c
ac . (C.26)

To proceed, we need an auxiliary result

2δΓc
ab = δgcd(∂agdb + ∂bgda − ∂dgab) + gcd(∂aδgdb + ∂bδgda − ∂dδgab) =

= gcd(∂aδgdb + ∂bδgda − ∂dδgab − 2δgdeΓ
e
ab) =

= gcd(∂aδgdb − Γe
abδgde − Γe

adδgeb + ∂bδgda − Γe
bdδgea − Γe

baδged−

− ∂dδgab + Γe
daδgeb + Γe

bdδgea) =

= gcd(∇aδgdb + ∇bδgda −∇dδgab) . (C.27)

Notice that even though the Christoffel symbol itself is not a tensor, its variation is.

Finally, we have

gabδRab = ∇c∇bδgcb − gab∇c∇cδgab = ∇c(∇bδgcb − gab∇cδgab) = ∇cvc . (C.28)
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Appendix D

Stokes’ theorem on Lorentzian

manifolds

Let M be an orientable smooth m-manifold with boundary ∂M and an inclusion

operator ı : ∂M ↪→ M . Orientation on M is determined by the choice of a nowhere

vanishing volume form ϵ. The induced orientation on the boundary is defined via

inclusion as ϵ̂ = ı∗(iNϵ), where Na is the outward pointing nonvanishing vector

field on ∂M . Stokes’ theorem [119] states that the integral of a smooth, compactly

supported (m− 1)-form α over the boundary is equal to the integral of its exterior

derivative over the whole M , ∫
(M ,ϵ)

dα =

∫
(∂M ,ϵ̂)

ı∗α . (D.1)

In this form, Stokes’ theorem makes no reference to any additional structure on the

manifold, such as metric or connection. However, in the case of (pseudo)-Riemannian

manifolds, it admits a few calculationally practical results. Suppose that M is

a smooth manifold of Lorentzian type and N ⊆ M its embedded compact m-

dimensional submanifold with boundary ∂N . The inclusion operator ȷ : ∂N ↪→ N ,

together with an outward pointing, nonvanishing vector field na, defines the induced

orentation on ∂N as ϵ̂ = ȷ∗(inϵ). Using Stokes’ theorem, we have∫
(N ,ϵ)

(∇av
a) ϵ =

∫
(N ,ϵ)

divϵ =

∫
(∂N ,ϵ̂)

ȷ∗(ivϵ) , (D.2)

for any smooth vector field va on N .

We will apply the theorem to a concrete scenario in which the boundary of N

consists of two spacelike hypersurfaces Σ and Σ′, a timelike hypersurface S and a
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null hypersurface H, representing a portion of a black hole horizon,

∂N = Σ ∪ Σ′ ∪ S ∪H ,

illustrated in Figure1 D.1.

N

Σ

Σ′

H S

ℓn

n

n

n

Figure D.1: A schematic representation of submanifold N . Its boundary consists of four

parts (spacelike hypersurfaces Σ and Σ′, timelike hypersurface S, null hypersurface H)

and na is the corresponding outward pointing vector field [14].

The decomposition of the volume form ϵ on the non-null and null parts of the

boundary, respectively, is performed as follows:

(i) We assume that the normalization of na is given by nana = ±1. Adopting the

convention from [187], we introduce an auxiliary vector field ña := (nbnb)n
a,

so that ña is outward oriented for spacelike na and inward for timelike na.

Then n ∧ inϵ = fϵ, for some function f , and contraction with na implies the

decomposition

ϵ = (nana)n ∧ inϵ = ñ ∧ inϵ . (D.3)

(ii) The null part of the boundary is generated by the future directed vector field

ℓa, while the future directed null vector field na plays the role of the outward

pointing vector field on H. If we define the normalisation by nala = −1, we

have ℓ ∧ inϵ = fϵ for some function f , which finally leads to

ϵ = −ℓ ∧ inϵ . (D.4)

These decompositions imply

ȷ∗(ivϵ) =

{
(ñav

a)ϵ̂ on non-null part of ∂N

−(ℓav
a)ϵ̂ on null part of ∂N

(D.5)

1© 2021 American Physical Society
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and the boundary integral can be split as∫
N

(∇av
a) ϵ =

∫
Σ

(ñav
a)ϵ̂ +

∫
Σ′

(ñav
a)ϵ̂ +

∫
S

(ñav
a)ϵ̂ +

∫
H

(−ℓava)ϵ̂ , (D.6)

where the orientation of each component of the boundary ∂N is fixed by the induced

Stokes’ orientation ϵ̂. The vector field ℓa is not uniquely determined since it can

be rescaled, ℓa → ℓ′a = λℓa, for some positive real function λ. In order to preserve

the normalisation, vector na has to be redefined as n′a = λ−1na and ϵ̂′ = ȷ∗(in′ϵ).

Nevertheless, the integrand above is invariant to these ambiguities because ℓav
a ϵ̂ =

ℓ′av
a ϵ̂′
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[41] M. Ćirić Dimitrijević, N. Konjik, and A. Samsarov. Noncommutative scalar

quasinormal modes of the Reissner–Nordström black hole. Class. Quantum

Grav., 35(17):175005, 2018.

[42] B. Coll. Sur l’invariance du champ électromagnétique dans un espace-temps
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