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The measurement of the production of f0(980) in inelastic pp collisions at 
√

s = 5.02 Te V is presented. 
This is the first reported measurement of inclusive f0(980) yield at LHC energies. The production 
is measured at midrapidity, |y| < 0.5, in a wide transverse momentum range, 0 < pT < 16 GeV/c, by 
reconstructing the resonance in the f0(980) → π+π− hadronic decay channel using the ALICE detector. 
The pT-differential yields are compared to those of pions, protons and φ mesons as well as to predictions 
from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence 
model that uses the AMPT model as an input. The ratio of the pT-integrated yield of f0(980) relative 
to pions is compared to measurements in e+e− and pp collisions at lower energies and predictions 
from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the 
f0(980) to pion production is observed in pp collisions from SPS to LHC energies. All considered 
models underpredict the pT-integrated 2f0(980)/(π+ +π−) ratio. The prediction from the canonical 
statistical hadronisation model assuming a zero total strangeness content of f0(980) is consistent with 
the data within 1.9σ and is the closest to the data. The results provide an essential reference for future 
measurements of the particle yield and nuclear modification in p–Pb and Pb–Pb collisions, which have 
been proposed to be instrumental to probe the elusive nature and quark composition of the f0(980)

scalar meson.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The conventional picture for the classification of hadrons is 
based on the constituent quark model introduced in the 1960s [1], 
in which the observed mesons and baryons are described as 
colourless qq and qqq bound states, respectively. Most of the 
known observed states fit into the quark model picture. At the 
same time, there are states whose quantum numbers are known 
but their mass and width have not been measured, and observed 
resonances whose properties suggest an exotic structure [2]. One 
remarkable case is that of the light scalar mesons, light-flavoured 
states with spin zero, positive parity and charge ( J P C = 0++) 
and masses below 2 Ge V/c2, whose identification represents a 
long-standing puzzle in particle physics [3–8]. From a theoretical 
point of view, the structure of these states is highly debated [2]: 
light scalar mesons could be conventional qq mesons, or compact 
(qq)(qq) structures (tetraquarks), or meson–meson bound states in 
the form of hadronic molecules, or a superposition of all these 
components, or glueballs.

From an experimental point of view, light scalar resonances 
are typically reconstructed via their dominant decay channels into 
pseudoscalar mesons (e.g., ππ , ηπ , ηη...). The states decaying into 
pions, in particular, have large characteristic decay widths, of the 
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order of few tens to few hundreds of MeV/c2, due to the large 
available phase space. Therefore, the isolation of the particle sig-
nals is particularly challenging as broad signals strongly overlap. In 
addition, for some of the scalar meson states, different decay chan-
nels can open up within a short mass interval and distort the line 
shapes of the nearby resonances.

Among the scalar mesons, the f0(980) state is particularly inter-
esting for two reasons. First, despite a long history of experimental 
and theoretical studies, its nature is still controversial as the prop-
erties of the f0(980) state are compatible with a conventional qq
meson [9], a tetraquark [10], and a KK molecular [11] structure. 
Secondly, the f0(980) represents an interesting probe of the high-
density hadronic final state of heavy-ion collisions and in-medium 
particle formation mechanisms [12].

The f0(980) couples predominantly to the ππ and KK channels 
and its signal overlaps strongly with the background represented 
mainly by the f0(500) and the f0(1370), among the scalar mesons. 
An indication in favour of the tetraquark structure of f0(980) [13]
comes from measurements of the φ meson radiative decay branch-
ing ratios by SND [14], CMD2 [15], and KLOE [16,17] experiments. 
This is further supported by a recent analysis [10] of the J/ψ
radiative decay data from BESIII [10,18]. The f0(980) is also promi-
nently produced in D+

s decays as reported by the E791 collabora-
tion [19], and observed in weak decays of B and Bs mesons mea-
sured with LHCb [20,21]. There, the appearance of the f0(980) in 
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competition with the φ meson in these decays could be explained 
by a large ss component of this state, combined with the fact that 
the c → s coupling is Cabibbo favoured. In this scenario, the struc-
ture of the f0(980) would be |f0(980)〉 = |(uu + dd)ss〉/√2 [2]. 
An analysis of the measured couplings of the B and Bs mesons 
to J/ψ + f0(980) excluded the tetraquark hypothesis [21], a con-
clusion that is however challenged by a different analysis of the 
same data [22]. Indications that f0(980) could be a KK molecule 
come instead from the study of pion–pion and kaon–kaon scatter-
ing via non-perturbative QCD methods, which use effective meson-
exchange models of the ππ interaction [23,24] and study the KK
interaction for coupled and single channels in chiral effective the-
ory [11,25].

In addition to measuring the production rates and branching 
fractions of f0(980) in φ and heavy-flavour decays, several au-
thors [7,26–28] have proposed to investigate its nature by using 
heavy-ion collisions and exploiting the unique production (and 
decay) environment accessible in these reactions. In high-energy 
heavy-ion collisions, two extreme states of matter are reached one 
after the other. If enough energy is deposited in the collision re-
gion, the state of deconfined strongly interacting matter called 
quark–gluon plasma (QGP) is produced and expands as a nearly 
perfect liquid until the temperature reaches the pseudo-critical 
value of ≈ 155 MeV [29] and a transition to confined QCD matter 
takes place. A hot (T ≈ 100–150 MeV) and dense gas of interacting 
hadrons is formed in which resonances decay and particles interact 
(pseudo)elastically until they decouple. At the LHC, the system pro-
duced in Pb–Pb collisions decouples after about 10 fm/c [30] and 
the production of hadronic resonances with lifetimes of the order 
of 1 to 10 fm/c is studied to characterise the hadronic stage of the 
collision [31–33]. With its width between 10 and 100 MeV/c2 and 
a corresponding lifetime of ≈ 5–10 fm/c, the f0(980) is a probe for 
the dense hadron gas formed in the late stage of heavy-ion colli-
sions [12].

Measurements of the nuclear modification factor [26], the par-
ticle yield per event [27], and the elliptic flow coefficient [28] have 
been suggested to provide insights into the internal structure of 
the f0(980). Models of hadron formation via recombination (coa-
lescence) [34–36] of quarks in the quark–gluon plasma that have 
been successful in describing LHC data, indicate that the f0(980)

production in the intermediate transverse momentum range (2 <
pT < 5 Ge V/c) is sensitive to the number of constituent quarks. 
Theory calculations based on a coalescence model [27] show that 
the pT-integrated production of f0(980) in central heavy-ion colli-
sions at LHC energies is expected to be two orders of magnitude 
lower if the state has a tetraquark structure compared to the re-
sults for a non-exotic diquark structure qq, or a hadronic molecule 
configuration. On the other hand, the production of a tetraquark 
state would be enhanced in heavy-ion collisions with respect to 
pp collisions at the same energy in the ≈ 2–6 Ge V/c momen-
tum range [7,26]. Measurements of the nuclear modification fac-
tor [7,26] or of the pT-dependent yield ratio of the f0(980) to par-
ticles with different (but established) quark content could there-
fore shed light on the nature of the state. The authors of [28] also 
suggest that the azimuthal production asymmetry in the f0(980)

momentum distributions, quantified by the elliptic flow coefficient, 
could be sensitive to the number of constituent quarks in the kine-
matic range in which hadron formation occurs predominantly via 
quark recombination (coalescence). A measurement of the f0(980)

production in pp collisions is necessary for the determination of 
the nuclear modification factor and constitutes a reference for the 
study of the particle production in heavy-ion collisions.

In this letter, the first measurement of the inclusive produc-
tion of f0(980) in inelastic pp collisions at the LHC is reported. To 
provide a baseline for studies in heavy-ion interactions, the data 
using collisions at 

√
s = 5.02 Te V were analysed, corresponding to 

the centre-of-mass energy per nucleon pair of the p–Pb and Pb–Pb
data samples collected during the LHC Run 2. Measurements of 
f0(980) in p–Pb and Pb–Pb collisions at this energy will be the sub-
ject of future publications. The production of f0(980) is measured 
at midrapidity, |y| < 0.5, in a broad transverse momentum range 
between 0 and 16 Ge V/c. An overview of the ALICE experimental 
setup is given in Sec. 2, followed by a description of the analy-
sis strategy in Sec. 3. This includes details on the data sample, the 
f0(980) signal reconstruction, the yield extraction and corrections, 
and the systematic uncertainty estimation. Results are discussed in 
comparison to lower energy data and theoretical models in Sec. 4, 
while in Sec. 5 the conclusions are summarised.

2. Experimental setup

The experimental setup and details on the performance of the 
ALICE detector are described in Refs. [37,38]. The ALICE detec-
tor consists of a central barrel with a set of detectors devoted 
to the reconstruction and identification of the charged particles, a 
forward muon spectrometer and a set of backward and forward 
systems for triggering and event characterisation purposes. The 
central barrel detectors are located inside a solenoidal magnet that 
provides a magnetic field of 0.5 T. The main detectors employed for 
the analysis presented in this work are the V0, the Inner Tracking 
System (ITS), the Time Projection Chamber (TPC), and the Time-
of-Flight detector (TOF). The V0 consists of two scintillator arrays 
placed on both sides of the interaction point covering the pseudo-
rapidity regions 2.8 < η < 5.1 (V0A) and −3.4 < η < −1.7 (V0C), 
respectively. The V0 provides the minimum bias trigger of the ex-
periment and is used for suppressing beam-induced background at 
the offline analysis level. The position of the collision vertex and 
the tracks of charged particles are reconstructed in the central bar-
rel using the ITS and the TPC. The ITS is a high-resolution tracker 
that consists of six cylindrical layers of silicon detectors. The TPC 
is a large cylindrical drift detector covering a radial distance of 85 
< r < 247 cm from the beam axis and having longitudinal dimen-
sions of about -250 < z < 250 cm. The TOF is a large area array 
of multigap resistive plate chambers, placed at a radius of about 
370–399 cm from the beam line. In the central barrel, charged par-
ticles can be identified via measurements of their specific energy 
loss, dE/dx, provided by the TPC with a resolution of 5%, and via 
their time-of-flight measured by the TOF with a resolution of about 
80 ps.

3. Data analysis

The measurement of f0(980) production is performed using a 
sample of minimum bias pp collision events at a centre-of-mass 
energy of 

√
s = 5.02 Te V, collected in the years 2015 and 2017. 

The minimum-bias trigger requires at least one hit in both V0A 
and V0C detectors [39]. The integrated luminosity after trigger se-
lection is ≈ 21.8 nb−1. Events are selected for the analysis if the 
position of the reconstructed collision vertex along the beam axis 
is located within 10 cm from the nominal interaction point. To re-
duce the pileup caused by multiple interactions in the same bunch 
crossing, a criterion based on the offline reconstruction of multiple 
primary vertices in the two innermost layers of the ITS, namely 
the Silicon Pixel Detector (SPD) is applied [37]. The rejected events 
account for less than 1% of the total events. After applying these 
selection criteria, ≈ 9.14 ×108 collision events have been analysed.

The f0(980) resonance signal is reconstructed via its decay into 
a pair of oppositely charged pions, f0(980) → π+π− . This requires 
the reconstruction, selection and identification of pion tracks in the 
central barrel of ALICE. To ensure a uniform detector acceptance, 
only charged tracks with pT > 0.15 Ge V/c and pseudorapidity 
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|η| < 0.8 are considered for the analysis. Track selection crite-
ria are applied to the charged tracks as in previous works [31,32]
to ensure a good quality of the reconstruction. To this end, each 
track in the TPC is required to have crossed at least 70 readout pad 
rows out of a maximum possible 159. To reduce the contamina-
tion from secondary particles, tracks are accepted if their distance 
of closest approach to the collision vertex in the longitudinal (dz) 
and transverse (dxy) directions satisfy dz < 2 and dxy < 0.0105
+0.0350 × p−1.1

T , where pT and distance are in units of Ge V/c and 
cm, respectively.

The identification of pions is performed using the TPC and the 
TOF detectors and criteria based on the difference between the 
measured and expected signals for a given particle hypothesis, di-
vided by the resolution (σTPC, σTOF). In the TPC, charged particles 
are identified as π if the measured dE/dx is compatible with the 
expected pion mean specific energy loss within two standard devi-
ations (2σTPC) over the entire momentum range. If a measurement 
of the particle time-of-flight by the TOF is available, a TOF-based 
3σTOF selection criterion is applied on top of the TPC-based one, 
over the measured momentum range.

3.1. Raw yield extraction

The f0(980) resonance signal is reconstructed via an invariant 
mass analysis by combining oppositely-charged pions within the 
same event into pairs and imposing the pair to have a rapidity 
within the range |y| < 0.5. To remove the combinatorial back-
ground, the like-sign method is employed. The same-charge pion 
tracks from the same event are combined into π+π+ and π−π−
pairs. The total like-sign invariant mass distribution is calculated 
as the geometric mean of the positively-charged and negatively-
charged pair distributions, as 2

√
N++N−− , where N++ and N−−

are the number of π+π+ and π−π− pairs, respectively. The 
π+π− and like-sign background invariant mass distributions are 
extracted for various intervals of the pair pT, and for each of 
these, the like-sign background is subtracted from the unlike-sign 
pair distribution. After the subtraction of the combinatorial back-
ground, the f0(980) signal peak, sitting on the right-hand tail of 
the broad ρ(770) meson signal, is visible on top of a residual 
background. Two examples of the π+ π− invariant mass distri-
butions after combinatorial background subtraction are shown in 
Fig. 1 for a low-pT and for a high-pT interval. With increasing 
pT, the significance of the f2(1270) resonance signal increases and 
the broad f2(1270) peak becomes visible on the right side of the 
f0(980) signal. The residual background originates from correlated 
π+π− pairs from mini-jets and from misidentified particles. The 
main contributions to the correlated background arise from the 
decay of the ρ(770) and the f2(1270) resonances into oppositely-
charged π pairs. In order to extract the f0(980) yields in each 
pT interval, the distributions are fitted in the invariant mass in-
terval 0.8 < Mππ < 1.6 GeV/c2 with a function that is the sum 
of three relativistic Breit-Wigner functions (rBW) describing the 
ρ(770), f0(980) and f2(1270) signals [31,40,41], and a residual 
background. Since the resolution on the invariant mass is negligi-
ble with respect to the natural width of the considered resonances, 
the resonance shape can be modelled with a rBR with no need for 
any additional Gaussian smearing to account for detector resolu-
tion effects. Each of the rBW functions is defined as

rBW(Mππ ) = AMππ	(Mππ )M0

(M2
ππ − M2

0)2 + M2
0	2(Mππ )

(1)

where 	(Mππ ) is given by

	(Mππ ) =
[

(M2
ππ − 4m2

π )

(M2
0 − 4m2

π )

](2 J+1)/2

×	0M0

Mππ
. (2)

Here, A is the normalisation constant, M0 and 	0 are the rest 
mass and width of the resonance, mπ is the charged pion mass 
and the spin is J = 0 for f0(980), J = 1 for ρ(770) and J = 2 for 
f2(1270). The shape of the residual background resembles that of 
a Maxwell-Boltzmann distribution and therefore it is fitted with a 
similar functional form fbg(Mππ )

fbg(Mππ )=B
√

(mππ − mcutoff)
nC3/2 exp [−C(mππ − mcutoff)

n],
(3)

where B is the normalisation constant and mcutoff is the low-mass 
cutoff expected to be equal to the rest mass of the π+π− pair. This 
function was proven to provide a good description of the resid-
ual background in previous analyses [33]. The residual background 
term takes also into account any possible additional background 
from f0(500) and f0(1370), which have not been added to the sig-
nal model due to the large indeterminationI on the broad width 
parameter of these states.

For the extraction of the particle yields, the fits are performed 
with the following configuration of the fit parameters. The mass 
and the width of the ρ(770), and the width of the f2(1270) are 
fixed to their vacuum values, mρ = 775.26 Me V/c2, 	ρ = 149.1 Me 
V/c2, and 	 f2 = 186.7 Me V/c2 [2]. The width of the f0(980) is fixed 
to the average value of the range reported in Ref. [2] that corre-
sponds to 	 f0 = 0.055 Ge V/c2. The masses of the f0(980) and the 
f2(1270), as well as the mcutoff , C and n parameters of fbg are 
left free. The fit parameter configuration has been varied to take 
into account possible imperfections in the description of the back-
ground and signal shapes, as discussed in Section 3.3. In Fig. 1, 
the fit result to the invariant mass distribution of π+π− pairs af-
ter like-sign background subtraction is shown for two pT intervals, 
namely 0.6 < pT < 0.8 Ge V/c and 5 < pT < 6 Ge V/c.

3.2. Yield corrections

In order to obtain the f0(980) production yield per unit of ra-
pidity and pT per inelastic event 

( 1
NINEL

d2 N
dydpT

)
, several correction 

factors are applied to the raw yields obtained from the fit proce-
dure in each pT interval according to the following formula

1

NINEL

d2N

dpTdy
= 1

Nevt

Nf0(980)→ππ


pT
y

εtrig εvtx

A × εrec

fsig

BR
. (4)

Here, Nf0(980)→ππ is the f0(980) raw yield measured in a given 
rapidity (
y) and transverse momentum (
pT) interval, Nevt is 
the number of collision events that satisfy the selection criteria. 
The minimum-bias trigger efficiency, the vertex reconstruction ef-
ficiency and the signal loss correction factor are represented by 
εtrig, εvtx and fsig, respectively. The branching ratio correction 
amounts to BR = (46 ± 6)% [42] assuming dominance of ππ and 
KK channels. The yields of f0(980) are normalised to the num-
ber of inelastic pp collisions with a trigger efficiency correction, 
εtrig = 0.757 ± 0.019 [43,44], which takes into account the effi-
ciency of the V0-based trigger to select inelastic events. The vertex 
reconstruction efficiency in pp collisions at 

√
s = 5.02 Te V is found 

to be εvtx = 0.958 [32]. The A × εrec factor corrects for the de-
tector acceptance times the f0(980) reconstruction efficiency and 
is evaluated using a detailed Monte Carlo simulation of the ALICE 
detector geometry, material, and response. The pp collision events 

I The f0(500) width ranges from 400 to 700 MeV, the f0(1370) width ranges from 
200 to 500 MeV [2].
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Fig. 1. Left (right) plot shows the invariant mass distribution of π+π− pairs after like-sign background subtraction in low (high) transverse-momentum interval in pp 
collisions at √s = 5.02 Te V in |y| < 0.5. Solid blue curves represent fits with the function shown in Eq. (1) and a residual background shown in Eq. (3). Solid red curve 
represents f0(980) signal while other dashed curves represent the background contributions from ρ(770), f2(1270) and residual background.

Table 1
Contributions to the relative systematic uncertainty of the pT-dependent yield of 
f0(980) in pp collisions at √s = 5.02 Te V. The uncertainties are given for the low-
est and the highest pT intervals of the measured spectrum as well as for one 
intermediate pT interval. The total uncertainty is obtained as the sum in the 
quadrature of the individual contributions. Values are expressed in percentage (%).

Source of uncertainty pT (GeV/c)

0–0.2 4–4.5 12–16

Yield extraction 7.1% 8.8% 15.3%
Track selection 9.3% 2.2% 2.1%
Global tracking efficiency 2% 4% 4%
Particle identification 6.8% 1.5% 6%
Event selection 7.6% 2.1% 3.3%
Material budget 5.2% 0% 0%
Hadronic interaction 3.4% 0% 0%

Total 16.8% 10.2% 17.4%

are simulated using the PYTHIA 8 event generator [45] with the 
addition of the f0(980) signals. The generated particles in the sim-
ulation are propagated through the detector using GEANT3 [46]. 
The A × εrec is calculated in the rapidity range |y| < 0.5 as a 
function of pT and is defined as the ratio of the number of re-
constructed and generated f0(980). The reconstruction of f0(980)

in the simulation is performed using the same event and track se-
lection criteria as employed for the analysis of the data.
The signal loss correction factor, fsig, accounts for the fraction of 
f0(980) signal lost due to trigger inefficiencies and can be deter-
mined as a function of pT using Monte Carlo simulations. Because 
a simulation with injected f0(980) signals may not lead to a real-
istic estimate of this correction factor, the correction is taken to 
be the same as for the φ meson at the same collision energy. 
The earlier analysis in [32] showed that this correction does not 
depend significantly on the particle mass for resonances decaying 
strongly into two charged particles. This factor ranges between 1.07 
for 0 < pT < 0.2 GeV/c and 1 for pT > 2.5 GeV/c.

3.3. Systematic uncertainties

The sources of systematic uncertainty in the measurement of 
the f0(980) yields are summarised in Table 1. These include yield 
extraction, track and event selection, global tracking efficiency, par-
ticle identification, the knowledge of the ALICE material budget, 
and that of the hadron interaction cross section in the detector 
material. The estimated values of the uncertainties are reported in 
Table 1 for low, intermediate and high-pT intervals. The system-
atic uncertainty associated with the yield extraction arises from 
the fit procedure and is determined by varying the fitting range 
as well as the signal and the background fit parameters. In partic-
ular, the width of the f0(980) was varied by sampling the range 

from 10 to 100 Me V/c2 given in [2] with 15 variations and the 
width of the f2(1270) was varied within ±7.5 Me V/c2 that corre-
sponds to a ±3σ range of the width value reported in [2]. These 
variations result in the largest contribution to the uncertainty on 
the yield extraction. The uncertainties due to the yield extraction 
are pT dependent and vary from 7.1% in the lowest pT interval, 
to 15.3% in the highest pT interval of this analysis. The systematic 
uncertainty due to the track selection is evaluated by varying a sin-
gle track selection criterion at a time in both data and simulation, 
and by repeating all the steps of the analysis. This contribution 
ranges from 9.3% to 2.1% from low to high pT. The difference in 
the efficiency of the matching of TPC tracks to ITS clusters (global 
tracking efficiency) between data and simulations results in a con-
tribution to the systematic uncertainty of 2–4% depending on pT. 
The systematic uncertainty associated with the particle identifica-
tion is due to an imperfection in the description of the dE/dx in 
the TPC-based nσ selection in the Monte Carlo simulation as com-
pared to data. The nσ selection is varied in data and simulation 
simultaneously to a 3σTPC particle identification criterion and re-
sults in a pT-dependent relative systematic uncertainty of 1.5–6.8%. 
The choice of the event selection criteria leads to a systematic un-
certainty of 2.1–7.6%. The systematic uncertainty associated with 
the signal loss correction is estimated by comparing the correc-
tion for φ mesons, used as a proxy for f0(980), with that of other 
light-flavour hadrons and is found to be lower than 1%. Finally, the 
uncertainty on the knowledge of the ALICE material budget and 
that of the hadron interaction cross section in the detector mate-
rial leads to a systematic uncertainty lower than 5.3% and 3.4%, 
respectively [38,47,48]. The total relative systematic uncertainty is 
obtained as the sum in the quadrature of these contributions.

4. Results and discussion

The pT-differential yield of f0(980) for |y| < 0.5 in inelastic pp 
collisions at 

√
s = 5.02 Te V is shown in the upper panel of Fig. 2. 

The measurement spans a wide pT range from 0 to 16 Ge V/c.
The normalisation and branching ratio relative uncertainties on 

the yields are independent of pT and amount to 2.5% and 13%, 
respectively [42,44].

At present, most of the Monte Carlo generators commonly em-
ployed to simulate pp collisions do not implement the generation 
of f0(980) in their default configurations. One notable exception 
is the HERWIG 7.2 event generator [49,50]. HERWIG 7.2 is a QCD-
inspired Monte Carlo event generator that includes processes like 
initial and final state QCD radiation, a description of the underly-
ing event via an eikonal multiple parton–parton interaction model, 
and a cluster hadronisation model for the formation of hadrons 
from the quarks and gluons produced in the parton shower. The 
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Fig. 2. The pT-differential yield of f0(980) in pp collisions at √s = 5.02 Te V is com-
pared with predictions from the HERWIG 7.2 event generator [49,50] and with a 
coalescence calculation [28] based on the AMPT model [51]. The statistical and sys-
tematic uncertainties on data (full black markers) are shown as bars and boxes, 
respectively. The middle and bottom panels show the model to data ratios. The 
grey boxes at unity represent the sum in quadrature of the statistical and systematic 
uncertainty on the data. The ratios of uūss̄ tetraquark and K+K− molecule config-
urations from AMPT model predictions to data are multiplied by 100 to improve 
visibility. In all three panels, the uncertainties associated with the models are sta-
tistical ones.

default hadronisation and shower parameters are tuned to e+e−
data [50] with the addition of a tune for multi-parton processes 
based on the minimum bias LHC data [49]. To allow for the com-
parison, model calculations have been performed in the same pT
intervals of the data. As shown in the HERWIG/Data ratio reported 
in the middle panel of Fig. 2, HERWIG underestimates the mea-
sured yields by a factor of about two for 1 < pT < 4 Ge V/c but 
reproduces at least qualitatively the shape of the pT spectrum in 
this range. At pT � 0.5 GeV/c, the model is consistent with data 
within uncertainty but the pT dependence is not described. At 
pT ≥ 4 Ge V/c, HERWIG is not able to reproduce the data neither 
qualitatively nor quantitatively.

The data are also compared to a recent coalescence calcula-
tion [28,51] that uses the AMPT multiphase transport model [51], 
coupled with a coalescence afterburner with Gaussian Wigner 
function to generate f0(980) in three configurations, i.e., as a ss̄
meson, as a uūss̄ tetraquark state, and as a K+K− molecule. The 
AMPT model contains four main components namely initial condi-
tions, partonic interactions, conversion from partonic to hadronic 
matter, and interactions among hadrons based on a relativistic 
transport (ART) model [52,53]. The initial conditions are obtained 
from the HIJING model [54] and the partonic interactions are de-
termined according to the Zhang’s Parton Cascade model [55]. 
In [28], the authors use the phase-space information of quarks 
from this stage to implement quark coalescence for the f0(980)

with the ss̄ and tetraquark configurations. In the default version 
of AMPT, the conversion of partons to hadrons is then calculated 
with the Lund string fragmentation [56–58], while in the string 
melting version of the model [59], a quark coalescence approach is 
used to combine partons to form hadrons. The phase-space infor-
mation of kaons generated at this stage by AMPT is used as input 
for the coalescence afterburner for the f0(980) molecular state. As 
shown in Fig. 2, the ss calculation underestimates the f0(980) pT
distribution by a factor of about three, whereas the molecule and 
the tetraquark configuration predictions are two and three orders 
of magnitude lower, respectively. Note that the molecule and the 
tetraquark configuration prediction ratios to data are reported in 
the lowest panel of Fig. 2 multiplied by a factor of 100 to im-
prove the visibility. In addition, the shape of the pT spectra for the 
ss̄ and the uūss̄ tetraquark configurations are found to be signifi-
cantly steeper than the measured one. Instead, the ratio between 
the model prediction for the K+K− molecule configuration and the 
data exhibits a milder pT dependence within uncertainties in the 
considered pT range (0–3.5 Ge V/c), indicating that in this configu-
ration the model can reproduce qualitatively better the measured 
spectral shape. Recent theoretical calculations that investigate the 
inclusive f0(980) production according to the colour-singlet gluon-
gluon fusion and colour evaporation model have been proposed 
by the authors of [60]. As these exploratory studies are currently 
available only for 

√
s = 7 Te V, a comparison with the data pre-

sented in this letter is auspicable in the near future.
The per-event pT-integrated yield, dN/dy, and average trans-

verse momentum, 〈pT〉, are calculated by integrating the pT-
differential yield in the measured transverse momentum range. 
The obtained values are the following:

dN

dy
= 0.0385 ± 0.0001(stat.) ± 0.0047(syst.) (5)

〈pT〉 = 0.9624 ± 0.0014(stat.) ± 0.0357(syst.) GeV/c (6)

Notably, the yield for pT > 16 Ge V/c has a negligible contribu-
tion to the dN/dy and thus no extrapolation was employed.

The production of f0(980) is compared to that of other light-
flavour hadrons in Fig. 3 where the ratios of the f0(980) yield to
those of π+ +π− [61], p+p [61], and φ [32] measured in pp colli-
sions at 

√
s = 5.02 Te V are reported as a function of pT. The ratio 

to π+ +π− mesons exhibits an increasing trend as a function of pT
at low pT and for pT > 5 Ge V/c it saturates within uncertainties.

The comparison of the production of f0(980) to that of protons 
and of the φ meson is particularly interesting as these particles 
have similar masses [2] but different quark content. In particu-
lar, the φ meson is a pure ss state, while the f0(980) contains 
a light flavour component (uu, dd) as well as a large ss compo-
nent, as suggested by measurements of f0(980) produced in D+

s
decays [19]. The f0(980) to p + p ratio shows an increasing mono-
tonic trend as a function of pT, whereas the f0(980) to φ ratio 
decreases for pT < 1.5 Ge V/c, remains flat till pT � 8 Ge V/c, and 
increases for pT > 8 Ge V/c.

The measured pT-differential particle yield ratios are compared 
in Fig. 3 to the predictions from the HERWIG 7.2 event generator. 
The shape of the measured 2f0(980)/(π+ +π−) ratio is fairly well 
reproduced over almost the entire measured pT range, although 
the yield is underestimated by about a factor of two by the model. 
The model underestimates the 2f0(980)/(p+p) ratio and fails to re-
produce its pT-dependence, with the measured ratio being more 
steeply increasing with pT than the predicted one. The trend of 
f0(980)/φ ratio is flat for 1 < pT < 10 Ge V/c suggesting that its 
pT dependence is qualitatively well reproduced by HERWIG in this 
momentum interval. However, the model overestimates the ratio 
by nearly a factor of two. For pT < 1 Ge V/c, the f0(980)/φ ratio ex-
hibits a steeply decreasing trend, that is qualitatively present also 
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Fig. 3. (Upper panels) Particle yield ratios of f0(980) to π+ + π− [61] (left panel), p + p [61] (middle panel), and φ [32] (right panel) measured in inelastic pp collisions 
at √s = 5.02 TeV as a function of pT. Data are compared to HERWIG 7.2 model predictions. The statistical and systematic uncertainties are shown as bars and boxes, 
respectively. (Lower panels) Ratio of measured particle ratios to the HERWIG model calculations (dashed histogram). The grey boxes at unity represent the sum in quadrature 
of the statistical and systematic uncertainty on the data. In the right panel, the ratio in the region for pT < 0.8 Ge V/c is off-scale. The relative uncertainty of 13% due to the 
branching ratio correction [42] is shown as a green box with an arbitrary horizontal width for visibility.

Fig. 4. Comparison of the measured 2f0/(π+ + π−) ratio with measurements in 
e+e− collisions at √s = 29 Ge V [62], √s = 91 Ge V [63] and in pp collisions at √s
= 27.5 Ge V [64]. The ratios are compared to predictions from statistical hadronisa-
tion model (SHM) calculations for e+e− collisions [65] and pp collisions [66], GC-
SHM [67] and HERWIG 7.2 [49,50]. The hollow boxes represent the total uncertainty 
on data. The relative uncertainty of 13% due to the branching ratio correction [42]
applies to all data points and is shown as a yellow box. All error boxes are drawn 
with an arbitrary horizontal width for visibility.

in the model prediction. At high pT, the HERWIG predictions are 
consistent with the f0(980)/φ data within the uncertainties.

The ratio of the pT-integrated f0(980) yield relative to pions 
in pp collisions at 

√
s = 5.02 Te V amounts to 2f0/(π

+ + π−) =
(0.0186 ± 0.0026), with the uncertainty being the sum in quadra-
ture of the statistical and systematic uncertainties. The value is 
shown in Fig. 4 (red point) in comparison with results from mea-
surements in pp and e+e− collisions at lower centre-of-mass en-
ergies as well as with model calculations.

The low energy experiment results were originally reported us-
ing different branching ratios, therefore all of them have been 
updated to take into account the most recent value of 46% [42]
used in this letter. In Fig. 4, the same uncertainty on the BR is 
applied to all data points and reported as a shaded yellow box. 
The particle ratio value from the fixed-target NA27 experiment at 
the CERN SPS, measured in pp collisions at 

√
s = 27.5 GeV [64] is 

44.5% lower than the ratio measured at 
√

s = 5.02 Te V, suggesting 
a mild increase of the f0(980) yield relative to pions with increas-

Fig. 5. The 2f0/(π+ + π−) ratio measured in pp collisions at √s = 5.02 Te V [61] is 
compared to two distinct predictions for f0/π+ from a canonical statistical model 
(γs− CSM [68], see text for details) as a function of 〈dNch/dη〉. The two calculations 
differ by the assumed strangeness content of f0(980) and correspond to zero total 
strangeness, |S| = 0 and |S| = 2. The height of the hollow red box represents the to-
tal uncertainty on the ratio, its width represents the uncertainty on the 〈dNch/dη〉. 
The relative uncertainty of 13% due to the branching ratio correction [42] is shown 
as a yellow box with an arbitrary horizontal width for visibility.

ing energy of the pp collisions. The particle ratio values from e+e−
collisions at 

√
s = 29 GeV [62] and 

√
s = 91 GeV [63] are lower by 

61% and higher by a factor of two, respectively. The particle ratios 
are compared with predictions based on statistical hadronisation 
models [65–67] and the HERWIG 7.2 event generator. The statis-
tical hadronisation model predictions by Becattini et al. for the 
e+e− case [65] and for the pp collisions [66] case underestimate 
the measurement by about a factor of two, similarly to a Grand 
Canonical formulation of the statistical hadronisation model (GC-
SHM) from the GSI-Heidelberg group [67]. The value from HERWIG 
is also a factor of about two lower than the measured ratio.

In Fig. 5, the measured pT-integrated 2f0/(π
+ + π−) ratio in 

pp collisions at 
√

s = 5.02 Te V is compared to predictions based 
on the canonical statistical hadronisation model (CSM) described 
in [68], as a function of the multiplicity of particles produced 
in the collision, expressed in terms of the average pseudorapid-
ity density of charged particles, 〈dNch/dη〉. The prediction spans a 
large 〈dNch/dη〉 interval, reaching the high multiplicity achieved in 
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central heavy-ion collisions at LHC energies. In canonical statistical 
hadronisation models, hadrons are formed from a source that is 
assumed to have reached full chemical equilibrium at the chemical 
freeze-out temperature Tch, and their yields are determined from 
the partition function for a canonical ensemble. The multiplicity 
dependence of hadron production is driven by the canonical sup-
pression, namely the exact conservation of baryon number, electric 
charge, and strangeness over the correlation volume. The model 
considered here, with a temperature Tch = 155 MeV and a correla-
tion volume that spans three units of rapidity, is able to reproduce 
the multiplicity dependence of hadron-to-pion ratios of several 
species over the charged particle multiplicity range covered by the 
ALICE measurements at the LHC, both qualitatively and quantita-
tively in most cases (see Fig. 5 of [68]). In addition, to describe 
the multiplicity dependence of the φ/π ratio observed at the LHC, 
the model, henceforth labelled as γs − CSM, incorporates the in-
complete equilibration of strangeness by introducing a strangeness 
saturation factor γs ≤ 1. Notably, in the strangeness nonequilibrium 
picture a ss pair like the φ meson is effectively a double-strange 
particle (|S| = 2), and ALICE φ data seem to be best described with 
|S| = 1–2 [69]. The f0(980)/π+ ratio is calculated for two scenar-
ios, first assuming that the total strangeness content of f0(980) is 
equal to zero (yellow continuous line) and second, assuming a total 
strangeness content equal to two (blue dashed line). At high mul-
tiplicity, where the strangeness content of the system saturates in 
presence of a QGP, the calculations for the two scenarios converge 
and reach the grand canonical limit.

In the first scenario (|S| = 0), γs-CSM predicts higher values for 
the f0(980) to pion yield ratio as compared to the second scenario 
(|S| = 2) in the low 〈dNch/dη〉 region. The two predictions match 
each other for 〈dNch/dη〉 ≥ 100. The measured 2f0/(π

+ + π−)

ratio in pp collisions at 
√

s = 5.02 Te V differs by 1.9σ from the γs-
CSM prediction for the f0(980) with net strangeness equal to zero, 
and by 4.0σ from the |S| = 2 prediction, indicating that the former 
scenario is favoured over the latter in this implementation of the 
model.

5. Conclusions

In conclusion, the first measurement of f0(980) production in 
inelastic pp collisions at 

√
s = 5.02 Te V at the LHC is presented. 

The measurement is performed in a wide pT interval from 0 to 
16 Ge V/c at midrapidity by reconstructing the resonance in the 
hadronic decay channel f0(980) → π+π− . The inclusive f0(980)

production is underestimated by HERWIG 7.2 by a factor of two for 
1 < pT < 4 Ge V/c and by a large factor (up to more than four) in 
4 < pT < 16 Ge V/c. However, this QCD-inspired event generator is 
able to describe the pT-dependence of the 2f0(980)/(π+ +π−) and 
f0(980)/φ ratios in a rather broad pT range, while failing to repro-
duce the 2f0(980)/(p+p) ratio over the entire measured pT range. 
The production of f0(980) is also not described by a AMPT+coa-
lescence model prediction in three configurations (ss̄ meson, uūss̄
tetraquark state, and K+K− molecule), which use the phase space 
information of quarks and kaons from the AMPT model. In order 
to compare the new measurement of the pT-integrated f0(980) to 
pion ratio with low energy data, the low energy points were up-
dated with the latest branching ratio. The new result presented in 
this letter suggests a mild increase of the production of f0(980)

relative to pions in inelastic pp collisions from 
√

s = 27.5 GeV to √
s = 5.02 Te V. For the same ratio, HERWIG 7.2 predicts a value 

that is about 43% lower than the measured one whereas different 
implementations of the statistical hadronisation model underesti-
mate the data by up to a factor of about two. Notably, the γs-CSM 
prediction for the f0(980) assuming net strangeness equal to zero 
is consistent with the data within 1.9σ .

In summary, the description of the inclusive f0 production in pp 
collisions provided by the few event generators and theoretical cal-
culations that attempt its modelling is, at present, unsatisfactory. 
Future developments in this direction may help gaining insight 
over the nature of this particle, as new data may become avail-
able. From the experimental point of view, the results presented in 
this letter set the necessary baseline for the future measurements 
of the production and the nuclear modification factor of f0(980) in 
p–Pb and Pb–Pb collisions at the LHC, which have been suggested 
as observables that are sensitive to the elusive nature of this par-
ticle.
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A. Palasciano 49, S. Panebianco 127, H. Park 122, J. Park 57, J.E. Parkkila 32,114, S.P. Pathak 113, R.N. Patra 90, 
B. Paul 22, H. Pei 6, T. Peitzmann 58, X. Peng 6, M. Pennisi 24, L.G. Pereira 65, H. Pereira Da Costa 127, 
D. Peresunko 140, G.M. Perez 7, S. Perrin 127, Y. Pestov 140, V. Petráček 35, V. Petrov 140, M. Petrovici 45, 
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M. Płoskoń 73, M. Planinic 88, F. Pliquett 63, M.G. Poghosyan 86, S. Politano 29, N. Poljak 88, A. Pop 45, 
S. Porteboeuf-Houssais 124, J. Porter 73, V. Pozdniakov 141, S.K. Prasad 4, S. Prasad 47, R. Preghenella 50, 
F. Prino 55, C.A. Pruneau 134, I. Pshenichnov 140, M. Puccio 32, S. Pucillo 24, Z. Pugelova 105, S. Qiu 83, 
L. Quaglia 24, R.E. Quishpe 113, S. Ragoni 14,100, A. Rakotozafindrabe 127, L. Ramello 130,55, F. Rami 126, 
S.A.R. Ramirez 44, T.A. Rancien 72, R. Raniwala 91, S. Raniwala 91, S.S. Räsänen 43, R. Rath 50,47, 
I. Ravasenga 83, K.F. Read 86,119, A.R. Redelbach 38, K. Redlich 78,VI, A. Rehman 20, P. Reichelt 63, F. Reidt 32, 
H.A. Reme-Ness 34, Z. Rescakova 37, K. Reygers 94, A. Riabov 140, V. Riabov 140, R. Ricci 28, T. Richert 74, 
M. Richter 19, A.A. Riedel 95, W. Riegler 32, F. Riggi 26, C. Ristea 62, M. Rodríguez Cahuantzi 44, K. Røed 19, 
R. Rogalev 140, E. Rogochaya 141, T.S. Rogoschinski 63, D. Rohr 32, D. Röhrich 20, P.F. Rojas 44, S. Rojas 
Torres 35, P.S. Rokita 133, G. Romanenko 141, F. Ronchetti 48, A. Rosano 30,52, E.D. Rosas 64, A. Rossi 53, 
A. Roy 47, P. Roy 99, S. Roy 46, N. Rubini 25, D. Ruggiano 133, R. Rui 23, B. Rumyantsev 141, P.G. Russek 2, 
R. Russo 83, A. Rustamov 80, E. Ryabinkin 140, Y. Ryabov 140, A. Rybicki 106, H. Rytkonen 114, W. Rzesa 133, 
O.A.M. Saarimaki 43, R. Sadek 103, S. Sadhu 31, S. Sadovsky 140, J. Saetre 20, K. Šafařík 35, S. Saha 79, 
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