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Abstract: The measurement of the production of charm jets, identified by the presence
of a D0 meson in the jet constituents, is presented in proton–proton collisions at centre-of-
mass energies of

√
s = 5.02 and 13TeV with the ALICE detector at the CERN LHC. The

D0 mesons were reconstructed from their hadronic decay D0 → K−π+ and the respective
charge conjugate. Jets were reconstructed from D0-meson candidates and charged particles
using the anti-kT algorithm, in the jet transverse momentum range 5 < pT,chjet < 50GeV/c,
pseudorapidity |ηjet| < 0.9 − R, and with the jet resolution parameters R = 0.2, 0.4, 0.6.
The distribution of the jet momentum fraction carried by a D0 meson along the jet axis
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chromodynamics calculations. A generally good description of the main features of the
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predictions in an appendix to this paper.
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1 Introduction

In high-energy proton–proton (pp) collisions, heavy quarks (charm and beauty) are pro-
duced in hard scatterings between the partons of the incoming protons. Since their masses
are greater than the quantum chromodynamics (QCD) non-perturbative scale ΛQCD, the
production cross section of heavy quarks can be calculated using perturbative QCD (pQCD)
methods [1–6]. For example, the Fixed-Order-Next-to-Leading-Logarithm (FONLL) [4]
and General-Mass Variable-Flavor-Number Scheme (GM-VFNS) [5, 6] pQCD calculations
can describe measurements of heavy-flavour meson production in pp collisions at RHIC
and LHC energies and the pp collision data at the SPS and Tevatron [7–14].

Measurements of the production and substructure properties of heavy-flavour tagged
jets provide additional information to that given by heavy-flavour hadron production. They
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offer a different sensitivity to study heavy-quark production processes and the contribu-
tion from higher-order processes, like gluon splitting and flavour excitation, which is useful
to test pQCD calculations and tune Monte Carlo (MC) event generators [15, 16]. The
transverse-momentum (pT) differential production cross sections of charm and beauty jets
were measured at the LHC in pp collisions [17–22] and were found to be consistent with
next-to-leading order (NLO) pQCD calculations. Further insight into heavy-quark produc-
tion can be obtained through measurements of fully reconstructed heavy-flavour hadrons
inside jets and studies of the jet momentum (or energy) fraction carried by the heavy-
flavour hadron, z||, along the jet axis direction. Studies of charm jets, containing D∗±
mesons, were performed in pp collisions at RHIC at centre-of-mass energy

√
s = 200 GeV

by STAR [23], CERN SPS at
√
s = 630 GeV by UA1 [24], LHC at

√
s = 7 TeV by

ATLAS [20], and in pp collisions at Tevatron at
√
s = 1.8 TeV by CDF [25]. These

measurements showed that the z|| distribution is peaked at low z|| values. The STAR low-
z|| enhancement cannot be described by event generators that include the leading-order
charm-pair creation process (gg/qq̄ → cc̄) only. Also, the shape of the z|| distributions
measured by ATLAS is in disagreement with predictions from various Monte Carlo event
generators at small values of z||. On the other hand, the z|| distributions at

√
s = 7 TeV

measured by the ALICE Collaboration are in good agreement with next-to-leading order
pQCD calculations and different Monte Carlo event generator predictions [18]. These ob-
servations showed the need of further model refinements and suggest the importance of the
contribution of higher-order processes to charm-quark production, e.g. the ATLAS data
can be described by enhancing the gluon-to-D meson fragmentation function [26]. It should
be noted that ALICE and ATLAS measurements used different experimental methods and
correction techniques as discussed in [18].

The heavy-flavour hadron in-jet fragmentation data can also help in constraining the
gluon fragmentation functions (FFs). The FFs are usually assumed to be universal and
are constrained from semi-inclusive electron–positron annihilation (SIA) data [27, 28]. The
ATLAS measurement of the jet momentum fraction carried by D∗± mesons [20] proved to
be an important ingredient (together with SIA and the inclusive hadron production data)
in the global fit analysis based on the Zero-Mass Variable-Flavor-Number Scheme (ZM-
VFNS) [15]. The new ALICE results presented in this paper, from two collision energies
and for lower transverse momentum ranges, provide a valuable complementary input to
this global fit analysis.

Furthermore, understanding the heavy-flavour jet production in pp collisions is crucial
for the interpretation of results from collisions of heavy nuclei [29]. Lattice QCD calcula-
tions [30–32] predict that in ultra-relativistic heavy-ion collisions, a state of matter known
as the quark–gluon plasma (QGP), where quarks and gluons are deconfined, can be pro-
duced [33, 34]. Heavy quarks are dominantly produced in hard scatterings at the initial
stage of a collision, before the QGP formation, and their thermal production in the QGP
is negligible. They traverse the medium and lose part of their energy via collisional and
radiative processes [35]. Therefore, heavy quarks are ideal tomographic probes [36] of the
QGP [37–41], allowing extraction of the medium transport properties [42–46]. Studies of
jets including heavy-flavour hadrons in such collisions can set additional constraints on the
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heavy-quark energy loss mechanism and the medium properties as they provide insight into
how the lost energy is radiated and dissipated in the medium.

In this paper, ALICE results on track-based jets (i.e. reconstructed using charged-
particle constituents), tagged with the presence of a fully reconstructed D0 meson (D0 jet),
in pp collisions at

√
s = 5.02 TeV and

√
s = 13 TeV at midrapidity are presented. Thus,

the z|| variable associated with charged tracks is better denoted as zch|| . These measurements
extend the previous ALICE charm jet studies in pp collisions at

√
s = 7 TeV [18]. The

better precision obtained with these new data samples allowed more differential D0-jet
studies to be conducted as a function of the jet resolution parameter (R) and to measure the
zch|| distributions in a larger number of charged-jet transverse momentum pT,ch jet intervals.
The D0-jet pT,ch jet-differential cross sections and zch|| distributions are reported in several
pT,ch jet ranges between 5 and 50 GeV/c and for R = 0.2, 0.4, 0.6. The zch|| variable is
defined in this article as

zch|| = ~pch jet · ~pD0

~pch jet · ~pch jet
, (1.1)

where ~pD0 is the total D0-meson momentum and ~pch jet is the total track-based jet momen-
tum. Ratios of the pT,ch jet cross sections obtained for the two energies and with different
R values are also presented. The R dependence is sensitive to both perturbative and non-
perturbative physics of the jet production and fragmentation, and provides information on
the parton shower development [47]. The results are compared to predictions of the Monte
Carlo PYTHIA 8.2 [48] event generator and NLO pQCD POWHEG [49, 50] calculations,
matched to the PYTHIA 8 parton shower.

This paper is organised as follows: section 2 describes the ALICE detector and the
utilised data samples, sections 3 and 4 provide details on the analysis procedure and the
systematic uncertainties, respectively. Section 5 presents the final results compared to
different model predictions. Finally, conclusions are given in section 6.

2 Detector and data sample

The reconstruction of heavy-flavour hadrons and charged jets in this analysis is done with
three detectors located within a large solenoid in the central barrel of the ALICE experi-
mental setup [51]: the Time Projection Chamber (TPC), the Inner Tracking System (ITS),
and the Time-Of-Flight detector (TOF). The TPC is a gaseous drift chamber detector used
for track reconstruction and particle identification (PID), thanks to the measurement of the
specific energy loss of particles in the detector gas due to ionisation. The ITS, a six-layer
cylindrical silicon detector, complements the track reconstruction in the TPC, allowing for
a precise determination of particle trajectories in the vicinity of the collision point and
the identification of charm-hadron decay vertices displaced by tens-to-hundreds of microns
from the collision point. The resolution on the track impact parameter in the transverse
plane to the primary vertex is better than 75 µm for tracks with pT > 1 GeV/c [52]. Fur-
thermore, the effectiveness of pion/kaon separation is enhanced by the TOF, a multi-gap
resistive plate chamber detector, providing the time of flight of particles from the inter-
action point. Due to the low magnetic field (0.5 T), ALICE is capable of reconstructing
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low-momentum particles down to pT lower than 150 MeV/c. The central barrel detectors
cover the pseudorapidity range |η| < 0.9 and full azimuthal angle of ϕ ∈ [0, 2π]. To provide
uniform pseudorapidity acceptance, only those events having a primary vertex within ±10
cm from the nominal beam collision position along the beam direction were analysed.

Events with the least possible bias were selected using a minimum bias trigger which
helped in identifying beam–beam collisions by requiring an event to be accepted only if a
signal was found in both scintillator arrays of the V0 detector covering the pseudorapidity
intervals −3.7 < η < −1.7 and 2.8 < η < 5.1. The V0 detector was used in combination
with the Silicon Pixel Detector (SPD), which comprises the first two layers of the ITS, to
reduce the background due to beam–gas interactions. In addition, a dedicated algorithm
based on multiple-vertex searches in the SPD was used in order to reduce pile-up events
containing two or more primary vertices.

The data samples analysed in this paper consist of 0.99 × 109 minimum bias events
from pp collisions at

√
s = 5.02 TeV recorded in 2017, corresponding to an integrated

luminosity of Lint = (19.3 ± 0.4) nb−1 [53], and 1.49 × 109 minimum bias events taken
at
√
s = 13 TeV between 2016 and 2018, corresponding to an integrated luminosity of

Lint = (25.81± 0.43) nb−1 [54].
The Monte Carlo samples used for the corrections, described in section 3.3, were pro-

duced with the PYTHIA 6.4.25 event generator [55], with the Perugia 2011 tune [56] and
the GEANT 3.21.11 [57] transport model. The ALICE detector layout and the variations
of the data-taking conditions during the run were reproduced in the simulation. They
shall be referred to as PYTHIA 6 and GEANT 3 in the following, unless otherwise speci-
fied. The reconstruction procedure of jets containing D0 mesons is briefly illustrated in the
following section.

3 D0-meson tagged jet reconstruction and corrections

3.1 D0-meson and jet reconstruction

The D0 mesons were reconstructed via their hadronic decay channel D0 →K− π+ and its
charge conjugate (BR = 3.950 ± 0.031%) [58]. The D0 meson and its anti-particle are
treated equivalently and shall both be referred to as D0 in the following, unless otherwise
specified. The D0 mesons produced directly in the charm-quark fragmentation or in decays
of directly-produced excited charm hadron states are called prompt D0 mesons, and those
that originate from decays of beauty hadrons are denoted as non-prompt D0 mesons.

The D0 candidates were constructed by combining oppositely charged tracks identified
as π or K mesons. These tracks were required to have pT > 300 MeV/c, |η| < 0.8, a
minimum of 70 crossed rows in the TPC, with at least 80% of these having an associated
cluster of charged signals in the TPC end plates, and at least two hits in the ITS, with a
minimum of one of these in the two innermost layers. For tracks with pT < 3 GeV/c, a hit in
the innermost layer of the ITS was also required. With the mentioned kinematic selections
on the pion and kaon tracks, the D0-meson acceptance in rapidity is pT,D0-dependent with
the upper limit growing from |yD| = 0.5 at pT,D0 = 0 to |yD| = 0.8 at pT,D0 = 5 GeV/c. The
particle identification was carried out by exploiting the specific energy loss dE/dx in the
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TPC and the time-of-flight provided by the TOF detector. Pions and kaons were selected
within 3σ (with σ being the resolution on the dE/dx and the time-of-flight) from the
expected mean values. Particles with no TOF information were identified using the TPC
information only. In order to reduce the combinatorial background, geometrical selections
on the D0-decay topology were applied, exploiting the displacement (typically of a few
hundred µm) of the D0-meson decay vertices from the primary vertex of the interaction.
The selection was tuned to provide a high D0 signal-to-background ratio. Further details
about the track and D0-candidate selections can be found in refs. [59–61].

For the jet reconstruction, charged particles were used and were required to have pT >
150 MeV/c and |η| < 0.9. The track selection criteria applied were less stringent than those
applied to the D0-daughter tracks in order to ensure a flat acceptance in η and ϕ. Jets
were reconstructed with the anti-kT clustering algorithm as implemented in the FastJet
package [62] with the resolution parameters R = 0.2, 0.4, 0.6, using the pT recombination
scheme. To ensure that the whole jet was contained within the detector acceptance, jets
were required to have their axes within the pseudorapidity range of |ηjet| < 0.9 − R.
At low momenta, D0-decay products can be emitted at angles larger than the defined jet
cone size. In order to ensure that the π and K mesons from the D0 decay were assigned
to the same jet, they were removed from the set of charged-particle tracks before the jet
reconstruction and their four-momenta were replaced by that of the D0 candidate. A charm
jet was tagged by the presence of a D0-meson candidate among its constituents. In the rare
case in which more than one D0-meson candidate was present, the procedure was repeated
separately for each D0-meson candidate in the event. No correction for the background
coming from the underlying event was applied. The analysis procedure closely followed
previous ALICE studies of charm jets tagged with D0 mesons [18].

3.2 Raw yield extraction

Raw yields of D0 jets were obtained using a statistical approach. Oppositely charged kaons
and pions from the decays of the D0-meson candidates were combined and the pair’s in-
variant mass distribution (M) was extracted in several intervals of D0-meson transverse
momentum within 2 < pT,D0 < 36 GeV/c. For the zch|| studies, the D0-jet signal was also
split in different ranges of pT,ch jet. The M distributions were fitted with a function com-
posed of a Gaussian for the D0-signal peak and an exponential for the background. When
two oppositely charged pion and kaon tracks are combined to form a D0 candidate, it may
happen that neither the kaon nor the pion hypothesis can be definitively excluded for either
of the tracks. In that case, the pair was accepted both as a D0 and a D0 candidate, and
the two related invariant mass values, resulting from swapping the pion and kaon mass
hypotheses for the two tracks, were considered in the analysis. The candidates correspond-
ing to a real D0 (or D0) meson but with the wrong decay-product mass assignment are
referred to as reflections. The reflection component was included in the invariant mass
fitting procedure and subtracted from the signal. The reflection templates were obtained
from simulations with the PYTHIA 6 event generator and parametrised as a sum of two
Gaussians with the means, widths, and the D0 signal-over-reflection ratio fixed to values
obtained in the simulations.
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Figure 1. Top: invariant mass distributions of D0-jet candidates for 2 <pT,ch jet < 50 GeV/c and
R = 0.4 in pp collisions at

√
s = 5.02 TeV, in the D0-meson transverse momentum intervals:

3 <pT,D0 < 4 GeV/c (left), 7 <pT,D0 < 8 GeV/c (centre), and 10 <pT,D0 < 12 GeV/c (right). The
total fit function is represented by the blue solid line, while the red dashed line represents the sum
of the background and reflection fit functions. The red and green shaded areas correspond to the
peak and sideband regions, respectively. Bottom: D0-jet raw yields as a function of pT,ch jet in the
signal and sideband regions, and their subtracted yields.

The signal region was defined to be within |M − µfit| < 2σfit, where µfit is the mean
and σfit is the width of the Gaussian fit component, respectively. The background regions
(sidebands) were chosen as follows: 4σfit < |M − µfit| < 9σfit. The top panels of figure 1
and 2 show examples of M distributions for different intervals of pT,D0 . The signal and
sideband regions are represented by the dashed red and green areas, respectively. The
reflection contributions are included in the background fit function. The bottom panels of
figure 1 and 2 present the raw yields of D0 jets as a function of pT,ch jet and zch|| extracted for
the signal and sideband M regions in each pT,D0 interval. The sideband distributions were
normalised to the background yield in the peak region and subtracted from the signal-region
distributions in order to obtain the raw D0-jet pT,ch jet and zch|| distributions.

3.3 Corrections

A threefold correction was applied to the raw D0-jet pT,ch jet and zch|| distributions. The
corrections account for: (i) the efficiency and acceptance of the D0-jet reconstruction, (ii)
the contribution of D0 mesons originating from b-hadron decays, and (iii) the momentum
smearing introduced by detector effects. The systematic uncertainties of these corrections
are discussed in section 4.
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Figure 2. Top: invariant mass distribution of D0-jet candidates for one jet-pT interval of
5 < pT,ch jet < 7 GeV/c and R = 0.4 in pp collisions at

√
s = 5.02 TeV, in D0-meson trans-

verse momentum intervals: 3 < pT,D0 < 4 GeV/c (left), 4 < pT,D0 < 5 GeV/c (centre), and
5 < pT,D0 < 6 GeV/c (right). The total fit function is represented by the blue solid line, while the
red dashed line represents the background fit function. The red and green shaded areas correspond
to the peak and sideband regions, respectively. Bottom: D0-jet raw yields as a function of zch

|| in
the signal and sideband regions, and their subtracted yields.

3.3.1 Reconstruction efficiency

The reconstruction efficiency of the D0 jets within the detector acceptance was calculated
using the simulation described in section 2. The efficiency was defined as the ratio of D0

jets that passed all the data analysis selection requirements to all generated D0 jets within
|ηjet| < 0.9 − R. The efficiency depends on the D0-meson topological selections, which
are stricter at low pT,D0 in order to reduce the larger combinatorial background present in
this kinematic region. Therefore, the D0-jet reconstruction efficiency depends strongly on
pT,D0 , but has negligible dependence on pT,ch jet in the measured ranges. Figure 3 (left)
shows the product of acceptance and efficiency for prompt and non-prompt D0 jets. The
acceptance and efficiency for non-prompt D0 jets tends to be higher than that for prompt
D0 jets at low pT,D0 with a crossing point around pT,D0 = 15 GeV/c. The non-prompt D0

mesons are selected with higher efficiency because of their larger displacement from the
primary vertex. However, at higher pT,D0 , a selection on the impact parameters of the
decay particles suppresses the non-prompt contribution while keeping most of the prompt
ones. Both efficiencies are independent of the pT,ch jet selection as is seen for the prompt
efficiencies in different analysed pT,ch jet intervals in figure 3 (right).

The product of the acceptance (Acc) and the reconstruction efficiency (ε) of the prompt
D0 jets was used to correct the raw yields extracted in different intervals of pT,D0 , as
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√
s = 5.02 TeV. Left: Acc × ε for prompt and non-prompt

D0 jets in the range 5 < pT,ch jet < 50 GeV/c. Right: Acc× ε for prompt D0 jets in different jet-pT
intervals.

described in section 3.2. The efficiency-corrected pT,ch jet distributions were then summed
over all the pT,D0 intervals, according to

N(pT,ch jet) =
∑

pT,D0

Nraw(pT,ch jet, pT,D0)
(Acc× ε)c(pT,D0) , (3.1)

where c represents charm (prompt D0 mesons) and N is the total efficiency-corrected yield.
A similar method was also used to extract efficiency-corrected zch|| distributions in different
pT,D0 and pT,ch jet intervals.

3.3.2 Subtraction of b-jet contribution

Since the natural fraction of D0 mesons originating from b-quark fragmentation is biased
by the applied topological selection criteria, the non-prompt D0-meson contribution was
subtracted from the reported distributions to get the desired prompt D0-jet distributions
(N c). The limited sample size did not allow for a data-driven estimation of the non-prompt
D0-jet fraction. Therefore, NLO pQCD calculations of POWHEG [49, 50, 63, 64] coupled
to the PYTHIA 6 [55, 56] MC parton shower were used to estimate this contribution.
There are three parameters in the calculations: the beauty-quark mass (mb) that was set
to mb = 4.75 GeV/c2, and the renormalisation (µR) and factorisation (µF) scales, both set
to the quark transverse mass µR = µF =

√
m2

b + p2
T. Parton distribution functions (PDF)

obtained from the CT10NLO set [65] using the LHAPDF6 [66] interpolator were used.
The simulation output was scaled by the ratio of the reconstruction efficiencies of

non-prompt and prompt D0 jets (εb/εc) because εb-scaled non-prompt simulations (εb ×
Nb

POWHEG) are comparable with εc-scaled prompt D0-jet distributions (εc × N c). In the
next step, the POWHEG + PYTHIA 6 pT,ch jet (zch|| ) distributions were smeared using a
response matrix (RM) for non-prompt D0 jets, RMb→D0 , which maps the D0-jet particle-
level variables (ppart

T,ch jet, z
ch,part
|| ) from PYTHIA 6 simulations to the detector-level variables
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Figure 4. Feed-down fraction of D0 jets from b-hadrons in pp collisions at
√
s = 5.02 TeV for

R = 0.4 as a function of pT,ch jet in 5 < pT,ch jet < 50 GeV/c (left) and as a function of zch
|| in two

pT,ch jet intervals 5 < pT,ch jet < 7 GeV/c and 15 < pT,ch jet < 50 GeV/c (right).

(pdet
T,ch jet, z

ch,det
|| ) reconstructed in full PYTHIA 6 + GEANT 3 detector simulations. The

RM was also re-weighted by the prompt D0-jet efficiency to address the fact that the
measured sample is already corrected by it. A correction was made to account for jets
which were inside the detector acceptance but outside the generated range, and for those
which were outside of the acceptance but inside the generated range. The calculated b-jet
feed-down fraction in the measured sample is shown in figure 4 as a function of pT,ch jet
and zch|| . The estimation of the corresponding systematic uncertainties shown in figure 4 is
described in section 4.

The b-hadron feed-down contribution was then subtracted from the efficiency-corrected
pT,ch jet distributions according to

N c(pdet
T,ch jet) = N(pdet

T,ch jet)−
∑

pT,D0

RMb→D0(pdet
T,ch jet, p

part
T,ch jet, pT,D0)

⊗
∑

pT,D0

(Acc× ε)b(pT,D0)
(Acc× ε)c(pT,D0)N

b
POWHEG(pT,D0 , ppart

T,ch jet), (3.2)

where:

• c and b stand for charm (prompt D0) and beauty (non-prompt D0), respectively;

• N(pdet
T,ch jet) is the total efficiency-corrected measured yield, before subtraction of the

b-jet contribution;

• N c(pdet
T,ch jet) is the efficiency-corrected measured yield after subtraction of the b-jet

contribution;

• the symbol ⊗ should be interpreted as the convolution of the non-prompt RMb→D0

and the vector of the yields;
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• (Acc × ε)c(pT,D0), (Acc × ε)b(pT,D0) are the pT,D0-dependent products of the accep-
tance and the reconstruction efficiency for prompt and non-prompt D0 jets respec-
tively;

• Nb
POWHEG(pT,D0 , ppart

T,ch jet) is the non-prompt D0-jet pT,ch jet cross section from the
POWHEG simulation scaled by the integrated luminosity of the analysed data.

An analogous subtraction was also performed for the zch|| studies.

3.3.3 Unfolding

The measured pT,ch jet and zch|| distributions were corrected for the detector resolution
and track momentum smearing. The corrections were encoded in a detector RM that
mapped the D0-jet particle-level variables (ppart

T,ch jet, z
ch,part
|| ) from PYTHIA 6 simula-

tions to the detector-level variables (pdet
T,ch jet, z

ch,det
|| ) reconstructed in full PYTHIA 6 +

GEANT 3 detector simulations. The detector and particle-level charged-particle jets were
matched by requiring the same prompt D0 meson among their constituents. The jets at
both levels were reconstructed using the anti-kT clustering algorithm. The 1-dimensional
RM used to correct for the pT,ch jet and the corresponding relative resolution, defined
as ∆p = (pdet

T,ch jet − p
part
T,ch jet)/p

part
T,ch jet, are displayed in figure 5. Figure 6 presents the

2-dimensional RM for the zch|| and pT,ch jet variables, along with the relative resolution
∆z = (zch,det|| − zch,part|| )/zch,part|| for a given pT,ch jet interval.

The finite detector resolution modifies the measured yields as a function of pT,ch jet and
zch|| . They were therefore unfolded using an iterative method based on Bayes’ theorem [67]
as implemented in the RooUnfold package [68]. The pT,ch jet spectra were unfolded using
a 1D unfolding method, while for the zch|| distributions a 2D method was implemented.
The RM was scaled by the prompt D0-jet efficiency before unfolding the measured spectra.
Five iterations showed to be optimal, representing a good convergence of the unfolding,
and were chosen as the default. The unfolding was performed in the following ranges:
2 < pT,ch jet < 50 GeV/c and 0.4 < zch|| < 1. Similar to the correction of non-prompt D0-jet
simulations, the measured spectra were also corrected for in order to account for jets which
were inside the detector acceptance but outside the generated range, and for those which
were outside of the acceptance but inside the generated range. This resulted in a correction
of about 1–2%.

To verify the stability of the unfolding and the choice of the number of iterations,
several checks were performed. Firstly, the unfolded spectra were folded back and compared
to the original data. A good agreement was found in all the cases. Secondly, Pearson
correlation coefficients were calculated to determine the optimal number of iterations and
lastly, a closure test was performed which also provided an estimate of the systematic
uncertainty of the method and is described in more detail in section 4. While the reported
range is 5 < pT,ch jet < 50 GeV/c, the measurements in the 2 < pT,ch jet < 5 GeV/c interval
were kept in the unfolding for both pT,ch jet and zch|| to avoid potential biases due to
edge effects.
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Figure 5. Left: detector response matrix of matched jets used for unfolding the pT,ch jet dis-
tribution with R = 0.4 in pp collisions at

√
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GeV/c. Right: pT,ch jet resolution, ∆p, for 5 < ppart
T,ch jet < 6 GeV/c, 10 < ppart

T,ch jet < 12 GeV/c, and
20 < ppart

T,ch jet < 30 GeV/c.
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Figure 6. Left: detector response matrix of matched jets used for unfolding zch
|| distribution with

R = 0.4 in pp collisions at
√
s = 5.02 TeV in the range 2 < pT,ch jet < 50 GeV/c and 0.4 < zch

|| < 1.
Right: zch

|| resolution, ∆z, in the zch,part
|| intervals 0.4–0.6, 0.6–0.8, and 0.8–1 for the pT,ch jet interval

5 < ppart
T,ch jet < 7 GeV/c.

4 Systematic uncertainties

Several sources of systematic uncertainties were studied and can be separated into the
following groups: (i) D0-meson selections, (ii) raw yield extraction, (iii) beauty feed-down,
(iv) unfolding, (v) track-reconstruction efficiency, and (vi) normalisation.

Discrepancies between data and simulations for the distributions of variables used
in the D0-meson selections can impact on the D0-jet reconstruction efficiency. In order
to assign a systematic uncertainty from this source, the D0-meson topological selections
were varied and the whole analysis procedure was repeated for each variation. The test
spanned a variation of the reconstruction efficiency between 10% and 25%, depending on
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the D0-meson pT. The uncertainty was estimated by taking the root-mean-square of the
results obtained with the different D0-meson selection criteria. The uncertainty increases
with pT,ch jet and decreases with zch|| , and varies between 1% and 10% for the sample at√
s = 13 TeV and between 3% and 25% for

√
s = 5.02 TeV. The particle identification

related systematic uncertainties for D0-meson selections were negligible [59] and excluded
from the calculation.

The stability of the raw yield extraction procedure described in section 3.2 was assessed
by performing multiple trials of the invariant mass fit while varying the fitting conditions.
The conditions that were varied are: (i) the assumed shape of the background function
(default exponential was replaced by linear and polynomial functions), (ii) the fit ranges,
and (iii) the width (σfit) and (iv) mean (µfit) of the Gaussian signal, which were left as
free parameters or fixed to the MC values. The yields obtained from the multiple trials
were compared to the default one and the root-mean-square of the relative differences was
taken as a part of the systematic uncertainties from the raw yield extraction. Secondly, the
signal range was varied between 2 to 3 standard deviations of the signal peak width, while
the sideband extraction range |M − µfit| was varied through 4–9, 4–8, 3.5–9, 3.5–8, 4.5–9,
and 4.5–8 units of standard deviation. The corresponding uncertainties amount to about
1% and 2%, respectively. A third contribution to the systematic uncertainty on the raw
yield extraction was assigned by varying the relative contribution of reflections by ±50%
and the maximum deviation in the raw yield was taken as a systematic uncertainty. The
total uncertainty on the raw yield extraction was estimated to be 2–9% for the pT,ch jet-
differential cross section and 2–6% for the zch|| distributions for the

√
s = 13 TeV analysis.

For the
√
s = 5.02 TeV analysis, the uncertainties reach a maximum of about 13% for the

pT,ch jet-differential cross section, and are within 8% for the zch|| distributions.
The systematic uncertainty from the subtraction of the b-hadron decay con-

tribution was determined by varying the parameters of the non-prompt D0-jet
POWHEG + PYTHIA 6 simulations. They were varied individually in the following ways:
(i) the beauty-quark mass was changed to 4.5 GeV/c2 and 5 GeV/c2 from the default
4.75 GeV/c2 and (ii) µR and µF were either halved or doubled from their nominal values,
which were defined as the transverse mass of the beauty quark. The largest upward and
downward variations of the resulting cross sections were taken as the systematic uncer-
tainties. The uncertainty on the prompt cross section due to the feed-down subtraction
was estimated for the pT,ch jet-differential cross section to be 5–30% for the sample at√
s = 13 TeV and 4–40% for

√
s = 5.02 TeV. For the zch|| distributions it was 2–20% and

2–15% for
√
s = 13 TeV and

√
s = 5.02 TeV, respectively.

The systematic uncertainty on the unfolding procedure was assigned based on a MC
closure test. The MC sample was randomly split into two subsamples and one part was
used to build the RM while the other one was used as a test sample. The efficiency
correction was applied on the test sample following the method used in the data analysis.
The same unfolding procedure was then applied as in the data analysis, and the resulting
distributions were compared to the generator-level MC distributions. The random split
was performed ten times and a mean value of the deviations from these trials was taken as
the final uncertainty of the unfolding procedure. The resulting uncertainty is 1–5% in most
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cases while rising with increasing pT,ch jet and falling with increasing zch|| . Occasionally, the
uncertainty goes above 10% for the highest pT,ch jet interval in pT,ch jet distributions and
for lowest zch|| intervals in zch|| distributions. In addition, several checks were performed in
order to test the stability of the unfolding procedure explained in section 3.3.3, and were
treated as a procedure cross-check: (i) the default number of five iterations of the Bayesian
unfolding was varied by ±1, (ii) the default MC generator-level prior distribution shape
was varied by using the measured pT,ch jet distribution or different parametrised power-
law functions, f(pT,ch jet) = p−a

T,ch jete
−ab/pT,ch jet with 3 < a, b < 5, and (iii) the true and

measured ranges for pT,ch jet spectra provided to the unfolding procedure were varied. All
these tests gave consistent unfolding results with maximum relative deviations of 1%.

The measurement is also affected by uncertainties on the efficiency of the track re-
construction that influence the jet momentum resolution and the D0-meson reconstruction
efficiency. The relative uncertainty on the reconstruction efficiency for a single track used
for the jet reconstruction was estimated to be 4%. To assess the systematic uncertainty on
the prompt cross section due to this source, a new detector RM was built where 4% of all
the reconstructed charged tracks in the detector simulations were randomly rejected. The
pT,ch jet and zch|| distributions were then unfolded using this modified RM and the results
were compared to the final distributions unfolded with the default detector RM. The rela-
tive uncertainty from this source was found to increase with pT,ch jet reaching a maximum
of 10%. The uncertainties originating from the track momentum resolution were previously
studied and found to be negligible [52, 69]. For the reconstruction efficiency of D0-mesons,
a pT,D0-independent systematic uncertainty of 5% was assigned based on the D0-meson
studies reported in ref. [59]. Since the reported zch|| distributions are self-normalised, this
uncertainty is negligible in this case.

Finally, the normalisation of the pT,ch jet-differential cross section was affected by a
0.8% uncertainty on the D0-meson decay branching ratio and by the uncertainty on the
luminosity determination which is 2.1% and 1.7% for

√
s = 5.02 TeV and

√
s = 13 TeV,

respectively.
The relative systematic uncertainties for D0 jets on their pT,ch jet-differential cross sec-

tions for R = 0.4 are summarised in table 1. The zch|| systematic uncertainties in two of
the four pT,ch jet intervals are presented in table 2.

The total systematic uncertainties for the D0-jet pT,ch jet-differential cross sections and
the zch|| distributions were obtained by summing in quadrature the uncertainties estimated
for each of the sources. In the case of cross section ratios for different jet resolution
parameters, the systematic uncertainties due to tracking efficiency of the D0-meson decay
products and the normalisation uncertainties are assumed to be fully correlated and, hence,
cancel out in the ratios. Systematic uncertainties due to the D0-meson topological selection
are partially correlated and an average of the uncertainties for two resolution parameters
R was taken. Partial correlation was also assumed for the tracking efficiency related to the
jet energy scale. A simultaneous-variation method was used to determine the uncertainty,
i.e. the detector response matrices for two given R values were varied simultaneously and
the relative uncertainty on the cross section ratio was determined by the difference of
the final ratio results obtained with modified and nominal response matrices. Systematic
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√
s (TeV) 5.02 13

pT,ch jet (GeV/c) 5–6 8–10 30–50 5–6 8–10 30–50
Topological selection + 3.4 + 5.6 + 25 + 3.6 + 2.9 + 8.8
Raw yield extraction + 3.1 + 3.1 + 11 + 3.3 + 2.5 + 8.8

B Feed-down + 3.9 + 5.3 + 14 + 4.7 + 5.9 + 12
– 6.5 – 8.9 – 24 – 6.5 – 8.5 – 22

Unfolding + 2.8 + 0.6 + 12 + 2.7 + 0.7 + 0.9
Tracking eff. (jet energy scale) + 1.6 + 2.4 + 9.6 + 0.8 + 2.1 + 9.7
Tracking eff. (D-meson) + 5.0 + 5.0 + 5.0 + 5.0 + 5.0 + 5.0
BR + 0.8 + 0.8 + 0.8 + 0.8 + 0.8 + 0.8
Luminosity + 2.1 + 2.1 + 2.1 + 1.7 + 1.7 + 1.7

Total + 9.0 + 10 + 35 + 10 + 10 + 21
– 10 – 13 – 40 – 11 – 12 – 28

Table 1. Relative (%) systematic uncertainties for selected pT,ch jet intervals of R = 0.4 jets at√
s = 5.02 TeV and

√
s = 13 TeV.

√
s (TeV) 5.02 13

pT,ch jet (GeV/c) 5–7 7–10 5–7 7–10
zch|| 0.6–0.7 0.9–1.0 0.6–0.7 0.9–1.0 0.6–0.7 0.9–1.0 0.6–0.7 0.9–1.0

Topological selection + 3.8 + 2.3 + 9.2 + 1.4 + 2.8 + 1.7 + 3.6 + 1.1
Raw yield extraction + 3.3 + 4.3 + 4.2 + 2.4 + 3.5 + 4.3 + 5.8 + 2.4

B Feed-down + 3.0 + 1.9 + 2.5 + 1.2 + 3.4 + 2.8 + 3.4 + 2.2
– 5.1 – 3.2 – 4.2 – 2.8 – 4.8 – 3.8 – 4.9 – 3.3

Unfolding + 0.4 + 1.3 + 0.7 + 0.0 + 0.7 + 0.2 + 1.6 + 1.4
Tracking eff. (jet energy scale) + 1.3 + 1.7 + 5.3 + 3.1 + 3.2 + 4.9 + 3.2 + 4.9

Total + 6.0 + 5.6 + 12 + 4.5 + 6.6 + 7.3 + 8.4 + 6.1
– 7.3 – 6.2 – 12 – 5.0 – 7.4 – 7.8 – 9.1 – 6.6

Table 2. Relative (%) systematic uncertainties for selected zch
|| and pT,ch jet intervals of R = 0.4

jets at
√
s = 5.02 TeV and

√
s = 13 TeV.

uncertainties on the ratio of cross sections for the two colliding energies were obtained
by adding them in quadrature, except for the BR uncertainty which was treated as fully
correlated. No other correlation was considered given that the data taking periods and the
detector conditions were different.

5 Results

5.1 Transverse-momentum differential cross sections

The pT,ch jet-differential cross section of D0 jets is defined as

d2σ

dpT,ch jetdηjet
(pT,ch jet) = 1

Lint
1
BR

N(pT,ch jet)
∆ηjet∆pT,ch jet

, (5.1)

where N(pT,ch jet) is the measured yield in each pT,ch jet interval corrected for the accep-
tance, reconstruction efficiency, b-hadron feed-down contribution, and unfolded for the
detector effects. The ∆pT,ch jet is the bin width and ∆ηjet = 1.8− 2R is the jet reconstruc-
tion acceptance, where R is the jet resolution parameter. Finally, Lint is the integrated
luminosity and BR is the branching ratio of the considered D0-meson decay channel.
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Figure 7. Top panels: pT,ch jet-differential cross section of charm jets tagged with D0 mesons for
R = 0.2 (circles, scaled by 0.1), 0.4 (squares) and 0.6 (crosses, scaled by 10) in pp collisions at√
s = 13 TeV (left) and

√
s = 5.02 TeV (right) compared to PYTHIA 8 HardQCD Monash 2013

(dash-dotted lines), PYTHIA 8 SoftQCD Mode 2 (dashed lines), and POWHEG hvq + PYTHIA 8
(open circles) predictions. The shaded bands indicate the systematic uncertainty on the data
cross section while open boxes represent the theoretical uncertainties on the POWHEG predictions.
Bottom panels: ratios of MC predictions to the data for R = 0.2, 0.4 and 0.6.

The pT,ch jet-differential cross sections of D0 jets in pp collisions for R = 0.2, 0.4, and
0.6 are shown in figure 7 for

√
s = 13 TeV (left) and for

√
s = 5.02 TeV (right). They are

compared to PYTHIA 8 and POWHEG + PYTHIA 8 predictions. The pT,ch jet-differential
cross section for R =0.3 and its comparisons to theoretical predictions are shown in the
appendix in figure 13. The jets are required to have in their constituents a D0 meson
with pT,D0 > 2 GeV/c as the D0-meson reconstruction efficiency falls rapidly at lower
pT,D0 and excluding pT,D0 < 2 GeV/c helps in avoiding large fluctuations in the pT,ch jet
spectra. A previous study at

√
s = 7 TeV [18] showed that a lower bound selection on

the D0-meson pT of pT,D0 > 3 GeV/c introduced a minimal fragmentation bias on the
reported D0-jet pT,ch jet-differential cross sections above 5 GeV/c. Therefore, a selection
of pT,D0 > 2 GeV/c should have a smaller effect on the same reported range of pT,ch jet
spectra. In this analysis, the maximum transverse momentum was pT,D0 = 36 GeV/c for
the D0 mesons and pT,ch jet = 50 GeV/c for the charged jets. The same requirements on
the D0-meson pT were applied in the simulations.

The results are compared to predictions of the Monash-2013 tune [70] of the
PYTHIA 8.210 [48] event generator with HardQCD processes. It is based on leading order
pQCD calculations of matrix elements of parton-level hard scatterings and a leading order
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parton shower. The final state evolution is combined with the initial-state radiation and
multiparton interactions. The Lund string model [71, 72] is used for the hadronisation. It
overpredicts the data for all three values of the jet resolution parameter R with the discrep-
ancy being larger at

√
s = 13 TeV. Incorporating SoftQCD and inelastic non-diffractive

processes and colour reconnection beyond the leading-colour approximation [73] to the
aforementioned PYTHIA 8 tune, denoted as PYTHIA 8 SoftQCD Mode 2, improves the
agreement with the data. However, in this case the model underpredicts the measurements
at pT,ch jet . 10 GeV/c.

The POWHEG + PYTHIA 8 simulation interfaces NLO pQCD POWHEG [49, 63]
calculations with the PYTHIA 8 [48] MC parton shower within the POWHEG Box
framework [50]. The heavy-flavour process (hvq) [74] implementation of the POWHEG
framework was chosen. The outgoing partons from POWHEG are passed to PYTHIA 8
event-by-event to simulate the subsequent parton shower, hadronisation and generation
of the underlying event. The following simulation settings were used: CT10NLO set of
the parton distribution function, the renormalisation and factorisation scales were set to
µR = µF = µ0 =

√
m2

c + p2
T, and the default charm-quark mass was 1.5 GeV/c2. The theo-

retical uncertainties were estimated by varying the simulation parameters. The largest un-
certainties originate from doubling or halving the factorisation and renormalisation scales.
Additionally, the charm-quark mass was varied between 1.3 GeV/c2 and 1.7 GeV/c2. The
POWHEG + PYTHIA 8 calculations describe the measured cross sections within the ex-
perimental and theoretical uncertainties. For pT,ch jet > 14 GeV/c (20 GeV/c) the central
values of the predictions agree with the data at

√
s = 5.02 TeV (

√
s = 13 TeV). At lower

pT,ch jet the experimental results are close to the upper bands of the POWHEG+ PYTHIA 8
calculations and, as in the case of the PYTHIA 8 predictions, the agreement is better at√
s = 5.02 TeV than at

√
s = 13 TeV. The low-pT,ch jet region is particularly difficult to

describe theoretically due to the large contribution from various non-perturbative effects.
In addition, the energy dependence of the pT,ch jet-differential cross section of D0 jets

was studied from the ratio of
√
s = 13 TeV to

√
s = 5.02 TeV cross sections, shown for

different jet resolution parameters R in figure 8. The measured ratios indicate a hardening
of the pT,ch jet spectra with increasing centre-of-mass energy. Both PYTHIA 8 settings
describe the data well within the current uncertainties for all jet resolution parameters R.
The PYTHIA 8 with SoftQCD and Mode 2 tune describes the data slightly better. The
POWHEG + PYTHIA 8 simulation underestimates the measured cross section ratios, with
the data being on the upper edge of the theory uncertainty band.

5.2 Resolution parameter dependence of D0-jet cross section

A comparison of D0 jets with different resolution parameters can help in exploring the
shower development. It provides insights into the interplay between perturbative and non-
perturbative effects. Figure 9 shows the ratios of pT,ch jet-differential cross sections of D0

jets reconstructed with resolution parameter R = 0.2 with respect to R = 0.4 and 0.6
for collision energies at

√
s = 13 TeV (left) and

√
s = 5.02 TeV (right). Statistical

uncertainties are treated as fully uncorrelated and summed in quadrature, thus they are
overestimated. To determine the theoretical uncertainties for cross section ratios between
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Figure 8. Top: ratios of pT,ch jet-differential cross section of charm jets tagged with D0 mesons in
pp collisions at

√
s = 13 TeV to

√
s = 5.02 TeV for R = 0.2 (left), R = 0.4 (centre), and R = 0.6

(right) compared to PYTHIA 8 HardQCD Monash 2013 (dash-dotted lines), PYTHIA 8 SoftQCD
Mode 2 (dashed lines), and POWHEG hvq + PYTHIA 8 (open circles) predictions. The shaded
bands indicate the systematic uncertainty on the cross section ratios while open boxes represent
the theoretical uncertainties on the POWHEG predictions. Bottom: ratios of MC predictions to
the data.

two jet radii in the POWHEG framework, the renormalisation and factorisation scales and
the charm-quark mass were varied simultaneously. The maximum upward and downward
variations were used as the uncertainty band.

The observed departure from unity of the cross section ratios can be interpreted by
the emission of QCD radiation. Both σ(R = 0.2)/σ(R = 0.4) and σ(R = 0.2)/σ(R = 0.6)
ratios for the two collision energies decrease with increasing pT,ch jet and for pT,ch jet > 10
GeV/c the ratios become independent of pT,ch jet within the uncertainties. The shapes are
qualitatively described by the PYTHIA 8 and POWHEG + PYTHIA 8 predictions.

However, in the pT,ch jet interval 5–10 GeV/c, POWHEG + PYTHIA 8 calculations
overestimate the data with the discrepancy being larger for the σ(R = 0.2)/σ(R = 0.6) ra-
tio, which is expected to be more sensitive to the underlying event contribution. The
PYTHIA 8 predictions with the Monash and Mode 2 tunes agree well with the data
within the uncertainties, where the largest deviations from the data are at low pT,ch jet
for
√
s = 13 TeV and R = 0.6. The differences seen between the predictions of the two

PYTHIA 8 tunes in the pT,ch jet-differential cross sections largely cancel in the ratios of
results with different R parameters.

5.3 D0-jet fraction of inclusive jets

Figure 10 shows the fraction of D0 jets with respect to charged-particle inclusive jets in
pp collisions at

√
s = 5.02 TeV for different jet resolution parameters R = 0.2, 0.4,

and 0.6. The production cross sections of the inclusive jets used as a reference here are
taken from a previous measurement by ALICE reported in ref. [69]. Since the data taking
periods are different for the inclusive jet measurements compared to the current one, all
the uncertainties were considered as uncorrelated.
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Figure 9. Top: ratios of pT,ch jet-differential cross section of charm jets tagged with D0 mesons
for different R: σ(R = 0.2)/σ(R = 0.4) (circles, shifted up by 0.5) and σ(R = 0.2)/σ(R = 0.6)
(squares) in pp collisions at

√
s = 13 TeV (left) and

√
s = 5.02 TeV (right) compared to

PYTHIA 8 HardQCD Monash 2013 (dash-dotted lines), PYTHIA 8 SoftQCD Mode 2 (dashed
lines), and POWHEG hvq + PYTHIA 8 (open circles) predictions. The shaded bands indicate
the systematic uncertainty on the cross section ratios while open boxes represent the theoretical
uncertainties on the POWHEG predictions. Bottom: ratios of MC predictions to the data for
σ(R = 0.2)/σ(R = 0.4) and σ(R = 0.2)/σ(R = 0.6), respectively.

The fraction of D0 jets tends to increase with increasing pT,ch jet in the kinematic range
5 < pT,ch jet < 10 GeV/c for all jet radii. However, the fraction decreases with increasing
R, from a range of 0.05–0.07 at R = 0.2 to a range of 0.015–0.04 at R = 0.6. The D0-
jet fraction for R = 0.3 is shown in the appendix in figure 14. In the range of pT,ch jet
> 10 GeV/c, the pT,ch jet dependence tends to flatten out within uncertainties due to the
hardening of the jets. The D0-jet fractions follow the trend set by PYTHIA 8 results with
Monash tune and agree with them quite well. The POWHEG + PYTHIA 8 calculations
slightly underestimate the data at lower pT,ch jet while agreeing within uncertainties at
higher pT,ch jet.

5.4 Jet momentum fraction

The fraction of jet momentum carried by the D0 meson can provide insight into the charm-
quark fragmentation. The zch|| -differential yield, d

2N/dzch|| dηjet, was calculated in a manner
analogous to the calculation of pT,ch jet-differential cross section (see 5.1). It was then self-
normalised in each pT,ch jet interval by the integral of the measured zch|| distribution in the
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Figure 10. The fraction of D0 jets over inclusive charged-particle jets in pp collisions at√
s = 5.02 TeV for (a) R = 0.2, (b) R = 0.4, and (c) R = 0.6 compared to PYTHIA 8 HardQCD

Monash 2013 (dash-dotted lines) and POWHEG hvq + PYTHIA 8 (open circles) predictions. The
shaded bands indicate the systematic uncertainty on the data cross section ratios while the open
boxes represent the theoretical uncertainties on the POWHEG predictions.

corresponding pT,ch jet interval to obtain the presented zch|| probability density distributions

1
N

d2N

dzch|| dηjet
(zch|| , pT,ch jet) = 1

N(pT,ch jet)
N(zch|| , pT,ch jet)

∆ηjet∆zch||
. (5.2)

This normalisation was applied in order to better compare the shape of the distributions
among each other and to different model predictions. Figures 11 and 12 show the zch||
distributions in four different intervals of pT,ch jet for

√
s = 13 TeV and

√
s = 5.02 TeV,

respectively. The distributions for R = 0.3 D0 jets at
√
s = 5.02 TeV are shown in

figure 15. A pT,ch jet-dependent minimum D0-meson pT requirement had to be applied due
to the limited number of candidates in some momentum intervals. For R = 0.2, these were
pT,D0 > 2, 4, 5, and 10 GeV/c in the pT,ch jet ranges 5 < pT,ch jet < 7, 7 < pT,ch jet < 10,
10 < pT,ch jet < 15, and 15 < pT,ch jet < 50 GeV/c, respectively. For R = 0.4 and 0.6, the
respective required selections on the minimum pT,D0 were: 2, 3, 5, and 5 GeV/c. The same
kinematic conditions were adopted in the model calculations.

For D0 jets with 5 < pT,ch jet < 15 GeV/c and reconstructed with R = 0.2, a peak
at zch|| ≈ 1 is visible, for both

√
s = 5.02 TeV and

√
s = 13 TeV. The peak contains

jets whose only constituent is the tagged D0 meson and it disappears at larger R and
higher pT,ch jet intervals where the fraction of these single-constituent jets becomes much
smaller. For a given pT,ch jet interval, a softening of the fragmentation (zch|| ) is visible with
increasing R. The change in the zch|| distribution shape with increasing pT,ch jet is significant
only for R = 0.4, with a trend that is similar to that reported in previous ALICE studies
at
√
s = 7 TeV [18].
The measured zch|| distributions are compared to the predictions of the same mod-

els used for the pT,ch jet-differential cross section. Overall, a good agreement between
PYTHIA 8 results with both Monash and Mode 2 tunes and the data is observed within the
uncertainties for 7 < pT,ch jet < 50 GeV/c at both collision energies. A hint of a softer frag-
mentation in the lowest pT,ch jet interval, 5 < pT,ch jet < 7 GeV/c, is visible in the data com-
pared to the PYTHIA 8 predictions. The differences in the zch|| distribution shape predicted
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Figure 11. Distributions of zch
|| -differential yield of charm jets tagged with D0 mesons normalised

by the number of D0 jets within each distribution in pp collisions at
√
s = 13 TeV in four

jet-pT intervals 5 < pT,ch jet < 7 GeV/c, 7 < pT,ch jet < 10 GeV/c, 10 < pT,ch jet < 15 GeV/c, and
15 < pT,ch jet < 50 GeV/c from left to right, respectively. Top, middle, and bottom rows repre-
sent jets with R = 0.2, 0.4, and 0.6, respectively. They are compared to PYTHIA 8 HardQCD
Monash 2013 (dash-dotted lines), PYTHIA 8 SoftQCD Mode 2 (dashed lines), and POWHEG hvq
+ PYTHIA 8 (open circles) predictions. The shaded bands indicate the systematic uncertainty on
the distributions. Bottom panels present ratios of MC predictions to the data.

by the default PYTHIA 8 Monash 2013 tune and the SoftQCD Mode 2 are very small, with
a slightly harder fragmentation predicted by the former at low pT,ch jet and smaller R. Sim-
ilarly, POWHEG + PYTHIA 8 describes the data well above pT,ch jet > 7 (10) GeV/c at√
s = 5.02 TeV (

√
s = 13 TeV) while it predicts a harder fragmentation at lower pT,ch jet.

The discrepancy between the data and POWHEG + PYTHIA 8 predictions in these lower
pT,ch jet ranges in the zch|| distribution shape is larger than in the case of the PYTHIA 8
event generator. It is particularly significant at

√
s = 13 TeV in the interval 5 < pT,ch jet

< 10 GeV/c for jets reconstructed with R = 0.6 and 0.4 and for 5 < pT,ch jet < 7 GeV/c
with R = 0.2. The discrepancy is larger for larger R.
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Figure 12. Distributions of zch
|| -differential yield of charm jets tagged with D0 mesons and nor-

malised by the number of D0 jets within each distribution in pp collisions at
√
s = 5.02 TeV in

four pT,ch jet intervals 5 < pT,ch jet < 7 GeV/c, 7 < pT,ch jet < 10 GeV/c, 10 < pT,ch jet < 15 GeV/c,
and 15 < pT,ch jet < 50 GeV/c from left to right, respectively. Top, middle, and bottom rows rep-
resent jets with R = 0.2, 0.4, and 0.6, respectively. They are compared to PYTHIA 8 HardQCD
Monash 2013 (dash-dotted lines), PYTHIA 8 SoftQCD Mode 2 (dashed lines), and POWHEG hvq
+ PYTHIA 8 (open circles) predictions. The shaded bands indicate the systematic uncertainty on
the distributions. Bottom panels present ratios of MC predictions to the data.

6 Summary

In this paper, studies of the production of charm jets tagged with fully reconstructed
D0 mesons, using data obtained from proton–proton collisions at

√
s = 5.02 TeV and√

s = 13 TeV with the ALICE detector at the CERN LHC, were presented. The mea-
surements were carried out for charged-particle jets reconstructed with different resolution
parameters, i.e. R = 0.2, 0.4, 0.6. The new ALICE results shown in this paper have better
precision for the studied observables and are performed more differentially owing to larger
data samples of pp collisions at

√
s = 13 and 5.02TeV collected by ALICE compared to the

results obtained at
√
s = 7 TeV [18]. They are differential in pT,ch jet and double differen-

tial in zch|| and pT,ch jet, and are compared to predictions obtained with the PYTHIA 8 event
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generator with the Monash tune as well as with the Mode 2 tune (implementing colour
reconnection beyond the leading-colour approximation), and to predictions obtained by
coupling the POWHEG NLO event generator to the PYTHIA 8 parton shower.

The PYTHIA 8 predictions with the SoftQCD and Mode 2 tune settings provide the
best description of the pT,ch jet-differential cross sections for both collision energies and all
resolution parameters. Within the experimental and theoretical uncertainties, the measure-
ments are also in agreement with the POWHEG + PYTHIA 8 calculations. Cross section
ratios between

√
s = 13 and 5.02TeV increase with increasing pT,ch jet, indicating a hard-

ening of the spectrum as the collision energy rises. The cross section ratios between differ-
ent jet radii σ(R = 0.2)/σ(R = 0.4, 0.6) fall sharply with pT,ch jet and then flatten out for
pT,ch jet > 10 GeV/c. Low-pT,ch jet measurements for different R values can constrain pQCD,
hadronisation, and underlying event (UE) effects in models. Studies for smaller R values
are more sensitive to non-perturbative hadronisation effects, while contributions from the
UE are more important for large R. The ratios are well described by the PYTHIA 8 pre-
dictions and are systematically overpredicted by the POWHEG + PYTHIA 8 calculations,
especially for pT,ch jet < 20 GeV/c and

√
s = 13 TeV.

The probability density distributions of the jet momentum fraction carried by the
constituent D0 meson, zch|| , hint at a softer fragmentation in data when compared to model
predictions in the low pT,ch jet region and for larger jet radii. This disagreement is more
prominent for NLO predictions obtained from POWHEG + PYTHIA 8 than PYTHIA 8
predictions. For pT,ch jet > 7 GeV/c, the agreement between data and the calculations
is good.

Despite these discrepancies at low pT,ch jet, a generally good description of the main fea-
tures of the data is obtained with MC event generators and pQCD calculations in most of
the measured kinematic range, indicating that the charm-quark production, fragmentation
and hadronisation are under control. Therefore, these models can serve as a good theo-
retical baseline for studies in p–Pb and Pb–Pb collisions. The reported zch|| distributions
also serve as an important input for the global fit analyses that aim to constrain the gluon
fragmentation functions. Furthermore, the results from pp collisions at

√
s = 5.02 TeV

are at the same centre-of-mass energy as p–Pb and Pb–Pb collision data and can be used
as a reference for studies of charm-jet production and fragmentation modifications in the
QGP medium and cold nuclear matter effects in p–Pb collisions.
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A Measurements of D0 jets with R = 0.3 in pp collisions at√
s = 5.02 TeV

The pT,ch jet-differential cross section of D0 jets with R = 0.3 in pp collisions at√
s = 5.02 TeV compared to PYTHIA 8 and POWHEG+PYTHIA 8 predictions is shown

in figure 13. The D0-jet fraction of inclusive jets for the same R is shown in figure 14. Fig-
ure 15 shows the zch|| distributions for R = 0.3 D0 jets in four different intervals of pT,ch jet
for
√
s = 5.02 TeV.
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Figure 13. Top panel: pT,ch jet-differential cross section of charm jets tagged with D0 mesons for
R = 0.3 in pp collisions at

√
s = 5.02 TeV compared to PYTHIA 8 HardQCD Monash 2013

(dash-dotted lines), PYTHIA 8 Monash 2013 SoftQCD Mode 2 (dashed lines) and POWHEG hvq
+ PYTHIA 8 (open circles) predictions. The shaded bands indicate the systematic uncertainty on
the data cross section while open boxes represent the theoretical uncertainties on the POWHEG
predictions. Bottom panel presents ratios of MC predictions to the data.

5 10 15 20 25 30 35 40 45 50

)  c (GeV/
T,ch jet

p

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

c
h

 j
e

t
η

d
T

,c
h

 j
e

t
p

d

in
c
lu

s
iv

e
 j
e

ts
σ

2
d

 / 
c
h

 j
e

t
η

d
T

,c
h

 j
e

t
p

d

 j
e

ts
0

D
σ

2
d

 = 5.02 TeVsALICE, pp, 

| < 0.6
ch jet

η, |Tk charged jets, anti-

c < 36 GeV/
0

T,D
p2 < 

Data

PYTHIA 8 HardQCD Monash 2013

POWHEG hvq + PYTHIA 8

 = 0.3R 

Figure 14. The fraction of D0 jets over inclusive charged-particle jets in pp collisions at√
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and POWHEG hvq + PYTHIA 8 (open circles) predictions.
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Figure 15. Top panels: zch
|| -differential yield of R = 0.3 charm jets tagged with D0 mesons nor-

malised by the number of D0 jets within each distribution in pp collisions at
√
s = 5.02 TeV in

four pT,ch jet intervals (top left) 5 < pT,ch jet < 7 GeV/c, (top right) 7 < pT,ch jet < 10 GeV/c, (bot-
tom left) 10 < pT,ch jet < 15 GeV/c and (bottom right) 15 < pT,ch jet < 50 GeV/c GeV/c. They are
compared to PYTHIA 8 Monash 2013 (dashed-dotted lines), PYTHIA 8 Monash 2013 SoftQCD
Mode 2 (dashed lines) and POWHEG hvq + PYTHIA 8 (open circles) predictions. The shaded
bands indicate the systematic uncertainty on the distributions while open boxes represent the theo-
retical uncertainties on the POWHEG predictions. Bottom panels present ratios of MC predictions
to the data.
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