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Exclusive ηc production from small-x evolved Odderon
at an electron-ion collider

Sanjin Benić, Davor Horvatić , Abhiram Kaushik , and Eric Andreas Vivoda
Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia

(Received 26 June 2023; accepted 6 September 2023; published 5 October 2023)

We compute exclusive ηc production in high-energy electron-nucleon and electron-nucleus collisions
that is sensitive to the odderon. In perturbative QCD the odderon is a C-odd color singlet consisting of at
least three t-channel gluons exchanged with the target. By using the Color Glass Condensate effective
theory our result describes the odderon exchange at the high-collision energies that would be reached at a
future electron-ion collider. The odderon distribution is evolved to small-x using the Balitsky-Kovchegov
evolution equation with running coupling corrections. We find that while at low momentum transfers t the
cross section off a proton is dominated by the Primakoff process, the odderon becomes relevant at larger
momentum transfers of jtj ≥ 1.5 GeV2. We point that the odderon could also be extracted at low-t using
neutron targets since the Primakoff component is strongly suppressed. In the case of nuclear targets, the
odderon cross section becomes enhanced thanks to the mass number of the nuclear target. The gluon
saturation effect induces a shift in the diffractive pattern with respect to the Primakoff process that could be
used as a signal for the odderon.

DOI: 10.1103/PhysRevD.108.074005

I. INTRODUCTION AND MOTIVATION

The odderon was suggested 50 years ago [1,2] as the
C-odd (C ¼ −1) partner of the C-even (C ¼ þ1) pomeron
in mediating a t-channel colorless exchange in elastic
hadronic cross sections. The original idea [3] to measure
the odderon through a difference in pp vs pp̄ elastic cross
sections brought much excitement recently [4] thanks to the
precise pp measurement by the TOTEM Collaboration [5]
at the collision energies close to the pp̄ D0 Tevatron
data [6]. On the other hand, considering elastic hadronic
cross sections makes it difficult to understand the odderon
in the context of perturbative QCD.
As opposed to pp collisions, ep collisions provide a

cleaner environment to extract the odderon, particularly in
the exclusive production of particles with a fixed C-parity.
A prominent example here is the ηc production [7–16]
where the heavy charm quarks ensure that the process is
sensitive to the gluons in the target. With the C-parity of ηc
being C ¼ þ1 and that of the emitted photon being
C ¼ −1, the amplitude becomes directly proportional to
the odderon. ηc plays a role analogous to the J=ψ
production in case of the pomeron. Unlike J=ψ , which
has been extensively measured at HERA, there is no

measurement of exclusive ηc production so far. This would
hopefully change with the high luminosities feasible at the
upcoming electron-ion colliders (EICs) [17–19] (or even
with the LHC in the ultraperipheral mode [20]) and is
therefore a motivation for our work.
The high collision energies that will be reached at the EIC

can offer unique insights into the small-x component of the
target wavefunction (x represents the parton momentum
fraction) where the gluon density is large according to
the effective theory of the Color Glass Condensate (CGC)
[21–24]. Within the framework of CGC, the odderon is the
imaginary part of the dipole distribution [25,26]

Oðx⊥; y⊥Þ≡ 1

2iNc
trhV†ðx⊥ÞVðy⊥Þ − V†ðy⊥ÞVðx⊥Þi; ð1Þ

with the trace taken in the fundamental representation. The
Wilson lineVðx⊥Þ is defined in Sec. II below, in Eq. (7). The
small-x evolution of the odderon is given by the imaginary
part of the Balitsky-Kovchegov (BK) equation for the dipole
[25–27]. Indeed, one of our main goals is to numerically
solve the coupled pomeron-odderon BK system for the case
of the proton and for nuclear targets. Whereas in the linear
regime the odderon and the pomeron evolution is indepen-
dent, the nonlinearity of the BKequations alters the odderon
significantly when the dipole size is of the order of the
inverse of the saturation scale QS [25–29].
From a theoretical perspective, the difficulty in comput-

ing the ηc cross section comes from the uncertainty in the
magnitude of the odderon. While earlier works on ηc

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 074005 (2023)

2470-0010=2023=108(7)=074005(13) 074005-1 Published by the American Physical Society

https://orcid.org/0000-0002-0411-8474
https://orcid.org/0000-0003-1313-5070
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.074005&domain=pdf&date_stamp=2023-10-05
https://doi.org/10.1103/PhysRevD.108.074005
https://doi.org/10.1103/PhysRevD.108.074005
https://doi.org/10.1103/PhysRevD.108.074005
https://doi.org/10.1103/PhysRevD.108.074005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


production [7–10] suggest a differential photoproduction
cross section in the range of 102 pb=GeV2, more recent
computations [15] indicate that the cross section would be
somewhat smaller (of the order of 102 fb=GeV2) and
therefore overshadowed by the large background due to
the Primakoff process in the low-jtj region. This could be
circumvented by considering instead neutron targets for
which the low-jtj Coulomb tail is absent allowing the
odderon to be probed even at low jtj. These studies so far
have focused on the odderon in the dilute regime where x is
moderate and gluon density is not too large. Theoretical
computations of the ηc cross sections in the case of a dense
proton or a nuclear target are so far unexplored and
constitute another of our motivations.
In Sec. II we undertake the computation of the amplitude

for ηc production in the CGC formalism. In Sec. III we
solve the coupled pomeron-odderon BK system numeri-
cally using the kernel with running-coupling corrections
and in the approximation where the impact parameter is
treated as an external parameter [30]. For the pomeron
initial condition we are using a fit to the HERA data
(supplemented by optical Glauber in case of nuclei) [30].
For the odderon initial condition in case of nucleon targets
we consider a recent computation in the light cone non-
perturbative quark model by Dumitru, Mäntysaari, and
Paatelainen [31]. In case of nuclear targets we rely on a
small-x action with a cubic term in the random color
sources [32]. Section IV is devoted to the numerical results
for the exclusive ηc photo-production for the proton and the
nuclear targets. Our main findings, laid out in the con-
cluding Sec. V, are as follows. Probing the odderon using
proton targets requires rather high-momentum transfers
jtj≳ 1–3 GeV2 to access the region where the Primakoff
background is subdominant. In case of neutron targets we
find the Primakoff contribution to be negligible, allowing
in principle, the extraction of the odderon even at low jtj.
For nuclear targets the odderon (Primakoff) cross section
becomes enhanced roughly as ∼A2 (∼Z2), where A (Z)
stand for the mass (atomic) number. The diffractive pattern
in the odderon cross section gets shifted by a few percent in
comparison to the Primakoff cross section. This could serve
as a distinctive signature of the odderon.

II. THE CROSS SECTION FOR EXCLUSIVE ηc
PRODUCTION IN THE CGC FRAMEWORK

The amplitude and the cross section for exclusive ηc
production γ�ðqÞpðPÞ → ηcðΔÞpðP0Þ has been recently
computed using light cone wave functions at leading twist
for the odderon in [15]. For earlier works see [7,9]. While
some of the results from [15] carry over to our computa-
tions we find it worthwhile to quickly go over the
derivation of the amplitude starting from the CGC frame-
work [21–24,33] in momentum space and also taking into
account the all-order multiple scatterings on a target, that is
a dense proton or a nucleus. The cross section is computed

in the frame where the target is moving along the light cone
minus coordinate, so that its momenta is Pμ ¼ ðPþ; 0; 0⊥Þ,
and that of the virtual photon qμ ¼ ðqþ; q−; 0⊥Þ.1 As for the
kinematic variables of the process we denote with t the
momentum transfer

t≡ ðP − P0Þ2 ¼ −
Δ2⊥
1 − x

; ð2Þ

where x is the momentum fraction carried by the exchanged
odderon

x≡ ðP − P0Þ · q
P · q

¼ Q2 þM2
P − t

W2 þQ2
; ð3Þ

and W2 ¼ ðqþ PÞ2 is the invariant mass of the γ�-target
system. We have q2 ¼ −Q2 as the photon virtuality, P2 ¼
P02 ¼ 0 and Δ2 ¼ M2

P is the squared mass of the produced
ηc particle.

A. The odderon contribution

The amplitude for exclusive ηc production can be written
in complete analogy to that for J=ψ production—for a very
clear recent exposition see for example [34]. We follow
closely the notation used in [34] and write the CGC
amplitude for ηc production as

Sλ ¼ eqc

Z
ll0
Tr½SðlÞ=ϵðλ; qÞSðl − qÞτðl − q; l0 − ΔÞ

× Sðl0 − ΔÞðiγ5ÞSðl0Þτðl0; lÞ�; ð4Þ

where qc ¼ 2=3 is the charge of the charm quark in units of
e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, α ¼ 1=137 with l and l0 representing the charm
quark momenta as in Fig. 1. We work in the A− ¼ 0

FIG. 1. Feynman diagram for exclusive ηc production ampli-
tude γ�ðqÞpðPÞ → ηcðΔÞpðP0Þ. The crosses where the vertical
gluon lines attach to the qq̄ state represent the effective CGC
vertex (6).

1We are using light cone variables; for a general vector
xμ¼ðx0;x1;x2;x3Þ¼ðxþ;x−;x⊥Þ we have x� ¼ ðx0 � x3Þ= ffiffiffi

2
p

.
Furthermore, we adhere to the following conventions; ϵ0123 ¼
þ1 ¼ −ϵ0123 ¼ ϵþ−12 with γ5 ¼ iγ0γ1γ2γ3.
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gauge where the virtual photon polarization vector ϵμðλ; qÞ
is given as ϵμð0; qÞ ¼ ðQ=q−; 0; 0⊥Þ, ϵμðλ ¼ �1; qÞ ¼
ð0; 0; ϵλ⊥Þ ¼ ð0; 0; 1; λiÞ= ffiffiffi

2
p

and

SðlÞ ¼ ið=lþmcÞ
l2 −m2

c þ iϵ
; ð5Þ

is the charm quark propagator with mass mc. We use ðiγ5Þ
as the Dirac structure for the vertex for ηc production
[7,15], for the moment treating the ηc wave function in
perturbation theory. For the phenomenological computa-
tion this will be replaced with a nonperturbative model ηc
light cone wave function [15,35], see Eq. (18) below.
Inserting the effective CGC vertex [36,37] (see also [38]),

τðp; p0Þ ¼ ð2πÞδðp− − p0−Þγ−sgnðp−Þ

×
Z
z⊥
e−iðp⊥−p0⊥Þ·z⊥Vsgnðp−Þðz⊥Þ; ð6Þ

where

Vðz⊥Þ ¼ P exp

�
−ig

Z
∞

−∞
dy−

1

∂
2⊥
ρaðy−; z⊥Þta

�
; ð7Þ

with ρaðy−; z⊥Þ being the classical color source in the
target, the amplitude becomes

Sλ ¼ −eqcð2πÞδðq− − Δ−Þ
Z
ll0
ð2πÞδðl− − l0−Þθðl−Þθðq− − l−Þ

Z
x⊥y⊥

e−iðl0⊥−l⊥Þ·x⊥e−iðl⊥−l0⊥þΔ⊥Þ·y⊥

× tr½Vðx⊥ÞV†ðy⊥Þ�tr½SðlÞ=ϵðλ; qÞSðl − qÞγ−Sðl0 − ΔÞðiγ5ÞSðl0Þγ−�; ð8Þ

where the θ functions are dictated by the singularities of the
quark propagators in the complex lþ and l0þ plane.
We can conveniently project out the odderon by consid-

ering a diagram with the fermion flow in the opposite
direction. Of course, with appropriate change of integration
variables this simply gives back (8). Utilizing insteadC-parity
transformation only on theDirac part the resulting trace has an
opposite sign to (8). Combining the two contributions we
come up with the (color averaged) amplitude as

hSλi ¼ −hMλið2πÞδðq− − Δ−Þ; ð9Þ

where the amplitude hMλi is

hMλi ¼ eqc

Z
r⊥

Z
ll0
ð2πÞδðl− − l0−Þθðl−Þθðq− − l−Þ

× e−iðl0⊥−l⊥−
1
2
Δ⊥Þ·r⊥ð−iNcÞOðr⊥;Δ⊥Þ

× tr½SðlÞ=ϵðλ; qÞSðl − qÞγ−Sðl0 − ΔÞðiγ5ÞSðl0Þγ−�;
ð10Þ

with the odderon distribution

Oðr⊥;Δ⊥Þ ¼
Z
b⊥
e−iΔ⊥·b⊥Oðr⊥; b⊥Þ; ð11Þ

explicitly projected out. We have used r⊥ ¼ x⊥ − y⊥, b⊥ ¼
ðx⊥ þ y⊥Þ=2 andOðr⊥; b⊥Þ≡Oðb⊥þ r⊥

2
; b⊥− r⊥

2
Þ for short.

It is convenient to further separate out the odderon
distribution from the rest as

hMλi ¼ ð2q−ÞiNc

Z
r⊥
Oðr⊥;Δ⊥ÞAλðr⊥;Δ⊥Þ; ð12Þ

where the reduced amplitude Aλðr⊥;Δ⊥Þ (after light cone
lþ and l0þ integrals) is given as

Aλðr⊥;Δ⊥Þ¼ eqc

Z
z

Z
l⊥l0⊥

eiðl⊥−l0⊥þ
1
2
Δ⊥Þ·r⊥Aλðl; l0Þ

ðl2⊥þ ε2Þððl0⊥−zΔ⊥Þ2þ ε02Þ ;

ð13Þ

and

Aλðl; l0Þ ¼
i

ð2q−Þ2 tr½ð=lþmcÞ=ϵðλ; qÞð=l − qþmcÞ

× γ−ð=l0 − ΔþmcÞγ5ð=l0 þmcÞγ−�: ð14Þ

We have used the following abbreviations: z≡ l0−=q−, ε≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ zz̄Q2
p

and ε0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ zz̄Q02p
2 with z̄ ¼ 1 − z andZ

z
≡
Z

dz
4π

: ð15Þ

Computing the Dirac trace in (14) we find

Aλðl; l0Þ ¼ 2mcϵ
þ−ijϵλ⊥iðl⊥ − l0⊥ þ zΔ⊥Þj: ð16Þ

2Formally we have Q02 ¼ −M2
P , and so the perturbative wave

function would become singular for timelike momenta. However,
this becomes irrelevant in practice as we are replacing the
perturbative wave function with a model, see (17).
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The result (16) is proportional tomc because the Dirac trace
contains four vertices and three fermion propagators in
addition to γ5. Intuitively, when the photon splits into a qq̄
pair their spins are aligned, and not flipped by the eikonal
interaction with the target. In order for the qq̄ to combine
into a spinless meson after the collision, we need a spin flip
and this is provided by mc. As another consequence of the
eikonal interaction, we find the longitudinal photon λ ¼ 0
decouples, as already noticed in [7,15] and in a related
process in [39].
After computing the l⊥ and l0⊥ integrals we find

Aλðr⊥;Δ⊥Þ¼eqcλeiλϕr

Z
z
e−iδ⊥·r⊥ð−1Þ

ffiffiffi
2

p
mc

2π

1

zz̄

× ½K0ðεr⊥Þ∂r⊥ϕPðz;r⊥Þ−εK1ðεr⊥ÞϕPðz;r⊥Þ�

≡eqcλeiλϕr

Z
z
e−iδ⊥·r⊥Aðr⊥Þ; ð17Þ

where δ⊥ ≡ 1
2
ðz − z̄ÞΔ⊥ is the off-forward phase [40] and

we have separated out the λ and Δ⊥ independent part of the
reduced amplitude as Aðr⊥Þ. We have also introduced the
standard replacement [35] K0ðε0r⊥Þ=ð2πÞ → ϕPðz; r⊥Þ to
write the amplitude in terms of the ηc meson light cone
wave function ϕPðz; r⊥Þ [15,35]. In the numerical compu-
tations we are using a “boosted Gaussian” ansatz from [15]

ϕPðz; r⊥Þ ¼ N Pzz̄ exp

�
−
m2

cR2
P

8zz̄
−
2zz̄r2⊥
R2

P
þ 1

2
m2

cR2
P

�
;

ð18Þ

with NP ¼ 0.547, R2
P ¼ 2.48 GeV−2, and mc ¼ 1.4 GeV

[15]. The integrand in (17) can be understood as a γ� − ηc
wave function overlap. Our result differs from (48) in [15]
obtained using light cone wave function approach by a
relative sign between the two terms in the square bracket.
Reference [15] uses the γ� wave function from [35],
however this is known to be incorrect, see e.g., [41].
Using instead the γ� wave function from [41,42] we have
explicitly confirmed the result in (17).
It is useful to parametrize the odderon distribution by the

Fourier series

Oðr⊥; b⊥Þ ¼ 2
X∞
k¼0

O2kþ1ðr⊥; b⊥Þ cosðð2kþ 1ÞϕrbÞ; ð19Þ

where ϕrb ≡ ϕr − ϕb. We calculate O2kþ1ðr⊥; b⊥Þ as

O2kþ1ðr⊥; b⊥Þ ¼
1

2π

Z
2π

0

dϕrbOðr⊥;b⊥Þ cosðð2kþ 1ÞϕrbÞ:

ð20Þ

We will consider its Fourier transform (11) Oðr⊥;Δ⊥Þ and
expand it in Fourier series

Oðr⊥;Δ⊥Þ¼ 2
X∞
k¼0

O2kþ1ðr⊥;Δ⊥Þcosðð2kþ1ÞϕrΔÞ; ð21Þ

where

O2kþ1ðr⊥;Δ⊥Þ

¼ −2πið−1Þk
Z

∞

0

b⊥db⊥O2kþ1ðr⊥; b⊥ÞJ2kþ1ðΔ⊥b⊥Þ:

ð22Þ

With this parametrization the amplitude (12) can be found
in the following form:

hMλi ¼ q−λeiλϕΔhMi; ð23Þ

where we have conveniently factored out the polarization
independent amplitude hMi as

hMi¼ 8πieqcNc

X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×Aðr⊥Þ
�
J2kðr⊥δ⊥Þ−

2kþ1

r⊥δ⊥
J2kþ1ðr⊥δ⊥Þ

�
: ð24Þ

This is the result that will be used in the numerical
computations in Sec. IV where we will be keeping only
the lowest k ¼ 0 mode. The photoproduction cross section
is obtained as

dσ
djtj ¼

1

16π
jhMij2: ð25Þ

It is instructive to provide an estimate of (25) at
leading twist. In the Appendix we have performed a model
computation of the odderon distribution and more details
can be found in Sec. III A. Restricting to the first nontrivial
Fourier mode we find

O1ðr⊥;Δ⊥Þ ≃ −
3πi
8

C3F

Nc
α3Sr

3⊥AΔ⊥TAðΔ⊥Þ; ð26Þ

where TAðΔ⊥Þ is the Fourier transform of the transverse
profile of the target TAðb⊥Þ, see (44) below. C3F is defined
in (48). Taking the limit mc → ∞ the cross section (25) is
obtained in the following form

dσ
djtj ≃

9πq2cαα6SA
2C2

3FR
2
Pð0Þ

4Ncm5
c

jtjT2
Að

ffiffiffiffiffijtjp Þ
m4

c
; ð27Þ

and so the odderon cross section gets enhanced by ∼A2

in case of nuclear targets. To get this result we have used
[15,43]
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Nc

Z
z

ϕPðz; 0Þ
zz̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

32πm3
c

s
RPð0Þ; ð28Þ

where RPð0Þ is the radial wave function at the origin.

B. The Primakoff process

The Primakoff process corresponds to a situation with an
odd number of photons instead of gluons exchanged from
the target. Intuitively, we would expect the Primakoff effect
to be most important in the region Δ⊥ ≃ 0 due to the long-
range Coulomb tail of the charged target. As in Sec. II Awe
work in the eikonal approximation for the target interaction,
with photons instead of gluons in the Wilson lines [44–46].
We thus write

2iΩðr⊥; b⊥Þ≡U†ðx⊥ÞUðy⊥Þ −U†ðy⊥ÞUðx⊥Þ; ð29Þ

in place of Oðr⊥; b⊥Þ. Here

Uðx⊥Þ ¼ exp

�
−
ie2qcZTAðx⊥Þ

∂
2⊥

�

¼ exp

�
4πiqcZα

Z
k⊥

TAðk⊥Þ
k2⊥

eik⊥·x⊥
�
; ð30Þ

is a Wilson line accounting for multiple scattering on a
electromagnetic field of the target−ZeTAðx⊥Þ=∂2⊥ [44–46].
Here the transverse charge density is given as ZTAðx⊥Þ.
Because of the α suppression we are ignoring multiple
scatterings and expand the eikonal phase to the first
nontrivial order. Passing to the variable Δ⊥ instead of
b⊥ we have

Ωðr⊥;Δ⊥Þ ¼ −8πiqcZα sin
�
Δ⊥ · r⊥

2

�
TAðΔ⊥Þ
Δ2⊥

; ð31Þ

which is the same as Eq. (22) in [15] up to a factor due to
the difference in the definition. We also obtain the Fourier
moments as

Ω2kþ1ðr⊥;Δ⊥Þ¼
1

2π

Z
2π

0

dϕrΔΩðr⊥;Δ⊥Þcosðð2kþ1ÞϕrΔÞ

¼−8πiqcZαð−1ÞkJ2kþ1

�
r⊥Δ⊥
2

�
TAðΔ⊥Þ
Δ2⊥

;

ð32Þ

that are to be used directly in (24).
At this point it is useful to obtain an estimate in the

mc → ∞ limit, similar to what was done for the odderon in
(27). We get

dσ
djtj ≃

πq4cα3Z2NcR2
Pð0Þ

m5
cjtj

T2
Að

ffiffiffiffiffi
jtj

p
Þ; ð33Þ

which displays the characteristic 1=t Coulomb behavior in
contrast to the odderon case (27) where we have instead
a suppression factor jtj=m4

c. Note that TAðΔ⊥Þ is nothing
but the electromagnetic charge form factor from the
Rosenbluth formula [47].
In order to evaluate the Primakoff cross section numeri-

cally we must specify the profile function TAðb⊥Þ. For the
proton (neutron) targets we are replacing ZTAðΔ⊥Þ →
Fp;n
1 ðΔ⊥Þ, respectively, with Fp;n

1 ðΔ⊥Þ being the proton
(neutron) charge form factors for which we are using a
recent determination from [48]. For a nucleus we use a
Woods-Saxon distribution, see (44) below. In this work we
do not attempt to differentiate between the nuclear electro-
magnetic distribution and the strong interaction distribution
of a nucleus, although in principle they could be different,
see [49,50].

III. NUMERICAL SOLUTIONS OF THE
ODDERON EVOLUTION AT SMALL-x

Denoting the dipole distribution in the fundamental
representation as

Dðr⊥; b⊥Þ≡ 1

Nc
tr

�
V†

�
b⊥ þ r⊥

2

�
V

�
b⊥ −

r⊥
2

��
; ð34Þ

the full impact parameter-dependent BK equation reads
[51,52]

∂Dðr⊥; b⊥Þ
∂Y

¼ αSNc

2π2

Z
r1⊥

r2⊥
r21⊥r22⊥

½Dðr1⊥; b1⊥ÞDðr2⊥; b2⊥Þ

−Dðr⊥; b⊥Þ�; ð35Þ

where r2⊥ ¼ r⊥ − r1⊥. In general, we have b1⊥ ¼ b⊥ þ
ðr⊥ − r1⊥Þ=2 and b2⊥ ¼ b⊥ − r1⊥=2 and so (35) is nonlocal
in b⊥. Solutions of (35) lead to unphysically large Coulomb
tails in b⊥ originating from a lack of confining interactions
in the BK kernel [53]. This issue has been addressed
[54–57], at different levels of sophistication, by various
modifications of the kernel in the infrared. In this work we
make no attempt to tackle this difficult problem and instead
resort to a local approximation b1⊥ → b⊥ and b2⊥ → b⊥
used in [30] (see also a discussion in [58]) where the b⊥
dependence effectively becomes an external parameter.
Splitting the dipole into pomeron and odderon pieces as

Dðr⊥; b⊥Þ ¼ 1 −N ðr⊥; b⊥Þ þ iOðr⊥; b⊥Þ leads to [25,26]

∂N ðr⊥; b⊥Þ
∂Y

¼
Z
r1⊥

KBalðr⊥; r1⊥; r2⊥Þ½N ðr1⊥; b⊥Þ

þN ðr2⊥; b⊥Þ −N ðr⊥; b⊥Þ
þN ðr1⊥; b⊥ÞN ðr2⊥; b⊥Þ
−Oðr1⊥; b⊥ÞOðr2⊥; b⊥Þ�; ð36Þ
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∂Oðr⊥; b⊥Þ
∂Y

¼
Z
r1⊥

KBalðr⊥; r1⊥; r2⊥Þ½Oðr1⊥; b⊥Þ

þOðr2⊥; b⊥Þ −Oðr⊥; b⊥Þ
−N ðr1⊥; b⊥ÞOðr2⊥; b⊥Þ
−Oðr1⊥; b⊥ÞN ðr2⊥; b⊥Þ�: ð37Þ

In the above Eqs. (36) and (37) we have replaced the
conventional BK kernel with the running-coupling kernel
(according to the Balitsky’s prescription) [59]

αSNc

2π2
r2⊥

r21⊥r22⊥
→ KBalðr⊥; r1⊥; r2⊥Þ

¼ αSðr2⊥ÞNc

2π2

�
1

r21⊥

�
αSðr21⊥Þ
αSðr22⊥Þ

− 1

�

þ r2⊥
r21⊥r22⊥

þ 1

r22⊥

�
αSðr22⊥Þ
αSðr21⊥Þ

− 1

��
; ð38Þ

that will be used in our numerical computations. Here

αSðr2⊥Þ ¼
12π

ð33 − 2NfÞ log
	

4C2

r2⊥Λ2
QCD

þ â

 ; ð39Þ

with [30] Nf ¼ 3, C2 ¼ 7.2, ΛQCD ¼ 0.241 GeV and â is a
parameter determined by the condition limr2⊥→∞ αSðr2⊥Þ ¼
αfr where αfr ¼ 0.7.
A similar system of equations was solved in

[27–29,60,61], but the b⊥ dependence was not addressed.
Nevertheless, some generic conclusions from these works
also apply to our computations. Thanks to the nonlinearity
of the BK equation (35), the pomeron and the odderon do
not evolve separately. Only in the small-r⊥ limit where
N ðr⊥; b⊥Þ → 0 the nonlinear terms in (37) can be
neglected and the system is decoupled. When this happens,
the first two terms in the square bracket (37) cancel each
other and the odderon will become exponentially sup-
pressed in rapidity [25,28,29]. In contrast, in the large r⊥
region, where N ðr⊥; b⊥Þ → 1, the nonlinear terms play an
important role to cancel the first and the second term in the
square bracket in (37) causing again an exponential
suppression [25,27–29]. Such a lack of geometric scaling
seems to be a general feature of not only the odderon but
also higher dipole moments in general [56].

A. Initial conditions

For the pomeron initial conditions we use a fit to HERA
data from Ref. [30]. Therein, the pomeron for the proton is
modeled as

N ðr⊥; b⊥Þ ¼ 1 − exp

�
−
1

4
r2⊥Q2

0;pðr⊥; b⊥Þ
�
; ð40Þ

where

Q2
0;pðr⊥;b⊥Þ≡Tpðb⊥Þ

σ0
2
Q2

S;0 log

�
1

r⊥ΛQCD
þece

�
; ð41Þ

Tpðb⊥Þ ¼
1

πR2
p
e−b

2⊥=R2
p ; ð42Þ

where we pick up Rp from the relationship πR2
p ¼ σ0=2 ¼

4πBp. In a recent work by Dumitru, Mäntysaari, and
Paatelainen (DMP) [31] the odderon for a proton target
was calculated starting from quark light cone wave func-
tions at NLO. We refer to this as the DMP model and
employ it in our numerical computations.
In case of a nucleus we use again the results from

Ref. [30], with the pomeron distribution given as in (40) but
with

Q2
0;Aðr⊥; b⊥Þ≡ ATAðb⊥Þ

σ0
2
Q2

S;0 log

�
1

r⊥ΛQCD
þ ece

�
;

ð43Þ

in place of Q2
0;pðr⊥; b⊥Þ. TAðb⊥Þ is the transverse profile of

a nuclear target. The parameters in (41) are given as
Q2

S;0 ¼ 0.06 GeV2, ec ¼ 18.9 and σ0
2
¼ 16.36 mb [30].

TAðb⊥Þ is obtained by integrating the Woods-Saxon
distribution [30]

TAðb⊥Þ ¼
Z

∞

−∞
dz

nA

1þ exp
h ffiffiffiffiffiffiffiffiffiffi

b2⊥þz2
p

−RA

d

i ; ð44Þ

which is normalized to unity
R
b⊥ TAðb⊥Þ ¼ 1. This fixes

nA as −8πnAdLi3ð−eRA=dÞ ¼ 1. Here d ¼ 0.54 fm, RA ¼
1.12A1=3 − 0.86A−1=3 fm [30]. These Woods-Saxon param-
eters are numerically very close to the fit values from [62].
The initial condition of the odderon for a nuclear target is

based on the Jeon-Venugopalan (JV) model [32], which
involves a cubic term added to the standard McLerran-
Venugopalan small-x functional

W½ρ� ¼ exp

�
−
Z
x⊥

�
δabρ

aðx⊥Þρbðx⊥Þ
2μ2

−
dabcρaðx⊥Þρbðx⊥Þρcðx⊥Þ

κ

��
; ð45Þ

where

μ2 ¼ g2

2

A
πR2

A
; κ ¼ g3Nc

A2

ðπR2
AÞ2

: ð46Þ

In [32] (see also [25]), it was found that the odderon
distribution from the above functional takes the following
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form

Oðx⊥; y⊥Þ ¼ −g3C3F
μ6

κ
Θðx⊥; y⊥Þ

× exp

�
−
g2CFμ

2

2
Γðx⊥; y⊥Þ

�
; ð47Þ

where

CF ¼ N2
c − 1

2Nc
; C3F ¼ ðN2

c − 1ÞðN2
c − 4Þ

4N2
c

; ð48Þ

and

Γðx⊥;y⊥Þ ¼ ðπR2
AÞ
Z
z⊥
TAðz⊥Þ½Gðx⊥− z⊥Þ−Gðy⊥− z⊥Þ�2;

Θðx⊥;y⊥Þ ¼ ðπR2
AÞ
Z
z⊥
TAðz⊥Þ½Gðx⊥− z⊥Þ−Gðy⊥− z⊥Þ�3;

ð49Þ

where Gðx⊥ − z⊥Þ is a 2D Green function (A2) and we
have inserted the target profile TAðb⊥Þ, see the discussion
in the Appendix. Equation (47) can be interpreted as a
single perturbative odderon with any number of perturba-
tive pomeron insertions. Starting from (47) we deduce the
following result for the odderon initial condition

Oðr⊥; b⊥Þ ¼
λ

8

�
RA

dTAðb⊥Þ
db⊥

A2=3 σ0
2

�
Q3

S;0A
1=2r3⊥ðr̂⊥ · b̂⊥Þ

× log
�

1

r⊥ΛQCD
þ ece

�

× exp

�
−
1

4
r2⊥Q2

0;Aðr⊥; b⊥Þ
�
; ð50Þ

where in the JV model we would have

λJV ¼ −
3

16

N2
c − 4

ðN2
c − 1Þ2

Q3
S;0A

1=2R3
A

α3SA
2

: ð51Þ

The details of the computation leading to (50) are given in
the Appendix.

B. Numerical solutions

The system of BK equations [(36) and (37)] was solved
on a ðr⊥; b⊥;ϕrbÞ grid, where ϕrb ¼ ϕr − ϕb. As men-
tioned earlier, we consider b⊥ as an external parameter and
solve the BK equation for each value of b⊥ separately. The
integral over r1⊥ in Eqs. (36) and (37) is evaluated over a
lattice in ðr⊥;ϕrbÞ using adaptive cubature [63,64]. The
lattice is equally spaced in log r⊥ from r⊥ ¼ 10−6 GeV−1

to 104 GeV−1 with nr⊥ ¼ 500 lattice points and in ϕrb from
ϕrb ¼ 0 to 2π with nϕrb

¼ 100 lattice points. For each value

of b⊥, Eqs. (36) and (37) together represent a system of
2 × nr⊥ × nϕrb

coupled differential equations representing
the values of the pomeron and the odderon over the grid.
This system of differential equations is solved using a
three-step third-order Adams-Bashforth method with a step
size in rapidity ΔY ¼ 0.1 for up to Y ¼ 5. The first two
time steps required to initiate the Adams-Bashforth method
were obtained using Ralston’s second order method. We
have validated our numerical treatment of the BK system in
two ways. First, since we have adopted our parametrization
of the pomeron from [30], we have checked that our results
for the BK evolved the dipole amplitude in the proton and
in the nuclei agree with [30]. Second, we checked that we
were able to reproduce fully the results for the BK evolution
of the spin-dependent odderon presented in [29]. We
additionally checked several different methods for solving
the BK system (including the Euler method, a range of
Adam-Bashforth methods, and the fourth order Runge-
Kutta method) and found the third-order Adams-Bashforth
method to be optimal.
At this point we make a comment about the angular

dependence. The pomeron initial condition (40) is inde-
pendent of ϕrb, while the cosðϕrbÞ moment in the odderon
initial condition (50) will generate a cosð2ϕrbÞ moment in
the pomeron through the ∼O2 term in (36). In principle,
this further backreacts onto the odderon through the ∼NO
pieces generating a higher cosð3ϕrbÞ moment in the odd-
eron. However, in our numerical computation we find that
already the cosð2ϕrbÞ term is numerically tiny in support of
the similar findings reported in [27,29].3 For this reason, in
the following results we will discuss the odderon solution
only in the context of its dominant O1ðr⊥; b⊥Þ moment.
In Fig. 2 we show the first odderon moment O1ðr⊥; b⊥Þ

for the proton target using the DMP model as initial
condition as a function of r⊥ for several finite values of
b⊥. Going from the full line at the initial condition x ¼
10−2 the odderon is severely affected in magnitude when
evolving to smaller x as can be seen by the thin dashed
curve where x ¼ 10−3 and a thin dotted curve where
x ¼ 10−4, verifying numerically the lack of geometric
scaling for the odderon. Moving on to the b⊥ dependence,
the left plot in Fig. 3 shows O1ðr⊥; b⊥Þ as a function b⊥
with r⊥ fixed and for different values of x. For illustrative
purposes we plot on the right the result for the proton target
as obtained in the JV model. Interestingly, while the DMP
model odderon is peaked within the proton the JV model
odderon is peaked at higher b⊥ due to the ∼dTp=db⊥ term.
Comparing the results in the DMP and the JV models,

we can quantify some of the model uncertainties concern-
ing the magnitude of the odderon. For this purpose we take
the absolute ratio of the ηc production amplitudes in the

3In particular, this also implies the HERA fit [30] of the
pomeron does not get affected by the presence of the odderon in
the BK equation.
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DMP and the JV models in the case of the nucleon target.
In the limit Δ⊥ → 0, and for Q2 ¼ 1 GeV2, we find
hMip;DMP=hMip;JV → 0.026. On the other hand, an upper
bound on the odderon is imposed by the group-theory
constraint [28,65]

ð4 − 3N ðr⊥; b⊥ÞÞN 3ðr⊥; b⊥Þ − 6ð6 − 6N ðr⊥; b⊥Þ
þN 2ðr⊥; b⊥ÞÞO2ðr⊥; b⊥Þ − 3O4ðr⊥; b⊥Þ ≥ 0: ð52Þ

In the small-r⊥ limit this simplifies to O2ðr⊥; b⊥Þ ≤
N 3ðr⊥; b⊥Þ=9 [28]. We have checked that the DMP model
satisfies this bound. Using the JV initial condition for nuclei
we can quantify (52) as a bound on the magnitude of λ and
numerically we find that model coupling is somewhat
below the bound, namely

λ197max¼1.143λ197JV ; λ63max¼1.553λ63JV; λ27max¼2.26λ27JV: ð53Þ

where λJV is given by (51) and the superscript refers to the
atomic number for different species of nuclei. We have
checked that (52) is satisfied for all r⊥ and b⊥, where for
the latter, we considered the domain for which the nuclear
saturation scale is above the minimum-bias saturation scale
of the proton. We will thus consider λ up to λmax. For
orientation purposes, the lowest coupling we consider for
nuclei will be given as λ ¼ 0.026λJV, where the propor-
tionality factor 0.026 is fixed by the DMP vs JV amplitude
ratio for the proton target discussed above.
Finally, in Fig. 4 we show the results for the b⊥

dependence of the O1ðr⊥; b⊥Þ for the nuclear targets;
Au (left), Cu (center), and Al (right) using the JV model.
Evolving to smaller values in x, the peak in the odderon
distribution drops in magnitude but also shifts to slightly
larger b⊥. This will leave an interesting consequence in the
diffractive pattern of the cross section as we will explain in
the following Sec. IV.

IV. NUMERICAL RESULTS FOR THE
CROSS SECTION

In this section we show the results of the numerical
computation of the photoproduction cross section for
the exclusive processes γ�p → ηcp, γ�n → ηcn and
γ�A → ηcA, where we consider the Au, Cu, and Al nuclei.
The numerical computation of the cross section (25) is
based on the amplitude for the odderon contribution given
by (24). To compute the Primakoff cross section we use the
same Eq. (24) with the replacement O2kþ1ðr⊥;Δ⊥Þ →
Ω2kþ1ðr⊥;Δ⊥Þ, where Ω2kþ1ðr⊥;Δ⊥Þ is given by (32).
In all the computations considered, we restrict to the lowest
k ¼ 0 Fourier moment of the amplitude. We have explicitly
checked that the contributions from the higher moments are
strongly suppressed both in the case of the odderon and the
Primakoff contributions relative to the k ¼ 0 case. For
the Fourier transform in the impact parameter b⊥ we used
the Ogata quadrature method [66].

FIG. 4. The first Fourier moment O1ðr⊥; b⊥Þ of the odderon
distribution of the nuclei in the JV model as a function of b⊥ for
different values of x. Left plot is for the Au, center is for Cu and
right is for Al nuclei.

FIG. 2. The first Fourier moment O1ðr⊥; b⊥Þ of the odderon
distribution of the proton in the DMP model as a function of r⊥
for different values of x and at the impact parameters b⊥ ¼
0.6 fm and 0.4 fm.

FIG. 3. Left: the first Fourier moment O1ðr⊥; b⊥Þ of the
odderon distribution of the proton in the DMP model as a
function of b⊥ for different values of x. Right: same quantity, but
in the JV model.
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We first discuss the numerical results for exclusive
γ�p → ηcp photoproduction. Figure 5 shows the cross
section as a function of jtj for several values of x and
Q2. The computation is performed using the DMP model.
The result shows a rather small jtj slope of the cross section.
This is a generic feature of the quark-based approach as the
three gluons in the odderon can couple to three different
quarks leaving the proton intact even at relatively large
momentum transfer [7,67]. The Primakoff cross section
overwhelms the odderon cross section at small jtj, but this
gets reversed for jtj≳ 1.5 GeV2 thanks to a small jtj slope
of the odderon cross section.
The small-x evolution reduces the odderon cross section

by roughly an order of magnitude when going from x ∼
10−2 to x ∼ 10−4. However, it is still above the Primakoff
background for jtj≳ 2–3 GeV2, with the jtj slope remain-
ing roughly the same. Our conclusion for proton targets is
thus similar to that of [15] where the computation was
performed at moderate x ∼ 0.1. The odderon extraction
from collisions on the proton target would thus require

measurements of the cross section at potentially large
momentum transfers even when x is small x≲ 0.01. For
neutron targets the Primakoff cross section is only a very
small contribution and the odderon can be probed even at
low jtj and/or low x (see Fig. 6).
In Fig. 7 we show the numerical results for the γ�A →

ηcA cross section for Au (left), Cu (center), and Al (right)
targets. The odderon coupling λ is set to the maximal value
allowed by the group theory constraint (53). The odderon
(and the Primakoff) cross section become enhanced by the
mass (atomic) number of the target. For example, using
maximal coupling allowed by the group theory constraint
(λ ¼ λmax), the odderon cross section can reach up to about
10 nb=GeV2 for Au. Taking instead λ ¼ 0.026λJV (the
factor 0.026 is determined by the DMP vs JV amplitude
ratio) as an assumption for the lowest estimate, leads
to ∼5 pb=GeV2.
Both the odderon and the Primakoff contributions show

characteristic diffractive patterns that are mostly of a
geometric origin. However, it is clearly visible that the
diffractive pattern for the odderon cross section is altered
compared to the Primakoff case; the diffractive dips are
shifted to smaller jtj even for the initial condition and the
shift becomes more pronounced as x gets smaller or jtj gets
larger. To understand this result, notice that according to the
leading twist estimates in (27) and (33) the odderon and the
Primakoff cross sections behave as dσ=djtj ∝ jtjT2

Að
ffiffiffiffiffijtjp Þ

and dσ=djtj ∝ T2
Að

ffiffiffiffiffijtjp Þ=jtj, respectively. We are lead to
the conclusion that the shift of the diffractive pattern when
comparing the odderon and the Primakoff cross section is a
consequence of multiple scatterings in the odderon ampli-
tude. This finds additional support by the evolution to
smaller x where, as a consequence of the growth of the
saturation scale, multiple scattering effects become increas-
ingly important, acting to further increase the shift.
Considering the total cross section, where the odderon

and the Primakoff contributions must be added coherently,
the relative sign between the two amplitudes determines
whether they interfere constructively or destructively.

FIG. 6. jtj dependence of the γ�n → ηcn cross section with the
DMP model. The contribution from the Primakoff process is
shown separately.

FIG. 5. jtj dependence of the γ�p → ηcp cross section with the
DMP model. The contribution from the Primakoff process is
shown separately.

FIG. 7. The γ�A → ηcA cross section for three different targets:
Au (left), Cu (center), and Al (right). The odderon coupling is
fixed to the maximal value allowed by the group theory
constraint (53).
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In our computation this is controlled by the sign of the
odderon coupling parameter λ. Using the JV model the sign
is negative, see (51). Thanks to the dTA=db⊥ term, this
gives a positive O1ðr⊥; b⊥Þ overall, see Fig. 4. For
comparison, the DMP model computation for proton
targets [31] also yields a positive O1ðr⊥; b⊥Þ, see Fig. 3.
While positive O1ðr⊥; b⊥Þ seems to be preferred by model
computations, in Fig. 8 we compute the total cross section
considering both signs of O1ðr⊥; b⊥Þ (or, equivalently, λ).
For O1ðr⊥; b⊥Þ > 0 (λ < 0) the results are given in the left
panel of Fig. 8. In this case the interference of the odderon
and Primakoff amplitudes is mostly constructive. Our result
demonstrates that the multiple scattering effect in the
odderon amplitude, that shifts the diffractive pattern rela-
tive to the Primakoff component, can leave its trace also in
the total cross section depending on the magnitude of the
odderon. In the right panel of Fig. 8, the opposite case of
O1ðr⊥; b⊥Þ < 0 (λ > 0) is displayed. The two amplitudes
are now out of phase and interfere destructively, resulting in
a severe distortion of the diffractive pattern in the total cross
section in comparison to the Primakoff contribution only.
We conclude that in both cases the known Primakoff
diffractive dips could be filled in the total cross section.
This could be used as a signal of the odderon from
exclusive ηc production off nuclear targets. Considering
different nuclear species could be a valuable tool in
verifying this suggestion.

V. CONCLUSION

In this work we have computed the exclusive ηc
production in ep and eA collisions as a potential probe
of the odderon. Our computation relies on the CGC
formalism where the effect of multiple scatterings is taken
explicitly into account in a description of scattering off a

dense target at small x. We have numerically solved the BK
evolution equation in impact parameter b⊥ and dipole size
r⊥ for the coupled pomeron-odderon system. The numeri-
cal results demonstrate a rapid drop in the odderon with
evolution in line with the results in the literature [25,28,29].
Due to a large Primakoff background we find that in

order to isolate the odderon component of the cross section
for the proton target, it is required to have relatively large
momentum transfers: jtj≳ 1.5–3 GeV2 for x ∼ 10−2–10−4.
On a qualitative level this is rather similar to the con-
clusions drawn in the previous works [7–10,15]. A new
result is that the jtj slope is not altered by small-x evolution,
although the cross section does reduce in magnitude.
Exclusive scattering off a neutron leads to a negligible
Primakoff component and represents a new opportunity to
probe the odderon at low jtj. In practice this could be done
using deuteron or He3 targets with spectator proton tagging
in the near forward direction, see for example [68,69].
For the nuclear targets we have found that the saturation

effects in the odderon distribution distorts the diffractive
pattern in comparison to the Primakoff process. The effect
is a few percent in magnitude and accumulates for smaller x
and/or larger momentum transfers. Depending on the
coupling of the odderon, it is possible that the diffractive
dips of the Primakoff process get filled by the odderon
component of the cross section. Such a distortion of the
diffractive pattern in comparison to the known nuclear
charge form factors might be a new way to measure the
odderon component in the nuclear wave function.
As our final remark, we wish to clearly state that the

actual experimental measurement of the odderon compo-
nent of the exclusive ηc cross section is certainly chal-
lenging. Firstly, the odderon itself is small, and so the cross
section with proton (or neutron) targets tends to be low
(∼102 fb=GeV2). This could be circumvented by consid-
ering nuclear targets instead as the odderon cross section is
enhanced roughly as ∼A2. With the maximal odderon
coupling allowed by the group theory constraint the cross
section can be in the range of nb=GeV2. However,
experimental extractions of a shift in the diffractive pattern
in γ�A → ηcA, found at moderate/high jtj, calls for a good
control of the incoherent background—a related discus-
sion, albeit for the pomeron, can be found in [70,71].
Secondly, the branching ratio for ηc to charged hadrons is
only a few percent [72] with a serious background from the
feed-down of J=ψ subsequently decaying as J=ψ → ηcγ
with γ undetected [7,14,73]. Nevertheless, ηc has been
measured through its hadronic channel in eþe− by BABAR
[74] and so such difficulties might be overcome also at EIC.
Measuring at least the Primakoff component seems to be a
feasible starting point [16]. In any case, we consider the
conclusions drawn from our results to be rather generic that
would also be present in case of other quarkonia states or
light mesons.

FIG. 8. The γ�Au → ηcAu cross section for three considered
values of the odderon coupling up to the maximal value allowed
by the group theory constraint (52). On the left (right) panel the
sign of the odderon coupling parameter is chosen as λ < 0
(λ > 0). The purple curves stand for the total cross section, with
individual line styles representing different values of λ.

BENIĆ, HORVATIĆ, KAUSHIK, and VIVODA PHYS. REV. D 108, 074005 (2023)

074005-10



ACKNOWLEDGMENTS

S. B., A. K., and E. A. V. are supported by the Croatian
Science Foundation (HRZZ) No. 5332 (UIP-2019-04).
S. B. thanks Adrian Dumitru and Leszek Motyka for
stimulating discussions. A. K would like to thank
Brookhaven National Lab, where part of this work was
performed, for their warm hospitality.

APPENDIX: INITIAL CONDITION
FOR THE ODDERON

In Ref. [32] (see also [75]) Jeon and Venugopalan used a
model functional with quadratic and cubic interaction (45)
in order to find the odderon operator. The parameters μ2

and κ (46) were treated as constants. In order to include the
impact parameter dependence we assume that μ2 and κ have
a transverse profile TAðx⊥Þ with

R
x⊥ TAðx⊥Þ ¼ 1 such that

the average couplings are given by (46). In this case we are
lead to a straightforward generalization of (34) in [32]
given by (47). We note in passing that in the Gaussian
approximation the pomeron N ðx⊥; y⊥Þ takes the form

N ðx⊥; y⊥Þ ¼ 1 − exp

�
−
g2CFμ

2

2
Γðx⊥; y⊥Þ

�
: ðA1Þ

Inserting (46) into (47), with TAðz⊥Þ → 1
πR2

A
, formally recov-

ers (34) in [32]. The 2D Green function Gðx⊥ − y⊥Þ in (47)
and (49) is explicitly given as

Gðx⊥ − y⊥Þ ¼
Z
k⊥

e−ik⊥·ðx⊥−y⊥Þ

k2⊥ þm2
; ðA2Þ

withm an IR cutoff. Equation (47) is the basis point to derive
the initial condition for the odderon. Its derivation essentially
rests on the assumption that the cubic (ρ3) term in (45) is
parametrically suppressed asA−1=6 [32,76] for a large nuclei,
as compared to the quadratic (ρ2) term [32] and so (47) is
obtained by expanding to first order in ρ3=κ while summing
in ρ2=μ2 to all orders. In the followingwe computeΓðx⊥; y⊥Þ
and Θðx⊥; y⊥Þ. Going to momentum space we have

Γðx⊥; y⊥Þ ¼ ðπR2
AÞ

Z
p⊥k⊥

TAðp⊥Þe−ip⊥·b⊥

×
1

k2⊥ þm2

1

ðk⊥ − p⊥Þ2 þm2

h
e−ik⊥

r⊥
2 − eik⊥

r⊥
2

i
×
h
e−iðp⊥−k⊥Þ

r⊥
2 − eiðp⊥−k⊥Þ

r⊥
2

i
; ðA3Þ

where we used r⊥ ¼ x⊥ − y⊥ and b⊥ ¼ ðx⊥ þ y⊥Þ=2.
Assuming p⊥ is small (b⊥ is large) and expanding the phase
around small r⊥ we have

Γðx⊥; y⊥Þ ≃ ðπR2
AÞTAðb⊥Þ

Z
k⊥

ðk⊥ · r⊥Þ2
ðk2⊥ þm2Þ2

≃
Tðb⊥Þ
4π

r2⊥
Z

Λ

0

k⊥dk⊥
k2⊥

ðk2⊥ þm2Þ2

≃ ðπR2
AÞ

TAðb⊥Þ
4π

r2⊥ log

�
1

r⊥m
þ e

�
; ðA4Þ

where in the last equalitywe extracted the leading log and the
UV cutoff is placed on the k⊥ integral as Λ ∝ 1=r⊥. Using
(A4) in the argument of the exponential in (A1) the result
coincides with [30] with the conventional definition

Q2
S ≡ CFg2μ2

2π
: ðA5Þ

For Θðx⊥; y⊥Þ we similarly have

Θðx⊥;y⊥Þ≃ ðπR2
AÞi

Z
p⊥k⊥k0⊥

Tðp⊥Þe−ip⊥·b⊥ðk⊥ · r⊥Þðk0⊥ · r⊥Þ

× ðp⊥ − k⊥ − k0⊥Þ · r⊥
1

k2⊥ þm2

×
1

k02⊥ þm2

1

ðp⊥ − k⊥ − k0⊥Þ2 þm2
; ðA6Þ

where we already expanded for r⊥ → 0. Assuming also
small p⊥ we have

ðp⊥ − k⊥ − k0⊥Þ · r⊥
ðp⊥ − k⊥ − k0⊥Þ2þm2

≃
ðp⊥ · r⊥Þ

ðk⊥ þ k0⊥Þ2þm2
−
2ððk⊥þ k0⊥Þ · r⊥Þððk⊥ þ k0⊥Þ · p⊥Þ

½ðk⊥þ k0⊥Þ2 þm2�2 :

ðA7Þ
The zeroth-order term above vanishes by rotation invariance.
Using the second term we perform the angular integralsZ

2π

0

dϕ
2π

Z
2π

0

dϕ0

2π

ðk⊥ · r⊥Þðk0⊥ · r⊥Þðp⊥ − k⊥ − k0⊥Þ · r⊥
ðp⊥ − k⊥ − k0⊥Þ2 þm2

≃ −
3

2
ðp⊥ · r⊥Þr2⊥

k2⊥k02⊥m2

½ðk2⊥ þ k02⊥ þm2Þ2 − 4k2⊥k02⊥�3=2
≡ ðp⊥ · r⊥Þr2⊥J ðk⊥; k0⊥Þ: ðA8Þ

Integrating further over k0⊥ leads to

1

2π

Z
∞

0

J ðk⊥;k0⊥Þk0⊥dk0⊥
k02⊥þm2

¼−
3

16π

k2⊥þ2m2

k2⊥þ4m2
−

3

16π

m4

k⊥ðk2⊥þ4m2Þ3=2

×log

�ðk2⊥þ2m2Þðk2⊥þ2m2−k⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þ4m2

p
Þ−2m2

ðk2⊥þ2m2Þðk2⊥þ2m2þk⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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�
:

ðA9Þ

EXCLUSIVE ηc PRODUCTION FROM SMALL-x … PHYS. REV. D 108, 074005 (2023)

074005-11



For the final integration over k⊥ we are only interested in
extracting the leading log. We can drop the second term in
(A9) as it vanishes in the limit m → 0. Focusing on the first
term, we eventually find

1

2π

Z
Λ

0

k⊥dk⊥
k2⊥ þm2

Z
∞

0

J ðk⊥; k0⊥Þk0⊥dk0⊥
k02⊥ þm2

≃ −
3

32π2

Z
Λ

0

k⊥dk⊥
k2⊥ þm2

k2⊥ þ 2m2

k2⊥ þ 4m2

≃ −
3

32π2
log

�
1

r⊥m
þ e

�
: ðA10Þ

In total we have

Θðx⊥; y⊥Þ ¼ r3⊥ðr̂⊥ · b̂⊥ÞðπR2
AÞ

dTAðb⊥Þ
db⊥

3

32π2

× log
�

1

r⊥m
þ e

�
: ðA11Þ

Using (46) the prefactor in (47) is

−g3C3F
μ6

κ
¼ −

π2

4

1

α3S

N2
c − 4

ðN2
c − 1Þ2

R4
A

A2
Q6

S: ðA12Þ

Combining everything leads to

Oðr⊥;b⊥Þ¼−
3

128

N2
c−4

ðN2
c−1Þ2

Q3
SR

3
A

α3SA
2

�
RA

dTAðb⊥Þ
db⊥

ðπR2
AÞ
�

×ðQ3
Sr

3⊥Þðr̂⊥ · b̂⊥Þlog
�

1

r⊥m
þe

�

×exp
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−
1

4
Q2

Sr
2⊥ðπR2

AÞTAðb⊥Þlog
�

1

r⊥m
þe

��
:

ðA13Þ

A rather similar expression, that also involves the derivative
of the transverse profile function was found in [77], see also
[78]. This expression is usually found in terms of a single
transverse coordinate integral that can be solved [79] to get
the Oðr⊥; b⊥Þ ∼ r3⊥ behavior.
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