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Abstract: Luminosity determination within the ALICE experiment is based on the measurement,
in van der Meer scans, of the cross sections for visible processes involving one or more detectors
(visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at
a centre-of-mass energy per nucleon pair of√𝑠NN = 5.02 TeV. Two visible cross sections, associated
with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured
in a van der Meer scan. This article describes the experimental set-up and the analysis procedure,
and presents the measurement results. The analysis involves a comprehensive study of beam-related
effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction
of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based
luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic
interactions in Pb–Pb collisions at √𝑠NN = 5.02 TeV, obtained by efficiency correction of the V0-
based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using
the Glauber model.
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1 Introduction

Cross section measurements at colliders require precise luminosity determination. The rate 𝑅 of a
process can be expressed as

𝑅 = 𝐿𝜎, (1.1)

where 𝐿 is the luminosity and 𝜎 is the process cross section.
In a bunched circular collider, such as the Large Hadron Collider [1] (LHC), the particles

circulate in packets (bunches) of finite length, defined by the radio-frequency structure of the
accelerator. For two contra-rotating bunches colliding with a null crossing angle, the luminosity
can be expressed as

𝐿 = 𝜈rev𝑁1𝑁2

∫
𝑓1(𝑥, 𝑦) 𝑓2(𝑥, 𝑦)d𝑥d𝑦, (1.2)

where 𝜈rev is the accelerator revolution frequency, 𝑁1 and 𝑁2 are the bunch intensities, defined as the
number of particles in a bunch, 𝑓1 and 𝑓2 are the probability density distributions of particles in the
transverse (𝑥,𝑦) plane for the two bunches (where 𝑥 is the horizontal direction and 𝑦 is the vertical
direction), assumed to be independent of the longitudinal coordinate 𝑧. A detailed discussion of the
concept and definition of luminosity can be found in [2].

Assuming factorisation of the density distributions in the two transverse directions, such that

𝑓1(𝑥, 𝑦) = 𝑓1𝑥 (𝑥) 𝑓1𝑦 (𝑦), 𝑓2(𝑥, 𝑦) = 𝑓2𝑥 (𝑥) 𝑓2𝑦 (𝑦), (1.3)

one can write
𝐿 =

𝜈rev𝑁1𝑁2
ℎ𝑥ℎ𝑦

, (1.4)

– 1 –
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where
ℎ𝑥 =

1∫
𝑓1𝑥 (𝑥) 𝑓2𝑥 (𝑥)d𝑥

and ℎ𝑦 =
1∫

𝑓1𝑦 (𝑦) 𝑓2𝑦 (𝑦)d𝑦
(1.5)

are the effective widths of the beam overlap region.
The van der Meer (vdM) scan [3] is the most common technique employed for luminosity

determination at colliders, see, e.g. [4] for a review, and [5–12] for measurements performed at
the LHC. In vdM scans, the two beams are moved in the transverse plane, in discrete steps. The
rate 𝑅vis(Δ𝑥, Δ𝑦) of a reference (visible) process is measured as a function of the transverse beam
separations (Δ𝑥, Δ𝑦), defined as the distance between the centroids of the beam bunches. The 𝑥

and 𝑦 scans are usually performed separately, the beams being head-on (i.e. colliding with zero
separation) in the non-scanned direction. In this case, the effective widths ℎ𝑥0 and ℎ𝑦0 for head-on
collisions can be determined as

ℎ𝑥0 =

∫
𝑅vis(Δ𝑥, 0)dΔ𝑥
𝑅vis(0, 0)

, ℎ𝑦0 =

∫
𝑅vis(0,Δ𝑦)dΔ𝑦
𝑅vis(0, 0)

(1.6)

(see [3] for a derivation).
When the beams collide with a non-zero crossing angle, eqs. 1.2 and 1.5 need to be modified [2],

but it can be shown [13] that the vdM scan technique still allows a precise luminosity determination,
and, in particular, that eqs. 1.4 and 1.6 still hold.

The main output of vdM scans is a measurement of the cross section 𝜎vis of the visible process,
which can be determined as

𝜎vis =
𝑅vis(0, 0) ℎ𝑥0ℎ𝑦0

𝜈rev𝑁1𝑁2
(1.7)

and used for the measurement of luminosity during physics data-taking:

𝐿 =
𝑅vis
𝜎vis

. (1.8)

The standard vdM scans are typically coupled with a length-scale calibration scan, whose aim
is to determine the global conversion factor from the nominal beam displacement to the actual one.
In these scans, the two beams are kept at constant separation and moved in consecutive steps in the
same direction, and the position of the interaction vertex is measured, using the tracking detectors,
as a function of the nominal beam position.

The vdM formalism assumes complete factorisation of the beam profiles in the two transverse
directions, such that the beam overlap region is fully described by the product ℎ𝑥ℎ𝑦 . Previous
studies performed by ALICE [12, 14–18] and other LHC experiments [6–8, 10, 19] have shown that
the actual LHC bunch shapes can violate the factorisation assumption. The size of the effect was
found to vary from scan to scan and demanded corrections ranging from the per mil to the percent
level. Non-factorisation effects can be studied and quantified by measuring the luminous region
parameters, via the distribution of interaction vertices, as a function of the beam separation.

During Run 2, the LHC provided, in 2015 and 2018, lead–lead (Pb–Pb) collisions at a centre-
of-mass energy per nucleon pair √𝑠NN = 5.02 TeV. For collisions of lead ions, the visible cross
section 𝜎vis seen by a detector (or set of detectors) with a given trigger condition has, in general,
two components, one electromagnetic and one hadronic: 𝜎vis = 𝜖EM𝜎EM + 𝜖had𝜎had, where 𝜎EM and

– 2 –
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𝜎had are the electromagnetic and hadronic inelastic cross sections and 𝜖EM and 𝜖had are the fractions
of electromagnetic and hadronic inelastic events that satisfy the trigger condition.

The ALICE luminosity determination for the Run 2 Pb–Pb data samples is based on a vdM
scan session that took place on November 29, 2018, during the LHC fill1 labelled with the number
7483. The visible cross sections for two independent reference processes were measured in this
scan session, and used for the indirect luminosity determination of the 2015 and 2018 samples,
according to eq. (1.8). Note that this procedure does not require a knowledge of 𝜖had or 𝜖EM.

This document is organised as follows. Section 2 describes the detectors used for the measure-
ment, along with the relevant machine parameters and the procedure adopted for the scan. Section 3
summarises the analysis procedure and presents the results and uncertainties for the visible cross
section and luminosity measurement, and for the inelastic hadronic cross section for Pb–Pb colli-
sions at √𝑠NN = 5.02 TeV. The hadronic cross section was determined by combining one of the
measured visible cross sections and a data-driven estimate of the corresponding hadronic efficiency
𝜖had. Finally, section 4 presents a brief summary of the work.

2 Experimental set-up

In the vdM scan, the cross section was measured for two reference processes, one triggered upon by
the Zero Degree Calorimeter (ZDC), the other by the V0 detector. A detailed description of these
detectors is given in [20], and their performance is discussed in [21, 22]. The ZDC system features
two neutron calorimeters (ZNA, ZNC), located on opposite sides of the ALICE interaction point
(IP2), each one at a distance of 112.5 m along the beam axis from IP2, covering the pseudorapidity (𝜂)
range |𝜂 | > 8.8. It is completed by two proton calorimeters and two electromagnetic calorimeters,
not used for this measurement. The V0 detector consists of two hodoscopes, with 32 scintillator
tiles each, located on opposite sides of the interaction region, at distances of 340 cm (V0A) and
90 cm (V0C) along the beam axis from IP2, covering the pseudorapidity ranges 2.8 < 𝜂 < 5.1 and
−3.7 < 𝜂 < −1.7, respectively. Note that the LHC beam 1 (2) travels clockwise (anticlockwise)
from side A (C) to side C (A).

The ZDC-based visible cross section is defined by a trigger condition, called ZED in the
following, which requires a signal in at least one of the two neutron calorimeters, corresponding to an
energy deposition larger than ∼ 1 TeV. Such a threshold is about three standard deviations below the
expected signal from a 2.51 TeV neutron. Neutrons are emitted from the fragmentation/evaporation
of Pb ions in electromagnetic dissociation events with (single- or double-side) neutron emission,
or in hadronic events [23–27]. The trigger condition for the V0-based visible cross section, called
V0M in the following, requires the sum of the signal amplitudes from all the V0 scintillators to
be above a chosen threshold; during the 2018 Pb–Pb data taking, the threshold was such that the
∼ 50% most central hadronic events were selected, and all electromagnetic events were rejected due
to their relatively low particle multiplicity in the V0 acceptance.

The analysis procedure uses, for the length-scale calibration and non-factorisation correc-
tions, the parameters of the luminous region measured via the distribution of interaction vertices,
determined with the ALICE Inner Tracking System [28] (ITS).

1A fill is a time interval with continued presence of beam in the accelerator; it starts with the injection and ends with
the beam dump.

– 3 –
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During the vdM scan session, each Pb beam consisted of 648 bunches, and 619 bunch pairs
were colliding at IP2. The minimum spacing between two consecutive bunches in each beam was
100 ns. The 𝛽∗ value2 at IP2 was 0.5 m. The nominal half vertical crossing angle of the two beams
at IP2 was about −60 𝜇rad, the minus sign indicating that the two beams exited the crossing region
with negative 𝑦 coordinate with respect to the beam axis.3 The current in the ALICE solenoid
(dipole) was 30 kA (6 kA), corresponding to a field strength of 0.5 T (0.7 T).

Two pairs of horizontal and vertical scans were performed, to obtain two statistically indepen-
dent cross section measurements per bunch pair. In each horizontal (vertical) scan, the nominal
beam separation Δ𝑥 (Δ𝑦) was varied in 25 equal steps4 from −97.3 𝜇m to +97.3 𝜇m. A separation
of 100 𝜇m corresponds to about six times the root mean square of the transverse beam profile.
During each step, the beams were maintained in position for 28 s, and the ZED and V0M trigger
counts were integrated in 14 time bins of 2 s each. The counts were measured separately for each
colliding bunch pair. In order to provide additional input for non-factorisation studies, two diagonal
scans were performed, where the beam separation was varied simultaneously in the two transverse
directions. Finally, a set of length-scale calibration scans was performed.

The bunch intensities were of the order of (7–10)×107 Pb ions per bunch. The bunch-intensity
measurement was provided by the LHC instrumentation [29]: a direct current transformer (DCCT),
measuring the total beam intensity, and a fast beam current transformer (fBCT), measuring the
relative bunch intensities. For the relative bunch intensities, data from a second device, the ATLAS
beam pick-up system (BPTX [30]) was also used. The accelerator orbit is nominally divided in 3564
slots of 25 ns each. Given the radio-frequency configuration of the LHC, each slot is divided in ten
buckets of 2.5 ns each. In nominally filled slots, the so-called main bunch is captured in the central
bucket of the slot. Following the convention established in [31], the charge circulating outside of
the nominally filled slots is referred to as ghost charge; the charge circulating within a nominally
filled slot but not captured in the central bucket is referred to as satellite charge. The ghost and
satellite charges do not contribute to the luminosity at the nominal interaction point. Hence, they
must be subtracted from the total beam intensity. A measurement of the ghost-charge fraction was
provided independently by the LHCb collaboration, via the rate of beam–gas collisions5 occurring
in nominally empty bunch slots, as described in [10], and by the LHC Longitudinal Density Monitor
(LDM), which measures synchrotron radiation photons emitted by the beams [32]. The LDM also
provides a measurement of the satellite-charge fraction. For the vdM scan under analysis, the
measured ghost-charge fraction was about 4% (3%) for beam 1 (beam 2) and the bunch-averaged
satellite-charge fraction was about 3% for both beams, resulting in a total correction to the bunch
intensity product (hence to the cross section) of about 13%. Satellite bunches in a beam may
interact with main bunches in the other beam. These events must be identified and subtracted from
the measured visible process rates, as will be described in section 3.

2The 𝛽(𝑧) function describes the single-particle motion and determines the variation of the beam envelope as a
function of the coordinate along the beam orbit (𝑧). The transverse size of the beam at a given position along the
beam trajectory is proportional to the square root of 𝛽. The notation 𝛽∗ denotes the value of the 𝛽 function at the
interaction point.

3ALICE uses a Cartesian system whose origin is at the LHC Interaction Point 2 (IP2). The 𝑧 axis is parallel to the
mean beam direction at IP2 and points along the LHC Beam 2 (i.e. LHC anticlockwise). The 𝑦 axis points upwards
while the 𝑥 axis is perpendicular to the 𝑦 and 𝑧 axes, forming a right-handed orthogonal system.

4See appendix A for details.
5A definition of beam–gas collision is provided in section 3.
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3 Analysis and results

3.1 Visible cross section determination

In previous studies dedicated to the luminosity determination in pp [14–17], p–Pb [12, 18], and
Pb–Pb [21] collisions in the ALICE experiment, the trigger rates were measured as a function of the
beam separation and corrected for background and pile-up effects. A 𝜒2-based fit of the scan curves
(separately for the 𝑥 and 𝑦 scans) yielded a measurement of 𝑅(0, 0), ℎ𝑥0, and ℎ𝑦0, which could be
inserted directly into eq. (1.7) to determine 𝜎vis. In comparison, e.g. to the studies performed for
pp collisions, the present analysis deals with a collision rate per colliding bunch pair lower by about
one order of magnitude for ZED and three orders of magnitude for V0M. This demands a different
approach, designed to obtain a better treatment of statistical uncertainties at very small numbers of
trigger counts. For each colliding bunch pair, the number of triggered events 𝑡𝑖 and the number of
sampled LHC orbits 𝑛𝑖 during time bin 𝑖 are used as inputs for a binomial likelihood fit:

lnL =
∑︁
𝑖

[𝑡𝑖 ln 𝑃𝑖 + (𝑛𝑖 − 𝑡𝑖) ln (1 − 𝑃𝑖)] (3.1)

where 𝑃𝑖 is the probability of having a trigger in a bunch crossing, related to the mean number of
triggers per bunch crossing 𝜇𝑖 by Poissonian statistics, 𝑃𝑖 = 1 − 𝑒−𝜇𝑖 . The quantity 𝜇𝑖 is modelled
by the fit function, according to the relations

𝜇𝑖 =
𝑅vis(Δ𝑥𝑖 ,Δ𝑦𝑖)

𝜈rev
+ 𝑝s,i + 𝑝1𝑁1,𝑖 + 𝑝2𝑁2,𝑖 + 𝑝0 (3.2)

and
𝑅vis(Δ𝑥𝑖 ,Δ𝑦𝑖) = 𝜈rev𝑁1,𝑖𝑁2,𝑖

𝜎vis
ℎ𝑥0ℎ𝑦0

𝑓 (Δ𝑥𝑖)𝑔(Δ𝑦𝑖), (3.3)

where: 𝑁1,𝑖 and 𝑁2,𝑖 are the intensities of the two colliding bunches; Δ𝑥𝑖 and Δ𝑦𝑖 are the beam sep-
arations, corrected for beam–beam deflection [33, 34] and orbit drifts [35, 36], 𝑓 and 𝑔 parametrise
the luminosity dependence onΔ𝑥𝑖 andΔ𝑦𝑖 , respectively; ℎ𝑥0 and ℎ𝑦0 are the integrals of 𝑓 and 𝑔, re-
spectively, divided by their peak values, consistently with eq. (1.6); 𝑝s,i is the separation-dependent
probability that the trigger is fired by a collision between one of the two colliding bunches and a
satellite bunch in the other beam, or by the collision of two satellites; 𝑝1 (𝑝2) is the probability
that the trigger is fired by a collision of a bunch of beam 1 (beam 2) with residual gas in the beam
pipe (beam–gas collision), normalised by the bunch intensity; 𝑝0 is the probability that the trigger
is fired in the absence of beams (detector noise).

The functions 𝑓 (Δ𝑥) and 𝑔(Δ𝑦) were chosen to have a Gaussian core with mean value and
standard deviation as the only free parameters, the normalisation being constrained by eq. (1.7). In
order to improve the description of data at large separation, the Gaussian function is modified at
absolute separations larger than a certain threshold. For each scan step beyond the threshold, an
independent offset is added to Δ𝑥𝑖 or Δ𝑦𝑖 in the definition of the fitting function, so that there is
one additional fit parameter for each of these steps. The threshold is chosen, independently for each
colliding bunch pair, as the minimum value allowing one to obtain 𝜒2/ndf ∼ 1; depending on the
considered colliding bunch pair and scan, it is located 1.3–2.5 standard deviations away from the
peak, and the total number of parameters needed to describe the tails varies between 7 and 13. The
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function is constrained to be symmetric around the peak by using the same tail parameter for scan
steps at opposite nominal separation. A formal definition of the fitting functions 𝑓 (Δ𝑥) and 𝑔(Δ𝑦)
is provided in appendix A.

The parameters 𝑝0, 𝑝1 and 𝑝2 were estimated by means of an independent fit to the trigger rates
in non-colliding and empty bunch slots. Empty bunch slots located immediately after colliding
bunch slots were excluded from the fit, because such bunch slots are affected by background from
late spurious pulses (after-pulses) and would provide an overestimated measurement of the detector
noise. Owing to the minimum spacing of 100 ns between colliding bunches, the contribution from
a previous collision to the trigger counts in colliding bunch slots was found to be negligible for both
ZED and V0M signals. Because of the large ZDC distance from IP2, the background induced on
ZNA (ZNC) by beam–gas collisions of a bunch of beam 1 (2) happening upstream of the calorimeter
results in a signal that is 31 bunch slots (∼ 750 ns) earlier with respect to nominal beam–beam
collisions of that bunch. During the vdM scan, the distribution of Pb-ion bunches along the LHC
orbit was such that this background contribution shows up only in nominally empty bunch slots,
with no effect on the colliding slots. Therefore, for the ZED analysis, this subset of the empty bunch
slots was excluded from the background fit.

The separation-dependent contribution from main–satellite collisions 𝑝s,i was evaluated via
the signal arrival-time spectra in ZNA and ZNC. The procedure is different for ZED and V0M due
to the different selectivity of the two trigger classes. All events triggered by V0M are hadronic and
have signals in both ZNA and ZNC. The two-dimensional distribution of arrival times in the two
calorimeters for these events is shown in the left panel of figure 1. The satellite events are tagged by
means of a square cut around the main–main collision peak position, located at (0, 0). Conversely,
the ZED trigger has a large contribution from electromagnetic events with single-side neutron
emission, so that most of the events have a signal only in one calorimeter. For this sub-sample of
ZED-triggered events the estimation of the satellite contamination is based on the one-dimensional
arrival time distributions in each of the ZNs, and the fraction of satellite collisions is obtained
via a fit of the time distribution to a sum of Gaussian functions, with peak positions fixed to the
values expected from the LHC radio-frequency structure (right panel of figure 1). The signal from
a neutron emitted in a main–satellite collision has the same arrival time as that from a main–main
collision if the neutron is emitted by an ion in the main bunch, while it is early or late if the neutron
is emitted by an ion in the satellite bunch. Therefore, only half of the neutrons emitted in single-side
events from main–satellite collisions are identified as such. Hence, a correction factor of two was
applied to the satellite-collision fractions obtained from the single-side neutron event sample.

Due to the dead time of the ZDC detector electronics, the timing information could only be
recorded for a fraction of the triggered events. The size of the sample available for the analysis of
time spectra does not allow for a statistically significant determination of satellite-collision fractions
for each bunch pair and separation step. Therefore, one can only estimate a bunch-averaged satellite
contribution. In order to improve the accuracy of the satellite estimation, the fit procedure is
therefore extended with a joint likelihood maximisation, based on both timing and trigger data, at
each time bin. Let 𝑆𝑖 be the number of events identified as main–satellite collisions in 𝑇𝑖 recorded
events (and 𝑡𝑖 the number of trigger counts in 𝑛𝑖 sampled orbits, as defined above), the joint binomial

– 6 –
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Figure 1. Left: correlation between the arrival times, relative to main–main collisions, of signals in ZNA
and ZNC for events triggered by V0M. The square box depicts the satellite-collision rejection cut discussed
in the text. Events outside the box are from main–satellite collisions (horizontal and vertical bands) and
from satellite–satellite collisions (diagonal band). Right: distribution of the arrival time, relative to main-
main collisions, in one of the two neutron calorimeters for ZED-triggered single-side neutron events. The
superimposed curve shows a fit with a sum of Gaussian distributions. Both figures are for head-on collisions
(Δ𝑥 = Δ𝑦 = 0).

likelihood can be written as

lnL𝑖 = 𝑡𝑖 ln 𝑃𝑖 + (𝑛𝑖 − 𝑡𝑖) ln (1 − 𝑃𝑖) + 𝑆𝑖 ln
(
𝑝s,i

𝑃𝑖

)
+ (𝑇𝑖 − 𝑆𝑖) ln

(
𝑃𝑖 − 𝑝s,i

𝑃𝑖

)
. (3.4)

The maximisation procedure determines the most probable value for 𝑝s,i for the measured values
of 𝑛𝑖 , 𝑡𝑖 , 𝑇𝑖 and 𝑆𝑖 and the current expected 𝑃𝑖 . The 𝑝s,i value obtained is then fed into the global
likelihood according to eqs. 3.1 and 3.2.

In summary, the free parameters of the global likelihood fit for a given colliding bunch pair
are the visible cross section, the mean values and standard deviations of the Gaussian cores of the
𝑓 (Δ𝑥) and 𝑔(Δ𝑦) functions, and 7 to 13 tail parameters for each of the two functions.

As an example, in figure 2 the measured trigger probability per bunch crossing as a function of
time during the vdM scan is shown for one pair of colliding bunches, together with the expectation
from the fit. The values of 𝜒2/ndf are typically close to unity. As a remark, 𝜒2/ndf values as large
as ∼ 2 are obtained if a pure Gaussian function is used, without introducing any tail parameter.

The ZED and V0M analyses provide largely independent estimates of the effective beam widths
ℎ𝑥0 and ℎ𝑦0, via the fitted parameters of 𝑓 (Δ𝑥) and 𝑔(Δ𝑦). The ℎ𝑥0ℎ𝑦0 products obtained in the
ZED and in the V0M analysis are consistent within 0.13%, which provides an indication that
detector-dependent effects such as background and pile-up are under control.

Three length-scale calibration scans were performed for each direction, with different displace-
ment step size, in order to test for a possible dependence on such a parameter. The horizontal
(vertical) calibration factor is the slope parameter of a linear fit to the measured horizontal (vertical)
vertex displacement versus the nominal one, as illustrated in figure 3. The vertex position was
determined using tracks reconstructed in the ITS. The resulting (multiplicative) correction factor
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Figure 2. ZED (top) and V0M (bottom) trigger probabilities per bunch crossing for a typical colliding bunch
pair, as a function of time, during the first horizontal and vertical vdM scan. Each time bin corresponds to
an acquisition window of ∼ 2 s. The uncertainties are statistical only. The fit expectation values are also
shown, as lines, in each time bin. Time bins during which the beams are being displaced, not considered in
the analysis, are not shown.

to the fitted 𝜎vis is the product of the horizontal and vertical calibration factors, and was found to
be 0.964±0.010. The uncertainty has a statistical (0.5%) and a systematic contribution. The latter
accounts for deviations from the linear trend in the individual fits (0.3%), for the dependence of the
results on the displacement step size (0.4%), and for the dependence of the results on the track and
event selection criteria used in the vertex determination procedure (0.7%).

The impact of non-factorisation effects was evaluated by simultaneously fitting the rates and
the luminous-region parameters (positions, sizes, transverse tilt) during both the standard and the
diagonal scans with a three-dimensional non-factorisable double-Gaussian model [7, 14, 37, 38],
and computing the bias on the head-on luminosity with respect to a factorisable model. The
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Figure 3. Nominal versus measured displacements in the horizontal (left) and vertical (right) length-scale
calibration scans, obtained from events with reconstructed-track multiplicity ranging from 260 to 500. Data
are represented by symbols, while a linear fit is represented by the solid lines. The uncertainties are smaller
than the symbol sizes. The fit residuals are shown in the lower panel. The blue (green, red) lines and
solid circles (triangles, squares) correspond to a nominal displacement step size of 21.06 𝜇m (32.43 𝜇m,
42.16 𝜇m).

resulting (multiplicative) correction factor to the fitted 𝜎vis is 1.011±0.011, where, conservatively,
an uncertainty as large as the correction is assigned, to account for the non-accurate description of
some of the luminous-region parameters by the model.

The ZED and V0M cross sections measured for all colliding bunch pairs and scans are shown
as a function of the product of bunch intensities 𝑁1𝑁2 in figure 4. For both luminometers and scans,
no significant dependence of 𝜎vis on 𝑁1𝑁2 is observed. However, non-statistical fluctuations of the
cross section are present, particularly visible for ZED, which has better statistical precision. In order
to take these into account, a systematic uncertainty of 0.1% is assigned, computed as

√︁
𝜒2/ndf − 1

times the statistical uncertainty of the average cross section [39], where 𝜒2/ndf is obtained from
the constant-value fits to the bunch-by-bunch cross sections shown in figure 4. The observed
fluctuations are likely related to the significant bunch-by-bunch variation of the satellite-charge
fraction (on the order of 50% root mean square, as measured by the LDM). A major contribution
to the bunch-by-bunch spread of 𝜎vis was found to originate from pairs with large satellite-charge
fraction. A bunch-by-bunch correction for satellite-charge was not performed in this analysis, due
to a limited knowledge of the sensitivity of fBCT (or BPTX) to charge in satellite buckets. Instead,
the bunch-averaged satellite charge was used as an overall correction to the total beam current
measured by DCCT, assuming satellite charge does not contribute to the fBCT signal.

The bunch-averaged cross sections measured in the two scans agree within 1%, which is
considered as an additional systematic uncertainty. The measured visible cross sections, ob-
tained by averaging the results from the two scans, are 𝜎ZED = 420.58 ± 0.03 (stat.) b and
𝜎V0M = 3.933 ± 0.003 (stat.) b.

The combined impact of the subtraction of background from beam–gas collisions, electronic
noise, and satellite collisions on the final cross section is about 1.5% for ZED and 1% for V0M,
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Figure 4. Measured ZED (left) and V0M (right) visible cross sections as a function of the product of the ion
bunch intensities, for the first (top) and second vdM scan (bottom). Uncertainties are statistical only. The
solid line represents a fit to a constant value.

largely dominated by satellite collisions. The main source of uncertainty of the satellite-collision
background estimation is the usage of bunch-integrated timing data in the evaluation of the satellite
collision fractions, with a (potentially limited) sensitivity to bunch-by-bunch variations provided by
the joint likelihood minimisation of eq. (3.4). An alternative method was tested, where the satellite-
collision probability 𝑝𝑠,𝑖 for a given bunch pair is evaluated as the bunch-integrated satellite-collision
fraction 𝑆𝑖/𝑇𝑖 measured with the ZDC timing, scaled by the ratio between the satellite charge fraction
for that bunch pair and the bunch-averaged satellite-charge fraction, both measured by the LDM.
The systematic uncertainty is estimated as the maximum difference, across scans and luminometers,
between the visible cross sections obtained with the standard and alternative method, and amounts to
1.2%. The systematic uncertainty on the subtraction of background from beam–gas and electronic
noise is estimated by setting the parameters 𝑝0, 𝑝1 and 𝑝2 to zero in the likelihood fit (see eq. (3.1)
and (3.2)). This corresponds to the extreme assumption that all counts in nominally non-colliding
bunch slots originate from collisions involving ghost charge. The variation in visible cross section,
retained as uncertainty, is 0.3% at most.

The uncertainty of the bunch intensity is 0.8%, from the quadratic sum of three components:
0.5%, from the uncertainty of the total beam current normalisation from the DCCT, evaluated
as described in [40]; 0.2%, from the uncertainty of the relative bunch populations, evaluated as
the difference between the fBCT- and BPTX-based results; and 0.6%, from the uncertainty of
the ghost and satellite charge [10, 32], dominated by the difference between the LHCb and LDM
measurements of the ghost-charge fraction. No additional uncertainty is assigned to the bunch-by-
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bunch spread of satellite charge, because about 95% of the bunches in each beam were colliding
in IP2. Under these circumstances, the bunch-pair-averaged visible cross section is essentially
driven by the total beam current measurement from DCCT (to which the sum of fBCT signals is
normalised), and a non-perfect evaluation of the satellite charge in each bunch slot only leads to a
bunch-by-bunch spread of the measured cross sections, with negligible or no bias to the final result,
as was verified by making different assumptions for the fBCT sensitivity to satellites.

The measurement of the width of the beam-overlap region in a van der Meer scan can be
perturbed by a variation of the bunch emittance during the scan itself. The variation rate of the
effective beam widths was estimated with two different methods. The first uses the difference of
the measured widths between the first and second scan, the second uses the time evolution of the
rate at zero separation, corrected by the bunch intensity decay. The second method yields larger
variation rates (by about 70%) than the first. The potential bias on the measured visible cross
sections was estimated in a realistic simulation of the performed scans, assuming an exponential
time dependence of the effective beam widths, using the slopes obtained with the second method.
The resulting uncertainty is 0.5%.

Possible non-linearities in the steering magnet behaviour during the scan, e.g. due to hystere-
sis, were considered as a source of systematic uncertainty. A preliminary hysteresis model [41]
developed for the LHC was used. The model provides, for each scan step and for both beams, an
upper limit to the hysteresis-induced shift of the beam position with respect to its nominal value.
For this fill, the maximum shift is about 0.5 𝜇m. In order to estimate a possible bias on the cross
section, the fit of eq. (3.1) was performed with the separation at each step modified according to the
predicted position shift of both beams. The change in average visible cross section is 0.2% for both
luminometers and is retained as a systematic uncertainty.

The uncertainty of the orbit-drift correction was conservatively taken to be as large as the effect
of the correction (0.15%). The uncertainty of the beam–beam deflection correction was evaluated
by varying the input parameters to the deflection calculation within a reasonable range, as described
in [14], and found to be less than 0.1%. The effect of distortions of the bunch shapes due to
the mutual interaction between the two beams was also evaluated, within the framework outlined
in [34], and found to be less than 0.1%.

The systematic uncertainty associated with the choice of the fitting strategy was evaluated: by
varying the range of beam separations described by the Gaussian core (varying thereby the number
of fit parameters used to describe the tails); by discarding the last scan step, where the satellite
contribution is dominant; and by extracting the visible cross section from a simultaneous fit to
all colliding bunch pairs, with common shape parameters, instead of averaging the results from
individual fits. The resulting uncertainty is 0.4%.

The total systematic uncertainty of the visible cross section measurement, obtained as the
quadratic sum of the contributions listed above, amounts to 2.4% for both ZED and V0M.

3.2 Hadronic inelastic cross section determination

As an additional output of the vdM scan analysis, the inelastic hadronic cross section 𝜎had was
determined by correcting the visible cross section 𝜎V0M for the V0M trigger efficiency. The ALICE
centrality determination framework [42, 43] assigns to each event a centrality value, based on
the total signal amplitude in the V0 detector. The centrality is defined as the probability that a
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hadronic Pb–Pb collision results in an amplitude larger than the measured value. The centrality
calibration for the 2018 sample was performed using a mimimum-bias trigger requiring a signal
in each of V0A, V0C, ZNA and ZNC. Such a trigger is fully efficient for hadronic events and
free from electromagnetic contamination for the ∼ 90% most central events [44, 45]. In order
to obtain the shape of the amplitude spectrum in the most peripheral events, the minimum-bias-
triggered spectrum is fitted with a Monte Carlo implementation of the Glauber model [46], coupled
with a two-component ancestor model for particle production; the fit is performed above a chosen
amplitude threshold (anchor point, corresponding to a centrality of 90%), where no trigger bias is
expected. The centrality distribution of V0M-triggered events, determined using the framework
described above, is shown in figure 5. The distribution is uniform in the 0–50% centrality range,
where the V0M trigger is fully efficient, then drops rapidly to zero in the range 50–52%. When
the distribution is normalised such that its integral in 0–50% is 0.5, its total integral provides the
V0M efficiency for hadronic interactions, 𝜖had. For the fill in which the vdM scan was performed,
this procedure results in 𝜖had = 0.513 ± 0.012. The quoted uncertainty is systematic and is obtained
as the quadratic sum of two components. The first one, of 1.4%, was determined, similar to what
was done in ref. [44], by varying the centrality at the anchor point within ± 1% (referring here to
an absolute variation, i.e., from 89% to 91%). The second one, of 1.8%, was determined as the
difference between the default efficiency value and the one obtained by fitting the V0 amplitude
spectrum with a different template, based on the TRENTo model [47]. Finally, one has

𝜎had =
𝜎V0M
𝜖had

= 7.67 ± 0.25 b,

where the quoted uncertainty is the combination of the statistical and systematic uncertainties of
the visible cross section, of 2.4%, and of the trigger efficiency, of 2.3%. The measured cross
section is in agreement with the prediction of (7.62 ± 0.15) b from ref. [48], based on a Monte
Carlo implementation of the Glauber model with a nuclear radius of ∼ 6.7 fm, a nuclear skin depth
for protons (neutrons) of ∼ 0.45 fm (∼ 0.56 fm), and an inelastic nucleon–nucleon cross section of
∼ 67 mb.

3.3 Consistency and stability of the luminosity calibration

In order to test the stability and mutual consistency of the ZED and V0M calibrations, the lumi-
nosities measured with the two reference signals throughout the whole 2015 and 2018 data-taking
periods were compared on a run-by-run basis. In the ALICE nomenclature, a run is a set of
data collected within a start and a stop of the data acquisition, under stable detector and trigger
configurations.6 For each run, the trigger counts, integrated over colliding bunch slots, were cor-
rected by subtracting the estimated beam–gas background, detector noise, and background from
main–satellite collisions. As explained earlier, the beam–gas background was estimated by means
of the counts in non-colliding bunch slots, rescaled by the relative fractions of beam intensities;
the contribution from detector noise was estimated via the counts in empty slots; the background
from main–satellite collisions was estimated using the ZDC timing data. For each run, the pile-up
corrected ratio between the V0M- and ZED-based luminosities was computed from the corrected

6For the data-taking period under consideration, the duration of a run ranges from ∼ 5 minutes to ∼ 7 hours.
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Figure 5. Centrality distribution of events satisfying the V0M trigger condition, for the LHC fill during
which the vdM scan was performed.

number of trigger counts 𝑁V0M and 𝑁ZED and from the total number of bunch crossings in the run
𝑁BC as

𝐿V0M
𝐿ZED

=
ln (1 − 𝑁V0M/𝑁BC)𝜎ZED
ln (1 − 𝑁ZED/𝑁BC)𝜎V0M

. (3.5)

While the ZED trigger settings remained unchanged throughout the 2015 and 2018 data-taking
periods, the threshold for the V0M trigger was different in 2015 and 2018. Furthermore, in 2018,
the threshold was slightly adjusted a few times during data-taking as the V0M-based centrality
trigger was being tuned. For the data-taking periods with different threshold settings with respect to
the vdM scan, the V0M trigger efficiency was re-determined with the procedure described earlier,
and the V0M cross section re-scaled by the ratio of the measured efficiency to that measured in the
fill containing the van der Meer scans.

The luminosity ratio as a function of time and the distribution of the ratio values over all
runs, weighted with the run luminosity, are shown in figure 6. The mean quadratic difference of
the ratio from unity is about 0.7% and is retained as a systematic uncertainty of the stability and
mutual consistency of the luminosity calibration. When the analysis is restricted to the 2015 or
2018 sample, the mean quadratic difference from unity amounts to 1% or 0.5%, respectively.

3.4 Luminosity uncertainty

In table 1 a summary of the different contributions to the uncertainty of the visible cross section and
the luminosity measurement is presented. The luminosity uncertainty, obtained as the quadratic
sum of the visible cross section uncertainty and of the stability and consistency uncertainty, amounts
to 2.5% for both ZED and V0M. For the sake of comparison, the luminosity uncertainty obtained
by ALICE for Pb–Pb collisions at √𝑠NN = 2.76 TeV (LHC Run 1) was of 5–6% [21].
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run luminosity. The dashed vertical lines are located at 𝐿V0M/𝐿ZED = 1 ± 𝛼, where 𝛼 ∼ 0.007 is the mean
quadratic difference from unity.

Table 1. Relative uncertainties of the measurement of visible cross sections and luminosity in Pb–Pb
collisions at √𝑠NN = 5.02 TeV. The stability and consistency and the total luminosity uncertainties refer to
the full Run 2 sample (2015 and 2018); uncertainties for the single periods are given in the text.

Source Uncertainty (%)
ZED | V0M

Statistical 0.008 | 0.08
ℎ𝑥0ℎ𝑦0 consistency (V0M vs ZED) 0.13
Length-scale calibration 1
Non-factorisation 1.1
Bunch-to-bunch consistency 0.1
Scan-to-scan consistency 1
Satellite collisions 1.2
Beam–gas and noise 0.3
Bunch intensity 0.8
Emittance variation 0.5
Magnetic non-linearities 0.2
Orbit drift 0.15
Beam–beam deflection and distortion 0.1
Fitting scheme 0.4
Total of visible cross section 2.4
Stability and consistency 0.7
Total of luminosity 2.5 | 2.5
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4 Conclusions

In 2015 and 2018, the ALICE Collaboration took data with Pb–Pb collisions at a centre-of-mass
energy √

𝑠NN = 5.02 TeV. In order to provide a reference for the luminosity determination, vdM
scans were performed and visible cross sections were measured for two processes, ZED (neutron
emission in the acceptance of the neutron Zero Degree Calorimeters) and V0M (energy deposition in
the V0 detector by events up to∼ 50% centrality). Each of the two detectors provides a measurement
of the luminosity with a total uncertainty, for the full sample (2015 and 2018), of 2.5%. These
uncertainties improve by about a factor of two with respect to those obtained by ALICE in previous
studies dedicated to Pb–Pb collisions at √𝑠NN = 2.76 TeV. The inelastic cross section for hadronic
interactions in Pb–Pb collisions at √𝑠NN = 5.02 TeV, obtained by trigger-efficiency correction of
the V0M cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions from the
Glauber model.

A Fitting function definition

The luminosity dependence on the horizontal separation is parametrised (see eq. (3.3)) with the
fitting function 𝑓 (Δ𝑥).

With 25 scan steps, one can choose −12 ≤ 𝑗 ≤ +12, so that the nominal separation at step 𝑗 is
given by

Δ𝑥nom, 𝑗 =
𝑗

24
(Δ𝑥nom,max − Δ𝑥nom,min), (A.1)

where Δ𝑥nom,max = −Δ𝑥nom,min = 97.3 𝜇m, and 𝑗 = 0 denotes the (nominal) zero separation. As
discussed in section 3, the actual separation Δ𝑥 𝑗 is obtained by correcting the nominal separation
Δ𝑥nom, 𝑗 for the orbit drift and beam–beam deflection effects.

With the above convention, the fitting function is defined as

𝑓 (Δ𝑥 𝑗) = 𝑒
−

(Δ𝑥 𝑗−𝜇+𝛿 𝑗 )2

2𝜎2 , (A.2)

with

𝛿 𝑗 = 𝛿− 𝑗 (A.3)

and

𝛿 𝑗 = 0 for | 𝑗 | < 𝑗0, (A.4)

where 𝑗0 > 0 is the threshold chosen for the transition between the Gaussian core and the tail (see
section 3 for details). The fit parameters in the function are the mean value 𝜇, the standard deviation
𝜎 and the offsets 𝛿 𝑗 (with 𝑗0 < 𝑗 ≤ 12).

The definition of the function 𝑔(Δ𝑦) used to parametrise the luminosity dependence on the
vertical separation is identical, with independent offset parameters.

Depending on the considered colliding bunch pair, the fitting functions use 6 ≤ 𝑗0 ≤ 9.
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