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S njima i teška, vremena su laka

Kolegama svima, od Vanne do Franje
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Introduction

At the end of 2019, a new virus named SARS-CoV-2 emerged, infecting humans and

quickly spreading from China to other parts of the world. This rapid transmission led

to a serious situation that soon escalated into a global pandemic known as Covid-19. In

this paper, we conduct a comparative analysis using statistical data to examine the behavior

of this virus in five countries: Croatia, Germany, Italy, Slovenia, and Austria, with a focus

on the second and fourth waves of infection. Special emphasis is placed on the relation-

ship between the number of infections and the number of deaths, as well as the impact of

Covid-19 fatalities on overall mortality rates in each of these countries. Motivation for this

study stems from the features present in Figure 1.

The figure shows the number of infections per million from January 27, 2020, to

September 18, 2021. The starting point corresponds to the date of the first confirmed

Covid-19 case in Germany, while the ending point is set 600 days later. This time frame

includes multiple waves of infection, with particular focus on the second and fourth waves.

For subsequent analysis, the end point will be adjusted to include data for the entire fourth

wave of the infection.

We have observed one very interesting phenomenon. We can see that all the waves

start and end at almost the same time point while the heights differ significantly from each

other.

Different heights might suggest the fact that each country had different approach to

deal with the epidemic (e.g., more or less strict lockdowns) or that the people followed

recommendations to a different degree depending on the country.

As for the same wave beginnings and ends, we know that during the second infection

wave there existed some travel restrictions (e.g., valid Covid certificates) between coun-

tries. So, the only reasonable explanation for this phenomenon is that those travel restric-

tions were inadequate. Also, it suggests that the infection rate in each country was boosted

by infections from some common, mostly European pool. Higher influx corresponded with

increased infections, whereas decline in influx resulted in reductions in infection numbers.

For our analysis we have chosen three main sets of data; DIR, DDR and MDR. Our

objective was to address several questions arising naturally from the data. What was the

impact of restrictions on the number of infections and deaths? Did vaccination help? What

1



2 CONTENTS

Figure 1: Number of infected per million. Blue: Cro, Green: Aut, Turquoise: Ita, Red:

Ger. x axis: time period in days, y axis: number of infected per million.

is the relationship between infections and deaths? Does it vary between the second and

fourth infection waves? Is it the same inside and outside the infection waves? Was overall

mortality higher during the pandemic? Was Covid-19 the leading cause of death? We

will try to answer some of these questions. Our primary focus will be on interpreting

the statistical results and parameters derived, with particular emphasis on DIR-DDR and

DDR-EMR relationship.



Chapter 1

Data and terminology

In this chapter, we will start by introducing the primary datasets used in our analysis,

followed by the introduction of additional data. The three main datasets we utilized are

DIR, DDR, and MDR. While these datasets were analyzed across all five countries, for

clarity, we will illustrate each dataset using one country as an example.

1.1 Main data

DIR stands for Daily Infection Rate. It is a sequence whose elements tell us how many

people were reported to be infected by SARS-CoV-2 on a daily basis.

DDR stands for Daily Death Rate. It is a sequence whose elements tell us how many

people have died from Covid-19 infection on a daily basis.

Both datasets were sourced from the Johns Hopkins University and Medicine website.

The data were reported directly to Johns Hopkins by local authorities in accordance with

WHO guidelines (note: these guidelines underwent several revisions during the pandemic).

MDR stands for Monthly Death Rate. It consists of sequences indicating the total

number of deaths in a given month within a specific country over multiple years. Our data

covers the period from January 2010 to August 2022. This dataset was retrieved from the

European Center for Disease Prevention and Control (ECDC).

1.2 Additional data

For our analysis, we also incorporated additional data, including the overall weekly vacci-

nation rate and the weekly vaccination rate within specific age groups.

The overall weekly vaccination rate is the percentage of the population that has received

at least one dose of the Covid-19 vaccine up to a specific date. For our analysis, the ending

3



4 CHAPTER 1. DATA AND TERMINOLOGY

date is 1 December 2021, while the starting date varies across countries based on their

initial vaccine uptake.

The weekly vaccination rate within specific age groups is the number of people re-

ceiving the first dose of vaccine during that week, divided into various age groups. In our

analysis, we will focus on two age groups: those over 60 years of age and those under 60

years of age. This data sets were retrieved from the ECDC.

1.3 Terminology

Here we will briefly explain the terms “infection wave” and “intensity.”

An infection wave is a period characterized by the rise and subsequent fall in the num-

ber of infections. It can be visualized as a hill-shaped segment in each graph in Figure

1.

Intensity refers to the peak number of infections during the infection wave. It can be

visualized as the local maximum of the infection wave in Figure 1.



Chapter 2

Mathematical methods

Now that we have introduced the data we use, we are ready to present the mathematical

methods applied in our analysis. Before definitions from descriptive statistics we will

present some basic results from probability theory using [2].

2.1 Probability Theory

Probability Space

Definition 2.1.1. A random experiment, or a random trial, is an experiment whose out-

comes, i.e., results, are not uniquely determined by the conditions under which we conduct

the experiment.

Definition 2.1.2. The sample space Ω is a non-empty set that represents the set of all

outcomes of a random experiment. The elements ω of the set Ω are called elementary

events.

Definition 2.1.3. A family F of subsets of Ω (F ¢ P(Ω)) is a σ-algebra of sets on Ω if:

1. ∅ ∈ F ;

2. A ∈ F ⇒ Ac ∈ F ;

3. Ai ∈ F , i ∈ N⇒
⋃∞

i=1 Ai ∈ F .

Definition 2.1.4. Let F be a σ-algebra on the set Ω. The ordered pair (Ω,F ) is called a

measurable space.

Definition 2.1.5. Let (Ω,F ) be a measurable space. A functionP : F → R is a probability

(on F , on Ω) if it satisfies:

5



6 CHAPTER 2. MATHEMATICAL METHODS

1. P(A) g 0,∀A ∈ F ;

2. P(Ω) = 1;

3. Ai ∈ F , i ∈ N and Ai ∩ A j = ∅ for i , j =⇒ P
(⋃∞

i=1 Ai

)

=
∑∞

i=1P(Ai).

Definition 2.1.6. An ordered triple (Ω,F ,P), where F is a σ-algebra on Ω and P is a

probability on F , is called a probability space.

Random Variable

Definition 2.1.7. Let S be an arbitrary non-empty set and A be a family of subsets of S

(A ¢ P(S )). Denote by σ(A) the smallest σ-algebra of subsets of S containing A. We

call it the σ-algebra generated byA .

Definition 2.1.8. Let B denote the σ-algebra generated by the family of all open sets on

R. B is called the Borel σ-algebra on R, and the elements of the σ-algebra B are called

Borel sets .

Definition 2.1.9. Let (Ω,F ,P) be a probability space. A function X : Ω→ R is a random

variable (on Ω) if X−1(B) ∈ F for arbitrary B ∈ B, i.e., X−1(B) ¢ F .

Definition 2.1.10. Let (Ω,F ,P) be a probability space, and let X : Ω → Rn. We say that

X is an n-dimensional random vector (or simply a random vector) (on Ω) if X−1(B) ∈ F
for every B ∈ Bn, i.e., X−1(Bn) ¢ F .

Definition 2.1.11. Let X be a random variable on (Ω,F ,P). X is a simple random variable

if its range is a finite set.

X is a simple random variable if and only if

X =

n
∑

k=1

xkKAk

where x1, x2, . . . , xn are real numbers, and A1, A2, . . . , An are pairwise disjoint events with
⋃n

k=1 Ak = Ω. KAk
denotes the characteristic function of the set Ak.

Let X1, X2 : Ω→ R. Then we define the functions X1 ( X2 and X1 ' X2 on Ω by:

(X1 ( X2)(ω) = max{X1(ω), X2(ω)}, ω ∈ Ω,

and

(X1 ' X2)(ω) = min{X1(ω), X2(ω)}, ω ∈ Ω.
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Using first of the two functions, we define the positive and negative parts of the real

function X on Ω:

X+ = X ( 0, X− = (−X) ( 0.

X+ and X− are non-negative real functions, and we have:

X = X+ − X−,

|X| = X+ + X−.

Corollary 2.1.12. X is a random variable if and only if X+ and X− are random variables.

Theorem 2.1.13. Let X be a non-negative random variable on Ω. Then there exists an

increasing sequence (Xn, n ∈ N) of non-negative simple random variables such that X =

limn→∞ Xn (on Ω).

Mathematical Expectation and Variance

The definition of mathematical expectation is conducted in three steps. First, the mathe-

matical expectation of a simple random variable is defined, then of a non-negative random

variable, and finally of a general random variable.

Let (Ω,F ,P) be a probability space. Let K be the set of all simple random variables

defined on Ω, and K+ the set of all non-negative functions in K .

Let X ∈ K , X =
∑n

k=1 xkKAk
, where A1, A2, . . . , An ∈ F are mutually disjoint.

Definition 2.1.14. Mathematical expectation of X, or simply the expectation of X, is de-

noted by E[X] and defined as:

E[X] =

n
∑

k=1

xkP(Ak).

Now let X be a non-negative random variable defined on Ω. According to Theorem

1.2.13, there exists an increasing sequence (Xn)n ∈ N of non-negative simple random vari-

ables such that X = lim n→ ∞Xn. The sequence (E[Xn])n ∈ N is an increasing sequence

in R+, so limn→∞ E[Xn] exists and may be equal to +∞.

Definition 2.1.15. Mathematical expectation of X, or simply the expectation of X, is de-

fined as

E[X] = lim
n→∞

E[Xn].

Now let X be an arbitrary random variable on Ω. It holds that X = X+ − X−, where

X+ and X− are non-negative random variables and X+, X− g 0.
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Definition 2.1.16. We say that the mathematical expectation of X, or simply the expecta-

tion of X, exists (or is defined) if at least one of the quantities E[X+], E[X−] is finite, i.e., if

min{E[X+],E[X−]} < +∞. Then by definition, we set

E[X] = E[X+] − E[X−].

We list basic properties of mathematical expectation:

Theorem 2.1.17. We have:

1. If E[X] exists and c ∈ R, then E[cX] exists and

E[cX] = cE[X].

2. If X f Y , then

E[X] f E[Y].

In the sense that

if −∞ < E[X], then −∞ < E[Y] and E[X] f E[Y],

or

if E[Y] < ∞, then E[X] < ∞ and E[X] f E[Y].

3. If E[X] exists, then

|E[X]| f E[|X|].

4. If E[X] exists, then E[XKA] exists for every A ∈ F . If E[X] is finite, then E[XKA]

is finite for every A ∈ F .

5. Let X and Y be non-negative random variables. Then

E[X + Y] = E[X] + E[Y].

Definition 2.1.18. Let X be a random variable on (Ω,F ,P) and let E[X] be finite. Then

we define the variance of X, denoted by Var(X) or σ2
X, as follows:

Var(X) = E[(X − E[X])2].

Remark 2.1.19. The positive square root of the variance is called the standard deviation

of X and is denoted by σX .
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2.2 Descriptive statistics

For this section we use [1], [3] and [4]. We will explain the linear regression model, Pear-

son correlation coefficient, p-value, and moving average. To do so, we will first introduce

some additional terms used in their definitions or descriptions.

During experiments and research, a numerical or non-numerical variable X is measured

or observed. Variable consists of n observed values x1, x2, ..., xn. In our analysis, we worked

exclusively with numerical variables, so we will assume that all variables are numerical

from this point forward. Numerical variables can be further divided into discrete (typically

the result of counting) and continuous (such as physical measurements like weight and

height). We worked only with discrete variables, so we will also assume that all variables

are discrete from this point onward.

Pearson correlation coefficient

Before defining the Pearson correlation coefficient, we need to say what is mean.

Let X be variable with the following observed values:

x1, x2, ..., xn (1)

Definition 2.2.1. Mean of (1) is the number x = 1
n
(x1 + x2 + ... + xn) = 1

n

∑n
i=1 xi

We will also introduce the terms sample variance and sample standard deviation.

Definition 2.2.2. Sample variance of (1) is the number s2
=

1
n−1

∑n
i=1(xi − x)2

Definition 2.2.3. Sample standard deviation of (1) is the number s B +
√

s2

We can now introduce some additional notation that will be used in the Pearson corre-

lation coefficient definition. Let us assume that we have two variables, X and Y with paired

observed values:

(x1, y1), (x2, y2), ..., (xn, yn) (2)

S XX B

n
∑

i=1

(xi − x)2
=

n
∑

i=1

x2
i − n · x2

(3)

S XY B

n
∑

i=1

(xi − x)(yi − y) =

n
∑

i=1

xi · yi − n · xy (4)

S YY B

n
∑

i=1

(yi − y)2
=

n
∑

i=1

y2
i − n · y2

(5)
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Definition 2.2.4. The quantity cov(X,Y) B 1
n−1

∑n
i=1(xi − x)(yi − y) is called the sample

covariance of X and Y

So, 1
n−1

S XX and 1
n−1

S YY are sample variances of X and Y respectively, and 1
n−1

S XY is a

sample covariance of X and Y .

Now we can define Pearson correlation coefficient, which is used to measure linear

correlation between two variables X and Y .

Definition 2.2.5. Pearson correlation coefficient is the number rXY B
S XY√

S XX ·S YY

The following holds:

−1 f rXY f 1

We say that if:

• rXY < 0, then X and Y are negatively correlated

• rXY > 0, then X and Y are positively correlated

• rXY = 0, there is no correlation between X and Y

Furthermore, we can divide strength of linear correlation in a following way:

• 0.8 f |rXY |, X and Y have strong correlation

• 0.4 f |rXY | < 0.8, X and Y have moderate correlation

• 0 < |rXY | < 0.4, X and Y have weak correlation

Now that we have defined strength of linear correlation, we are ready to describe linear

regression model.

Linear regression model

The main idea is to adjust the line with the equation y = α + βx to the points (2). It can be

done by using least square method. In other words, we would like to minimize the function

L(α, β) =
∑n

i=1(yi − α − βxi)
2
=
∑n

i=1(yi
2
+ α2

+ β2x2
i − 2αyi − 2βxiyi + 2αβxi). We do that

by solving the following system of equations:

∂L

∂α
(α, β) = 0 (6)

∂L

∂β
(α, β) = 0 (7)
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Let us first solve (6).

0 =
∂L

∂α
(α, β) =

n
∑

i=1

(2 · α − 2 · yi + 2 · βxi)

n
∑

i=1

α =

n
∑

i=1

(yi − βxi)

n · α = n · y − n · β · x
α = y − βx

We get an estimated value:

α̂ = y − βx (8)

Now we can solve (7).

0 =
∂L

∂β
(α, β) =

n
∑

i=1

(2 · β · xi
2 − 2 · xi · yi + 2 · αxi)

We use α obtained in (8).

0 =

n
∑

i=1

(2 · β · xi
2 − 2 · xi · yi + 2 · y · xi − 2 · β · x)

β ·
n
∑

i=1

(xi
2 − xi · x) =

n
∑

i=1

(xi · yi − xi · y)

β · (
n
∑

i=1

xi
2 − x ·

n
∑

i=1

xi) =

n
∑

i=1

xi · yi − y ·
n
∑

i=1

xi

β =

∑n
i=1 xi · yi − n · x · y
∑n

i=1 xi
2 − n · x2

Using (3) and (5), we get the estimated value:

β̂ =
S XY

S XX

(9)
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So, the resulting line has the equation given in slope-intercept form:

ŷ = α̂ + β̂ · x (10)

α̂ is called the intercept and β̂ is called the slope of linear regression.

Residuals

Of course, in real life situations it is not reasonable to expect all the points (2) to lie on

a single line. We can calculate for each point how far it is from the regression line (10)

simply by subtracting their respective values on the y-axis. More formally:

Definition 2.2.6. Linear regression residuals are values yi − ŷi where ŷi is the predicted

value from (10).

Role of p-value

In linear regression, the p-value helps determine whether the relationship between the de-

pendent variable Y and independent variable X is statistically significant. It quantifies the

probability of obtaining results that are at least as extreme as those observed, assuming that

the null hypothesis (H0) is true. H0 in this case states that there is no correlation between

X and Y (i.e., β̂ = 0).

The p-value is important because it helps us to understand whether the observed corre-

lation or regression results are likely due to chance or if there is a significant relationship

between the variables. A low p-value (typically f 0.05) indicates that we can reject the

null hypothesis, suggesting that the relationship between X and Y is statistically significant.

Conversely, a high p-value suggests that we fail to reject the null hypothesis, indicating that

any observed relationship is likely due to random variation.

2.3 Moving average

In our analysis, we will deal only with simple moving averages.

A Simple Moving Average (SMA) is a statistical measure that is used to smooth out

short-term fluctuations and highlight longer-term trends or cycles in data. Let us suppose

that we have variable X with data (1).

Definition 2.3.1. Simple moving average is the number S MAk(t) =
1
k

∑k−1
i=0 xt−i, k f t f n.



Chapter 3

Results

We will begin this chapter by explaining how we calculated EMR from the MDR dataset.

Next, we will present the results obtained from the DIR-DDR and DDR-EMR analyses

conducted during the second and fourth waves of infection. Finally, we will show the

relationship between DDR and EMR over a 12-month period.

3.1 EMR

To explain EMR we will first introduce the term ExMR which stands for Expected Mortal-

ity Rate. We have calculated ExMR using the MDR data set for a ten-year period lasting

from January 2010 to December 2019. So, we have a total of 12 sequences, each contain-

ing the number of deceased individuals during a specific month. Each sequence consists

of 10 elements, one for each year. Calculation was performed using the simple method

which we explain here. For simplicity, the first two steps are explained for one sequence

(i.e. deaths in the same month during a 10 year period).

1. Elimination of extreme values.

Let M j0 = (m j,1,m j,2, ...,m j,10) be a sequence representing the number of deaths in a

j − th month over a 10 year period. We ordered the elements in M j0 from the lowest

to the highest value and get M j = (m j,(1),m j,(2), ...,m j,(10)),m j,(1) f m j,(2) f ... f m j,(10).

We remove the first and the last element of M j and get M′j = (m j,(2),m j,(3), ...,m j,(9)).

2. Calculation of monthly averages.

We calculated the mean of the remaining 8 values in M′j: m j =
1
8

∑9
i=2 m j,(i)

3. Formation of the average mortality rate.

13



14 CHAPTER 3. RESULTS

We take the 12 calculated means m j, j = 1, 2, ..., 12 and put them in a new sequence

AMR = (m1,m2, ...,m12) containing 12 average numbers of deaths, one for each

month.

4. Application of 3-sliding averages.

a) For months from February to November, we calculated the 3-sliding average as

follows: ExMR j =
1
3
(m j−1 + m j + m j+1), j = 2, 3, ..., 11

b) For January, we calculated the 3-sliding average using December, January, and

February as follows: ExMR1 =
1
3
(m12 + m1 + m2)

c) For December, we calculated the 3-sliding average using November, December,

and January as follows: ExMR12 =
1
3
(m11 + m12 + m1)

5. Creating ExMR.

We create ExMR by putting the 12 values in a new sequence, ExMR = (ExMR1, ExMR2, ..., ExMR12)

It should be noted that the fourth step has also been done for the 5-sliding average, but

it has not shown any significant differences in results.

We can now show how ExMR looks like for each country. We will look at Figure 3.1.

Figure 3.1: ExMR throughout a year. Green: Ita, Purple: Slo, Blue: Ger, Red: Aut,

Orange: Cro. x axis: months, y axis: ExMR.
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The graphs are not drawn to scale but the idea is to see that the overall trend is consis-

tent: more deaths are expected during the winter months compared to the summer months.

Now we will explain the calculation of EMR. EMR stands for Excess Mortality Rate.

It is calculated for the period from January 2020 to August 2022 by subtracting the initial

number of deaths obtained from ECDC for each month from the corresponding number

obtained in ExMR. For comparison with DDR, we also calculated the average daily EMR.

This was achieved by dividing each EMR value by the exact number of days in the corre-

sponding month.

3.2 DIR-DDR

DIR-DDR in the second infection wave

As can be seen in Figure 1, the second infection wave started in July 2020 and continued

until February 2021. During this period, the total number of COVID-19 infections was

5,510,279 (from July 1, 2020, to February 28, 2021), and the total number of deaths was

145,354. It should be noted that no vaccine was available during this wave.

Let us now look at Figure 3.2.

Figure 3.2: DIR-DDR Cro, second infection wave. Blue: DIR, Orange: DDR. x axis: time

period in days, y axis: values.
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Figure 3.2 shows the DIR and DDR trends during the second infection wave in Croatia.

For better visualization, DIR data were divided by 20, and they were shifted by 17 days to

achieve the best fit. The graph indicates a strong correlation between DIR and DDR.

Figure 3.3: DIR-DDR scatter plot Cro, second infection wave. Blue: Data points, Red:

Linear regression line. x axis: independent variable (X from linear regression model)

values, y axis: dependent variable (Y from linear regression model) values.

As can be seen in Figure 3.3, it is evident that the regression line closely aligns with the

data points, indicating a linear increase in the number of deaths as infections rise. Next,

we will examine the residuals.

In Figure 3.4, the residuals display a discernible pattern rather than being randomly

distributed. Nonetheless, it is worth noting that these deviations are very small and can be

considered negligible.

We can now show Table 3.1 with calculated linear regression parameters, Pearson cor-

relation coefficients and p-values for all countries.

According to Table 3.1, several observations can be made. All the p-values are very

small. Pearson correlation coefficients are all greater than 0.8. The intercepts are neg-

ligible, as they are relatively small for each country. The slopes vary among countries,

predominantly clustering around value 0.02. Instead of the term “slope”, we will use the

term eF, which stands for “expected fatality” and use it during DIR-DDR analysis. Confi-
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Figure 3.4: DIR-DDR residuals Cro, second infection wave. x axis: time period in days, y

axis: residual values.

Country intercept slope confidence interval Pearson corr. coeff. p-value

Austria 9.9721 0.0205 ±2 · 0.0004 0.9726 1.5650 · 10−92

Croatia 6.1269 0.0193 ±2 · 0.0002 0.9896 1.0716 · 10−130

Germany -62.9888 0.0355 ±2 · 0.0007 0.9661 8.8508 · 10−95

Italy 79.2767 0.0211 ±2 · 0.0004 0.9725 3.2589 · 10−89

Slovenia -4.7512 0.0244 ±2 · 0.0008 0.8897 9.2157 · 10−73

Table 3.1: Intercept, slope with confidence interval, Pearson correlation coefficient and p-

value.

dence intervals are very narrow showing possible overlap only for Austria and Italy and in

extreme case for Austria and Croatia.

Now we show Table 3.2.
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Country eF intensity

Austria 0.0205 690

Croatia 0.0193 830

Germany 0.0355 250

Italy 0.0211 520

Slovenia 0.0244 800

Table 3.2: eF and intensity.

Table 3.2 presents the relationship between the calculated eF and the observed intensi-

ties. We can see that there are big differences between intensities for different countries.

DIR-DDR in the fourth infection wave

The fourth infection wave began in August 2021 and lasted until January 2022. During

that period the total number of Covid-19 infections was 11 661 227 (from 1 August 2021

until 31 January 2022) and the total number of deaths was 39 187. During the fourth wave

of infection, a vaccine was available and accessible to everyone. Hence, here we look at

vaccination rates as additional factor.

Let us now look at Figure 3.5.

Figure 3.5: DIR-DDR Ita, fourth infection wave. Blue: DIR, Orange: DDR. x axis: time

period in days, y axis: values.
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Figure 3.5 shows the DIR and DDR trends during the fourth infection wave in Italy.

For better visualization, DIR data were divided by 200, and they were shifted by 12 days

to achieve the best fit. We can see that DIR and DDR are well correlated.

Figure 3.6: DIR-DDR scatter plot Ita, fourth infection wave. Blue: Data points, Red:

Linear regression line. x axis: independent variable (X from linear regression model)

values, y axis: dependent variable (Y from linear regression model) values.

As can be seen in Figure 3.6 it is evident that the regression line closely aligns with the

data points, indicating a linear increase in the number of deaths as infections rise.

We can now show Table 3.3 with the calculated linear regression parameters, Pearson’s

correlation coefficients, and p-values for all countries.

According to Table 3.3, we can see similar results as for second infection wave. Again

it holds that all the p-values are very small, Pearson correlation coefficients all greater than

0.8 and the intercepts negligible all of them being even smaller in absolute value.

The slopes vary among countries, predominantly clustering around value 0.006. Note:

all slopes, except Croatia’s, have decreased by an order of magnitude. Confidence intervals

are again very narrow, this time showing possible overlap only for Austria and Germany.

Let us now look at Table 3.4

Table 3.4 presents the relationship between the calculated eF and the intensities as well

as their relationship with the overall vaccination rate data and age group specific vaccina-
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Country intercept eF confidence interval Pearson corr. coeff. p-value

Austria 2.0923 0.0055 ±2 · 0.0001 0.9596 7.0763 · 10−78

Croatia 2.1978 0.0125 ±2 · 0.0002 0.9779 2.9021 · 10−109

Germany 26.6874 0.0055 ±2 · 0.0002 0.9043 7.2182 · 10−66

Italy 60.9377 0.0019 ±2 · 3.0447 · 10−5 0.9859 1.2479 · 10−89

Slovenia 0.0071 0.0061 ±2 · 5.8619 · 10−5 0.9932 5.7884 · 10−140

Table 3.3: Intercept, eF with confidence interval, Pearson correlation coefficient and p-

value.

Country eF intensity overall vaccination % vaccination % 60+ vaccination % u60

Croatia 0.0125 450 54.9 75.1 46.6

Germany 0.0055 110 69.8 89.6 61.6

Italy 0.0019 100 75.2 92.8 67.5

Slovenia 0.0061 320 54.5 76.9 46.1

Austria 0.0055 200 72.9 89.9 66.9

Table 3.4: eF, intensity and vaccination rates.

tion data calculated from last week in 2020 (when first person was vaccinated) until week

49 in 2021.

3.3 DDR-EMR

DDR-EMR in the second infection wave

Let us look at Figure 3.7.

Figure 3.7 shows the DDR and EMR trends during the second infection wave in Ger-

many. We can see that DDR and EMR are well correlated.

We can now show Table 3.5 that contains the calculated slopes with confidence inter-

vals, Pearson correlation coefficients, and p-values for all countries.

According to Table 3.5, we can see similarities with DIR-DDR case with all p-values

being again very small, and Pearson correlation coefficients all greater than 0.8.

In this case slopes vary between approximately 0.70 for Croatia and 0.95 for Austria.

Confidence intervals are relatively narrow showing possible overlapping only for Germany

and Italy.
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Figure 3.7: DDR-EMR Ger, second infection wave. Blue: EMR, Orange: DDR. x axis:

time period in days, y axis: values.

Country slope confidence interval Pearson correlation coeff. p-value

Austria 0.9478 ±2 · 0.0245 0.9481 1.6887 · 10−85

Croatia 0.7031 ±2 · 0.0123 0.9753 3.7178 · 10−112

Germany 0.7909 ±2 · 0.0192 0.9512 7.8984 · 10−93

Italy 0.7654 ±2 · 0.0197 0.9486 7.7601 · 10−86

Slovenia 0.8572 ±2 · 0.0139 0.9786 2.6184 · 10−117

Table 3.5: Slopes with confidence intervals, Pearson correlation coefficients and p-values.

DDR-EMR in the fourth infection wave

Let us look at Figure 3.8.

Figure 3.8 shows the DDR and EMR trends during the fourth infection wave in Ger-

many. It appears that there could be a correlation between DDR and EMR, although a clear

common trend is no longer apparent.

We can now show Table 3.6 that contains the calculated slopes with confidence inter-

vals, Pearson correlation coefficients, and p-values for all countries.

According to Table 3.6 we can see that there is distinction between Germany and other

countries regarding the parameters. The p-values, despite some differing greatly from each

other, are again all very small (i.e., a lot smaller than 0.05). For other four countries

Pearson correlation coefficients are again greater than 0.8 while for Germany it has value
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Figure 3.8: DDR-EMR Ger, fourth infection wave. Blue: EMR, Orange: DDR. x axis:

time period in days, y axis: values.

Country Slope confidence interval Pearson correlation coeff. p-value

Austria 0.8016 ±2 · 0.0344 0.9202 1.0381 · 10−41

Croatia 0.8025 ±2 · 0.0122 0.9779 1.4490 · 10−136

Germany 0.4048 ±2 · 0.0806 0.4196 1.8386 · 10−6

Italy 0.6937 ±2 · 0.0129 0.9786 1.0734 · 10−89

Slovenia 0.7316 ±2 · 0.0080 0.9942 1.4100 · 10−96

Table 3.6: Slopes with confidence intervals, Pearson correlation coefficients and p-values.

a little bit greater than 0.4. Confidence intervals show that there are multiple possible

overlaps between all countries except Germany whose slope interval is very broad.

DDR-EMR during 12-month period

In this section, we will see the behavior of DDR and EMR during 12-month period starting

with March 2020 and ending with March 2021 to identify similarities or differences in

behavior within and outside the infection waves. First, let us explain how we calculated

cumulative numbers, all of which are calculated on monthly basis.

• For DDR. Let i be the month of interest (i = 1 for March 2020, i = 2 for April 2020

etc.). Let di, j be the number of reported deaths on j− th day of the month i and let ni
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be the number of days of month i.

1. We first calculate Monthly Death Rate (MDR). We denote monthly number of

deaths during month i with mi. mi =
∑ni

j=1
di, j. In that way we have obtained

MDR = (m1,m2, ...,m12).

2. Now we calculate cumulative Monthly Death Rate (cMDR). We denote cumu-

lative monthly number of deaths up to month i with cmi. So, cmi =
∑i

k=1 mk. In

that way we have obtained cMDR = (cm1, cm2, ..., cm12).

• For EMR. Let emri be the excess mortality for the i − th month. We calculate cu-

mulative EMR (cEMR). We denote cumulative EMR up to month i with cemri. So,

cemri =
∑i

k=1 emrk. In that way we have obtained cEMR = (cemr1, cemr2, ..., cemr12).

For better visualization, we will show the figure using logarithmic scale. In addition,

we use EMR data calculated with a 3-month average and a 6-month average. Let us now

look at Figure 3.9.

Figure 3.9: DDR-EMR cumulative logarithmic Aut, March 2020 - March 2021. Blue:

EMR with 3-month moving average, Green: EMR with 6-month moving average, Orange:

DDR. x axis: time period in months, y axis: logarithmic values.

Figure 3.9 shows that there is difference between DDR and EMR correlation throughout

the 12-month period and that the two EMR lines overlap almost perfectly.





Chapter 4

Comments and discussion

4.1 DIR-DDR analysis

DIR-DDR analysis of the second infection wave

Our study utilizes a substantial dataset, encompassing nearly 6 million infected and nearly

150,000 deceased individuals, ensuring a robust sample size.

As shown in Figure 3.2, there is a clear correlation between DIR and DDR, with both

metrics increasing and decreasing in tandem, suggesting a linear relationship. This correla-

tion was further validated through linear regression, as depicted in Figure 3.3. Additionally,

both metrics peak at approximately the same time. Residual analysis in Figure 3.4 revealed

a non-random distribution, although the residuals are very small and therefore considered

negligible.

In Table 3.1, Pearson correlation coefficients are presented, all of which are positive and

greater than 0.8. This signifies a very strong positive linear correlation between DIR and

DDR across all countries. Now we should point out that these two variables are taken

independently from one another. In other words, there was no tracking to confirm

whether the individuals who were infected are the same individuals who died.

Regarding eF, the combination of low p-values and strong correlation between DIR

and DDR supports the assertion that the slope of the linear regression directly corresponds

to the percentage of infected individuals expected to die, justifying the notation eF. Fur-

thermore, the shifts observed in DIR suggest that the average period between infection

and death is approximately two weeks. Therefore, during the second infection wave, the

expected fatality rate of Covid-19 was approximately 2 %.

From Table 3.2, it is evident that there is a nearly perfect inverse correlation between

eF and intensity. For all countries except Slovenia, lower eF values correspond to higher

intensity values.

25
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DIR-DDR analysis of the fourth infection wave

Similar to the second infection wave, the p-values in Table 3.3 are very low, indicating

statistical significance. The dataset for infections was even larger, exceeding 11.5 million

cases. Although the number of deceased was slightly smaller, just under 40,000, it remains

substantial.

Figure 3.4, like in the case of Figure 3.2 indicates strong linear correlation between

DIR and DDR. This correlation was once more confirmed through linear regression, as

depicted in Figure 3.5.

From Table 3.3 we can see that Pearson correlation coefficients are again all higher than

0.8 which confirms linearity for all countries.

Regarding eF, the combination of low p-values and strong linear correlation between

DIR and DDR again supports the assertion that the slope of the linear regression directly

indicates the percentage of infected individuals expected to die. DIR shifts again suggest

that the average period between infection and death is approximately two weeks. During

the fourth infection wave, the expected fatality rate of Covid-19 was approximately 0.5 %.

From Table 3.4, it is evident that there is a perfect positive rank correlation between

eF and intensities. In all countries, higher eF values correspond to higher intensity values.

Additionally, there is an almost perfect inverse rank correlation between eF and overall

vaccination rates, and consequently between intensities and overall vaccination rates. It is

positive only for Slovenia and Croatia, while Germany and Austria have the same slope

value despite differences in overall vaccination rates. To explain this phenomenon, we

examine vaccination rates among specific age groups.

The vaccination rate was nearly 2 % higher in Slovenia for the most at-risk population,

while in the less at-risk population, Croatia had a 0.5 % higher vaccination rate. Austria

and Germany had practically the same vaccination rate in the most at-risk group, but there

was more than a 5 % difference in the less at-risk group. This suggests that vaccinating

the elderly population had a much greater impact on the expected fatality rate than overall

vaccination rate. The case of Italy further reinforces this conclusion.

DIR-DDR analysis comparison

There are many similarities between the DIR-DDR comparisons for the second and fourth

infection waves. Both cases demonstrate statistical significance and strong linear corre-

lations, validating eF as a significant measure for observation. However, there are also

notable differences between them.

During the second infection wave, the approximate eF is four times greater than during

the fourth wave. Additionally, while the second infection wave shows an almost perfect

inverse rank correlation between eF and intensity, the fourth infection wave exhibits an

almost perfect positive rank correlation.
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All these similarities and differences lead to important conclusions.

Conclusions

1. Strong linearity suggests that if the number of infected people doubles, the expected

number of deaths also doubles within approximately two weeks.

2. Non-randomness of residuals is likely due to fewer tests during holidays or festive

periods, leading to fewer reported infections, while increased social interactions con-

tribute to higher virus spread and consequently more deaths.

3. Significant differences in eF values between the second and fourth waves, coupled

with vaccination rates, indicate that vaccination had a substantial impact on mor-

tality. Moreover, the shift in the correlation between eF and intensity from inverse

during the second wave to nearly perfectly positive during the fourth wave suggests

that vaccination also influenced susceptibility. This is further supported by the ob-

servation that intensities are much lower for each country during the fourth infection

wave than during the second.

4. By examining vaccination rates among different age groups, we can reasonably con-

clude that expected fatality was primarily influenced by the vaccination of the elderly

population.

4.2 DDR-EMR analysis

DDR-EMR analysis of the second infection wave

Again, as in DIR-DDR case, we obtain statistically significant results, as indicated by the

very low p-values shown in Table 3.5.

As shown in Figure 3.7, there is a strong indication of a positive linear correlation

between DDR and EMR, which is corroborated by the Pearson correlation coefficients in

Table 3.5, all of which are greater than 0.8.

In this context, the slope indicates the proportion of Covid-19 deaths within EMR. We

observe that this proportion ranges from approximately 70 % in Croatia to approximately

95 % in Austria.

DDR-EMR analysis of the fourth infection wave

Again as in the second wave case, we have very low p-values as shown in Table 3.6.
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As depicted in Figure 3.8, there is an indication of a positive linear correlation between

DDR and EMR, although it appears weaker compared to the second wave. The Pearson

correlation coefficients in Table 3.6 are all greater than 0.8, except for Germany, indicating

strong correlations between DDR and EMR for the other four countries, while for Ger-

many, the correlation is moderate.

The slopes range from approximately 40 % (with a very wide confidence interval) for

Germany to approximately 80 % for Croatia and Austria.

DDR-EMR analysis comparison

When comparing slopes between the second and fourth infection waves, we find that slope

values were significantly lower for all countries except Croatia, where the slope is notably

higher during the fourth infection wave.

DDR-EMR cumulative analysis

By looking at Figure 3.9 we note that the difference between the two EMR lines is barely

visible and thus negligible. Therefore, there is no significant difference in calculating EMR

using 3-month and 6-month sliding averages. Additionally, there is a noticeable difference

in the share of Covid-19 deaths in EMR during periods of high intensity compared to

periods of low intensity.

Conclusions

It can be concluded with high certainty that the share of Covid-19 deaths in EMR can be

accurately calculated. During infection waves, Covid-19 deaths predominantly contribute

to excess mortality. Conversely, during low-intensity periods, the proportion of Covid-

19 deaths in excess mortality is lower. However, for more detailed study of DDR-EMR

relationships further analysis is required.
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Summary

In this thesis, we analyze the impact of coronavirus disease Covid-19 on infections and

deaths across five Central European countries, including Croatia. Our datasets include

Daily Infection Rate (DIR), Daily Death Rate (DDR), Excess Mortality Rate (EMR), and

vaccination rates. Statistical methods employed include simple linear regression and mov-

ing average analysis. We interpret our results using p-values and Pearson correlation coeffi-

cients, focusing on correlations between DIR-DDR and DDR-EMR datasets. Our findings

are statistically significant and provide crucial insights on the disease’s impact, especially

regarding eF, vaccination rates and the influence of Covid-19 deaths on overall mortality.
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