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Vanna Žnidar

MODELING AVASCULAR TUMOUR

GROWTH

Diploma thesis

Zagreb, July, 2024



Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom

u sastavu:

1. , predsjednik

2. , član
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biologija puno više od biljaka i životinja, i samoj sebi - jer sam ja ta koja je sve to prošla,
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Introduction

The study of avascular tumour growth has been a significant area of research in the field of

mathematical biology and medicine. This is primarily due to the potential insights it can

provide into the early stages of cancer development, which can be crucial for early detec-

tion and treatment. In this thesis, I focus on several classical phenomenological models

of growth, describing, fitting, analyzing, and comparing them in the context of avascular

tumour growth.

The data used in this study are time series of average sizes of avascular tumours grown

in vitro, measured at discrete time points up to the lifetime of the tumour spheroid in cul-

ture. These measurements are part of the research under the Croatian Science Foundation

project ”Methods Developing in Mathematical Modelling in Biology and Medicine”.

Through this work, I aim to contribute to the understanding of avascular tumour growth

dynamics, potentially aiding in the development of more effective treatment strategies. I

also hope to demonstrate the power and versatility of mathematical modeling as a tool in

biological and medical research.
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Chapter 1

Tumours

1.1 About Tumours

Tumours, also known as neoplasms, are the result of uncontrolled growth of cells that can

appear in any part of the body. The study of tumours is known as oncology. There are

two main types of tumours: benign and malignant. Benign tumours are non-cancerous and

do not spread to other parts of the body, while malignant tumours, or cancers, have the

ability to invade nearby tissues and spread through the bloodstream or lymphatic system

which can cause serious health problems. In this thesis, I will study the growth of avascular

tumours, i.e., tumours that do not have access to blood.

Tumour spheroids are three-dimensional cell culture models that closely mimic the in

vivo tumour. They are used extensively in cancer research because they replicate many of

the morphological and physiological characteristics of solid tumours, including cell-cell

and cell-matrix interactions, nutrient and oxygen gradients, and drug penetration [1]. In

this paper, I will also explore the growth dynamics of tumour spheroids, providing insights

into the behaviour of avascular tumours.

Tumour discovery

The discovery and understanding of tumours have evolved significantly over the centuries,

with advancements in medical technology and research playing a crucial role. The earliest

known references to tumours date back to ancient civilizations. The Edwin Smith Papyrus,

an Egyptian medical text from around 1600 BC, contains descriptions of tumours, indicat-

ing that ancient physicians had some understanding of these abnormal growths [2].

However, the modern understanding of tumours began to take shape in the 19th century

with the advent of the microscope. This revolutionary tool allowed scientists to observe

cells and tissues at an unprecedented level of detail. One of the key figures in this era

3



4 CHAPTER 1. TUMOURS

was Rudolf Virchow, a German physician and pathologist. Often referred to as the ”father

of modern pathology,” Virchow was the first to propose that all cells, including cancerous

ones, originate from other cells, a theory known as cellular pathology [3]. His work laid

the foundation for the modern understanding of tumour formation and growth.

The late 19th and early 20th centuries saw further advancements in tumour detection

and diagnosis. The discovery of X-rays by Wilhelm Conrad Roentgen in 1895 was partic-

ularly transformative. For the first time, doctors could non-invasively visualize the internal

structures of the body, making it possible to detect tumours that were not palpable or visible

from the outside [4].

In the mid-20th century, the development of molecular biology and genetics provided

new insights into the mechanisms behind tumour growth and development. Scientists be-

gan to understand that tumours were the result of genetic mutations that lead to uncon-

trolled cell growth. This understanding has been refined and expanded over the decades,

leading to the identification of numerous genes and pathways involved in tumour forma-

tion.

Today, tumours are classified into benign (in situ) and malignant (invasive) types. It

is also classified into liquid, such as leukaemia, and solid tumours, such as carcinomas

or sarcomas. Nowadays, the detection and diagnosis of tumours involve a combination

of techniques, including physical examination, imaging tests like X-rays and MRIs, and

molecular diagnostic tests. Despite these advancements, tumours remain a significant

global health concern, highlighting the ongoing need for research and innovation in this

field. The journey from the ancient descriptions in the Edwin Smith Papyrus to the sophis-

ticated understanding we have today is a testament to the progress of medical science and

the relentless pursuit of knowledge.

Tumour classification

One of the most fascinating findings in the field of tumours is that all tumour cells originate

from a single cell that has undergone genetic mutations. These mutations can be caused

by various factors, including exposure to carcinogens, genetic predisposition, and lifestyle

choices. The genetic changes in tumour cells can lead to uncontrolled growth, invasion

of surrounding tissues, and metastasis to distant organs. The differences between tumour

types are based on molecular mechanisms, risk factors and spread patterns.
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Figure 1.1: Cancer cells and normal cells

Ilustration from [5], here Figure 1.1, represents cancer cells colored in blue, while red-

colored cells represent normal cells.

Tumours can be classified based on several factors, including histology, differentiation

(grade), or expansion (TNM) [6].

There are five primary classifications of cancer, distinguished by their histological fea-

tures: carcinoma, sarcoma, myeloma, leukaemia, and lymphoma. Additionally, there are

certain hybrid types that exhibit characteristics of more than one category. Carcinomas are

the most prevalent type of cancer [7].

Considering the differentiation of tumour cells, there are four grades: grade I (well-

differentiated), grade II (moderately differentiated), grade III (poorly differentiated), and

grade IV (undifferentiated) [6].

The TNM classification system is based on three key factors: the size and depth of the

primary tumour (T), the presence of regional lymph node involvement (N), and the pres-

ence of distant metastasis (M). This system is used to stage tumours and guide treatment

decisions [8].



6 CHAPTER 1. TUMOURS

Tumour properties

Tumours have several key properties that distinguish them from normal tissues. These

properties are known as the hallmarks of cancer [9] and include:

• Activating invasion and metastasis: Tumour cells have the ability to invade sur-

rounding tissues and spread to distant organs through the bloodstream or lymphatic

system.

• Inducing angiogenesis: Tumours stimulate the growth of new blood vessels to sup-

ply nutrients and oxygen, allowing them to grow and survive.

• Enabling replicative immortality: Tumour cells have the ability to divide indefi-

nitely, unlike normal cells that have a limited lifespan.

• Resisting cell death (apoptosis): Tumour cells can evade programmed cell death,

allowing them to survive and proliferate.

• Sustaining proliferative signaling: Tumour cells can activate signaling pathways

that promote cell growth and division. They have the ability to divide uncontrollably,

leading to the formation of masses or lesions.

• Evading growth suppressors: Tumour cells can bypass mechanisms that normally

inhibit cell growth, allowing them to proliferate unchecked.

• Deregulating cellular energetics: Tumour cells go through metabolic reprogram-

ming to maintain their high proliferation rate and energy demands.

• Avoiding immune destruction: Tumour cells can evade the immune system’s surveil-

lance and destruction, allowing them to grow unchecked.

Tumour types

Tumour, a complicated and heterogeneous disease, includes a wide range of malignancies

that can affect almost any organ of the body. These tumours are caused by abnormal cell

growth and division, which frequently results in the production of masses or lesions that

disrupt normal body activities. There are more than 100 different types of tumours that can

occur in various parts of the body. Each type of tumour has its own characteristics, causes,

and treatment methods.

Skin cancer is one of the most frequent types of cancer, consisting of basal cell carci-

noma, squamous cell carcinoma, and melanoma. UV radiation exposure from sunshine and

tanning beds are among the leading causes of skin cancer. While basal and squamous cell

carcinomas are generally less malignant, melanoma can spread quickly and pose a serious

hazard if not diagnosed early [10].
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Lung cancer ranks among the deadliest cancers worldwide, owing mostly to tobacco

use, while exposure to environmental pollutants such as asbestos and radon also plays a

role. Lung cancer can be asymptomatic until advanced stages, resulting in a poor prognosis.

Screening programs aimed at high-risk individuals, such as smokers, seek to enhance early

detection rates and outcomes [11].

Breast cancer is another common malignancy that primarily affects women, but men

can also develop it. Breast cancer can be classified into several subtypes, the most fre-

quent of which are hormone receptor-positive and HER2-positive. Early identification us-

ing mammography and advancements in treatment modalities, such as targeted medicines

and immunotherapy, have dramatically improved survival rates [12].

Prostate cancer mostly affects men and is one of the top causes of cancer-related death

among men. Although many instances proceed slowly and do not require rapid treatment,

aggressive types can spread to distant organs, posing a serious threat to health. Screening

with prostate-specific antigen (PSA) tests and digital rectal exams can assist identify people

who are at risk [13].

Colorectal cancer includes tumours of the colon and rectum and is one of the most

common cancers worldwide. Risk factors include a high-processed-meat, low-fiber diet,

sedentary lifestyle, and genetic predisposition. Screening techniques like colonoscopy can

detect precancerous polyps or early-stage cancers, allowing for appropriate intervention

[14].

Leukaemia, a malignancy of the blood and bone marrow, is caused by an abnor-

mal production of white blood cells. This broad category of disorders includes acute

lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML), chronic lymphocytic

leukaemia (CLL), and chronic myeloid leukaemia (CML). While some types of leukaemia

are more common in youngsters, others primarily afflict adults, emphasizing the age-

related nature of cancer occurrence [15].

Osteosarcoma is a type of bone cancer that typically develops in osteoblast cells that

form bone. It most commonly occurs in children and young adults, but also in older adults.

Symptoms often include bone pain, swelling, and fractures [16]. The exact cause of os-

teosarcoma is unknown. Despite being a relatively rare, osteosarcoma is the most common

type of bone cancer in children and teens.

This is just a small fraction of the possible types of tumours. Each of these tumour

types can be further subdivided into subtypes with different characteristics and prognoses.

Understanding the many forms of cancer, their prevalence, and related risks is critical for

improving prevention and treatment techniques.
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Figure 1.2: Cancer incidence for male patients in 2015 in the United States [17].
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Figure 1.3: Cancer incidence for female patients in 2015 in the United States [17].
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Figure 1.4: Cancer deaths for male patients in 2015 in the United States [17].
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Figure 1.5: Cancer deaths for female patients in 2015 in the United States [17].

In Figure 1.2 and Figure 1.3, we can see the incidence of cancer for male and female

patients in the United States in 2015, respectively. In Figure 1.4, we can see deaths caused

by cancer in the United States in 2015 for male, while Figure 1.5 represents the data for

female. Same tumour types are colored exactly the same in all graphs.



10 CHAPTER 1. TUMOURS

Figure 1.6 shows the distribution of cancer cases by age groups in the United States

in 2022. As the population ages, the incidence of cancer is expected to rise. That is why

tumours are also known as ”the disease of the elderly” because the risk of developing

cancer increases with age but can affect individuals of all ages. However, certain age

groups may be more susceptible to specific types of malignancies. For instance, childhood

tumours such as leukaemia and brain tumours are more prevalent in younger age groups,

while prostate and breast cancers are commonly diagnosed in older individuals. However,

advancements in research, early detection, and personalized treatment approaches offer

hope in mitigating the burden of tumour across diverse populations.
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Figure 1.6: Cancer cases by age groups in the United States in 2022 [18].

1.2 Osteosarcoma

Osteosarcoma (OS) is a primary malignant bone tumour with worldwide incidence of 3.4

cases per million people per year. The mail feature of OS is osteoid production in asso-

ciation with malignant mesenchymal cells [19]. OS incidence is bimodal, with peaks of

incidence at age 18 and ages over 60 [20]. It is a rare cancer, accounting for less than 1% of

all cancers diagnosed each year. It develops particularly in the long bones of the arms and
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legs [16]. The tumour is solid, hard, irregular, and often painful. If the tumour is located

near a joint, it may cause limited range of motion and difficulty moving the affected limb.

In advanced cases, the tumour may spread to other parts of the body, such as the lungs,

causing additional symptoms.

The exact cause of OS is unknown, but it is thought to be related to rapid bone growth,

as it often occurs during adolescence when children are growing rapidly [1]. Other risk

factors for osteosarcoma include genetic predisposition, exposure to radiation, and certain

genetic conditions such as Li-Fraumeni syndrome or Rothmund–Thomson syndrome and

hereditary retinoblastoma.

The diagnosis of OS typically involves a combination of imaging tests, such as X-rays,

CT scans, and MRIs, and a biopsy to confirm the presence of cancer cells [21]. Once the

diagnosis is confirmed, additional tests may be done to determine the extent of the disease

and whether it has spread to other parts of the body.

The treatment of OS typically involves a combination of surgery, chemotherapy, and

sometimes radiation therapy [21]. The primary goal of treatment is to remove the tumour

and prevent it from spreading to other parts of the body. Surgery is usually the first line

of treatment and involves removing the tumour and a margin of healthy tissue around it

to ensure that all cancer cells are removed. Chemotherapy is often used before and after

surgery to shrink the tumour and kill any remaining cancer cells. Radiation therapy may

be used in some cases to kill cancer cells that remain after surgery or to relieve pain and

other symptoms.

The prognosis for OS depends on several factors, including the stage of the disease, the

location and size of the tumour, and the patient’s age and overall health. In general, the

prognosis is better for patients with localized disease that has not spread to other parts of

the body. With advances in treatment, the survival rates for osteosarcoma have improved

significantly in recent years, with many patients achieving long-term remission or cure.

Stage I is rare and has a 90% survival rate, while stage III has a 30% survival rate.

Based on the predominant matrix production, tumours can be further divided into fi-

broblastic, chondroblastic, osteoblastic and telangiectatic OS [20], and based on the ag-

gressiveness of the tumour into low, intermediate and high grade OS [22].

Chondroblastic osteosarcoma

Chondroblastic osteosarcoma is a subtype of osteosarcoma that is characterized by the

presence of a significant amount of cartilage in the tumour. It is one of the most common

subtypes of OS. The treatment for chondroblastic OS typically involves a combination of

surgery to remove the tumour and chemotherapy to kill any remaining cancer cells. Despite

treatment, the prognosis for this subtype of osteosarcoma is often poorer than for other

subtypes, due to its aggressive nature and tendency to spread to other parts of the body.
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Osteosarcoma stem cells

Osteosarcoma stem cells are a subtype of cancer stem cells found in osteosarcoma. These

cells have the ability to self-renew and generate the diverse cells that make up the tumour.

They play a key role in tumour growth, spread, and resistance to therapy.

Osteosarcoma stem cells exhibit several key characteristics that distinguish them from

other tumour cells. They are capable of long-term self-renewal, can differentiate into vari-

ous types of tumour cells, and show resistance to many conventional cancer therapies. They

also express specific markers, such as CD133 and Stro-1, which can be used to identify and

isolate these cells [23].

Understanding osteosarcoma stem cells can provide new insights into cancer therapy.

Since these cells are resistant to many conventional therapies, targeting osteosarcoma stem

cells could be an effective way to treat OS. Research is ongoing to develop therapies that

specifically target these cells, with the aim of improving outcomes for patients with OS.

1.3 Tumour Spheroids

Tumour spheroids are three-dimensional cell culture models that are very useful tools for

studying tumour biology. They can be generated from a variety of tumour cell lines and are

used in cancer research to study tumour growth, invasion, metastasis, and drug resistance.

Formation of tumour spheroids

The multicellular tumour spheroids, hereafter MTS, culture system offers a particularly

convenient experimental paradigm for studying tumours. They are formed when mono-

layer tumour cells are grown by different in vitro methods [24]. Oxygen and nutrition

come through the surface of tumour spheroids. A three-layered model of MTS is illus-

trated in Figure 1.7: necrotic core layer a, quiescent or nonproliferating cells layer b, and

proliferating cells layer c. These three layers are distinct. In the necrotic region, which

is the inner part of the tumour, the deficiency of oxygen and nutrients causes starvation-

induced cell death. The quiescent layer refers to an area where cells are at rest and are not

in an active process of division or proliferation, while the proliferating layer refers to the

area of the tumour where cells are actively proliferating and dividing.
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a b c

Figure 1.7: Multicellular tumour spheroid

Advantages of using tumour spheroids in research

Tumour spheroids offer several advantages over traditional two-dimensional cell culture

models. They more accurately replicate the physical and biochemical characteristics of

tumours in the body [1]. This makes them a valuable tool for studying tumour growth,

invasion, and metastasis. Tumour spheroids are also more resistant to chemotherapy and

radiation therapy than monolayer cultures, making them useful for studying drug resis-

tance mechanisms. Additionally, tumour spheroids can be easily manipulated and imaged,

allowing researchers to study tumour behavior in real-time. These advantages make tumour

spheroids an invaluable tool for cancer research and drug development.

The importance of research in the field of tumour spheroids

Research in the field of tumour spheroids is essential for a lot of reasons. Firstly, re-

searching tumours helps uncover the causes of cancer, i.e. the genetic predisposition,

environmental factors, and lifestyle choices. Understanding causes can reduce the risk

of developing cancer. Secondly, the better we understand different types of tumours, the

more competent we become in their diagnosis and treatment. Early detection of tumours

increases the chances of successful treatment and improves patient prognosis. Thirdly,

studying tumours can help with the development of new therapies, including targeted ther-

apies, immunotherapies, and other innovative approaches to cancer treatment. This can

result in improved treatment options and increased survival rates. Fourthly, each tumour is

unique, necessitating personalized treatment approaches that take into account the speci-

ficities of each patient and their tumour. Studying tumours help in the development of

personalized therapeutic approaches. Finally, if we understand the causes and mechanisms

of tumour development, we can develop preventive strategies that can reduce cancer in-

cidence. This may involve lifestyle changes, screening programs, and other interventions

that mitigate exposure to risk factors. In the end, tumour research is essential to progress-
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ing the war against cancer, boosting cancer patient quality of life and reducing mortality

through improved prevention, diagnosis, and treatment.

1.4 Tumour Growth Phases and the Role of Spheroid

Cultures

Solid tumours progress through two distinct phases of growth: the avascular phase and

the vascular phase. Understanding these phases is crucial for developing effective models

and treatments.

The initial phase of tumour growth is avascular, meaning the tumour lacks its own

blood supply. During this phase, the tumour cells rely on diffusion to receive nutrients and

oxygen. This phase can be effectively studied in the laboratory using three-dimensional

multicellular spheroids. These spheroids mimic the early stages of tumour growth and

have growth kinetics similar to in vivo tumours. Typically, avascular tumour nodules grow

to a few millimeters in diameter [25].

As the tumour grows, it transitions to the vascular phase, where it can stimulate the

formation of new blood vessels, a process known as angiogenesis. This transition is crit-

ical as it allows the tumour to receive a sufficient blood supply, supporting rapid growth

and the potential for metastasis. Tumours secrete various chemical substances to induce

surrounding tissues to sprout new blood vessels toward the tumour.

The vascular phase is marked by significant changes in the tumour’s ability to invade

surrounding tissues and spread to distant parts of the body. Endothelial cells (EC) from

nearby capillaries are activated, degrade their basal lamina, and migrate toward the tumour,

forming new capillary sprouts. These sprouts eventually fuse, forming a network that

penetrates the tumour and establishes circulation [25].

Spheroid cultures are crucial for modeling the avascular phase of tumour growth and

studying the initial stages of angiogenesis. They help researchers understand how tumours

survive without a blood supply and what triggers the transition to the vascular phase. By

examining spheroids, scientists can gather data on the effects of various treatments on

tumour growth and the effectiveness of anti-angiogenic therapies.

In summary, the avascular and vascular phases of tumour growth represent key stages

in the development of solid tumours. Spheroid cultures provide a valuable tool for studying

these phases, offering insights into tumour biology and aiding in the development of new

therapeutic strategies. Understanding these phases helps researchers tackle the complex

challenges of tumour growth and metastasis.



Chapter 2

Mathematical Models

2.1 Introduction to Mathematical Models

Mathematical modeling has a distinctive philosophy and methodology, which stands in

contrast to the empirical approach of deducing mechanisms from a limited (usually small)

set of observations.
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Figure 2.1: Mathematical modeling process

In Figure 2.1, we can see diagrammatic representation of the fundamental stages of the

15
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mathematical modeling process and their interconnections.

In this paper, I will develop mathematical models to describe the growth of avascular

tumours in vitro and fit these models to experimental data to estimate the model parameters.

The goal is to gain insights into the mechanisms that drive tumour growth and to develop

predictive models that can guide future research and treatment strategies.

What is a mathematical model?

Mathematical models are an essential tool in tumour research. Following [37], one possible

definition of a mathematical model is;

Definition 2.1.1. Mathematical model is an abstract, simplified mathematical construc-

tion related to part of the ”real world” and created for a specific purpose.

It is aimed to mirror reality through the use of mathematics. The purpose of a mathe-

matical model is to capture the essential features of a system and to make predictions about

its behavior. Mathematical models can take many forms, including differential equations,

difference equations, and agent-based models. They can be used to describe a wide range

of systems, from physical systems like the motion of planets to biological systems like the

growth of tumours. In the context of tumour research, mathematical models are used to

describe the growth and spread of tumours, the response of tumours to treatment, and the

interactions between tumour cells and the immune system.

Why are mathematical models useful?

Mathematical models are useful in tumour research for several reasons. Firstly, they pro-

vide a quantitative framework for understanding tumour growth and behavior. By using

mathematical models, researchers can simulate the behavior of tumours under different

conditions, predict how tumours will grow and respond to treatment, and identify new ther-

apeutic targets. Secondly, mathematical models can help to integrate data from different

sources, such as experimental data, clinical data, and imaging data, to gain a more com-

prehensive understanding of tumour biology. Thirdly, mathematical models can be used

to test hypotheses and generate new insights into tumour biology. By comparing model

predictions with experimental data, researchers can refine their understanding of tumour

growth and behavior. Finally, mathematical models can be used to guide experimental de-

sign and optimize treatment strategies. By using mathematical models to predict the effects

of different treatments, researchers can identify the most effective treatment strategies and

optimize patient outcomes.
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Limitations of mathematical models

While mathematical models are a powerful tool in tumour research, they also have limita-

tions. Some of limitations are;

• Simplifications: Mathematical models are simplifications of reality and may not

capture all the complexities of tumour biology. For example, many models assume

homogeneous tumour growth, whereas tumours are often heterogeneous with differ-

ent cell types and microenvironments. Also, simple models are easy to manage, but

they may not be accurate enough so the results can be misleading and that is the

reason why more complex models are needed.

• Assumptions: Mathematical models rely on assumptions that may not always hold

true in practice. For example, many models assume that tumour growth is expo-

nential, whereas tumours often exhibit more complex growth patterns. Also, the

assumptions can be wrong and that can lead to wrong results.

• Data: Mathematical models require data to parameterize and validate them. If the

data used to develop the model is incomplete or inaccurate, the model predictions

may be unreliable. Also, the data can be limited and that can lead to wrong results.

• Computational complexity: Mathematical models can be computationally inten-

sive and require specialized software and expertise to develop and analyze. This can

be a barrier to their use in tumour research. Also, the complexity of the models can

be a problem because they can be hard to manage and analyze.

• Parameters: Realistic simulations require many parameters, which are often dif-

ficult to estimate. The uncertainty in parameter values can lead to uncertainty in

model predictions. Also, the parameter space can be too large to have meaningful

conclusions.

• Choosing the model: Selecting the appropriate mathematical model is crucial for

accurate results. The choice depends on the specific research question, the available

data, and the biological processes that need to be captured. However, there is often

a trade-off between model complexity and interpretability. While complex models

may capture the biological processes more accurately, they can be more difficult to

analyze and interpret. On the other hand, simpler models may be easier to understand

and analyze, but they may not capture all the relevant biological processes. There-

fore, choosing the right model requires careful consideration and expert knowledge

because incorrect models may well fit limited data.
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• Interpretation: Mathematical models can be difficult to interpret, especially for

non-experts. Understanding the assumptions, parameters, and predictions of a model

can be challenging, and misinterpretation can lead to incorrect conclusions.

Despite these limitations, mathematical models are a valuable tool in tumour research

and can provide important insights into tumour biology and treatment. Let’s take a look at

a couple of interesting models used in tumour research, and after that, at a general model

of growth.

2.2 Classical Growth Models: Logistic, von Bertalanffy,

and Gompertz

There are several mathematical models that have been developed for various purposes but

also can be used to describe tumour growth too. These models are based on different

assumptions and capture different aspects of tumour biology. Some of the most well-

known models include the logistic model, the von Bertalanffy model, and the Gompertz

model. Each of these models has its strengths and limitations, and they can be used to

describe different aspects of tumour growth.

Logistic model

The logistic model was introduced in a series of three papers by Pierre François Verhulst

between 1838 and 1847, who devised it as a model of population growth by adjusting the

exponential growth model. It is most often characterized by one of the following forms:

y′ = αLy

(

1 −
y

KL

)

= αLy − βLy2, βL =
αL

KL

.

It is somewhat unclear why is this model named logistic (French: logistique), but it is

believed that it was concocted as a contrast to logarithmic. This is because, at the time, the

term logarithmic was used to describe the today’s exponential growth. And thus, the term

logistic was used to describe the growth that is bounded by a certain limit.

The logistic model is a simple model that describes the growth of a population or tu-

mour over time. It is based on the assumption that the growth rate of the population or

tumour is proportional to the current population size, but that the growth rate decreases as

the population or tumour approaches a maximum size. The logistic model is characterized

by a sigmoidal growth curve, with an initial period of exponential growth followed by a

period of decelerating growth as the population or tumour reaches its carrying capacity,

which we will define later on. The logistic model is widely used in tumour research to

describe the growth of avascular tumours.
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Von Bertalanffy model

The von Bertalanffy model is a growth model that was first proposed by Ludwig von Berta-

lanffy in 1938. It is a non-linear model that describes the growth of an organism over time.

The model is based on the assumption that the growth rate of an organism is proportional

to the difference between the organism’s maximum growth rate and its current growth rate.

The von Bertalanffy model is given by the equation:

y′ = αByµ − βByν.

Several variations of the von Bertalanffy model have been developed to describe dif-

ferent aspects of growth, such as the growth of tumours, fish, and other organisms. The

model characterized by µ = 2
3

and ν = 1 is based on the surface rule and is often named

after von Bertalanffy. We call this model classical von Bertalanffy model. The surface rule

states that the surface area of an organism is proportional to the square of the cube root

of its volume. This rule is based on the observation that the surface area of an organism

determines its metabolic rate, while the volume of an organism determines its growth rate.

As an organism grows, its volume increases faster than its surface area. This changes the

surface area to volume ratio, which is crucial for metabolic processes.

Gompertz model

Various mathematicians have developed models to describe tumour growth over the years,

some with more success than others. Many of the early models were based on exponential

growth, but it was soon realized that tumour growth is more complex than that. A simple

exponential model predicts unbounded growth regardless of how small the growth factor

is. In reality, tumours do not grow indefinitely but reach a maximum size.

Earlier I have listed some limitations of mathematical models, and one of them is data

- mathematical models require data to parameterize and validate them. If the data used to

develop the model is incomplete or inaccurate, the model predictions may be unreliable.

This was one of the main reasons for the lack of success of the early models. However,

modern experimental tehniques have provided researchers with more accurate data on tu-

mour growth, allowing them to develop more sophisticated models that better capture the

complexities of tumour biology.

One of the most successful models is the Gompertz model, which was first proposed

by Benjamin Gompertz in 1825. In its conception, the Gompertz model was not used

to describe growth, but rather to describe human mortality rates. Gompertz developed this

model to explain the observed increase in mortality rates with age, which he noted followed

a specific exponential pattern. If we denote the distribution of human age with M(t), then

the Gompertz model is given by the equation:

M(t) = pe−ea−bt

= pABt

,
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with constants a, b, and p, where p > 0, b < 0, and A, B > 0. In the early 20th century,

biologists like L.J. Winsor and Raymond Pearl recognized the potential of the Gompertz

model for describing biological growth, particularly in populations and tumour growth.

Winsor specifically published work in 1932 using the Gompertz curve to model growth,

highlighting its applicability beyond mortality.

Mechanism of adaptation of the Gompertz model to growth

To see that the Gompertz model is a good fit for tumour growth, we need to understand

how it works. We start with a simple growth equation:

dN

dt
= aN,

where N is the magnitude of a growing quantity, t is time, and a is the intristic growth

coefficient. The quantity dN
dt

is termed rate of growth.

Now we assume that the growth coefficient a is not constant, but rather changes with

time in the following way:
da

dt
= −ka,

where k is a positive constant, so-called rate of decay of the growth coefficient. With the

initial condition a(0) = a0, the solution to this differential equation is:

a(t) = a0e−kt.

Substituting this into the original growth equation, we get:

dN

dt
= a0e−ktN.

This is a separable differential equation, which can be solved by integrating both sides:

∫

dN

N
=

∫

a0e−ktdt

ln |N| = −
a0

k
e−kt +C, C ∈ R

N(t) = e−
a0
k

e−kt+C.

With the initial condition N(0) = N0, we get:

N(t) = N0e
a0
k

(1−e−kt).

This expression defines the Gompertz distribution function, or Gompertz growth equation.
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Gompertz model for tumour growth

As I’ve mentioned earlier, the early models of tumour growth were based on exponential

growth, which predicted unbounded growth. However, it was soon realized that tumour

growth is more complex than that and that tumours reach a maximum size. A noteworthy

study by Laird [40] in 1965 compared the growth rates of various tumours and extrapolated

the growth curve to one cell.

In her study, Laird gathered extensive empirical data on the growth of tumours in mice.

This involved measuring tumour volumes over time under controlled conditions. She com-

pared several mathematical models of growth, including the exponential growth model,

the cubic growth model, and the Gompertz model, to see which best fit the empirical data.

After applying these models to her data and assessing their fit by examining how well they

could predict tumour growth over time, she found that Gompertz model, characterized by

its sigmoidal shape, matched the observed tumour growth patterns more closely than other

models.

This conclusion was no surprise, as the Gompertz model’s theoretical basis also sup-

ported its application to biological growth. The model’s form, which represents a decel-

erating growth rate as the tumour size increases, corresponded well with the biological

understanding of tumour growth constraints, such as limited resources and increasing cell

death rates as tumours grow larger.

2.3 General Model of Growth

While the Gompertz model is a good fit for many tumour growth data, it is not the only

model that can be used to describe tumour growth. I have already mentioned the logis-

tic model and the classical von Bertalanffy model, which are also commonly used in tu-

mour research. There are many other models that have been developed to describe tumour

growth, each with its strengths and limitations.

However, in this paper, I will use just one additional model that generalizes Gompertz

model;

x′ = (α − βh(x, γ))x,

where

h(x, γ) =

{

xγ−1
γ

γ , 0

ln(x) γ = 0,

where β > 0, αγ + β > 0 and γ > −1. Later we will show that it generalizes logistic and

classical von Bertalanffy models too.
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Figure 2.2: The graph of the model given x0 = 0.1 and γ , 0.

Figure 2.3: The graph of the model given x0 = 0.1 and γ = 0.

In Figure 2.2 we can see the graph of the model given x0 = 0.1 and γ , 0. Speaking of

left figure, the red color represents the graph with α = 1.5, β = 0.5, γ = −0.1, while black

color represents the graph with α = 3, β = 2, γ = −0.1. In the right figure, the difference is

that γ = 1 and it is scaled differently.

In Figure 2.3 we can see the graph of the Gompertz model given x0 = 0.1. The red

color represents the graph with α = 1.5, β = 0.5, while black color represents the graph

with α = 3, β = 2.

Proposition 2.3.1. The general solution of the given differential equation with initial con-

dition x(0) = x0 when γ = 0 is:

x(t) = e
α−(α−β ln(x0))e−βt

β .

And when γ , 0:

x(t) =

















β −
(

β − (αγ + β)x
−γ
0

)

e−(αγ+β)t

αγ + β

















− 1
γ

.
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Proof. We split the proof into two cases:

γ = 0 : In this case, the differential equation becomes:

x′ = (α − β ln(x))x

x′

(α − β ln(x))x
= 1

This equation is separable so we can solve it by integrating both sides. Let’s start

with the left side:
∫

dx

x(α − β ln(x))
=

[

y = ln(x)

dy = 1
x
dx

]

=

=

∫

dy

α − βy
=

= −
1

β
ln |α − βy| +C1 =

= −
1

β
ln |α − β ln(x)| +C1.

The right side is just t +C2 so we have:

−1

β
ln |α − β ln(x)| = t +C3, C3 ∈ R.

ln |α − β ln(x)| = −βt +C4, C4 ∈ R.
α − β ln(x) = C5e−βt, C5 ∈ R.

ln(x) =
α −C5e−βt

β
, C5 ∈ R.

x(t) = e
α−C5e−βt
β , C5 ∈ R.

Using x(0) = x0, we can find C5:

x0 = e
α−C5
β =⇒ C5 = α − β ln(x0).

So the solution is:

x(t) = e
α−(α−β ln(x0))e−βt

β .

Notice that this is Gompertz model.
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γ , 0 : In this case, the differential equation becomes:

x′ =

(

α − β xγ − 1

γ

)

x

=

(

α −
βxγ

γ
+
β

γ

)

x

= αx −
β

γ
xγ+1 +

β

γ
x

= −
β

γ
xγ+1 +

(

α +
β

γ

)

x.

We can see that this is a Bernoulli differential equation with n = γ + 1. This means

that we need to divide the equation with xγ+1:

x′ = −
β

γ
xγ+1 +

(

α +
β

γ

)

x

x′

xγ+1
= −β
γ
+

(

α +
β

γ

)

x−γ

and substitute y = x−γ and, consequently, y′ = −γx−γ−1x′:

−
1

γ
y′ = −

β

γ
+

(

α +
β

γ

)

y

y′ = β − (αγ + β) y

y′

β − (αγ + β) y
= 1

This is a separable differential equation, so we can solve it by integrating both sides:
∫

dy

β − (αγ + β) y
=

∫

dt

− ln(β − (αγ + β) y)

αγ + β
= t +C1, C1 ∈ R

ln(β − (αγ + β) y) = −(αγ + β)t +C2, C2 ∈ R
β − (αγ + β) y = C3e−(αγ+β)t, C3 ∈ R

y =
β −C3e−(αγ+β)t

αγ + β
, C3 ∈ R
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Now, using y = x−γ, we get:

x(t) =

(

β −C3e−(αγ+β)t

αγ + β

)− 1
γ

, C3 ∈ R.

All that is left is to use the initial condition x(0) = x0 to find C3:

x0 =

(

β −C3

αγ + β

)− 1
γ

=⇒ C3 = β − (αγ + β)x
−γ
0
.

So the solution is:

x(t) =

















β −
(

β − (αγ + β)x
−γ
0

)

e−(αγ+β)t

αγ + β

















− 1
γ

.

□

As can be seen, the solution to the given differential equation is quite complex. The

model is based on the observation that tumour growth is initially exponential but slows

down as the tumour reaches a certain size. Since the tumour can’t grow indefinitely, it is

useful to introduce the concept of carrying capacity, which is often denoted with K.

Definition 2.3.2. Carrying capacity is the size which the population of a species tends to

approach, given the food, water and other necessities available in the environment.

In Figure 2.4 we can see that for any initial value xi, the population size x(t) approaches

the carrying capacity K as t → ∞. This means that carrying capacity is stable equilibrium

point of the model. Equilibrium point is a state of balance and stable means that the system

will return to this state if it is slightly perturbed.
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Figure 2.4: The graph representation for the model given α = 2, β = 1 and γ = 0. The blue

color represents the graph with initial value x1 = 10, orange color with x2 = 5, green color

with x3 = 1, while red color represents the graph with x4 = 0.1. Purple colored is carrying

capacity K.

Proposition 2.3.3. The carrying capacity of the given model, assuming that 0 < x0 < K

is:

K =















(

1 +
αγ

β

)
1
γ
γ , 0

e
α
β γ = 0

Proof. It can easily be seen that x(t) is an increasing function both when γ = 0 and γ , 0.

That means that the carrying capacity is the limit of x(t) when t → ∞. We split the proof

into two cases:

γ = 0 :

K = lim
t→∞

x(t)

= lim
t→∞

e
α−(α−β ln(x0))e−βt

β

= e
α−(α−β ln(x0))·0

β

= e
α
β .
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γ , 0 :

K = lim
t→∞

x(t)

= lim
t→∞

















β −
(

β − (αγ + β)x
−γ
0

)

e−(αγ+β)t

αγ + β

















− 1
γ

=

















β −
(

β − (αγ + β)x
−γ
0

)

· 0
αγ + β

















− 1
γ

=

(

1 +
αγ

β

)
1
γ

.

□

I’ve mentioned earlier that the early models of tumour growth were not successful be-

cause they predicted unbounded growth. By introducing the concept of carrying capacity,

the model can now capture the fact that tumours can’t grow indefinitely. In the previous

proposition I’ve found the values of carrying capacity for both cases when γ = 0 and γ , 0,

thus proving that the model does not predict unbounded growth.

Since the model is a generalization of the Gompertz model, it is expected to exhibit

similar behavior. The Gompertz model is characterized by its sigmoidal shape, which rep-

resents a decelerating growth rate as the tumour size increases. This is consistent with

the biological understanding of tumour growth constraints, such as limited resources and

increasing cell death rates as tumours grow larger. The model is also based on the obser-

vation that tumour growth is initially exponential but slows down as the tumour reaches a

certain size. This is consistent with the empirical data on tumour growth, which shows that

tumours do not grow indefinitely but reach a maximum size.

Before we try to fit the model to the data, we will find the point where the exponential

growth stops and the decelerating growth starts. This point is called the inflection point.

Before we can define the inflection point, we need to define when the function is concave

and convex.

Definition 2.3.4. A real function f (x) is convex on an interval I ¢ R if:

(∀x1, x2 ∈ I) (∀x1 < x2) =⇒
(

f

(

x1 + x2

2

)

f
f (x1) + f (x2)

2

)

.

A real function f (x) is concave on an interval I ¢ R if:

(∀x1, x2 ∈ I) (∀x1 < x2) =⇒
(

f

(

x1 + x2

2

)

g
f (x1) + f (x2)

2

)

.
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Definition 2.3.5. Let I ¢ R be an interval and f (x) a real function on I. The point x0 ∈ I is

called an inflection point of f (x) if there exists δ > 0 such that f (x) is convex on ïx0 − δ, x0ð
and concave on ïx0, x0 + δð, or vice versa.

These definitions do not provide a direct way to find the inflection point, but the fol-

lowing lemma does.

Lemma 2.3.6. Let f (x) be a real function on an interval I ¢ R and x0 ∈ I. If f (x) is twice

differentiable at x0, then x0 is an inflection point of f (x) if f ′′(x0) = 0 and f ′′(x) changes

sign at x0.

Using these definitions and the given result, one can find that the inflection points are:

• When γ = 0, the inflection point is (t∗, x(t∗)) =

(

−1
β

ln
(

β

α−β ln(x0)

)

, e
α−β
β

)

.

• When γ , 0, the inflection point is (t∗, x(t∗)) =

(

−1
αγ+β

ln

(

βγ

(αγ+β)x
−γ
0
−β

)

,
(

αγ+β

βγ+β

)
1
γ

)

.

Transformation of solutions using convex combinations

In this subsection, we will transform the solutions of the differential equations obtained

earlier using convex combinations of certain basis functions. This reformulation is partic-

ularly advantageous for the practical part of my paper, where leveraging the properties of

convex combinations will facilitate more efficient and interpretable analyses.

Definition 2.3.7. Let f (x) and g(x) be real functions on an interval I ¢ R. A convex

combination of f (x) and g(x) is a function h(x) of the form:

h(x) = λ f (x) + (1 − λ)g(x),

where λ ∈ [0, 1].

The particular reformulation we will use has the following form:

x(t) = f
(

f −1(x0)e−φt + f −1(K)
(

1 − e−φt
))

,

where f (x) is an invertible function, x0 is the initial condition, K is the carrying capacity,

and φ is a constant.

Proposition 2.3.8. The reformulation of the solutions of the general model are given be-

low:

f (x) =

{

x−
1
γ , γ , 0

ex, γ = 0
, φ =

{

αγ + β, γ , 0

β, γ = 0



2.3. GENERAL MODEL OF GROWTH 29

Proof. We split the proof into two cases:

γ = 0 :

x′ = αx − βx ln(x)

x′

x
= α − β ln(x)

d

dt
ln(x) + β ln(x) = α

d

dt

(

eβt ln(x)
)

= αeβt

Integrating both sides from 0 to t, we get:

eβt ln(x(t)) − eβ·0 ln(x0) =

∫ t

0

αeβsds

eβt ln(x(t)) − ln(x0) =

[

α

β
eβs

]t

0

eβt ln(x(t)) − ln(x0) =
α

β

(

eβt − 1
)

ln(x(t)) = ln(x0)e−βt +
α

β

(

1 − e−βt
)

x(t) = eln(x0)e−βt+ α
β (1−e−βt).

This means that f (x) = ex and φ = β.

γ , 0 :

x′ = αx − βx
xγ − 1

γ

x′ = αx +
β

γ
x −
β

γ
xγ+1

x′x−1−γ =

(

α +
β

γ

)

x−γ − β
γ
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Now we can substitute y = x−γ and, consequently, y′ = −γx−γ−1x′ and y0 = x
−γ
0

:

−1

γ
y′ =

αγ + β

γ
y − β
γ

y′e(αγ+β)t + (αγ + β)ye(αγ+β)t = βe(αγ+β)t

(

ye(αγ+β)t
)′
= βe(αγ+β)t

Integrating both sides from 0 to t, we get:

ye(αγ+β)t − y0 =
β

αγ + β

(

e(αγ+β)t − 1
)

y = y0e−(αγ+β)t +
β

αγ + β

(

1 − e−(αγ+β)t
)

x =

(

x
−γ
0

e−(αγ+β)t +
β

αγ + β

(

1 − e−(αγ+β)t
)

)− 1
γ

.

This means that f (x) = x−
1
γ and φ = αγ + β.

□

Remark 2.3.9. One additional advantage of this reformulation is that it allows us to easily

check if the carrying capacity values we have obtained earlier are correct. By substituting

t = ∞ into the reformulated solutions, we can see that the carrying capacity values are

indeed correct:

f −1
1 (K1) =

α

β
=⇒ K1 = e

α
β ,

f −1
2 (K2) =

β

αγ + β
=⇒ K2 =

(

1 +
αγ

β

)
1
γ

.

Why is the general model called general?

In the previous sections, the general model of growth was introduced and its solutions

were derived. Following this, the solutions were transformed using convex combinations of

certain basis functions. This reformulation, mentioned earlier, is beneficial for the practical

part of this paper, and the reasons for its usefulness will now be explained.

To do so, I will first reformulate the logistic and classical von Bertalanffy models using

convex combinations of certain basis functions.



2.3. GENERAL MODEL OF GROWTH 31

Proposition 2.3.10. The reformulations of the logistic model x′ = αLx − βLx2 and the

classical von Bertalanffy model x′ = αBx
2
3 − βBx are given below:

f (x) =

{

x−1, logistic model

x3, classical von Bertalanffy model
, φ =

{

αL, logistic model
βB

3
, classical von Bertalanffy model

Proof. We will prove these claims separately:

Logistic Model :

x′ = αLx − βLx2

x′

x2
=
αL

x
− βL

Substituting y = x−1 and y′ = −x−2x′, we get:

y′ + αLy = βL

y′eαLt + αLyeαLt = βLeαLt

(

yeαLt)′ = βLeαLt

Integrating both sides from 0 to t, we get:

yeαLt − y0 =

∫ t

0

βLeαL sds

y = y0e−αLt +
βL

αL

(

1 − e−αLt)

x =

(

1

x0

e−αLt +
βL

αL

(

1 − e−αLt)
)−1

.

This means that f (x) = x−1 and φ = αL.

Classical von Bertalanffy Model :

x′ = αBx
2
3 − βBx

x′x−
2
3 = αB − βBx

1
3
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Substituting y = x
1
3 and y′ = 1

3
x−

2
3 x′, we get:

y′ +
βB

3
y =
αB

3

y′e
βB
3

t +
βB

3
ye
βB
3

t =
αB

3
e
βB
3

t

(

ye
βB
3

t

)′
=
αB

3
e
βB
3

t

Integrating both sides from 0 to t, we get:

ye
βB
3

t − y0 =

∫ t

0

αB

3
e
βB
3

sds

y = y0e
−βB

3
t +
αB

βB

(

1 − e−
βB
3

t

)

x =

(

x
1
3

0
e−
βB
3

t +
αB

βB

(

1 − e−
βB
3

t

)

)3

.

This means that f (x) = x3 and φ = −βB

3
.

□

Now let’s take a closer look at some of the reformulated solutions:

• General model when γ , 0: x =
(

x
−γ
0

e−(αγ+β)t +
β

αγ+β

(

1 − e−(αγ+β)t
))− 1

γ
,

• Logistic model: x =
(

x−1
0

e−αLt +
βL

αL

(

1 − e−αLt
)

)−1
,

• Classical von Bertalanffy model: x =

(

x
1
3

0
e−
βB
3

t +
αB

βB

(

1 − e−
βB
3

t

))3

.

It is now fairly easy to see why the general model is called general. By using α =

αL − βL, β = βL, and γ = 1 in the general model, we get the logistic model, and by using

α = αB − βB, β =
1
3
αB and γ = − 1

3
, we get the classical von Bertalanffy model. This means

that the general model is a generalization of both the logistic and classical von Bertalanffy

models, among many others.
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Remark 2.3.11. I have mentioned earlier that this reformulation gives us an easy way to

check if our carrying capacity values are correct. It also allows us to easily calculate the

carrying capacity values for the logistic and classical von Bertalanffy models:

KL = lim
t→∞

x(t) = lim
t→∞

(

x−1
0 e−αLt +

βL

αL

(

1 − e−αLt)
)−1

=
αL

βL

,

KB = lim
t→∞

x(t) = lim
t→∞

(

x
1
3

0
e−
βB
3

t +
αB

βB

(

1 − e−
βB
3

t

)

)3

=

(

αB

βB

)3

.

Another useful property of this reformulation is that it allows us to easily find the inflection

points of the logistic and classical von Bertalanffy models:

Inflection point of the logistic model: (t∗, x(t∗)) =

(

− 1

αL

ln

(

−βL

βL − αLx−1
0

)

,
αL

2βL

)

,

Inflection point of the classical von Bertalanffy model:

(t∗, x(t∗)) =
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Chapter 3

Fitting the Models to the Data

3.1 Data Collection

As I previously mentioned, the data used in this paper is from the Croatian Science Founda-

tion project ”Methods Developing in Mathematical Modelling in Biology and Medicine”.

It consists of time series of average sizes of avascular tumours grown in vitro, measured at

discrete time points up to the lifetime of the tumour spheroid in culture. It was collected

using a combination of experimental techniques, including cell culture, microscopy, and

image analysis.

Data preparation

After obtaining ethical approval and informed consent, I have analyzed chondroblastic os-

teosarcoma taken from a young male patient. The tumour was sampled after the chemother-

apy. To have a data set that can be used for further analysis, the data was preprocessed.

The process of tumour in vitro growth was done by a biologist. The process includes the

following steps:

1. The frozen tumour cells were kept in crio tubes on -80°C.

2. Tumour cells were thawed for the experiment and placed in adherent Petri dishes.

3. Tumour cells were grown in a culture medium DMEM/F-12 (Dulbecco’s Modified

Eagle Medium/Nutrient Mixture F-12) with 10% FBS and 1% penicillin-streptomycin.

4. The next steps were done in a laminar flow hood under sterile conditions.

5. When 80-90% confluence was reached, cells were washed with PBS (10mL) to re-

move inhibitors and dead cells.

35
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6. The 1mL of trypsin-EDTA was added so the cells could detach from the Petri dish

and left at 37°C in a humidified atmosphere with 5% CO2 for 4 minutes.

7. Medium DMEM/F-12 (5mL) was added to block the action of trypsin.

8. The cells were resuspended so they could be lifted from the surface.

9. They were transferred to a falcon tube of 15mL and centrifuged at 1300rpm for 5

minutes.

10. The supernatant was removed and the medium for spheroid growth (1mL of double

concentrated DMEM/F-12 without FBS (Fetal Bovine Serum), with ITS (Insuline,

Transferrin, Selenium), putrescine and progesterone) was added to the cells.

11. The cells were resuspended again.

12. The cell suspension was aliquoted in test tubes of 20µL and 20µL of trypan blue was

added. It was resuspended again.

13. The 13µL of the cell suspension was put in the hemocytometer and the number of

cells was counted and concentration was calculated.

14. The cell suspension was made at a concentration of 10 cells/µL. Cells were seeded

in 96 well plates in a total volume of 100µL. Respectively, 50 µL of cell suspension

and 50µL of 2% methylcellulose. Growth factors FGF and EGF were added to the

cells.

15. The plate was incubated for 24 hours.

16. The tumour cells started to grow and form a spheroid.

17. The spheroids were monitored by z-slices of 5µm thickness using a confocal mi-

croscope Leica SP8 x FLIM. 40x magnification was used. They were monitored

three times a week (Monday, Wednesday, and Friday) for nearly two months. Every

Monday and Friday FGF and EGF were added to the medium.
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The pictures of z-slices of each spheroid were taken, and the size of the spheroid was

measured using the ImageJ software. The volume of each spheroid was then calculated

using the ReViMS software.

Figure 3.1: Images of the tumour spheroid at the beginning, middle, and end of the exper-

iment

In Figure 3.1, we can see the images of the same tumour spheroid at the beginning,

middle, and end of the experiment. The spheroid grows over time, and its size increases.

The images were taken on the 1st, 12th and 28th day of the experiment, respectively. Each

image represent one z-slice of the spheroid.

Conjecture 3.1.1. The size of the tumour spheroid in a contolled environment follows a

sigmoidal (S-shaped) curve over time.

The S-shaped curve is a curve that resembles the letter ”S”. It has three parts: the initial

phase where the growth is slow, the exponential phase where the growth is rapid, and the

plateau phase where the growth slows down [39].

ImageJ software

After receiving the pictures of z-slices of the spheroids in .tif format, the goal was to

measure the size of each spheroid. I used the ImageJ software, which is a free image-

processing program developed by the National Institutes of Health. The software is widely

used in scientific research for image analysis and processing. The first step for each z-slice

of each spheroid was to transform the .tif image into a binary image. The threshold tool

was used to segment the area of interest from the background. After filling the holes in the

segmented region, the area of the spheroid z-slice was calculated by counting the number

of pixels in the segmented region. The area of interest of the spheroid in each slice was

then recorded in the data set. The pictures with areas of interest were saved and used for

further analysis.

In Figure 3.2, we can see the z-slice of a spheroid taken with a confocal microscope.

The area of interest in the z-slice obtained by the ImageJ software is shown in Figure 3.3.
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Figure 3.2: Z-slice of an osteosarcoma

spheroid imaged on a Leica TCS SP8

X confocal microscope. Magnification

40x.

Figure 3.3: Area of interest in the picture

of z-slice of a spheroid after processing

in ImageJ software.

ReViMS software

After measuring the size of each spheroid in each z-slice, the next step was to calculate the

volume of each spheroid. The ReViMS software was used for this purpose. ReViMS is a

software tool for reconstructing 3D models from 2D images, widely used in scientific re-

search for visualizing and analyzing complex structures in 3D. The first step was to import

the pictures of the spheroid z-slices processed in the ImageJ software into the ReViMS.

The software then reconstructed a 3D model of the spheroid based on the 2D images. The

volume of each spheroid was calculated by the software and recorded in the data set. Re-

construction method was linear interpolation. Parameters used for the reconstruction were

0.645 µL for x-pixels and y-pixels, and 5 µm for z-distance between consecutive section.

Figure 3.4: Area of interest of z-

slice of a tumour spheroid.
Figure 3.5: 3D model of a tumour

spheroid.
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Figure 3.4 shows the area of interest in the z-slice of a spheroid processed using the

ImageJ software. The 3D model of the spheroid obtained by the ReViMS software is

shown in Figure 3.5.

3.2 Data Set

As a basis for the further analysis, we assume that the number of cells in the spheroid is

proportional to its size.

The data set consists of 16 tumour spheroids that survived (almost) the entire experi-

ment. Each spheroid was analyzed 3 times to improve the accuracy of the measurements.

The accuracy of a measurement is the degree of closeness of the measurement to the true

value of the quantity being measured.

For each spheroid, the average size was calculated and recorded in the data set. The

average size is the sum of all sizes divided by the number of measurements.

Average volumes (in µm3) for 16 spheroids are represented in Table 3.1. The average

volume of all spheroids at each time point is given in the last column and denoted by

V . Here, values are rounded to the nearest whole number. Missing values are denoted

by a dash and were not included in the calculations because those spheroids were not

measured at that time points. The data set from the Table 3.1 was divided by 104 to make

the calculations easier and is used for further analysis and model fitting.

Volume (µm3) Spheroid

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V

1. - 23705 36349 26409 42815 10371 19319 24432 - 9110 22305 15131 21006 20093 28721 14395 22440

4. - 36956 44448 31590 24520 26817 39820 25091 25499 - 19856 17939 43546 24886 25301 40138 30458

6. - 55479 46190 50053 50158 53871 48753 51174 40295 40372 33303 50573 59753 43547 77397 36630 49170

8. 76893 87892 32990 105248 81646 50199 39806 50668 81446 72301 63817 - 104052 39432 84324 59139 68657

11. 58687 68369 85603 126069 61764 43346 93235 99736 65122 81847 74367 58767 97276 51582 82310 56069 75259

13. 75227 63724 79314 109122 76465 235573 56767 126578 75327 62726 59641 51689 55017 61460 97437 126725 88299

15. 59212 54491 64895 123310 57094 247182 - 56424 69041 97648 83984 46673 53986 74497 65493 50850 80319

18. 60498 28017 76462 122903 59986 123633 - 51555 51685 60822 28207 39934 47261 64311 142925 53710 67461

20. 50871 56735 64955 68933 50992 117555 - 60439 44946 136130 81070 43543 52415 77680 69215 33819 67286

22. 40062 41803 103796 63844 39783 106102 103785 48157 33978 - 54124 - 55953 56352 90259 76387 65313

25. 28807 50386 81990 32680 28607 52271 100007 65768 25590 38470 46056 84780 62956 39167 84200 63246 55311

27. 28245 44382 58865 35348 29894 50385 67462 58041 31494 39115 52941 95934 51501 46094 82020 73026 52797

29. 26079 76647 77202 17424 27846 60011 - 37709 20694 50912 87365 70234 56224 66148 81933 64225 54710

32. 26936 66144 100341 20565 15201 38964 - 52178 17485 42073 78774 72940 - 71362 76914 67710 53399

34. 14986 69570 83685 20384 15370 31348 - - - 24850 60987 45697 - 41169 61046 42791 42657

36. 16849 68356 83023 15044 16902 35880 - - - 37704 42059 51602 - 63665 62631 36039 44146

43. 11948 - 57400 9936 12189 39159 - - - 19087 45529 - - 65272 53742 38143 35240

48. 16028 - 76663 - 17428 37972 - - - 25393 - - - 50941 53518 42641 40073

50. 12189 - 49259 - 15606 - - - - 30356 - - - 33866 53465 48857 34800

Table 3.1: Data set of the average volume size of tumour spheroids
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3.3 Data Visualization

To better understand the data set, I have visualized the data in several ways, but first I

will present some of the notations used in the following sections; if ni is the number of

spheroids measured at ith time point, then Vi is the mean volume of ni spheroids at time

point ti;

Vi =
1

ni

ni
∑

j=1

Vi j,

where Vi j is the volume of jth spheroid at ith time point.

The average volumes of all MTS at each time point are illustrated in Figure 3.6. Time

points (in days) are represented on the x-axis, while the y-axis indicates the corresponding

average volumes.

In my investigation of spheroid growth, I have chosen to focus on the first 15 days of

the experiment, which span the initial 7 time points. Beyond this period, the spheroids

cease to grow and begin to enter a declining phase. Examining these 7 time points, the plot

shows that the average volume really follows a S-shaped curve over time.

Figure 3.6: Average volume of tumour spheroids at each time point

Another interesting plot is shown in Figure 3.7. It shows the volumes of the individual

16 tumour spheroids. Each line represents the volume of one spheroid over time.
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Figure 3.7: Volumes of 16 individual MTS

For further analysis, I need to list some statistical measures of the data set.

The variance is a measure of the dispersion or spread of a set of data points around the

mean. The standard deviation is the square root of the variance. Variance is calculated as

the average of the squared differences between each data point and the mean. The formula

for the variance is:

Var(X) =
1

n

n
∑

i=1

(xi − x)2,

where xi are data points, x is the mean of the data set, and n is the number of data points.

For sample variance we divide by n − 1 instead of n.

In this paper, the standard deviation is calculated as:

stdi =

√

√

1

ni − 1

ni
∑

j=1

(Vi j − Vi)2

In Figure 3.8 we can see the coefficients of variation for each time point. The coefficient

of variation is a measure of the relative variability of the data set around the mean. It is

calculated as the ratio of the standard deviation to the mean. The plot shows that the

coefficient of variation does not exhibit a consistent pattern of increase or decrease but

rather fluctuates up and down.

To check if mean volumes are linearly dependent on standard error, I have plotted the

mean volumes against the standard errors in Figure 3.9 and used linear regression to plot

the best-fit line. Standard error (SE) is a measure of the dispersion of the sample mean

around the true population mean. It is calculated as the ratio of the standard deviation to

the square root of the sample size. Linear regression is a statistical method to model the

relationship between a dependent variable and one or more independent variables by fitting
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a linear equation to the observed data. The plot shows that there exists a linear relationship

between these two variables.

Figure 3.8: Coefficient of variation for

each time point
Figure 3.9: Standard error vs. mean volume

Figure 3.10, presented prior to model fitting, depicts the mean volume with intervals of

±2·SE against time on the x-axis. The goal is to identify a model that accurately encom-

passes these intervals. Based on this plot, it appears that the inflection point (t∗, x(t∗)) is in

the close proximity of the point (6, 5), suggesting a critical transition in growth dynamics.

Moreover, the carrying capacity K seems to lie within the range of [7, 10].

Figure 3.10: Mean volumes of 16 MTS ±2·standard errors
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3.4 Methods of Fitting

In this section I will describe the methods used to fit models to the data. The analysis

was conducted using the Matlab programming language. Given that the function x(t|θ) is

nonlinear with respect to the parameters θ = (α, β, x0, γ), the method used for fitting is

the weighted nonlinear least squares method [39]. This method is used to estimate the

parameters of a nonlinear model by minimizing the sum of the squares of the differences

between the observed values and the values predicted by the model. For a model given by

y = x(t|θ), where y represents the predicted value, t denotes the independent variable, and θ

is the vector of parameters in parameter space Θ, the method identifies the values of θ that

minimize the function:

L(θ) =

n
∑

i=1

wi (Yi − x(ti|θ))2 ,

where n is the number of time points, w is the weight and Yi is the observed value at time

ti.

If Yi = Vi, then the weight is wi ∼ 1

SE(Vi)2
, where SE(Vi) =

stdi√
ni

. Furthermore, if we

assume that SE(Vi) ∼ Vi, then we can take wi =
1

Vi
2 .

Hence, the function to minimize becomes:

L(θ) =

n
∑

i=1

1

Vi

2

(

Vi − x(ti|θ)
)2
.

This method gives the vector of parameters θ̂ = (α̂, β̂, x̂0, γ̂) such that:

L(θ̂) = min
θ∈Θ

L(θ).

The method used in Matlab, called fminsearch [43], is a function designed to find the

minimum of a scalar function with multiple variables, starting from an initial estimate.

This function helps determine the parameters of models that best fit the data. Fminsearch

employs the Nelder-Mead simplex algorithm, a direct search method that doesn’t require

the function’s gradient. The algorithm operates based on a simplex, a geometric figure

that extends the concept of a triangle to higher dimensions. It begins with an initial sim-

plex, a set of points in the parameter space, and iteratively moves this simplex towards the

function’s minimum. During each iteration, the algorithm evaluates the function at the sim-

plex’s vertices and updates the simplex’s position accordingly. The algorithm stops when

the simplex converges to a small size or after a maximum number of iterations is reached.

It returns the model parameters that minimize the function. This algorithm is both robust

and efficient, making it suitable for fitting a wide variety of models to data.
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3.5 Model Fitting

The idea was to find parameters α, β, x0 and γ that best fit the data. Initially, I used the

Gompertz, logistic and classical von Bertalanffy models to fit the data. After that, I used the

general model and tried to find an even better fit. Since the fminsearch function in Matlab

requires an initial guess for the parameters, I have chosen to use the estimated parameters

of either the Gompertz, logistic or classical von Bertalanffy model in the general model,

depending on which provided the best fit to the data.

For the initial guess of parameter x0 for first three models, I used the mean volume

of the spheroids at the first time point. Additionally, I applied a slightly different data

transformation for each model to determine initial guesses for α and β. The fminsearch

method was used with termination tolerance (TolFun) set to default value 10−4 together

with maximum number of iterations (MaxIter) and function evaluations (MaxFunEvals)

set both to 14000.

Gompertz model

Let’s take a look on the results using the Gompertz model. The black color will be used

for this model in all plots.

Figure 3.11: Transformed data with linear

regression line

Figure 3.12: Fitted Gompertz model

In Figure 3.11 we can see the line calculated using linear regression on transformed

data. The intercept and slope of this line serve as initial parameters for α and β. Remem-

ber that γ = 0 in this model. X-axis represents the logarithmic transformation of mean

volumes, while the y-axis shows the values calculated by the formula yi =
log(V i+1)−log(V i)

ti+1−ti
.

Figure 3.12 shows the fit of the Gompertz model to the data. Parameters estimated by

the fminsearch function are αG = 0.3169, βG = 0.1279 and x0G
= 1.6249. The value of the
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criterion function is L(θ̂G) = 0.0831. However, the model fits the data poorer than it was

expected - it does not capture the second data point and fails to reach the plateau phase.

Using the formula for carrying capacity from above, it is easy to calculate that KG = 11.91

in the Gompertz model. This value could be too high for this data set. The inflection point

is (tG, x(tG)) = (5.3870, 4.3817) which is (perhaps) too early for this data set. Moreover,

within this time interval, the model does not exhibit a clear S-shaped curve.

Logistic model

Considering the logistic model, which is colored in red in all plots, the results were as

follows.

The line fitting the transformed data is shown in Figure 3.13. The intercept and slope

of this line, along with x0 mentioned earlier, serve as initial parameters. This model cor-

responds to the general model with γ = 1. In this plot, the data transformation uses the

formula yi =

1

Vi+1
− 1

Vi

ti+1−ti
on the y-axis and 1

Vi
on the x-axis.

In Figure 3.14, the fit of the logistic model to the data is shown. The parameters esti-

mated by the fminsearch function are αL = 0.2582, βL = 0.0269 and x0L
= 1.6601, with a

value of the criterion function L(θ̂L) = 0.0655. The logistic model fits all data points and ex-

hibits a nicer S-shaped curve compared to the Gompertz model. It also looks like its carry-

ing capacity is lower than the Gompertz model’s. If we calculate carrying capacity and in-

flection point, we get KL = 9.6 which is nearly reached, and (tL, x(tL)) = (6.0624, 4.8019).

These values are more appropriate and suitable for this data set.

Figure 3.13: Transformed data with linear

regression line

Figure 3.14: Fitted logistic model
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Classical von Bertalanffy model

Before we try to fit the general model, let’s review the results using the classical von Berta-

lanffy model, indicated by the color green in all plots.

Once again, the line fitting the transformed data is shown in Figure 3.15. The intercept

and slope of this line, along with x0, serve as initial parameters. This model is equivalent

to the general model when γ = − 1
3
. The plot shows the transformation of the data using the

formula yi =
V

1
3
i+1
−V i

1
3

ti+1−ti
on the y-axis and Vi

1
3 on the x-axis.

The fit of the classical von Bertalanffy model to the data is shown in Figure 3.16.

The parameters estimated by the fminsearch function are αB = 0.6285, βB = 0.2605 and

x0B
= 1.6106. The value of the criterion function is L(θ̂B) = 0.0896. However, this model

does not capture second data point, it does not reach the plateau phase nor has a clear S-

shaped curve. Its carrying capacity is KB = 14.04, which is the highest among all models

and, based on the plot, it is too high for this data set. The inflection point is (tB, x(tB)) =

(4.9906, 4.1613), which is, like in the Gompertz model, (perhaps) too early for this data

set.

Figure 3.15: Transformed data with linear

regression line

Figure 3.16: Fitted classical von Berta-

lanffy model

Comparison of the models

Upon initial inspection, the logistic model appears to best fit the data. To compare them

easier, let’s take a look at the plots of the fitted models in Figure 3.17. Once again, black

represents the Gompertz model, red represents the logistic model, and green represents the

classical von Bertalanffy model. The logistic model stands out as the most suitable because

its carrying capacity is well-matched to the data and nearly reached, it fits all data points,

exhibits the nicest S-shaped curve, and its inflection point appears most appropriate.
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Another helpful criterion for decision-making is the analysis of residuals. Residuals

are the differences between observed values and those predicted by the model. If a model

fits the data well, residuals should be randomly scattered around zero. The standardized

residual plots are shown in Figure 3.18. All residuals show a similar pattern, prompting

further analysis to determine which model’s residuals perform best.

Figure 3.17: Fitted models Figure 3.18: Standardized residuals of the fit-

ted models

I have calculated the sum of squared residuals (SSR), mean squared error (MSE) and

mean absolute error (MAE) for each model. SSR measures the total sum of the squared

differences between actual and predicted values; SSR =
∑n

i=1(yi − ŷi)
2. It is used to assess

the overall error of the model. MSE represents the average of these squared differences;

MSE = 1
n

∑n
i=1(yi− ŷi)

2, providing a measure of the average squared error. MAE is the aver-

age of the absolute differences between actual and predicted values; MAE = 1
n

∑n
i=1 |yi− ŷi|,

indicating the average absolute error of the model. Smaller values indicate better perfor-

mance for all three metrics.

The results are summarized in Table 3.2. The logistic model has the smallest SSR,

MSE and MAE, making it the best model for this data set.

Model SSR MSE MAE

Gompertz 2.7021 0.3860 0.5308

Logistic 2.0650 0.2950 0.4606

classical von Bertalanffy 2.9920 0.4274 0.5616

Table 3.2: Results of the residuals analysis



48 CHAPTER 3. FITTING THE MODELS TO THE DATA

General model

Given that residual analysis cleared up the preference, I have decided to use the logistic

model as the initial guess for the general model.

Unlike previous models, the general model requires initial guesses for all four param-

eters instead of three. The initial guesses for α, β and x0 are estimated parameters from

logistic model using α = αL − βL, β = βL and x0 = x0L
, while the initial guess for γ is 1

because that is the value of γ in the logistic model. The general model is represented in

blue in all plots.

Figure 3.19 shows the fit of the general model to the data, while Figure 3.20 represents

both logistic and general model on the same plot. The values of the parameters are α =

0.1654, β = 3.5278e − 29, x0 = 1.7620 and γ = 32.1934 and the value of the criterion

function is L(θ̂) = 0.0351. The plateau phase is reached and carrying capacity is K =

8.0604, while the inflection point is (t, x(t)) = (8.5421, 7.2296) which is (perhaps) a bit

late. Based on the plots, the general model fits the data a bit different than the logistic

model. It reaches the plateau phase before and the inflection point is later, but both models

fit all data points, and have a nice S-shaped curve.

Figure 3.19: Fitted general model Figure 3.20: Fitted logistic and general mod-

els

Let’s check the residuals in Figure 3.21. The SSE,, MSE and MAE are calculated and

presented in Table 3.3. The general model has smaller SSR, MSE and MAE, making it

better than the logistic model.
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Figure 3.21: Standardized residuals of logistic and general model

Model SSR MSE MAE

Logistic 2.0650 0.2950 0.4606

General 1.1313 0.1616 0.3258

Table 3.3: Results of the residuals analysis for logistic and general model

Since both models fit the data well, it is challenging to determine whether the general

model is truly better than the logistic model for this data set, especially given the small

number of data points. To check if there is a statistically significant difference between

these two models, let’s see the results of post hoc analysis.

3.6 Post hoc Analysis

The first analysis I have used is the F-test [39]. F-test is a statistical test used to compare

the variances of two samples. The null hypothesis is that the parameter γ is equal to the

logistic model’s γ and the alternative hypothesis is that it is not;

H0 :γ = 1

H1 :γ , 1.

F-test is calculated as:

f =

L0(θ̂0)−L(θ̂)

d f 1

L(θ̂)

d f 2

H0∼ F(d f 1, d f 2),

where L0(θ̂0) is the value of the criterion function for the logistic model with θ̂0 = (α̂0, β̂0, x̂00
),

L(θ̂) is the value of the criterion function for the general model with θ̂ = (α̂, β̂, x̂0, γ̂), d f 1
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is the difference in the number of parameters between the general and logistic models, and

d f 2 is the number of time points minus the number of parameters in the general model.

Here, d f 1 = 4 − 3 = 1 and d f 2 = 7 − 4 = 3. Following that, we easily calculate f :

f =

0.0655−0.0351
1

0.0351
3

= 2.5983.

The critical value is F(1, 3) = 10.128 using the F-distribution table with the level of sig-

nificance α = 0.05. P-value is calculated as P(F > f = 2.5983|H0) = 0.2054. A p-value

is a measure that indicates the strength of evidence against the null hypothesis in statistical

hypothesis testing. If the p-value is below a certain significance level (here 5%), it suggests

that the observed data is statistically significant. This means there is sufficient evidence to

reject the null hypothesis in favor of an alternative hypothesis, implying that the results are

unlikely to have occurred by chance alone. Since p > α, we fail to reject the null hypothe-

sis. Also, the calculated f is less than the critical value, so we can conclude that there is no

statistically significant difference between the general and logistic models in terms of their

effectiveness.

There is one more interesting calculation to do. That is the 95% confidence intervals for

the parameters θ. To do that, we used bootstrap method [42]. Using estimated parameters

θ̂ = (α̂, β̂, x̂0, γ̂) of the general model, we created new data:

V∗ki = x(ti|θ̂) + σ̂ · Vi · ε∗ki,

where k = 1, 2, ..., 999 is the number of bootstrap samples, i = 1, 2, ..., 7 is the number of

time points, x(ti|θ̂) is the volume predicted by the general model at time ti with parameters

θ̂, σ̂ is the square root of the criterion function in general model over the number of data

points minus the number of estimated parameters; (σ̂ =
√

L(θ̂)/(7 − 4)), Vi mean volume at

time ti and ε∗
ki

is a random number from the standard normal distribution N(0, 1), different

for each k and i.

Then we used the fminsearch function to find the parameters of the general model for

each bootstrap sample and stored it in the vector θ̂∗. The initial parameters used for fmin-

search call were the estimated parameters of the general model with the change of x̂0 for

V∗
k1

. The MaxIter and MaxFunEvals were changed to 200000. We sorted the vector θ̂∗ for

each parameter and calculated the 2.5% and 97.5% quantiles. To calculate the confidence

intervals for θ, we used the formula:

θ̂∗(25) − θ̂ f θ̂ − θ f θ̂
∗
(975) − θ̂.
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Parameter Lower bound Upper bound

α 0.091503 0.216434

β 0 7.1e-29

x0 1.330777 2.248796

γ -1 61.301633

Table 3.4: Confidence intervals for the parameters of the general model

The results, using previously mentioned conditions β > 0 and γ > −1, are shown in

Table 3.4. The confidence intervals for α, β and x0 are narrow, while for γ it is wider. As

we can see, γ = 1 is within limits of 95% CI for γ.

3.7 Conclusion

To conclude, both the logistic and general models fit the data better than Gompertz and

classical von Bertalanffy models. To decide which of these two models is better, the post

hoc analysis was used and showed that there is no statistically significant difference be-

tween them. The general model has 4 parameters, while the logistic model has 3, so the

general model is more complex and it is better and easier to use the logistic model for

further analysis. It is important to note that this analysis is based on only 7 time points and

16 MTS, suggesting the need for more data to make more meaningful conclusions.
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Summary

In this thesis, the aim was to analyze the growth of tumour spheroids using the Gompertz,

logistic, classical von Bertalanffy and general models of growth. The data set contains

average volumes of 16 multicellular tumour spheroids of chondroblastic osteosarcoma tu-

mours measured at 7 time points. The models were fitted to the data and compared. The

Gompertz and classical von Bertalanffy models provided poor fits to the data, while the

logistic and general models fit the data well. To decide which model is the best, the post

hoc analysis was used. The F-test showed that there is no sufficient evidence to conclude

that the models are significantly different in terms of their effectiveness. Since the logistic

model has one parameter less than the general model, it is more parsimonious and should

be used for further analysis.





Biography

I was born on April 30, 1998, in Zagreb. I attended Krunoslav Kuten Elementary School in

Vrbovec from 2005 and Vrbovec High School, general gymnasium programme, from 2013.

During my elementary and high school years, I enjoyed participating and achieved success

in numerous mathematics competitions. Therefore, after completing high school education

in 2017, I enrolled in the Undergraduate University Study of Mathematics at the Faculty

of Science in Zagreb. I completed my undergraduate studies in 2022, thus becoming a

Bachelor of Mathematics. After that, I enrolled in the Biomedical Mathematics graduate

programme in English at the same faculty.


	Table of Contents
	Introduction
	Tumours
	About Tumours
	Osteosarcoma
	Tumour Spheroids
	Tumour Growth Phases and the Role of Spheroid Cultures

	Mathematical Models
	Introduction to Mathematical Models
	Classical Growth Models: Logistic, von Bertalanffy, and Gompertz
	General Model of Growth

	Fitting the Models to the Data
	Data Collection
	Data Set
	Data Visualization
	Methods of Fitting
	Model Fitting
	Post hoc Analysis
	Conclusion

	Bibliography

