
Optical conductivity of anisotropic Dirac semimetals:
The relaxation-time approximation

Kupčić, I.; Kordić, J.

Source / Izvornik: Physical Review B, 2024, 109

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevB.109.045426

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:192736

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-02

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevB.109.045426
https://urn.nsk.hr/urn:nbn:hr:217:192736
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:13214
https://dabar.srce.hr/islandora/object/pmf:13214


PHYSICAL REVIEW B 109, 045426 (2024)

Optical conductivity of anisotropic Dirac semimetals: The relaxation-time approximation
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The current-dipole conductivity formula for doped three-dimensional Dirac semimetals is derived by using
a modified gauge-invariant tight-binding approach. In a heavily doped regime, the effective number of charge
carriers neff

αα in the Drude contribution is found to be by a factor of 4 larger than the nominal electron concentration
n. However, its structure is the same as in standard Fermi liquid theory. In a lightly doped regime, on the other
hand, the ratio neff

αα/n is much larger, with much more complex structure of neff
αα . It is shown that the dc resistivity

and reflectivity date measured in two TlBiSSe samples can be easily understood, even in the relaxation-time
approximation, provided that finite quasiparticle lifetime effects in the momentum distribution functions are
properly taken into account.

DOI: 10.1103/PhysRevB.109.045426

I. INTRODUCTION

Over the past 15 years, there has been a lot of experimental
[1–4] and theoretical interest [5–14] in transport and electro-
dynamic properties of three-dimensional (3D) Dirac and Weyl
semimetal phases. The 3D Dirac semimetal phase is usually
found in the phase diagram at the critical point of a topological
phase transition between a normal insulator and a topolog-
ical insulator. In TlBi(S1−xSex )2 there is the phase transition
between the normal insulator TlBiS2 and the topological insu-
lator TlBiSe2. This system is particularly interesting because
by tuning the ratio of Tl:Bi during synthesis different Dirac
semimetal samples can be obtained, characterized by different
values of the nominal electron concentration n. In addition,
the properties of samples with n � 1017 cm−3 are found to be
strongly influenced by the synthesis quality.

Reconciling anomalous transport and electrodynamic
properties of such 3D systems with a linear band dispersion
with the theory based on a simple anisotropic 3D Dirac model
is the subject of the present paper. Here we use the multi-
band current-dipole Kubo approach to determine the struc-
ture of the dynamical conductivity tensor σαα (ω). The exact
form of electron-photon coupling functions is obtained by
using a modified version of the common tight-binding min-
imal substitution [15,16]. All damping effects are taken into
account phenomenologically by using two different (intra-
band and interband) relaxation rates and one quasiparticle
lifetime. This approach is found to be successful in explain-
ing seemingly inconsistent properties of ultraclean and dirty
lightly doped graphene samples [17]. The numerical results in
heavily doped graphene have shown that the effects of finite
quasiparticle lifetimes in the momentum-distribution func-
tions on σαα (ω) can be safely neglected. This approximation
leads to the common textbook multiband conductivity for-
mula [18–21] in which the momentum distribution functions

*Corresponding author: kupcic@phy.hr

are replaced by the corresponding Fermi-Dirac distribution
functions. On the other hand, in lightly doped graphene the
finite quasiparticle lifetimes, taken into account in the way
consistent with the Ward identity relations [17,22,23], are
found to lead to different results depending upon whether the
sample is dirty or clean. The same effects are found in the
present analysis of the anisotropic 3D Dirac model, as well.

The paper is organized as follows. In Sec. II, we use
lightly doped graphene as an example to explain the difference
between the nominal concentration of charge carriers n and
the effective number of charge carriers neff

αα , as well as to
show how the ratio between these two numbers relates to
two different expressions for the electron mobility. In Sec. III,
the Bloch energies and the Bloch functions of the anisotropic
3D Dirac model are calculated by using transformation in
which the effects of a finite Dirac mass are separated from the
dependence on other model parameters. A modified version
of the tight-binding minimal substitution from Appendix A is
applied to the anisotropic ordinary Drude model in Sec. IV.
This section also includes the structure of intraband and inter-
band current vertices as well as the final analytical expression
for the current-dipole conductivity formula. In Sec. V, the
numerical results for the real part of the dynamical conductiv-
ity are presented. The dynamical conductivity tensor is found
to be a result of a complicated interplay among four energy
scales: the Fermi energy, the Dirac mass parameter, intraband
and interband damping energies, and temperature. The lightly
doped regime with the Dirac mass not too large is found to
be particularly interesting because in this case the threshold
energy for interband electron-hole excitations becomes com-
parable with the damping energies and/or with kBT , resulting
in a complicated structure of both the dynamical conductivity
and the dc conductivity. In Sec. VI, the relation between
the reciprocal effective-mass tensor and the cyclotron mass
is briefly discussed. Section VII contains a brief comparison
of the current-dipole conductivity formula and the common
current-current Kubo formula. Section VIII contains conclud-
ing remarks.
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II. DC CONDUCTIVITY OF LIGHTLY DOPED GRAPHENE

In the relaxation-time approximation, the dc conductiv-
ity of a general multiband model can be represented by the
following current-dipole dc conductivity formula [the ω = 0
form of the multiband dynamical conductivity tensor σαα (ω)
from Sec. IV] [17]:

σ dc
αα =

∑
LL′

1

V

∑
kσ

h̄
∣∣JLL′

α (k, k+)
∣∣2

εLL′ (k, k+)
[nL′ (k+) − nL(k)]

× h̄�LL′
α (k)

ε2
LL′ (k, k+) + [

h̄�LL′
α (k)

]2 , (1)

where k+ = k + q. Here, the JLL′
α (k, k+) are the intraband

(L = L′) and interband (L �= L′) current vertex functions, the
εLL′ (k, k+) = εL(k) − εL′ (k+) are the renormalized electron-
hole pair energies. The band dispersions εL(k) and the current
vertex functions are usually described by simple theoretical
models [15,16] or by using different ab initio methods [24].
The �LL′

α (k) are the intraband and interband relaxation rates,
which represent the imaginary parts of the corresponding
electron-hole self-energies. In the leading approximation, they
can be treated as phenomenological parameters, which are
obtained by fitting measured resistivity and reflectivity data.
The momentum distribution functions nL(k) enable us to
treat clean and dirty electronic systems on an equal footing
[7,17,25]. In clean systems, nL(k) ≈ fL(k), where fL(k) =
f (εL(k)) is the Fermi-Dirac distribution function.

The sum
∑

k runs over the first Brillouin zone, and the
band index L runs over all bands in question. In graphene,
for example, the band index L runs over two bands, and in
the spinless fermion representation for conduction electrons
in Dirac semimetals, the sum

∑
σ is missing and the sum

∑
L

runs over four bands. When the band dispersions are simpli-
fied by using the Dirac cone approximation, then the sum

∑
k

is restricted to a small region around the Dirac points in which
the dispersions are nearly linear in wave vector. Hereafter, this
restricted sum will be labeled by

∑∗
k.

A. Electron mobility μ in graphene

It is generally agreed that in pristine graphene the intraband
and interband contributions to the dc conductivity σ dc

αα are
equally important. In this case, the dc conductivity can be
shown in the following two equivalent ways [17],

σ dc
αα = e2

m�1α

neff
αα = e2

m�1α

(
nintra

αα + ninter,1
αα

)
, (2)

or

σ dc
αα = e2

m�1α

nintra
αα + e2

m�2α

ninter,2
αα . (3)

Here [26]

nintra
αα = 1

V

∑
Lkσ

m[vL
α (k)]2

(
− ∂nL(k)

∂εL(k)

)
�1α

�LL
α (k)

(4)

is the intraband part of the total number of charge carriers
that participate in the dc conductivity, and �1α is the intra-
band relaxation rate averaged over the Fermi surface [in the
leading approximation, �1α/�LL

α (k) can be replaced by 1].
As discussed in detail below, this effective number of charge

carriers must not be confused with the nominal concentration
of charge carriers n.

Two expressions for the interband effective number of
charge carriers in Eqs. (2) and (3) are given by

ninter,i
αα = 1

V

∑
L �=L′

∑
kσ

m

e2

∣∣JLL′
α (k, k+)

∣∣2

× nL′ (k+) − nL(k)

εLL′ (k, k+)

h̄2�LL′
α (k)�iα

ε2
LL′ (k, k+) + (

h̄�LL′
α (k)

)2 ,

(5)

where i = 1, 2. For �1α = �2α , we obtain ninter,1
αα = ninter,2

αα ≡
ninter

αα . In heavily doped graphene, the interband contribution to
σ dc

αα is found to be negligible, resulting in

neff
αα ≈ nintra

αα . (6)

In 3D Dirac systems, the dc conductivity is given by the
same expressions. According to Eq. (2), it can be understood
as a function of two temperature-dependent factors, the ef-
fective number of charge carriers and the averaged relaxation
time τα = 1/�1α . In the anisotropic case, the anisotropy in σ dc

αα

originates from the anisotropy in both τα and neff
αα .

In experimental analyses, it is usual to define the electron
mobility μ

exp
α in the following way [1,20,27,28]:

σ dc
αα = eμexp

α n. (7)

This electron mobility is nothing but the dc conductivity
shown in units of mobility in the case where the effective
number of charge carriers neff

αα is replaced by the nominal
concentration of charge carriers n. In theory, on the other
hand, it is more convenient to define the electron mobility μth

α

as the product of the electron relaxation time 1/�1α and the
factor e/m, resulting in the relation [17]

σ dc
αα = eμth

α neff
αα, (8)

and

μexp
α = neff

αα

n
μth

α . (9)

For electrons with parabolic dispersion, these two expressions
for μ represent essentially the same physical quantity, the
mobility of all electrons that participate in the dc conductivity
(namely, neff

αα ≈ n in this case). However, for two-dimensional
(2D) and 3D Dirac electrons, the effective number of charge
carriers is not simply related to n. In the isotropic 3D case,
for example, one obtains n ∝ k3

F and nintra
αα ∝ k2

F. Therefore,
the ratio μexp/μth is proportional to n−1/3. Similarly, in the
2D Dirac case the relation is of the form μexp/μth ∝ 1/

√
n. A

brief discussion of the relation between neff
αα and n in 3D Dirac

semimetals is given in Sec. VI.
Figure 1 shows the dependence of μexp/μth on n in clean

lightly doped graphene calculated by using Eq. (1). The inset
of figure shows the doping dependence of neff

αα calculated at
T = 60 K and the solid line in Fig. 2 is the same function
calculated at zero temperature. In Fig. 1, it should be noticed
that in the lightly doped regime μexp is much larger than μth.
Therefore, caution is in order regarding theoretical explana-
tion of measured mobility data in different 2D and 3D Dirac
systems.
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FIG. 1. Main figure: The doping dependence of μexp/μth in
lightly doped graphene calculated by using Eq. (1), for nL (k) =
fL (k), h̄�1α = h̄�2α = 0.5 meV, and T = 60 K. Inset: The doping
dependence of neff

αα in the same case. V0 = √
3a2/2 is the primitive

cell volume.

B. Thermally activated conduction electrons

Figure 2 shows the doping dependence of neff
αα in clean

lightly doped graphene at different temperatures. nintra
αα calcu-

lated at zero temperature, nintra,0
αα , is also shown [V0nintra,0

αα ≈
0.91(m/mxx )

√
V0n, solid line]. Not surprisingly, in pristine

graphene nintra,0
αα vanishes, simply because the Fermi surface

comprises only two Dirac points. Therefore, the correspond-
ing dc conductivity, σ dc,0

αα , originates solely from the ω = 0
interband processes. In the current-dipole conductivity for-
mula, the number neff,0

αα = ninter,0
αα multiplied by eμth

α gives the
well-known result σ dc,0

αα = (π2e/2h̄) [25,29,30].
In pristine graphene, the thermally activated intraband con-

tribution to neff
αα becomes dominant even for not too high

temperatures (compare neff
αα with ninter

αα both calculated at T =
75 K). This contribution decreases with increasing doping,
and at each temperature, there is a critical value of n, nc(T ),

−0.1 −0.05 0 0.05 0.1
103 V0ne
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ef
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intra, T = 0 K
T = 75 K
inter, 75 K
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FIG. 2. The doping dependence of neff
αα in lightly doped graphene

at T = 75, 150, and 200 K, for �LL′
α (k)/�LL′ = 1, h̄�1 = h̄�2 =

5 meV and nL (k) = fL (k). The solid line is nintra
αα calculated at T =

0 K. The nominal concentration of charge carriers is n = |ne|.

at which the difference neff
αα − nintra,0

αα changes the sign. Such
a complicated temperature dependence can be easily under-
stood if we compare the alternative form of Eq. (4) with the
usual expression for n. When integrated by parts with respect
to k for �LL

α (k) = �1, Eq. (4) leads to [16,26]

nintra
αα = 1

V

∑
Lkσ

γ LL
αα (k) fL(k). (10)

n is given by Eq. (10) as well, with the reciprocal effec-
tive mass tensor γ LL

αα (k) = m∂2εL(k)/∂ p2
α replaced by unity

(pα = h̄kα). In graphene, γ LL
αα (k) = m∂2εL(k)/∂ p2

α strongly
depends on the wave vector, and, consequently, the interplay
between the temperature dependence of β and the temperature
dependence of chemical potential in Eq. (10) leads to a small
decrease in nintra

αα for n > nc(T ) and to pronounced thermal
effects for n < nc(T ).

For further considerations of the 3D Dirac model it is
appropriate also to show the expression (10) in the form valid
in the Dirac cone approximation. In this case, the electrons in
upper bands are shown in the electron picture and the holes in
lower bands in the hole picture, resulting in

nintra
αα = 1

V

∑
Lkσ

∗
sLγ LL

αα (k) f (sLεL(k)). (11)

Here the sign sL = sign(εL(k)) is equal to +1 and −1 (see the
related discussion of nintra

αα in Appendix D).

III. ANISOTROPIC 3D DIRAC MODEL

It is well known that the salient low-energy features of the
Dirac semimetals can be captured by using a simple effective
model in which the conduction electrons are described by the
generalized anisotropic 3D Dirac model with a finite Dirac
mass. In the spinless fermion representation the bare Hamil-
tonian is given by the 4 × 4 effective Hamiltonian [11,12]

H0 =
∑
ll ′k

[
ε0(k)δl,l ′ + Hll ′

0 (k)
]
c†

lkcl ′k, (12)

where

(
Hll ′

0 (k)
) =

⎛
⎜⎜⎜⎝
M(k) 0 Kz K−

0 M(k) K+ −Kz

Kz K− −M(k) 0
K+ −Kz 0 −M(k)

⎞
⎟⎟⎟⎠

≡
(M(k)I2 K · σ

K · σ −M(k)I2

)
≡ Hll (13)

and M(k) = M − 
M(k). Here I2 is the identity matrix of
size 2, the σα are three Pauli matrices, M is the Dirac mass
parameter, Kα = vFα pα , K± = Kx ± iKy, and the vFα are the
corresponding Fermi velocities. The model parameters can be
obtained by fitting the band structure of different ab initio
calculations [2,11,13,14]. In the leading approximation, the
dispersive corrections ε0(k) and 
M(k) can be set to zero.

In Eq. (12) the molecular orbital index l describes two dif-
ferent orbitals (labeled here by a and b) with two values of the
angular momentum ( j = ±1/2). We use the representation
of delocalized molecular orbitals {lk}, where |lk〉 = c†

lk|0〉,
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I. KUPČIĆ AND J. KORDIĆ PHYSICAL REVIEW B 109, 045426 (2024)

l = A, B,C, D, |Ak〉 ≡ |ak1/2〉, |Bk〉 ≡ |ak − 1/2〉, |Ck〉 ≡
|bk1/2〉, and |Dk〉 ≡ |bk − 1/2〉.

In order to separate the features related to a finite Dirac
mass from the dependence of the Bloch energies and the
Bloch functions on other model parameters, we introduce an
auxiliary representation of electronic states, which will be
called here the {mk} representation. The vectors

|mk〉 ≡ c†
mk|0〉 =

∑
l

U ∗
k (m, l )|lk〉, (14)

m = a, b, c, d , are given in terms of elements of the transfor-
mation matrix

Û lm
k = (Uk(l, m)) =

⎛
⎜⎜⎜⎝

√
2/2

√
2/2 0 0√

2/2 −√
2/2 0 0

0 0 uk vk

0 0 −v∗
k u∗

k

⎞
⎟⎟⎟⎠.

(15)

Here

uk = Kz + K+√
2K

, vk = Kz − K+√
2K

, (16)

and K2 = ∑
α K2

α . In this representation the bare Hamiltonian
becomes

H0 =
∑
mm′k

[
ε0(k)δm,m′ + Hmm′

0 (k)
]
c†

mkcm′k, (17)

where (
Hmm′

0 (k)
) =

(M(k)I2 KI2

KI2 −M(k)I2

)
. (18)

Notice that the states with m = a and c are decoupled from the
states with m = b and d , as well as that the matrix elements
Uk(l, m) are independent of M(k).

The solutions to the Schrödinger equation∑
m′

[
Hmm′

0 (k) − (εL(k) − ε0(k))δm,m′
]
U ∗

k (L, m′) = 0 (19)

are the Bloch energies εL(k) and the transformation matrix
elements Uk(m, L). A straightforward calculation gives the
bare Hamiltonian

H0 =
∑
Lk

εL(k)c†
LkcLk, (20)

with four bands with the dispersions

εL(k) − ε0(k) = sLε(k) = sL

√
K2 + M2(k), (21)

where L = 1, 2, 3, 4 is the band index, and s1 = s2 = −s3 =
−s4 = 1. The second transformation matrix is given by

Û mL
k = [Uk(m, L)] =

(
UkI2 VkI2

VkI2 −UkI2

)
, (22)

with

Uk = cos
φ(k)

2
, Vk = sin

φ(k)

2
. (23)

The auxiliary phase φ(k) is given in the usual way,

tan φ(k) = K

M(k)
. (24)

Finally, the total transformation matrix, Ûk between the de-
localized molecular orbitals |lk〉 and the Bloch states |Lk〉 =
c†

Lk|0〉, can be shown in the following form:

Ûk = (Uk(l, L)) = Û lm
k Û mL

k , (25)

where

Uk(l, L) =
∑

m

Uk(l, m)Uk(m, L). (26)

In the following, we take ε0(k) = 
M(k) = 0 as an ex-
ample (to be referred to as the anisotropic ordinary 3D Dirac
model). In this case, the band structure comprises two bands
with the dispersion ε1(k) = ε2(k) = ε(k) = √

K2 + M2 and
two bands with the dispersion ε3(k) = ε4(k) = −ε(k). For
M = 0, the dispersions are ε(k) =

√
K2 and −ε(k), respec-

tively, and the auxiliary phase φ(k) is equal to π/2, resulting
in Uk = Vk = √

2/2.

IV. DYNAMICAL CONDUCTIVITY TENSOR IN GENERAL
SPINLESS MULTIBAND MODELS

According to Ref. [11], in multiband electronic systems
with inversion symmetry and with a finite spin-orbit coupling,
it is convenient to use the spinless fermion representation for
conduction electrons. In this case, the orbital index l runs over
all molecular orbitals in the primitive cell, which participate
in building bands under consideration. The total Hamiltonian
H̃0 from Appendix A, which describes the coupling between
electrons and external electromagnetic fields, can be shown in
the following form:

H̃0 =
∑

ll ′

∑
nn′

c†
lnδRn,Rn′ H

ll ′
0

[
p̂n′ − e

c
A(Rn)

]
cl ′n′ . (27)

In the absence of static magnetic fields, we perform the
Taylor expansion in the vector potential of H̃0 to the second
order. The result is

H̃0 = H0 + H ext
1 + H ext

2 + . . . . (28)

The resulting bare Hamiltonian and the related coupling
Hamiltonian shown in the Bloch representation are given,
respectively, by

H0 =
∑
Lk

εL(k)c†
LkcLk (29)

and

H ext
1 = −1

c

∑
qα

Aα (q)Ĵα (−q),

H ext
2 = e2

2mc2

∑
qq′αβ

Aα (q − q′)Aβ (q′)γ̂αβ (−q; 2). (30)

In the coupling Hamiltonian, the current density operator and
the bare diamagnetic density operator are given by

Ĵα (q) =
∑
LL′

∑
k

JLL′
α (k, k+)c†

LkcL′k+q, (31)

γ̂αβ (q; 2) =
∑
LL′

∑
k

γ LL′
αβ (k, k+; 2)c†

LkcL′k+q. (32)
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Here JLL′
α (k, k+) and γ LL′

αβ (k, k+; 2) are the corresponding

bare vertex functions. The current vertices JLL′
α (k, k+) are

given by Eq. (B6) in Appendix B, and the γ LL′
αβ (k, k+; 2) are

given by a similar expression. Notice that in the ordinary
Dirac model Eq. (B4) gives γ LL

αβ (k, k+; 2) = 0, resulting in
H ext

2 = 0. As discussed in Appendix D in more detail, the
vertex functions γ LL

αβ (k, k+; 2) = 0 play an important role in
understanding the transverse conductivity sum rule.

The dynamical conductivity tensor of such a multiband
model can be represented by the current-dipole Kubo formula.
In the relaxation-time approximation, this formula reads as
[16]

σαα (q, ω) =
∑
LL′

1

V

∑
k

ih̄|JLL′
α (k, k+)|2

εLL′ (k, k+)

× nL′ (k+) − nL(k)

h̄ω + εLL′ (k, k+) + ih̄�LL′
α (k)

. (33)

For nL(k) = fL(k), this expression represents a compact way
of writing Eqs. (41) and (43).

A. Ordinary 3D Dirac model

In the anisotropic ordinary 3D Dirac model, the cur-
rent vertex functions JLL′

α (k, k+) ≈ JLL′
α (k) are given by

Eqs. (B9)–(B11) in Appendix B. As expected, the intraband
current vertices satisfy the electron-group-velocity theorem
[31]

JLL
α (k) = sLevFα

Kα√
K2 + M2

≡ evL
α (k) = e

∂εL(k)

∂ pα

. (34)

Here vL
α (k) is the electron group velocity in the band labeled

by the band index L. Another general conclusion is that the
interband current vertices between the bands that are degener-
ate in energy are equal to zero, i.e.,

J12
α (k) = J21

α (k) = J34
α (k) = J43

α (k) = 0. (35)

A direct consequence of the result (35) is the fact that the
coherence factors in the interband conductivity tensor can be
shown in terms of the coherence factors

J−+
α (k)J+−

β (k) =
∑
L<L′

JLL′
α (k)JL′L

β (k) (36)

and

J+−
α (k)J−+

β (k) =
∑
L>L′

JLL′
α (k)JL′L

β (k). (37)

For α = β, the result is of the form

|J−+
α (k)|2 = 2(evFα )2

[
1 − K2

α

K2 + M2

]
, (38)

while for α �= β, the coherence factors are odd functions of
Kα and Kβ ; for example,

J−+
α (k)J+−

β (k) = −2vFαvFβ

KαKβ

K2 + M2
. (39)

For nL(k) = fL(k), the resulting dynamical conductivity is
given by

σαα (q, ω) ≈ σαα (ω) = σ intra
αα (ω) + σ inter

αα (ω), (40)

where the intraband and interband contributions are given,
respectively, by

σ intra
αα (ω) = ie2

m

nintra
αα

ω + i�1α

, (41)

nintra
αα = 1

V

∑
Lk

∗
m

[
vL

α (k)
]2

(
− ∂ fL(k)

∂εL(k)

)
(42)

and

σ inter
αα (ω) = 2

V

∑
k

∗ ih̄|J−+
α (k)|2

2ε(k)

×
[

f3(k) − f1(k)

h̄ω + 2ε(k) + ih̄�2α

+ f3(k) − f1(k)

h̄ω − 2ε(k) + ih̄�2α

]
.

(43)

For simplicity, we use here the approximation already used in
the discussion of the dc conductivity in graphene in Sec. II.
In this approximation, the intraband relaxation rate is the
same for all bands but can depend on the direction of elec-
tromagnetic field, i.e., �LL

α (k) ≈ �1α = 1/τα . Similarly, for
the interband relaxation rates we assume that �LL′

α (k) ≈ �2α

(L �= L′). The expressions (41) and (43) are an obvious gener-
alization of the well-known results characterizing conduction
electrons in heavily doped graphene to the 3D case with the
finite Dirac mass.

The square of the current vertices in Eqs. (42) and (43) is
proportional to v2

Fα . Moreover, the dispersions (21) possess the
spherical symmetry in the K space. Therefore, if we neglect
the anisotropy in the relaxation rates, we obtain

σαα (ω) = v2
Fα

v̄2
F

σ iso
αα (ω). (44)

Here v̄F is a useful abbreviation, v̄3
F = vFxvFyvFz, and σ iso

αα (ω)
is the isotropic dynamical conductivity of the related isotropic
problem in which vF = v̄F is the isotropic Fermi velocity.
On one hand, this simple relation is very useful in analyzing
experimental data. If the ratios σαα (ω)/σββ (ω) are nearly
independent of frequency, then the relaxation rates �1α and
�2α are nearly isotropic. The same conclusion holds for the
temperature dependence of the dc conductivity. From the the-
oretical standpoint, on the other hand, σ iso

αα (ω) is interesting
because the angular part of integration in the K space is trivial.

V. COMPARISON WITH EXPERIMENTS

Let us first consider the isotropic massless case with the
Fermi velocity vF = 4 × 105 m/s. Figure 3 shows the doping
dependence of neff

αα [defined by Eq. (2)] in the lightly doped
region for typical values of model parameters at temperatures
up to room temperature. The solid line is the low-temperature
intraband contribution nintra

αα , while the diamonds represent n.
From this figure, one can see clearly that for the doping level
n > nc(300 K) ≈ 2 × 1017 cm−3, the thermally activated con-
tributions to nintra

αα can be safely neglected. In this doping range
the temperature dependence of the dc conductivity originates
from the temperature dependence of the intraband relaxation
rate (see Sec. VII for more details). The integrated intraband
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FIG. 3. The doping dependence of neff
αα in the isotropic ordinary

massless 3D Dirac model for vF = 4 × 105 m/s and h̄�1 = h̄�2 =
5 meV at T = 25, 150, and 300 K. The solid line is the intraband
contribution calculated at T = 25 K.

conductivity spectral weight is also nearly temperature inde-
pendent.

Let us now present the main qualitative features of the real
part of the dynamical conductivity in a typical anisotropic case
with the z-axis anisotropy described by v̄F = 4 × 105 m/s and
vFx = 5 × 105 m/s, for two doping levels close to that found
in two TlBiSSe samples (samples S1 and S3 in Ref. [2]). With
little loss of generality, we restrict the calculation to the case
where both the intraband and interband relaxation rates are
isotropic.

The solid line in Fig. 4 shows the room-temperature in-
plane dynamical conductivity Re{σxx(ω)} for M = 0, which
agrees reasonably well with the spectrum measured on sample
S1. By fitting the intraband part of the spectrum, we obtain
h̄�1 ≈ 20 meV and neff

xx ≈ 18.4 × 1019 cm−3. For given val-
ues of v̄F and vFx, we also obtain the nominal concentration of
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FIG. 4. The real part of σxx (ω) calculated for different values
of the Dirac mass parameter M, for v̄F = 4 × 105 m/s, vFx = 5 ×
105 m/s, μ(300 K) = 0.26 eV, h̄�1 = h̄�2 = 20 meV, and T =
300 K. Inset: Re{σxx (ω)} shown on a logarithmic scale. The func-
tions Re{σ iso

xx (ω)} and Re{σzz(ω)} calculated for M = 0 are given for
comparison (squares and triangles).
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FIG. 5. The real part of σ inter
xx (ω) calculated for h̄�1 = 5 meV and

T = 25 K, for different values of h̄�2. The other parameters are the
same as in Fig. 4. Inset: Re{σxx (ω)} shown on a logarithmic scale.

charge carriers

n(T ) = n(T = 0) = K3
F

3π2h̄3v̄3
F

≈ 3.57 × 1019 cm−3 (45)

and the chemical potential μ(300 K) = 0.26 eV at T = 300 K
(heavily doped case). In the present case, the z-axis dynamical
conductivity is about 25% of the in-plane conductivity (vFz ≈
2.56 × 105 m/s). Squares and triangles in the inset of Fig. 4
show, respectively, Re{σ iso

xx (ω)} and Re{σzz(ω)} for M = 0.
The interband contribution to the dc conductivity is negli-

gible even for a relatively large damping energy h̄�2 (h̄�2 =
20 meV in the figure). The corresponding contribution to
the dynamical conductivity increases with increasing h̄�2.
It becomes dominant for h̄ω > KF. For h̄ω well above the
threshold energy for interband excitations, σxx(ω) exhibits the
well-known linear dependence on frequency [7]. As discussed
in Appendix D, we use here the current-dipole Kubo formula
because it treats the interband contributions in the way con-
sistent with both the transverse conductivity sum rule and the
related effective mass theorem.

The comparison with the interband part of the spectrum
measured in the energy range 0.2–0.5 eV shows that in this
energy range the interband contribution (43) accounts only for
50% of the observed intensity. This is not surprising because
the ab initio calculations [2] show that interband optical ex-
citations that involve the states from the rest of the Brillouin
zone start already at the energy close to 0.5 eV.

Figure 4 also illustrates how Re{σxx(ω)} changes with
changing the Dirac mass parameter M, for M/KF not too large.
Since the concentration (45) depends only on the bare Fermi
energy KF, the zero-temperature interband threshold energy

shifts with M as 2
√

K2
F + M2.

Figure 5 illustrates the dependence of low-temperature
Re{σxx(ω)} on h̄�2 for M = 0 and μ(300 K) = 0.26 meV.
The intraband relaxation rate h̄�1 ≈ 5 meV is estimated from
measured resistivity data. [1] The figure shows that for n ≈
3.57 × 1019 cm−3, even for h̄�2 = 40 meV, the interband
contribution to neff

xx is below 0.5%.
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FIG. 6. The dependence of the spectral function Nxx (ω) on h̄�2

for the spectra shown in Fig. 5.

In experimental studies, it is common to represent the in-
tegrated conductivity spectral weight by the spectral function
Nαα (ω) defined by

Nαα (ω) =
∑

i

Ni
αα (ω) = 8

�2
0

∫ ω

0
dω′Re{σαα (ω′)}. (46)

Here, �0 =
√

4πe2/mV0 is an auxiliary plasma frequency, V0

is the related auxiliary primitive cell volume, and the index i =
intra, inter. For V0 = 100 Å3, N intra

αα (ω 
 �1) is equal to nintra
αα ,

given in units of 1019 cm−3. Figure 6 illustrates the spectral
function Nxx(ω) for the spectra shown in Fig. 5.

It is important to notice that in the Dirac cone approxima-
tion this spectral function is well defined as long as the upper
limit of integration over ω′ is below the cutoff energy used
in the restricted sum

∑∗
k in Eqs. (42) and (43). When h̄ω is

above this cutoff energy, then Nxx(ω) saturates to ntotal
αα given

by (D7).
In the present context, the most important fact about sam-

ple S3 from Ref. [2] is that the in-plane dc conductivity is one
order of magnitude smaller than the dc conductivity measured
previously in a similar sample. This is consistent with the
conclusions of previous theoretical studies of lightly doped
Dirac systems in the dirty regime [7,17,25]. In these studies, it
is shown that for the doping level n < nc(300 K) the damping
effects in σαα (ω) have to be treated beyond the nL(k) = fL(k)
approximation. In this case, the momentum distribution func-
tion is given by the general expression [17,23]

nL(k) =
∫ ∞

−∞

dε

2π
AL(k, ε) f (ε), (47)

where

AL(k, ε) ≈ 2h̄�i
L

[ε − εL(k)]2 + [
h̄�i

L

]2 (48)

is the single-electron spectral function in question and h̄�i
L ≈

h̄�i is the corresponding single-electron damping energy. The
dependence of the dc conductivity of dirty lightly doped Dirac
semimetals on h̄�i is expected to be similar to that found in
dirty lightly doped graphene (Fig. 7 in Ref. [17]). The effects
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FIG. 7. The dependence of Re{σxx (ω)} on h̄�2 for M = 0,
μ(50 K) = 50 meV, h̄�1 = 0.75 meV, and T = 50 K. Inset:
Re{σxx (ω)} shown on a logarithmic scale.

of h̄�i on the dc conductivity of heavily doped samples are ex-
pected to be negligible for h̄�i not too large [nL(k) ≈ fL(k),
again, in this doping range]. A detailed discussion of this
subject will be given in a future presentation [32].

In order to show the effects of h̄�2 and M on Re{σxx(ω)} in
the case in which these two energy scales are comparable to
the interband threshold energy, we take the doping level n =
2.5 × 1017 cm−3 ≈ nc(300 K) as an example [μ(50 K) =
50 meV in this case]. Figures 7 and 8 illustrate the real part of
σxx(ω) for different values of h̄�2 and M, respectively. The
inset of Fig. 8 shows the spectral function Nxx(ω) for the
same values of M. Notice that the effective number neff

xx =
6.7 × 1018 cm−3 for M = 0 is by a factor of 27 larger than
n. It decreases with increasing M [neff

xx ≈ Nxx(ω ≈ KF) in the
inset of figure].

VI. ELECTRON MOBILITY

Let us now briefly discuss two expressions for the electron
mobility from Sec. II. For simplicity, we consider a heavily
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FIG. 8. The dependence of Re{σxx (ω)} on M for μ(50 K) =
50 meV, h̄�1 = h̄�2 = 0.75 meV, and T = 50 K. Inset: The spectral
function Nxx (ω) for the same spectra.
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doped case, where interband contributions to neff
αα are negligi-

ble. It is convenient to define an averaged reciprocal effective
mass 〈γ LL

αα (k)〉/m in the following way:

nintra
αα

m
= 1

V

∑
Lk

γ LL
αα (k)

m
fL(k) =

〈
γ LL

αα (k)
〉

m
n. (49)

It is also useful to recall that the cyclotron mass in the electron
doped anisotropic ordinary 3D Dirac model is given by

m∗
α (ε, kz ) = m∗

α (ε) = vFα

v̄3
F

ε. (50)

At zero temperature, the relation between these two expres-
sions is the following:

m〈
γ LL

αα (k)
〉
0

= v̄3
F

v3
Fα

m∗
α (εF). (51)

This means that μexp and μth from Sec. II represent the
mobility of conduction electrons with mass m/〈γ LL

αα (k)〉 and
m, respectively [in the isotropic case at zero temperature the
former mass is equal to m∗

α (εF)]. The corresponding concen-
trations are n and nintra

αα .
Therefore, in heavily doped 3D Dirac semimetals at low

temperatures there is no difference between these two repre-
sentations of conduction electrons. However, it is not obvious
how to interpret the interband contribution to the dc conduc-
tivity in lightly doped samples [Eqs. (2) and (3)] in terms
of different effective masses, or how to understand different
plasma oscillations in the transverse conductivity sum rule
from Appendix D [Eqs. (D2) and (D4)], also in terms of
different effective masses.

VII. COMPARISON WITH OTHER WORK

Finally, let us briefly discuss temperature effects in
σ intra

αα (ω) in the heavily doped regime. This question will help
us to understand the relation between the present current-
dipole conductivity formula and the common current-current
conductivity formula [7–10,25], which is widely used in stud-
ies of optical properties of Dirac and Weyl semimetals. To do
this, we consider a posteriori relaxation-time approximation
[33]. In this case, the intraband conductivity is given by the
intraband term in Eq. (33),

σ intra
αα (ω) =

∑
L

1

V

∑
k

ih̄
∣∣JLL′

α (k, k)
∣∣2

εLL(k, k+)

nL(k+) − nL(k)

h̄ω + h̄MLL
α (k, ω)

,

(52)

with the damping energy ih̄�1α (k) replaced by the intraband
memory function h̄MLL

α (k, ω). The momentum distribution
function from Eqs. (47) and (47) is given now by its
general form

nL(k) = 1

β h̄

∑
iωn

GL(k, iωn), (53)

where GL(k, iωn) is the single-electron Green’s function, and
�L(k, iωn) is the corresponding single-electron self-energy.

In the leading approximation, this expression reduces to the
well-known generalized Drude formula

σ intra
αα (ω) = ie2

mαα (ω)

nintra
αα

ω + i�1α (ω)
, (54)

where mαα (ω) = m(1 + λα (ω)) is the ω-dependent effec-
tive mass, �1α (ω) = Im{〈Mα (k, ω)〉} is the ω-dependent
intraband relaxation rate, and λα (ω) = Re{〈Mα (k, ω)〉}/ω is
the dimensionless electron-phonon coupling constant. Here,
〈Mα (k, ω)〉 is the intraband memory function averaged over
the Fermi surface.

The dependence of σ intra
αα (ω) on temperature originates

predominantly from scattering of conduction electrons by
acoustic and optical phonons, described by [22,33]

h̄MLL
α (k, ω)

= − 1

N

∑
λk′

|Gλ(k, k′)|2
(

1 − JLL
α (k′)

JLL
α (k)

)

×
∑
s=±1

∑
s′=±1

f b(ωλk−k′ ) + f (ss′εL(k′))
h̄ω + iη + sεLL(k, k′) + s′h̄ωλk−k′

. (55)

Here, ωλq′ is the bare phonon frequency, λ is the phonon
branch index, Gλ(k, k′) is the electron-phonon coupling func-
tion, and f b(ωλq′ ) is the Bose-Einstein distribution function.
The first contribution in [1 − JLL

α (k′)/JLL
α (k)] in Eq. (55)

comes from two single-electron self-energy contributions,
and the second term from two vertex corrections. When
the vertex corrections are neglected, then the contribution
JLL
α (k′)/JLL

α (k) is missing, and the result is

MLL
α (k, ω) = �L(k, εL(k)/h̄ − ω − iη)

− �L(k, εL(k)/h̄ + ω + iη). (56)

Here, �L(k, εL(k)/h̄ + ω + iη) is the single-electron self-
energy in which the energy is measured with respect to the
energy of hole εL(k) and not with respect to the chemical
potential μ.

In heavily doped Dirac semimetals the temperature depen-
dence of the low-energy dynamical conductivity is expected to
be similar to that found in heavily doped graphene. According
to Ref. [33], mαα (ω) in Eq. (54) is nearly independent of
temperature and �1α (ω) is proportional to T . Finally, nintra

αα

depends on temperature in the way shown in Fig. 3 [nL(k) ≈
fL(k), in the leading approximation].

In the common current-current Kubo approach, [7–10,25]
one usually neglects the vertex corrections and very often the
real-part of the single-electron self-energy, as well. The result
for the real part of σαα (ω) obtained in this way is the same
as the result of the present relaxation-time approximation
(compare our Fig. 5 with Fig. 10 from Ref. [7], for example).
The main advantage of the present approach it that it explains
σαα (ω) in the heavily doped regime, as well as the changes
introduced by decreasing doping level, in simple physical
terms usually used in experimental optical studies.

VIII. CONCLUSION

In this paper, we have rederived the gauge-invariant tight-
binding minimal substitution in a general noninteracting
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multiband case in which the electrons are shown in the
representation of delocalized molecular orbitals. The exact
expressions for the electron-photon coupling functions (cur-
rent vertices and bare diamagnetic vertices) are used then
to determine the elements of the current-dipole dynamical
conductivity tensor. This conductivity formula is known to
be consistent with the charge continuity equation. Here, it is
shown that it is consistent with the effective mass theorem,
as well.

The results are applied to lightly doped and heavily doped
anisotropic 3D Dirac semimetals. The model parameters used
in numerical calculations are obtained by fitting the resistivity
and reflectivity data measured on two TlBiSSe samples. The
key to quantitative understanding of measured data is to make
clear distinction between the effective number of charge car-
riers neff

αα and their nominal concentration n. Although these
two numbers represent essentially the same physical quantity
in simple electronic systems with parabolic dispersion, here
the ratio neff

xx /n is found to increases from ≈4 to ≈25 when
the doping level is changed from n ≈ 3.6 × 1019 cm−3 to
n ≈ 2.5 × 1017 cm−3. The momentum distribution function
is found to play an important role in explaining differences
between heavily doped and lightly doped samples.
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APPENDIX A: TIGHT-BINDING
MINIMAL SUBSTITUTION

The gauge-invariant tight-binding minimal substitution is
valid under quite general conditions [15,16,34]. It is appli-
cable to a rich variety of problems. It represents a widely
used tool for investigating electrodynamic properties of va-
lence electrons described by different types of noninteracting
multiband electronic models. In all such cases, an appropriate
starting point is the bare Hamiltonian shown in the represen-
tation of orthogonal atomic orbitals (Wannier functions)

H0 =
∑

ll ′

∑
nn′

∑
σσ ′

c†
lnσ

〈lnσ |H0|l ′n′σ ′〉cl ′n′σ ′ . (A1)

Here c†
lnσ

is the electron creation operator in the atomic orbital
labeled by the orbital index l placed at the lattice site Rn + rl .
The matrix elements 〈lnσ |H0|l ′n′σ ′〉 stand for all relevant site
energies and bond energies.

In order to examine how electrons in Eq. (A1) respond to
applied electromagnetic fields, we use the substitution c†

lnσ
→

c̃†
lnσ

in H0, where

c̃†
lnσ

= ei(e/h̄c)A(Rn+rl )·(Rn+rl )c†
lnσ

. (A2)

The resulting total Hamiltonian

H̃0 =
∑

ll ′

∑
nn′

∑
σσ ′

c̃†
lnσ

〈lnσ |H0|l ′n′σ ′〉̃cl ′n′σ ′ (A3)

is the sum of the bare Hamiltonian H0 and the coupling
Hamiltonian H ext.

To obtain the alternative form of H̃0 it is useful first to show
H0 in the representation of delocalized atomic orbitals

c†
lkσ

= 1√
N

∑
n

eik·Rn c†
lnσ

. (A4)

The result is

H0 =
∑

ll ′

∑
kσσ ′

Hlσ,l ′σ ′
0 (k)c†

lkσ
cl ′kσ ′ , (A5)

with Hlσ,l ′σ ′
0 (k) simply related to 〈lnσ |H0|l ′n′σ ′〉. This ex-

pression can be rewritten in terms of the momentum operator
p̂n = (h̄/i)∂/∂Rn, in the following way:

H0 =
∑

ll ′

∑
nn′

∑
σσ ′

c†
lnσ

δRn,Rn′ H
lσ,l ′σ ′
0 (p̂n′ )cl ′n′σ ′ . (A6)

The total Hamiltonian H̃0 is given now by the latter expression
in which the matrix elements Hlσ,l ′σ ′

0 (p̂n′ ) are replaced by
Hlσ,l ′σ ′

0 [p̂n′ − e/cA(Rn)]. The result is

H̃0 =
∑

ll ′

∑
nn′

∑
σσ ′

c†
lnσ

δRn,Rn′ H
lσ,l ′σ ′
0

(
p̂n′ − e

c
A(Rn)

)
cl ′n′σ ′ .

(A7)

The expressions (A3) and (A7) lead to the same expression for
H ext, for the current vertex functions, and for the dynamical
conductivity tensor, as long as the states c†

lkσ
|0〉 in Eq. (A4)

represent delocalized atomic orbitals.
The 2D Dirac model is an example of such an exactly

solvable multiband problem in which the expressions (A3)
and (A7) lead to the same form of H ext. This is a direct
consequence of the fact that all elements in (A1) are simple
functions of the first-neighbor bond energy t , two site ener-
gies, EA and EB, and two second-neighbor bond energies, t ′

A
and t ′

B.

APPENDIX B: CURRENT VERTICES
IN THE ORDINARY 3D DIRAC MODEL

To obtain the coupling Hamiltonian between the con-
duction electrons and external electromagnetic fields in the
ordinary 3D Dirac model, we perform the Taylor expansion
of Eq. (27) in the main text,

H̃0 =
∑

ll ′

∑
nn′

c†
lnδRn,Rn′ H

ll ′
0

[
p̂n′ − e

c
A(Rn)

]
cl ′n′ , (B1)

to the second order in the vector potential. This expression
for H̃0 is obtained from (A7) by omitting spin indices and
by replacing local atomic orbitals c†

lnσ
|0〉 by local molecular

orbitals c†
ln|0〉. The result is

H̃0 = H0 + H ext, (B2)

where

H ext = H ext
1 + H ext

2 + · · ·
=

∑
ll ′

∑
kq

δHll ′
0 (k, q)c†

lk+qcl ′k + · · · , (B3)
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with

δHll ′
0 (k, q) ≈ − e

c

∑
α

∂Hll ′
0 (k)

∂ pα

Aα (q)

+ e2

2c2

∑
q′αβ

∂2Hll ′
0 (k)

∂ pα∂ pβ

Aα (q − q′)Aβ (q′) (B4)

and pα = h̄kα again.
We use now the transformation matrix elements Uk(l, L)

from the main text, between the delocalized molecular orbitals
|lk〉 and the Bloch states |Lk〉,

|lk〉 =
∑

L

Uk(l, L)|Lk〉, (B5)

to obtain

JLL′
α (k, k+) ≈ JLL′

α (k) =
∑

ll ′
U T

k (L, l ) jll ′
α (k)U ∗

k (l ′, L′).

(B6)

As mentioned in the main text, in the ordinary 3D Dirac
model both dispersive corrections in Eq. (13) are set to zero
[ε0(k) = 
M(k) = 0]. In this case, the bare current vertex
functions are given by

jll ′
α (k) = e

∂Hll ′
0 (k)

∂ pα

, (B7)

while the auxiliary phase φ(k) satisfies the relation

tan φ(k) = K

M
. (B8)

A straightforward calculation gives the following expres-
sions for the intraband and interband current vertex functions
JLL′
α (k):

(
JLL′

x (k)
) = evFx

K

⎛
⎜⎜⎜⎝

KxS 0 −KxC −Kx+
0 KxS Kx− −KxC

−KxC Kx+ −KxS 0
−Kx− −KxC 0 −KxS

⎞
⎟⎟⎟⎠,

(B9)

(
JLL′

y (k)
) = evFy

K

⎛
⎜⎜⎜⎝

KyS 0 Ky− iKx

0 KyS iKx Ky+
Ky+ −iKx −KyS 0
−iKx Ky− 0 −KyS

⎞
⎟⎟⎟⎠,

(B10)

and

(
JLL′

z (k)
) = evFz

K

⎛
⎜⎜⎜⎝

KzS 0 Kz+ Kx

0 KzS −Kx Kz−
Kz− −Kx −KzS 0
Kx Kz+ 0 −KzS

⎞
⎟⎟⎟⎠. (B11)

In these expressions, we use the abbreviations S = sin φ(k),
C = cos φ(k), Kx± = Kz ± iKy, Ky± = ±iKz − Ky cos φ(k),
and Kz± = ±iKy − Kz cos φ(k).

The intraband current vertices are directly related with the
corresponding electron group velocities,

JLL
α (k) = sLevFα sin φ(k)

Kα

K
≡ evL

α (k). (B12)

Moreover, the interband current vertices between the bands
that are degenerate in energy are equal to zero,

J12
α (k) = J21

α (k) = J34
α (k) = J43

α (k) = 0. (B13)

APPENDIX C: MISSING CONTRIBUTIONS TO σαα(ω)

It is tempting to combine the procedure from Appendix B
with other two forms of the bare Hamiltonian of the ordinary
3D Dirac model, Eqs. (20) and (17),

H0 =
∑
Lk

εL(k)c†
LkcLk,

H0 =
∑
mm′k

Hmm′
0 (k)c†

mkcm′k. (C1)

The coupling Hamiltonian is given again by the expression
(30). However, the current vertices and the bare diamagnetic
vertices have much simpler form. In the {Lk} representation,
all interband contributions to σαα (ω) are missing, because

JLL′
α (k) = δL,L′e

∂εL(k)

∂ pα

, (C2)

in this case. In the {mk} representation, some interband terms
in JLL′

α (k) are restored. In this case, the result is

(
JLL′
α (k)

) =
(

KαSI2 −KαCI2

−KαCI2 −KαSI2

)
. (C3)

APPENDIX D: EFFECTIVE MASS THEOREM
AND TRANSVERSE CONDUCTIVITY SUM RULE

One of the central questions regarding the transverse con-
ductivity sum rule in multiband electronic systems is to
establish relation between the integrated intraband and in-
terband conductivity spectral weights and the effective mass
theorem. The most important fact about the conductivity sum
rule and the effective mass theorem is that they are both insen-
sitive to details in the intraband and interband relaxation rates.
The well-known f -sum rule [20,31,35] is a simple example
of this general case. In this example, the number of bands
is infinite, the electron effective mass is approximated by the
k = 0 effective mass from the k · p perturbation theory, and
the effective number ntotal

αα in the total plasma frequency is
equal to the concentration n.

In order to apply such an analysis on the 3D Dirac model,
it is important to recall that in this model the bottom of lower
bands is placed at negative infinity. This means that the sum
over all occupied states in these bands must be evaluated in
the hole picture.

In a general spinless multiband case, the bare diamagnetic
vertex functions γ LL

αα (k; 2) are finite. They are known to satisfy
the effective mass theorem [15]

γ LL
αα (k; 2) = γ LL

αα (k) + m

e2

∑
L′( �=L)

2JLL′
α (k)JL′L

α (k)

εL′L(k, k)
. (D1)
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The integrated total conductivity spectral weight is usually
shown in the following way [36,37]:

8
∫ ∞

0
dωRe{σαα (ω)} = 4πe2ntotal

αα

m
= �2

total,α. (D2)

After inserting Eq. (33) into this definition relation, we obtain

ntotal
αα = 1

V

∑
Lk

γ LL
αα (k; 2)nL(k). (D3)

ntotal
αα represents the total effective number of charge carriers

and �total,α is the corresponding bare total plasma frequency.
The integrated intraband conductivity spectral weight is

given by the textbook expression [20,23,35]

8
∫ ∞

0
dωRe

{
σ intra

αα (ω)
} = 4πe2nintra

αα

m
= �2

intra,α, (D4)

where nintra
αα is given by Eq. (42) and �intra,α is the bare intra-

band plasma frequency.
In the 3D Dirac model, the effective mass theorem,

together with γ LL
αα (k; 2) = 0, gives

γ LL
αα (k) = sL

m

e2

|J+−
α (k)|2

ε13(k, k)

= sLm
v2

Fα√
K2 + M2

[
1 − K2

α

K2 + M2

]
(D5)

[the explicit calculation, γ LL
αα (k) = m∂2εL(k)/∂ p2

α , leads
to the same result]. The intraband conductivity spec-
tral weight is given again by Eq. (D4), where [see
Eq. (11)]

nintra
αα = 1

V

∑
Lk

∗[
γ LL

αα (k) fL(k) − γ 33
αα (k)

]
, (D6)

and the total conductivity spectral weight is given by Eq. (D2),
where

ntotal
αα = 1

V

∑
Lk

∗[
γ LL

αα (k; 2)nL(k) − γ 33
αα (k)

]

= − 1

V

∑
Lk

∗
γ 33

αα (k). (D7)

This result means that in the Dirac cone approximation of
the 3D Dirac problem the number (D3) is proportional to
the integrated conductivity spectral weight measured with
respect to the spectral weight of pristine compounds. Since
it is equal to zero, the total integrated spectral weight does
not change when changing the doping of conduction bands or
temperature.
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I. KUPČIĆ AND J. KORDIĆ PHYSICAL REVIEW B 109, 045426 (2024)

[29] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin,
P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532
(2008).

[30] K. Ziegler, Phys. Rev. B 75, 233407 (2007).
[31] C. Kittel, Quantum Theory of Solids (John Wiley, New York,

1987).
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