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The identification of topological superconductors usually involves searching for in-gap modes that are
protected by topology. However, in current experimental settings, the smoking-gun evidence of these in-
gap modes is still lacking. In this Letter, we propose to support the distinction between two-dimensional
conventional s-wave and topological p-wave superconductors by above-gap transport signatures. Our
method utilizes the emergence of Tomasch oscillations of quasiparticles in a junction consisting of a
superconductor sandwiched between two metallic leads. We demonstrate that the behavior of the
oscillations in conductance as a function of the interface barriers provides a distinctive signature for
s-wave and p-wave superconductors. Specifically, the oscillations become weaker as the barrier strength
increases in s-wave superconductors, while they become more pronounced in p-wave superconductors,
which we prove to be a direct manifestation of the pairing symmetries. Our method can serve as a
complimentary probe for identifying some classes of topological superconductors through the above-gap
transport.

DOI: 10.1103/PhysRevLett.132.066301

Introduction.—At the heart of superconductivity is the
pairing of conduction electrons into Cooper pairs that form
a bosonic condensate [1]. These Cooper pairs can be in
either a spin-singlet state, with a total spin 0, or a spin-
triplet state, with a spin 1. The spin-singlet state is
characterized by a wave function with even angular
momentum, such as s-wave or d-wave, while the spin-
triplet state supports a wave function with odd angular
momentum, such as p-wave or f-wave. In conventional
s-wave superconductivity the pairing function ΔðkÞ ¼ Δs
is constant irrespective of the direction of the momentum
vector k. The Cooper pair, in this case, consists of two
electrons with opposite spins. On the other hand, in
unconventional p-wave superconductors, electrons with
the same spin form Cooper pairs and the pairing ΔðkÞ
is no longer constant with k [2–7].
Over the past several decades, there has been signifi-

cant interest in unconventional p-wave superconductors
[2–5,7,8], mostly due to their unique topological properties
[9–11]. The topology implies, for example, the presence of

exotic quasiparticles, such as Majorana zero-energy
modes in one-dimensional systems [12,13], and in-gap
Majorana states in two-dimensional systems [14–20].
These quasiparticles have potential applications in topo-
logical quantum computing [21–23], and are used as a key
signature for discerning between topologically nontrivial
p-wave and trivial s-wave superconductors. As a result, the
search for topological superconductors encompass two
main approaches. The first approach involves searching
for topological superconductivity in specific materials,
such as Sr2RuO4 [3,24–26], UTe2 [27], Pb3Bi [28], and
hybrid systems such as Pb=Co=Sið111Þ [20,29]. The
second approach involves using engineered metamaterials
that share some of the properties of topological super-
conductors [9,19,30–41].
The behavior of superconductors can be largely under-

stood through the Bogoliubov–de Gennes (BdG) formalism
[42], which describes the mean-field behavior of quasipar-
ticles in the superconductor that form through hybridization
between electrons and holes. The resulting band structure
resembles a “sombrero” shape, with an energy gap that
depends on the details of the pairing functionΔðkÞ. Notably,
the band structure of quasiparticles in superconductors
resembles that of band-inverted semiconductors [43–46],
with the band gap of the latter corresponding to the super-
conducting gap in the former. Recently, Fabry-Pérot
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oscillations were observed in a two-dimensional junction
made out of an inverted InAs=GaSb double quantum
well [46]. The mechanism leading to such Fabry-Pérot
oscillations in a two-dimensional junction stems from the
sombrero-shaped band structure. Specifically, the interfer-
ence is dominated by the scattering between the electronlike
and holelike states at energies close to the band gap [46,47].
Such interference is quite ubiquitous and applies to a
variety of condensed matter systems with inverted-band
dispersions [46,48]. Interestingly, similar Fabry-Pérot oscil-
lations are also studied in superconducting junctions and go
under the name of Tomasch oscillations [49–55].
In this Letter, we demonstrate that Tomasch oscillations

in the conductance across the two-dimensional NSN
junctions (two normal metals sandwiching a superconduc-
tor) provide a signature that can act as a complementary
probe to discern between conventional and topological
superconductors. As such, we focus on transport with
energies above the superconducting gap and investigate
the effects of the interface barriers on the Tomasch
oscillations for superconductors with different pairing
symmetries. In the weak barrier limit, we find that the
inverted-band mechanism responsible for the oscillations is
the same for both s-wave and p-wave superconductors.
Interestingly, the oscillations are crucially different in the
strong barrier limit, i.e., in the tunneling limit. This
distinction arises from differing pairings in the BdG
Hamiltonians of s- and p-wave superconductors, affecting
the visibility of the oscillations. Our result offers an
alternative experimental probe using the above-gap trans-
port signatures for distinguishing between conventional
and topological superconductors, in contrast to the com-
monly studied in-gap signatures [56].
Setup.—We study a two-dimensional NSN junction

made of two normal metals (N) and a superconductor
(S) sandwiched between them; see Fig. 1(a). We concen-
trate on a ballistic case, where the mean free path of
particles is the largest scale in the system. The BdG
Hamiltonian around Γ point in the continuum limit of
the whole system is

H ¼ HN þHS þ UðxÞσz; ð1Þ

where the Pauli matrix σz (and later σx) operates in the
Nambu space and HN describes the metallic leads

HNðkÞ ¼
 ℏ2

2mN
k2 − μN 0

0 − ℏ2
2mN

k2 þ μN

!
; ð2Þ

with k ¼ ðkx; kyÞ the wave vector,mN the effective mass of
electrons in the metallic leads, and μN their chemical
potential. The Hamiltonian of the superconductor is given
by [57]

HSðkÞ ¼
 ℏ2

2mS
k2 − μS ΔðkÞ
Δ�ðkÞ − ℏ2

2mS
k2 þ μS

!
; ð3Þ

with mS and μS the corresponding effective mass and
chemical potential, respectively. We introduce a pairing
potential ΔðkÞ corresponding to two types of super-
conductors, namely a time-reversal symmetric s-wave
superconductor with a constant pairing ΔðkÞ ¼ Δs,
and a time-reversal broken p-wave superconductor with
ΔðkÞ ¼ iΔpðkx þ ikyÞ. Note that for a vanishing pairing
potential, the band structure takes a parabolic shape.
Furthermore, at the N-S interfaces, we introduce sharp
barriers UðxÞ ¼ U½δðxÞ þ δðx − LÞ� to account for the
materials’ mismatch or imperfections [58,59]. Alter-
natively, the barriers can be introduced and adjusted by
local strip gates. For simplicity, we assume that the barriers
are perfectly flat in the y direction, such that they do not
break the translational invariance in the y direction. In the
following, we employ the often-used dimensionless barrier
strength Z≡mU=ðℏ2kFÞ and, without loss of generality
consider m≡mN ¼ mS and μ≡ μN ¼ μS ¼ ℏ2k2F=ð2mÞ.
We calculate the differential conductance across the

junction using the Blonder-Tinkham-Klapwijk formula [58]

GðEÞ ¼ G0

Z
KðEÞ

−KðEÞ

dky
2KðEÞ ½1þ jaLðky; EÞj2 − jbLðky; EÞj2�;

ð4Þ

where aL and bL denote the amplitudes of Andreev [60]
and normal reflections, respectively. The factor KðEÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNðEþ μÞp

is the maximal value of ky for a given
incident energy E, and G0 ¼ 2e2KW=ðπhÞ is the conduct-
ance of themetallic leadwithwidthW in the y direction. The
microscopic analysis of the scattering amplitudes appears
below; cf. Eq. (5). Using formula (4), we calculate the
conductance for s- and p-wave superconductors for vanish-
ing barrier (Z ¼ 0) and strong barrier (Z ¼ 4); see Figs. 1(b)
and 1(c), respectively. The case of a vanishing or weak
barrier shows the same conductance behavior for both the
s- and p-wave case, namely strong oscillations with an
energy-dependent period δðEÞ. The oscillations come from
constructive interference of multiple scattering paths inside
the superconducting cavity, where electronic modes in the
outer branch of the band structure scatter to hole modes in
the inner part of the band structure. Therefore, it is possible
to analytically obtain the position of each peak in the
conductance, as well as their period, by solving the follow-
ing interference condition ke=hx ðEÞ − kh=ex ðEÞ ¼ 2πn=L,
where n is an integer. This limit of vanishing barriers is
studied in detail in Refs. [46,61]. On the other hand, in the
opposite limit of strong barriers [cf. the Z ¼ 4 case in
Fig. 1(c)], the conductance oscillations drastically differ
between the s- and p-wave cases. Specifically, they are
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suppressed in the former and significantly enhanced in the
latter. This signature in bulk transport above the gap is the
main result of our work and it can be used to distinguish
between different types of superconductors.
Momentum-resolved transmission.—To understand the

microscopic origin of the results shown in Figs. 1(b) and
1(c), we turn to the analysis of the momentum-resolved
transmission probability Tðky; EÞ ¼ 1þ jaLðky; EÞj2 −
jbLðky; EÞj2, i.e., the integrand of Eq. (4), which describes
the transmission of charge in the left lead. We start by
formulating the junction’s scattering equations by consid-
ering an electron incident from the left lead with energy E
and transverse momentum ky. We describe the states in the
left and right metallic leads (L, R) and the superconducting
region (S)

ΨL ¼ �Φ⃗e
Neiq

e
xx þ aLΦ⃗

h
Neiq

h
xx þ bLΦ⃗

e
Ne−iq

e
xx
�
eikyy;

ΨR ¼ �aRΦ⃗h
Ne−iq

h
xx þ bRΦ⃗

e
Neiq

e
xx
�
eikyy;

ΨS ¼
X
η¼�

�
seηΦ⃗

e
Seiηk

e
xx þ shηΦ⃗

h
Se−iηk

h
xx
�
eikyy; ð5Þ

where qe=hx and ke=hx are the x components of the quasi-
particle’s momentum in the metallic leads and the super-
conductor, respectively. In the metallic leads, the spinors

Φ⃗e
N ¼ ð1; 0ÞT , Φ⃗h

N ¼ ð0; 1ÞT describe an electron in the
outer dispersion branch and a hole in the inner disper-
sion branch, respectively. Φ⃗e

S ¼ ½uðkex; kyÞ; vðkex; kyÞ�T and

Φ⃗h
S ¼ ½uðkhx; kyÞ; vðkhx; kyÞ�T are spinors of electron- and

holelike quasiparticles in the superconductor and u, v are
electron and hole wave components. The coefficients aL,
aR, bL, bR denote the amplitudes of Andreev reflection
[60], cross Andreev reflection, normal reflection, and
elastic cotunneling, respectively. The coefficients se;h� are
scattering amplitudes inside the superconductor.
To find the scattering amplitudes above, we impose

the following boundary conditions on the two N-S inter-
faces: ΨL=R ¼ ΨS and ∂xΨS − ∂xΨL=R ¼ �2ZkFΨS for
the s-wave superconductor, and ΨL=R ¼ ΨS and ∂xΨS −
∂xΨL=R ¼ �2ZkFΨS þ ðmΔ=ℏÞσxΨS for the p-wave
superconductor, where “�” corresponds to the left and
right interfaces at x ¼ 0; L, respectively. Note that due to
the perfectly flat barriers in y direction, the momentum ky is
preserved for all scattering processes.
We solve the scattering equations (5), with the afore-

mentioned boundary conditions, for aL and bL, and show
the result for Tðky; EÞ in Fig. 2 for both the s- and p-wave
superconductors and in the limits of weak [Figs. 2(a) and
2(b)] and strong [Figs. 2(c)–2(f)] barriers. In the former,
Tðky; EÞ is identical for s- and p-wave superconductors and
we identify two main features (marked ① and ② in the
figure). In region ①, the energy resides in the super-
conducting gap, i.e., the main gap [see Figs. 1(a) and
1(b)], and the transmission through the NSN junction is
constant and equal to 2 without the effect of the interface
barriers [58,60]. In region ②, both electron- and holelike
modes coexist; due to the predominant electron-to-hole
scattering, the transmission maxima exhibit a relatively
weak dependence on ky. Consequently, strong oscillations
manifest in the conductance; see Fig. 1(b). Note that
Tðky; EÞ ¼ Tð−ky; EÞ, and therefore in Fig. 2, we show
only positive ky plane.
In the opposite limit of strong barriers—or equivalently,

weak coupling to the leads—the transmission throughout
region ① is now strongly suppressed for the s-wave super-
conductor, with a power-law scaling with Z [58]. At the
same time, for the p-wave superconductor on top of the
suppressed transmission, a clear sign of a topological edge
mode, marked with ③, can be seen [11]. On the other hand,
the maxima of Tðky; EÞ in region② become sharper for both
s-wave and p-wave superconductors and they also acquire
an additional structure that was smeared out by the strong
coupling with the leads; see Figs. 2(c)–2(f). Moreover, gaps
between maxima—dubbed “secondary gaps”—close in the
case of the s-wave superconductor, while in thep-wave case
they remain open even for very large barrier strengths Z, as
marked by ④ in Figs. 2(e) and 2(f).
Opening of secondary gaps.—To better understand the

mechanisms responsible for the different behavior of the

Interface barriers, Z

FIG. 1. (a) Sketch of the NSN junction consisting of a super-
conductor (S) coupled to two normal metal leads (N) with the
interface barrier Z. Top panels: quasiparticle dispersion for ky ¼ 0
in all three regions. We consider an incident particle from the left
lead with energyE (dashed line). (b) Differential conductance as a
function of energy for both the s- and p-wave superconductors in
the absence of barriers (Z ¼ 0) and with the magnitude of the pair
potential set to be equal, i.e., jΔðkÞj ¼ Δs ¼ ΔpkF. The period of
the conductance oscillations, δðEÞ, increaseswith energy. (c) Same
as (b) in the presence of finite barriers with equal strengths Z ¼ 4.
Small gray arrows denote the minimum and the maximum of a
single oscillation that we use in Fig. 3 when calculating the
averaged visibility. For (b) and (c), we used the following
parameters: L ¼ 10ξ0, kF ¼ 2000ξ−10 , μS ¼ μN ¼ 1000jΔðkÞj,
where jΔðkÞj is the magnitude of the pair potential and ξ0 is
the superconducting coherence length.
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secondary gaps in transmission—and with that the
difference in conductance oscillations—between the s- and
p-wave superconductors, we employ a perturbative
approach. We first concentrate on the limit of strong
barriers. In this limit, the gap structure in the transmission
plots [cf. Figs. 2(c)–2(f)] is determined by the eigenmodes
of the superconducting cavity, which are only perturba-
tively affected by the coupling to the leads. Therefore, it is
sufficient to analyze the isolated superconductor, which is
finite in the x direction with length L and infinite in the y
direction. Doing so, we discover that the momentum
dependence of the pairing potential in Eq. (3) is responsible
for the selective hybridization of particle- and holelike
modes of the cavity; see Supplemental Material [62] for
more details. Crucially, in the p-wave superconductor,
secondary gaps are opened even without the presence of
the leads due to the kx dependence of the pairing term in
HS. The Hamiltonian of the s-wave superconductor, on the

other hand, has constant off-diagonal elements and the
particle- and holelike modes do not hybridize. As a result,
the secondary gaps in Tðky; EÞ are closed in that case.
In the limit of weak barriers, i.e., the strong hybridization

with the leads, secondary gaps are opened for both s-wave
and p-wave superconductors; see Figs. 2(a) and 2(b). To
understand this, we include the leads in our analytical
analysis via the weak tunnel coupling to the superconduc-
tor. Such treatment, which relies on a calculation of the self-
energy, gives rise to the finite coupling between the
electron- and holelike modes of the superconductor, which
is second-order in the tunneling. As a result, secondary
gaps are opened between all degenerate modes of the
closed cavity; see Supplemental Material [62] for details.
This conclusion is also valid when the tunnel coupling is
strong, i.e., when there are no barriers at all; cf. Figs. 2(a)
and 2(b).
To quantify the impact of the barrier in both s- and p-

wave cases, we study the visibility of conductance oscil-
lations defined as

ν ¼ 1

N

XN
i¼1

Gmax
i − Gmin

i

Gmax
i þGmin

i
; ð6Þ

where Gmax
i and Gmin

i are the neighboring local maximum
and minimum values of the conductance; see gray arrows in
Figs. 1(b) and 1(c). We numerically calculate the visibility
of the first five periods of oscillation (N ¼ 5) as a function
of the barrier strength Z; see Fig. 3. While in the absence of
the barriers, Z ¼ 0, both types of superconductors have the
same values of visibility: at large Z the visibility increases
with Z for the p-wave superconductor and saturates to a
small constant for the s-wave superconductor. Such behav-
ior reflects the analytical discussion above on secondary
gaps. Note that when Z > 2 in the s-wave case [dashed
lines in Fig. 3(a)], the height of the conductance oscillations
is so small that it becomes comparable to fluctuations

0

1

ν

(a)

0

0.2

0.4

0.6

ν 1 0.5

10-1

10-2Δ
G
/G

0

p -wave

s-wave

Z

0 1 2 3 4

Z

0 2 6 84

(b)

(c)

FIG. 3. (a) Visibility of the conductance oscillations defined in
Eq. (6) as a function of the barrier strength for the s-wave
(red dots) and the p-wave (blue squares) cases. (b) Visibility of
the first oscillation, i.e., the one closest to the gap for both
s- and p-wave cases. (c) The height of the first oscillation,
ΔG≡ Gmax

1 − Gmin
1 , for both cases. We used the same parameters

as in Fig. 1.

-

FIG. 2. (a),(b) Transmission probability with Z ¼ 0 for s- and
p-wave superconductors, respectively. Two main features are
visible: ① inside the gap, perfect transmission occurs with T ¼ 2,
and ② both electron- and holelike quasiparticles are present,
hybridize with one another, and produce oscillations that only
weakly depend on ky. (c),(d) Transmission probability with
Z ¼ 2 for s- and p-wave superconductors, respectively. In
(d) the topological in-gap mode, marked with ③, is visible,
while in (c) there are no in-gap modes present. (e),(f) The
enlarged regions of (c) and (d). A new differentiating feature,
marked with ④, appears in a case of strong barriers: in (e), the
transmission maxima of different electron- and holelike modes
cross, while in (f) avoided crossings appear, leading to secondary
gaps and flat transmission bands appear. For all plots, we used the
same parameters as in Fig. 1.
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caused by the finite-element numerical integration over
Eq. (4). On the other hand, the height of the first oscillation
is distinguishable for much larger Z in both the s- and
p-wave cases. We plot the visibility of that first oscillation
peak in Fig. 3(b), from which the same trend can be
extracted as in Fig. 3(a). Lastly, in Fig. 3(c), we plot the
height of the aforementioned first oscillation—defined as
ΔG≡ Gmax

1 − Gmin
1 —for both cases. The height decays for

large Z, but with a slower rate in the p-wave case.
In conclusion, we have demonstrated that Tomasch

oscillations of Bogoliubov quasiparticles provide a prom-
ising method to distinguish between topological p-wave
superconductivity and conventional s-wave superconduc-
tivity. Specifically, the resulting conductance oscillations
display contrasting behavior for the two types of super-
conductors as the interface barriers increase, which is a
direct manifestation of the pairing symmetries. Our study
introduces bulk probes for identifying topological super-
conductivity, which is usually overlooked. Our proposed
above-gap transport signature can serve as an essential
supplement to in-gap measurements [62]. Interestingly,
Tomasch oscillations were first reported approximately
60 years ago in both Pb and In films with thicknesses
ranging from 3 to 30 μm [49,50], making their observation
in junctions with topological superconductors highly prom-
ising using state-of-the-art techniques. Furthermore, some
recent experiments on junctions made of a normal metal, an
insulator, and a superconductor [70] reported high tuna-
bility of the barrier strength Z. By changing the thickness of
the barrier, Z is easily tuned to Z ≫ 10, which lies deeply
in the regime that we discuss in our work. Last, our
mechanism is established for continuum single-band mod-
els without the presence of spin-orbit coupling, where the
band inversion and pairing mechanism dictate the appear-
ance of topology; it would be interesting to extend the
discussion to more complicated multiband systems as well
as lattice models with anisotropy. There, anisotropy can
cause a significant morphing of the sombrero-shaped band
structure, which can even lead to topological phase
transitions by gap closing at momenta away from the Γ
point [71]. Whether our method can be applied to distin-
guish between different phases in that case will be the focus
of future work.

All data that support the plots within this Letter are
available from the corresponding author upon request.
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