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Neutral pion (π0) and η meson production cross sections were measured up to unprecedentedly high 
transverse momenta (pT) in p–Pb collisions at √sNN = 8.16 TeV. The mesons were reconstructed via their 
two-photon decay channel in the rapidity interval −1.3 < y < 0.3 in the ranges of 0.4 < pT < 200 GeV/c
and 1.0 < pT < 50 GeV/c, respectively. The respective nuclear modification factor (RpPb) is presented 
for pT up to of 200 and 30 GeV/c, where the former was achieved by extending the π0 measurement 
in pp collisions at 

√
s = 8 TeV using the merged cluster technique. The values of RpPb are below unity 

for pT < 10 GeV/c, while they are consistent with unity for pT > 10 GeV/c, leaving essentially no room 
for final state energy loss. The new data provide strong constraints for nuclear parton distribution and 
fragmentation functions over a broad kinematic range and are compared to model predictions as well as 
previous results at √sNN = 5.02 TeV.

© 2022 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Measurements of identified hadron spectra in high-energy 
proton–proton (pp) collisions are well suited to constrain pertur-
bative predictions from Quantum Chromodynamics (QCD) [1]. At 
large momentum transfer (Q 2) one relies in these perturbative 
QCD (pQCD) calculations on the factorization of computable short-
range parton scattering processes such as quark–quark, quark–
gluon and gluon–gluon scatterings from long-range properties 
of QCD that need experimental input. These non-perturbative 
properties are typically modeled by parton distribution func-
tions (PDFs), which describe the fractional-momentum (x) distri-
butions of quarks and gluons within the proton, and fragmentation 
functions (FFs), which describe the fractional-momentum (z) dis-
tribution of quarks or gluons for hadrons of certain species.

In high-energy proton–nucleus (p–A) collisions, nuclear effects 
are expected to significantly affect particle production, in partic-
ular at small x [2]. Previous measurements of neutral pions and 
charged hadrons in p–Pb collisions at 

√
sNN = 5.02 TeV at the 

LHC [3–6] indeed revealed distinct deviations from binary-scaled 
pp collisions, confirming earlier results from deuteron–gold colli-
sions at 

√
sNN = 0.2 TeV at RHIC [7,8]. The modification at low 

pT (∼1 GeV/c), which is commonly attributed to nuclear shad-
owing, can be parameterized by nuclear parton distribution func-
tions (nPDFs) [9,10]. However, the high parton densities reached 
at low pT (x as small as ∼ 5 · 10−4) make the Color Glass Con-

� E-mail address: alice -publications @cern .ch.

densate (CGC) framework [11] applicable which predicts strong 
particle suppression due to saturation of the parton phase space in 
nuclei [12]. Recently, also parton energy loss in cold nuclear mat-
ter was shown [13] to lead to suppressed particle yields at low pT, 
while the previously observed collective effects in small systems 
[14–16] also imply partonic rescatterings in hot nuclear matter to 
play a role [17,18].

In this letter, the nuclear modification of particle yields is quan-
tified by

RpPb = 1

APb

d2σpPb

dpTdy

/
d2σpp

dpTdy
, (1)

where APb = 208 is the nuclear mass number of lead and 
d2σ/(dpTdy) are the π0 or η meson cross sections measured in 
p–Pb collisions at 

√
sNN = 8.16 TeV and in the corresponding pp 

reference system at 
√

s = 8 TeV. The new data constrain nPDFs 
and FFs over a large range in x, and Q 2, including the center-of-
mass energy dependence based on comparisons to lower-energy 
data [6].

2. Experimental setup

The neutral mesons were reconstructed via their two-photon 
decay channels π0(η) → γ γ using different reconstruction tech-
niques provided by the various subdetector systems of ALICE [19,
20]. Photons are either reconstructed using the Electromagnetic 
Calorimeter (EMCal), the Photon Spectrometer (PHOS) or via the 
Photon Conversion Method (PCM). The latter uses e+e− pairs from 
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Table 1
Trigger rejection factor R F and total integrated luminosities based on the individual samples 
for the different reconstruction methods and triggers in pp collisions at √s = 8 TeV and 
p–Pb collisions at √sNN = 8.16 TeV. The uncertainty associated with the determination of 
the MB cross section of 1.9% for p–Pb and 2.6% for pp is not included. The value in brackets 
corresponds to the high luminosity minimum bias data sample where TPC tracking is not 
available.

System/Trigger R F Lint (nb−1)

p–Pb (m)EMC PCM-EMC PCM PHOS

MB – 0.018(0.041) 0.018 0.022 0.036
EMCal L1 (low) 288 ± 8 0.206 0.081 – –
EMCal L1 (high) 991 ± 29 5.67 1.42 – –
PHOS L0 (1.66 ± 0.02) · 103 – – – 1.68
PHOS L1 (1.55 ± 0.04) · 104 – – – 6.42

pp

MB – 1.94 1.94 2.17 1.25
EMCal/PHOS L0 64.6 ± 1.0 39.4 39.4 – 136
EMCal L1 (1.47 ± 0.06) · 104 606 606 – –

conversions, which are reconstructed from tracks measured in the 
Inner Tracking System (ITS) [21] and the Time Projection Cham-
ber (TPC) [21] at |η| < 0.9 inside a solenoidal magnetic field of 
B = 0.5 T. The EMCal [22,23] is a lead-scintillator sampling elec-
tromagnetic calorimeter at a radial distance of 4.28 m from the 
interaction point (IP) covering �ϕ = 100◦ in azimuth for |η| < 0.7
in pseudorapidity during the 2012 pp data taking period. Dur-
ing the p–Pb data taking in 2016, additional modules [23] were 
available that extended the coverage to �ϕ = 107◦ for |η| < 0.7
and added �ϕ = 60◦ opposite in azimuth for 0.22 < |η| < 0.7. 
The calorimeter provides an energy resolution of σE/E = 4.8%/E ⊕
11.3%/

√
E ⊕1.7%, with E in units of GeV. In its full configuration, it 

consists of a total of 18240 cells of transverse size 6 × 6 cm2 each. 
The PHOS [24] is a lead tungstate electromagnetic calorimeter 
with 12544 channels at a distance of 4.6 m from the IP, covering 
�ϕ = 70◦ and |η| < 0.12. Its high light yield combined with its cell 
size being only slightly larger than the Molière radius of 2 cm re-
sults in an energy resolution of σE/E = 1.8%/E ⊕ 3.3%/

√
E ⊕ 1.1%.

3. Data samples and event selection

The p–Pb data at 
√

sNN = 8.16 TeV were recorded in 2016. Equal 
magnetic rigidity for proton and Pb beams in the LHC resulted in a 
rapidity shift of �yNN = 0.465 in the direction of the proton beam 
between the nucleon–nucleon center-of-mass and the laboratory 
reference system. The minimum bias (MB) event trigger required 
a coincidence at Level 0 (L0) of signals issued by the V0A and 
V0C detectors, which are two arrays of 32 scintillator tiles each 
covering full azimuth at 2.8 < η < 5.1 and −3.7 < η < −1.7, re-
spectively [25]. Additional triggers at L0 required an energy deposit 
above 2 GeV for EMCal and 4 GeV for PHOS, in 4 × 4 adjacent cells 
in coincidence with the MB trigger. Based on the L0 preselection, 
further hardware Level 1 triggers were issued, two for the EMCal 
with energy thresholds at 5.5 GeV and 8 GeV and one for the PHOS 
at 7 GeV. To account for the yield enhancement of the event trig-
gers, the trigger rejection factors (R F ) for the EMCal triggers were 
estimated through an error function fit to the ratio of the cluster 
energy spectra in their plateau regions above the respective trig-
ger thresholds. A similar procedure was performed for the PHOS 
triggers, where R F is determined on the ratio of the corrected π0

meson spectra instead. The trigger rejection factors from these fits 
are given in Table 1 for all event triggers. For the high thresh-
old triggers, R F is obtained from the product R FEMCal−L1low/MB ·
R FEMCal−L1high/low or R FPHOS−L0/MB · R FPHOS−L1/L0. Uncertainties on 
R F are given as combined statistical and systematic uncertain-
ties where the latter part was determined via variations of the 
low E fit range. The integrated luminosities (Lint) of each trig-
ger sample and for each reconstruction method were calculated 

based on the MB cross section of σMB = (2.09(2.10) ± 0.04) b for 
the p–Pb (Pb–p) collisions [26] and the respective R F values as 
Lint = R F × Nevents/σMB and are listed in Table 1. For PCM-EMC 
lower integrated luminosities are reported due to the lack of TPC 
readout in two thirds of the triggered data. The pp collision data 
set at a center-of-mass energy of 

√
s = 8 TeV used in this analysis 

was recorded in 2012 and the respective integrated luminosities 
and R F values are listed in Table 1.

4. Analysis

Reconstructed tracks were used to determine the primary ver-
tex of the collision, which was required to be within 10 cm from 
the nominal IP position along the beam direction. Pileup events 
(∼1.5% in pp) containing multiple collisions within a 300 ns win-
dow were rejected if more than one primary vertex was recon-
structed from SPD hits or if the number of SPD clusters was not 
correlated with the number of track candidates. The photon and 
meson reconstruction methods are analogous to those described 
in Refs. [6,27]. To achieve an optimal uncertainty cancellation on 
RpPb, the meson analyses were performed simultaneously for the 
p–Pb and pp data sets using identical methods and selections, 
where possible.

Photon reconstruction in the EMCal (PHOS) is based on group-
ing adjacent cells, with energy deposits above Emin

cell = 100 (20)

MeV, into clusters starting with a seed cell of Eseed
cell > 500 (50)

MeV. The thresholds for PHOS are lower due to its better energy 
resolution and finer granularity. Photon candidates in the EMCal 
were required to have |ηγ | < 0.67 and a minimum of two cells in 
the cluster (Ncls

cell ≥ 2). In addition, clusters are required to have a 
primarily round shape by restricting the cluster elongation (σ 2

long

[28]) to values between 0.1 and 0.5. The elongation σ 2
long is de-

fined as

σ 2
long = 1

2

[
σ 2

ϕϕ + σ 2
ηη +

√
(σ 2

ϕϕ − σ 2
ηη)2 + 4σ 4

ϕη

]
, (2)

where the values of σ 2
ab = 〈ab〉 − 〈a〉〈b〉 and 〈a〉 = (wtot)

−1 ∑
wiai

are based on the weighted cell energy compared to the clus-
ter energy and in relative η and φ direction to the seed cell of 
the cluster. The weighting is logarithmic with wi = max(0, 4.5 +
log(Ei/Eclus)) where the sum of all wi equals wtot [28]. Small val-
ues of σ 2

long denote clusters with a round shape that are primarily 
of photonic origin, while large values of σ 2

long describe elongated 
clusters, which are primarily from hadronic sources or from over-
lapping showers.

In PHOS, |ηγ | < 0.12 was required and the criteria σ 2
long > 0.1

and Ncls
cell ≥ 3 were only applied to clusters with E > 2 GeV. Hadron 
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Fig. 1. Shower shape distribution for the elongation σ 2
long in PYTHIA 8 Monte Carlo simulations a) showing the various contributions to the full cluster sample for a high pT

example interval and b) compared to the σ 2
long distribution in data in the same pT interval.

and electron contamination of the photon clusters in the EMCal 
was removed if an associated track was found with E/ptrack < 1.75. 
The suppression of false matches with the E/p veto increased the 
photon efficiency by up to 50% at high pT with respect to pre-
vious measurements [6,27]. Corrections for the non-linear energy 
response of the calorimeters were applied to the cluster energy. 
For the EMCal the correction was obtained from electron test beam 
data and from laboratory-based measurements of the low-gain 
shapers in the front-end electronics. The correction is sizeable only 
at low E (6% at 1 GeV) and at high E (14% at 200 GeV). It in-
cludes a residual relative energy-and-position correction, which is 
applied on simulated EMCal clusters to match the π0 peak position 
in data. An improved description of the EMCal cluster properties 
in simulations was achieved by introducing a cross talk emulation 
within the same EMCal readout card as described in Ref. [29]. The 
resulting agreement of the π0 mass peak position is better than 
0.3% between data and simulation. For the PHOS, the energy non-
linearity was corrected by fixing the reconstructed π0 mass to the 
nominal PDG value [30].

Photon conversions were reconstructed by combining oppo-
sitely charged tracks, originating from a common vertex up to a 
radius of 180 cm, through a secondary vertex finder. Only tracks 
with a TPC dE/dx within −3σ and +4σ of the expected values 
for electrons were accepted, where σ is the dE/dx resolution. Ad-
ditionally, tracks with p > 0.4 GeV/c and dE/dx up to 1σ above 
the expected value for pions were rejected. For tracks with p > 3.5
GeV/c, this was loosened to 0.5σ . The photon conversion selection 
criteria were further optimized with respect to previous measure-
ments [27,31] to yield about 10% better efficiency at similar purity.

An invariant mass (mγ γ ) technique was used for the recon-
struction of neutral pions and η mesons. For this, mγ γ was 
calculated for all possible combinations of photon candidates 
per event taking either both photons reconstructed by the same 
method (called PCM, EMC, and PHOS), or one photon reconstructed 
with PCM and one with EMC (called PCM-EMC). The invariant 
mass distributions were calculated in pT intervals of the meson 
candidates (examples are shown in Ref. [32]). For each interval, 
the combinatorial background, obtained from event mixing, and 
residual correlated background were subtracted (see Ref. [32]). The 
remaining distributions were then integrated in ∼ 3σ around the 
fitted mass peak position to determine the raw yields.

Neutral pions with pT > 16 GeV/c were measured with the 
merged-cluster (mEMC) method [31], which exploits single clus-
ters in the EMCal that result from overlapping energy deposits of 

both decay photons in the same cluster due to the small open-
ing angle for large pion momentum. The elongation (σ 2

long > 0.27) 
of clusters with pT > 16 GeV/c was used to discriminate between 
single-photon (σ 2

long ≈ 0.25) and merged-photon clusters. The σ 2
long

distribution was obtained in pT-intervals of the clusters and the in-
tegrated counts above 0.27 were used as raw π0 candidate yields. 
An exemplary σ 2

long distribution at high pT is shown in Fig. 1a in 
simulation, broken up into the individual contributions to the full 
cluster sample. Fig. 1b shows a comparison between the data and 
simulation σ 2

long distributions, highlighting their good agreement 
within uncertainties. The resulting π0 purity is between 81–87% 
decreasing with pT in p–Pb and 83–89% in pp collisions. It was 
determined via PYTHIA 8 [33] simulations with additional data-
driven corrections, which increase the relative fractions of prompt 
photons by 1–3% and of η mesons by 2%. POWHEG-Box [34,35]
simulations were used to determine an additional purity correc-
tion for electrons from weak decays of up to 3%.

Correction factors for reconstruction efficiency and kinematic 
acceptance (see Ref. [32]) were obtained from simulations of 
the detector response with GEANT3 [36] using DPMJET [37] and 
PYTHIA 8 [33] as event generators. The correction factors for sec-
ondary π0 from long-lived strange hadron decays were obtained 
from a particle-decay simulation based on measured spectra and 
are dominated by contributions from K0

S and 
 decays [27,38]. 
They amount to about 1–6% and decrease with pT. For the PCM 
method, an additional correction for out-of-bunch pileup of 7 to 
15% decreasing with pT was applied.

The spectra were normalized by the integrated luminosities of 
each trigger sample and meson reconstruction method as listed in 
Table 1.

The systematic uncertainties on the π0 (η) cross sections con-
tain contributions from the yield extraction of 1–10% (2–20%) de-
pending on the reconstruction method and pT. Further contribu-
tions from the imperfect description of the selection variables in 
the simulation amount to 1–4% (1–6%), while the pT-independent 
material-budget uncertainties are 4.5% per PCM photon, 2.8% per 
EMCal photon and 2% per PHOS photon. Uncertainties arising from 
the out-of-bunch pileup determination reach 3–5% and global un-
certainties on the trigger rejection factors are 2–3% [32]. For the 
mEMC analysis, the largest systematic uncertainty arises from the 
shower overlaps in jets, which depend on the jet fragmentation 
and affect the π0 energy resolution in the EMCal. This uncertainty 
was estimated as 7–10%, obtained from varying the particle over-
laps within clusters. The total uncertainties on the π0(η) cross 
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Table 2
Summary of relative systematic uncertainties in percent for selected pT intervals for the π0 and η meson cross sections σp−Pb and nuclear modification factors RpPb. The 
statistical uncertainties are given in addition to the total systematic uncertainties for each bin. The combined statistical and systematic uncertainties, obtained by applying 
the BLUE method [39,40], are also listed for all reconstruction methods available in the given pT bin, considering the uncertainty correlations for the different methods. The 
uncertainty from the σMB determination of 1.9%, see Ref. [26], is independent of the reported measurements and is separately indicated in the figures.

Source σπ0

p−Pb Rπ0

pPb σ
η
p−Pb Rη

pPb η/π0
p−Pb

pT (GeV/c) 1.6 5.5 17 115 1.6 5.5 17 115 2.75 7 22.5 2.75 7 22.5 2.75 7 22.5

PCM photon reco. 10.7 9.1 – – 0.7 1.5 – – 9.5 10.5 – 2.0 3.0 – 2.7 4.6 –
meson reco. 6.8 6.3 – – 2.6 7.0 – – 4.0 5.1 – 4.6 6.3 – 3.9 5.2 –
pileup 5.5 3.3 – – 5.9 6.3 – – 4.9 4.1 – 6.1 6.1 – 2.6 1.9 –
stat. uncertainty 2.2 6.7 – – 3.0 9.2 – – 12.0 25.9 – 18.7 37.3 – 12.9 25.9 –

PCM-EMC PCM photon reco. 4.7 5.5 5.0 – 1.3 3.5 3.3 – 7.5 7.3 8.1 5.0 5.5 6.2 6.0 4.5 7.8
γ cluster reco. 3.5 3.8 4.4 – 1.8 2.1 3.8 – 4.8 5.1 6.5 2.9 3.3 9.6 3.6 3.8 5.0
meson reco. 2.4 1.0 1.5 – 2.9 2.3 2.2 – 3.3 4.7 14.4 5.5 5.4 8.3 3.7 6.3 14.4
trigger and efficiency 1.0 1.0 3.0 – 0.5 3.2 4.9 – 1.0 2.0 3.0 0.2 3.2 4.9 1.4 1.4 1.4
stat. uncertainty 2.2 3.7 3.6 – 2.6 5.7 5.3 – 14.2 11.4 16.4 0.0 0.0 0.0 14.1 14.0 12.5

EMC γ cluster reco. 7.2 5.9 7.1 – 4.8 2.7 4.3 – 9.5 8.5 9.5 7.0 6.6 8.2 7.3 6.9 8.6
meson reco. 3.5 4.1 7.3 – 5.1 4.7 7.0 – 23.7 7.3 3.0 29.4 8.3 4.8 23.9 7.9 8.6
trigger and efficiency 2.3 2.4 4.1 – 1.7 1.7 4.5 – 2.3 3.0 3.8 2.6 2.6 5.1 2.0 2.5 2.5
stat. uncertainty 3.1 2.0 4.2 – 4.4 3.1 5.3 – 20.8 7.9 6.9 23.9 15.4 27.8 20.9 8.1 12.5

PHOS γ cluster reco. 3.2 3.7 3.8 – 2.0 2.0 2.0 – 4.1 4.2 4.2 – – – 0.0 0.0 0.0
meson reco. 2.1 2.9 4.9 – 3.5 3.3 5.2 – 18.0 4.5 7.0 – – – 34.6 7.9 12.4
trigger and efficiency 2.8 2.8 3.4 – 7.4 7.4 14.6 – 1.6 2.5 2.5 – – – 1.0 1.0 1.0
stat. uncertainty 1.1 3.1 3.6 – 5.4 6.9 11.7 – 29.7 6.5 15.9 – – – 17.5 5.8 12.9

mEMC meson PID – – 5.4 5.8 – – 2.3 3.6 – – – – – – – – –
cluster reco. – – 8.3 9.5 – – 1.0 1.0 – – – – – – – – –
trigger and efficiency – – 4.1 4.1 – – 3.8 3.8 – – – – – – – – –
stat. uncertainty – – 2.4 5.7 – – 2.7 10.8 – – – – – – – – –

combined syst. uncert. 3.6 3.9 4.9 11.9 2.7 2.9 2.9 5.4 5.6 5.3 6.1 5.9 6.8 11.5 8.6 4.5 8.2
combined stat. uncert. 1.0 1.8 2.2 5.7 1.8 2.7 2.2 10.8 8.6 4.5 8.2 11.9 11.6 17.2 5.6 5.3 6.1

Fig. 2. Ratio of the neutral pion invariant differential cross sections to the two-
component model (TCM) fit of the combined spectrum for the different recon-
struction techniques PCM, PCM-EMC, EMC, PHOS and mEMC in p–Pb collisions at √

sNN = 8.16 TeV. Statistical uncertainties are given by the vertical error bars while 
systematic uncertainties are shown as boxes.

sections are between 5(8)% and 20(27)% and, due to uncertainty 
cancellations and correlations, between 7% and 24% on the η/π0

ratio. For the RpPb, the pT-independent uncertainties cancel as well 
as a fraction of the remaining uncertainties resulting in a total un-
certainty between 4(11)% and 25(32)%. A tabulated overview of 
the systematic uncertainty contributions for selected pT-intervals 
is given in Table 2.

5. Results

The invariant differential cross sections and RpPb measured by 
each method are consistent within their uncertainties, as shown 
in Fig. 2. For the calculation of RpPb the spectra are shifted 
in the y-direction, while for the cross sections they are shifted 

along the pT-axis to account for the finite bin width [46]. They 
were combined using the Best Linear Unbiased Estimate (BLUE) 
method [39,40] accounting for the partially correlated uncertain-
ties. The resulting π0 and η invariant differential cross sections 
for p–Pb collisions at 

√
sNN = 8.16 TeV are shown in Fig. 3 to-

gether with the π0 cross section in pp collisions at 
√

s = 8 TeV. In 
both cases, the high pT reach of pT = 200 GeV/c for the π0 meson 
was enabled by the mEMC method, which allowed to significantly 
extend the previous pp measurement beyond 35 GeV/c [27]. The 
data is compared to a two-component model (TCM) fit [47], NLO 
calculations [41–43], and PYTHIA 8 [33,44] predictions using dif-
ferent nPDFs [9,10,45]. NLO calculations using the CT18 [48] PDF 
or nCTEQ15 [9] nPDF together with DSS14 [41] or AESSS [42] frag-
mentation functions generally overestimate the π0 and η spectra, 
while predicting a steeper falling spectrum at high pT. Additional 
NLO calculations based on the more recent NNFF1.0 [43] frag-
mentation functions are generally in good agreement with the 
data but tend to underestimate the spectra at low pT. In Fig. 3
they are shown with factorization and renormalization scales var-
ied from μ = pT to μ = 0.5pT and 2pT and indicated by bands. 
PYTHIA 8 [33] calculations using EPPS16 [10] and nCTEQ15 [9]
nPDFs describe the data, however without fully capturing the 
shape of the π0 spectra, in particular at low and intermediate pT, 
and with a tendency to underestimate the η spectra. For the η/π0

ratio, presented in Fig. 3f, the differences in the shape and scale 
between data and calculations approximately cancel. The ratio is 
rather well described by the predictions and is consistent over the 
full pT range between both collision systems. For pT > 4 GeV/c, 
the η/π0 ratio is Cη/π0

pPb = 0.479 ± 0.009(stat) ± 0.010(syst), con-
sistent with the previous measurement at a lower center-of-mass 
energy [6] and with Cη/π0

pp = 0.473 ± 0.006(stat) ± 0.011(syst), 
the reevaluated η/π0 ratio in pp collisions at 8 TeV.

To provide the pp reference for the RpPb, the pp spectra mea-
sured at 

√
s = 8 TeV were scaled to the p–Pb collision energy and 
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Fig. 3. Neutral pion a) and η meson d) cross sections for pp collisions at √s = 8 TeV and p–Pb collisions at √sNN = 8.16 TeV together with TCM fits, NLO calculations [41–43]
and PYTHIA 8 [33,44] predictions using different (n)PDFs [9,10,45]. Statistical uncertainties are shown as vertical bars; the systematic uncertainties as boxes. The ratios of the 
π0 spectra in p–Pb and pp collisions to the TCM fits are shown in panel b) and c), respectively, together with the ratios of the calculations to the fits; panel e) shows the 
same for η mesons in p–Pb collisions. In panel f) the η/π0 ratios in pp and p–Pb collisions are compared to theory predictions. The normalization uncertainty in the spectra 
ratio panels is indicated as a solid gray box around unity.

corrected for the rapidity difference, using the ratio of π0 spectra 
generated with PYTHIA 8 Monash 2013 [44] for both kinematic re-
gions, leading to a 1–2% increase over the whole pT range. The 
resulting RpPb at 

√
sNN = 8.16 TeV is shown in Fig. 4a for both 

mesons together with theory predictions and in Fig. 4b compared 
to data taken at 

√
sNN = 5.02 TeV. In the intermediate pT region, 

the charged particle RpPb exhibits an enhancement compared to 
the π0 data, which is historically attributed to the stronger Cronin 
effect for baryons [49,50]. For pT > 10 GeV/c, no deviation from 
unity is observed within uncertainties for both mesons, consis-
tent with predictions and the ALICE π0 and h± measurements at √

sNN = 5.02 TeV [6,51], in contrast to the moderate enhancement 
for charged hadrons seen by the CMS experiment [5]. Fitting with 
a constant function resulted in 1.00 ± 0.01 (0.96 ± 0.04) with a 
χ2/NDF of 1.04 (0.45) for the π0 (η) meson. Based on the spectral 
slopes, the data disfavor a more than 1% relative energy loss or an 
induced constant pT-shift of more than 100 MeV from final-state 
effects in the region between 10 and 20 GeV/c for both mesons, 
consistent with the calculations in Ref. [18].

For pT < 10 GeV/c, a suppression of similar magnitude is ob-
served for both mesons within uncertainties. The suppression is 
described by NLO calculations using EPPS16 [10] and nCETQ15 [9]
nPDFs (the latter tends to underpredict the data below 5 GeV/c), 
as well as by models using gluon recombination as the CGC-based 
calculations [12] or parton energy loss in cold nuclear matter in 
the framework of fully coherent energy loss (FCEL) [13].

The comparison of the π0 RpPb to the previous measurement at √
sNN = 5.02 TeV [6], as shown in Fig. 4c, is consistent with unity 

within uncertainties, but the data hints at a stronger suppres-
sion with increasing center-of-mass energy. A stronger suppression 
could originate from larger shadowing in the nPDFs, which due 
to the smaller x probed at 8.16 TeV predict a ratio of about 0.98

in the low pT region, or from the increasing relevance of gluon 
saturation, as indicated by the CGC calculation [12]. The FCEL cal-
culation predicts a negligible difference between the two collision 
energies excluding coherent energy loss as the cause of a stronger 
suppression. A constant fit for pT < 10 GeV/c yields a ratio of 
0.93 ± 0.02tot ± 0.06norm, where the normalization uncertainty is 
dominated by the interpolation of the π0 reference spectrum at 
5.02 TeV.

6. Conclusion

In summary, cross sections for π0 and η mesons in p–Pb colli-
sions at 

√
sNN = 8.16 TeV were measured for 0.4 < pT < 200 GeV/c

and 1.0 < pT < 50 GeV/c, respectively, providing constraints for 
nuclear parton distributions and fragmentation functions over an 
unprecedented kinematic range for light mesons. By extending the 
reference π0 measurement in pp collisions at 

√
s = 8 TeV to the 

same pT range using the mEMC method, the RpPb for π0 was mea-
sured up to 200 GeV/c. The RpPb is consistent with unity above 
10 GeV/c, as expected from calculations without parton energy 
loss, and strongly suppressed at low pT, consistent with theory 
predictions that also include gluon shadowing or saturation effects.
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Fig. 4. a) RpPb for π0 and η mesons in p–Pb collisions at √sNN = 8.16 TeV to-
gether with NLO [9,10], CGC [12] and FCEL [13] predictions. b) RpPb for π0 at √

sNN = 8.16 TeV compared with π0 [6] and charged hadron measurements [5,51]
at √

sNN = 5.02 TeV. c) Ratio of the π0 RpPb at √
sNN = 8.16 TeV to that at √

sNN = 5.02 TeV together with corresponding CGC and FCEL model predictions. 
Statistical uncertainties are shown as vertical bars; the systematic uncertainties as 
boxes. The overall normalization uncertainties are indicated as solid boxes around 
unity and amount to 3.4% in a) and b), and to 6.2% in c).
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