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Deuteron production in high-energy collisions is sensitive to the space–time evolution of the collision 
system, and is typically described by a coalescence mechanism. For the first time, we present results on 
jet-associated deuteron production in pp collisions at 

√
s = 13 TeV, providing an opportunity to test the 

established picture for deuteron production in events with a hard scattering. Using a trigger particle with 
high transverse-momentum (pT > 5 GeV/c) as a proxy for the presence of a jet at midrapidity, we observe 
a measurable population of deuterons being produced around the jet proxy. The associated deuteron yield 
measured in a narrow angular range around the trigger particle differs by 2.4–4.8 standard deviations 
from the uncorrelated background. The data are described by PYTHIA model calculations featuring baryon 
coalescence.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Measurements of deuterons in high-energy collisions provide 
insight into baryon production and baryon transport mechanisms 
which are sensitive to the space–time evolution of the collision 
system. Deuteron and anti-deuteron spectra were measured in pp 
collisions at the CERN ISR [1,2] and Tevatron [3], photo-production 
processes and deep inelastic scattering of electrons at HERA [4,5], 
electron-positron collisions at CLEO [6] and LEP [7], and most 
recently at the LHC in pp collisions at 

√
s = 0.9, 2.76, 7 and 

13 TeV [8–11], as well as in nucleus–nucleus collisions at SPS [12], 
RHIC [13] and LHC [8,14,15] energies. Deuteron production can 
be described by phenomenological models, according to which an 
(anti-)neutron and (anti-)proton close in phase-space coalesce and 
bind together [16–18]. The coalescence mechanism is of broader 
interest, as it has been employed in describing the production 
of nuclei and anti-nuclei as large as 4He and 4He [19,20], nucle-
ons and hyperons forming hypernuclei [21,22], searches for exotic 
states such as pentaquarks [23], and searches for colorless SUSY-
hybrid states with gluinos [24]. Statistical hadronization models, 
which assume particle production in thermal equilibrium, were 
also successful in explaining the yields of light (anti-)nuclei along 
with other hadrons in Pb–Pb collisions, but have difficulties to de-
scribe the data in smaller systems [25,26].

New insights may be obtained by studying the production of 
deuterons from hard processes, which can be explored by their 
formation within jets. To investigate the effects of jets on deuteron 
production, we employ the two-particle correlation method, as 
suggested in Ref. [27]. Charged particles with transverse momen-

� E-mail address: alice -publications @cern .ch.

tum (pT) above 5 GeV/c are taken as trigger particles to approxi-
mate the jet direction. The azimuthal correlation of deuteron can-
didates with respect to the trigger particle is measured in five 
pT intervals between 1 and 4 GeV/c. Impurities are accounted for 
by using a sideband subtraction method, and deuterons oriented 
randomly with respect to the trigger particle are subtracted us-
ing the zero yield at minimum (ZYAM) method [28]. The integrated 
yields of associated deuterons obtained within an azimuthal range 
of 0.7 rad relative to the trigger particle, representing the region of 
jet fragmentation, are reported as a function of deuteron pT. In the 
coalescence picture, the smaller phase space provided by the jet 
fragmentation may promote deuteron production. Hence, the data 
are compared to model calculations based on PYTHIA (v8) with a 
coalescence afterburner [29].

The remainder of the letter is organized as follows. Sec-
tion 2 briefly describes the various ALICE subsystems, the dataset 
and event selection criteria for the measurement presented. Sec-
tion 3 discusses the particle identification and correlation analysis 
methods. Section 4 presents the measurement of the associated 
deuteron yields, discusses the systematic uncertainties, and pro-
vides the comparison with the PYTHIA-based coalescence after-
burner model. Section 5 concludes the letter.

2. Experimental setup and dataset

ALICE is a general purpose detector at the LHC with cylindri-
cal geometry and outer dimensions of 16 × 16 × 26 m3 [30]. A 
large solenoid magnet provides an uniform magnetic field of 0.5 T 
along the beam direction (z direction) and encases the central 
barrel around the nominal interaction point (IP) at z = 0. The mea-
surements presented use a subset of the ALICE detector systems, 
including the V0 [31], the Inner Tracking System (ITS) [32], the 
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Time Projection Chamber (TPC) [33], the T0, and the Time-of-Flight 
(TOF) [34] detectors. The V0 is a forward detector system used for 
event triggering. It consists of two circular planes of plastic scin-
tillators at 87 and 329 cm on opposite sides of the IP covering a 
pseudorapidity of −3.7 < η < −1.7 and 2.8 < η < 5.1, respectively. 
The ITS is composed of six layers of silicon detectors ranging from 
3.9 to 43 cm radius around the beam pipe. Together with the TPC, 
it is used for precise reconstruction of the primary vertex position 
and tracking of charged particles with η < 0.9. The TPC is a large 
tracking drift detector (inner radius 85 cm, outer radius 250 cm 
and length 500 cm) providing up to 159 space points per track 
for momentum reconstruction as well as energy loss (dE/dx) mea-
surement for particle identification. The T0 consists of two sets 
of 12 Cherenkov counters around the beam pipe at −70 cm and 
374 cm which provides a measurement of the collision time. The 
TOF detector is a cylindrical wall with inner radius 3.7 m from 
the beam-pipe. The arrival time of incident hadrons is measured 
using multi-gap resistive plate chambers with an intrinsic reso-
lution of about 80 ps. The particle identification method using a 
combination of tracking, timing, and energy loss measurements is 
described in Sect. 3. Further details of the performance of the AL-
ICE detector systems are given in Ref. [35].

The analysis is based on the data recorded in pp collisions 
at 

√
s = 13 TeV during the years 2015–2018. The minimum-bias 

event selection required a hit in both sides of the V0 detector, 
resulting in approximately 1.8 billion events corresponding to an 
integrated luminosity of about 30 nb−1.

Additional event selection criteria required at least one track in 
the ITS with a projection to a vertex position within 0.5 cm along 
the beam direction from the position estimated by the T0 collision 
time. This requirement suppressed events from out-of-bunch beam 
background. The z-vertex position was required to be within 10 cm 
of the nominal IP to ensure approximately constant η acceptance 
within the detector for all events. Pile-up events were suppressed 
by rejecting events with multiple vertices reconstructed by the ITS 
that are separated by more than 0.8 cm (in the z-direction). Ap-
proximately 88% of the minimum-bias events were accepted for 
further analysis.

3. Analysis method

Deuteron candidates in several pT intervals were correlated 
with charged trigger particles above 5 GeV/c. The correlation was 
studied as a function of the azimuthal angle difference (�ϕ) be-
tween deuteron and trigger particle. In events with multiple trig-
gers and/or deuteron candidates, all combinations were taken into 
account. Events with more than one 5 GeV/c particle correspond 
to 9.7% of the selected event sample, while events with more than 
one deuteron candidate are 0.05% of the total number of events 
with a deuteron candidate.

Deuteron candidates were selected from reconstructed tracks 
in the central barrel with a pseudorapidity range of |η| < 0.9
that passed several quality criteria. Tracks were required to con-
tain at least two ITS and 70 TPC clusters, as well as at least 80% 
of the maximum possible TPC clusters along its path. For parti-
cle identification, agreement with the expected TOF (TPC) signal 
for deuterons within two (three) standard deviations of the pT-
dependent resolution was required, as explained further below. To 
suppress secondaries, the distance-of-closest-approach (DCA) pro-
jections of the track to the reconstructed vertex projected on the 
transverse plane and longitudinal direction, had to be less than 0.5
and 1 cm, respectively.

In order to maintain a uniform azimuthal (ϕ) distribution for 
trigger particles, the track quality criteria were relaxed. In par-
ticular, the requirements of having a TOF hit, two ITS clusters, 
and maximal DCA were not imposed. The trigger condition pT >

Table 1
Deuteron purity estimates for coarse pT intervals.

pT-range (GeV/c) 1.0–1.35 1.35–1.8 1.8–2.4 2.4–3.0 3.0–4.0

Purity (%) 99.5±0.1 98.4±0.4 75.5±1.7 46.1±1.9 25.5±1.4

5 GeV/c results in an average trigger particle transverse momen-
tum of 6.7 GeV/c.

The time-of-flight (t) of a charged particle was obtained us-
ing the difference between the event collision time and the ar-
rival time at the TOF. Together with the momentum (p) and path 
length (L) from the track reconstruction, the mass-squared (m2),

m2 = p2

c2

(
t2c2

L2
− 1

)
(1)

was calculated for deuteron candidates. Example m2 distributions 
of deuteron candidates for different pT intervals are shown in 
Fig. 1. The signal component was fit using a Crystal Ball func-
tion [36]. The standard deviation was approximated by the width 
of its Gaussian core. An exponential was used for the background. 
An agreement within two standard deviations of the expected m2

value given by the fit was required. Removing candidates with 
dE/dx measured using the TPC outside of three standard devia-
tions from the expected value of deuterons significantly reduced 
the background, especially in the pT region below 2 GeV/c.

The deuteron purity was estimated from integration over the 
signal and background components of the m2 fit functions. The 
purity was measured in fine pT intervals and then averaged with 
statistical weights for the correlation measurement into five inter-
vals, given in Table 1. The lower limit of the kinematic range was 
set to 1 GeV/c to reduce the contamination by secondary (knock-
out) deuterons from spallation in detector material to the percent 
level [8,9]. The purity is close to 100% for pT � 1.8 GeV/c. At larger 
pT, the background increases gradually and the purity drops to 
about 25% in the highest pT interval.

A mixed-event technique was applied to correct for pair effi-
ciency effects caused by non-uniformities of the ϕ acceptance. To 
this end, every deuteron candidate was correlated with 15 trigger 
particles selected from different events, which were categorized 
into ten event classes employing five multiplicity and two z-vertex 
intervals. The integral of the resulting mixed-event �ϕ distribu-
tion was normalized to one. The raw �ϕ distribution of deuteron 
candidates relative to the trigger particle is divided by the nor-
malized mixed-event distribution, resulting in the ratio Cdeut.cand. . 
The rather small number of events having both the trigger parti-
cle and a deuteron candidate did not permit a further separation 
into intervals of rapidity. As a result, triggers and deuterons on 
the edge of the pseudorapidity range (|η| < 0.9) have roughly half 
the probability of being paired compared to those in the central 
region, an effect that would be corrected for with mixing in two 
dimensions [37]. Depending on the purity (P) for a given pT in-
terval, a fraction of the �ϕ yield arises from misidentified tracks 
amongst the deuteron candidates. The contribution to the yield 
from misidentified tracks was subtracted using �ϕ-correlations 
obtained in the sideband regions of the m2 distributions with 
weights from purity estimates, according to

Cdeuteron(�ϕ)

= Cdeut.cand.(�ϕ) − (1 −P)
Ndeut.cand.

Nsideband
Csideband(�ϕ) , (2)

where Ndeut.cand./Nsideband was used to normalize the number of 
associated counts in the sideband region (Csideband) to that of the 
deuteron candidate region (Cdeut.cand.). The distribution Cdeuteron

represents the correlated yield with respect to �ϕ between the 
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Fig. 1. Example m2-distributions for a) low, b) intermediate and c) high pT intervals. The signal plus background fit is shown as a solid (red) line, and the extracted background 
as a dotted (black) line. The ±2 standard deviation candidate region around the mean from the fit is shown in blue. In (a) no sideband region is visible as the purity is 
essentially unity. In (b) and c) the sideband regions are the shaded (orange) areas between 3–5 standard deviations on both sides of the peak. In the candidate region, the 
signal is depicted in light blue, while the background is shown in dark blue. The purity in the candidate region is approximately 100% in (a), 60% in (b) and 25% in (c).

trigger particle and associated deuterons. The sideband selection 
was chosen to be between 3–4 standard deviations on both sides 
of the peak. A Monte Carlo simulation, where (anti-)deuterons 
were injected into pp events generated by PYTHIA [38] was used 
to determine the momentum-dependent tracking efficiency (ε) and 
acceptance (A). Their product strongly rises from 0.2 at pT =
1 GeV/c and levels out at about 0.55 above 1.5 GeV/c. The cor-
rected deuteron yield per trigger particle (Ydeuteron) was then ob-
tained from

Ydeuteron(�ϕ) = Cdeuteron(�ϕ)

Ntrig

1

ε · A
, (3)

in the five intervals of deuteron pT, where Ntrig is the total num-
ber of trigger particles. A correction for efficiency and acceptance 
of the trigger particles, which are approximately constant above 
5 GeV/c, was not applied because the related corrections would 
cancel in the ratio. The corrected per-trigger yield distributions 
were obtained independently for deuterons and anti-deuterons and 
then added for the final results.

4. Results

The per-trigger associated yield Ydeuteron versus �ϕ , which 
represents the probability of deuterons and anti-deuterons be-
ing found within a specified pT interval and within �ϕ of a 
high-pT (> 5 GeV/c) trigger hadron, is shown in Fig. 2 for five 
deuteron pT intervals. The markers represent the data points with 
statistical uncertainties, while the boxes show the total systematic 
uncertainty.

Several independent sources of uncertainty associated with 
tracking, particle identification, sideband correction, and purity, as 
well as efficiency and acceptance were included into the total sys-
tematic uncertainty. Individual sources were estimated as follows: 
a) the DCA cut was narrowed from 0.5 (1.0) cm in the xy-plane 
(z-axis) to 0.1 (0.1) cm, b) the minimum number of TPC clusters 
for a track was increased from 70 to 90 hits, c) the TOF parti-
cle identification requirement on the mass-squared to be within 2 
standard deviations of the mean mass was relaxed to 3 standard 
deviations, d) the mass-squared range used to select the sidebands 
was changed from 3–4 standard deviations from the mean to 4–5 
standard deviations, e) the TPC particle identification requirement 
of agreement within three standard deviations was tightened to 
two standard deviations, f) the purity calculation from signal and 
background fit functions was compared to the purity found us-
ing bin-counting for the signal and a fit for the background, and 
g) the mixed-event correction in �ϕ was not applied. In addition, 
a �ϕ-independent uncertainty of 5% was applied to account for 
deficiencies in the deuteron efficiency and acceptance corrections. 

Table 2
Uncertainties for each associated pT interval. Top: Statistical uncertainty averaged 
over all �ϕ-intervals. Middle: Contributions to systematic uncertainties for the dif-
ferent sources described in the text as well as the total, which is obtained from 
adding the individual contributions in quadrature. Bottom: Uncertainty associated 
with the determination of the ZYAM value.

pT-range (GeV/c) 1.0–1.35 1.35–1.8 1.8–2.4 2.4–3.0 3.0–4.0
Statistical unc. 15.6% 13.4% 15.4% 31.7% 57.6%
Sources of sys. unc.

a) DCA cut 3.6% 3.5% 2.4% 0.4% 7.6%
b) TPC clu. min. 13.2% 9.7% 0.5% 0.0% 25.2%
c) TOF-PID 9.2% 7.3% 17.2% 5.6% 31.8%
d) Sidebands 1.9% 0.5% 14.5% 24.8% 14.3%
e) TPC-PID 7.0% 2.5% 3.4% 11.2% 20.6%
f) Purity det. 0.0% 0.2% 5.0% 11.1% 3.8%
g) Mixing 7.7% 11.2% 9.3% 12.7% 5.3%
Tracking eff. 5% 5% 5% 5% 5%
Total sys. unc. 20.3% 17.8% 25.7% 32.9% 49.0%
ZYAM unc. 101.0% 19.6% 3.7% 27.4% 10.5%

A separate purity and track selection efficiency was estimated for 
each change associated with the deuteron candidate track selec-
tion. The resulting variation (i.e. p/ε × A) was found to differ by 
less than 10% from the baseline value obtained using the standard 
selection.

Table 2 summarizes the various systematic uncertainties for the 
five pT intervals.

The resulting systematic uncertainties are largely point-to-point 
correlated in �ϕ . Hence, the shape of the distributions shown in 
Fig. 2 exhibits for all pT-intervals, except the lowest, a characteris-
tic double-peak structure reminiscent of hard scattering, albeit sit-
ting on a large pedestal value indicative of a large contribution of 
deuterons produced in the underlying event. To quantify the per-
trigger associated yield of deuterons, the contribution of the uncor-
related background was estimated using the ZYAM method [28]. 
The ZYAM value was obtained by taking the average over the 
ranges π

2 ± π
9 and 3π

2 ± π
9 , which includes eight �ϕ intervals. To 

estimate the corresponding uncertainty, also reported in Table 2, 
we fit a parabola to the π

2 ± π
9 region and use its vertex value as 

an alternative ZYAM estimate. The ZYAM uncertainty, constructed 
by these two ways, is as such subject to statistical fluctuations. The 
central ZYAM value along with its uncertainty are shown as a band 
in Fig. 2. In the lowest pT-interval the point-to-point statistical 
fluctuations in the data are greater in magnitude than the poten-
tial underlying trend, resulting in a large ZYAM uncertainty, which 
demonstrates that the separation between correlated yield and the 
uncorrelated background is not possible. In all other pT-intervals 
a pronounced jet–associated deuteron enhancement relative to the 
ZYAM value is visible.

In Fig. 2, the data are also compared to model calculations, 
based on PYTHIA 8.2 (Monash) [39,40], including a coalescence af-
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Fig. 2. The per-trigger associated yield versus �ϕ for charged particles with pT > 5.0 GeV/c and associate deuterons and anti-deuterons for different associate pT intervals: 
1.0–1.35, 1.35–1.8, 1.8–2.4, 2.4–3.0, and 3.0–4.0 GeV/c. The markers represent the data points with statistical uncertainties, while the boxes represent the systematic uncer-
tainties associated with tracking, purity, and sideband selection. The dotted line shows the ZYAM background estimate and the blue band is the uncertainty associated with 
the ZYAM estimate. Histogram lines are PYTHIA 8.2 (Monash) model calculations with a coalescence afterburner with p0 = 110 MeV/c. The calculation was scaled by 0.5 and 
0.75 in the first two intervals, required to approximately describe the measured deuteron spectrum at 13 TeV, as explained in the text.

terburner (AB) following Ref. [29] for deuteron production, which 
otherwise is absent in PYTHIA. In the coalescence model, a (anti-)
proton is combined with a (anti-)neutron if each of their momenta 
in their centre-of-mass frame is smaller than p0, the sole free pa-
rameter of the model. Using p0 = 110 MeV/c, the model describes 
the deuteron spectra in pp collisions at 7 TeV above 1.5 GeV/c
within uncertainties of about 10%, while it overpredicts the data 
by up to 50% between 1–1.5 GeV/c [9,29]. Using the same value of 
p0 = 110 MeV/c, a similar agreement is achieved for the data at 
13 TeV [11]. The deviations at low pT of up to 50% originate from 
small differences of the level of 10–20% between the measured 
and calculation proton yields [41]. Since there is a large contri-
bution from the underlying event, the calculation in Fig. 2 was 
scaled by 0.5 and 0.75 in the lowest two intervals, to take into ac-
count the difference between the model and the data on inclusive 
deuteron production. The coalescence model calculation describes 
the data with the exception of the lowest two associated pT inter-
vals, where it tends to overpredict the data.

To extract the per-trigger correlated yield in the jet peak region, 
Ydeuteron above the ZYAM line is integrated within |�ϕ| < 0.7 rad,

Y near side
deuteron =

+0.7∫
−0.7

(Ydeuteron(ϕ) − CZYAM) dϕ . (4)

The per-trigger associated-deuteron integrated yield on the near 
side as a function of deuteron pT is presented in Fig. 3. The sys-
tematic uncertainties from the correlation measurement, which are 
largely correlated, and from the ZYAM determination, which are 
largely uncorrelated across deuteron pT, are shown separately. For 
every pT interval except the first, the deuteron yield is between 
2.4 and 4.8 standard deviations larger than zero (considering the 
quadratic sum of statistical, systematic and ZYAM uncertainties), 
indicating a contribution of deuterons produced in the vicinity of 
the trigger particle. The yield of deuterons in the jet peak rela-
tive to the production in the underlying event was estimated by 
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Fig. 3. The per-trigger associated-deuteron integrated yield for trigger particles 
above 5 GeV/c on the near side versus pT of the associated deuterons and anti-
deuterons. Vertical bars show statistical uncertainties, open boxes systematic uncer-
tainties, and shaded (blue) boxes show the uncertainty related to the subtraction 
of the uncorrelated background using the ZYAM method. Square markers are cal-
culations using PYTHIA 8.2 (Monash) with a coalescence afterburner, displaced by 
30 MeV/c for better visibility.

computing the ratio of the per trigger yield to the ZYAM value 
multiplied by 2π . The resulting fraction of deuterons produced in 
the jet is about 8–15%, increasing with increasing pT, indicating 
that in the pT ranges explored by the measurement, the majority 
of the deuterons are produced in the underlying event. The model 
calculations, integrated and corrected using ZYAM in the same way 
as the data, are in agreement with the data. The fore-mentioned 
trend of the calculation to overpredict the data in the two low-
est pT intervals is still present, but not significant given the large 
uncertainty from the ZYAM method.

5. Conclusions

Using a high-momentum particle (pT > 5 GeV/c) as a proxy for 
the presence of a jet at midrapidity, we measured the per-trigger 
yield of associated deuterons and anti-deuterons in five pT bins, 
ranging from 1 to 4 GeV/c in pp collisions at 

√
s = 13 TeV. The 

associated yield integrated within a narrow angular range of the 
trigger particle is between 2.4 and 4.8 standard deviations above 
the uncorrelated background in every deuteron pT interval above 
1.35 GeV/c. In the region of trigger and deuteron pT probed by 
our measurement, the fraction of deuterons correlated with jets 
are about 10% of the number in the underlying event. The data are 
described by PYTHIA model calculations when deuteron produc-
tion via coalescence is included.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the 
outstanding performance of the LHC complex. The ALICE Collab-
oration gratefully acknowledges the resources and support pro-
vided by all Grid centres and the Worldwide LHC Computing Grid 
(WLCG) collaboration. The ALICE Collaboration acknowledges the 

following funding agencies for their support in building and run-
ning the ALICE detector: A.I. Alikhanyan National Science Labora-
tory (Yerevan Physics Institute) Foundation (ANSL), State Commit-
tee of Science and World Federation of Scientists (WFS), Arme-
nia; Austrian Academy of Sciences, Austrian Science Fund (FWF): 
[M 2467-N36] and Österreichische Nationalstiftung für Forschung, 
Technologie und Entwicklung, Austria; Ministry of Communications 
and High Technologies, National Nuclear Research Center, Azer-
baijan; Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 
and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; 
Ministry of Education of China (MOEC), Ministry of Science & 
Technology of China (MSTC) and National Natural Science Foun-
dation of China (NSFC), China; Ministry of Science and Educa-
tion and Croatian Science Foundation, Croatia; Centro de Aplica-
ciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, 
Cuba; Ministry of Education, Youth and Sports of the Czech Repub-
lic, Czech Republic; The Danish Council for Independent Research 
| Natural Sciences, the Villum Fonden and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 
(HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung und Forschung (BMBF) 
and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Ger-
many; General Secretariat for Research and Technology, Ministry of 
Education, Research and Religions, Greece; National Research, De-
velopment and Innovation Office, Hungary; Department of Atomic 
Energy, Government of India (DAE), Department of Science and 
Technology, Government of India (DST), University Grants Commis-
sion, Government of India (UGC) and Council of Scientific and In-
dustrial Research (CSIR), India; Indonesian Institute of Sciences, In-
donesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute 
for Innovative Science and Technology, Nagasaki Institute of Ap-
plied Science (IIST), Japanese Ministry of Education, Culture, Sports, 
Science and Technology (MEXT) and Japan Society for the Promo-
tion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia 
(CONACYT) y Tecnología, through Fondo de Cooperación Interna-
cional en Ciencia y Tecnología (FONCICYT) and Dirección General 
de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; 
The Research Council of Norway, Norway; Commission on Science 
and Technology for Sustainable Development in the South (COM-
SATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Min-
istry of Science and Higher Education, National Science Centre and 
WUT ID-UB, Poland; Korea Institute of Science and Technology In-
formation and National Research Foundation of Korea (NRF), Re-
public of Korea; Ministry of Education and Scientific Research, In-
stitute of Atomic Physics and Ministry of Research and Innovation 
and Institute of Atomic Physics, Romania; Joint Institute for Nuclear 
Research (JINR), Ministry of Education and Science of the Russian 
Federation, National Research Centre Kurchatov Institute, Russian 
Science Foundation and Russian Foundation for Basic Research, 
Russia; Ministry of Education, Science, Research and Sport of the 
Slovak Republic, Slovakia; National Research Foundation of South 
Africa, South Africa; Swedish Research Council (VR) and Knut & Al-
ice Wallenberg Foundation (KAW), Sweden; European Organization 
for Nuclear Research, Switzerland; Suranaree University of Technol-
ogy (SUT), National Science and Technology Development Agency 
(NSDTA) and Office of the Higher Education Commission under 
NRU project of Thailand, Thailand; Turkish Atomic Energy Agency 
(TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; 
Science and Technology Facilities Council (STFC), United Kingdom; 
National Science Foundation of the United States of America (NSF) 

5



ALICE Collaboration Physics Letters B 819 (2021) 136440

and United States Department of Energy, Office of Nuclear Physics 
(DOE NP), United States of America.

References

[1] B. Alper, et al., Large angle production of stable particles heavier than the pro-
ton and a search for quarks at the CERN intersecting storage rings, Phys. Lett. 
B 46 (1973) 265–268.

[2] British-Scandinavian-MIT Collaboration, S. Henning, et al., Production of 
deuterons and anti-deuterons in proton–proton collisions at the CERN ISR, Lett. 
Nuovo Cimento 21 (1978) 189.

[3] T. Alexopoulos, et al., Cross-sections for deuterium, tritium, and helium pro-
duction in pp collisions at √s = 1.8 TeV, Phys. Rev. D 62 (2000) 072004.

[4] H1 Collaboration, A. Aktas, et al., Measurement of anti-deuteron photoproduc-
tion and a search for heavy stable charged particles at HERA, Eur. Phys. J. C 36 
(2004) 413–423, arXiv:hep -ex /0403056 [hep -ex].

[5] ZEUS Collaboration, S. Chekanov, et al., Measurement of (anti)deuteron and 
(anti)proton production in DIS at HERA, Nucl. Phys. B 786 (2007) 181–205, 
arXiv:0705 .3770 [hep -ex].

[6] CLEO Collaboration, D.M. Asner, et al., Anti-deuteron production in Upsilon(nS) 
decays and the nearby continuum, Phys. Rev. D 75 (2007) 012009, arXiv:hep -
ex /0612019 [hep -ex].

[7] ALEPH Collaboration, S. Schael, et al., Deuteron and anti-deuteron production 
in e+e− collisions at the Z resonance, Phys. Lett. B 639 (2006) 192–201, arXiv:
hep -ex /0604023 [hep -ex].

[8] ALICE Collaboration, J. Adam, et al., Production of light nuclei and anti-nuclei 
in pp and Pb–Pb collisions at energies available at the CERN Large Hadron Col-
lider, Phys. Rev. C 93 (2) (2016) 024917, arXiv:1506 .08951 [nucl -ex].

[9] ALICE Collaboration, S. Acharya, et al., Production of deuterons, tritons, 3He 
nuclei and their antinuclei in pp collisions at √s = 0.9, 2.76 and 7 TeV, Phys. 
Rev. C 97 (2) (2018) 024615, arXiv:1709 .08522 [nucl -ex].

[10] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of (anti-
)deuteron production in pp collisions at √s = 7 TeV, Phys. Lett. B 794 (2019) 
50–63, arXiv:1902 .09290 [nucl -ex].

[11] ALICE Collaboration, S. Acharya, et al., (Anti-)Deuteron production in pp colli-
sions at √s = 13 TeV, arXiv:2003 .03184 [nucl -ex].

[12] NA49 Collaboration, T. Anticic, et al., Energy and centrality dependence of 
deuteron and proton production in Pb–Pb collisions at relativistic energies, 
Phys. Rev. C 69 (2004) 024902.

[13] STAR Collaboration, B. Abelev, et al., Yields and elliptic flow of d(anti-d) 
and He-3(anti-He-3) in Au–Au collisions at √sNN = 200 GeV, arXiv:0909 .0566
[nucl -ex].

[14] ALICE Collaboration, S. Acharya, et al., Measurement of deuteron spectra and 
elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV at the LHC, Eur. Phys. J. C 
77 (10) (2017) 658, arXiv:1707.07304 [nucl -ex].

[15] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of light (anti-)
nuclei production in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 800 
(2020) 135043, arXiv:1906 .03136 [nucl -ex].

[16] R. Hagedorn, Deuteron production in high-energy collisions, Phys. Rev. Lett. 5 
(1960) 276–277.

[17] H. Sato, K. Yazaki, On the coalescence model for high-energy nuclear reactions, 
Phys. Lett. B 98 (1981) 153–157.

[18] H.H. Gutbrod, A. Sandoval, P.J. Johansen, A.M. Poskanzer, J. Gosset, W.G. Meyer, 
G.D. Westfall, R. Stock, Final state interactions in the production of hydrogen 
and helium isotopes by relativistic heavy ions on uranium, Phys. Rev. Lett. 37 
(1976) 667–670.

[19] STAR Collaboration, H. Agakishiev, et al., Observation of the antimatter helium-
4 nucleus, Nature 473 (2011) 353, arXiv:1103 .3312 [nucl -ex], Erratum: Nature 
475 (2011) 412.

[20] ALICE Collaboration, S. Acharya, et al., Production of 4He and 4He in Pb–Pb
collisions at √sNN = 2.76 TeV at the LHC, Nucl. Phys. A 971 (2018) 1–20, arXiv:
1710 .07531 [nucl -ex].

[21] ALICE Collaboration, J. Adam, et al., 3
�H and 3

�̄
H production in Pb–Pb collisions 

at √sNN = 2.76 TeV, Phys. Lett. B 754 (2016) 360–372, arXiv:1506 .08453 [nucl -
ex].

[22] ALICE Collaboration, J. Adam, et al., Search for weakly decaying �n and ��

exotic bound states in central Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. 
B 752 (2016) 267–277, arXiv:1506 .07499 [nucl -ex].

[23] M. Karliner, B.R. Webber, Coalescence model for Theta(c) pentaquark formation, 
J. High Energy Phys. 12 (2004) 045, arXiv:hep -ph /0409121 [hep -ph].

[24] OPAL Collaboration, R. Akers, et al., Search for heavy charged particles and for 
particles with anomalous charge in e+e− collisions at LEP, Z. Phys. C 67 (1995) 
203–212.

[25] N. Sharma, J. Cleymans, B. Hippolyte, M. Paradza, A comparison of pp, p–Pb, 
Pb–Pb collisions in the thermal model: multiplicity dependence of thermal pa-
rameters, Phys. Rev. C 99 (4) (2019) 044914, arXiv:1811.00399 [hep -ph].

[26] V. Vovchenko, B. Dönigus, H. Stoecker, Multiplicity dependence of light nuclei 
production at LHC energies in the canonical statistical model, Phys. Lett. B 785 
(2018) 171–174, arXiv:1808 .05245 [hep -ph].

[27] N. Sharma, T. Perez, A. Castro, L. Kumar, C. Nattrass, Methods for separation of 
deuterons produced in the medium and in jets in high energy collisions, Phys. 
Rev. C 98 (1) (2018) 014914, arXiv:1803 .02313 [hep -ph].

[28] PHENIX Collaboration, S.S. Adler, et al., Dense-medium modifications to jet-
induced hadron pair distributions in Au–Au collisions at √

sNN = 200 GeV, 
Phys. Rev. Lett. 97 (2006) 052301, arXiv:nucl -ex /0507004 [nucl -ex].

[29] ALICE Collaboration, Supplemental material: afterburner for generating light 
(anti-)nuclei with QCD-inspired event generators in pp collisions, https://
cds .cern .ch /record /2285500.

[30] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008) S08002.

[31] ALICE Collaboration, E. Abbas, et al., Performance of the ALICE VZERO system, 
J. Instrum. 8 (2013) P10016, arXiv:1306 .3130 [nucl -ex].

[32] ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE Inner Tracking 
System with cosmic-ray tracks, J. Instrum. 5 (2010) P03003, arXiv:1001.0502
[physics .ins -det].

[33] J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast 
readout for ultra-high multiplicity events, Nucl. Instrum. Methods A 622 (2010) 
316–367, arXiv:1001.1950 [physics .ins -det].

[34] ALICE Collaboration, J. Adam, et al., Determination of the event collision time 
with the ALICE detector at the LHC, Eur. Phys. J. Plus 132 (2) (2017) 99, arXiv:
1610 .03055 [physics .ins -det].

[35] ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476 [nucl -
ex].

[36] ALICE Collaboration, Quarkonium signal extraction in ALICE, https://cds .cern .ch /
record /2060096.

[37] S. Oh, A. Morsch, C. Loizides, T. Schuster, Correction methods for finite-
acceptance effects in two-particle correlation analyses, Eur. Phys. J. Plus 131 (8) 
(2016) 278, arXiv:1604 .05332 [nucl -th].

[38] T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High 
Energy Phys. 05 (2006) 026, arXiv:hep -ph /0603175 [hep -ph].

[39] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. 
Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2, Comput. 
Phys. Commun. 191 (2015) 159–177, arXiv:1410 .3012 [hep -ph].

[40] P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. 
Phys. J. C 74 (8) (2014) 3024, arXiv:1404 .5630 [hep -ph].

[41] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of π , K, and p 
production in pp collisions at √s = 13 TeV, Eur. Phys. J. C 80 (8) (2020) 693, 
arXiv:2003 .02394 [nucl -ex].

ALICE Collaboration

S. Acharya 142, D. Adamová 97, A. Adler 75, J. Adolfsson 82, G. Aglieri Rinella 35, M. Agnello 31, 
N. Agrawal 55, Z. Ahammed 142, S. Ahmad 16, S.U. Ahn 77, Z. Akbar 52, A. Akindinov 94, M. Al-Turany 109, 
D.S.D. Albuquerque 124, D. Aleksandrov 90, B. Alessandro 60, H.M. Alfanda 7, R. Alfaro Molina 72, B. Ali 16, 
Y. Ali 14, A. Alici 26, N. Alizadehvandchali 127, A. Alkin 35, J. Alme 21, T. Alt 69, L. Altenkamper 21, 
I. Altsybeev 115, M.N. Anaam 7, C. Andrei 49, D. Andreou 92, A. Andronic 145, M. Angeletti 35, 
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V. Petráček 38, M. Petrovici 49, R.P. Pezzi 71, S. Piano 61, M. Pikna 13, P. Pillot 117, O. Pinazza 55,35, 
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