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The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the 
square of the momentum transferred between the incoming and outgoing target nucleus, is presented. 
The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass 
energy per nucleon pair √sNN = 5.02 TeV with the J/ψ produced in the central rapidity region |y| < 0.8, 
which corresponds to the small Bjorken-x range (0.3 − 1.4) × 10−3.
The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, 
while the photonuclear cross section is better reproduced by models including shadowing according 
to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent 
Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model 
parameters and to investigate the transverse gluonic structure at very low Bjorken-x.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Photonuclear reactions can be studied in ultra-peripheral col-
lisions (UPCs) of heavy ions where the two projectiles pass each 
other with an impact parameter larger than the sum of their radii. 
In this case, purely hadronic interactions are suppressed and elec-
tromagnetically induced processes occur via photons with typically 
very small virtualities, of the order of tens of MeV2. The inten-
sity of the photon flux is proportional to the square of the electric 
charge of the nuclei, resulting in large cross sections for the co-
herent photoproduction of a vector meson in UPCs of Pb ions at 
the LHC. This process has a clear experimental signature: the de-
cay products of the vector meson are the only particles detected in 
an otherwise empty detector.

The physics of vector meson photoproduction is described, e.g., 
in Refs. [1–4]. Two vector meson photoproduction processes, co-
herent and incoherent, are relevant for the results presented here. 
In the former, the photon interacts with all nucleons in a nu-
cleus, while in the latter it interacts with a single nucleon. In 
both cases a single vector meson is produced. Experimentally, 
one can distinguish between these two production types through 
the transverse momentum pT of the vector meson which is re-
lated to the transverse size of the target. While coherent photo-
production is characterised by an average transverse momentum 
〈pT〉 ∼ 60 MeV/c, incoherent production leads to higher average 
transverse momenta: 〈pT〉 ∼ 500 MeV/c. Incoherent photoproduc-
tion can also be accompanied by the excitation and dissociation of 
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the target nucleon resulting in an even higher transverse momen-
tum of the produced vector meson [5].

Shadowing, the observation that the structure of a nucleon in-
side nuclear matter is different from that of a free nucleon [6], is 
not yet completely understood and several processes may have a 
role in different kinematic regions. In this context, coherent heavy 
vector meson photoproduction is of particular interest, because it 
is especially sensitive to the gluon distribution in the target, and 
thus to gluon shadowing effects at low Bjorken-x [7,8]. One of the 
effects expected to contribute to shadowing in this kinematic re-
gion is saturation, a dynamic equilibrium between gluon radiation 
and recombination [9]. The momentum scale of the interaction 
(Q 2) is related to the mass mV of the vector meson as Q 2 ∼ m2

V /4, 
corresponding to the perturbative regime of quantum chromody-
namics (QCD) in the case of charmonium states. The rapidity of 
the coherently produced cc̄ states is related to the Bjorken-x of 
the gluonic exchange as x = (

mV /
√

sNN
)

exp (±y), where the two 
signs indicate that either of the incoming ions can be the source 
of the photon. Thus, the charmonium photoproduction cross sec-
tion at midrapidity in Pb–Pb UPCs at the LHC Run 2 centre-of-
mass energy per nucleon pair of 

√
sNN = 5.02 TeV is sensitive 

to x ∈ (0.3, 1.4) × 10−3 at ALICE. It thereby provides information 
on the gluon distribution in nuclei in a kinematic region where 
shadowing could be present and saturation effects may be impor-
tant [10,11].

Charmonium photoproduction in ultra-peripheral Pb–Pb colli-
sions was previously studied by the ALICE Collaboration at 

√
sNN =

2.76 TeV [12–14]. The coherent J/ψ photoproduction cross sec-
tion was measured both at midrapidity |y| < 0.9 and at forward 
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rapidity −3.6 < y < −2.6. Recently, a measurement of the ra-
pidity dependence of coherent J/ψ photoproduction at forward 
rapidity at the higher energy of 

√
sNN = 5.02 TeV was also pub-

lished by the ALICE Collaboration [15]. In addition, the CMS Col-
laboration studied the coherent J/ψ photoproduction accompanied 
by neutron emission at semi-forward rapidity 1.8 < |y| < 2.3 at √

sNN = 2.76 TeV [16]. These measurements allow for a deeper 
insight into the rapidity dependence of gluon shadowing, but do 
not give information on the behaviour of gluons in the impact-
parameter plane. The square of the momentum transferred to the 
target nucleus, |t|, is related through a two-dimensional Fourier 
transform to the gluon distribution in the plane transverse to the 
interaction [17]; thus the study of the |t|-dependence of coherent 
J/ψ photoproduction provides information about the spatial distri-
bution of gluons as a function of the impact parameter. Thus far, 
the only measurements in this direction were performed recently 
by the STAR Collaboration for the case of the ρ0 vector meson [18]
and for the yield of J/ψ in semi-central Au–Au collisions [19].

In this Letter, the first measurement of the |t|-dependence of 
the coherent J/ψ photoproduction cross section at midrapidity in 
Pb–Pb UPCs at 

√
sNN = 5.02 TeV is presented. The J/ψ vector 

mesons were reconstructed in the rapidity range |y| < 0.8 through 
their decay into μ+μ− , taking advantage of the better mass and 
momentum resolution of this channel with respect to the e+e−
channel. The data sample, recorded in 2018, is approximately 10 
times larger than that used in previous ALICE measurements at 
midrapidity at the lower energy of 

√
sNN = 2.76 TeV [14]. Cross 

sections are reported for six |t| intervals and compared with theo-
retical predictions.

2. Detector description

The ALICE detector and its performance are described in 
Refs. [20,21]. Three central barrel detectors, the Inner Tracking 
System (ITS), the Time Projection Chamber (TPC), and the Time-
of-Flight (TOF), in addition to two forward detectors, V0 and the 
ALICE Diffractive (AD) arrays, are used in this analysis. The central 
barrel detectors are surrounded by a large solenoid magnet pro-
ducing a magnetic field of B = 0.5 T. The V0, AD, ITS, and TOF 
detectors are used for triggering, the ITS and the TPC for particle 
tracking, and the TPC for particle identification.

The V0 is a scintillator detector made of two counters, V0A and 
V0C, installed on both sides of the interaction point. The V0A and 
V0C cover the pseudorapidity ranges 2.8 < η < 5.1 and −3.7 <
η < −1.7, respectively. Both counters are segmented in four rings 
in the radial direction, with each ring divided into 8 sections in 
azimuth.

The AD consists of two scintillator stations, ADA and ADC, lo-
cated at 16 and −19 m along the beam line with respect to the 
nominal interaction point and covering the pseudorapidity ranges 
4.8 < η < 6.3 and −7.0 < η < −4.9, respectively [22,23].

The ITS is a silicon based detector and is made of six cylindrical 
layers using three different technologies. The Silicon Pixel Detector 
(SPD) forms the two innermost layers of the ITS and covers |η| < 2
and |η| < 1.4, respectively. Apart from tracking, the SPD is also 
used for triggering purposes and to reconstruct the primary vertex.

The ITS is cylindrically surrounded by the TPC, whose main pur-
pose is to track particles and provide charged-particle momentum 
measurements with good two-track separation and particle identi-
fication. The TPC coverage in pseudorapidity is |η| < 0.9 for tracks 
with full radial length. The TPC has full coverage in azimuth. It 
offers good momentum resolution in a large range of the track 
transverse momentum spanning from 0.1 GeV/c to 100 GeV/c.

The TOF is a large cylindrical gaseous detector based on multi-
gap resistive-plate chambers. It covers the pseudorapidity region 

|η| < 0.8. The TOF readout channels are arranged into 18 azimuthal 
sectors which can provide topological trigger decisions.

3. Data analysis

3.1. Event selection

The online event selection was based on a dedicated UPC trig-
ger which selected back-to-back tracks in an otherwise empty de-
tector. This selection required (i) that nothing above the trigger 
threshold was detected in the V0 and AD detectors, (ii) a topolog-
ical trigger requiring less than eight SPD chips with trigger signal, 
forming at least two pairs; each pair was required to have an SPD 
chip fired in each of the two layers and to be in compatible az-
imuthal sectors, with an opening angle in azimuth between the 
two pairs larger than 144◦ , (iii) a topological trigger in the TOF 
requiring more than one and less than seven TOF sectors to regis-
ter a signal; at least two of these sectors should have an opening 
angle in azimuth larger than 150◦ .

The integrated luminosity of the analysed sample is 233 μb−1. 
The determination of the luminosity is obtained from the counts 
of a reference trigger based on multiplicity selection in the V0 de-
tector, with the corresponding cross section estimated from a van 
der Meer scan; this procedure has an uncertainty of 2.2% [24]. The 
determination of the live-time of the UPC trigger has an additional 
uncertainty of 1.5%. The total relative systematic uncertainty of the 
integrated luminosity is thus 2.7%.

Additional offline V0 and AD veto decisions were applied in 
the analysis. The offline veto algorithm improved the signal to 
background ratio, because it utilised a larger timing window to in-
tegrate the signal than its online counterpart. Some good events 
were lost due to this selection. The loss was taken into ac-
count with the correction on veto trigger inefficiency discussed 
in Sec. 3.4. The systematic uncertainty from the V0 and AD ve-
toes was estimated as the relative change in the measured J/ψ
cross section before and after imposing them and correcting for 
the losses; it amounts to 3%.

Each event had a reconstructed primary vertex within 15 cm 
from the nominal interaction point along the beam direction, z, 
and had exactly two tracks. These tracks were reconstructed us-
ing combined tracking in the ITS and TPC. Tracks were requested 
to have at least 70 (out of 159) TPC space points and to have a 
hit in each of the two layers of the SPD. Each track had to have a 
distance of closest approach to the event interaction vertex of less 
than 2 cm in the z-axis direction. Also, each track was required 
to have |η| < 0.9. The relative systematic uncertainty from track-
ing, which takes into account the track quality selection and the 
track propagation from the TPC to the ITS, was estimated from a 
comparison of data and Monte Carlo simulation. The combined un-
certainty to reconstruct both tracks is 2.8%.

The particle identification (PID) was provided by the specific 
ionisation losses in the TPC, which offer a large separation power 
between muons and electrons from the leptonic decays of the J/ψ
in the momentum range (1.0, 2.0) GeV/c, relevant for this analysis. 
The effect of a possible misidentification was found to be negligi-
ble.

An offline SPD decision was also applied in the analysis. The 
offline topological SPD algorithm ensured that the selected tracks 
crossed the SPD chips used in the trigger decision. The relative 
systematic uncertainty from the SPD and TOF trigger amounts to 
1.3%, which was estimated using a data-driven method by changing 
the requirements on the probe tracks.

The selected events were required to have tracks with oppo-
site electric charge, the rapidity of the dimuon candidate was re-
stricted to |y| < 0.8 and its pT had to be less than 0.11 GeV/c, 
in order to obtain a sample dominated by coherent interactions 
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with just a small contamination from incoherent processes. The 
measurement was initially carried out in p2

T intervals, because for 
collider kinematics |t| ≈ p2

T. The corrections needed to obtain the 
|t|-dependence are discussed in Sec. 3.7.

3.2. Signal extraction

As a first step in extracting the coherent J/ψ signal, a fit to 
the opposite sign dimuon invariant mass distribution was per-
formed. The model used to fit the data consists of three templates: 
one Crystal Ball function [25] (CB) to describe the J/ψ resonance, 
a second CB function to describe the ψ ′ resonance, and an ex-
ponential function to describe the continuum production of muon 
pairs, γ γ → μ+μ− .

The parameters of the exponential function were left free. The 
integral of this exponential in the mass range (3.0, 3.2) GeV/c2

was used to determine the number of events from the continuum 
production in this interval.

The CB parameters describing the tails of the measured distri-
bution in data, commonly known as α and n, were fixed to the 
values obtained while fitting the dimuon invariant mass distribu-
tion in an associated Monte Carlo simulation, which is described 
in Sec. 3.4. These settings were employed for both CB functions.

The number of J/ψ candidates in each p2
T interval was obtained 

from an extended maximum likelihood fit to the unbinned in-
variant mass distribution of all μ+μ− pairs which survived the 
selection criteria described in Sec. 3.1. Results of the fits for the 
six p2

T intervals are shown in Fig. 1. In all cases a very clear J/ψ
resonance is seen over a fairly small background. Note that the ef-
fect on the kinematics from a potential dimuon decay including 
bremsstrahlung is negligible.

The relative systematic uncertainty from the signal extraction 
was calculated by repeating the fit over different invariant mass 
ranges, and modifying the CB α and n parameters accordingly. 
These uncertainties vary in the interval (0.7,2.2)%.

3.3. Corrections for irreducible backgrounds

The selection criteria described above are not sensitive to 
events which mimic the signature of coherent J/ψ production, but 
are coming from feed-down of ψ ′ or incoherent production. The 
contribution of these events was taken into account with the fD

and f I factors, respectively, entering Eq. (1),

Ncoh
J/ψ = Nfit

1 + f I + fD
× 1

(Acc × ε)coh
J/ψ

, (1)

where Nfit, the yield of J/ψ candidates, is the integral of the CB 
describing the J/ψ signal in the fit of the dimuon invariant mass 
spectrum, and (Acc × ε)coh

J/ψ is the acceptance and efficiency correc-
tion factor described in Sec. 3.4.

Feed-down refers to the decay of a ψ ′ to a J/ψ plus anything 
else, where these additional particles were not detected for some 
reason. The correction for these events, fD, was estimated with 
Monte Carlo simulations describing the apparatus (Acc × ε) fac-
tor for the following channels: J/ψ → μ+μ− , ψ ′ → μ+μ− , and 
ψ ′ → J/ψ + X ; and the measured ratio of ψ ′ to J/ψ production 
cross sections. The details of the method are described in Ref. [15]. 
The results for each p2

T interval are summarised in Table 1. Rel-
ative systematic uncertainties, estimated by using different cross 
section ratios, are p2

T-correlated. Their relative effect on the final 
cross section can be found in Table 2; it is well below 1%.

Most of the incoherent production of J/ψ off nucleons was re-
jected with the restriction of the phase space in pT, as mentioned 
in Sec. 3.1. However, around 5% of all incoherent events remained 

Table 1
Incoherent correction f I , feed-down correction fD and the (Acc × ε)coh

J/ψ correction 
factor for each p2

T interval. See Eq. (1).

p2
T interval (GeV2/c2) f I fD (Acc × ε)coh

J/ψ

(0,0.00072) 0.0045 0.0039 0.0348
(0.00072,0.0016) 0.0047 0.0046 0.0352
(0.0016,0.0026) 0.0047 0.0058 0.0358
(0.0026,0.004) 0.0072 0.0072 0.0365
(0.004,0.0062) 0.0120 0.011 0.0379
(0.0062,0.0121) 0.0300 0.028 0.0412

Table 2
Summary of the identified systematic uncertainties on 
the coherent J/ψ photoproduction and photonuclear 
cross sections. The uncertainties to go from the mea-
sured cross section in UPCs to the photonuclear process 
are listed after the line in the middle of the table and 
their origin depends on the modeling of the photon flux 
and interference effects. The correlation across p2

T inter-
vals is discussed in the text.

Source Uncertainty (%)

Signal extraction (0.7,2.2)
fD (0.1,0.5)
f I (1.1,2.3)
p2

T migration unfolding (0.6,2.3)
Luminosity 2.7
V0 and AD veto 3
EM dissociation 2
ITS-TPC tracking 2.8
SPD and TOF efficiency 1.3
Branching ratio 0.5

Variations in interference strength (0.3,1.2)
Value of the photon flux at y = 0 2
p2

T → |t| unfolding (0.1,5.7)

in the region where the measurement was performed. To esti-
mate the f I factor to correct for the remaining incoherent events, 
a fit to the measured J/ψ pT distribution of data in the invariant 
mass range (3.0, 3.2) GeV/c2 was used. The model fitted to the 
data consists of six templates: coherent J/ψ photoproduction, inco-
herent J/ψ photoproduction, incoherent J/ψ photoproduction with 
nucleon dissociation, coherent ψ ′ photoproduction, incoherent ψ ′
photoproduction, and continuum production from γ γ → μ+μ− . 
The templates of all, but dissociative J/ψ and continuum, were 
taken from Monte Carlo simulations. In the fit, the fractions of 
both ψ ′ photoproduction processes were fixed to values calculated 
as described above. These included the modifications that the pT
restriction was released and that there was a selection on the in-
variant mass to be in the range (3.6, 3.8) GeV/c2. Other fractions 
were left free in the fit. The normalisation of the continuum was 
restricted from the invariant mass fit to be the sum of background 
events in the mass range of the J/ψ . The shape of the continuum 
was taken from the dimuon pT distribution selecting the invariant 
mass range between the J/ψ and the ψ ′ , while the shape for the 
nucleon dissociation process was based on the H1 parameterisa-
tion [26]. The global template was fitted to data using an extended 
maximum likelihood unbinned fit. The results for each p2

T inter-
val are reported in Table 1. The systematic uncertainties, estimated 
from a combination of the fit uncertainty and a modification of 
the coherent template used in the fitting model are pT-correlated. 
Their relative effect on the final cross section can be found in Ta-
ble 2.

3.4. Acceptance, efficiency and pile-up corrections

The STARlight 2.2.0 MC generator [27] was used to generate 
samples of coherent and incoherent events for the production of 
J/ψ → μ+μ− and ψ ′ → μ+μ− + π+π−(π0π0). GEANT 3.21 [28]

3
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Fig. 1. Invariant-mass distributions for different p2
T intervals with the global fit described in the text shown with the blue line. The exponential part of the fit model, 

representing the γ γ → μ+μ− background, is shown in red.

was used to reproduce the response of the detector. The simulated 
data were reconstructed with the same software as the real ones, 
accounting for actual data-taking conditions. Values of the accep-
tance and efficiency, (Acc × ε)coh

J/ψ , are shown in Table 1 for the 
different p2

T intervals used in this analysis.
AD and V0 were used to veto activity at forward rapidity. These 

detectors were sensitive to signals coming from independent in-
teractions (pile-up), which resulted in the rejection of potentially 
interesting events. The correction factor for this effect was ob-
tained using a control sample of events collected with an unbiased 

trigger. These were then used to compute the probability of hav-
ing a veto from AD or V0 in otherwise empty events. The total 
veto trigger efficiency εVETO used in Eq. (2) was determined to be 
0.94. The corresponding systematic uncertainty is included in the 
AD and V0 value of 3% mentioned in Sec. 3.1.

Electromagnetic dissociation (EMD) is another process which 
may cause the rejection of a good event due to the veto from 
the forward detectors. EMD can occur when photons excite one 
or both interacting nuclei. Upon de-excitation, neutrons and some-
times other charged particles are emitted at forward rapidities [29]

4
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and can trigger a V0 or AD veto. Such loss of events was quanti-
fied from data gathered with a specialized EMD trigger; the effi-
ciency correction factor to take into account these losses amounts 
to εEMD = 0.92 with a relative systematic uncertainty of 2% given 
by the statistical uncertainty from the control sample.

3.5. Unfolding of the p2
T distribution

Cross sections were measured in different p2
T intervals. In or-

der to account for the migration of about 45% of the events across 
p2

T intervals due to the finite resolution of the detector, an unfold-
ing procedure was used. The effect of migrations are much more 
important than the small difference between the data and MC p2

T
spectra, so no re-weighting has been performed previous to un-
folding.

Amongst many available methods, unfolding based on Bayes’ 
theorem [30] was chosen to perform the unfolding, while the 
singular-value decomposition (SVD) method [31] served to study 
potential systematic effects. The implementations of these meth-
ods as provided by RooUnfold [32] were used in this analysis.

Bayesian unfolding is an iterative method, therefore the result 
depends on the number of iterations. The size of the data sample is 
large enough to investigate different numbers of p2

T ranges. These 
two parameters, that is the number of iterations and of ranges, 
were tuned using Monte Carlo simulations by studying the evo-
lution of the statistical uncertainty in each interval as a function 
of the number of iterations, and by using the relative difference 
between iteration-adjacent results. It was found that the best com-
bination for this analysis is Bayes’ unfolding with three iterations 
applied to the p2

T distribution split into six regions. The widths of 
the p2

T intervals were chosen to have similar statistical uncertain-
ties in each region.

The Monte Carlo sample used for unfolding contained 600 000 
events. An 80% fraction of them was used to train the response 
matrix which is used to unfold the true distribution from the mea-
sured distribution. This matrix was tested on the remaining 20% of 
the events. The unfolding matrix was able to correct the smeared 
distribution with high precision. Comparison with results using the 
SVD method revealed a pT-correlated relative systematic uncer-
tainty with values in the interval (0.6, 2.3)%.

3.6. Cross section for coherent J/ψ photoproduction in UPCs

The differential cross section for coherent J/ψ photoproduction 
in a given p2

T interval and a given rapidity range 
y in Pb–Pb UPCs 
is

d2σ coh
J/ψ

dydp2
T

=
unfNcoh

J/ψ

εVETO × εEMD × BR(J/ψ → μ+μ−) × Lint × 
p2
T × 
y

,

(2)

where the correction factors εVETO and εEMD are introduced 
in Sec. 3.4, BR(J/ψ → μ+μ−) is the branching ratio (5.961 ±
0.033)% [33], Lint is the total integrated luminosity of the data 
sample, 
p2

T is the size of the interval where the measurement 
was performed, and finally, unfNcoh

J/ψ is the number of coherent 
J/ψ candidates after unfolding the results given by Eq. (1). The 
corresponding systematic uncertainties are summarised in the up-
per part of Table 2. With the exception of signal extraction, all 
other systematic uncertainties mentioned up to here are correlated 
across p2

T intervals.

3.7. Corrections for the photonuclear cross section

The cross section described by Eq. (2) is the one measured by 
ALICE. The main theoretical interest is in the photonuclear pro-
cess at a fixed energy. To obtain the corresponding cross section, 
one has to account for several effects. None of these effects is af-
fected by the ALICE detector, they just depend on the kinematics 
and quantum nature of the process. This means that the uncertain-
ties in going from the UPC to the photonuclear cross sections are 
of theoretical nature only.

At midrapidity, the UPC cross section corresponds to the γ Pb
cross section multiplied by twice the photon flux averaged over 
the impact parameter, nγ Pb(y),

d2σ coh
J/ψ

dydp2
T

∣
∣∣
∣∣

y=0

= 2nγ Pb(y = 0)
dσγ Pb

d|t| . (3)

Since the rapidity dependence of the UPC cross section in the 
rapidity range studied here is fairly flat, the measurements are 
taken to represent the value at y = 0. In UPCs, there are two po-
tential photon sources, so in principle both amplitudes have to be 
added and their interference needs to be accounted. This was stud-
ied for the first time in Ref. [34] and later measured for the case of 
ρ0 coherent photoproduction by the STAR Collaboration [35]. The 
interference is important only at very small values of |t| (see for 
example [36]). To account for this effect, the STARlight program, 
which includes the interference of both amplitudes, was used. It 
was found that this is an 11.6% effect in the smallest |t| interval, 
where the effect is concentrated. To estimate the potential uncer-
tainty on this procedure, the interference effects with the nominal 
strength were compared to those with a 25% reduction of the 
strength. The relative change in the photonuclear cross section var-
ied from 0.3 to 1.2% with the largest uncertainty being assigned to 
the smallest |t| interval.

The photon flux was computed in the semiclassical formalism 
following the prescription detailed in Ref. [37] and cross checked 
with that of Ref. [38]. The flux amounts to 84.9 with an uncertainty 
of 2% coming from variations of the geometry of the Pb ions.

Although the value of p2
T is a good approximation to that of |t|, 

it is not exact due to the fact that the photon also has a transverse 
momentum in the laboratory frame. To account for this effect, the 
cross section was unfolded with a response matrix built from p2

T-
and |t|-distributions. Two sources for the distributions were used: 
(i) the STARlight generator which includes the transverse momenta 
of the photons, but does not describe so well the shape of the 
measured p2

T distribution in data, and (ii) measured p2
T values cou-

pled to photon momenta randomly generated using the transverse 
momentum distribution of photons from Refs. [39,40]. The aver-
age of the corresponding unfolded results was used for the cross 
section, while half their difference was taken as a systematic un-
certainty which varied between 0.1% and 5.7%, with this last value 
corresponding to the largest |t| interval.

These three uncertainties are reported in the lower part of Ta-
ble 2. The uncertainty on the value of the photon flux at y = 0
is correlated across |t|, the uncertainty on the p2

T → |t| unfolding 
is partially correlated and the uncertainty on the variation of the 
interference term is anti-correlated in the lowest |t| region and 
correlated in the other |t| regions. They are added in quadrature 
for the final result shown in Sec. 4 and Table 3 below.

4. Results

The final result for the cross section measured in each p2
T in-

terval is reported in Table 3. The statistical uncertainty originates 
from the error obtained in the fit to the dimuon invariant-mass 
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Table 3
Measured coherent J/ψ photoproduction cross section in UPCs in different p2

T intervals as well as the 
photonuclear cross section in |t|-intervals. The first uncertainty is statistical, the second and third sys-
tematic, uncorrelated and correlated, respectively. The fourth uncertainty, for the photonuclear cross 
section case, is the systematic uncertainty on the correction to go from the UPC to the photonuclear 
cross section. The mean value of |t| in each interval is also shown.

Interval (GeV2c−2) 〈|t|〉 (GeV2c−2)
d2σ coh

J/ψ

dydp2
T

( mbc2

GeV2 )
dσγ Pb

d|t| ( mbc2

GeV2 )

(0,0.72) × 10−3 0.00032 1290 ± 74 ± 29 ± 73 8.15 ± 0.50 ± 0.18 ± 0.46 ± 0.20
(0.72,1.6) × 10−3 0.00113 1035 ± 47 ± 10 ± 60 5.75 ± 0.27 ± 0.06 ± 0.34 ± 0.16
(1.6,2.6) × 10−3 0.00207 743 ± 34 ± 6 ± 43 4.23 ± 0.20 ± 0.03 ± 0.25 ± 0.11
(2.6,4.0) × 10−3 0.00328 465 ± 24 ± 6 ± 27 2.87 ± 0.15 ± 0.04 ± 0.17 ± 0.08
(4.0,6.2) × 10−3 0.00498 229 ± 14 ± 3 ± 14 1.48 ± 0.09 ± 0.02 ± 0.09 ± 0.04
(6.2,12.1) × 10−3 0.00833 51 ± 5 ± 1 ± 4 0.40 ± 0.04 ± 0.01 ± 0.03 ± 0.03

Fig. 2. Dependence on |t| of the photonuclear cross section for the coherent photo-
production of J/ψ off Pb compared with model predictions [10,11,27] (top panel), 
where for LTA the low shadowing case is shown (see text). Model to data ratio for 
each prediction in each measured point (bottom panel). The uncertainties are split 
to those originating from experiment and to those originating from the correction 
to go from the UPC to the photonuclear cross section.

distribution, propagating the uncertainties of the f I and fD cor-
rections, see Eq. (1), and the uncertainty related to the unfolding 
process. The uncorrelated systematic uncertainty from signal ex-
traction and the quadratic sum of correlated systematic uncertain-
ties are shown in Table 3.

The results for the photonuclear cross section are listed in Ta-
ble 3 and shown in Fig. 2, where the measurement is compared 
with several theoretical predictions. The average |t| (〈|t|〉) quoted 
in Table 3 was estimated from the |t|-distribution used in the re-
sponse matrix based on measured data (see above). The mean of 
the ensuing distribution in a given p2

T interval was taken to be 
〈|t|〉.

STARlight utilises the vector meson dominance model and a pa-
rameterisation of the existing data on exclusive photoproduction 
of J/ψ off protons coupled with a Glauber-like formalism to ob-
tain the photonuclear cross section. Since the |t|-dependence in 
this model comes from the Glauber calculation, meaning that it 
does not include explicitly gluon shadowing effects, it is an inter-
esting baseline for comparisons (this approach is quite similar to 
the impulse approximation used in [41]). STARlight overestimates 
the measured cross section and the shape of the distribution ap-
pears to be wider than that of the measured data.

The LTA prediction by Guzey, Strikman and Zhalov [10] is based 
on the leading-twist approximation (LTA) of nuclear shadowing 
based on the combination of the Gribov–Glauber theory and in-
clusive diffractive data from HERA [42]. There are two LTA pre-
dictions; one called high shadowing and the other low shadowing. 
The low shadowing prediction is shown in Fig. 2. The shape ob-
tained from this model is similar to that of the data and describes 
the cross section within experimental uncertainties. As shown in 
Fig. 3 of [10], the high-shadowing version of the model has a simi-
lar shape but the overall normalisation is smaller by factor around 
1.7.

The b-BK model by Bendova et al. [11,43,44] is based on 
the colour dipole approach where the scattering amplitude is 
obtained from the impact-parameter dependent solution of the 
Balitsky–Kovchegov equation coupled to a nuclear-like initial con-
dition [45,46] which incorporates saturation effects. This model 
also predicts the behaviour of the data quite well.

The different predictions of the STARlight and LTA or b-BK mod-
els reflect the effects of QCD dynamics (shadowing in LTA, sat-
uration in b-BK) at small values of x ∼ 10−3 and highlight the 
importance of measuring the |t|-dependence of the photonuclear 
cross section.

5. Conclusions

The first measurement of the |t|-dependence of coherent J/ψ
photonuclear production off Pb nuclei in UPCs is presented. The 
measurement was carried out with the ALICE detector at midra-
pidity, |y| < 0.8, in ultra-peripheral Pb–Pb collisions at 

√
sNN =

5.02 TeV and covers the small-x range (0.3 −1.4) ×10−3. Photonu-
clear cross sections in six different intervals of |t| are reported and 
compared with theoretical predictions. The measured cross sec-
tion shows a |t|-dependent shape different from a model based 
on the Pb nuclear form factor and closer to the shape predicted by 
models including QCD dynamical effects in the form of shadowing 
(LTA) or saturation (b-BK). The difference in shape and magni-
tude between the LTA and b-BK models is of the same order as 
the current measurement uncertainties, but the large data sample 
expected in the LHC Run 3 [47] and the improvement in track-
ing from the upgrades of the ALICE detector [48] promise a much 
improved accuracy. These results highlight the importance of ob-
servables sensitive to the transverse gluonic structure of particles 
for extending the understanding of the high-energy limit of QCD.
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F. Pliquett 69, M.G. Poghosyan 98, B. Polichtchouk 93, N. Poljak 101, A. Pop 49, S. Porteboeuf-Houssais 136, 
J. Porter 81, V. Pozdniakov 76, S.K. Prasad 4, R. Preghenella 55, F. Prino 60, C.A. Pruneau 144, 
I. Pshenichnov 64, M. Puccio 35, S. Qiu 92, L. Quaglia 25, R.E. Quishpe 127, S. Ragoni 113, 
A. Rakotozafindrabe 139, L. Ramello 32, F. Rami 138, S.A.R. Ramirez 46, A.G.T. Ramos 34, R. Raniwala 104, 
S. Raniwala 104, S.S. Räsänen 45, R. Rath 51, I. Ravasenga 92, K.F. Read 98,132, A.R. Redelbach 40, 
K. Redlich 87,V, A. Rehman 21, P. Reichelt 69, F. Reidt 35, R. Renfordt 69, Z. Rescakova 39, K. Reygers 106, 
A. Riabov 100, V. Riabov 100, T. Richert 82,91, M. Richter 20, P. Riedler 35, W. Riegler 35, F. Riggi 27, 
C. Ristea 68, S.P. Rode 51, M. Rodríguez Cahuantzi 46, K. Røed 20, R. Rogalev 93, E. Rogochaya 76, 
T.S. Rogoschinski 69, D. Rohr 35, D. Röhrich 21, P.F. Rojas 46, P.S. Rokita 143, F. Ronchetti 53, A. Rosano 33,57, 
E.D. Rosas 70, A. Rossi 58, A. Rotondi 29, A. Roy 51, P. Roy 112, N. Rubini 26, O.V. Rueda 82, R. Rui 24, 
B. Rumyantsev 76, A. Rustamov 89, E. Ryabinkin 90, Y. Ryabov 100, A. Rybicki 120, H. Rytkonen 128, 
W. Rzesa 143, O.A.M. Saarimaki 45, R. Sadek 117, S. Sadovsky 93, J. Saetre 21, K. Šafařík 38, S.K. Saha 142, 
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