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Abstract The multiplicity dependence of the pseudorapid-
ity density of charged particles in proton–proton (pp) colli-
sions at centre-of-mass energies

√
s = 5.02, 7 and 13 TeV

measured by ALICE is reported. The analysis relies on track
segments measured in the midrapidity range (|η| < 1.5).
Results are presented for inelastic events having at least
one charged particle produced in the pseudorapidity inter-
val |η| < 1. The multiplicity dependence of the pseudora-
pidity density of charged particles is measured with mid-
and forward rapidity multiplicity estimators, the latter being
less affected by autocorrelations. A detailed comparison with
predictions from the PYTHIA 8 and EPOS LHC event gen-
erators is also presented. The results can be used to constrain
models for particle production as a function of multiplicity
in pp collisions.

1 Introduction

The study of high-multiplicity events in proton–proton (pp)
and proton–nucleus high-energy collisions reveals striking
similarities with respect to the observations made for larger
systems like a nucleus–nucleus collision, which are inter-
preted in terms of the creation of a strongly-interacting,
fluid-like QCD medium: the quark–gluon plasma (QGP).
The ridge structure arising from long-range azimuthal cor-
relations observed in pp data [1–3] is also found in p–Pb
collisions [4–7], where the presence of double-ridge struc-
tures is reported [4]. More recently, an ALICE measurement
reported an enhancement in the relative production of (multi-
) strange particles with respect to primary charged particles
as a function of multiplicity in pp collisions [8]. This suggests
that some observables related to the QGP formation might be
driven just by the multiplicity regardless of collision systems
at LHC energies.

� e-mail: alice.publications@cern.ch

In pp and p–Pb collisions, the selection of events with
large hadronic final-state multiplicities biases the sample
towards a large average number of Multiple Parton Interac-
tions (MPIs) at the LHC [9,10]. In the description provided
by the colour reconnection (CR) mechanism [11,12], CR in
MPIs is expected to be particularly pronounced at high mul-
tiplicity. The effects of prominent CR at high multiplicity are
supposed to account for basic observables like the correla-
tions between the average momentum and the multiplicity of
charged particles [13] as well as for the shape of their pseudo-
rapidity distribution [14]. Indeed, the transverse momentum
(pT) spectra of charged particles at high multiplicity [15,16]
can be attributed, in pp collisions, to a CR mechanism, while
until now no multiplicity dependence study of charged par-
ticle pseudorapidity density has been published.

This document provides a large set of charged-particle
multiplicity density measurements as a function of event mul-
tiplicity in pp collisions at different centre-of-mass energies.
This work could shed light on the phenomenon of MPIs
that is a key ingredient of models attempting to describe
large-multiplicity events. In any collision system, the event-
averaged pseudorapidity density of primary charged parti-
cles [17], dNch/dη, is a key observable characterising the
global properties of the collision. Especially in pp inter-
actions, the dNch/dη is described by the combination of
the perturbative hard partonic processes and the underly-
ing event [18,19]. The underlying event includes various
phenomena like initial- and final-state radiation, colour-
connected beam remnants, and infrared MPIs. In particular,
its normalisation is directly connected to the MPI cross sec-
tion determined by the low-x behaviour of the gluon parton-
distribution function and by the consequent colour screening
effects at the pT cut-off, while its multiplicity distribution is
more influenced by correlations within MPI in the fragmen-
tation stage.

The methods adopted in this analysis are based on
those used in the inclusive dNch/dη (dN incl.

ch /dη) measure-
ments of ALICE [20–24]. This study introduces exclusive
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event classes for two complementary multiplicity estimators
defined in the midrapidity and in the forward regions and
exploiting high-multiplicity triggers to record a large sam-
ple of events for the highest multiplicity classes. The results
are provided for an event selection defined in a fully experi-
mental way. Measurements are performed for inelastic colli-
sions with at least one charged particle produced in |η| < 1
(INEL>0), corresponding to about 75% of the total inelastic
cross section [13,23,25,26].

2 Experimental setup

The full description and performance of the ALICE detectors
can be found elsewhere [27,28]. The detectors used in this
analysis are briefly presented below.

The V0 detector [29] is made of two arrays (V0A and
V0C) of 32 scintillating counters each. The V0A is located
at a distance of 329 cm away from the interaction point (IP)
along the beam direction (z) and it covers the pseudorapidity
range 2.8 < η < 5.1. The V0C is installed at z = − 88 cm,
covering the pseudorapidity range −3.7 < η < −1.7. Both
counters cover the full azimuth. The V0 detector provides
the minimum-bias and beam-gas removal trigger to ALICE.
It measures the signal amplitude created by charged particles
and their arrival times with a time resolution better than 1 ns.

The silicon pixel detector (SPD) [30,31] is the innermost
detector of ALICE. It is located inside a large solenoid that
produces a homogeneous magnetic field of 0.5 T. The SPD
consists of two cylindrical layers coaxial to the beam line
at radii 3.9 and 7.6 cm. It is made of 10 million pixels dis-
tributed on 240 sensors that cover the pseudorapidity range
|η| < 2 for the first layer and |η| < 1.4 for the second
layer for particles that originate from collisions at the nom-
inal interaction point. An enlarged pseudorapidity coverage
of |η| < 2 is reached using events whose primary vertex is
not at zero, but within ±10 cm from the nominal interac-
tion point. The SPD provides a precise measurement of the
position of the primary interaction vertex with a spatial reso-
lution of on average 30µm in the beam direction [23,31]. The
multiplicity measurement of this analysis relies on the recon-
struction of tracklets, which are track segments connecting
hits on the two SPD layers and pointing to the primary vertex.
Due to the bending in the magnetic field and multiple scat-
tering, the reconstruction efficiency of tracklets is limited to
pT > 50 Mev/c.

3 Data sample and analysis

The minimum-bias pp data samples at
√
s = 5.02, 7 and

13 TeV used in this analysis correspond to the integrated
luminosities Lint = 12.4 ± 0.3, 3.78 ± 0.13 and 0.946 ±

0.020 nb−1, respectively [28,32,33]. The data sample at√
s = 13 TeV benefits from a high-multiplicity trigger that

was implemented in ALICE at the beginning of the LHC
Run 2.

The minimum-bias trigger (MBAND) requires hits in both
the V0A and V0C detectors in coincidence of a beam cross-
ing. The contribution from diffractive interactions is min-
imised by requiring at least one SPD tracklet in |η| < 1;
the resulting data sample is called MBAND>0. The con-
tamination from beam-induced background is removed by
using the timing information of the V0 detectors and tak-
ing into account the correlation between tracklets and clus-
ters in the SPD detector [28]. The events used for the anal-
ysis are required to have a primary vertex in the fiducial
region |z| < 10 cm. The primary vertex is reconstructed
by correlating hits in the two SPD layers. The contam-
ination from in-bunch pile-up events is removed offline
excluding events with multiple vertices reconstructed in
the SPD [23]. The pile-up probability estimated consider-
ing the beam conditions ranges from 10−3 to 10−2. After
the offline rejection, the remaining pile-up has a negligible
impact on the final results. This was verified by analysing
data samples separately with high and low initial pile-up
contamination.

Multiplicity classes are defined by a probability (per-
centile) range that is interpreted as a fractional cross section
�σ/σMBAND>0 , with the visible cross section in pp collisions,
σMBAND>0 , constituting 100%. Percentile values for higher
multiplicity collisions are close to 0% and for lower ones
close to 100%. Forward multiplicity classes are estimated
by V0M, which is the sum of the energy deposition mea-
sured by the V0A and V0C scintillators. The distribution
of the V0M amplitude scaled by its average value 〈V0M〉
(self-normalised V0M) is shown in Fig. 1a for MBAND>0 pp
collisions at

√
s = 13 TeV. A dedicated high-multiplicity

trigger is defined by the threshold V0M/〈V0M〉 >∼ 4.9,
corresponding to σ/σMBAND>0 = 0.1%. The SPD track-
lets are used to define multiplicity classes in the midrapidity
region |η| < 2. The distribution of the self-normalised num-
ber of SPD tracklets for MBAND>0 pp collisions in |η| < 2 is
shown in Fig. 1b. For all the midrapidity multiplicity classes,
only the minimum-bias trigger is used because the high-
multiplicity trigger relying on V0M amplitudes would give
an additional bias. The data analysis is performed by clas-
sifying MBAND>0 data samples using the mid and forward
multiplicity estimators.

The multiplicity percentile intervals of the visible cross
section P(MBAND>0) = �σ/σMBAND>0 can be converted to
fractional intervals with respect to the INEL>0 cross section
P(INEL>0) = �σ/σINEL>0 in pp collisions by following the
conversion rule
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Fig. 1 The distribution of the V0M amplitude (total energy deposition
in the region −3.7 < η < −1.7 and 2.8 < η < 5.1) scaled by its
average value 〈V0M〉 that is used to determine the forward multiplicity
classes (a) and the distribution of the total number of SPD tracklets
in an event (NSPD Tracklet , −2 < η < 2) scaled by its average value

〈NSPD Tracklet〉 that is used to determine the midrapidity multiplicity
classes (b) in pp collisions at

√
s = 13 TeV. Note that the percentile

values of the multiplicity classes are fractions of the visible cross section
�σ/σMBAND>0 (see text for details)

Table 1 Correspondence of the multiplicity classes between P(MBAND>0) and P(INEL>0). The trigger efficiency is estimated using PYTHIA 8
Monash 2013 [34–36] and GEANT 3 [37]

P(MBAND>0 ) (%) Forward multiplicity estimator Midrapidity multiplicity estimator√
s (TeV)

√
s (TeV)

5.02 7 13 5.02 7 13

P(INEL>0) (%) P(INEL>0) (%)

0–0.01 0–0.0091 0–0.0090 0–0.0091

0.01–0.1 0.0091–0.0915 0.0090–0.0897 0.0091–0.0915

0.1–0.5 0.0915–0.4576 0.0897–0.4478 0.0915–0.4573

0.5–1 0.4576–0.9152 0.4478–0.8955 0.4573–0.9146

0–1 0–0.9152 0–0.8955 0–0.9146 0–0.9095 0–0.8887 0–0.9288

1–5 0.9152–4.577 0.8955–4.478 0.9146–4.574 0.9095–4.548 0.8887–4.444 0.9288–4.644

0–5 0–4.577 0–4.478 0–4.574 0–4.548 0–4.444 0–4.644

5–10 4.577–9.156 4.478–8.956 4.574–9.149 4.548–9.096 4.444–8.888 4.644–9.288

10–15 9.156–13.74 8.956–13.44 9.149–13.73 9.096–13.65 8.888–13.33 9.288–13.93

15–20 13.74–18.32 13.44–17.92 13.73–18.31 13.65–18.20 13.33–17.78 13.93–18.58

20–30 18.32–27.51 17.92–26.90 18.31–27.50 18.20–27.32 17.78–26.67 18.58–27.88

30–40 27.51–36.76 26.90–35.92 27.50–36.75 27.32–36.49 26.67–35.59 27.88–37.20

40–50 36.76–46.11 35.92–45.02 36.75–46.12 36.49–45.77 35.59–44.53 37.20–46.58

50–70 46.11–65.45 45.02–63.66 46.12–65.53 45.77–64.91 44.53–62.88 46.58–65.82

70–100 65.45–100 63.66–100 65.53–100 64.91–100 62.88–100 65.82–100

Pi (INEL>0) = Pi (MBAND>0)/εi
∑

j

(
P j (MBAND>0)/ε j

) , (1)

where i indicates a specific multiplicity class, j runs over
all multiplicity classes for a given collision energy and mul-
tiplicity estimator, and εi (ε j ) is the MBAND>0 trigger effi-
ciency for the INEL>0 event sample NMBAND>0/NINEL>0 for
the i th ( j th) multiplicity class. The correspondence between
P(INEL>0) and P(MBAND>0) is reported in Table 1. In this
document, multiplicity classes for the results of ALICE are
represented with P(MBAND>0), which is a quantity defined

using detector-level variables. In order to perform precise
comparisons of particle-level simulations with the ALICE
data, the P(INEL>0) intervals corresponding to a given
P(MBAND>0) interval for each centre-of-mass energy and
multiplicity class reported in Table 1 need to be used in the
particle-level simulations.

Alternatively, the values of dNch/dη with ALICE data
for the multiplicity classes of P(MBAND>0) in Table 1 can
be corrected such that they correspond to the multiplic-
ity classes of P(INEL>0) given in the leftmost column of
Table 2. For example, the correction factor of 0.9995 for
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Table 2 The correction factors
of dNch/dη from the
multiplicity classes P(INEL>0)

in Table 1 to those of
P(INEL>0) in the leftmost
column of this table. The
correction factors are estimated
for the generated values of
dNch/dη using PYTHIA 8
Monash 2013 [34–36]

P(INEL>0)(%) Forward multiplicity estimator Mid-rapidity multiplicity estimator√
s (TeV)

√
s (TeV)

5.02 7 13 5.02 7 13

Correction factor Correction factor

0–0.01 0.9995 0.9959 0.9842

0.01–0.1 0.9938 0.9921 0.9939

0.1–0.5 0.9934 0.9907 0.9933

0.5–1 0.9916 0.9901 0.9915

0–1 0.9927 0.9906 0.9924 0.9892 0.9853 0.9924

1–5 0.9864 0.9827 0.9855 0.9809 0.9768 0.9842

5–10 0.9768 0.9722 0.9763 0.9709 0.9634 0.9778

10–15 0.9694 0.9588 0.9667 0.9607 0.9522 0.9684

15–20 0.9565 0.9473 0.9545 0.9516 0.9392 0.9580

20–30 0.9455 0.9289 0.9382 0.9369 0.9210 0.9472

30–40 0.9249 0.9072 0.9187 0.9205 0.8968 0.9290

40–50 0.9052 0.8752 0.9003 0.9010 0.8730 0.9147

50–70 0.9242 0.8867 0.8998 0.8962 0.8534 0.9003

70–100 0.9716 0.9573 0.9662 0.9215 0.8897 0.9284

the P(INEL>0) = 0–0.01% interval of the forward multi-
plicity estimator at

√
s = 5.02 TeV is the ratio of the gen-

erated values of dNch/dη between P(INEL>0) = 0–0.01%
and 0–0.0091% with PYTHIA 8 Monash 2013 [34–36]. The
data measurement of dNch/dη for P(MBAND>0) = 0–0.01%
would therefore need to be multiplied by this factor in order to
compare directly with a generated interval of P(INEL>0) =
0–0.01%.

The value of dNch/dη is obtained by correcting the num-
ber of SPD tracklets for detector acceptance as well as recon-
struction and selection efficiency following the procedure
developed earlier [23,24,38–40]. The corrections are esti-
mated with Monte Carlo simulations based on PYTHIA 8
Monash 2013 [34–36] for particle generation and GEANT
3 [37] for the transport of particles through the geometry of
ALICE. PYTHIA 8 has a strangeness content that underesti-
mates the data by a pT-dependent factor, which approaches 2
around pT = 10 GeV/c [41]. The discrepancy is resolved by
normalising the strangeness content in PYTHIA 8 to match
the one in the data. This corrects dNch/dη downward by
about 1%.

4 Systematic uncertainties

Several sources of systematic uncertainties are investigated
for this study and the estimated uncertainties are listed in
Table 3. For each multiplicity class, the systematic uncer-
tainties related to the model used in the correction procedure
(“Model dependence”) are quoted as the difference of the
results using corrections obtained with two different gen-

erators before the trigger efficiency correction: PYTHIA 8
Monash 2013 [34–36] and EPOS LHC [42,43]. The uncer-
tainties attributed to the description of the trigger (“Trigger
efficiency”) are also quoted as the difference of the sim-
ulated trigger efficiency (NMBAND>0/NINEL>0 ) between the
two event generators.

The effects of the difference in particle composition
between data and Monte Carlo mostly originate from
the underestimated yield related to the weak decays of
light-flavour hadrons in the simulation and are obtained
with reweighting techniques (“Strangeness correction”):
strangeness yields in the simulation are reweighted during
the correction step by a factor of 2 to be compatible with
the data; the factor is varied by ±30% based on data [41]
that covers the whole pT region, resulting in variations of the
obtained dNch/dη ranging from ±0.5% at low multiplicities
to±0.7% at the highest multiplicities. Additionally, the effect
of particle-species composition (“Particle composition”) is
estimated by varying, in the simulation, the relative fraction
of charged kaons, protons and other particles with respect to
the fixed number of charged pions by ±30%, which covers
the uncertainties in the measured particle-species composi-
tion at the LHC [44]. Relative variations of the final result are
below ±0.5% in all multiplicity classes. Below 50 MeV/c,
the tracklet reconstruction efficiency sharply drops because
of the bending in the magnetic field and to less extent due
to the scattering and absorption in the detector material. To
estimate the uncertainty due to the extrapolation to zero pT

(“Zero-pT extrapolation”), the number of particles below 50
MeV/c is varied sufficiently in the event generator by+100%
and −50%, adopted from the previous study [23]. The corre-
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Table 3 Systematic uncertainties from the highest to the lowest multiplicity class for both the mid- and forward rapidity multiplicity estimators in
pp collisions at

√
s = 13 TeV. The last column reports the effects on the inclusive 〈dNch/dη〉

source Uncertainty (%) at
√
s = 13 TeV

Forward �σ/σMBAND>0 Midrapidity �σ/σMBAND>0 �σ/σINEL>0

0–0.01% 40–50% 70–100% 0–1% 40–50% 70–100% 0–100%

Uncorrelated

Trigger efficiency neg. 0.2 0.2 neg. 0.2 0.2 0.2

Strangeness correction 0.7 0.6 0.5 0.7 0.6 0.5 0.5

Zero-pT extrapolation 0.7 0.8 1.0 0.7 0.9 1.0 1.0

Correlated

Model dependence neg 0.1 0.1 0.1 0.1 0.1 0.1

Detector acceptance and efficiency 0.8 0.7 0.6 1.8 2.0 2.8 0.7

Particle composition 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Material budget 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Fig. 2 Charged-particle pseudorapidity density (upper panels) and the
same scaled by 1/ (dNch/dη)incl. (lower panels) for the 0–0.01 to 70–
100% multiplicity classes measured with the forward multiplicity esti-
mator (−3.7 < η < −1.7 and 2.8 < η < 5.1) in pp collisions

at
√
s = 5.02, 7 and 13 TeV. Correlated and uncorrelated systematic

uncertainties are summed in quadrature in the upper panels and shown
as boxes. Correlated systematic uncertainties are cancelled out in the
lower panels

sponding uncertainty is around ±1% and slightly dependent
on the multiplicity class.

The effect of the limited tracking acceptance and effi-
ciency (“Detector acceptance and efficiency”) is estimated
by varying the range of primary vertex selection along the
beam direction (zvtx) from |zvtx| < 10 cm to the narrower
|zvtx| < 7 cm and broader |zvtx| < 15 cm; the effect on
dNch/dη is below ±2% in all the multiplicity classes. The
uncertainty due to the non-uniformity in azimuthal accep-
tance is studied by measuring dNch/dη independently in
three different azimuthal regions of the SPD, which are then
compared with the corresponding full azimuth measurement:
it varies from ±0.8% to ±2% with respect to the SPD config-

uration. The corresponding uncertainty is summed in quadra-
ture for that in “Detector acceptance and efficiency”. The
material budget in the ALICE central barrel is known to a
precision of about 5% [28]. The corresponding systematic
uncertainty on dNch/dη (“Material budget”), obtained by
varying the material budget in the simulation, is estimated
to be about ±0.2%.

Variations for the particle-species composition, material
budget, tracking acceptance, and efficiency correction pro-
duce a change in the measurement that behaves the same
across energies and multiplicity classes. The corresponding
systematic uncertainties are considered then as correlated.
Conversely, variations on the correction for the contribution
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Fig. 3 Charged-particle pseudorapidity density (upper panels) and the
same scaled by 1/ (dNch/dη)incl. (lower panels) for the 0–1 to 70–100%
multiplicity classes measured with the midrapidity multiplicity estima-
tor (−2 < η < 2) in pp collisions at

√
s = 5.02, 7 and 13 TeV. Correlated

and uncorrelated systematic uncertainties are summed in quadrature in
the upper panels and shown as boxes. Correlated systematic uncertain-
ties are cancelled out in the lower panels

of strangeness particles, the trigger efficiency, and the extrap-
olation to zero-pT affect each energy and multiplicity class
differently, so these contributions are considered as uncorre-
lated.

5 Results

The dNch/dη measurements at
√
s = 5.02, 7 and 13 TeV

for different classes of the forward multiplicity estimators
are reported in Fig. 2; in the upper panels in absolute scale
and in the lower panels, normalised to the inclusive dNch/dη

(dN incl.
ch /dη, dNch/dη for 0–100%). As shown in the lower

panels of Fig. 2, the pseudorapidity densities for the high-
est multiplicity classes (0–0.01%) are around 5 times larger
than those of the inclusive ones for the three different colli-
sion energies. The asymmetry of the dNch/dη distributions
for the forward multiplicity classes is due to the asymmetric
pseudorapidity acceptance of the V0 detector. This effect is
more pronounced for the highest multiplicity classes.

The upper panels in Fig. 3 show the dNch/dη measure-
ments at

√
s = 5.02, 7 and 13 TeV for different multiplic-

ity classes defined by the midrapidity multiplicity estimator.
The shapes of the pseudorapidity distributions of primary
charged particles are different when compared with those
obtained with the forward multiplicity estimator. The midra-
pidity multiplicity estimator is defined in a symmetric pseu-
dorapidity region (−2 < η < 2) and clearly gives rise to
autocorrelations as it includes the region where the pseudo-
rapidity distributions are measured (−1.5 < η < 1.5). As
shown in the lower panels of Fig. 3, for the three different col-

lision energies, the pseudorapidity densities for the highest
multiplicity classes (0–1%) are around 4–5 times larger than
those of the inclusive ones, with the highest enhancement
observed at midrapidity (η = 0).

The measurements are compared with the predictions
from PYTHIA 8 Monash 2013 [34–36] with and without CR
and the ones from EPOS LHC [42,43]. The effect of CR can
be explored with PYTHIA 8 Monash 2013 by switching the
effect on and off. EPOS LHC describes the collectivity effect
in high multiplicity pp collisions differently with a hydrody-
namic evolution of the core with a high-energy density that is
formed by many colour string fields. The multiplicity classes
of the models are estimated for generated charged particles
in the same geometrical acceptances of the forward rapidity
(−3.7 < η < −1.7 and 2.8 < η < 5.1) and midrapidity
(|η| < 2) multiplicity estimators and the percentile value
of the multiplicity class is calibrated for generated INEL>0

events. Figure 4 reports the comparison of the data with these
models for the 0–1% and 70–100% classes by the forward
multiplicity estimator. PYTHIA 8 Monash 2013, implement-
ing CR in the string fragmentation process, describes the
data within 5% for all the centre-of-mass energies for the
0–1% multiplicity class. For the 70–100% class, PYTHIA
8 underestimates the data by up to 10%. When switching
off CR, while keeping all the other model parameters sta-
ble, PYTHIA 8 overestimates (underestimates) the data by
about 30% for the 0–1% (70–100%) multiplicity class. EPOS
LHC, which incorporates a collective flow-like description
of the core, describes the data within 20% for both forward
multiplicity classes. EPOS LHC also overestimates (underes-
timates) the data for the 0–1% (70–100%) multiplicity class
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Fig. 4 The panels in the first and third row show the normalised pseu-
dorapidity density distributions of charged particles in pp collisions at√
s = 5.02, 7 and 13 TeV compared with different models for the 0–1%

and 70–100% multiplicity classes by the forward rapidity multiplicity

estimator, respectively. The panels in the second and fourth row report
the corresponding model/data ratio. Note that the multiplicity classes of
the models correspond to �σ/σINEL>0 , which is slightly different from
the �σ/σMBAND>0 of the ALICE data

like PYTHIA 8 Monash 2013. For the two classes, PYTHIA
8 describes the data better than EPOS LHC.

Figure 5 shows the comparison according to the data with
these models for the 0–1% and 70–100% classes by the
midrapidity multiplicity estimator. EPOS LHC describes the
data within 5% for all the centre-of-mass energies for the
0–1% multiplicity class. For the 70–100% class, EPOS LHC
underestimates the data by up to 20%. PYTHIA 8 reproduces
the data within 5% for all centre-of-mass energies for the 0–
1% multiplicity class, but it is not as good as EPOS LHC in
the 0–1% multiplicity class. For the 70–100% class, PYTHIA
8 describes the data within 10% and it is better than those of
EPOS LHC. When switching off CR, PYTHIA 8 overesti-
mates (underestimates) the data by about 15% (30%) for the
0–1% (70–100%) multiplicity class.

The value of 〈dNch/dη〉 is determined by integrating
dNch/dη in |η| < 0.5. Table 4 shows the values of 〈dNch/dη〉
for different mid- and forward rapidity multiplicity classes in
pp collisions at

√
s = 5.02, 7 and 13 TeV. The autocorrelation

effect for the midrapidity estimator results in larger values of
〈dNch/dη〉 in the highest multiplicity classes and in smaller
ones for the lowest multiplicity classes compared with those
with the forward multiplicity estimator.

The energy dependence of 〈dNch/dη〉 for the multiplicity
classes defined by the forward multiplicity estimator is shown

in the upper panel of Fig. 6. The LHC measurements for
the 〈dNch/dη〉 can be directly compared with the ones from
the NAL Bubble Chamber (pp) [45], ISR (pp) [46], UA1
(pp) [47], UA5 (pp) [48], CDF (pp) [49], STAR (pp) [50]
and PHOBOS (pp) [51]. A phenomenological power-law fit
sα describes the centre-of-mass energy (

√
s) evolution of

these measurements for non-single diffractive (NSD), INEL
and INEL>0 events up to LHC energies [23].

Such a fit is performed practically for the values of
Table 4 in different multiplicity classes to describe the depen-
dence of 〈dNch/dη〉 on the centre-of-mass energy. Corre-
sponding exponents are shown in the legend of Fig. 6.
The average pseudorapidity density at midrapidity as a
function of centre-of-mass energy increases rapidly for
higher multiplicity classes. The lower panel of Fig. 6
shows 〈dNch/dη〉 normalised to its inclusive value denoted
as 〈dNch/dη〉/〈dNch/dη〉incl. for the forward multiplic-
ity classes. The steeper increasing trend of 〈dNch/dη〉/
〈dNch/dη〉incl. observed for higher multiplicity classes may
arise from the increase of the MPI cross sections with the
centre-of-mass energy [23].

The exponent values α of the power-law fit (sα) of ALICE
data in Fig. 6 are compared with those of PYTHIA 8 and
EPOS LHC in Table 5 for the forward multiplicity classes.
The multiplicity classes represent P(MBAND>0) for ALICE
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Fig. 5 The panels in the first and third row show the normalised pseu-
dorapidity density distributions of charged particles in pp collisions
at

√
s = 5.02, 7 and 13 TeV compared with different models for the

0–1% and 70–100% multiplicity classes by the midrapidity multiplic-

ity estimator, respectively. The panels in the second and fourth row
report the corresponding model/data ratio. The multiplicity classes of
the models correspond to �σ/σINEL>0 , which is slightly different from
the �σ/σMBAND>0 of the ALICE data

data, while P(INEL>0) for the models. Overall, the energy
dependence of 〈dNch/dη〉 of the data for different multiplic-
ity classes is not described well by the models. Also, the
exponent values of the fit for the models fail to describe the
steeper behaviour of the energy dependence of 〈dNch/dη〉
that is measured in data with increasing multiplicities for
the highest multiplicity classes. This suggests more tuning
is needed to constrain models for the energy dependence of
charged particle production with respect to different multi-
plicity classes.

6 Conclusions

The energy and multiplicity dependence of the charged-
particle pseudorapidity density dNch/dη and the aver-
age charged-particle pseudorapidity density 〈dNch/dη〉 in
proton–proton (pp) collisions at

√
s = 5.02, 7 and 13 TeV are

measured. The yields of charged particles in the 0–1% and 0–
0.01% multiplicity classes for the mid- and forward rapidity
multiplicity estimators, respectively, are up to about a factor
of 5 higher with respect to the inclusive measurements for
all investigated centre-of-mass energies. The results from the
multiplicity-dependent analysis presented for both the mid-
and forward rapidity multiplicity estimators in ALICE can
be used as an input for improving our understanding of mul-
tiple parton interactions (MPIs) implemented in Monte Carlo
models. Most of the results are described well by PYTHIA
8 with the Monash tune and by EPOS LHC. The effects of
the colour reconnection (CR) is found to be important to
constrain MPIs and describe the scale of the pseudorapidity
density as a function of multiplicity for both the mid and for-
ward multiplicity estimators as seen by the expected values
for PYTHIA 8 with and without CR. The results can be used
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Fig. 6 Energy dependence of
〈dNch/dη〉 (upper) and
〈dNch/dη〉 scaled by the
inclusive dNch/dη (lower) for
the multiplicity classes by the
forward multiplicity estimator in
pp collisions. Lines show fits
with a power-law function sα .
Corresponding bands indicate
one standard deviation of the fit.
Exponents and corresponding
uncertainties of the fit are listed
in the legend
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ALICE
pp collisions

Table 5 The comparison of the
exponents α of the power-law fit
(sα) for 〈dNch/dη〉 as a function
of centre-of-mass energy for
each forward multiplicity class
between the data and models.
Note that the forward
multiplicity classes correspond
to P(MBAND>0 ) for ALICE
data, while P(INEL>0) for
models

P(MBAND>0 ) (%) ALICE P(INEL>0) (%) PYTHIA 8 Monash 2013 EPOS LHC

0–0.01 0.196(10) 0–0.01 0.158(7) 0.170(8)

0.01–0.1 0.186(10) 0.01–0.1 0.166(4) 0.165(4)

0.1–0.5 0.179(10) 0.1–0.5 0.160(3) 0.172(2)

0.5–1 0.176(10) 0.5–1 0.166(3) 0.171(1)

1–5 0.163(9) 1–5 0.166(1) 0.169(2)

5–10 0.156(9) 5–10 0.163(0) 0.163(1)

10–15 0.147(10) 10–15 0.155(1) 0.151(2)

15–20 0.140(10) 15–20 0.150(0) 0.138(1)

20–30 0.131(10) 20–30 0.138(1) 0.117(1)

30–40 0.110(10) 30–40 0.124(1) 0.093(1)

40–50 0.095(10) 40–50 0.120(1) 0.068(3)

50–70 0.063(9) 50–70 0.078(1) 0.034(1)

70–100 0.030(12) 70–100 0.024(0) 0.029(1)

for further studies as a function of multiplicity estimated at
mid- or forward rapidity in pp collisions.
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K. Mikhaylov75,93, A. N. Mishra146,69, D. Miśkowiec108, A. Modak3, N. Mohammadi34, A. P. Mohanty62, B. Mohanty87,
M. Mohisin Khan16,e, Z. Moravcova90, C. Mordasini106, D. A. Moreira De Godoy145, L. A. P. Moreno45, I. Morozov63,
A. Morsch34, T. Mrnjavac34, V. Muccifora52, E. Mudnic35, D. Mühlheim145, S. Muhuri142, J. D. Mulligan80, A. Mulliri23,55,
M. G. Munhoz122, R. H. Munzer68, H. Murakami133, S. Murray125, L. Musa34, J. Musinsky64, C. J. Myers126,
J. W. Myrcha143, B. Naik49, R. Nair86, B. K. Nandi49, R. Nania10,54, E. Nappi53, M. U. Naru14, A. F. Nassirpour81,
C. Nattrass131, R. Nayak49, T. K. Nayak87, S. Nazarenko110, A. Neagu20, R. A. Negrao De Oliveira68, L. Nellen69,
S. V. Nesbo36, G. Neskovic39, D. Nesterov114, B. S. Nielsen90, S. Nikolaev89, S. Nikulin89, V. Nikulin99, F. Noferini10,54,
P. Nomokonov75, J. Norman128,79, N. Novitzky134, P. Nowakowski143, A. Nyanin89, J. Nystrand21, M. Ogino83,
A. Ohlson81, J. Oleniacz143, A. C. Oliveira Da Silva131, M. H. Oliver147, C. Oppedisano59, A. Ortiz Velasquez69,
T. Osako46, A. Oskarsson81, J. Otwinowski119, K. Oyama83, Y. Pachmayer105, V. Pacik90, S. Padhan49, D. Pagano141,
G. Paić69, P. Palni6, J. Pan144, S. Panebianco138, P. Pareek142,50, J. Park61, J. E. Parkkila127, S. Parmar101, S. P. Pathak126,
B. Paul23, J. Pazzini141, H. Pei6, T. Peitzmann62, X. Peng6, L. G. Pereira70, H. Pereira Da Costa138, D. Peresunko89,
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