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Nuclear reactions present an interesting case for studies of the time evolution of entanglement between
complex quantum systems. In this work, the time-dependent nuclear density-functional theory is employed to
explore entanglement in multinucleon transfer reactions. As an illustrative example, for the reaction 40Ca + 208Pb
at Elab = 249 MeV, in the interval of impact parameters 4.65–7.40 fm, and the relativistic density-functional PC-
PK1, we compute the von Neumann entropies, entanglement between fragments, nucleon-number fluctuations,
and Shannon entropy for the nucleon-number observable. A simple linear correlation is established between the
entanglement and nucleon-number fluctuation of the final fragments. The entanglement between the fragments
can be related to the corresponding excitation energies and angular momenta. The relationship between the von
Neumann entropy and the Shannon entropy for the nucleon-number observable is analyzed, as well as the time
evolution of the entanglement (nucleon-number fluctuation). The entanglement is also calculated for a range of
incident energies and it is shown how, depending on the impact parameter, the entanglement increases with the
collision energy.

DOI: 10.1103/PhysRevC.110.034611

I. INTRODUCTION

The phenomenon of quantum entanglement, where micro-
scopic systems become interconnected and exhibit correlated
behavior regardless of the distance between them, has been
explored and applied in many fields of physics [1–8]. One of
the more recent is low-energy nuclear physics. Even though it
is obvious that an atomic nucleus is the epitome of a finite
complex quantum system with entangled constituents, it is
far from clear how the level of entanglement is manifested
in various observables that characterize nuclear structure, re-
actions, and decay properties [9–20]. Studies of the role of
entanglement provide additional insights into the interactions
that govern the behavior of nuclei, and the way nucleonic mat-
ter is organized in finite nuclear systems. Most applications
have so far been focused on static nuclear structure properties,
although implications for heavy-ion collisions and nuclear
fission have also been discussed. In this work we explore
entanglement in multinucleon transfer reactions.

Multinucleon transfer (MNT) reactions provide a unique
and detailed perspective on nuclear structure and dynamics
and hold promise for the synthesis of yet-unknown neutron-
rich nuclei and superheavy nuclei [21–29]. Data obtained in
MNT reactions play an important role for studies of shell
evolution [30], shape transition [31,32], and r-process nu-
cleosynthesis [33]. Compared with fragmentation, fission,
and fusion processes, which have successfully been applied

*Contact author: vretenar@phy.hr
†Contact author: pwzhao@pku.edu.cn
‡Contact author: mengj@pku.edu.cn

to extend the landscape of known isotopes, MNT reactions
are more likely to produce unstable neutron-rich superheavy
isotopes located in the northeastern part of the chart of nu-
clides [25,29,34]. In addition, they can be employed for
detailed investigations of the interaction between medium-
heavy and heavy nuclei, and the mechanism of nucleon
exchange during a nuclear collision. As time-dependent pro-
cesses, MNTs are ideal for studies of the time evolution of
entanglement between strongly interacting complex systems.

Because of the importance of MNT reactions and the
wealth of available data, numerous theoretical models have
been developed and applied to describe reaction dynamics, in-
cluding both phenomenological and microscopic approaches.
Among the latter, nuclear density-functional theory (DFT)
very successfully reproduces and predicts structure prop-
erties across the chart of nuclides [35–40]. Its dynamic
extension, the time-dependent density-functional theory (TD-
DFT), presents a general microscopic framework that, without
any parameter specifically adjusted to the reaction mecha-
nism, can be employed to analyze MNT reactions [41–50].
Connections between the reaction products and the entrance
channel characteristics, such as the neutron-to-proton (N/Z)
ratio [42], the charge product ZPZT [42], and the relative ori-
entation of deformed ions [42,44,45,48], have been explored
in TD-DFT studies. The time-dependent covariant density-
functional theory (TD-CDFT), as the relativistic extension
of TD-DFT, has been developed [51,52] and successfully
applied to various nuclear processes, including α-cluster
scattering [51], fusion [52], chirality [53], fission [54–58],
quasifission [59] and, very recently, MNT reactions [60].

In this work, TD-CDFT is applied to a study of entangle-
ment between fragments, and information entropy in MNT
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reactions. Section II outlines the TD-CDFT formalism, and
the methods that will be used to compute the entanglement
between fragments, excitation energies, angular momenta,
and the Shannon entropy for the nucleon-number observable.
Numerical details for the self-consistent static and dynamic
calculations are explained in Sec. III. In Sec. IV, we present
and discuss the results of a study of entanglement in the MNT
reaction 40Ca + 208Pb. Finally, Sec. V concludes the article
with a summary and brief outlook for future studies.

II. THEORY FRAMEWORK

A. Time-dependent covariant density-functional theory

In the framework of time-dependent (covariant) density-
functional theory (TD-CDFT) [51,52], the nuclear wave
function is at all times a Slater determinant of occupied single-
particle states,

|�(t )〉 =
A∏

k=1

c†
k (t )|−〉, (1)

where c†
k (t ) is the time-dependent creation operator for the

single-nucleon wave functions ψk (r, t ), and A is the total
number of nucleons. The evolution of single-nucleon wave
functions is governed by the time-dependent Dirac equation,

i
∂

∂t
ψk (r, t ) = ĥ(r, t )ψk (r, t ), (2)

where the single-particle Hamiltonian ĥ(r, t ) reads

ĥ(r, t ) = α · [ p̂ − V (r, t )] + V 0(r, t ) + β[m + S(r, t )]. (3)

m is the nucleon mass, and the scalar S(r, t ) and four-
vector V μ(r, t ) potentials are self-consistently determined at
each step in time by the instantaneous densities and currents
in the isoscalar-scalar, isoscalar-vector, and isovector-vector
channels:

ρS (r, t ) =
A∑

k=1

ψ̄k (r, t )ψk (r, t ), (4a)

jμ(r, t ) =
A∑

k=1

ψ̄k (r, t )γ μψk (r, t ), (4b)

jμTV (r, t ) =
A∑

k=1

ψ̄k (r, t )γ μτ3ψk (r, t ). (4c)

In the present analysis, we consider a collision of two
closed-shell nuclei described by TD-CDFT. Before the col-
lision, the projectile and target are composed of Ai

P and Ai
T

nucleons, respectively, and the wave function of the system is
a single Slater determinant with the total number of nucleons
A = Ai

T + Ai
P. The whole three-dimensional (3D) lattice space

can be divided into two subspaces, i.e., the projectile subspace
V i

P and target subspace V i
T . For a choice of initial conditions;

that is, the projectile kinetic energy and impact parameter,
TD-CDFT models the most probable path of collision dynam-
ics. After the collision, it is assumed that two nuclei emerge,
a projectile-like fragment (PLF) and a target-like fragment
(TLF), and the whole space can again be divided into two

subspaces, i.e., the projectile-like subspace V f
P and target-like

subspace V f
T . We note that the wave functions of the PLF

and TLF are generally not eigenstates of the particle number
operator but a superposition of states with different nucleon
numbers. The average nucleon number Ā f

P of PLF and the av-
erage nucleon number Ā f

T of TLF satisfy the particle number
conservation relation A = Ā f

P + Ā f
T . The interface between the

projectile-like subspace V f
P and target-like subspace V f

T is
well defined when the two emerging fragments are sufficiently
separated. During the collision stage in which the projectile
and target partially overlap, and if a dinuclear structure can be
discerned, it is also possible to define an interface in the neck
region and divide the whole space into a PLF subspace and a
TLF subspace (see Fig. 1 in Ref. [61]). First, by diagonalizing
the mass quadrupole matrix as described in Refs. [62,63],
one determines the elongation axis of the total system, which
is perpendicular to the interface between the PLF and TLF
subspaces. Then, one can place the interface at the minimum
density (in the neck region) location along the elongation axis,
as in Refs. [62–65]. In this way, the whole space is divided into
the subspace V , which contains the fragment we are interested
in, and the complementary subspace V̄ , at each time t . We also
note that alternative methods can be used to assign particles
to each fragment during the phase of partial overlap. For
instance, a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the two
emerging fragments [66].

B. Entropy of fragments and entanglement

The von Neumann entropy is defined in terms of the den-
sity matrix

S = −Tr(ρ ln ρ). (5)

For a pure state, S = 0. In the case of separate fragments, it
is defined in terms of the reduced density matrices ρPLF =
TrTLF(ρ) and ρTLF = TrPLF(ρ), and the traces are over the
TLF and PLF, respectively. The von Neumann entropy S(q)

V for
neutrons (q = n) or protons (q = p) of the fragment, located
in the subspace V , can be obtained by the method introduced
in Ref. [67],

S(q)
V = −Tr

{
M (q)

V ln M (q)
V + [

I − M (q)
V

]
ln

[
I − M (q)

V

]}

= −
N (q)∑
i=1

{
d (q)

i ln d (q)
i + [

1 − d (q)
i

]
ln

[
1 − d (q)

i

]}
, (6)

where I is a unit matrix and N (q) is the number of neutrons
(q = n) or protons (q = p) of the total system. di are the
eigenvalues of the matrix M (q)

V , whose elements are defined
by the relation

[
M (q)

V

]
i j = 〈

ψ
(q)
i

∣∣
̂V

∣∣ψ (q)
j

〉
, (7)

where 
̂V is the Heaviside function in coordinate space,


V (r) =
{

1 if r ∈ V
0 if r �∈ V.

(8)
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The mean value of the nucleon number N (q)
V and its fluctuation

�N (q)2
V can also be obtained from the matrix M (q)

V [67],

N (q)
V = Tr

[
M (q)

V

] =
A∑

i=1

d (q)
i , (9)

�N (q)2
V = Tr

{
M (q)

V

[
I − M (q)

V

]} =
A∑

i=1

d (q)
i

[
1 − d (q)

i

]
. (10)

The entropy of the fragment in the subspace V is the sum of
its proton and neutron entropies,

SV = S(n)
V + S(p)

V . (11)

Using the same method, one can obtain the entropy SV̄ of
the fragment in the complementary subspace V̄ . The corre-
sponding matrix M (q)

V̄
satisfies the equation M (q)

V̄
= I − M (q)

V ,
and, thus, SV̄ = SV . If we start from a pure state; that is,
a product state of a projectile and target with well-defined
nucleon numbers Ai

P and Ai
T , the von Neumann entropy of the

total system is zero at all times because the time evolution is
unitary. SV and SV̄ , however, correspond to the reduced den-
sity operators, and these entropies are not time independent.
The reduced density matrices have the same eigenvalues, and
the entropy and nucleon number fluctuation of the fragment
in the complementary subspace V̄ are the same as those in the
subspace V . The entanglement (mutual information) between
the fragment in the subspace V and the fragment in subspace
V̄ can be defined as [68]

L = SV + SV̄ − Stot, (12)

where Stot is the entropy of total system and is computed
by extending V to the whole 3D space. In the present case
Stot ≡ 0, while SV and SV̄ are identical and greater than zero
if the total wave function is an entangled state. Since the time
evolution of the reduced density operators is not unitary, the
entropies SV and SV̄ are time dependent.

C. Fragment excitation energy and angular momentum

The total excitation energy of the system can be evaluated
from the energy-conservation relation

E∗
tot = E init − ETKE − Q, (13)

where E init is the initial energy, ETKE is the average total
kinetic energy in the center-of-mass frame after the fragments
separate, and Q denotes the average Q value of the particular
reaction channel.

The average total kinetic energy of the outgoing fragments
is defined by

ETKE = 1
2 mĀ f

P

∣∣v f
P

∣∣2 + 1
2 mĀ f

T

∣∣v f
T

∣∣2 + ECoul, (14)

where the velocity of the fragment l = P, T reads

v
f
l = 1

mĀ f
l

∫
V f

l

dr j(r), (15)

and j(r) is the total current density. The integration is over the
subspace V f

l corresponding to the fragment l , and ECoul is the
Coulomb energy.

The average Q value is evaluated from

Q = MP, f

N̄ f
P ,Z̄ f

P

+ MT, f

N̄ f
T ,Z̄ f

T

− MP,i − MT,i, (16)

where Ml,i is the mass of the initial nucleus l = P, T . The
quantity Ml, f

N̄ f
l ,Z̄ f

l

is the mass of fragment l , with N̄ f
l and Z̄ f

l the

corresponding average neutron number and proton number,
respectively. Ml, f

N̄ f
l ,Z̄ f

l

can be evaluated by linear interpolation

from the masses of its neighboring nuclei. To evaluate the
average Q values, experimental masses from the latest atomic
mass evaluation, AME2020 [69,70], have been used. In a first
approximation, one may distribute the total excitation energy
to the respective fragments in such a way that it is proportional
to their masses [46],

E∗
l = Ā f

l

A
E∗

tot = N̄ f
l + Z̄ f

l

A
E∗

tot. (17)

The average angular momentum of fragment l is deter-
mined by

Jl = 〈�|ĴV f
l
|�〉 = 〈�|

A∑
k=1


̂V f
l

ĵk|�〉, (18)

where ĵk = (r̂k − Rc.m.) × p̂k + ŝk . Rc.m. is the center-of-mass
coordinate of the total system, and p̂k and ŝk are the single-
particle momentum and spin operators, respectively.

D. Shannon entropy of fragments

The measurement entropy of an observable Ô can be ex-
pressed in terms of the Shannon entropy,

H[Ô] = −
∑

x

P(x) ln P(x), (19)

where P(x) is the probability distribution of the outcomes x of
Ô. In particular, for the observable of the number of nucleons
in a fragment after collision, the Shannon entropy [71] of the
fragment in the subspace V can be evaluated from

H = −
∑
N,Z

PN,Z ln PN,Z , (20)

where PN,Z is the probability of the occurrence in V of a
fragment composed of N neutrons and Z protons. PN,Z can
be computed in a standard way by employing particle number
projection [41,42],

PN,Z = 〈�|P̂(n)
N P̂(p)

Z |�〉 = P(n)
N P(p)

Z , (21)

where the particle number projection operator for neutrons
(q = n) or protons (q = p) reads

P̂(q)
m = 1

2π

∫ 2π

0
dθ ei(m−N̂ (q)

V )θ . (22)

N̂ (q)
V is the particle number operator in the subspace V and is

defined as

N̂ (q)
V =

∫
V

dr
N (q)∑
k=1

δ(r − rk) =
N (q)∑
k=1


V (rk ). (23)
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P(n)
N and P(p)

Z are individual probabilities for N neutrons and Z
protons, respectively, which are computed from

P(q)
m = 1

2π

∫ 2π

0
dθ eimθ det B(q)(θ ), (24)

where

[B(q)(θ )]i j = 〈
ψ

(q)
i

∣∣ψ (q)
j (θ )

〉
, (25)

and

ψ
(q)
j (r, θ ) = [1 + (e−iθ − 1)
V (r)]ψ (q)

j (r). (26)

The number of protons and number of neutrons are inde-
pendent observables and, thus, the Shannon entropy can be
written as the sum of two terms:

H = −
∑
N,Z

PN,Z ln PN,Z

= −
∑

N

P(n)
N ln P(n)

N −
∑

Z

P(p)
Z ln P(p)

Z

= H (n) + H (p), (27)

where H (n) and H (p) are the Shannon entropies of neutrons
and protons, respectively, and it is assumed that the nucleon
number probability distributions are normalized.

III. NUMERICAL DETAILS

In this work, we consider the multinucleon transfer reac-
tion 40Ca + 208Pb and analyze the von Neumann entropies,
entanglement, and Shannon entropies, as functions of the
impact parameter and collision energy. The point-coupling
relativistic energy density functional PC-PK1 [72] is used
both for static and dynamic calculations. Before the collision,
the projectile and target are in their ground states determined
by self-consistent relativistic DFT calculations in a three-
dimensional lattice space, using the inverse Hamiltonian and
Fourier spectral methods [73–75], with the box size Lx × Ly ×
Lz = 20.8 × 20.8 × 20.8 fm3. In calculations with TD-CDFT,
the mesh spacing of the lattice is 0.8 fm for all directions,
and the box size is Lx × Ly × Lz = 48 × 20.8 × 48 fm3. The
time-dependent Dirac Eq. (2) is integrated using the predictor-
corrector method. The step for the time evolution is 0.2 fm/c.
At the initial time, the projectile and target are placed on
the mesh at a distance of 20 fm between them, and it is
assumed they initially follow a Rutherford trajectory. After the
collision, if two distinct fragments are produced, the time evo-
lution is completed when the distance between the fragments
is larger than 20 or 24 fm, depending on the impact parameter.

IV. RESULTS AND DISCUSSION

The self-consistent solutions for the ground states of 40Ca
and 208Pb, based on the functional PC-PK1, are spherical.
The nuclei are initially boosted by a Lorentz transformation
that corresponds to Elab = 249 MeV, and the TD-CDFT cal-
culation of the 40Ca + 208Pb reaction is carried out in the
center-of-mass frame. In Fig. 1(a), we display the average
number of transferred nucleons from the target (208Pb) to the
projectile (40Ca), as a function of the initial impact parameter

FIG. 1. 40Ca + 208Pb reaction at Elab = 249 MeV. (a) Average
number of transferred nucleons from the target to the projectile.
(b) Nucleon-number fluctuations of the projectile-like fragment
(PLF). (c) The entanglement between the projectile-like and target-
like fragments. On the horizontal axis is the impact parameter b.

b. As shown in our recent study [60], the largest value of the
impact parameter for complete fusion in this reaction is b =
4.63 fm, when calculations are performed using the functional
PC-PK1. For multinucleon transfer, therefore, we consider the
interval of impact parameters: 4.65–7.40 fm and analyze the
two fragments PLF and TLF that emerge from the collision.
The neutron-to-proton ratio of the projectile is one, while that
of the target is 1.54. One expects that, for collisions between
nuclei with different N/Z values, the dominant transfer pro-
cess is towards charge equilibrium; that is, nucleon transfer
tends to equalize the N/Z ratio in the PLF and TLF. Here,
this means neutron transfer from 208Pb to 40Ca, and proton
transfer from 40Ca to 208Pb. The average number of trans-
ferred neutrons, denoted by red triangles, decreases at large
impact parameters. The average number of transferred pro-
tons, indicated by blue squares, exhibits a minimum at b ≈
5 fm. These values are consistent with the results obtained
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FIG. 2. Linear regression model for the entanglement and
particle-number fluctuations of the PLF for neutrons (red) or pro-
tons (blue), in the reaction 40Ca + 208Pb at Elab = 249 MeV. kn (kp)
denotes the regression slope, and rn (rp) is the correlation coefficient.
The solid line corresponds to the expression L = (8 ln 2) �N2 [67].

in the nonrelativistic TD-DFT framework [42]. The sharp in-
crease of both transferred neutrons and protons from the target
to the projectile for b < 5 fm, reflects the fact that the reaction
is approaching complete fusion. The corresponding particle-
number fluctuations of the PLF are shown in Fig. 1(b). In
general, as the interaction between the projectile and target
decreases at large impact parameters, so does the nucleon-
number fluctuation. The discontinuities at b = 4.8 fm, more
pronounced for the proton-number fluctuation, are caused by
the sudden increase of the number of transferred neutrons and
protons for b < 5 fm. Since the wave function of the total
system is a pure state, its von Neumann entropy vanishes,
and the entanglement L between the PLF and TLF, shown
in Fig. 1(c), is simply twice the von Neumann entropy of
one of the fragments. It exhibits the same dependence on
the value of the impact parameter as the nucleon-number
fluctuations. In fact, as shown by the simple linear regression
model in Fig. 2, there is a perfect linear relation between the
entanglement and particle-number fluctuation, with the corre-
sponding correlation coefficient r = 0.9987, both for neutrons
and protons. The strong correlation between entanglement
and particle-number fluctuations has also been pointed out
in previous studies (cf. Ref. [3] and references therein, as
well as the recent analysis of entanglement entropy of subsets
of qubits [20]). A linear relation between entanglement and
nucleon-number fluctuations has also recently been found in
Ref. [18], which reported a study of entanglement entropies
between single-particle states of the reference state (the hole
space) and its complement (the particle space) in finite nuclei.
In Ref. [67] it has been demonstrated that, given a partition
of the single-particle Hilbert space into orthogonal subspaces,
the von Neumann entropy and nucleon-number fluctuation of
a fragment in a region V should satisfy the inequality

S(q)
V � (4 ln 2) �N (q)2

V . (28)

In the present case the entanglement is twice the entropy of
the PLF, so there should be an additional factor of two on

the right-hand side of the inequality. In fact, as shown in
Fig. 2, the computed entanglement for protons and neutrons,
as a function of the nucleon-number fluctuation, is always
greater than 8 ln(2) �N (q)2

V . The importance of this inequality
is that it provides a lower bound for the entanglement entropy,
expressed in terms of particle-number fluctuations that are, in
principle, measurable [76].

In Ref. [76], multiple identities that colliding heavy nuclei
take on the path to fusion were investigated in a multinucleon
transfer experiment. For the reaction 40Ca + 208Pb, the distri-
butions in mass (A), atomic number (Z), and kinetic energy
were measured at 12 center-of-mass energies, from 20% to
1% below the fusion barrier. A rapid change in the identities
of nuclei was observed already outside the capture barrier.
For the present study, of particular interest is Fig. 1 of the
supplement to Ref. [76], which shows the Z and N distri-
bution of reflected nuclei produced in reactions 40Ca + 208Pb
at laboratory angle θlab = 115o and center-of-mass energies
from Ec.m./VB = 0.80 to 0.99, where VB is the barrier height.
As the collision energy increases, the Z and N distributions
widen significantly; that is, the nucleon-number fluctuations
exhibit a pronounced increase and approach the line of isospin
asymmetry equal to that of the compound nucleus 248No
(N/Z = 1.43).

We have employed the TD-CDFT to model these reac-
tions and compute the proton and neutron distributions of
the PLF. In the experiment, the reflected nuclei were mea-
sured at the laboratory angle θlab = 115o for 12 center-of-mass
energies Ec.m. = 156.7–191.7 MeV. In our calculation, the
initial center-of-mass energies are the same as in the exper-
iments, and the initial impact parameters are determined by
the Rutherford scattering formula for θlab = 115o. For very
small impact parameters, the assumption of Rutherford tra-
jectories for the colliding nuclei is not valid, and this is the
reason that calculations have been carried out in the interval
Ec.m. = 156.7–185.8 MeV, that is, two points less than in the
experiment.

The TD-CDFT results for the PLF proton and neutron
distributions are shown in Fig. 3. Compared with the data
(Fig. 1 of the supplement to Ref. [76]), the calculation repro-
duces the peaks of the distributions, but not the widths. The
theoretical distributions exhibit considerably smaller nucleon-
number fluctuations, and this is because TD-DFT includes
only one-body dynamics and, therefore, describes only the
most probable reactions by propagating individual nucleons
independently in self-consistent mean-field potentials. This
means that the TD-DFT results, as well as the relation L =
(8 ln 2) �N2 [67] that is based on the assumption that the
nuclear wave function is a simple Slater determinant at all
times, provide a lower limit on nucleon-number fluctuation
and entanglement. The experimental fluctuation of the number
of protons and neutrons in the reflected nuclei and, therefore,
the entanglement between the PLF and TLF are considerably
larger than the TD-DFT estimate. Obviously, to reproduce
the level of entanglement observed in the experiment, it will
be necessary to extend the TD-DFT-based mean-field model
to include quantum fluctuations. Such an extension has been
developed in our recent articles [57,58], and will be applied to
multinucleon transfer reactions in a forthcoming study.
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FIG. 3. Proton Z and neutron N number distributions of the
PLF for the 40Ca + 208Pb reaction, at the laboratory angle θlab =
115o and center-of-mass energies Ec.m. from 156.7 to 185.8 MeV.
The color scale indicates the probability of forming each nucleus.
The diagonal line corresponds the isospin asymmetry equal to that of
the compound nucleus 248No (N/Z = 1.43).

We also note that, while in the experiment [76] the neutron-
number fluctuations in the PLF are much more pronounced
than the proton ones, they are not so different for the theo-
retical distributions in Fig. 3. This result points to additional
many-body correlations, not included in the present imple-
mentation of the TD-CDFT. As shown in Fig. 4, perfect
linear relations between the particle-number fluctuations and
entanglement are obtained by the simple linear regression.
Equation (28) is satisfied in these 40Ca + 208Pb reactions.
Using Eqs. (6) and (10), the eigenvalues di of the overlap
matrix can be evaluated. Most of them are obtained either
in the interval 0.04–0.05 or 0.94–0.96. This means that most
single-nucleon wave functions are localized in the projectile-
like subspace or target-like subspace, and the entanglement

FIG. 4. Same as in the caption to Fig. 2, but for the reaction
40Ca + 208Pb at laboratory angle θlab = 115o and center-of-mass en-
ergies Ec.m. = 156.7–185.8 MeV.

between the two emerging fragments is determined by the
nonlocality of only a few single-nucleon wave functions.

The excitation energies of the PLF, TLF, and total system
after the collision, are displayed in Fig. 5(a) as functions of
the impact parameter and in Fig. 5(b) as functions of the
entanglement between the PLF and TLF. The total excitation
energy, as well as the excitation energy of the TLF, exhibit
a steep increase for b � 5.5 fm. At b = 4.65 fm, the average
total excitation energy is ≈90 MeV, and most of this energy,
≈70 MeV, resides in the TLF. The excitation energy of the
PLF which is, of course, much lighter, increases more gradu-
ally, and the largest value is ≈20 MeV at b = 4.65 fm. The
panel on the right illustrates the increase of the excitation
energies as functions of the entanglement. In Fig. 5(c) we

FIG. 5. 40Ca + 208Pb at Elab = 249 MeV. (left panel) (a) Excita-
tion energy and (c) angular momentum of the PLF (red), TLF (blue),
and the total system (black), as functions of impact parameter. The
same quantities are shown in the right panels (b) and (d) as functions
of the entanglement between the PLF and TLF.
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FIG. 6. 40Ca + 208Pb reaction at Elab = 249 MeV. Shannon entropy of the PLF for neutrons (red) and protons (blue), as a function of (a) the
impact parameter, (b) particle number fluctuations of the PLF, and (c) the von Neumann entropy of the PLF.

plot the expectation values of the total angular momentum,
the angular momenta of the PLF and TLF, as functions of the
impact parameter. The same quantities are plotted in Fig. 5(d)
as functions of the entanglement between the PLF and TLF.
The total angular momentum is linearly proportional to the
impact parameter and varies between ≈80 h̄ at b = 4.65 fm
and ≈140 h̄ at b = 7.40 fm. Of course, in contrast with the
excitation energy in Fig. 5(a), most of the angular momentum
is carried by the PLF, except for small values of the impact
parameter (b � 5 fm) at which quasifission occurs. We note
that, for this typical example of a MNT reaction, in Figs. 5(b)
and 5(d), the entanglement between the PLF and TLF is di-
rectly related to potential observables; that is, the excitation
energies and angular momenta of the emerging fragments.
The Shannon entropy H of the PLF or TLF, as defined by
Eq. (20), is computed directly from the nucleon-number prob-
ability distribution of the fragment emerging from collision.
The latter is calculated by performing particle-number projec-
tion (PNP) on the fragment wave function. H does not provide
information on the actual number of nucleons in a fragment,
rather it is a measure of the variability of the distribution
of nucleons. For the PLF, in Fig. 6 we display the Shannon
entropy for neutrons and protons as a function of the impact
parameter [Fig. 6(a)], particle-number fluctuations [Fig. 6(b)],
and the von Neumann entropy of the PLF. It appears that, com-
pared with the von Neumann entropy, the Shannon entropy
increases more gradually for smaller values of the impact
parameter, and the dependence on the particle-number fluctu-
ation is parabolic rather than linear. This is also clearly shown
in Fig. 6(c), in which H , determined by the nucleon-number
distribution, is always smaller than S, which is calculated from
the reduced density matrix of the fragment. This is because the
von Neumann entropy S provides a measure of the total uncer-
tainty, or lack of information about all possible observables
that can be determined from the one-body reduced density
matrix of the subsystem, while the Shannon entropy H is a
measure of the variability of a specific observable, here the
nucleon number. In fact, the difference between S and H
could be an indicator of the lack of information about the
other observables that are not specifically determined (angular
momentum, excitation energy).

It is also interesting to follow the time evolution of the
entropies, entanglement, and particle-number fluctuations. To
illustrate how these quantities evolve in time, we consider two

characteristic impact parameters for the reaction 40Ca + 208Pb
at Elab = 249 MeV. In Fig. 7 several snapshots of the density
distribution are shown for two values of the impact parameter:
b = 4.8 fm and b = 7.2 fm. For the former, a di-nuclear sys-
tems is formed after ≈200 fm/c, and it takes another 600 fm/c
before the PLF and TLF separate. However, during the en-
tire interval in which the two nuclei exchange particles, it is
possible to divide the space into a PLF subspace and a TLF
subspace, as described in the previous section. At the impact
parameter b = 7.2 fm, virtually no nucleons are exchanged
(cf. Fig. 1), and the two colliding nuclei do not overlap at any
time, even though they come very close to each other at about
160 fm/c.

The corresponding time evolution of the entanglement and
nucleon-number fluctuation, is illustrated in Fig. 8. The panels
on the left and right display the results obtained for b =
4.8 fm and b = 7.2 fm, respectively. Since the total system
is in a pure state, which is also an eigenstate of nucleon
number operator, the total von Neumann entropy and nucleon-
number fluctuations are zero at all times. The entanglement
between the PLF and TLF, as well as the nucleon-number
fluctuations of the fragments, exhibits a very interesting time
evolution. For b = 4.8 fm, both quantities steeply increase as
the dinuclear system is formed. Both for neutrons and protons
the maximum occurs at ≈300 fm/c, and then L and �N2

gradually decrease as the two fragments begin to separate
in quasifission. For the larger impact parameter b = 7.2 fm,
the neutron and proton entanglements increase towards the
point of closest approach, after which they gradually decrease.
The nucleon-number fluctuations display the same behav-
ior. However, when compared with the values calculated at
b = 4.8 fm, both the entanglement and the nucleon-number
fluctuations are much smaller. In particular, a qualitative
difference is the behavior of the proton entanglement and
number fluctuation, which are, in this case, much smaller
than those of the neutron distribution. This is because at b =
7.2 fm the Coulomb repulsion dominates the reaction and pre-
vents the entanglement between protons in the projectile and
target.

Finally, we have also compared the entanglement and the
nucleon-number fluctuations as functions of the collision en-
ergy for two values of the impact parameter: b = 5 fm and
b = 6 fm. Figure 9 displays the entanglement after the PLF
and TLF have separated [Fig. 9(a)], the number fluctuation
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FIG. 7. Snapshots of the density distribution for the 40Ca + 208Pb reaction at Elab = 249 MeV. In the top panel the time evolution is
illustrated for the impact parameter b = 4.8 fm, while the bottom panel displays the evolution of densities for the impact parameter b = 7.2 fm.

[Fig. 9(b)], and average number of transferred nucleons from
the target to the projectile [Fig. 9(c)] for a range of incident
energies Elab = 235–263 MeV. We find a positive correlation
of the entanglement with incident energy, which means that
a stronger interaction between the projectile and target leads
to a more pronounced entanglement. As in the previous case,
at smaller impact parameter at which quasifission dominates,
the entanglement is larger and increases more steeply with
incident energy. When Elab is changing from 249 to 256 MeV
and b = 5 fm, the average number of transferred protons first
declines and then increases, i.e., from −1 to 0, then to 2.
However, the corresponding fluctuation of the proton number
keeps increasing from 1 to 1.5. This indicates that the fluc-
tuation of the proton number is not always correlated with

FIG. 8. 40Ca + 208Pb reaction at Elab = 249 MeV. (Left panel)
(a) Time evolution of the entanglement between the PLF and TLF,
(b) particle number fluctuations of the PLF at impact parameter
b = 4.8 fm. (Right panel) Same as in the panel on the left but for
the impact parameter b = 7.2 fm. Note that the right panels may not
use the same vertical scale as the left ones.

the average number of transfer protons, in particular for the
quasifission process. A much more gradual increase of the
entanglement between the PLF and TLF, the nucleon-number
fluctuation, and transfer number of transferred nucleons,
is found at b = 6 fm, at which quasifission does not
contribute.

V. SUMMARY AND OUTLOOK

We have employed the time-dependent covariant nuclear
density-functional theory (TD-CDFT) to explore entangle-
ment in multinucleon transfer reactions (MNTs). As shown
in our recent analysis [60], models based on this microscopic
framework can successfully be applied to the description
of reaction dynamics, and reproduce the experimental cross
sections for various transfer reaction channels. Here we
have considered a specific example from that study, namely,
the reaction 40Ca + 208Pb at Elab = 249 MeV, and em-
ployed the relativistic density functional PC-PK1 to compute
the von Neumann entropies, entanglement between frag-
ments, nucleon-number fluctuations, and Shannon entropy for
the nucleon-number observable, as functions of the impact
parameter.

From these calculations, a perfect linear correlation be-
tween the entanglement of the particle-like and target-like
fragments (PLF and TLF), and the corresponding nucleon-
number fluctuations has been established. The relation
between the entanglement and nucleon-number fluctuation
satisfies the inequality of Eq. (28), which thus provides a
lower bound for the entanglement entropy, expressed in terms
of the observable nucleon-number fluctuation. We have also
analyzed the dependence of the entanglement between the
PLF and TLF, on the corresponding excitation energies and
angular momenta, as functions of the impact parameter of the
reaction.

The von Neumann entropies provide information about the
entanglement of states of the subsystems, but do not involve
a computation of any specific observable. The measurement
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FIG. 9. (a) Entanglement between the PLF and TLF, (b) particle
number fluctuations of the PLF, and (c) average number of trans-
ferred nucleons from the target to the projectile as functions of Elab

at the impact parameter b = 5 fm (solid), and b = 6 fm (dashed).

entropy of an observable can be expressed in terms of the
Shannon entropy. For the observable number of nucleons in a
fragment, we have determined the corresponding probability
distributions by particle number projection and computed the
Shannon entropy as a function of the impact parameter. This
quantity does not depend on the actual number of nucleons
in a fragment, it rather quantifies the variability of the dis-
tributions of nucleons. It has been shown that the Shannon
entropy displays a parabolic dependence on particle-number
fluctuation and is always smaller than the corresponding von
Neumann entropy.

Nuclear reactions provide a unique opportunity to study the
time evolution of entanglement between interacting quantum
systems. Therefore, for two characteristic values of the initial
impact parameter, we have analyzed the time dependence of
the entanglement and the nucleon-number fluctuations. Since
the system 40Ca + 208Pb is initially in a pure state that is
also an eigenstate of the particle-number operator, the total
entropy and number fluctuation are zero at all times. The time
evolution of the reduced density matrices of the subsystems is,
however, not unitary and the entanglement (nucleon-number
fluctuation) exhibits an interesting time dependence. As the
projectile approaches the target, the entanglement sharply
increases and reaches a maximum at a distance of closest
approach, or maximal overlap when a dinuclear system is
formed. As the PLF and TLF begin to separate, the entangle-
ment gradually decreases, eventually reaching the asymptotic
value for the final subsystems. Finally, an interesting quanti-
tative result has also been obtained for the positive correlation
between the entanglement (nucleon-number fluctuation) and
collision energy, in an interval of incident energies Elab =
235–263 MeV.

This study opens many attractive avenues for the explo-
ration of quantum entanglement in time-dependent processes.
A straightforward extension of the present work is a study of
entanglement in fission. In general, the initial state will not be
a pure state, and the initial entropy will depend on the excita-
tion energy of the fissioning nucleus. The entanglement of the
fission fragments can be analyzed as a function of the charge
(mass) yields distribution, kinetic-energy distribution, and an-
gular momenta. In addition to the entanglement of states (von
Neumann entropies), which is an observable-independent
measure of the correlations between fission fragments, the
entanglement of specific observables can be quantified by
computing the corresponding Shannon entropies. For MNT
reactions, one can trivially extend the present study to cases
in which more than two fragments emerge from the collision,
such as, for instance, the case of ternary quasifission.
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