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1 Introduction 

The latest worldwide cancer statistics from 2022. recorded close to 20 million new cases 

of cancer with almost 9.7 million deaths from cancer (Bray et al., 2024). The number of deaths 

is expected to rise to 16.3 million by 2040, while the number of new cases of cancer will 

increase by 28 million each year by 2040 (International Agency for Research on Cancer, 2024). 

Late diagnosis and lower standards of living and healthcare in low-income developing countries 

as well as more stressful and lower quality sedentary lifestyles with poor diet and infrequent 

exercise are certainly major contributors to the increase in the incidence of cancer (Beddoe et 

al., 2016; Friedenreich et al., 2021; Pisani, 2011). The most prevalent and fatal cancers among 

women include breast and cervical cancers, whereas among men, prostate cancer is the most 

common, followed by lung, liver, colorectal, and stomach cancers. The deadliest cancers in men 

are lung, prostate, and liver cancers, according to recent epidemiological studies (Bray et al., 

2024). 

One particular dangerous cancer type is the one whose primary origin is not known and 

those cancers are referred to as cancers of unknown primary origin tissues (CUPs). CUPs are 

especially dangerous and pose a challenge to identify since they lack certain morphological, 

histopathological and molecular characteristics of cancer with known primary origins. Patients 

with CUPs account for ~3-5% of all cancer diagnoses and they significantly suffer from the 

lack of therapeutic options as primary cancer type classification is still an important factor in 

directing treatment choices (Beauchamp et al., 2023; Greco & Hainsworth, 1992; Pavlidis et 

al., 2003; Pavlidis & Fizazi, 2009). Large-scale research projects, such as International Cancer 

Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), generate vast datasets 

comprising of genomic, epigenomic, and transcriptomic profiles from numerous patients across 

various cancer types (Hudson et al., 2010; Weinstein et al., 2013). Their aim is to get better 

understanding of the underlying oncogenic mechanisms driving tumor development, and 

progression. Due to their enormous efforts, various machine learning methods have been 

developed to predict the cell-of-origin (COO) of cancers using genomes (Liu et al., 2020; 

Nguyen et al., 2022; Polak et al., 2015; S. Yang et al., 2023), exomes (Li & Luo, 2020), 

transcriptomes (Divate et al., 2022; Wei et al., 2014; Zhao et al., 2020) or methylome profiles 

(Zheng & Xu, 2020). Although various methods exist for predicting cancer origin of unknown 

primary (CUP), not all perform uniformly across cancer types, often relying on whole-genome 

sequencing (WGS) data for high accuracy. COO predicting models developed with more 
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accessible technologies like whole-exome and RNA-sequencing tend to have lower COO 

prediction accuracy compared to WGS. This has led to an increase of developed machine 

learning models using WGS data compared to other technologies. Despite these advancements, 

the precise reasons for COO prediction failures, particularly for individual patients, remain 

poorly understood. This may be attributed to the diverse genetic mutational landscapes 

observed in different cancers, reflecting the complex interplay of genetic and environmental 

factors in tumorigenesis. For instance, the COO predicting model based on predicting the 

mutational density along the cancer genome from the profile of epigenomic modifications in 

normal cell type developed by Polak et al. (2015) showed that patients with lower number of 

mutations in general could not have their COO reliably detected. However, this was not the 

case for breast cancer patients which showed lower accuracy of the COO model despite the 

higher number of mutations, which opens up the question of whether the origin of mutations 

can have an overall impact on the prediction of COO. Origins of mutations can be determined 

by analyzing mutational signatures, which represent unique mutational patterns of cancer 

genomes due to mutational processes of different aetiologies being active during the course of 

cancer development (Alexandrov et al., 2020). Nguyen et al. (2022)  showed  that in some 

cancer types mutational signatures, such as SBS4 associated with smoking in lung cancer, are 

important for correct identification of COO. In breast cancer and some patients with non-small 

lung cell carcinoma, they detected apolipoprotein B mRNA-editing enzyme (APOBEC) 

mutational signatures as one of the most important features for predicting COO. APOBEC 

signatures, extremely commonly found in breast cancer, are associated with hotspots that are 

enriched for regulatory elements, coding elements, transcription factors binding sites and 

known tumor drivers (Wong et al., 2022).  However, a more thorough investigation of the origin 

of mutations, based on mutational signature analysis in aggregated cancer profiles and 

individual cancer patients, is required to improve the existing models. While mentioned COO 

models utilize mutational counts per 1 Mb genomic regions, other genomic features such as 

topologically associated domains (TADs) and even genes have not been thoroughly 

investigated for COO predictions. TADs are fundamental units of chromatin organization in the 

genome. They represent functional architecture features that supports various genomic 

processes such as transcription, replication, and DNA repair unlike fixed 1 Mb genomic regions. 

Additionally, the impact of structural variants (SVs) on COO models have not been fully 

explored, despite their known importance in certain COO predictions of certain cancer types 

(Nguyen et al., 2022). SVs can lead to alterations in copy number or deletions within coding 

sequences, as well as disturbances in structural chromatin elements, particularly topologically 



3 

 

associated domains (TADs). These disruptions have the potential to impact the precision of 

cell-of-origin prediction models. 

1.1 Objectives 

In this thesis I will perform an exploratory analysis of retrieved and annotated genetic 

variants derived from whole-genome, whole-exome, and RNA sequencing data obtained from 

melanoma, breast, and liver cancer samples. I selected those cancer types due to their ability to 

form secondary tissues, metastasis, whose cell-of-origin might be difficult to predict, as well as 

their distinct genomic features. I aim to discern those genomic features: mutational signatures, 

kataegis patterns, and structural variant (SV) hotspots within the genomes of these cancer types. 

To gain deeper insights how structural variants are associated with cell-of-origin, the identified 

variants, signatures, kataegis events, and SV hotspots features will be correlated with 

epigenomic attributes of normal cells which represent the cells-of-origin for these cancers. 

Subsequently, I will focus on the development and comparative assessment of diverse machine 

learning models for predicting the cell-of-origin of these cancers. Cell-of-original models will 

be extension of methods developed by Polak and colleges (2015). These models will be 

constructed using the identified tumor mutations and epigenomic characteristics derived from 

normal tissues in 1 Mb genomic regions, topologically associated domains and genes. 

Additionally, I will investigate the impact of various genomic features, as well as advancer 

machine learning methods, on the performance of cell-of-origin prediction models when 

applied to aggregated cancer profiles as well as individual cancer patients. 

2 Literature overview 

2.1 Sequencing technologies in clinical oncology 

From 1980 there has been much research shedding the light on the importance of genes 

in cancer development. The majority of those studies focused on viral transforming genes or 

oncogenes, explaining and unraveling their role in cancer one at a time. Two types of viral 

transforming genes or oncogenes were identified: those that immortalize cells, and those that 

make them tumorigenic (Land et al., 1983). However, there was still a major knowledge gap in 

cancer research regarding the connection between oncogene activity and the cancer progression. 

Dulbecco (Dulbecco, 1986) highlighted this problem way back in 1983 and realized the value 
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of having the whole genome sequence of a species as the foundation for studying cancers. This 

was accompanied with one of the biggest achievements in human history the Human Genome 

Project back in 1990. which took 13 years and 2.7 billion dollars to produce the first assembly 

of a human genome (Lander et al., 2001; National Human Genome Research Institute, 2024; 

Venter et al., 2001). The first human genome allowed us to begin understanding human biology, 

particularly diseases, shedding new light on the role of genes in cancer development and 

progression. The sequencing technologies have come a long way since then and with each 

technological advancement we have obtained a better assembled human genome. The reference 

human genome has become an irreplaceable and highly valuable resource for researchers to 

understand cancer. Nowadays, there is no need to perform de novo sequencing and tedious 

assembly of the human genome when interested in the profile of cancer patient's genome. 

Instead, resequencing of the whole genome or certain parts are conducted and compared to the 

reference genome as a method of detecting mutational changes leading to cancer progression.  

     Regardless of the sequencing technology being used, the experimental steps of all 

DNA or RNA sequencing experiments are the same. First, the DNA or RNA is extracted and 

purified from certain tissue or cells of interest, then fragmented into smaller pieces using 

ultrasonication or restriction digestion. Afterwards, DNA ends are covalently attached with 

adapters which serve various roles. Adapters can link the sequences to a flow cell or ensure 

compatibility with the specific sequencing platform being used, and they incorporate barcodes 

for sample identification, allowing for both target enrichment and sequencing multiplexing 

(Qin, 2019). Two prominent approaches of target enrichment are amplification with polymerase 

chain reaction-based (PCR, or amplicon-based) or direct capture using hybridization capture-

based methodologies (Singh, 2022). In RNA sequencing experiments, there is an additional 

step of translating the isolated RNA to cDNA using reverse transcriptase before or after 

fragmentation step. In the following chapters I will go through the most used sequencing 

approaches and technologies in clinics. 

2.1.1 First generation sequencing methods 

First generation sequencing consists of two major methods: Maxam-Gilbert sequencing 

and Sanger sequencing. Maxam-Gilbert sequencing is a chemical method based on nucleobase-

specific partial chemical modification using dimethyl sulfate and hydrazine followed by the 

cleavage of the DNA backbone at specific points (Maxam & Gilbert, 1977). The main 

drawbacks of this method are the speed, cleave reactions, gel electrophoresis and developing 
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the film which limit the number of bases around 200-300 of DNA per day. On the other hand, 

Sanger sequencing relied on four polymerase chain reactions happening separately. In each 

reaction there were nucleotides radioactively labeled with chain-terminating dideoxynucleotide 

(ddNTP). Incorporation of those nucleotides during in vitro DNA replication would result in 

random fragments with varying length. Afterwards, gel electrophoresis would be used to 

arrange the fragments of varying lengths in each lane in gel so that the DNA sequence can be 

“read” (Sanger et al., 1977). Although both Walter Gilbert and Frederick Sanger were awarded 

The Nobel Prize in Chemistry in 1980 alongside Paul Berg for contributing to the determination 

of base sequences in nucleic acids (NobelPrize.org, 2024), only the Sanger method has stood 

the test of time. In the updated and automated Sanger method, the radioactively labeled ddNTPs 

were replaced with fluorescently labeled ddNTPs and capillary electrophoresis was introduced 

instead of gel electrophoresis (Smith et al., 1986). This significantly reduced the time and 

technical compilations when sequencing DNA. Even though the Sanger method was first used 

in the beginning to sequence the first human genome, it was replaced by more high-throughput 

sequencing approaches to increase time and cost efficiency. Nowadays, the Sanger method is 

only used for a single target, usually a gene or smaller gene sets of interest, due to its high 

robustness and precision (Vestergaard et al., 2021). Hence, why it is often referred to as targeted 

sequencing. Therefore, in clinical settings it is still considered a gold standard for targeted 

sequencing of clinically relevant germline mutations, specific pathogen identification and drug 

resistance mutations (Alhamlan et al., 2023; Mercier-Darty et al., 2019; Nicolussi et al., 2019). 

2.1.2 Next-generation sequencing 

Next-generation sequencing is also referred to as second generation sequencing. The 

second generation of sequencing has made tradeoffs for a bit lower precision and a shorter read 

length, typically 75 - 300 base pairs (bp) compared to ~1000 bp by Sanger, in order to sequence 

multiple DNA molecules in parallel, around hundreds of millions even up to 5 billion, in a 

single experiment at a time (Kchouk et al., 2017). This allowed for a much faster sequencing 

of multiple genes in panels used in clinics, while Sangers is still deemed too expensive and time 

consuming even on a small gene panel. Most commonly used technology of second-generation 

sequencing is the Illumina technology based on the sequencing-by-synthesis (SBS) principle. 

In Illumina, DNA fragments are attached to a solid surface and amplified to form clusters of up 

to 1,000 identical copies of each single fragment molecule in close proximity. This process is 

known as solid-phase amplification. Afterwards, each cluster undergoes multiple cycles of 

sequencing where a single fluorescently labeled deoxynucleoside triphosphate (dNTP) is added 
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to the nucleic acid chain. The nucleotide label serves as a terminator for polymerization whose 

fluorescent dye is imaged to detect the incorporated base. Emitted signals from all incorporated 

nucleotides in each cluster are averaged during each cycle. After base calling, the dNTP is 

enzymatically cleaved to allow the next nucleotide to be incorporated. Although the natural 

competition of all four single, separated reversible terminator-bound dNTPs (A, C, T, G) 

minimizes incorporation bias, incorporation of wrong base still occurs (Illumina.Inc, 2010). 

Some of the molecules in clusters are out of phase, known as phasing, because either the dNTP 

was not removed or the new dNTP was not incorporated in one cycle which leads to the different 

dNTP incorporated in the next cycle. The incorporation of the correct base at later cycles 

deteriorates the overall averaged signal quality for later bases in the sequenced fragment. 

Regardless of this main error contributor in Illumina, it still produces highly accurate base calls 

with error rates of mostly substitutions typically below 1% (Pfeiffer et al., 2018). 

Newer technologies, third-generation sequencing also known as long-read sequencing 

avoid the PCR-biases generated during the PCR amplification step by directly sequencing the 

DNA or RNA molecule (Xiao & Zhou, 2020). Oxford Nanopore Technologies (ONT) and 

Pacific Biosciences (PacBio) were the first technologies showing the potential of long-read 

sequencing technologies in all fields of biology. ONT performs a nanopore-based sequencing 

(NS) with biological or synthetic nanopores that allow only one molecule to pass at a time. As 

the molecule passes through the pore, the ionic current is disrupted because different 

nucleotides have varying resistances to the flow of ions between outer and inner sides of 

membrane and pore. These fluctuations are read by the device which are base-called using 

machine-learning approaches (Jain et al., 2016). On other hand, PacBio platforms are based on 

a “single-molecule real-time” (SMRT) approach by immobilizing the polymerase and detecting 

incorporation of fluorescently labeled nucleotides (Eid et al., 2009). The most common types 

of errors generated with long-read sequencing are indels, which include insertions and 

deletions. These errors contribute to the high sequencing error rate, which is 10-15% in PacBio 

and 5-20% in ONT, especially in homopolymer regions of the genome (Amarasinghe et al., 

2020; Xiao & Zhou, 2020).  

Out of the two newer generations of sequencing technologies, Illumina is one which is 

mostly used in cancer genomics for genomic and transcriptomic characterization of patient’s 

tumor by whole-genome, whole-exome or RNA sequencing due its ability to sequence multiple 

genes with high accuracy. On the contrary, long-sequencing reads from ONT or PacBio enable 

for a reliable detection of SVs or fusion genes in cancer patients due its generation of much 
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longer reads (Depledge et al., 2019; Ho et al., 2020). This was well applied in hematological 

cancers. Since both technologies have a higher error rate than second-generation sequencing 

technologies, they needed to be corrected using other more accurate NGS methods to reliably 

detect mutations in patient’s tumors. Therefore, they still have not found its common and broad 

use in clinical cancer genomics like Illumina sequencing. However, these platforms have 

proven to be quite exceptional in detection of base modifications in native DNA, such as 5-

methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) (Flusberg et al., 2010) and even 

detection of post-transcriptional RNA modifications (Stephenson et al., 2022). 

2.1.2.1 Whole-genome and exome sequencing 

Whole-genome sequencing (WGS) enables reading the entire genomes, all of 3 billion 

bases in the human genome. The re-sequenced genome is then mapped onto a high-quality 

reference one for identification of mutations. The main advantage of the WGS method is its 

ability to cover entire human genomes, both coding and non-coding regions, allowing for 

identifications of novel and rare variants. On the other hand, whole-exome sequencing (WXS) 

covers only coding regions of the genome. The exome accounts for less than 1 to 2% of the 

human, but it contains 85% of documented disease-causing variants (Choi et al., 2009). In order 

to sequence only exomes, WXS requires two main processes; target-enrichment to select and 

capture exomes and sequencing. Main platforms for exome capture are NimbleGen, Agilent, 

and Illumina with varying designs and strengths. All three technologies rely on biotinylated 

oligonucleotide baits complementary to the exome targets to hybridize sequencing libraries 

prepared from fragmented genomic DNA (Clark et al., 2011). After hybridization, the bound 

fragments are pulled-down with magnetic streptavidin and sequenced. The differences between 

technologies are in their target choice, bait characteristics (length and density) and molecules 

for capture (Clark et al., 2011). NimbleGen and Illumina use DNA, while Agilent uses RNA 

bait (Warr et al., 2015). Out of the three, NimbleGen required the least amount of reads to 

sensitively detect small variants since it uses short (55−105 bp) overlapping baits that cover the 

bases it targets multiple times. Agilent uses longer RNA baits (114−126 bp) and the 

corresponding target sequences are adjacent to one another rather than overlapping. These 

longer baits allow for better identification of indels (Chilamakuri et al., 2014; Clark et al., 2011). 

Lastly, Illumina design of TruSeq Exome Enrichment Kit with 96-probes has the most reduced 

target efficiency due to high percentage of off-target enrichment. The kit uses paired-ends reads 

to extend outside the bait sequences and fill in gaps. It is the only one to be able to detect 

mutations in untranslated regions (UTRs) allowing researchers to explore those regions. All 
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three exome enrichment technologies have different target regions/choices that are taken and 

combined from available reference databases of coding and non-coding RNA genes (RefSeq, 

UCSC KnownGenes and Ensembl) (Clark et al., 2011; Flicek et al., 2011; Hsu et al., 2006; 

Pruitt et al., 2009). Different numbers of transcripts, as well as the start and end positions of 

some transcripts, differ between the technologies. One study found that there is very little 

overlap between three technologies when targeting human exome, with just 26.2 Mb covered 

by all three target regions (Chilamakuri et al., 2014). Newer comparison of updated versions of 

mentioned technologies; Agilent and NimbleGen “+UTR” kits and Illumina with Nextera 

Expanded Exome; revealed that both updated Agilent and NimbleGen outperformed Illumina 

(Meienberg et al., 2015). Furthermore, Agilent managed to capture overall more coding exons 

with sufficient read depth than other two technologies. However, despite their strengths, all 

three platforms exhibit significant gaps in effective exome coverage, suggesting the need for 

further improvements. It is worth mentioning that these drawbacks are generally reduced over 

time as exome kit design and standardization of variant calling procedures are improved. 

Barbitoff et al. (2020) showed that WGS has more coverage and is more efficient by only 1-2% 

when compared to the best newer WXS platforms. They suggested that only a small fraction of 

already annotated pathogenic variants found in the ClinVar database (Landrum et al., 2014) are 

not targeted by WXS. Alongside its reduced cost compared to WGS and smaller data 

generation, WXS has therefore become a staple tool in clinical study in recent years. Both WGS 

and WXS are improving the medical healthcare and clinical oncology field by identifying new 

variants leading to tumor progression and proliferation. 

2.2 Cancer genomics 

Even though the word cancer (greek carcinos and carcinoma) inspired Greek physician 

Hippocrates to describe cancerous growths after a moving crab somewhere between 460-375 

BC, the first written evidence describing what we know as cancer is much older (Hajdu, 2011). 

It is called the Edwin Smith Papyrus and it was written about 3000 BC ago in Egypt and brought 

by Smith in 1862. It was the first description of breast cancer as bulging tissue. One of the most 

striking parts of the writing states: “There is no treatment.”, highlighting the graveness of the 

disease (Breasted, 1930). Nowadays, we are not only challenging cancers by creating more 

efficient treatments but also questioning the definition of cancer itself. There is no question that 

cancer is an aggressive and ever-evolving complex heterogenous disease that cannot be solely 

described based on its look and function. Therefore, the most recent proposed definition of 
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cancer goes: “Cancer is a disease of uncontrolled proliferation by transformed cells subject to 

evolution by natural selection.” (Brown et al., 2023). 

In general, we refer to the abnormal growth of cells or tissues in the body to as neoplasm 

(National Cancer Institute, 2024). Neoplasm can broadly be classified as benign tumors that 

stay in the primary site and not spreading through the body and as malignant (cancers) that 

divide uncontrollably and spread to nearby or distant sites in the body (Patel, 2020). To get a 

deeper understanding into the biology of cancer, Hanahan and Weinberg have provided us 

through the years with 14 structured functional pathways on how normal cells progressively 

transform into neoplasm and specifically malignant ones (Hanahan, 2022; Hanahan & 

Weinberg, 2000, 2011). Those pathways are known as The Hallmarks of Cancer and are 

continually updated as new research sheds light on tumor pathogenesis. The core hallmarks 

described in 2011. consist of the following biological capabilities for sustaining proliferative 

signaling, evading growth suppressors, avoiding immune destruction, replicative immortality, 

activating invasion and metastasis, resisting cell death, enabling inducing/accessing 

vasculature, reprogramming cellular metabolism, and two enabling characteristics; tumor-

promoting inflammation and genome instability and mutation. The newly proposed hallmarks 

consist of two new emerging hallmarks; unlocking phenotypic plasticity and senescent cells; 

and two new enabling characteristics; nonmutational epigenetic reprogramming and 

polymorphic microbiomes. Enabling characteristics are responsible for the aberrant condition 

of neoplasm and enable the cancers cells to acquire all of the hallmark capabilities (Hanahan, 

2022).   

2.2.1 Cancer mutations 

Out of all hallmarks, the most prominent one in development of cancer is the enabling 

characteristic of genomic instability which is facilitated by acquirement of mutation; from large 

chromosomal rearrangement to point mutations or indels (insertions or deletions). Mutations 

pose a significant risk as they can disrupt the normal function of a gene's protein product by 

altering its amino acid sequence or producing a stop codon leading to non-functional shorter 

protein. We distinguish two types of mutations; germline and somatic. While germline 

mutations are heritable that occur in germ cells, somatic mutations occur in somatic cells of 

tissues and cannot be inherited by offspring (Meyerson et al., 2020). Based on the “Knudson 

two hit hypothesis” model, dominantly inherited predisposition to cancer involves an initial 

germline mutation, while carcinogenesis or tumorigenesis requires a subsequent somatic 
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mutation to occur. Similarly, non-hereditary cancer of the same type requires two somatic 

mutations in both alleles of a gene (Knudson & Knudson, 1996). Although this is generally 

applicable to majority of tumor suppressor genes, unlike oncogenes, there are always 

exceptions. For instance, some well-known tumor-suppressor genes, like CDKN1B, TP53, 

DMP1, NF1, and PTEN, have shown that when one copy of a gene is inactivated or deleted, the 

remaining functional copy of the gene fails to produce sufficient gene product to maintain 

normal function, known as haploinsufficiency (Inoue & Fry, 2017; National Cancer Institute, 

2024). Out of the mentioned ones, the TP53 gene was given the title “guardian of the genome” 

as it acts as an important G1 DNA check inhibitor preventing genomic instability that leads to 

tumor development (Lane, 1992). Among other function besides inhibiting cell-cycle, p53 

induces DNA repair, apoptosis, autophagy, promotes senescence and many more to prevent 

tumorigenesis (Aylon & Oren, 2011; Kastan et al., 1995). The primary TP53 mutations is the 

loss-of-wild-type p53 functions as a main driving force in prevention of cancer development. 

However, unlike majority of other tumor-suppressor genes, the majority of TP53 mutations are 

predominantly missense mutations which cause single amino acid substitutions (Mantovani et 

al., 2019). It is commonly mutated in more than 50% of all human cancers (Hainaut & Pfeifer, 

2016; Kandoth et al., 2013) making it up to be one of the most studied tumor suppressor genes 

in cancer field. Therefore, to effectively treat cancer and devise drugs tailored to target mutated 

gene products for each cancer’s patient, it is important to identify the most prevalent alterations 

in genes, such as TP53, driving tumorigenesis. 

2.2.1.1 Variant calling of different types of mutations 

Most common form of mutations driving tumorigenesis are divided into three classes of 

genomic variations: single nucleotide variants (SNV) or single-base substitutions (SBS), short 

insertions or deletions, and large SVs. SNVs can be further classified as synonymous, non-

synonymous and nonsense variants depending how the variants affect the biological function 

of the protein. While indels represent mutations affecting shorter parts of the genome usually 

between 1 and 50 bp, SVs are larger in size (typically above 1 kb) and include large deletions, 

tandem duplications, insertions, inversions and translocations (Feuk et al., 2006; Nesta et al., 

2021; Tate et al., 2019). Large scale changes that result in different copy number of those larger 

regions either as deletions, duplications or even insertions are called copy number variants 

(CNVs). Deletions, inversions, and tandem duplications are categorized based on size into five 

ranges: 1-10Kb, 10-100Kb, 100Kb-1Mb, 1Mb-10Mb, and events exceeding 10Mb. 

Additionally, SVs are classified as clustered or non-clustered, determined by the distance 
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between adjacent SVs, resulting in a total of 32 SV types (Tate et al., 2019). The most 

comprehensive information about somatic variants in human cancers responsible for 

tumorigenesis is found in an expert-curated database "Catalogue Of Somatic Mutations In 

Cancer" (COSMIC) (Tate et al., 2019). As already mentioned, not all NGS technologies are 

suitable for detection of every mutation type. Table 1. has summarized general information 

about the certain NGS strategy for decent or reliable detection of variants. Whole-genome 

sequencing is the only one able to reliably call all mutations types albeit by higher cost and 

lower coverage compared to exome and gene panel sequencing. 

Table 1. General characteristics of NGS technologies for detecting variants. Relative cost is represented 

by amount of dollar signs. The cost of gene panel can vary depending on the panel size. The empirical 

performance of each strategy for detecting variants of different classes is indicated as good (+), 

outstanding (++), or poor/absent (-). SNV - single nucleotide variant. CNV – copy number variant. SV 

– structural variant. Taken and adjusted from (Koboldt, 2020) 

Strategy Gene panel Exome Genome 

Size of target space ~0.5 ~50 ~3200 

Average read depth 500-100X 100-150X ~30-60X 

Relative cost $ $$ $$$ 

SNV/indel detection ++ ++ ++ 

CNV detection + + ++ 

SV detection - - ++ 

The main goal of tumor sequencing in clinics is to identify clinically relevant mutations, 

that are somatic mutations despite the fact that ~10% of cancer patients harbor germline 

predisposition variant (Koboldt, 2020). The somatic mutation calling can be done either with 

“tumor-only” or “paired tumor-normal” mode. In paired tumor-normal approach, the DNA is 

isolated from both tumorigenic tissue and non-malignant “normal” cells. Use of non-malignant 

tissue enables the detection of truly somatic mutations by removing those germlines present in 

a matched normal tissue from the individual. While in tumor-only sequencing, it is impossible 

to distinguish germline from somatic ones. Non-malignant cells can either be peripheral blood, 

saliva, buccal swab, fibroblasts or even nail (Mandelker & Ceyhan-Birsoy, 2020), but the most 

commonly used matched normal sample is adjacent non-tumorigenic tissue or normal adjacent 

to tumor (NAT). Using NATs as a control allows for comparison between samples from the 

same individual reduces both individual-specific and anatomical site-specific effects. However, 

studies have shown that NAT has distinct characteristics from both health and tumor tissue, 



12 

 

potentially leading to the omission or misinterpretation of new biomarkers and therapeutic 

targets when used as normal tissues in “paired tumor-normal” variant calling (Aran et al., 2017; 

Oh & Lee, 2023). Therefore, one of the main factors affecting the sensitivity and specificity of 

somatic mutation calling methods is the presence of normal control tissues. Other factors 

include the depth of sequence coverage in both the tumor and a matched normal sample, the 

local sequencing error rate of used NGS technology, the low allelic fraction of the mutation, 

and the evidence thresholds employed to identify a mutation (Cibulskis et al., 2013).  

2.2.1.1.1 Somatic single-nucleotide variant callers 

Nowadays the gold standard for calling mutations either from DNA or RNA-sequencing 

is by following the Gene Analysis Toolkit (GATK) Best Practices guides (McKenna et al., 

2010; Van der Auwera et al., 2013). The first step in best practice guides, after obtaining reads 

from WGS, WXS or RNA-sequencing technologies, is to map the reads onto a reference human 

genome. Since short-read technology sequencing with Illumina is the most used in detection of 

mutations, the shorts read have to be mapped onto the genome using short-read mappers such 

as BWA (Li & Durbin, 2009) or Bowtie2 (Langmead & Salzberg, 2012). To obtain reliable 

mapped reads onto genome to call variants from RNA-seq reads, STAR mapper in 2-pass mode 

is recommended to use (Dobin et al., 2012). Afterwards, the duplicates are marked in generated 

mapping output files in SAM or BAM format. Duplicates represent errors occurring during 

library preparation or sequencing, such as PCR duplicates, and by marking them the GATK 

tools will ignore them in downstream analysis of variant calling. In order to reliably detected 

indels and SNVs, local realignment must be performed around indels due to artifacts introduced 

by mapping. For instance, reads aligning to the edges of indels frequently exhibit mismatches 

with bases that may appear suggestive of SNVs, but are, in fact, mapping artifacts (Van der 

Auwera et al., 2013). The last pre-processing step prior to variant calling is base quality score 

recalibration. In this step machine learning models are used to correct for systematic error 

introduced by the sequencing machines that tend to leave over- or under-estimated base quality 

scores. In RNA-seq variant calling it is important to split the reads that may span over exon-

exon junction or harbor splice junctions for correct variant calling.  

After the data preprocessing, variants are identified using a variant calling tool of 

choice. Common tools include Mutect2, Strelka2, and VarScan2 for somatic variants, and 

HaplotypeCaller and FreeBayes for germline variants. These tools follow similar steps but may 

differ in statistical methods and thresholds for filtering low-quality reads or variants. They also 
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implement approaches to reduce false-positive results by removing sequencing artifacts and 

other means. For example, the original Mutect had the following four steps: 1) removal of low-

quality reads based on coverage, mapping quality and others factors; 2) calling variants using 

Bayesian classifier; 3) removal of false positive variants based on correlations with sequencing 

artifacts that are not present in the error model; 4) distinguishing between somatic and germline 

variant using second Bayesian classifier (Cibulskis et al., 2013). More detailed descriptions of 

Mutect variant calling steps are shown on Figure 1. The improved version of Mutect, called 

Mutect2, uses a different a Bayesian somatic genotyping model alongside the assembly-based 

machinery of HaplotypeCaller (Benjamin et al., 2019).  

 

Figure 1. The MuTect pipeline is employed for the identification of single nucleotide substitution mutations. 

Initially, next-generation sequencing (NGS) reads from tumor-normal paired samples are aligned and processed 

through MuTect. This involves the removal of low-quality reads and an assessment to discern variants from 

expected random sequencing errors. Subsequently, identified variants undergo filtration through six specific filters 

to eliminate artifacts. Following this, remaining false positives are further filtered using a panel of normal samples 

(PON). Leveraging matched normal samples, the status of variants as somatic or germline is determined. The 

"STD" stands for the standard, where no additional filters are applied post-variant calling, whereas "HC" signifies 

high-confidence, indicating the application of all six filters. Taken and adjusted from (Cibulskis et al., 2013) 

Alongside Mutect2, Strelka2 is the other tool that showed similar performance of variant 

calling (high precision rate) compared to the rest of tools (Cai et al., 2016; Chen et al., 2020; 

Kim et al., 2018). Strelka2 is much faster implementation of variant calling compared to 

Mutect2, but it has less flexibility since it cannot call variants in “tumor-only” mode. It is as 

well an upgrade from its older version, Strelka (Saunders et al., 2012), which utilizes a Bayesian 

approach. In Strelka, tumor and normal allele frequencies are considered as continuous 

variables. The normal sample is depicted as a mixture of diploid germline variation with noise, 

while the tumor sample is characterized as a mixture of the normal sample with somatic 
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variation (Saunders et al., 2012). Moreover, it considers potential tumor cell contamination in 

the normal sample in somatic variant calling, thus leading to a significant improvement in 

variant analysis, particularly for liquid and late-stage tumors. Lastly, to obtain even greater 

precision, a final empirical variant re-scoring step using a random forest model trained on 

diverse call quality metrics is employed as the concluding step in Strelka2. Important features 

of the model are: 1) the genotype probability computed by the core variant probability model, 

2) root-mean-square mapping quality, 3) strand bias, 4) the fraction of reads consistent with 

locus haplotype model, and 5) the complexity of the genome reference context characterized 

by homopolymer length and compressibility (S. Kim et al., 2018). Despite the improvement 

made in the algorithms for somatic variants, there is no perfect tool that can detect 100% of 

what we consider to be true mutations while accounting for all of the occurring biases. 

Therefore, it is recommended to use an ensemble approach by taking the overlap of mutations 

called by at least two or more mutations variant tools. 

2.2.1.1.2 Structural variants and copy number variants callers 

A gold standard for detecting structural variations in clinical settings is non-next-

generation sequencing approaches, such as array-based comparative genome hybridization 

(array-CGH) (Shaw-Smith et al., 2004). These arrays use small DNA segments (genomic clones 

as BACs or PCR products, oligonucleotides, cDNA) as baits/targets. Then the basic principle 

is to fluorescently label the test (tumor) and reference (normal) DNA using differently 

fluorescent labels, mixed them, perform denaturation so they can hybridize with the baits on 

the array. After hybridization, the array is scanned to detect the signals emitted by the labeled 

DNA. The fluorescent ratio of test and reference hybridization signals at each probe is used to 

determine the copy number changes (Theisen, 2008). However, despite their precision and low 

cost, they cannot identify de novo SV especially in regions not targeted by the designed probes 

unlike NGS technologies. As it was already highlighted, long-read sequencing or third-

generations is superior to detecting SVs compared to short-read technologies of second 

generation. Unfortunately, the cost of long-read technologies is still too high for it to be 

implemented routinely in clinics. Nevertheless, there are multiple tools available for reliably 

calling the SVs from other technologies.  

The designed SV/CNV tools utilize one or more approaches: read-pairs (RP), read-

depth (RD), split read (SR) and assembly (Baker, 2012) shown on Figure 2. The simplest 

method, read-depth, summarized the number of reads per targeted regions in the genome. 
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Duplicated regions exhibit twice the number of reads, while deleted regions will have none. 

Deletions also detected using split reads, where the reads map to two locations separated by the 

deleted region into the genome. If the reads have a high mapping quality, they become a 

valuable resource to precise detecting of SVs due to known length of the split read. On contrary, 

assembly methods provide identification of SVs by examining the differences of de novo 

assembled and the reference genome. Although they are more expensive and computationally 

demanding, they offer more reliable SV detection in complex regions with a lot of repetitive 

elements.  However, the most powerful and standard approach at the moment in SV detection 

is paired-end whole-genome sequencing data where both ends of the fragments are sequenced. 

Similar to SR, if the mapped length between start position of forward and reverse reads is 

different from insert size, a certain SV is detected. Insert size is the length of the sequenced 

DNA fragment between when preparing the library for WGS DNA sequencing. Information 

about pair-ends reads allows for detection of complex SVs such as inversion, tandem 

duplications among others. 

 

Figure 2. Computational approaches for structural variant (SV) detection. Taken from (Escaramís et al., 2015) 

 Gabrielaite et al. (2021) suggested to use multiple SV/CNV tools, similarly to ensemble 

approach with somatic mutations. They benchmarked 11 SV/CNV tools and found that the best 

tools when combining are: DELLY, GATK gCNV, Lumpy and cn.MOPS. 
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2.2.1.2 Driver mutations guide clinical therapy guidelines 

Not all mutations will lead to cancer development. Therefore, it is important to 

distinguish “driver mutations” that confer growth advantage and has been positively selected 

from “passenger mutations” that do not contribute to carcinogenesis (Stratton et al., 2009). 

Driver mutations are often activating mutations such as missense or focal amplification in 

oncogenes, while they are inactivating in tumor suppressor genes, except in some genes like 

TP53. Both oncogenes and tumor suppressor genes harboring driver mutation are called 

“driver” or “cancer genes”. Usually, 4-9 driver mutations are required for cancer to develop 

(Stratton et al., 2009). Diagnostic, prognostic and treatment approaches are still guided by the 

identification of driver event in cancer genes.  

One of the most common examples of personalized therapy is inactivation of the MAPK 

signaling pathways by identifying and targeting key driver genes with specific driver mutations. 

In malignant melanoma, BRAF proto-oncogene mutations are prevalent in over 66% of cases 

(Davies et al., 2002). The V600E missense mutation is a significant driver mutation, resulting 

in a substitution of valine to glutamine acid, which causes constitutive activation of RAS-RAF-

MEK-ERK signaling pathway or shorter MAPK pathway. This variant is found in over 80% of 

all BRAF-mutated melanomas (Davies et al., 2002). Valine-to-lysine (V600K) and valine-to-

arginine (V600R) mutations represent additional driver mutations in BRAF, accounting for 

20% and 7% of all BRAF mutations, respectively (Manzano et al., 2016). The two gold standard 

therapeutic options for treating BRAFV600 mutant melanoma are combining a BRAF inhibitor 

with a MEK inhibitor and using immune checkpoint inhibitors (Flaherty et al., 2012; Reddy et 

al., 2017). In breast and ovarian cancers, the identification of bi-allelic mutations in BRCA1/2 

tumor suppressors genes is a routine genetic testing for patients with severe family histories of 

these cancers. BRCA genes are responsible for repair of double-stranded DNA (dsDNA) breaks 

via homology recombination repair (HRR) mechanism. Inactivation of both alleles of either 

BRCA gene, disables tumor capability to utilize this mechanism and forces the tumor to switch 

to non-homologous end joining (NHEJ) as an alternative DNA repair mechanism for dsDNA 

breaks. NHEJ pathways increases genomic instabilities by introducing additional mutations 

such as indels due to its working mechanism. This can be taken as an advantage in therapy with 

PARP (poly-ADP ribose polymerase) inhibitors that disable the repair of single-stranded DNA 

breaks which ultimately convert into dsDNA breaks. PARP inhibitors are forcing homology 

recombinant deficient (HRD) cancer cells to use NHEJ pathways which will lead them to the 

path of destruction by increase genomic instability and activating apoptosis. Other gene 
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mutations associated with the HRD phenotype include mutations in PALB2, as well as promoter 

methylation of BRCA1 and RAD51C, which account for the majority of HRD cases (Antoniou 

et al., 2014; Ruscito et al., 2014; Štancl et al., 2022). Since not all of the identified driver genes 

are druggable, the treatment options for certain cancers are slimmer than in others. An example 

is hepatocellular carcinoma (HCC) or liver cancer, where the best treatment is surgical removal 

or liver transplant especially in more advanced stages of HCC. There are tyrosine-kinase 

inhibitors (TKIs) which have proven to be successful in treating HCC like sorafenib in 

combination with other treatments (cytotoxic chemotherapy, immunotherapy, other TKIs) (da 

Fonseca et al., 2020). However specific drugs targeting HCC most mutable cancer genes, such 

as TERT and TP53, are still missing. 

Hence, identification of driver variants in genes in pivot for personalized medicine as 

well as designing new therapeutics to fight cancer. However, identification of driver mutations 

has proven to be quite challenging due to low mutation rate of certain tumor types, high 

heterogeneity, significantly higher number of passengers than driver mutations and low number 

of samples. Therefore, numerous strategies and tools have been developed to identify driver 

mutations. They can be broadly grouped into three groups: frequency-based, function-based 

and combined frequency- and function-based approaches (Pon & Marra, 2015). Frequency-

based methods suffer the most from the mentioned problems since they require a sufficient 

information to statistically identify driver mutations as ones with higher mutational rate 

frequency from background mutational frequency. Another challenge is the defining the 

background mutations. Multiple propositions have been made through the years from 

synonymous mutations in genome, synonymous one in introns and UTRs to modeling the 

frequencies using genomic features, but all of them have drawbacks discussed in detail by Pon 

and Marra (2015). Certain tools like MutSigCV tools estimates gene-specific background 

mutations rates considering genomic factors such as expression level and replication time, as 

well as corrects for variation with patient-specific mutation frequency and spectrum (Lawrence 

et al., 2013). On the contrary, only a function-based approach can predict driver mutations in 

one sample and is useful when interested in precise drivers’ mutations affected by 

chemotherapy or other factors. However, they have extremely low accuracy and sensitivity 

(Gnad et al., 2013). There has been a huge surge of various driver mutations bioinformatic tools 

that combine these approaches. Integrative networks of gene expression, protein structure, 

multi-omics data, as well as supervised and unsupervised machine learning (ML) models have 

all contributed to improved identification of drivers and their role in carcinogenesis. As no 
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single tool is perfect on its own, combining multiple approaches has emerged as a promising 

strategy for reliably identifying driver mutations and genes (Nourbakhsh et al., 2024).  

2.2.2 Mutational signatures 

While most tumor mutational landscapes comprise primarily of passenger mutations, 

their significance has often been overlooked in many previous cancer research. Despite not 

directly contributing to carcinogenesis, these mutations still provide valuable insights into the 

underlying mutational processes driving cancer development. Much like how we leave 

footprints in the sand, a variety of factors such as endogenous and exogenous mutagens leave 

distinct mutational footprints in the genome which we can identify through analysis of 

mutational signatures. Mutational signatures represent specific contexts of mutational 

combinations, defined by substitutions of pyrimidines within the Watson-Crick base pairs 

(C>A, C>G, C>T, T>A, T>C, T>G) along with their 5’ and 3’ flanking bases. Currently, single-

base substitution (SBS) signatures are defined by 96 distinct trinucleotide contexts, resulting 

from the combination of six possible substitutions with 16 possible contexts each (Alexandrov 

et al., 2020). Other types of mutational signatures are double-base substitution (DBSs), small 

indels (IDs), rearrangement (RSs) and chromosome copy number changes (CNVs) signatures 

whose representation is shown on Figure 3. 
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Figure 3. Schematic representation of preferred method for presenting different mutational signatures. Single-

base substitution mutational signatures (SBSs) are shown with 96 distinct trinucleotide contexts. Double-base 

substitution signatures (DBSs) are defined with 78 strand-agnostic DBS mutation types. Small indel signatures 

(IDs) are broadly categorized by type (insertion, deletion or complex). Single base indels are only classified as C 

or T. IDs are further classified based on the length of the mononucleotide repeat tract where they occur. Longer 

indels are classified by whether they occur at repeats or have microhomology at indel junctions. Rearrangement 

signatures (RSs) can be classified based on the four types of rearrangements and their regional clustering, with 

additional consideration given to the size of the rearranged fragment. Abbreviations used include del. for deletion, 

ins. for insertion, MH for microhomology, rep. for repeat, TD for tandem duplication, and trans. for translocation. 

Adjusted and taken from (Koh et al., 2021) 
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While mutational signature analysis represents a hot new trend in cancer research, 

previous studies have hinted at a link between mutational patterns and underlying mutational 

processes. The first researches focused on studying patterns of somatic mutations found in 

single gene, such as TP53. Dangerous UV radiation has been linked to a high abundance of 

C>T mutations occurring exclusively at dipyrimidines (Brash et al., 1991). In lung cancer it 

was found that the TP53 mutational patterns of smokers are significantly enriched in G to T 

transversions compared to non-smokers associated with exposure of benzo[a]pyrene (BaP), a 

famous tobacco carcinogen (Nik-Zainal et al., 2015; Pfeifer et al., 2002). Another example is 

G>T mutation at the third base of codon 249 of the TP53 gene in hepatocellular carcinoma 

exposed to aflatoxin (Bressac et al., 1991). Due to rise of NGS technologies, the mutational 

patterns analysis was extended beyond single gene analysis. This resulted in plethora of studies 

that reinforced or discovered new mutational patterns from various factors; such as UV light of 

C>T, tobacco-smoke-associated damage of G>T, aristolochic acid of T>A at TpG and TpA 

dinucleotides, as well as distinct pattern of C>T and C>G mutations at TpC sites in a subset of 

breast cancers (Petljak & Alexandrov, 2016). All of the endogenous and exogenous processes 

can induce specific mutations in both normal and cancer cells over the cell’s lifespan. Most 

famous SBS signature universally detected across all cancers and normal tissues is SBS1. This 

signature is associated with patient’s age hence it is sometimes referred to as age-associated 

signature. SBS1 is characterized by C>T mutations at NCG sites due to deamination of 5-

methylcytosine and represents the endogenous processes which generate mutations at a constant 

rate during cell’s lifespan. Other signatures may only be active for a shorter period of time 

depending on the patient’s lifestyle choices, as an example SBS4-tobbacoo related signature. 

The dynamic process of various mutational processes being active though the cell’s lifespan 

leads to the accumulation of multiple mutational signatures with overlapping features (Koh et 

al., 2021; Van Hoeck et al., 2019). In order to successfully distinguish individual mutational 

processes from various mutational patterns present in the genomes, mathematical approaches 

had to be implemented to solve this problem. Only then it was possible to distinguish 

meaningful biological processes driving the carcinogenesis from artifacts caused by sequencing 

errors, mutational calling, and other sources of noise. For instance, some mutagens, notably 

exposure to UV radiation, have been associated with multiple mutational signatures, such as 

SBS7a, SBS7b, SBS7c, SBS7d, and recently annotated SBS38. In the COSMIC database, both 

SBS7a and SBS7b primarily exhibit C>T mutations, likely attributed to UV-induced 

photoproducts like cyclobutane pyrimidine dimers or 6-4 photoproducts. Conversely, SBS7c, 

characterized by T>A and T>C mutations, and SBS7d, with a predominance of T>C mutations, 



21 

 

may result from translesion DNA synthesis by enzymes favoring T or G insertion over A 

respectively. On other hand, less studied SBS38 signature, exclusive to UV-associated 

melanomas, suggests potential indirect damage from UV light exposure (Tate et al., 2019). 

Hence, experimental validation is essential to attribute each mutational signature to its 

underlying cause. 

There are two main methods for detecting mutational signatures: de novo signature 

extraction and signature refitting methods. Both methods produce a decomposition matrix 

C ≈ SE, where C is the catalog matrix (mutation context per sample), S is the mutational 

signature matrix (mutation context per signature) and E is the exposure matrix, also termed 

“signature contribution” or “activity of a signature” (mutational signature per patient) (Maura 

et al., 2019). In the de novo method, the C matrix is utilized to derive S and E through modeling 

techniques that determine the optimal number of signatures. Conversely, in the fitting method, 

the catalog of already known signatures (S) is used, allowing algorithms to calculate the 

exposure matrix (E). De novo methods allow for unbiased identification of novel signatures and 

were first employed to characterize mutational processes found in 21 breast cancers(Nik-Zainal 

et al., 2012). Original method used nonnegative matrix factorization (NMF) to extract the 

signatures and whose results obtained with SigProfiler tool can be found in the COSMIC 

database. Other newer modification of the NMF, such as a Bayesian variant of NMF 

implemented in SignatureAnalyzer tool, showed similar performance when reconstructing 

known signatures (Alexandrov et al., 2020; J. Kim et al., 2016). The difference was mostly 

prominent in higher number of detected and assigned signature, especially to more problematic 

samples with hypermutations, with SignatureAnalyzer. 

Multiple mutational fitting methods have been developed to determine the best fit of 

selected signatures (S) that closely reconstruct the original mutational context of a sample. 

These methods use either multiple linear regression, a non-negative least-squares constraints 

problem (NNLS), Bayesian inference or simulated annealing (SA) method to perform the fitting 

(Pandey et al., 2022). Since fitting methods are purely mathematical approaches aimed at fitting 

as many given signatures as possible, they tend to leading to a problem known as overfitting. 

Depending on the research objectives, it may be beneficial to apply stricter parameters in fitting 

or to use a pre-selected set of signatures to reduce the overfitting. One of the simplest ways to 

reduce overfitting is to perform fitting using bootstraps techniques. In each signature bootstrap, 

signature contribution is calculated as cosine similarity or mean squared error (MSE) of 

difference between the bootstrap estimates and original mutational context. The obtained 
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distribution of calculated signature contributions is used to calculate the empirical probability 

of an exposure to be larger or equal to a given threshold (Huang et al., 2018). The main idea of 

this modified fitting methods is to remove those signatures with little or non-contribution that 

do not exceed a certain threshold. Another variation of this method is the strict fitting of 

signatures implemented in MutationalPatterns R package that moves in iterative fashion and 

stops removing signature once the difference in reconstruction error between two iterations is 

bigger than a set threshold (Manders et al., 2022). Although the main drawback of this methods 

is the arbitrary selection of the threshold values, these approaches enable identification of stable 

and unstable signatures allowing researches to call signatures more reliably. Removing certain 

signatures beforehand also reduces overfitting but introduces a bias. Therefore, it is also 

important to reconsider the initial set of mutational signatures (S) in fitting methods; whether 

to use tissue-specific or all mutational signatures (Maura et al., 2019). Tissue-specific sets of 

mutational signatures represent the up-to-date signatures that have been identified in certain 

cancers and reduce the number of unambiguous identification of signatures that represent 

artifacts in corresponding cancer. They are more informative when studying mutational 

processes in particular cancer to identify tissue-specific biomarkers and therapeutic targets, 

particularly when the tumor's cell-of-origin is known. Otherwise, in rare, less studied and/or 

unknown cancer types important signatures may go undetected due to their rarity or influence 

by factors beyond the examined tissue type.  

2.2.2.1 Clinical implications with mutational signatures 

Only in recent years have mutational signatures begun to demonstrate clinical 

importance, serving as novel biomarkers. Among various cancers, breast cancer mutational 

signatures had the most significant advancement in diagnostics field. Stratton’s group have 

identified specific mutational signature associated with BRCA1/2 which they later identified as 

single-base substitution signatures SBS3 and SBS8 and rearrangement signature 3 and 5 (Nik-

Zainal et al., 2012, 2016). Moreover, they detected that SBS3 often co-occurs with increased 

numbers of indels > 3 bp in length with overlapping microhomology at breakpoint junctions, 

consistent with double-strand break (DSB) repair by non-homologous end joining. Soon after, 

this was reinforced from study by Polak et al. (2017) who found that biallelic inactivation of 

BRCA1/2 is associated with SBS3. They also highlighted that epigenetic silencing of BRCA1 

and RAD51 through promotor methylation contributes to SBS3, alongside germline PALB 

mutation. Since epigenetic modifications are not typically included in routine diagnostic 

procedures, patients with these alterations that show the so called “BRCAness” phenotype may 
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be excluded from potentially beneficial therapies. “BRCAness” or “homologous-recombinant 

deficient (HRD) phenotype” terms are often used to describe tumors without BRCA mutations 

who share similar clinicopathological and molecular characteristics to tumors harboring 

BRCA1/2 mutations (Lord & Ashworth, 2016).  

Hence, various tools have been developed utilizing the mutational signature to predict 

whether a patient has HRD phenotype in order to receive a proper treatment with PARP 

inhibitors or platinum-based chemotherapy. The most famous being HRDetect developed by 

Davies et al. (2017) and trained on BRCA1/2-null breast tumors. HRDetect is a weighted logistic 

regression model based on six input features: SBS signatures 3 and 8, and two rearrangement 

signatures 3 and 5, the proportion of small deletions with microhomology at the breakpoint 

junction, HRD index based on genomic scars. The tool achieved high sensitivity of 98.7% 

(AUC 0.98) for predicting HRD breast cancer patients. The population-based clinical study of 

whole-genome sequencing in triple-negative breast cancers demonstrated the effectiveness of 

HRDetect as an independent prognostic factor. Patients classified as HRD-high exhibited better 

outcomes on adjuvant chemotherapy for invasive disease-free survival and distant relapse-free 

interval compared to HRDetect-low individuals, regardless of the identified known cause of 

HRD (Staaf et al., 2019). Although HRDetect was initially developed using breast cancer data 

and demonstrated remarkable prognostic capabilities, its utility extends beyond breast cancer 

alone. Other cancer type patients, including ovarian, pancreatic, and metastatic prostate cancer 

patients, have also been shown to significantly benefit from HRDetect predictions for 

therapeutic choices.  

In addition to the homologous recombination repair mechanism, deficiencies in other 

DNA repair mechanisms are known to produce specific mutational patterns and signatures in 

genomes. Cancers with defective DNA mismatch repair (MMR) exhibit a high frequency of 

indels, particularly at microsatellite unstable regions, known as microsatellite instability (MSI), 

and an increased mutational load of substitutions, predominantly C>T and C>A substitutions. 

Mutational signatures associated with MRR and MSI are SBS6, SBS14, SBS15, SBS20, 

SBS21, SBS26, and SBS44 (Tate et al., 2019). MMR deficiency has been extensively studied 

in colorectal cancer, where patients with MMR deficiency significantly benefit from 

immunotherapy. It has been demonstrated that MRR deficient patient from multiple cancers are 

sensitive to inhibitors of the programmed death 1 (PD1) immune checkpoint, such as 

pembrolizumab and nivolumab (Bouffet et al., 2016; Le et al., 2015, 2017). Deficiencies in base 

excision repair (BER) and nucleotide excision repair (NER) are associated with characteristic 



24 

 

mutational signatures. BER deficiency is linked to signature SBS30, associated with 

inactivating mutations in NTHL1, while SBS18 has been linked to MUTYH mutations with 

possible etiology of reactive oxygen species (ROS) (Tate et al., 2019). Signatures similar to 

SBS5 has been linked to mutations in NER’s core protein ERCC2. Although patients with 

higher levels of this signature benefit from cisplatin therapy, it has limited diagnostic value as 

it is also considered an age-related signature with contamination from SBS16 (Tate et al., 2019; 

Van Hoeck et al., 2019).  

Unlike mutational signatures that can serve as biomarkers for specific therapy selection, 

some signatures indicate resistance to certain treatments. Such examples are APOBEC 

signatures that have been associated with resistance to tamoxifen (Law et al., 2016; Sieuwerts 

et al., 2014). Apolipoprotein B mRNA-editing enzyme (APOBEC) consists of family of 

evolutionarily conserved cytidine deaminases with a role to protecting cells as a part of cellular 

immune response to viruses and retrotransposons. The major source of mutations is the 

APOBEC3B gene which is extensively studied in breast cancer (Petljak et al., 2022). Alongside 

other family members, it is responsible for driving tumor development, evolution and resistance 

to chemotherapy (Swanton et al., 2015). APOBEC mutations are responsible for kateagis 

regions, local hypermutated regions in the genome. In COSMIC database, APOBEC mutational 

signatures are SBS2 and SBS13. While SBS2 are predominantly C>T mutations at TCN 

trinucleotides, SBS13 are mostly C>G mutations at TCN sites (Petljak & Alexandrov, 2016). 

2.3. Epigenetics and cancer 

  The second most important emerging hallmark of cancer, after genomic instability, 

that lead to cancer development is nonmutational epigenetic reprogramming. While mutations 

can alter protein function and even render its production completely, epimutations are 

considered a driving force of significantly changing the expression levels of cancer genes, both 

oncogenes and tumor suppressors. Epimutations can be reversed by nature, unlike regular 

genetic mutations, which makes them an excellent therapeutic target. Epigenome is responsible 

for condensing the ~2 m long genome into the nucleus of the cell, as well as regulating tissue-

specific gene expression to maintain normal cellular identity and function. Main components 

of epigenome are DNA methylation, histone modification, chromatin remodeling, and non-

coding RNAs. In the next few sections I will briefly go through normal function of each 

component, their disruption in cancer and potential therapeutic choices. 
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2.3.1 DNA methylation  

One of the most common and well-studied epigenetic regulations in eukaryotes that 

chemically modify DNA sequence is the methylation of cytosine in CpG dinucleotides, 

resulting in 5-methylcytosine (5mC). The 5-methylcytosine (m5C) is a repressive mark of the 

epigenome, responsible for silencing gene expression through either preventing access for 

transcriptional factors (TFs) to bind on DNA or by recruiting regulative methyl-binding domain 

proteins (MBDs) along with chromatin remodelers (Lu et al., 2020). The majority of CpG 

sequences are methylated in human genome, except for CpG dinucleotides concentrated in short 

CpG-rich DNA stretches known as CpG islands. Hypomethylation of CpG islands is important 

for gene regulations as these regions are predominantly located at the 5’ end of human genes 

and occupy more than ~50% of promoters (Bird, 1986; Lister et al., 2009). DNA 

methyltransferases (DNMTs) are enzymes responsible for DNA methylation. DNMT1 is 

involved in maintaining DNA methylation patterns by methylating hemimethylated DNA 

during replication. On the other hand, DNMT3a and DNMT3b are de novo DNA 

methyltransferases, responsible for methylating unmethylated DNA independently of 

replication processes (Lu et al., 2020). The demethylation 5mC is either driven by ten-eleven 

translocation methyl-cytosine dioxygenases which produce 5-hydroxymethylcytosine (5-hmC) 

alongside other intermediate products, or by passive demethylation during DNA replication if 

DNMTs are absent (Costa et al., 2023). Disruption of the homeostasis between methylation and 

demethylation of the genome can lead to the development of various diseases, including cancer. 

Famous examples of hypermethylation of tumor suppressor genes include BRCA1 in breast and 

ovarian cancers (Polak et al., 2017; Ruscito et al., 2014), and PTEN in melanoma 

(Mirmohammadsadegh et al., 2006). In contrast, hypomethylation-mediated upregulation of 

oncogenes is observed in various cancers, such as the expression of MAGE (melanoma-

associated antigen) in melanoma (D. Wang et al., 2016) and TERT in hepatocellular carcinoma 

(H. Zhang et al., 2015). Therapeutic strategies for reversing aberrant DNA methylation of tumor 

suppressor genes involve the use of DNA methyltransferase inhibitors (DNMTIs), which can 

be categorized into two main groups: cytosine analogue inhibitors and non-nucleotide analogue 

inhibitors. These inhibitors function by either depleting the pool of active DNMT enzymes or 

interfering with their binding to DNA (Lu et al., 2020). 
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2.3.2 Histone modifications 

Another frequently studied epigenetic mechanism regulating gene expression is histone 

modification. Histones are proteins responsible for packaging DNA into nucleosomes, which 

are the fundamental units of chromatin. Each nucleosome core consists of protein octamer 

defined with four histone dimers (H3, H4, H2A, H2B) linked by histone H1 and wraps up ~ 

146 bp DNA (Luger et al., 1997). Histone proteins contain a globular C-terminal domain and 

an extended N-terminal domains which undergo various post-translational modifications 

(PTM) such as methylation, acetylation, phosphorylation and other modifications of a specific 

amino acid (Lu et al., 2020).  Each modification has been associated with either transcriptional 

activation/euchromatin regions or repression/heterochromatin regions. In general, sumoylation, 

deamination and proline isomerization are detected in transcriptionally silent regions, while 

acetylation and phosphorylation are correlated with open chromatin and positive transcription 

(Kouzarides, 2007). On the other hand, methylation and ubiquitination can be associated with 

both transcriptional activation and repression. The most well studied modifications are 

methylation and acetylation. Histone methyltransferases (HMTs) are responsible for various 

histone methylation at different amino acid residues. Depending which residue was methylated, 

the biological consequence can significantly differ. For instance, the histone H3 lysine 27 

trimethylation (H3K27me3) is associated with the repression of transcription elongation, while 

histone H3 lysine 4 trimethylation (H3K4me3) is associated with transcriptionally active/poised 

chromatin and histone H3 lysine 36 trimethylation (H3K36me3) with open chromatin through 

removal of histone acetylations in the wake of an elongating pol II (Karlić et al., 2010; 

Kouzarides, 2007). Based on these associations, Karlić et al. (2010) showed that only a small 

number of histone modifications can be used to predict the level of gene expression using 

quantitative models. Specifically, they found that H3K4me3 and H3K79me1 modifications 

were most important for predicting expression of genes with low CpG content promoters, 

whereas H3K27ac and H4K20me1 were more relevant for genes with high CpG content 

promoters. 

Maintaining the equilibrium of histone modifications is pivotal for normal cellular 

function. Aberrant reprograming of histone modifications has been associated with various 

disease progression, including cancer. A common hallmark of cancer is loss of acetylation at 

Lys16 (H4K16ac) and trimethylation at Lys20 of histone H4 (H4K20me3) (Fraga et al., 2005). 

In prostate cancer, histone modifications associated with transcriptional activation, acetylation 

(H3K9, H3K18 and H4K12) and demethylation (H4R3 and H3K4), have shown to have 
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prognostic value (Seligson et al., 2005). Moreover, aberrant methylation patterns of H3K9 and 

H3K27 have been shown to drives oncogenic transformation and chemoresistance (Costa et al., 

2023; Sasidharan Nair et al., 2018; Sharma et al., 2009). The dysregulated distribution of 

histone modifications in cancer genomes often involves altered histone methyltransferases 

(HMTs) and histone deacetylases (HDACs). For instance, overexpression of H3K27 HMT 

(EZH2) and H3K9 HMT (G9a) have been detected in breast and liver cancer, respectively 

(Borkiewicz, 2021; Kondo et al., 2007). The most advanced clinical studies include the 

tazemetostat, an epidrug approved by the Food and Drug Administration (FDA) targeting EZH2 

for advanced epithelioid sarcoma. However, there are much more FDA approved histone 

deacetylase inhibitors (HDACI), such as panobinostat and tucidinostat, that are considered to 

be one of the main epidrug alongside DNMTIs in clinics (Costa et al., 2023; Nepali & Liou, 

2021). 

2.3.3 Non-covalent modifications 

Non-covalent modification of epigenome include nucleosome remodeling and non-

coding RNAs (ncRNA). Nucleosome remodeling involves ATP-dependent remodeling 

enzymes that regulate gene expression by mobilizing nucleosome using energy from ATP 

hydrolysis. One of the examples is SWI/SNF complex which was found to be mutated nearly 

25% of all cancers. Furthermore, dysregulated expression of SWI/SNF subunits has been 

closely associated with tumor initiation and progression (Zhang & Li, 2022). One of the main 

components of SWI/SNF complex, that is frequently mutated, is a tumor suppressor ARID1A. 

Alongside other parts of SWI/SNF complex, ARID1A when through a lot of preclinical and 

clinical studies with varying outcomes (Mittal & Roberts, 2020). Non-coding RNAs (ncRNAs) 

are broadly categorized into two main groups: long ncRNAs (>200 nucleotides) and small 

ncRNAs (<200 nucleotides). Both groups of ncRNAs can function as oncogenes or tumor 

suppressors by modulating gene expression post-transcriptionally through translation inhibition 

or mRNA degradation (Costa et al., 2023). Also, lncRNA can regulate gene expression in the 

nucleus such as guiding chromatin-modifying complexes like PRC2 to specific genomic loci, 

leading to the formation of inactive chromatin marked by H3K27me3, or by recruiting MLL 

histone methyltransferase complex to gene promoters, promoting active chromatin marked by 

H3K4me3, or they may act as decoys for histone deacetylases, maintaining activating chromatin 

modifications such as H3K9ac and H3K56ac (Ahmad et al., 2023). The most studied small 

ncRNAs are miRNAs, approximately 20-25 bp molecules targeting multiple genes, serving as 
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potential biomarkers or therapeutic targets, although drug development based on miRNAs 

remains challenging, showing promising potential for cancer treatment (Kim & Croce, 2023).  

2.4 Chromatin structure  

Chromatin is compacted and organized into higher-order structures, which play 

significant roles in regulating gene expression and cellular function. Studies on chromatin 

conformation (Hi-C) have provided deeper insights into the 3D genome structure, revealing 

various active and inactive chromatin regions across different scales. In eukaryotes, 

chromosomes are spatially arranged within specific regions known as “chromosomal 

territories” (CT) (Cremer & Cremer, 2010) shown on Figure 4AB. Within these territories, two 

hierarchical structures are observed: A and B compartments at the megabase level, associated 

with euchromatin and heterochromatin, respectively (Figure 4CD). At the sub-megabase level, 

topologically associated domains (TADs) represent DNA interactions that occur more 

frequently within a given domain than with regions in other domains (Figure 4EF) (Akdemir, 

Le, Chandran, et al., 2020; Boltsis et al., 2021). TADs are formed by chromatin loop extrusion 

mechanism, during which DNA strands move within the cohesin or SMC complex until 

encountering bound CCCTC-binding factor (CTCF) (Rajderkar et al., 2023). Furthermore, they 

are organized into two basic features: the TAD, self-interacting loop domains where cis-

regulatory elements and genes interact, and the TAD boundary, a region between TADs acting 

as insulators (McArthur & Capra, 2021). One such cis-regulatory elements which in TADs are 

responsible for co-regulating gene expressions are super-enhancers (SE). SE are large clusters 

of regulatory elements defined by unusually strong enrichment for the binding of transcriptional 

coactivators, specifically Med, EP300, BRD4 and CDK7, as well as their extremely high 

potential of activating transcription of target genes (Jia et al., 2019; Pott & Lieb, 2015). 

Therefore, TADs and TADs boundaries have been shown to be a crucial fundamental units in 

genome organization which regulated gene expression in tissue- and cell-specific manner 

(Boltsis et al., 2021; H. S. Long et al., 2022; Rajderkar et al., 2023; Schoenfelder & Fraser, 

2019). Although multiple studies have shown that TADs are highly conserved among different 

cell types and across various species, newer research are defining that there maybe even ~50% 

TADs and up to 80% TADs boundaries which are different across cell types (Boltsis et al., 

2021; McArthur & Capra, 2021). 
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Figure 4. Schematic representation of 3D spatial organization of chromatin in eukaryotes. A) Arrangement of 

chromosomes in the nucleus where all chromosomes are connected to nuclear lamina. Chromosomal territories 

(CT) are colored by distinct color. Overlapping areas of CTs are also highlighted. B) An illustration of Hi-C map 

showing the frequency of physical interactions between pairs of genomic regions on the chromosomal scale. C) 

“A” (yellow) and “B” (green) compartments of chromatin. D) An illustration of Hi-C map at the compartmental 

scale showing distinct plaid pattern from interactions of distal chromatin and compartments “A” and “B”. E) 

Representation of topologically associated domains (TADs) and associated proteins necessary for loop extrusion 

mechanism. C) Hi-C map at sub-megabase scale showing TADs. Regulatory elements, such as super-enhancers, 

are typically located closer to gene promoters within topologically associated domains (TADs), facilitating their 

regulatory control over gene expression. Taken from (Boltsis et al., 2021) 

The disruption of TADs can contribute to the development of various diseases, 

including cancer, by dysregulating gene expression. One notable mechanism implicated in this 

process is “enhancer hijacking” or “enhancer adoption”, where chromosomal rearrangements 

lead to the fusion of adjacent TADs (Boltsis et al., 2021). This fusion enables enhancers from 

neighboring TADs to inappropriately activate oncogenes thereby promoting tumorigenesis. 

One such examples is the activation of key oncogenic driver TAL1 for T cell acute 

lymphoblastic leukemia (T-ALL) by site-specific deletion of a loop boundary CTCF site (Hnisz 
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et al., 2016). A comprehensive pan-cancer study of 38 tumor types from the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) also detected numerous chromatin loops disrupted by 

structural variants across various cancers (Akdemir et al., 2020). For instance, a CTCF site 

proximal to FOXC1 coincides with recurrent deletions observed in esophageal, gastric, and 

colon adenocarcinomas, while another CTCF site near BCL6 in hepatocellular carcinoma and 

breast adenocarcinoma (Akdemir et al., 2020). Moreover, structural variants can also lead to 

TADs shuffling and formation of “neo-TADs”. “Neo-TADs” represent a significant outcome 

of SVs affecting the genome, alongside "enhancer hijacking," resulting in the creation of novel 

chromosomal domains (Boltsis et al., 2021). This effect is particularly prominent in cancerous 

cells, where TADs are often observed to be shorter compared to their normal counterparts 

(McArthur & Capra, 2021). In prostate cancer it was shown that these new smaller TADs often 

reside within the older TADs instead of forming a completely new one, as well as keeping 

majority of TAD boundaries, ~98%, intact (Taberlay et al., 2016). The similar trend was 

observed between mammary epithelial and breast cancer cells with creation of multiple sub-

TADs related to repression of WNT signaling and high number of conserved TAD boundaries 

(Akdemir et al., 2020; Barutcu et al., 2015). Although targeting chromatin interactions holds 

promise for precise gene expression control by perturbing promoter-enhancer interactions, 

challenges arise due to the involvement of CTCF, cohesin, and other transcription factors in 

multiple chromatin interactions and signaling pathways, leading to potential off-target effects 

(Boltsis et al., 2021). 

2.5 Cell-of-origin of cancer 

The primary choice of therapeutic options for oncologists is guided by the identification 

of a tumor's primary origin through histopathological examination and biomarker profiling 

using various NGS tools. However, carcinomas of CUP, which account for approximately 10-

15% of diagnosed tumors, pose a unique challenge due to their unknown and diverse 

morphological, immunohistochemical, and molecular characteristics. Reliable identification of 

the primary origin of CUP tumors requires the integration of multiple techniques, ranging from 

immunohistochemistry to NGS (Beauchamp et al., 2023). When the tumor type cannot be 

initially identified based on morphological characteristics alone, the first step is to employ a 

basic initial immunohistochemistry (IHC) panel targeting broad cancer types. This may include 

markers such as S100 for advanced cutaneous melanoma, CD45 for lymphoma, and AE1/AE3, 

which are epithelial markers positive for carcinoma (Schofield et al., 2018). Subsequently, if 
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carcinoma is detected, more specialized IHC markers are utilized to determine the specific 

subtype of carcinoma and/or adenocarcinoma. To enhance the accuracy of classification, it is 

recommended to use antibody cocktails on the same slide (Beauchamp et al., 2023). 

Furthermore, poorly or undifferentiated carcinomas may necessitate more detailed analysis 

using larger sequencing panels, as well as WGS or WXS if needed. Current understanding of 

the primary cell-of-origin in cancer relies on mouse models, primarily employing two 

approaches: 1) utilizing cell-specific promoters to drive expression of an oncogene or the Cre-

mediated deletion of a tumor-suppressor gene within specific cell subsets in vivo; and 2) 

genetically manipulating ex vivo cells, which are subsequently orthotopically transplanted into 

mice to assess their predisposition to tumor initiation (Visvader, 2011). However, these models 

may not fully recapitulate the complex genetic, epigenetic, environmental, and stochastic 

processes observed in human cancers. Consequently, various approaches, including the 

examination of genomic, epigenomic, and gene expression profiles in cancers using machine-

learning methods, have been developed to address these limitations. 

2.5.1 Machine learning algorithms for determining cell-of-origin 

Previous machine learning (ML) methods focused on identifying the most critical 

features associated with carcinogenesis. However, these studies often faced limitations, 

requiring a substantial number of samples to accurately identify the features necessary for 

correctly predicting the COO. Additionally, studies restricted to a single cancer type may not 

generalize well to other cancer types. In contrast, pan-cancer studies, while more challenging 

to interpret, have the potential to uncover universal biomarkers that can be applied across 

different cancer types for COO identification. In pan-cancer of RNA-seq based ML models 

there are small number of genes shared among other studies, questioning if the found genes and 

models can be reliably used for COO discovery (Štancl & Karlić, 2023). Whole-genome 

sequencing models, which incorporate multiple genomic features, tend to achieve higher 

accuracies than RNA-seq and/or whole-exome ML models. For example, a random forest COO 

classifier trained across 35 cancers achieved approximately 90% recall and precision based on 

cross-validation and test set predictions (Nguyen et al., 2022). This model utilized 511 features 

based on simple and complex somatic driver and passenger mutations, such as density (RMD) 

profiles, simple and complex rearrangements, mutational signatures, and gene gain/loss of 

function, among others. 

The ML model for predicting the COO developed by Polak et al. (2015) overcomes 

these challenges by leveraging WGS mutations and epigenome of normal tissue cells across 1 
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MB genomic windows to be able predict the COO of individual patients. This approach 

capitalizes on the influence of chromatin structure, regulated by processes such as histone 

modifications, on the accumulation of background (passenger) mutations in a cell type-specific 

manner. Their study was based on two key observations: 1) mutations exhibit non-uniform 

distribution along chromosomes and across tumor types; 2) mutation densities correlate with 

regional histone modifications, DNA accessibility, and DNA replication timing in a tissue-

specific manner (Kübler et al., 2019). The improved accuracy of the recently developed 

extension of this model, COOBoostR (S. Yang et al., 2023a), suggests that alterations in 

chromatin marks, particularly those occurring in tissue-specific enhancer regions, likely 

influence the somatic mutation density profile in these regions. This phenomenon has been 

observed in Barrett's metaplasia and esophageal adenocarcinoma. Further investigation into 

additional features and extensions of this model approach is needed. 
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3 Materials and methods 

3.1 Publicly available data 

3.1.1 Whole genome and whole-exome sequencing data 

I used available whole genome and whole-exome sequencing datasets from 

ICGC/TCGA repository for liver, skin melanoma and breast cancer types. Summary of open 

and controlled access number of ICGC/TCGA donors is shown in Table 2. 

Table 2. Number of ICGC/TCGA donors of raw called single-nucleotide variants (SNVs) and indel 

variants for liver, skin melanoma and breast cancer  

Cancer cohorts WGS WXS 

Open Controlled Open Controlled 

Liver 

LICA-CN 112 0 288 0 

LICA-FR 49 6 234 0 

LIHC-US 54 54 362 375 

LIHM-FR 0 0 4 0 

LINC-JP 31 28 363 0 

LIRI-JP 258 251 0  

LIAD-FR 5  30  

TOTAL 509  1281  

Skin 

SKCM-US 37 38 466 470 

MELA-AU 183 70 0 0 

SKCA-BR 100 0 0 0 

TOTAL 320  466  

Breast 

BRCA-EU 569 78 0 0 

BRCA-US 91 92 1015 1 044 

BRCA-UK 45 45 117 0 

BRCA-KR 0 0 50 0 

BRCA-FR 72 0 0 0 

 TOTAL 777  1182   

Due to the lack of the same donors in controlled data and to reduce bias from analyzing 

open and controlled data, I will take open access called raw SNVs and indel mutations for 

downstream analyses to analyze the variants. 
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3.1.2 Characteristics of individual patients 

Clinical information of patients was obtained from the ICGC/TCGA platforms. The 

performance of patients' cell-of-origin models was analyzed in relation to their tumor 

histological types, which were annotated using the ICD-O (International Classification of 

Diseases for Oncology) shown in Table 3.  

Table 3. Annotated tumor histological type and tumor histological codes of ICD-O International 

Classification of Diseases for Oncology from ICGC/TCGA datasets for breast, liver and skin cancers. 

NOS means not otherwise specified. *LIAD-FR cohort samples are all hepatocellular adenoma 

Cancer type Histological type Histological code 

Breast 

Adenoid cystic carcinoma 8200/3 

Carcinoma with apocrine differentiation 8401/3 

Duct and lobular carcinoma 8520/3 and 8022/3 

Duct micropapillary carcinoma 8507/3 

Infiltrating duct carcinoma 8500/3 

Intraductal papillary adenocarcinoma with 

invasion 
8503/3 

Lobular carcinoma 8520/3 

Pleomorphic carcinoma 8022/3 

Medullary carcinoma 8510/3 

Metaplastic carcinoma 8575/3 

Mucinous adenocarcinoma 8480/3 

Neuroendocrine carcinoma 8246/3 

Tubular and invasive Cribriform carcinoma 8211/3 and 8201/3 

Liver 

Cholangiocarcinoma 8160/3 

Combined hepatocellular + cholangiocarcinoma 8180/3 

Fibrolamellar hepatocellular carcinoma 8171/3 

Hepatocellular adenoma*  

Hepatocellular carcinoma 8170/3 

Skin 

Acral lentiginous melanoma 8744/3 

Desmoplastic melanoma 8745/3 

Lentigo maligna melanoma 8742/3 

Malignant melanoma, NOS 8720/3 

Mucosal lentiginous melanoma 8746/3 

Nodular melanoma 8721/3 
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Superficial spreading melanoma 8743/3 

 

 For breast cancer, the 86 patients were further annotated using Prediction Analysis of 

Microarray 50 (PAM50) metrics into Her2, Basal, LumA and LumB from available data upon 

request from Kübler et al. (2019). Moreover, I took published scores of HRD and CHORD tools 

from my paper (Štancl et al., 2022) for 371 breast cancer patients. I labeled each patient as 

homologous recombinant deficient if HRDetect score was above 0.7 or CHORD score was 

above 0.5.  

3.1.3 1 Mb genomic regions 

As previously described by Polak et al. (2015), I divided the human genome (GRCh37) 

into genomic regions of 1Mb window size. I excluded regions overlapping with centromeres 

and telomeres, as well as regions with a low fraction of uniquely mappable bases (<92% of 

bases within uniquely mapped 36-mers). In total, I was left with 2,128 1Mb genomic regions. 

3.1.4 Topologically associated domains 

I download publicly available topologically associated domains (TADs) from the 

TADBK (T. Liu et al., 2019) and 3D genome browser (Y. Wang et al., 2018) for normal tissues 

or cell lines. Specifically, liver tissue data was represented by a single TAD dataset from 

STL011. For melanocytes, no specific TAD data was available; therefore, I utilized TADs from 

the epidermal keratinocyte cell line NHEK as the closest proxy. For breast tissue, TADs from 

the mammary epithelial cell line HMEC were used. The characteristics of the selected TADs 

are detailed in Table 4. 

Table 4. Topologically-associated domains of closely related tissues and cell lines to breast, liver and 

skin melanoma cancers that was used in downstream development of cell-of-origin model 

Cell type 
TADs calling 

tool 
Number of TADs 

Median TAD 

length  

Standard 

deviation of TAD 

length 

HMEC 

 

DI 10kb 4363 430001 548835.7803 

DI 50kb 2621 800001 1006272.105 

GMAP 10kb 3069 710001 674360.2005 

GMAP 50kb 1851 1300001 816604.8367 

IS 10kb 4854 440001 729101.2602 
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IS 50kb 3154 350001 660268.5424 

Lieberman 3235 600001 988088.7944 

Liver STL011 2066 720001 767317.5417 

NHEK 

 

DI 10kb 4213 470001 590566.1908 

DI 50kb 2734 800001 849001.1633 

GMAP 10kb 3238 700001 591058.8569 

GMAP 50kb 1876 1300001 819498.1334 

IS 10kb 5044 460001 539163.8059 

IS 50kb 3189 350001 659025.0822 

Lieberman 2832 725001 1011546.394 

 

3.1.5 Super-enhancers 

Tissue specific super-enhancers (SEs) were downloaded from SEdb2.0 (Y. Wang et al., 

2023). For each cancer type I selected both normal and cancerous cell lines if they exist which 

are summarized in Table 5 alongside the total number of SEs found in each tissue and cell-line. 

Table 5. Tissue specific super-enhancers (SEs) of normal and cancerous cell lines for breast, liver and 

skin melanoma cancer types from SEdb2.0 

SE tissue Cell-line Type Count 

Breast epithelium breast-epithelium Tissue 923 

Liver hepatocyte In vitro differentiated cell 1329 

Liver HepG2 Cell line 505 

Liver hepatocytes_d1 Primary cells 1263 

Liver hepatocytes_d3 Primary cells 1333 

Liver hepatocytes_d6 Primary cells 1139 

Liver HuH-7 Cell line 39 

Liver SMMC-7721 Cell line 742 

Liver liver Tissue 724 

Skin keratinocyte Primary cells 1033 

Skin BJ Cell line 235 

Skin neonatal keratinocytes Primary cells 913 

Skin SK-MEL-5 DMSO 6h Cell line 1142 

Melanoma CJM Cell line 821 
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Melanoma COLO679 Cell line 829 

Melanoma LOX-IMVI Cell line 914 

 

3.1.6 Cancer-associated genes 

I downloaded the Cancer Gene Census set of 736 genes from the COSMIC database 

(Tate et al., 2019) on December 23, 2022. Additionally, I obtained 164 canonical and 313 driver 

tumor immune microenvironment (TIME) genes from  Misetic et al. (2023). 

3.1.7 Chip-seq data of histone modifications 

To develop the 1 Mb gene models, I utilized the raw count data from 98 normal tissues 

obtained from Kübler et al. (2019) which is available only upon request. To summarize the 

counts per topologically-associated domain and genes, I compiled a comprehensive set of 664 

epigenomic ChIP-seq datasets. These datasets were used for chromatin feature selection, 

correlation analyses, and cell-of-origin prediction analyses. The data was sourced from the NIH 

Roadmap Epigenomics Mapping Consortium (Roadmap Epigenomics Consortium et al., 2015) 

and downloaded on January 31, 2021. The NIH Roadmap epigenomics data can be accessed 

through the NCBI Gene Expression Omnibus (GEO) (Barrett et al., 2013) under the accession 

number GSE18927. The ChIP-seq data were mapped and peaks were called on the human 

genome version hg19/GRCh37. I calculated the reads per kilobase per million mapped reads 

(RPKM) for histone modifications including H3K27ac (histone H3 lysine 27 acetylation), 

H3K27me3 (histone H3 lysine 27 trimethylation), H3K36me3 (histone H3 lysine 36 

trimethylation), H3K4me1 (histone H3 lysine 4 monomethylation), H3K4me3 (histone H3 

lysine 4 trimethylation), and H3K9me3 (histone H3 lysine 9 trimethylation), as well as the 

background 'Input' sample to obtain histone modification profiles across genes and 

topologically associated domains. No normalization was needed for summarizing across 1Mb 

genomic regions. 

Only tissues with more than five modifications were included in the development of the 

COO prediction model, resulting in a total of 101 cell types. Certain cell types were grouped 

into histologically related categories as follows: (i) brain group consisting of cells from fetal 

brain, adult brain regions, and neurospheres; (ii) immune cells comprising all cells involved in 

immune response, such as CD4 naive primary, CD4+ CD25+ CD127- Treg primary, and others; 

(iii) bone marrow including chondrocytes and bone marrow-derived stem cells; (iv) 

gastrointestinal mucosa comprising stomach, colonic, rectal, and duodenal mucosa; (v) 
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gastrointestinal muscle including stomach, rectal, duodenal, and colon smooth muscle; (vi) 

muscle including skeletal muscle and muscle satellite cultured cells. 

3.2 Mutational landscape exploratory analysis 

I calculated the number of SNVs, indels, and SV classes per patient within each cancer 

type and cohort, separately for WGS and WXS data. For SNVs, I calculated the number of 

transversions (A>C, A>T, G>C, G>T) and transitions (A>G, G>A) per patient within each 

cancer type and cohort. Indels were further analyzed and separated based on their type; insertion 

or deletion. Pearson's correlation coefficients between SNVs and indels from WGS and WXS 

data of the same patients were calculated. Statistical differences between cancer types, 

sequencing techniques, and cohorts were assessed using a two-sided Wilcoxon test and the 

Kruskal-Wallis test. Additionally, the chi-square test was employed to assess significant 

differences between specific types of indels and SV classes. Correction for multiple hypothesis 

testing was performed using Benjamini-Hochberg correction.  

3.2.1 Mutational signature calling and evaluation 

I calculated the absolute and relative contributions/exposures of mutational signatures 

for single-base substitutions (SBS) from individual patients, separately for breast, liver, and 

skin cancer. I used the 78 COSMIC SBS mutational signatures available in the R package 

Palimpsest(Shinde et al., 2018) and four different mutational signature tools with signature 

refitting methods: MutationalPatterns, signature.tools.lib, Palimpsest, and mutSigExtractor in 

R. For signature.tools.lib and mutSigExtractor, I used the default parameters, with the exception 

of mutSigExtractor, for which I applied strict signature refitting with a default cutoff value of 

0.004. In the case of the Palimpsest tool, I used two functions with their default settings: the 

deconvolution_fit function for signature refitting and the signature_origins function for 

probabilistic assignment of mutational signature origins to mutations using simple Bayesian 

statistics (Letouzé et al., 2017). To evaluate the performance of each tool, I calculated the 

reconstruction error using COSMIC mutational signatures and exposures. The reconstruction 

error measures the quality of mutational profile reconstruction based on the mutational 

signatures identified through the learning process. I calculated the reconstruction error using 

cosine similarity and relative root-mean-square error (RMSE) metrics with the following 

equations: 

  



39 

 

a) Cosine similarity equation: 

𝑠𝑖𝑚(𝐴, 𝐵)  =  𝛼 =  
∑  𝑛

𝑖=1 𝐴𝑖𝐵𝑖

√∑  𝑛
𝑖=1 𝐴𝑖

2√∑  𝑛
𝑖=1 𝐵𝑖

2
   

where A is the original mutational profile vector, B is the reconstructed mutational 

profile vector and 𝑛 is the number of mutation types defined as immediate 5′ and 3′ 

sequence context. 

b) RMSE equation: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑  

𝑛

𝑖=1

(𝐴𝑖 − 𝐵𝑖)2 

where A is the original mutational profile vector, B is the reconstructed mutational 

profile vector and 𝑛 is the number of mutation types defined as immediate 5′ and 3′ 

sequence context. 

The cosine similarity has a value between 0 and 1 because both A and B matrices are 

non-negative. If cosine similarity is 1, then two mutational profiles are identical, and if the 

cosine similarity is close to zero then two profiles are independent. On the other hand, RMSE 

can take any value from 0 to infinity and lower values indicate a better reconstruction. I 

calculated both reconstruction error metrics for the entire cohort of breast, liver, and skin 

cancer, as well as separately for each individual patient using WGS and WXS data. I considered 

the tool with the highest cosine similarity and lowest RMSE as the best-performing one. The 

results from the best-performing tools were visualized as the proportions of each mutational 

signature for aggregated breast, liver, and skin melanoma cancer WGS and WXS profiles. 

Additionally, the proportions of mutational signatures were analyzed for individual patients 

within each cancer type. 

Indel mutational signatures were also calculated using 17 COSMIC indel signatures 

from R package Palimpsest and the signature refitting method using the best tool identified with 

calling SBS mutational signatures. Reconstruction error was calculated as cosine similarity 

between the original and reconstructed indel context.  
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3.2.1.1 Mutational signature calling per genomic feature 

Since existing tools cannot calculate the absolute and relative contributions of 

mutational signatures for specific genomic features, I developed two additional approaches by 

modifying the original input matrix to calculate mutational signatures per 1 Mb genomic 

window, TADs, and genes using all tools. In the first approach, I analyzed individual patients 

one by one, generating a new matrix using the mutational context per genomic feature and 

calculating the mutational signature estimates per feature within each patient. This approach is 

referred to as method A (Figure 5A). In the second approach, referred to as method B (Figure 

5B), I utilized the mutational context for specific features one by one across all patients and 

calculated the mutational signature estimates per patient for each individual feature. Mutational 

signatures were then summarized by genomic features of interest. 

Figure 5. Schematic representation of designed and adjusted mutational calling approaches to determine the 

mutational exposures on certain genomic features 

I selected 2182 1 Mb genomic regions excluding blacklisted regions, as well as all genes 

and topologically associated domains from the HMEC cell line, identified using GMAP at a 50 

kb resolution, to calculate mutational signatures for these features. For Method A, I calculated 

the reconstruction error for each patient and then determined the mean error for each feature by 

averaging the errors within each patient. For Method B, I calculated the reconstruction error for 

each feature and then determined the mean error for each patient by averaging the errors within 

each feature. I compared the reconstruction errors as cosine similarities between the best-

performing tools: mutSigExtractor and Palimpsest (using the origin setting) with those of 
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Methods A and B. Significant differences between the tools were assessed using the Kruskal-

Wallis test.  

3.2.2 De novo structural variants (SV) signatures 

Structural variant (SV) signatures were extracted using non-negative matrix 

factorization (NMF) with the Palimpsest tool for each cancer type separately. The parameters 

of Palimpsest were set to extract the optimal number of signatures using the "brunet" method, 

ranging from 1 to 10 signatures with 20 runs to ensure stability and avoid local minima for all 

SVs. Subsequently, I performed deconvolution with the optimal number of signatures 

determined by the "brunet" method to calculate the absolute number and proportion of each de 

novo SV signature in each patient.  

Given that SV signatures are generally not well annotated or explored across different 

cancer types, I assessed the similarity of the extracted de novo SV signatures to the well-

annotated rearrangement signatures from COSMIC. To facilitate this comparison, I modified 

the SV classification in the Palimpsest tool to include only 32 out of the 38 features present in 

the SV classification provided by COSMIC database. Cosine similarity was then calculated 

between the de novo SV signatures and the annotated signatures from COSMIC, as well as 

among de novo SV signatures across breast, liver, and skin melanoma cancer types. 

To determine the most probable de novo SV signature origin for each structural 

variation, I used the Palimpsest mutational signature origin assignment. For calculating the 

percentages of SV signatures for each patient, I excluded samples with fewer than 10 SVs per 

patient to ensure robustness. 

3.2.3 Kataegis and SV-hotspots 

I identified local hypermutation sites, known as kataegis, by detecting SNVs with inter-

mutational distances of less than 6 base pairs in both WGS and WXS datasets. This was 

achieved using the rainfallPlot function from the R package maftools (Mayakonda et al., 2018) 

on the human reference genome hg19. For each cancer type, I summarized the number of 

kataegis regions per patient and the number of mutations per kataegis region per patient. I 

calculated the proportion of mutation types, specifically transitions and transversions, detected 

in kataegis regions for each cancer type. Additionally, I analyzed the proportions of various 
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mutational signatures assigned to mutations within kataegis regions, which were previously 

identified using the Palimpsest tool with the signature_origins function. 

Structural variant hotspots were called with the SV-HotSpot tool (Eteleeb et al., 2020). 

SV-HotSpot uses a peak calling algorithm to identify regions with elevated frequency of SVs 

referred to as SV hotspots or peaks. It does that by counting samples harboring SVs overlapping 

with sliding windows over each chromosome. Next, peakPick peak calling algorithm is 

employed to detect windows (“peaks”) where counts exhibit a significant increase compared to 

the surrounding windows. I set the default threshold of peaks occurring in at least 10% of SV 

samples to be identified as peaks. Subsequently, SV-HotSpot groups adjacent peaks with 

similar sample counts by applying a peak merging algorithm. First, the peak merging algorithm 

identifies clusters of adjacent peaks where any contiguous peaks are within a 10 kb distance per 

default. Afterwards, the algorithm selects the top peak within a cluster of peaks based on the 

highest sample count and proceeds to merge adjacent peaks upstream and downstream until it 

identifies k peaks displaying a significant change in sample counts compared to the top peak. 

The default parameter delta, set at 5%, is used for this purpose. The whole process is repeated 

until there are no more peaks in the cluster. The final peaks I used for downstream analysis are 

those merged peaks. I ran the SV-Hotpots tool on each separate group of SVs belonging to 

certain de novo identified SV clusters. The results from each individual run were then 

aggregated for downstream analyses. 

3.3 Defining various gene subsets 

I downloaded all human genes version GRCh37 from the Ensembl database using the 

Biomart (Durinck et al., 2005) R package. I consolidated all the gene models to eliminate 

alternative transcripts and establish a comprehensive set of non-overlapping exons for each 

gene. Subsequently, the regions between these exons were identified as introns for each gene. 

I calculated the proportion of SNVs in exons and introns separately for WGS and WXS data. 

For patients containing both types of sequencing data, I calculated Pearson’s correlation 

coefficient between total number of WGS and WXS mutations. Fisher’s exact test or Chi-square 

was used to test the significant difference in the enrichment of mutations between introns and 

exons, as well as between different cohorts, tissue types, and sequencing technologies. 
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3.3.1 Tissue-specific expressed genes in normal tissues 

I determined a list of tissue-specific expressed genes for melanocytes, liver and breast 

cells using two main approaches; (a) predefined and literature-supported Gene Ontology (GO) 

terms that are known to only be active in a specific tissue, (b) applying tissue-specificity metrics 

on normal RNA-seq tissues. For the first approach, I used the R package clusterProfiler (Yu et 

al., 2012) to download relevant GO terms. Specifically, I identified 117 genes involved in 

xenobiotic metabolism (GO:0006805), which are known to be liver-specific. Additionally, I 

selected 14 genes involved in the melanin biosynthetic process (GO:0042438) and 23 genes 

involved in melanocyte differentiation (GO:0030318), both of which are specific to 

melanocytes. Furthermore, I included 28 genes involved in mammary gland development 

(GO:0030879), which are active only in breast tissue. 

For the second approach, I calculated tissue-specificity metrics on the following normal 

RNA-seq tissues: publicly available GTEx RNA-seq (Lonsdale et al., 2013) files from 53 and 

30 normal tissues which were TPM (Transcripts Per Kilobase Million) or RPKM (Reads Per 

Kilobase Million) normalized, respectively; and Fagerberg et al. (2014) dataset which contained 

12 different normal tissues. The calculation was performed the same way in paper by 

Kryuchkova-Mostacci and Robinson-Rechavi (2017). Preprocessing of the RNA-seq data was 

done using the following steps: 

1. All the genes with expression <1 RPKM or TPM were set as not expressed.  

2. The RNA-seq data were log2-transformed.  

3. After the log2 normalization, a mean value from all replicates for each tissue 

separately was calculated.  

4. All genes that were not expressed in at least one tissue were removed. 

After preprocessing the RNA-seq datasets separately, I calculated tissue-specificity metrics 

which are divided in two groups. The first group provides a single number to indicate whether 

a gene is tissue-specific or expressed ubiquitously (Tau, Gini, TSI, Counts, and Hg). In contrast, 

the second group presents information on the gene's specificity for each tissue individually (z-

score, SPM, EE, and PEM). To facilitate comparisons with the first group, I utilize the 

maximum specificity value obtained from the second group the same way as Kryuchkova-

Mostacci and Robinson-Rechavi (2017) did. The mentioned scores were calculated using the 

the following equations: 
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1. Tau index: 

𝜏 =  
∑  𝑛

𝑖=1 (1 − 𝑥𝑖̂)

𝑛 − 1
; 𝑥𝑖̂  =

𝑥𝑖

𝑚𝑎𝑥(𝑥𝑖)
  

2. The EE score: 

𝐸𝐸 =  
𝑥𝑖

∑  𝑛
𝑖=1 𝑥𝑖∗

𝑠𝑖
∑  𝑛

𝑖=1 𝑠𝑖

=  
∑  𝑛

𝑖=1 𝑠𝑖

𝑠𝑖
∗  

𝑥𝑖

∑  𝑛
𝑖=1 𝑥𝑖

 ;  

where si is the summary of the expression of all genes in i 

3. The Gini coefficient: 

𝐺𝑖𝑛𝑖 =  
𝑛+1

𝑛
−  

2 ∑  𝑛
𝑖=1 (𝑛+1−𝑖)𝑥𝑖

𝑛 ∑  𝑛
𝑖=1 𝑥𝑖

 ; 

where xi has to be ordered from least to greatest 

4. Hg scores: 

𝐻𝑔 =  − ∑  

𝑛

𝑖=1

𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖) ; 𝑝𝑖  =  
𝑥𝑖

∑  𝑛
𝑖=1 𝑥𝑖

 

5. The z-score was so only over-expressed genes are defined as tissue-specific which was 

then able to compare z-score with other methods. 

𝑧 =  
𝑥𝑖−𝜇

𝜎
 ; 

where 𝜇 is the mean of gene expression and 𝜎 is the standard deviation 

6. PEM score: 

𝑃𝐸𝑀 =  𝑙𝑜𝑔10 (∑  𝑛
𝑖=1 𝑠𝑖 ∗

𝑥𝑖

∑  𝑛
𝑖=1 𝑥𝑖

)  ;  

where si is the summary of the expression of all genes in i 

 

The output of all calculated scores was modified to the same scale from 0 (ubiquitous) 

to 1 (tissue-specific) to be able to compare them (Table 6). Four of the methods calculate 

specificity value for each tissue separately; for these methods, the largest (most specific) value 

among all tissues was assigned to the gene. 
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Table 6. Tissue specificity parameters. N is the number of tissues in the data set. Taken and adjusted 

from Kryuchkova-Mostacci and Robinson-Rechavi (2017). X = max xi: is the maximal specificity value 

for a certain gene among all tissues. 

Methods Tissues Ubiquitous Specific Transformation 

τ (tau) all 0 1 - 

Gini all 0 (N - 1) / N x * (N / (N - 1)) 

TSI all 0 1 - 

Counts all N 1 (1 - x / N) * (N / (N - 1)) 

EEi separately 0 > 5 X / max X 

Hg all log2N 0 1 - x / log2N 

Z score separately 0 > 3 X / n - 1 / √N 

PEM score separately 0 ~1 X / max X 

SPM separately 0 1 X 

 

To validate the tissue-specificity determined in these datasets, I employed GO terms 

similar to those used by Kryuchkova-Mostacci and Robinson-Rechavi (2017). The GO terms 

were retrieved using the clusterProfiles package and included: spermatogenesis (GO:0007283), 

which is specific to testis and consists of 469 human genes; neurological system process 

(GO:0050877), specific to brain and neural tissues, including 1,338 genes; xenobiotic metabolic 

process (GO:0006805), specific to liver and kidney, with 163 genes; protein folding 

(GO:0006457), expected to be ubiquitous and involving 231 genes; membrane organization 

(GO:0061024), also ubiquitous, encompassing 607 genes; RNA splicing (GO:0008380), 

another ubiquitous process involving 383 genes; and additional melanin-producing genes 

(GO:0042438). These GO terms were used to assess and confirm the specificity of gene 

expression across corresponding tissues, thus ensuring the accuracy of the tissue-specific gene 

identification. 

Afterward, I applied a more rigorous approach for assigning genes to multiple tissues 

for specific expression using extended Tau defined by Lüleci and Yılmaz (2022). The extended 

Tau method refines the traditional Tau score, which measures tissue specificity by normalizing 

gene expression levels. The Tau score was calculated using normalized gene expression values 

across tissues. The extended method integrates this score with a statistically significant distance 

from the maximum expression value, determined through the standard deviation of non-zero 

expression values and an optimized Z-value threshold. This statistical distance was calculated 



46 

 

as the maximum expression value minus the product of the standard deviation and the Z-value 

shown by the following formula: 

distss=xmax−σ×zval 

 where xmax is the maximum expression value of a gene among all tissues, σ is the 

standard deviation of non-zero expression of a gene among all tissues and zval is optimized 

threshold as Z-value. This integration allows for a more accurate assignment of genes to 

multiple tissues by considering both the specificity and the statistical robustness of the 

expression data shown on schematic representation on Figure 6.  

 

 

Figure 6. Schematic representation of how extended Tau score is used to determine tissue specific genes. Taken 

from Lüleci and Yılmaz (2022). 

 

To further validate the obtained tissue-specific genes, I examined well-annotated liver-

specific alpha-fetoprotein (AFP) and kidney-specific D-amino acid oxidase (DAO) in the 

obtained results. Genes found to be specifically expressed in breast, liver, and skin tissues 

across multiple datasets were used to define subsets of tissue-specific genes corresponding to 

each cancer tissue type. The overlap of the final defined tissue-specific gene sets for each cancer 

type was visualized using Upset plot. 

3.3.2 Most mutated genes 

To identify the genes with the highest mutation frequency, I defined them as those 

mutated in the majority of individual samples. I ranked these genes based on the number of 

samples in which mutations were detected and selected a specific percentage of the top-ranked 

genes. Various percentages were considered, such as 5%, 10%, 20%, 30%, 40%, and 50%, to 

identify the most frequently mutated genes. This selection process was performed for both all 

genes and exclusively protein-coding genes in breast, liver, and skin cancer types, as well as 

for each individual cohort. I then overlapped the top 40% of the most mutated genes found in 
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each cancer type and identified the unique intersection of all three. For downstream analysis, I 

characterized all percentages of the top mutated genes found in each cancer type, cohort, and 

the overlapping intersection of the top 40% most mutated genes. Initially, I examined the 

biological pathways they were predominantly enriched for. I conducted an over-representation 

analysis of biological processes (BP) from Gene Ontology (GO) terms using the clusterProfiler 

R package. To reduce redundancy of enriched GO terms, I used the simplify function with the 

following settings: cutoff = 0.4, by = "qvalue", and select_fun = "min". Pairwise similarities of 

the reduced enriched GO terms were calculated using Jaccard’s similarity index (JC) within the 

pairwise_termsim function, and the terms were hierarchically clustered with Ward's method 

using the treeplot function. Additionally, I analyzed the expression of overlapping top 40% 

protein-coding genes from all three cancers in normal tissues using GTEx TPM normalized data 

of 30 tissues and performed unsupervised hierarchical clustering with Euclidean distance of the 

top mutated genes. 

3.4 Correlation analysis of mutations and chromatin features over 

genetic features 

I counted the number of mutations in each genomic feature (gene, 1Mb region, TADs) 

using a custom R script. All counts were normalized to the feature length. As for histone 

modifications, I calculated RPKM for genes, 1 Mb regions and TADs using the following 

equations: 

𝑅𝑃𝐾𝑀 =
𝐶

𝑵∗𝑳
∗ 109;  

where C is the number of reads that map to a particular genomic feature (gene, 1 Mb region or 

TAD), N is the total number of mapped reads in the sample (in millions) and L is the length of 

the genomic feature in kilobases. 

The correlation between various log normalized mutational profiles on genomic feature 

and all histone modifications of normal tissues were calculated using Spearman’s rank 

correlation coefficient in all downstream analysis using the following equation: 

𝜌 = 1 −
6 ∑    𝑑𝑖

2

𝑛(𝑛2 − 1)
; 

where 𝑑𝑖
  is the difference between the two ranks of each observation and 𝑛 is the number of 

observations. 
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3.5 Machine learning methods for development of cell-of-origin 

model 

I developed a model for predicting the cell-of-origin (COO) using mutational profiles 

and histone modifications of normal tissues across various genomic features: 1 Mb regions, 

TADs and genes. The COO model utilized 10-fold cross-validation to predict the mutational 

density profiles in various genomic features using chromatin profiles on aggregate mutational 

profiles per cancer type and per cohort and individual mutational profiles of patients. Mutation 

counts were normalized to feature length and log transformed alongside histone normalized 

values (RPKM) prior to modeling. I trained all distinct models for each mutation density profile, 

utilizing the chromatin profiles specific to tissue types. The model demonstrating the highest 

variability signifies the COO for a specific cancer type. The general predictive performance of 

each model was assessed by calculating the average R2 value, which measures the similarity 

between predicted and observed profiles, across ten sets of windows. The modeling process is 

shown in Figure 7. I applied all of the different models using various genomic features to each 

individual sample and determined the proportion of individual patients where the best-matching 

model matched the presumed cell-of-origin of each cancer type.  

 

Figure 7. Schematic representation of cell-of-origin (COO) model across various features. The response variable 

comprises aggregated mutation profiles from all patients within each cancer type, or the mutational profiles of 

individual patients. The predictor variables are RPKM values of histone modifications for specific genomic 

features within the normal tissue epigenome. This model leverages the correlation between the cancer mutational 

landscape and normal tissue epigenetic marks to predict the tissue of origin 

To begin with the modeling process, I designed a preliminary model using multiple 

linear regression to identify the subsets of various genomic features affected by different 
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genomic features, such as mutational signatures, kategis and others, for which model 

performance is the best. Additionally, for gene-based COO models, I developed three model 

settings scenarios: (a) coding sequence (CDS) model setting where the mutational counts were 

summed and normalized by CDS, (b) Gene model where I considered only exonic mutations 

and normalized by gene length, (c) Gene model with both exonic and intronic mutations 

normalized by gene length. By doing so, I tested for possible biases in prediction accuracies of 

gene-based models that depend on the intronic and exonic regions. 

The best model performance was assessed based on the COO model's result of 

aggregated profiles and proportion of individual patients with correctly identified COO. For 

each genomic feature in the preliminary COO model, I calculated a standardized residual to 

identify outliers. Standardized residual was calculated as follows:  

𝑟𝑖 =  
𝑒𝑖

𝑠(𝑒𝑖)
 =

𝑒𝑖

𝑅𝑆𝐸√1 − ℎ𝑖𝑖

 ; 

where: 𝑒𝑖 is the ith residual, 𝑅𝑆𝐸 is the residual standard error of the model, ℎ𝑖𝑖 is the leverage 

of the ith observation.  

Outliers with standardized residual below -2 were annotated as over-predicted, while 

those with standardized residual above 2 were annotated under-predicted. Annotated outliers 

from breast, liver and skin cancer were overlapped using the UpsetR package. Identified outliers 

were tested for enrichment of different genomic features such as enriched regions or genes with 

kataegis and SV hotspots using Fisher’s exact or Chi-square test depending if the expected 

observations were all above 5. Significantly enriched outliers were then removed from the 

original model to see if the model's performance would improve. Also, I assessed the 

enrichment of outliers with genes from Cancer Gene Census, TIME and tissue-specific super-

enhancer from both normal and tumorigenic tissue/cell-line from SEdb2.0. Over-representation 

analysis (ORA) of Gene Ontology (GO) terms, hallmarks of cancer and disease-association 

database (DisGeNET) (Piñero et al., 2017) was also used to characterize the outliers to identify 

pathways more associated with each specific group of outliers in its cancer type. As well I 

examined the expression of all and tissue-specific genes from GTEx TPM 30 database of 

appropriate tissues in each outlier group. Wilcoxon-test with Benjamini-Hochberg correction 

was used to test if there is a significant difference in expression of those genes between 

annotated outliers. As for SBS mutational signatures, I calculated Pearson’s correlation of the 

number of each signature per outlier and absolute value of standardized residual referred to as 
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erroneous prediction rate. Calculated correlations were compared to the baseline Pearson’s 

correlation of all mutations and standardized residual. For TADs and genes, I calculated the 

overlap with of annotated TADs by Akdemir et al. 2020. based on active and inactive state 

(heterochromatin, low, low-active and repressed). 

 For each affected region with SV-hotspots and/or kataegis, as well as annotated outliers, 

I calculated the Spearman’s correlation of number of mutations to all histone marks from the 

expected or correct normal cell-of-origin tissue for each cancer type. Moreover, I did the same 

correlation analysis of normal epigenomes with SBS mutational signatures which were most 

abundant in cancer features, top 5, or were identified to have higher positive correlations with 

erroneous prediction rate. 

Once I established a multiple linear regression model with the highest performance for 

genomic regions, genes and TADs separately for each cancer type, I applied random forest and 

extreme boosting machine learning methods with 10 cross-validation to see if the model's 

performance would significantly improve with the same features. Random forest model was 

done using 500 trees from ranger package (Wright & Ziegler, 2017), while extreme boosting 

was done with parameter settings/hypertuning of nrounds=200, max_depth=2, eta = 0.01, 

gamma = 0.01, colsample_bytree = 0.75, min_child_weight = 0, subsample = 0.9 using 

xgbTree. All of the machine learning methods were called with caret package (Kuhn, 2008) in 

R.  

Afterwards, I took the best COO model based on the accuracy of prediction on 

aggregated and individual patients to assess how different patients’ genomic features, such as 

number of mutations, explained variance by the used COO model, number of kataegis and SV-

hotspots per patient, affect the model. Moreover, I examined how patient characteristics, listed 

in chapter 3.1.2 Characteristics of individual patients, affect the predictions by examining the 

correctly and incorrectly identified COO patients and their features. 

3.6 Variant calling pipeline from RNA-seq 

3.6.1 Datasets 

I have downloaded the restricted access STAR-2 passed BAM file aligned to hg38 for 

69 samples from only melanoma tumor skin in TCGA datasets. From Gene Expression 

Omnibus (GEO), I downloaded and analyzed 12 hepatocellular carcinoma patients with their 
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non-adjacent normal tissue from GSE105130 and 8 breast cancer tissue alongside normal tissue 

from GSE229571. Only downloaded data from GEO had both tumor and normal tissue samples.  

3.6.1 Pipeline for calling RNA-seq mutations 

The GEO dataset quality was assessed using the FASTQ tool (v0.11.5) (Van der Auwera 

et al., 2013). Afterwards the reads were trimmed and filtered using the Trimmomatic tool 

(v0.32) (Bolger et al., 2014) with following parameters: Seq_adapters.fasta:2:30:10 

SLIDINGWINDOW:5:10 MINLEN:60 HEADCROP:5. I aligned the trimmed reads to hg38 

using a two-STAR pass mapper (v2.7.3) (Dobin et al., 2012). Sambamba tool (v0.6.1) was used 

to sort and index the BAM output.  

 Downloaded TCGA BAM files needed to be filtered to keep only autosomal and sex 

chromosomes which was done using custom bash scripts using GATK tool BedToIntervalList. 

Afterwards, I used the standard GATK pipeline (v4.3.0.0) to prepare the alignments for calling 

the mutations from both TCAG BAM and GEO generated BAM files. Duplicates were marked 

with Picard tool MarkDuplicates. I added read group information to each sample using Picard 

AddOrReplaceReadGroups, afterward the bam file was reindexed using Picard 

BuildBamIndex. For handling splicing events in RNA-seq data, I used GATK 

SplitNCigarReads. Final readjusting of scores and quality processes were done using 

BaseRecalibrator and ApplyBQSR from the GATK pipeline.  

 For TCGA skin melanoma RNA-seq, I used only Mutect2 tool that was a part of GATK 

tool v4.3.0.0 tumor only mode to call somatic mutation since normal tissues were not available. 

Breast and liver sample mutations were called using Varscan (v2.4.6), Strelka2 (v2.9.10) and 

Mutect2 tools. Mutect2 analysis included the use of The Panel of Normals (PoN) 

(1000g_pon.hg38.vcf.gz) and germline resources (af-only-gnomad.hg38.vcf.gz) following 

GATK Best Practices to keep somatic tumor mutations. For breast and liver samples, I only 

kept the mutations which were detected by at least two used tools for downstream analysis. 

Afterwards, the filtered SNVs were converted to hg19 using the R package liftOver (v1.26.0). 

Additional filtering of obtained variants was done by removing RNA editing sites listed in the 

DARNED (Kiran & Baranov, 2010) and RADAR (Ramaswami & Li, 2014) databases using 

custom script in R.  

3.6.2 Comparison with WGS and WXS data 

For RNA-seq-derived mutations across all cancer types, I compared the mutation 

profiles, including the abundance of mutations, transversions, and transitions, to those obtained 
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from WGS and WXS. To evaluate the correlation between SNV counts detected by different 

technologies, I computed the differences in the number of mutations per patient across these 

technologies. Significant differences were assessed using the Wilcoxon test, with the 

Benjamini-Hochberg correction applied to account for multiple testing. Additionally, I 

analyzed patients with both WXS and RNA-seq mutation data for skin melanoma by calculating 

Pearson's correlation coefficients to examine the relationship between the SNV counts detected 

by each technology. The total number of transversions and transitions was calculated for each 

cancer type based on the mutations detected by the different NGS technologies. The differences 

in mutation types across technologies were evaluated using the Chi-square test. 

I further analyzed the top N% of frequently mutated genes in the RNA-seq cancer 

mutational profiles. Due to the limited number of patients in the liver and breast cancer cohorts, 

I included all genes that were mutated in more than 50% of patients in these analyses. These 

genes were evaluated for their annotation in the Cancer Gene Census and Tumor Immune 

Microenvironment gene lists, as well as their presence among the top N% of mutated genes 

identified from WGS, and their association with super-enhancers. For skin melanoma, I 

identified the top 5%, 10%, 20%, 30%, 40%, and 50% most frequently mutated genes. I focused 

on the top 10% most mutated genes, conducting an over-representation analysis of Gene 

Ontology terms to determine the pathways in which these genes are involved. Additionally, I 

analyzed the overlap of the top 10% most mutated genes between RNA-seq and WGS to 

identify commonalities in the mutational landscapes captured by these technologies. 

I investigated the types of genes most frequently affected by mutations identified 

through RNA-seq, comparing these findings with those derived from whole-genome WGS and 

WXS technologies. Additionally, I analyzed the enrichment of these mutations within intronic 

and exonic regions of the affected genes. 

3.6.3 Cell-of-origin prediction of RNA-seq data 

I used the most robust models developed from genome-wide mutational profiles to 

predict the COO for RNA-seq identified single-nucleotide variants, both at the level of 

aggregated profiles and for individual patients using Gene based (intron + exon) and CDS based 

normalizations. The gene subgroups employed for these RNA-seq predictions were consistent 

with those used in the WGS and WXS gene-based COO models. For the top N% of frequently 

mutated gene groups, I selected the genes identified from the WGS datasets to ensure 

comparability and accuracy in the analysis. 
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4 Results 

4.1 Mutational landscape obtained by whole-genome and whole-

exome sequencing  

In this chapter, I analyzed the general characteristics of the mutational landscape in 

patients with breast, liver, and skin cancers. I investigated the overall distributions of SNVs, 

indels, and SVs per patient across independent cohorts and combined for each cancer type. 

Utilizing mutational signature software in R, I identified mutational signatures for single-base 

substitutions in individual patients and various smaller genomic features, including 1 Mb 

genomic windows, topologically associated domains and genes. Kataegis regions, clusters of 

hypermutations, were annotated based on SNV profiles and characterized according to their 

associated mutational signatures. Structural variants were also annotated by their mutational 

signatures, and specific SV-hotspots were identified and analyzed for their contribution to the 

overall mutational landscape. 

4.1.1 Characterization of single-nucleotide variants (SNVs) 

I characterized the breast, liver, and skin cancer cohorts by analyzing their SNV counts. 

Table 7 provides a summary of the total number of mutations detected for each cancer type. 

WGS data revealed that skin cancer exhibited the highest number of SNVs, approximately 30 

million, while liver cancer had around 6 million SNVs, and breast cancer showed the lowest 

count with 4 million SNVs. In contrast, WXS data indicated that liver cancer had the highest 

number of SNVs among the three cancer types. Notably, the SNVs detected through WXS 

comprised only about 4.4% of those detected by WGS. This discrepancy highlights the more 

comprehensive mutational landscape captured by WGS compared to WXS, which is limited to 

coding regions. 
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Table 7. Total number of SNVs detected in whole-genome (WGS) and whole-exome (WXS) sequencing 

for breast, liver and skin cancer 

Cancer type Sequencing technology Total number of SNVs 

Breast 
WGS 4585045 

WXS 324882 

Liver 
WGS 6514226  

WXS 993646 

Skin 
WGS 30590540 

WXS 542854 

 

The highest number of single-nucleotide variants per patient, as detected by whole-

genome sequencing, was observed in skin cancer, with a mean of 95,595 and a standard 

deviation of 159,113. This was followed by liver cancer, which had a mean of 12,798 SNVs 

and a standard deviation of 29,389, and breast cancer, which had the lowest mean SNV count 

of 5,901 with a standard deviation of 9,358. Notably, cohorts from the TCGA, including BRCA-

US, LIHC-US, and SKCM-US, exhibited significantly lower SNV counts per patient compared 

to other cohorts (Figure 8). 

Intra-cancer type analysis revealed significant differences in SNV counts across cohorts 

for each sequencing technology. However, these differences were least pronounced in breast 

cancer WXS cohorts (Kruskal-Wallis test, p=0.044). All comparisons between individual 

cohorts within each sequencing technology demonstrated statistically significant differences for 

both WGS and WXS data (p-value < 0.05, two-sided Wilcoxon test, Benjamini-Hochberg 

correction for multiple hypothesis testing).   

The SNV counts per patient obtained through WXS were significantly lower than those 

obtained via WGS, with the exception of TCGA cohort SKCM-US (p-value=0.316, Wilcoxon 

test). Pearson’s correlation coefficients between WGS and WXS data from the same patients 

were significantly positive across all cancer types, indicating a strong concordance: 0.987 (p-

value=1.6*10-67) for liver cancer, 0.997 (p-value=1.3*10-118) for breast cancer, and 0.907 (p-

value=9.7*10-15) for skin cancer. 
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Figure 8. Distribution of single-nucleotide variants (SNVs) per patient across independent breast, liver and skin 

cancer cohorts obtained by whole-genome (WGS) or whole-exome sequencing (WXS). Plot shows log10 

transformed values of mutations. Box plots show the median value, interquartile range as a box, and the whiskers 

extend to IQR±1.5*IQR. 

The analysis of transversions (Tv) and transitions (Ti) per patient revealed consistent 

trends across different cancer types, with skin cancer exhibiting the highest counts for both 

types of mutations (Figure 9A). This trend was particularly evident in C>T and G>A 

transversions, where skin cancer displayed significantly higher mutation counts than other 

cancer types, as observed in both WGS (Kruskal-Wallis test, p-value = 1.9*10-163) and WXS 

data (Kruskal-Wallis test, p-value = 7.4*10-313). Overall, breast cancer showed the lowest 

number of transitions and transversions per patient among the analyzed cancer types, while skin 

cancer had the highest (Figure 9B). Transitions were more abundant than transversions across 

all cancer types and sequencing technologies, reflecting a common mutational pattern in cancer 

genomes. 

Further examination of cohort-specific differences within each cancer type revealed that 

cohorts associated with TCGA and those analyzed using WXS demonstrated significantly lower 

counts of transitions and transversions (Supplementary Figure 1). This reduction aligns with 

the overall smaller number of SNVs observed in these cohorts. 
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Figure 9. A) Distribution of various transversions (Tv) and transitions (Ti) in aggregated mutational profiles 

breast, liver and skin cancer types. B) Distribution of aggregated Tv and Ti. Plots show log10 transformed values 

of mutations. Box plots show the median value, interquartile range as a box, and the whiskers extend to 

IQR±1.5*IQR. 

4.1.1.1 Single-base substitution mutational signatures 

To determine mutational signatures in the samples, I used four different tools 

implemented in R: signature.tools.lib, Palimpsest, mutSigExtractor, and MutationalPatterns. 

The reconstruction error, calculated as cosine similarity per cancer type, indicated that all the 

tools exhibited high cosine similarity values above 0.985, suggesting low reconstruction error 

(Figure 10A). Among the different cancer types, breast cancer data obtained with WGS 

displayed the lowest cosine similarity in most tools, while the highest similarity was observed 

in WXS data for breast cancer across all tools. 

Liver and skin cancer data obtained via WXS exhibited lower cosine similarities 

compared to breast cancer, but the values remained relatively high, all above 0.92. Overall, the 

cosine similarity was notably higher in WGS-generated data than in WXS data, with all WGS 

values well above 0.985 when examining the calculated score per cohort. The tool with the 

poorest performance was Palimpsest, particularly its signature refitting method and 
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probabilistic assignment of mutational signature origins (Palimpsest_origin), where breast 

cancer showed the greatest increase in reconstruction error. 

Upon examining the distribution of calculated cosine similarities for each individual 

patient, I found that WGS data consistently had better scores compared to WXS data (Figure 

10B), with median values closer to 1. Once again, Palimpsest demonstrated the worst 

reconstruction error, with the lowest median and a standard deviation of 0.99152 ± 0.00562 for 

the default settings, and 0.99165 ± 0.00312 for the Palimpsest origin setting. On the other hand, 

mutSigExtractor displayed higher cosine similarity than MutationalPatterns and 

signature.tools.lib, particularly with stricter refitting criteria. 

 

Figure 10. A) Comparison of tools for calling mutational signatures (signature.tools.lib, Palimpsest origin and 

signature refitting, mutSigExtractor, MutationalPatterns) based on reconstruction error calculated as cosine 

similarity separated by cancer type. B) Distribution of cosine similarity per individual patient of 5 different 

mutation calling tools separated by WGS and WXS data shown as a density function. 
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The root mean square error (RMSE) as an additional reconstruction error metric 

confirmed similar findings as cosine similarity, where Palimpsest was the worst performer with 

a mean and standard deviation of 154 ± 496. In contrast, mutSigExtractor emerged as the best-

performing mutational signature calling tool, with an RMSE of 55 ± 225. These results highlight 

the superior performance of WGS data in capturing accurate mutational signatures and 

underscore the variability in the effectiveness of different tools, with mutSigExtractor 

demonstrating particularly robust performance. 

Since the mutSigExtractor tool showed the best performance calling the mutational 

signatures, I conducted all of the downstream analysis describing the mutational signature 

compositions of each cancer type using this tool. For breast cancer, the most prevalent 

mutational signatures identified in both WGS and WXS data were SBS13 and SBS2 (Figure 

11A), contributing approximately 30% and 36% of the total mutations, respectively. In skin 

melanoma, more than 88% of mutations in WGS data were attributed to well-annotated UV-

induced signatures, SBS7a-d, with SBS7a alone dominating the mutational landscape at around 

64%. Even though the WXS data for skin melanoma showed a reduction in the detection of 

these signatures compared to WGS data, UV signatures still constituted over 57% of the 

mutational profile. 

For liver cancer, the WGS data revealed a diverse mutational landscape where 

signatures SBS12, SBS40, SBS23, SBS93, SBS8, SBS16, and SBS24 collectively comprised 

approximately 52% of the mutational signatures. In contrast, SBS29 was the most predominant 

in liver WXS data, accounting for about 50% of the mutations. Notably, liver WXS data 

exhibited the most significantly different mutational profile compared to liver WGS data when 

compared to the differences observed in breast and skin cancer datasets (Chi-square test, p-

value < 0.05). 

When analyzing the proportions of mutational signatures in each cancer type on a per-

patient basis, I observed that patients with a higher mutational burden had an increased number 

and percentage of specific mutational signatures (Supplementary Figure 2A-F). In breast 

cancer, both WGS and WXS data showed that higher mutation counts were associated with 

increased proportions of SBS2 and SBS13. For liver cancer, SBS29 was notably more prevalent 

in WXS data, while SBS12 was dominant in WGS data. Skin melanoma patients, regardless of 

sequencing technology, exhibited higher proportions of UV-induced signatures SBS7a and 

SBS7b. 
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 Breast cancer patients had higher proportions of the age-related mutational signature 

SBS1 compared to liver or skin cancer patients (Figure 11B). Additionally, SBS2 and SBS13 

were significantly more prevalent in breast cancer patients, as determined by post-hoc Dunn’s 

test with Benjamini-Hochberg corrected p-values below 0.05. In skin melanoma, the majority 

of patients had very high proportions of SBS7a and SBS7b, consistent with the predominant 

UV-signature mutation patterns typically associated with this cancer type. 

 

Figure 11. A) Proportion of mutational signature determined with mutSigExtractor tool for breast, liver and skin 

cancer types separated by WGS and WXS data. Gray colors indicate signatures whose contribution to a particular 

cancer type was below 4000 mutations. B) Distribution of percentage of mutational signatures per individual 

patient. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 
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4.1.1.2 Evaluation of calling mutational signatures per genomic feature 

Mutational signature calling software generally estimates the number of mutations per 

patient but often does not attribute specific mutations to distinct mutational signatures. An 

exception to this is the Palimpsest tool in its special setting mode, which attempts to assign a 

mutational signature to individual mutations. Although the Palimpsest origin setting exhibited 

a lower cosine similarity compared to other tools, the values were still notably high, exceeding 

0.9, which suggests an adequate refitting of the mutational signatures. Despite this, I modified 

the mutSigExtractor tool, which demonstrated superior performance relative to the Palimpsest 

origin setting, to call mutations within smaller genomic regions to better capture mutational 

profiles on a finer scale. The modifications to mutSigExtractor were designed to enable 

mutational signature calling in two distinct ways: A) Calling mutations using the mutational 

profile of one patient whose profile was split into genomic features: 1 Mb genomic region, gene 

or TADs. B) Taking a mutational profile of all patients per cancer type and calculating the 

mutational signatures for each genomic feature separately.  

Both modified approaches, calling mutational signatures using mutSigExtractor per 

specific genomic feature, resulted in significantly lower cosine similarity compared to the 

original mutSigExtractor calls and the Palimpsest origin setting (Figure 12). This indicates a 

higher reconstruction error when analyzing smaller genomic segments. Notably, calling 

signatures by genes yielded the lowest cosine similarity, suggesting it had the poorest 

reconstruction accuracy of all methods tested. In contrast, the 1 Mb regions and TADs showed 

more comparable reconstruction errors to the gene method setting, highlighting some 

consistency in their performance. 

Additionally, methods A and B showed similar performance within each genomic 

feature, as evidenced by Wilcoxon test p-values of 0.17, 0.46, and 0.89 for 1 Mb regions, TADs, 

and genes respectively, when assessing aggregated cancer cosine similarity per genomic 

feature.  

For subsequent analyses, I chose to utilize the mutational signatures assigned to 

individual mutations determined by the Palimpsest origin setting for quantifying signatures 

within specific genomic features. Despite its higher reconstruction error compared to calling 

signatures per genomic feature directly, the Palimpsest origin setting still provided a more 

accurate assignment of signatures to specific mutations, thereby offering a better framework for 

detailed mutational analysis in downstream analysis. 
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Figure 12. Distribution of reconstruction error, cosine similarity, per each patient colored by each mutation 

signature calling method for breast, liver and skin cancer. Method A involves mutation calling by utilizing the 

mutational profile of a single patient, which was divided into specific genomic features. Method B involves calling 

the mutational signatures for each genomic feature individually. Patients’ reconstruction error was calculated as 

the median of all errors per genomic feature. One-sided Wilcoxon test to cosine similarity of mutSigExtractor tools 

results as reference. Box plots show the median value, interquartile range as a box, and the whiskers extend to 

IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 

0.0001 

4.1.1.3 Kataegis 

I identified kataegis regions, which are characterized by clusters of SNVs where the 

intra-mutational distance is less than 6 bp, in both WGS and wWXS datasets. Skin melanoma 

exhibited the highest number of detected kataegis regions per patient in both WGS and WXS 

data (Figure 13A), followed by liver cancer in WGS data. The maximum number of detected 

kataegis regions in a single patient was 21,454 in skin melanoma WGS, 3,187 in liver cancer 

WGS, and 191 in breast cancer WGS. In the WXS datasets, the highest counts were 207 for 

skin melanoma, 133 for liver cancer, and 181 for breast cancer. The median number of detected 

kataegis regions per patient was consistently around 7-8 across all cancer types and sequencing 

technologies. Notably, kataegis regions with a higher number of mutations, identified as outliers 

in Figure 13A, were more prevalent in skin melanoma compared to liver and breast cancers. 

Overall, in WGS and WXS datasets, skin melanoma had a total of 226,774 and 311 kataegis 

regions respectively, liver cancer had 3,898 and 1,243, and breast cancer had 3,430 and 343. 

Kataegis regions were predominantly located on autosomal chromosomes (Figure 13B). The 
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correlation between chromosome length and the number of kataegis regions was found to be 

significantly positive in liver and skin cancer WGS datasets, with Pearson's correlation 

coefficients of approximately 0.80 and p-values less than 0.05. In breast cancer WGS data, the 

correlation was also positive with a coefficient of approximately 0.42 and a p-value of 0.054. 

In contrast, the correlations in WXS data were lower, ranging from approximately 0.32 to 0.48, 

all with p-values less than 0.05. No kataegis regions were identified on the Y chromosome in 

the WGS and WXS datasets for breast cancer, as is expected, nor in the WXS dataset for skin 

melanoma, indicating a lack of such mutational clusters on this chromosome in these specific 

datasets. 

 

Figure 13. A) Number of kataegis per patient (left panel) alongside the number of kataegis mutations per patient 

(right panel) per cancer type separated by sequencing technologies (WGS, WXS) B) Number of kataegis regions 

per chromosome per cancer type. Box plots show the median value, interquartile range as a box, and the whiskers 

extend to IQR±1.5*IQR. 

Further characterization of the identified kataegis regions revealed that the majority of 

mutations within these regions were C>T transitions across all three cancer types. Notably, 

more than 75% of kataegis regions in liver and skin cancers exhibited C>T transitions, 
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highlighting a prominent mutational pattern in these cancers (Figure 14A). In contrast, breast 

cancer showed a relatively higher proportion of C>G transitions compared to liver and skin 

cancers in both WGS and WXS data. When examining the mutational signatures assigned to 

mutations within kataegis regions (Figure 14B), I observed that in breast cancer, a significant 

proportion, approximately 70% of all mutations were attributed to mutational signatures SBS2, 

SBS13, and SBS40. In skin cancer, the kataegis regions were predominantly characterized by 

mutational signature SBS7a, accounting for 50-60% of the mutations in both WGS and WXS 

data.  

 

Figure 14. A) Proportion of mutation types within kataegis regions across various cancer types (breast, liver, and 

skin cancer), differentiated by sequencing technologies (whole-genome sequencing, WGS, and whole-exome 

sequencing, WXS). B) Distribution of mutational signatures within kataegis regions, classified by their single-base 

substitution (SBS) origins as assigned by the Palimpsest tool, for each cancer type and sequencing technology 

used. 

In liver cancer, the kataegis regions exhibited a different profile depending on the 

sequencing technology. For WXS data, the most prevalent mutational signature was SBS29, 

comprising about 29% of the mutations, along with a diverse array of other signatures, each 
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contributing no more than 4,000 mutations and collectively representing approximately 57% of 

the kataegis mutations. In contrast, the WGS data for liver cancer revealed a dominance of 

mutational signatures SBS40 (~50%), SBS12 (~10%), SBS92 (~10%), and SBS8 (~8%). 

Interestingly, the liver-specific signature SBS16 was also present in the WGS kataegis regions, 

although it constituted a relatively small proportion, approximately 2%. 

4.1.2 Characterization of indels 

I evaluated the different indel type counts in breast, liver, and skin cancer groups to 

characterize the mutational landscape of these cancer types. Table 8 provides a comprehensive 

overview of the total indels identified in each cancer category. Skin cancer exhibited the highest 

number of indels, with approximately 521,000 events, followed by liver cancer with around 

477,000, and breast cancer with the lowest count at 398,000. In terms of WXS, liver cancer 

demonstrates the highest indels count among the three tumor types. Moreover, only about ~1% 

on average of whole-genome sequencing indels are accounted for by whole-exome sequencing 

indels when taking all of the cancer types into account. In both sequencing technologies of 

analyzed cancers the deletions made up more than ~55% of total indels except in skin melanoma 

WXS where only insertions were detected. The highest difference between identified indel 

types was between WGS and WXS of breast cancer where deletions in breast made up more 

than ~74% while in WXS are only around ~55% (Chi-square test, p-value=3.8*10-154). 

Table 8. Total number of indels detected in whole-genome (WGS) and whole-exome (WXS) sequencing 

for breast, liver and skin cancer. Chi-square test with Benjamini-Hoechberg corrected p-values to test 

difference between WGC and WGS indel types 

Cancer 

type 

Sequencing 

technology 

Total 

number of 

indels 

Total number and 

proportion of 

insertions 

Total number 

and proportion of 

deletions 

Chi-square 

test 

Breast WGS 396569 102206 (25.8%) 294363 (74.2%) 3.8*10-154  

WXS 4004 1771 (44.2%) 2233 (55.8%) 

Liver WGS 477251 144709 (30.3%) 332542 (69.7%) 1.6*10-07 

WXS 8880 2922 (32.9%)  5958 (67.1%) 

Skin WGS 521243 218177 (41.9%) 303066 (58.1%) 1.1*10-153 

WXS 505 505 (100%) 0 (0%) 
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Not all patients had detected indels across all cancer types. In breast cancer there were 

9.3% (72/777, CI 0.07-0.12) WGS and 48.1% (568/1182, CI 0.45-0.51) WXS patients missing 

indels mutations. On the other hand, in skin melanoma there were 10.6% (34/320, CI 0.08-0.14) 

for WGS and 40.8% (190/466, CI 0.36-0.45) for WXS patients. Lastly, missing patients with 

indels in liver cancer were 4.7% (24/509, CI 0.03-0.07) for WGS and 21.2% (271/1281, CI 

0.19-0.23) for WXS.  

Out of the patients whose indels I had analyzed, I detected the highest number of indels 

per patient sequencing with WGS was in skin cancer with a mean and standard deviation of 

1823 + 2394, followed by liver cancer with 984 + 6120 and breast cancer with 563 + 6120. 

Similar to the analysis of SNVs, the TCGA cohorts (BRCA-US, LIHC-US, SKCM-US) have 

significantly fewer indels per patient compared to other cohorts especially in WGS data (Figure 

15). Once again, I observed a similar trend as SNV where there was substantial variance 

between cohorts of the same cancer type within each cancer type and sequencing technology. 

Again, the smallest difference was detected in breast WXS cohorts (Kruskal-Wallis test, 

p=8.8e-18). There were a lot of patients with very small numbers of indels. Breast and skin 

WXS data had more than 94% (580/614, CI 0.92-0.96) and 98% (271/276, CI 0.96-0.99) 

patients with less than 5 indels. While in WGS data all the proportions were below ~8% for all 

cancer types. Pearson’s correlations of WGS and WXS from the same patients was significantly 

positive in all cancer types, although not significant in skin melanoma; 0.850 (p-value=5.4*10-

21), 0.81 (p-value=1.8*10-16) and 0.100 (p-value=0.66) for breast, liver, and skin cancer 

respectively. When examining the indel type, I identified that deletions were more prevalent 

than insertions in all cohorts (Supplementary Figure 3). Also, the TCGA WXS cohorts had only 

detected insertions. 
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Figure 15. Distribution of indels per patient across independent breast, liver and skin cancer cohorts obtained by 

whole-genome (WGS) or whole-exome sequencing (WXS). Plot shows log10 transformed values of mutations. Box 

plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

4.1.2.1 Indel mutational signatures 

Indel mutational signatures were determined with the mutSigExtractor tool that had the 

best reconstruction error of cosine similarity 0.99. In total there were 17 analyzed indel 

mutational signatures from which ID2, ~47 and ~32%, and ID1, ~19 and ~20%, were the most 

abundant ones in WGS data from breast and liver cancer (Figure 16A). Skin melanoma WGS 

data had the most abundant ID8, ~30%, followed by ID4, ~16%, and ID13, ~10. WXS indel 

mutational landscapes differed significantly from the WGS ones (Chi-square test, p-value < 

0.05). ID8, ID11, ID9 and ID5 contribute more to the overall indel landscape of breast and liver 

cancers. Skin melanoma WXS data was mostly, ~90%, made of ID1, ID11, ID16, ID17 and 

ID10. When examining the proportion of each indel signature per patient (Figure 16B), I 

determined that from WGS data breast cancer patients have a higher proportion of ID1, liver 

patients had ID3 and ID5, while skin patients had ID13 and ID8. From WXS data, the most 

noticeable difference is higher ID8 in liver cancer. 
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Figure 16. A) Proportion of indel mutational signature determined with mutSigExtractor tool for breast, liver and 

skin cancer types separated by WGS and WXS data. B) Distribution of percentage of mutational signatures per 

individual patient. The plot shows log10 transformed values of mutational signature counts. Box plots show the 

median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

4.1.3 Characterization of structural variants (SV) 

Structural variants are defined as larger DNA regions of length 1 kb or more involved 

in inversions and balanced translocations or genomic imbalances (insertions and deletions). In 

all cancer types inversion were in top 2 of most abundant types of SV in analyzed cancers 

regardless of their clustered profile. The highest number of structural variants was detected in 

breast, 98 853, followed by skin with 31 452 and liver with 27 022 (Supplementary Figure 4). 

Chi-square test showed that there is a significant difference in SV classes between cancer types 

(p-value < 2.2*10-308). When examining the SV profiles, I detected that clustered types of SV 

showed similar absolute counts of SV class profiles in breast, liver and skin cancer (Figure 

17A). In all cancer types clustered inversions, 1 to 10 MB for breast and more than 10 MB for 

liver and skin, were most abundant out of all clustered SV classes. Out of three cancers, the 

liver had the least inversions and SV classes in general. On the other hand, the non-clustered 

SVs showed distinctly different SV mutational profiles. Skin melanoma had a higher number 
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of deletions up to 1 kb in total, 2493, compared to other types of deletions. Other two cancer 

types were more abundant in deletions from 1 to 10 kb. Breast cancer had the highest number, 

7550, of tandem-duplications 1-10 kb length. While in liver cancer inversions of 1-10 kb, 2455, 

were most abundant after translocations. After calculating the proportion of each SV class per 

patient (Figure 17B), I detected that breast and skin cancers had higher proportions of clustered 

SV classes than liver cancer. In non-clustered SV classes, breast cancer had the lowest 

proportions of deletions compared to other two cancer types. Other non-clustered SV classes 

per patient were more or less similar in all of the cancer types. 

 

Figure 17. A) Number of annotated SV classes in breast, liver, and skin cancer depending on the length and 

clustered status. B) Proportion of annotated clustered and not clustered SV classes per patient in all three cancer 

types. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

4.1.3.1 SV mutational signatures 

De novo SV mutation signature calling using deconvolution methods from the 

Palimpsest tool of generated SV mutational profiles resulted in 7 breast, 6 liver and 6 skin de 

novo SV mutational signatures (Figure 18). Most de novo SV signatures specific for each cancer 
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were characterized by a higher proportion of non-clustered SV classes. Deletions and tandem-

duplications were especially more abundant in non-clustered SV classes of SV signatures like 

breast SV1, SV2 and SV6; liver’s SV2, SV5 and SV6 and skin’s SV1 and SV2. Non-clustered 

inversions were more abundant in breast SV4, liver SV1 and skin SV6 and in a smaller 

percentage in skin’s SV5. On the other hand, clustered inversion had higher percentages in the 

breast SV2, liver SV3 and skin SV3 and SV6. 

 

Figure 18. De novo structural variant (SV) mutational signatures profile showing the percentage of clustered and 

non-clustered SV types (deletion, inversion, tandem-duplications and translocations) for A) breast, B) liver and 

C) skin melanoma cancers called using Palimpsest tool.  
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To characterize the de novo SV signatures I calculated the cosine similarity of their 

generated profiles with each other and with annotated COSMIC SV signatures. Signature pairs 

of cancer-specific de novo SV signatures with the cosine similarity above 0.9 were breast SV6 

and skin SV4, ~0.99; breast SV3 and skin SV3, ~ 0.98; breast SV5 and skin SV5, ~0.97 (Figure 

19A). Next pairwise comparison SV signatures with cosine similarity above 0.8 were breast 

SV7 and liver SV2, ~0.84; followed by skin SV5 and liver SV4, ~0.84. Comparison with 

annotated SV signatures from COSMIC showed that extracted de novo SV signatures had lower 

similarities to annotated COSMIC ones (Figure 19B). The highest cosine similarity was 

obtained for liver de novo SV5 and COSMIC SV1 of ~0.77 and liver de novo SV6 and COSMIC 

SV3 of 0.63. Other signatures with cosine similarity over 0.5 were breast SV1 and COSMIC 

SV1, ~0.58; breast SV2 and COSMIC SV7, ~0.54; and breast SV4 and SV10, ~0.54. In skin 

melanoma, the highest cosine similarity, though still below 0.5, was observed between the skin 

SV3 and the COSMIC SV4, as well as between the skin SV2 and COSMIC SV6.  

 

Figure 19. A) Cosine similarity between de novo SV signatures in breast, liver and skin cancer B) Cosine similarity 

between de novo SV signatures and annotated SV signatures from COSMIC database determined and analyzed in 

Everall et al. 2023 

There was a significant difference in the proportions of de novo SV mutational 

signatures per patient in each cancer type (Figure 20A, Kruskal-Wallis, p-value <0.05). Breast 

and liver de novo SV2, SV3 and SV4 signatures were higher than the others. In skin melanoma 
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de novo SV1, SV5 and SV6 dominated the landscape when looking at the proportions of SV 

signatures per patient. In the breast cancer de novo SV mutational signature landscape, SV5, 

SV3 and SV2 dominated the landscape (Figure 20B). As for liver cancer, de novo SV2, SV3 

and SV4 were the most abundant out of all signatures. Lastly, in skin melanoma de novo SV5, 

SV3 and SV4 dominated the skin de novo SV mutational landscape. The difference in de novo 

SV mutational landscape was significant (Chi-square test, p-value < 0.05). 

 

Figure 20. A) Proportion of cancer-specific de novo SV mutational signature per individual patient calculated by 

keeping patients that have more mutations than the median in each cancer type (Kruskal-Wallis test). B) 

Proportion of de novo SV signatures per cancer type. Chi-square test (p<0.05). Box plots show the median value, 

interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

4.1.3.2 SV-hotspots 

SV-HotSpot tool was applied to each SV of a specific mutational signature type 

separately for different cancers, resulting in 2211 SV hotspots for breast cancer, 285 for liver 

cancer, and 504 for skin cancer. Different cancer types showed a significantly different 

enrichment of SV-hotspots signatures (Figure 21A; Chi-square test, p-value 4.1e-292), with 

liver cancer SV-hotspots resulting only from liver's de novo SV3 signature, most breast cancer 

SV-hotspots originating from breast’s de novo SV5 and SV3 signatures, and skin melanoma 

SV-hotspots predominantly caused by skin melanoma de novo SV3 signature. Most breast and 

liver SV-hotspots were detected on chromosomes 8 and 1 (Figure 21BC), while chromosome 

11 had the most skin melanoma SV-hotspots (Figure 21D). A significantly higher percentage 
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of patients per each SV-hotspot were detected on chromosomes 17 and 4 in breast, 

chromosomes 5 and 11 in skin, and chromosomes 11 and 8 in liver cancer. 

 

Figure 21. A) Proportion of cancer-specific de novo SV mutational signatures determined SV-hotspots with SV-

HotSpot tool in breast, liver and skin cancer. Number of detected SV hotspots per chromosome in B) breast, C) 

liver and D) skin cancer in the upper panels. Lower panels display percentages of patients per each SV-hotspot. 

Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Each chromosome had a different composition of de novo SV signature hotspots (Figure 

22). In liver cancer as I detected only SV3 hotspots, it was expected that all of the SV-hotspots 

were of that type. Other two cancer types had a statistically significant SV-hotspots composition 

on chromosomes (Chi-square, p-value < 0.05). Majority of the more abundant SV-hotspots in 

breast cancer were enriched with de novo SV5 hotspots; chromosomes 1 with 79%, 3 with 

~96%, 6 with ~99% and 8 with ~54%. Breast chromosome 8 had the most diverse SV-hotspot 

landscape out of the mentioned ones with ~30% SV3, 12% SV1, 5% SV6 and less than 1% of 

SV2 hotspots. Furthermore, breast chromosome 11 had a similar proportion of de novo SV3, 

SV5 and SV6 hotspots, around ~30%, while chromosome 17 had ~83% SV3 hotspots. Skins 

most abundant SV-hotspots chromosomes were enriched with skins de novo SV3 signature; 

chromosome 5 with ~97%, 6 and 7 with 100%. Meanwhile, chromosome 11 had ~44% of SV4 

and SV6 hotspots. Lastly, chromosome 12 had ~78% SV3 and ~22% SV4 hotspots. 
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Figure 22. Proportion of cancer-specific de novo SV signature SV-hotspots per chromosome for breast, liver and 

skin cancer.  

4.2 Identification of tissue-specific expressed genes in normal 

tissues 

Through this chapter, I have evaluated different tissue-specific metrics using RNA-

expression data from publicly available sources to obtain a comprehensive list of tissue-specific 

genes for various breast, liver and skin normal tissues. The list was later used to determine the 

ability of tissue-specific genes to predict the cell-of-origin in the developed models using 

mutation count and histone marks. 

4.2.1 Evaluation metrics for tissue specificity and filtering parameters 

In total, I used 9 datasets (8 GTEx datasets with different tissue counts and 

normalizations and one publicly available dataset), to determine the best tissue-specificity 

metric.  Out of all calculated tissue-specific metrics, the Tau index stood out as the one with the 

less skewed distribution in the Fagerberg dataset, while more skewed towards tissue-specific 

genes with Tau closer to 1 in GTEx datasets (Figure 23). Other tissue-specific metrics, Zscore, 

Gini index and Tsi, metrics also showed similar distributions but Tau index was the one with 

the most tissue-specific genes since the cut-off is usually above 0.8. 
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Figure 23. Distribution of tissue-specificity parameters (Tau, Gini, Tsi, Zscore, Ee, Pem) with data for human 

RNA-seq of 9 different datasets shown as a density function.  

To further evaluate the specificity and performance of tissue-specific metrics, I looked 

at sets of well-defined tissue-specific genes (xenobiotic metabolism, melanin production, 

spermatogenesis) and other broadly expressed genes (membrane organization, RNA splicing, 

protein folding) (Figure 24). Only the Tau index was able to correctly capture distribution 

shifted to 1 of known expected tissue-specific genes and it was constant across all analyzed 

datasets (Supplementary Figure 5). After Tau index, Gini index and Zscore were the second-

best tissue-specific metrics. 
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Figure 24. Tissue-specific metrics on GTEX TPM1 dataset with 30 tissue types. Tissue-specificity parameters of 

subsets of genes which are expected to be tissue-specific (xenobiotic metabolism, spermatogenesis and melanin 

production) or broadly expressed (membrane organization lines, protein folding and RNA splicing), based on 

associated GO terms. The black distribution represents the distribution for all genes, including those not 

associated with any of these GO terms. 

As the Tau index clearly showed the best separation of expected tissue-specific and 

broadly expressed genes, I calculated extended Tau to assign each tissue-specific gene to a 

certain tissue. When defining specific genes with a Tau index larger than 0.8, the highest 

number of tissue-specific genes was detected in GTEx data normalized with TPM above 31700, 

while the Fageberg dataset had the lowest number of specific genes of 5515 (Figure 25A). In 

general, normalization with TPM resulted in a larger number of tissue-specific genes compared 

to RPKM normalization. When I calculated the extended Tau with whom I assigned tissue-

specific genes with Tau > 0.8 to multiple tissues, I detected many genes, ~13000, assigned to 

the testis organ, followed by around 4000 genes to brain and nerve tissues using GTEX data of 

30 tissues normalized by TPM (Figure 25B). The heart and pancreas were tissues with the least 

assigned tissue-specific genes which was mainly consistent across all of the analyzed RNA-seq 

datasets (Supplementary Figure 6). 



76 

 

 

Figure 25. A) Number of tissue-specific genes with Tau index larger than 2 in 9 different datasets RNA-seq 

datasets. B) Number of tissue-specific genes for each tissue of GTEX tpm1 of 30 tissues based on the extended Tau 

index.  

4.2.2 Breast, liver and skin tissue-specific genes 

Because I used multiple datasets that I analyzed separately, I needed to determine 

whether to include all the assigned tissue-specific genes for a particular tissue within each 

dataset as that tissue. To validate the merging of all tissue-specific genes into one specific tissue, 

I assessed two genes to see if important genes were captured in all datasets. I found that the 

well-annotated liver-specific gene alpha-fetoprotein (AFP) was consistently identified as liver-

specific across all utilized datasets (Figure 26A). Notably, the Fageberg dataset also classified 

AFP as kidney-specific, based on the extended Tau metric. Another tissue-specific gene, D-

amino acid oxidase (DAO), traditionally recognized as kidney-specific, was detected not only 

in the kidney but also in the brain and liver when analyzing GTEx data normalized with TPM. 

Interestingly, the GTEx RPKM dataset did not include the DAO gene, and neither the Fageberg 

dataset nor GTEx TPM data with 30 tissues identified DAO as brain-specific. Given these 

multiple lines of evidence suggesting that certain genes may exhibit tissue-specificity beyond 

their traditionally recognized tissues, I decided to include all genes identified as tissue-specific 

in at least one dataset. This comprehensive approach ensures that potentially significant tissue-

specific gene associations are not overlooked. Since there are multiple subtypes of skin and 

breast tissue available in different datasets, I attributed the tissue-specific genes for each of 
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them (Figure 26B). The highest number of 5917 tissue-specific genes was assigned to the skin. 

Separated skin tissues that were exposed to the sun and not in GTEx datasets had lower numbers 

of genes, around ~2600, and ~1200. Both breast and liver tissue-specific genes resulted in a 

high number of genes around ~3500. Since one gene can overlap in many tissues I analyzed the 

overlapping genes in defined tissue-specific sets (Figure 26C). As expected, highest overlaps 

were detected within each major tissue/organ group, where breast and breast mammary tissue 

annotations shared the highest number of 960 genes. Followed by different combinations of 

shared genes between defined skin tissues. A total of 436 genes were shared among breast, liver 

and skin normal tissues. These results imply that the tissue-specific genes were indeed correctly 

annotated within each tissue and sub-tissue types. 

 

 

Figure 26. A) Liver-specific alpha-fetoprotein (AFP) and kidney-specific D-amino acid oxidase (DAO) detected 

across 9 datasets in different tissues B) Total number of tissue-specific genes for breast, liver and skin tissues 

determined by taking into account all tissue-specific genes based on extended Tau index across all datasets C) 

UpsetR plot showing the overlapping tissue-specific genes.  
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4.3 Machine learning models for predicting cell-of-origin  

Through this chapter, I had developed a preliminary cell-of-origin prediction model 

using multiple linear regression of all mutations and histone modifications of normal tissues 

summarized and normalized to different genomic features; 1 Mb genomic regions, 

topologically-associated domains and genes. Erroneous prediction rates, defined by standard 

residuals of each feature, were assessed and associated with various genomic features such as 

mutational signatures, SV-hotspots, kataegis, tissue specific super-enhancers and others, to test 

whether these features influence the prediction accuracy of the models. To better understand 

the COO prediction results, I performed the correlation analysis of a specific mutational profile 

of a feature within each cancer type to the epigenome of a normal potential cell-of-origin of 

that cancer. Based on the obtained findings, I developed random forest and gradient extreme 

boosting models to potentially increase the prediction accuracy by employing a more complex 

machine learning model.  

4.3.1 1 Mb genomic region cell-of-origin (COO) predictive models 

I developed a preliminary model using multiple linear regression of aggregated tumor 

SBS mutations and epigenomes of normal tissues to correctly identify the COO for both WGS 

and WXS datasets using 2128 1 Mb genomic regions (predicted COO corresponds to the model 

with the highest prediction accuracy). As seen in Figure 27A, the best models with the highest 

variance explained (accuracy) from WGS datasets of different cancer types match the correct 

COO of that cancer type. Out of all three WGS cancer datasets, breast cancer had the lowest 

accuracy, 50.51% for breast luminal cells mature, followed by 81.24% for melanocytes in skin 

melanoma and the highest obtained value for liver cancer, 85.25% for liver tissue. All top WGS 

models showed significantly higher explained variance compared to its second-best non-cell-

of-origin model (one-sided Wilcoxon test, p-values 0.001, 8.115 × 10-6, 8.115 × 10-6 for breast, 

liver and skin cancer respectively). On the other hand, none of the top WXS cancer dataset 

models have been able to correctly identify the COO of corresponding cancer type. For both 

skin melanoma and liver cancer, the best COO model was the breast basal, 51.50%, and 56.47% 

respectively, while for breast cancer the best models were brain tissues, 44.53%. The best WXS 

cancer dataset models showed significantly lower accuracy than best correct WGS models of 

corresponding cancer (one-sided Wilcoxon test, p-values 0.0144, 8.115×10-6, 8.115×10-6 for 

breast, liver and skin cancer respectively). When examining the model accuracies on individual 

patients from WGS and WXS datasets (Figure 27B), I detected that less than ~4% of patients 
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had correctly identified COO from WXS dataset. In the WGS cancer dataset models, breast 

cancer had the lowest percentage of correctly identified patients (~56%), followed by 

melanoma (~79%) and liver (~86%). The WGS data COO models results were reproducible 

across aggregated profiles based on a specific cohort (Supplementary Figure 7A), except for 

TCGA cohorts (BRCA-US, LIHC-US and SKCM-US) where correct COO was not determined 

as the best model. While only for breast WXS data independent cohorts was the COO correctly 

identified. As seen in Supplementary Figure 7B majority of wrongly identified COO of 

individual patients originated from the TCGA cohorts. Out of all cancer types, melanoma had 

the highest mutational count per 1 Mb regions, followed by liver cancer (Figure 27C). 

 

Figure 27. A) Multiple linear regression models for the prediction of mutation density of aggregated tumor profiles 

of breast, liver and skin cancer WGS and WXS were trained on an extended set of 101 tissue sets but showing only 

the top 15 in each defined subgroup of genes. The overall explained variance is reported across the 10-fold cross-

validation. B) Proportion of correctly and incorrectly identified COO for individual patients based on results of 

corresponding COO models in A). C) Distribution of aggregated observed mutations per 1 Mb region in each 

cancer type displayed as density plot alongside vertical lines representing the medians 

Moreover, taking only indel mutations instead of SNVs did not result in correct COO 

identification in WGS data except for skin melanoma WGS data (Supplementary Figure 8). 

However, the explained variance of the indel COO model was significantly lower with only 

~30% of explained variance than the SNV COO model (Wilcoxon test, p-value = 0.001). There 
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was a significant drop in correct COO identifications of individual patients where the highest 

percentage of correctly identified COO was only ~21% (61/286, CI 0.17-0.26) for skin 

melanoma with indel mutations. 

WXS datasets for liver and skin melanoma, unlike WGS datasets, contain regions with 

zero mutations per 1 Mb genomic regions, 50 and 239 respectively. Regions with 0 mutations 

had bigger error prediction rates in expected correct COO model for certain cancer type, median 

and standard deviation of 4.90+0.27 for liver and 2.23+0.46 for skin melanoma, compared to 

other regions, median and standard deviation of 0.36+0.44 for liver and 0.39+-0.45 for skin 

melanoma. These erroneous regions with no mutations form distinct clusters when examining 

the correlation of standardized residuals of WGS and WXS 1 Mb regions results (Figure 28). 

In both best and correct COO, breast and skin cancer have significant positive correlation, while 

liver cancer has significant slight negative correlation. These results imply the more or less the 

same direction of erroneous prediction rates of regions regardless with both WGS and WXS 

data from all cancers.  

 

Figure 28. A) Pearsons’s correlation of standardized residuals between WXS and WGS from the best obtained 

and correct COO models 

For downstream analysis, I focused the analysis on only WGS cancer dataset models 

due to better overall performance of COO models. More erroneous regions or outliers, which 

represent genomic regions where the relationship of histone modifications and mutations differs 

from the average, were defined as over-predicted regions with standard residuals lower than -2 

and under-predicted regions with standard residuals higher than 2. Outliers were most abundant 

in breast cancer with a total of 111 outliers, 15 over-predicted and 96 under-predicted. Skin 

melanoma had 88 outliers, 53 over- and 35 under-predicted, while liver cancer had 82 outliers, 
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37 over- and 45 under-predicted (Figure 29A). Breast under-predicted outliers showed enriched 

origin from chromosome 8, 17 and 1; while other outliers of models trained in other cancer 

types did not show enrichment in any of the chromosomes (Figure 29B). I found that 1867 out 

of 2128 regions (88%, CI 0.86-0.89) were not outliers in all three cancer types (Figure 29C). 

Very few regions were annotated as the same outlier type by models trained in different cancer 

types, suggesting a distinct trait of each outlier in its corresponding cancer type. The highest 

overlap was 12 under-predicted outliers found both in liver and breast cancer. 

 

Figure 29. A) Predicted vs observed mutations of aggregated tumor profiles in 1 Mb genomic regions of breast, 

liver and skin cancer from the best multiple linear regression models of WGS data. Colors denote different outlier 

classes B) Proportion of annotated outliers based on their location in the genome (if more than 15% are outliers) 

in each cancer C) UpsetR showing the overlaps of annotated regions as over-, under-outliers or not an outlier 

between different cancer types. 
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4.3.1.1. Analysis of erroneous 1 Mb genomic regions  

Next, I analyzed the gene composition and regulatory features in 1MB genomic regions 

based on their erroneous prediction rate, to determine whether they influence the error rates. 

First, I looked at the enrichment of genes associated with development and progression of 

cancer from Cancer Gene Consensus (CGC), tumor immune microenvironment (TIME) and 

enrichment of tissue specific super-enhancers (SE) from both normal and tumorigenic cell-lines 

or tissues from the SEdb2.0 database. As shown in Figure 30A, in breast and liver cancer the 

CGC were more enriched in under-predicted outlier regions, while they were more present in 

over-predicted regions of skin melanoma. The similar observations were also observed with 

TIME driver genes (Figure 30B). However only TIME drivers for breast cancer showed 

significantly different enrichment between all outliers (Fisher’s test, p=0.0003). Tissue-specific 

super-enhancers were generally more enriched in under-predicted outliers across all normal and 

cancerous tissues/cell-lines in all three cancer types (Figure 30C). The only two cancerous cell-

lines, HuH-7 for liver and BJ for skin melanoma, had the lowest number of SE-affected regions. 

Moreover, skin melanoma CJM had similar proportions in all three outlier groups, ~20%, while 

COLO679 had more SE in over-predicted outliers. 

 

Figure 30. Proportion of annotated 1 Mb genomic regions based on their erroneous status that are affected with 

A) Cancer Gene Consensus (CGC), B) tumor immune microenvironment (TIME) and C) tissue specific super-

enhancers (SE) from both normal and tumorigenic cell-lines or tissues from the SEdb2.0 database 
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Moreover, I performed an over-representation analysis (ORA) of Hallmarks of cancer 

and Gene Ontology (GO) terms for all genes found over-, under- and non-outlier 1MB regions. 

Most common significant enriched pathways in non-outlier regions in all cancers based on ORA 

of GO terms are pattern specification process, epithelial cell proliferation, homophilic cell 

adhesion via plasma membrane adhesion molecules and pathways involved in Wnt signaling 

(Figure 31A).  Since there are only 15 over-predicted regions in breast cancer, I did not find 

any over-represented GO term. However, only significant Hallmark of cancer I found in outlier 

regions in all cancer was P53 PATHWAY with genes FBXW7 (ENSG00000109670) and 

ANKRA2 (ENSG00000164331) in breast cancer over-predicted outliers. Most significant 

biological processes (BP) in over-predicted outliers in skin melanoma were response to positive 

regulation of peptidyl-serine phosphorylation of STAT protein, exogenous dsRNA and NK cell 

activation in immune response. On the other hand, most significant BP in over-predicted 

outliers in breast cancer were G protein-coupled purergic nucleotide receptor signaling, 

regulation of sensory perception of pain and biomineral tissue development. As for under-

predicted outliers, those were enriched with keratinization, intermediate filament organization 

in breast; growth receptor signaling pathway in breast and liver; while in skin melanoma I 

detected only sensory perception of taste as enriched GO term. When examining the expression 

of genes in normal tissues corresponding to COO of each cancer type, I found that under-

predicted regions had significantly higher gene expression compared to over-predicted ones in 

all cancers, while over-predicted regions had significantly lower expression than non-outliers 

(Figure 31B). Similar trend was observed when examining the tissue-specific expression of 

normal tissues in those erroneous regions but without the same significance levels (Figure 31C). 
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Figure 31. A) Over-representation analysis of GO terms involved in biological processes. Top 3 most significant 

by filtering Benjamini-Hochberg p-value of 0.05 are shown for each category of annotated 1Mb genomic regions 

based on their standard residual (erroneous prediction rate) B) TPM (transcripts per million) expression of genes 

in normal tissues and C) expression of tissue-specific genes from normal tissues of corresponding cancer type 

(breast, liver and skin cancer) from GTEX TPM 30 database separated by residual annotation. (Wilxonov-test) 

To further characterize the outliers, I examined how enriched they are with SV-hotspots 

and kataegis regions. Under-predicted outliers were shown to be significantly enriched in SV-

hotspots compared to non-outliers, especially in breast cancer (Pearson's Chi-squared test, p-

value < 2.2*10-16, 0.00196 and 0.01995 for breast, liver and skin cancer) (Figure 32A). Skin de 

novo SV signature 2 hotspots were more abundant in over-predicted outliers, while breast de 

novo SV signature 4 hotspots had more under-predicted outliers (Figure 32B). Only liver de 

novo SV signature 3 hotspots were present in liver as it is the only signature I have detected for 

liver SV-hotspot signature. Similar observations were detected with kataegis regions where 

under-predicted outliers in all cancer types had significant enrichment in kataegis regions 

compared to the others (Figure 32C). The severity of kataegis regions, measured by the number 

of mutations detected in those regions, was positively correlated with the error rate in kataegis 
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regions in breast cancer (Figure 32D), while a similar trend is not observed for non-kataegis 

regions.  

 

Figure 32. A) Proportion of 1 Mb regions affected by SV-hotspot or not based on their annotation as over-, under-

outliers or not an outlier B) Proportion of residual annotated regions based on their SV-hotspot mutational 

signature C) Proportion of regions affected by SV-hotspot or not based on their annotation as over-, under-outliers 

or not an outlier D) Spearman correlation between mutations affected by kataegis and erroneous prediction rate, 

as well as between non-kataegis mutations and erroneous prediction rate 

 

The Fisher exact test or Pearson’s Chi-square test results imply that there was no 

statistically significant difference between the presence of SV-hotspot and kataegis regions in 

any defined outlier and non-outlier group, except for non-outliers in breast cancer where p-

value was below 0.05 (Figure 33). Although the p-value is not below 0.05, significance is higher 

in non-outlier regions of all cancer types and in under-predicted outliers of breast cancer where 

regions affected by both SV-hotspots and kataegis make around 42% (CI 0.32-0.51).  
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Figure 33. Count matrix of SV-hotspots and kataegis affected 1 Mb genomic regions of over-predicted, under-

predicted and non-outlier regions in breast, liver and skin cancer. Each tested group is colored by Benjamini-

Hoechberg corrected p-value of Fisher exact test or Pearson’s Chi-square test results 

To conclude whether certain SBS mutational signatures contribute to higher error 

prediction rate in 1 Mb genomic region COO model, I calculated Pearson's correlation of 

summarized SBS signatures in regions and absolute standard residual (Table 9). After filtering 

for significance, only signatures from breast and liver cancer remained. Lack of significant 

correlations of SBS signatures and absolute standard residual may indicate that in skin 

melanoma the mutational signatures do not contribute directly to more erroneous prediction 

rates. In both breast and skin cancer, all mutations showed significant positive correlations with 

erroneous prediction rates. When I examined the top 5 SBS signatures from both cancer types, 

I also detected positive correlations of signatures and erroneous prediction rates. The 

correlations were overall higher in breast than in liver cancer. However, only SBS13, a very 

well-known annotated APOBEC-related signature, had a higher correlation with ~0.31 than all 

mutations with ~0.28. As well, this correlation was found to be the overall highest and 

significant with lowest p-value where SBS13 mutations made up around 19% of total mutations 

in analyzed 1 Mb genomic regions. The second most positively correlated SBS signature in 

breast cancer is SBS40 but with lower correlation than all mutations. This signature was also 

found in liver cancer and contributes to more than 14% and 20% mutations in these cancers. In 

liver cancer, I found that SBS4 signature is the most significantly positively correlated 

signature, while SBS36 despite its significant positive correlations contributes to only ~0.06 of 
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all mutations. Moreover, SBS3 signature was found to be in the top 5 most correlated signatures 

in both cancers.  

Table 9. Top 5 strongest Pearson’s correlations of mutational signature or all mutations and absolute 

standard residual per 1 Mb genomic region for breast and liver cancer alongside the correlation of all 

mutations with Benjamini-Hochberg corrected p-values lower than 0.05. Table also contains proportion 

of mutations belonging to each signature in aggregated tumor profiles 

Cancer type SBS mutational 

signature 

Pearson's 

correlation 

p-value Proportion of 

mutations (%) 

Breast 

All mutations 0.28186263 2.451223*10-38 100 

SBS13 0.3112222 6.788302*10-47 18.47 

SBS40 0.2690914 5.603827*10-35 14.16 

SBS3 0.2599621 1.086181*10-32 8.11 

SBS39 0.2457532 3.214680*10-29 9.64 

SBS5 0.2226095 5.637889*10-24 6.57 

Liver 

 

All mutations 0.13074172 9.840241*10-09 100 

SBS4 0.1637104 3.584317*10-13 4.66 

SBS8 0.1517574 1.848165*10-11 10.99 

SBS36 0.1506841 2.735540*10-08 0.06 

SBS40 0.1435681 2.362203*10-10 20.80 

SBS3 0.1419808 3.674638*10-10 1.61 

 

Since 1 Mb genomic regions with higher prediction error rates were associated with SV-

hotspots, kataegis, and certain mutational signatures, I calculated the correlation between 

mutations and histone modifications from normal tissues of the cell-of-origin for each cancer 

type, grouped according to the influence of different genomic feature. The highest correlations 

of all mutations or certain mutational signatures with normal epigenome were observed in liver 

cancer (Figure 34). When examining the correlation of all mutations in all regions, I observed 

a strong negative correlation with activating histone modifications H3K36me3, H3K4me1, 

H3K4me3 in all cancers and H3K27ac in breast cancer as expected (Figure 34A). On the other 

hand, repressive histone modifications H3K27me3 and H3K9me3 were strongly positive in 

liver cancer, while slightly negative or slightly positive in breast and skin cancers. This trend 

was observed in all separation groups where regions were separated based on the presence of 



88 

 

SV-hotspots, kataegis or both. However, the correlations of mutations and non-affected regions 

by SV-hotspots and/or kataegis were higher compared to the ones affected by those genomic 

characteristics in all cancer types. In case of skin melanoma, the direction of correlation of 

repressive histone H3K27me3 modification was then changed into the expected direction, from 

negative to positive. Over- or under-predicted outliers seemed to have weaker or stronger 

correlations in different cancer types. In breast cancer, the over-predicted cancer types have a 

much stronger positive association of repressive histone H3K9me3 of 0.754, while in other 

categories of grouped regions the correlation was weaker around ~0.2. However, the 

correlations with breast over-predicted outliers were not found to be significant since a low 

number of regions, 15, was driving the apparently strong correlations. 

As far as the correlation of SBS mutational signature and normal epigenomes of cell-

of-origin, the age-related SBS1 signature was found to have weaker correlation and even wrong 

direction of correlation than expected in all cancers (Figure 34B). The SBS1 signature was 

present in the lowest amount of all other analyzed signatures, especially in skin melanoma. 

Another signature which had extremely positive association with both active and repressive 

histone modifications was SBS43 in skin melanoma. Also, in skin melanoma UV-related 

signatures, SBS7a and SBS7b, had more of the expected directions of correlation with 

repressive modifications than SBS7c and SBS7d which had overall stronger negative 

correlations with all modifications. In liver cancer, the mutational signature with much weaker 

correlations with modifications than all mutations or other signatures were SBS16, SBS23 and 

SBS36. While in breast cancer, the weakest overall correlation was identified with SBS13 

signature. In general, more non-significant correlations were observed with repressive histone 

marks than with active ones regardless. 
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Figure 34. A)  Spearman’s correlation of all mutations and histone modifications of cell-of-origin tissue on 1Mb 

genomic regions annotated based on different criteria (containing or not SV-hotspots or kataegis regions or both, 

based on outlier annotation) B) Spearman’s of SBS mutational signatures and histone modifications of cell-of-

origin tissue with number absolute counts divided by 106 of signatures in used 1Mb regions. Non-significant 

correlations, Benjamini-Hoechberg corrected p-value above 10-5 are labeled with ns
. 

4.3.1.2. Improving the 1 Mb genomic region COO model  

Since I showed that various genomic features and mutational signatures can influence 

error rates, I removed SV-hotspots and/or kataegis regions, as well as certain mutations 

originating from a specific mutational signature, to improve the prediction accuracy of the COO 

models. Only aggregated mutational profiles of breast cancer showed significant improvement 

in model accuracy compared to the original model with all regions (Wilcoxon test, p-value < 

0.05) (Figure 35A). On the other hand, skin melanoma had the opposite effect where removal 

of especially kataegis affected regions significantly lowered the overall prediction rate with a 
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drop from ~81% to ~64% (Wilcoxon test, p-value = 0.0003). In all models there has been a 

drop in individual patients COO predictions (Figure 35B) where the most significant one was 

for skin melanoma with removal of kataegis regions from to ~79% of correctly identified COOs 

~63% (Chi-square test, p-value = 1.992*10-05). Removal of the most associated SBS mutational 

signatures; SBS13 for breast, SBS36, SBS4, SBS8 and SBS40 for liver and SBS43 for skin 

cancer, only resulted in improved predictions for breast cancer. Although removal of both SV-

hotspots and/or kataegis affected regions alongside removed SBS13 mutations resulted in 

highest breast aggregated COO accuracy of ~65%, the individual COO prediction rates were 

worse than the original COO model. 

Figure 35. A) Multiple linear regression models for the top prediction of mutation density of aggregated tumor 

profiles of breast, liver and skin cancer WGS based on 1 Mb regions that were either removed due to being affected 

by SV-hotspots and/or kataegis or excluded certain mutations due to their SBS signature origin. The SBS mutations 

which were removed are SBS13 for breast, SBS36, SBS4, SBS8 and SBS40 for liver and SBS43 for skin cancer. 

The figure shows the overall explained variance, depicted as the mean with standard deviation, derived from a 10-

fold cross-validation analysis. B) Proportion of correctly and incorrectly identified COO for individual patients 

based on results of corresponding COO models in A). 

Besides developing the COO random forest and extreme gradient boosting (xgbTree) 

using all 1Mb regions, I also developed a breast COO model with removed regions affected by 

SV-hotspots and/or kataegis with removed SBS13 mutations due to previously significantly 



91 

 

better multiple-linear regression performance compared to other cancers. Newly obtained 

accuracies with more complex machine learning models did result in much higher explained 

variance compared to their respective multiple linear regression model (Figure 36A). The most 

significant drop in model accuracy was detected for breast cancer where both random forest 

and extreme gradient boosting COO models had lower variance on aggregated profiles and only 

~20% and ~40% correctly identified COO for individual patients (Figure 36B). Moreover, the 

random forest model also resulted in lower number of correctly identified COO in liver and 

skin cancers compared to multiple linear regression and xgbTree models despite higher variance 

on aggregated profiles. 

 

Figure 36. A) Cell-of-origin models (multiple linear regression-lm, random forest, extreme gradient boosting-

xgbTree) for the top prediction of mutation density of aggregated tumor profiles of breast, liver and skin cancer 

WGS based on 1 Mb regions that were either removed due to being affected by SV-hotspots, kataegis and excluded 

certain mutations due to their SBS signature origin. The SBS mutations which were removed are SBS13 for breast 

due to only increased significant findings in the previous analysis. The figure shows the overall explained variance, 

depicted as the mean with standard deviation, derived from a 10-fold cross-validation analysis. B) Proportion of 

correctly and incorrectly identified COO for individual patients based on results of corresponding COO models 

in A). 
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4.3.1.3. Individual patient 1 Mb genomic region COO model 

The developed cell-of-origin (COO) models often assigned origins to patients that 

included brain-related tissues, immune cells, right atrium, muscle, and gastrointestinal tissues 

(muscle and mucosa), besides the expected correct origins for certain cancers (Figure 37). The 

models show a high degree of consistency in predicting the same COO tissues across all 

methods, particularly for liver and skin cancers. However, breast cancer patients experienced 

the highest rate of incorrect COO assignments. Many correctly identified breast cancer COO 

cases were misclassified as immune cells, gastrointestinal tissues, and other tissues in the 

random forest model. Additionally, a significant number of breast cancer patients were 

incorrectly predicted to have brain or right atrium as their COO across all model setups. In 

contrast, such observational shifts were less pronounced in other cancer types. 

 

Figure 37. Alluvial plot illustrating the cell-of-origin (COO) of individual patients across various COO model 

setups in both aggregated cancer data and individual patient mutational profiles. Assigned COO tissues that 

represent less than 4% in each cancer type are labeled as "Other". Single-base substitutions (SBS) which were 

removed are SBS13 for breast cancer, SBS4 for liver cancer and SBS43 for skin melanoma patients.  

When I separated the patients based on their correct cell-of-origin (COO) identification, 

I observed that in all cancer types, correctly identified COO patients exhibited significantly 

higher explained variance compared to incorrectly identified ones (Figure 38). Specifically, 

liver and skin melanoma cancers showed a significantly higher number of mutations in correctly 

identified patients, whereas this trend was not observed in breast cancer. Although the 

differences in the number of kataegis events were only marginally significant in liver cancer, 
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incorrectly identified COO patients tended to have slightly more kataegis events. On the other 

hand, structural variation (SV) hotspots were slightly more prevalent in correctly identified 

COO patients for both breast and skin melanoma cancers. Conversely, in liver cancer, 

incorrectly identified COO patients had a higher occurrence of SV-hotspots. Despite these 

observations, the results for kataegis and SV-hotspots did not result in statistical significance 

according to the Wilcoxon test. Nonetheless, the trends suggest a potential link between the 

presence of kataegis and SV-hotspots with the accuracy of COO predictions. 

 

Figure 38. The distribution of explained variance, the number of mutations, kataegis and SV-hotspots separated 

by correct or incorrect COO identification of individual patients. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

To further investigate the differences between correctly and incorrectly identified COO 

patients, I examined the proportion of SBS mutational signatures per patient that were found to 

be most prevalent in certain cancer type or showed strong correlations with more erroneous 

predictions in the 1 Mb genomic COO model (Figure 39). For breast cancer, incorrectly 

identified COO patients had a higher proportion of SBS13 signature (Wilcoxon test, p-

value=0.0011). Although SBS2 and SBS3 did not show a statistically significant difference, 

they were also more prevalent in incorrectly identified patients. In contrast, correctly identified 

breast COO patients had more SBS40 and SBS1. For liver cancer, incorrectly identified COO 
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patients had higher percentages of SBS16, SBS3, SBS8, SBS1, and SBS40 signatures. 

Conversely, correctly identified patients exhibited a higher proportion of the SBS4 signature. 

In skin melanoma, the most notable differences were the significantly higher proportions of the 

SBS7a signature in correctly identified COO patients (Wilcoxon test, p-value < 2.2*10-16) and 

lower proportions of SBS7b in incorrectly identified patients (Wilcoxon test, p-value < 2.2*10-

16).  

 

Figure 39. Proportion of SBS mutational signatures per patient separated by correct or incorrect COO 

identification of individual patients. Box plots show the median value, interquartile range as a box, and the 

whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 

0.001, ****: p <= 0.0001 

4.3.1.3.1 Breast cancer 

I separated the breast cancer individual patients' COO results based on their histological 

type. As shown in Figure 40A, the breast cancer subtypes with the highest prediction accuracy 

did not necessarily have the highest number of mutations per patient. The calculated median of 

all percentages of correctly identified COO patients across all developed COO models was 

highest for the 12 duct micropapillary carcinoma patients, at approximately 75%, despite their 

mutational load being lower compared to other subtypes. Following this, the best-performing 

subtypes with a median above 60% included 5 metaplastic carcinoma patients with a higher 

mutational count, 4 carcinoma with apocrine differentiation patients, and 17 mucinous 

adenocarcinoma patients with a lower mutational count, as well as 91 patients with unknown 

histological subtypes who had a higher mutational count. Conversely, some breast cancer 
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subtypes with lower median proportions of correct identification exhibited much larger variance 

in mutational count per patient, such as infiltrating duct carcinoma and lobular carcinoma, 

which generally had more patients. The worst-performing subtypes, each with only 1 or 2 

patients, were neuroendocrine, medullary, pleomorphic, as well as duct and lobular carcinoma. 

Pleomorphic patients have the smallest mutational count. 

 

Figure 40. A) Median of correctly identified cell-of-origin (COO) proportions across all developed COO model 

setups for breast cancer patients, separated by their histological subtype. The distribution of the number of 

mutations per patient is visualized as boxplots for each histological subtype. B) Distribution of the number of 

mutations per patient separated by correctly identified COO for each histological subtype across various COO 

models. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 
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The number of mutations per patient was further analyzed by whether the COO was 

correctly identified across various COO models (Figure 40B). It was observed that breast cancer 

subtypes with a lower number of samples mostly suffered from incorrect COO assignments by 

random forest models like duct and lobular carcinoma. In all other models, correctly identified 

COO patients had significantly higher mutational counts compared to those incorrectly 

identified. However, this trend was not observed for infiltrating duct carcinoma and unknown 

breast cancer subtypes who also had the highest number of patients. Both pleomorphic 

carcinoma patients were not correctly identified by any COO model. Additionally, cancer types 

with lower patient counts suffered from a lack of statistical significance due to the smaller 

sample sizes. 

When examining the percentage of explained variance, breast cancer patients had quite 

low variance, in majority cases below 10%, even for correctly identified COO patients 

(Supplementary Figure 9). In all breast cancer histological subtypes the correctly identified 

COO patients had higher variance explained, which was especially significantly in infiltrating 

duct carcinoma and unknown breast cancer types whose more higher percentage of explained 

variance compared in individual patients compared to other types.  

Based on the provided PAM50 annotation for 86 breast patients from Kubler et al. 

(2019), almost all samples had incorrectly assigned COO shown regardless of the COO model 

setup shown as median of all percentages of correctly identified COO patients across all 

developed COO models (Figure 41A). Only a few samples, a maximum of 4, had correctly 

assigned COO in basal subtypes and one or 2 in luminal B type. There was a statistically 

significant difference in mutational count per patient between the PAM50 groups (Kruskal-

Wallis, p=5*10-4) with luminal A having the smallest mutational count and basal having the 

largest. In all PAM50 groups the most abundant histological type was infiltrating duct 

carcinoma. 

Furthermore, out of 371 breast cancer patients with homologous recombination 

deficiency (HRD) annotated by either HRDetect or CHORD from Štancl et al. (2022), COOs 

of HRD samples were mostly incorrectly assigned (Figure 41B). The average correct COO 

prediction rate was 29% for HRD and 66% for non-HRD group. Also, HRD patients had 

significantly higher number of mutations compared to non-HRD group (Wilcoxon test, 

p<2.2*10-16). Both groups had a majority of infiltrating duct carcinoma patients, but the non-
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HRD group also included more cases of lobular carcinoma, mucinous adenocarcinoma, and 

duct micropapillary breast cancer. 

 

Figure 41. A) Median of correctly identified cell-of-origin (COO) proportions across all developed COO model 

setups for breast cancer patients, separated by their PAM50 subtype. The distribution of the number of mutations 

per patient is visualized as boxplots for each histological subtype. B) Median of correctly identified cell-of-origin 

(COO) proportions across all developed COO model setups for breast cancer patients, separated by their HRD 

status.  Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

A more detailed view of the number of mutations per patient, separated by whether the 

COO was correctly identified across various COO models (Figure 41C), showed that correctly 

identified HRD patients had a significantly higher mutational count than non-HRD patients. 

This was particularly prominent for the COO model with removed SV-hotspots in both multiple 

linear regression and extreme gradient boosting models. On the other hand, non-HRD patients 

had more similar mutational count profiles regardless of correct COO identification. However, 

based on the explained variance, it was observed that correctly identified COO in both HRD 
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and non-HRD patients had significantly higher variance explained than incorrectly identified 

ones. 

4.3.1.3.2 Liver cancer 

Separating liver cancer patients into histological types resulted in the majority of 

samples belonging to hepatocellular carcinoma (HCC), which displayed the highest and largest 

variance in the number of mutations per patient (Figure 42A). The highest median proportion 

of correctly identified cell-of-origin (COO) patients, above 80%, was detected for HCC, 

hepatocellular adenoma, and fibrolamellar hepatocellular carcinoma, each with only 5 samples.  

 

Figure 42. A) Median of correctly identified cell-of-origin (COO) proportions across all developed COO model 

setups for liver cancer patients, separated by their histological subtype. The distribution of the number of 

mutations per patient is visualized as boxplots for each histological subtype. B) Distribution of the number of 

mutations per patient separated by correctly identified COO for each histological subtype across various COO 

models. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

The worst performance in correct COO prediction for individual patients was observed 

in 8 combined hepatocellular and cholangiocarcinoma patients and 24 cholangiocarcinoma 

patients. Furthermore, cholangiocarcinoma had the smallest median number of mutations per 

patient. The number of mutations per patient was further analyzed by whether the COO was 
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correctly identified across various COO models (Figure 42B). In all liver cancer subtypes and 

developed COO models, correctly identified patients had much higher mutational counts per 

patient compared to incorrectly labeled patients. However, in the developed random forest COO 

model for hepatocellular adenoma, more incorrectly annotated patients with higher mutational 

counts were detected compared to other COO model setups. 

In all liver cancer histological subtypes the correctly identified COO patients had higher 

variance which was especially significantly in hepatocellular carcinoma and 

cholangiocarcinoma whose higher percentage of explained variance in individual patients 

compared to other histological types (Supplementary Figure 10). 

4.3.1.3.3 Skin melanoma 

The analysis of the COO predictions for skin melanoma patients, separated by their 

histological types, showed that the majority of histological types had quite high overall correct 

COO rate across all COO model setups (Figure 43A). The highest median proportions of 

correctly identified COO were observed in 2 lentigo malignant melanoma (100%), 10 unknown 

(95%), 79 nodular melanoma (93%), and 83 superficial spreading melanoma (92%) patients. 

These subtypes exhibited varying mutational loads, with some showing higher mutation counts 

than others. On the other hand, the lowest median proportions of correctly identified COO were 

for 5 mucosal lentiginous patients and 70 malignant melanoma, NOS. Those two types had 

lower mutational count per patients alongside 60 acral lentiginous melanoma patients with 63%. 

The Kruskal-Wallis test (p < 2.2*10-16) confirms the statistical significance of mutational counts 

between skin melanoma histological types.  

Moreover, I detected that correctly identified COO patients generally had a higher 

mutational load compared to incorrectly labeled patients across all types in all COO model 

setups (Figure 43B). Notably, subtypes such as malignant melanoma, NOS, and superficial 

spreading melanoma displayed significantly higher mutation counts in correctly identified COO 

patients. Conversely, certain subtypes like desmposlasmic and mucosal lentiginous melanoma 

had fewer samples, making the results less statistically robust. In the random forest COO model, 

incorrectly identified COO patients with mucosal lentiginous melanoma exhibited more 

mutations than those correctly identified. 
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Figure 43. A) Median of correctly identified cell-of-origin (COO) proportions across all developed COO model 

setups for skin melanoma cancer patients, separated by their histological subtype. The distribution of the number 

of mutations per patient is visualized as boxplots for each histological subtype. B) Distribution of the number of 

mutations per patient separated by correctly identified COO for each histological subtype across various COO 

models. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Interestingly, the explained variance in correctly identified COO patients varied 

significantly across different melanoma subtypes and COO model setups (Supplementary 

Figure 11). Most melanoma types exhibited higher explained variance in correctly identified 

COO patients, indicating a strong relationship between mutational patterns and accurate COO 

prediction. However, desmoplastic melanoma showed an opposite trend across all developed 

COO model setups, with incorrectly identified COO patients having higher explained variance. 

Additionally, the removal of kataegis-affected regions from the skin melanoma COO model 

setups resulted in a significant reduction in explained variance compared to other setups. 
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4.3.2 Topologically-associated domains based cell-of-origin predictive model 

To test the influence of 3D chromatin organization on the prediction accuracy of the 

models, I developed numerous regression models using various tissue-specific topologically 

associated domains from normal liver tissue, epidermal keratinocytes (NHEK), and human 

mammary epithelial cells (HMEC) called with various TAD callers for breast, liver, and skin 

cancers (Figure 44). The results of models trained on aggregated mutational profiles from each 

cancer type, regardless of the tissue-specific TADs on which the mutations were summarized, 

show that correctly identified COO was achieved in most WGS data (Figure 44A).  

 

Figure 44. A) Multiple linear regression models for the prediction of mutation density of aggregated tumor profiles 

of breast, liver and skin cancer WGS from HMEC, NHEK cell-lines and liver tissue called using various programs 

from TADBK and 3D genome browser databases colored by their identified cell-of-origin. The models were 

trained on an extended set of 101 tissue sets but showing only the best one for each TADs. The overall explained 

variance is reported across the 10-fold cross-validation. B) Distribution of variance explained by each best 

topologically associated domains (TADs) model displayed as density plot 
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For liver and skin melanoma aggregated mutational profiles, the TAD calling tool 

GMAP with a 50 kb resolution resulted in the highest percentage of explained variance, 

approximately 83% for melanoma and 77% for liver, irrespective of the cell-line used. In 

contrast, for breast cancer, the highest explained variance in the TAD-based COO models was 

46%, achieved with the IS 10kb resolution, also independent of the cell-line. On the other hand, 

WXS data did not result in the correct COO prediction regardless of tissue specificity of used 

TADs, In WXS data, brain-related tissues were consistently the top predicted COO for all three 

cancers with generally lower variance explained across all models. Figure 44B contains the 

density plots of the mean percentage variance explained across TAD models for each cancer 

type. Out of the three cancers, skin cancer had the highest average accuracy across all TADs, 

with a mean of approximately 86%. Liver cancer followed with an average accuracy of around 

67%, and breast cancer had the lowest average accuracy at around 40%. 

First, I analyzed the number of mutations of aggregated cancer profiles normalized by 

TAD lengths for all used TADs (Figure 45A). The analysis revealed that breast, liver, and skin 

cancers exhibited similar mutational count patterns across different TAD calling methods. 

Notably, the mutational counts were somewhat higher for TADs identified using the IS 50kb 

method, while lower counts were observed for TADs called by the Lieberman method in both 

cell lines, HMEC and NHEK. Next, I examined the variation in TAD lengths across different 

TAD calling tools and cell lines or tissues (Figure 45B). The TAD length distributions varied 

significantly between different TAD calling tools, with less pronounced differences between 

cell lines. For instance, GMAP 50kb called TADs were substantially longer than IS 50kb TADs 

in both HMEC and NHEK cell lines, with median lengths around 106 bp for GMAP compared 

to 105 bp for IS. The DI method also exhibited longer TAD lengths at the 50kb resolution 

compared to the 10kb resolution, across all cell lines and tissues analyzed. 
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Figure 45. A) Distribution of normalized mutation count per TAD length from HMEC, NHEK cell-lines and Liver 

tissue called using various programs from TADBK and 3D genome browser databases. B) Distribution of gene 

lengths used for development of COO models in breast cancer. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. 

Prediction of COO for individual patients resulted in varying percentages of correctly 

identified COO using different tissue specific TADs (Figure 46A). Breast cancer patients had 

the lowest percentage of correct COO predictions from around 10 to 20 %, while skin melanoma 

had the highest percentage from around 55 to 75%. On the contrary, liver patients had the most 

notable percentage fluctuations from around 20 to 65%. The fluctuations in COO prediction 

accuracy across all cancer types were more related to the tools used for calling the TADs rather 

than the tissue specificity of the TADs. This is evident from the results showing that both NHEK 

and HMEC TADs called with the DI tools had the lowest number of correctly identified COO 

patients, whereas the GMAP 50kb tool setting resulted in the highest accuracy for both liver 

and skin melanoma. Interestingly, this pattern was not observed for breast cancer patients. 

Correctly identified COO patients had a significantly higher mutational burden and explained 

variance by the best model compared to incorrectly classified patients across all tissue-specific 

TADs in all cancers (Figure 46BC). The most significant separation and difference between 
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correctly and incorrectly identified COO patients in terms of these two features were detected 

in liver and skin melanoma using NHEK and HMEC TADs called with the GMAP 50kb tool. 

 

Figure 46. A) Distribution of normalized mutation count per TAD length from HMEC, NHEK cell-lines and Liver 

tissue called using various programs from TADBK and 3D genome browser databases. B) gene lengths used for 

development of COO models in breast cancer.  Box plots show the median value, interquartile range as a box, and 

the whiskers extend to IQR±1.5*IQR.  Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p 

<= 0.001, ****: p <= 0.0001 
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Since tissue-specificity was not a crucial factor for correct prediction of COO, I took 

only one tissue-specific TAD corresponding to the cancer type to train the models with indel 

mutations. The COO model with aggregated indel counts per TADs did not result in correct 

COO for any of the analyzed cancer types when indels were used (Supplementary Figure 12). 

The top best models were either of adipose or immune origin with significantly lower explained 

variance compared to SBS COO models (Wilcoxon test, p-value = 0.001), with the lowest one 

being for skin melanoma of around 24%. Regarding the individual patients COO predictions, I 

detected that less than 10% of breast and less than 3% of liver and skin cancer patients had their 

COO correctly predicted by the model.  

To determine if the annotated residual TADs significantly differed among cell lines and 

TAD calling tools within each cancer type, I calculated the total percentage of annotated TAD 

residuals and the number of overlapping annotated TAD residuals within TAD groups, defined 

by cell type/tissue and TAD calling tool (Figure 47).  

 

Figure 47. A) Percentage of annotated TAD from HMEC, NHEK cell-lines and Liver tissue called using various 

programs from TADBK and 3D genome browser databases based on their erroneous status; over-predicted are 

TADs with standard residuals lower than -2 and under-predicted TADs with standard residuals higher than 2. 

Tiles are colored by log transformed percentage. 
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Based on the percentage of annotated residuals in each TAD calling tool and cell line, 

a consistent pattern of annotated residuals was observed across all three cancer types (Figure 

47A). Out of all cancers, breast cancer had overall the lowest percentage of over-predicted 

TADs, ranging from 0.32% to 1.16%. In contrast, liver and skin melanoma exhibited slightly 

higher percentages of over-predicted residuals, from above 1% to around 2% in each TAD 

group. Conversely, breast cancer had higher percentages of under-predicted TADs across all 

TAD groups, with a maximum of around 4%, while liver and skin had around 2% to 3%. 

To see if the annotated outliers were only specific for certain called TAD tissue and 

tool, I examined the overlaps between them. Based on the number of overlapping TAD residuals 

from 15 TAD groups for each individual annotated residual type and cancer, I detected varying 

patterns of overlap (Figure 47B). Under-predicted outliers showed a smaller percentage of 

overlap in all 15 groups. Breast cancer's under-predicted TADs mostly overlapped with 15 or 

14 TAD groups, making up around 40% of all under-predicted TAD outliers across all TAD 

groups. Liver cancer had a slightly lower overlapping rate, with about 35% of under-predicted 

TADs overlapping with 15 or 14 TAD groups. Skin melanoma had the lowest overlap for under-

predicted TADs among the analyzed cancers. Unlike non-outliers and under-predicted TAD 

outliers, over-predicted TAD outliers, which were generally less abundant, were mostly 

associated with only a few TAD groups or were unique to a single TAD group. This is 

evidenced by the very high percentage, around 14% and up to a maximum of 20%, for liver 

cancer. 

4.3.2.1. Analysis of erroneous topologically-associated domains  

Based on the COO model that demonstrated the highest percentage of explained 

variance across aggregated cancer profiles and achieved the highest accuracy in identifying 

COO of individual patients, I selected the following TADs for downstream analysis in each 

cancer type: HMEC IS 10kb for breast cancer, and NHEK GMAP 50kb for skin melanoma and 

liver cancer. Despite HMEC IS 10 kb having more called TADs than NHEK GMAP 50 kb 

setting, the same percentage of outliers (~4%) was detected in all cancer types. Breast cancer 

had a total of 220 outliers out of 4854 TADs; 28 over- and 192 under-predicted. Skin melanoma 

had 87 outliers out of 1876, comprising 22 over- and 60 under-predicted, while liver cancer had 

82 out of 1876, consisting of 37 over- and 50 under-predicted (Figure 48A). Most enriched 

chromosomes with outliers where at least one outlier group was present in more than 5%, were 

breast chromosome 1, 8, 17 and 20; liver chromosome 5, 7, 8, and 15; and skin melanoma 
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chromosome 1, 5, 7 and 9 (Figure 48B). Only on melanoma chromosomes 5 and 9 I found a 

more prominent enrichment of over-predicted outliers. In other chromosomes and cancers, 

under-predicted TADs outliers dominated. In agreement with the analysis conducted on 1 Mb 

regions, I found that only a small number of TADs were annotated as the same outlier type by 

models trained on different cancer types, suggesting a distinct trait of each outlier in its 

corresponding cancer type (Figure 48C).  The highest overlap was found among non-outliers in 

all three cancer types. 

 

Figure 48. A) Predicted vs observed mutations of aggregated tumor profiles of breast, liver and skin cancer from 

the best multiple linear regression models of WGS data in topologically associated domains (TADs). Colors denote 

different outlier classes. B) Proportion of annotated outliers based on their location in the genome (if more than 

15% are outliers) in each cancer. C) UpsetR showing the overlaps of annotated TADs as over-, under-outliers or 

not an outlier between different cancer types. 

Afterwards, I analyzed the gene composition and regulatory features in those annotated 

outlier TADs. I found that CGC genes were more enriched in under-predicted outlier TADs in 

breast and skin melanoma cancers, whereas they were more prevalent in over-predicted regions 

of liver TADs (Figure 49A). Similar patterns were observed with TIME driver genes, with the 

exception that liver non-outlier TADs had a higher proportion of TIME genes compared to other 



108 

 

outliers (Figure 49B). Only in breast cancer, the enrichment of TIME genes was significant, 

with a chi-square test p-value of 1.61*10-6. Tissue-specific super-enhancers showed higher 

enrichment in non-outliers TADs across all normal and cancerous tissues/cell lines in all three 

cancer types (Figure 49C). This was especially prominent in various liver SE tissues, where 

under-predicted TADs had the lowest proportion of SE-affected TADs. In skin melanoma, over-

predicted TADs had the least proportion of SE-affected TADs across all cell lines.  

 

Figure 49. Proportion of annotated topologically-associated domains (TADs) based on their erroneous status that 

are affected with A) Cancer Gene Consensus (CGC), B) tumor immune microenvironment (TIME) and C) tissue 

specific super-enhancers (SE) from both normal and tumorigenic cell-lines or tissues from the SEdb2.0 database 

Based on the over-presentation (ORA) analysis of GO terms, I found that the majority 

of terms were enriched in non-outlier TADs in all cancers (Figure 50A). In breast cancer, these 

pathways were associated with brain-related processes such as forebrain development, 

axonogenesis and actomyosin structure organization. In contrast, liver and skin melanoma 

cancers, on the other hand, were enriched in pathways related to post-transcriptional gene 

silencing, highlighting the role of RNA-mediated regulation. Additionally, under-predicted 

TADs in liver cancer showed enrichment for brain-related processes, as did over-predicted 

TADs in skin melanoma. Over-predicted TADs in the liver were also associated with the G 

protein-coupled purinergic nucleotide receptor signaling pathway. 
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The ORA of the Hallmark of Cancer pathways identified only one significant hallmark: 

IL6-JAK-STAT3 signaling, with two genes, IL3RA (ENSG00000185291) and CSF2RA 

(ENSG00000198223), found in over-predicted breast TADs (p-value = 0.014). Further ORA 

on databases of disease-gene associations (Jensen and DisGeNET) did not yield significant 

terms related to cancer development after adjusting for multiple hypothesis testing. However, 

examining the top 10 terms in the Jensen database for under-predicted TADs revealed 

associations with “Liver cancer” in liver TADs (27/597 genes, p-value = 0.21), “Skin cancer” 

in skin melanoma TADs (25/454 genes, p-value = 0.70), and “Breast cancer” in breast TADs 

(2/8 genes, p-value = 0.86). The two genes identified in under-predicted TADs for breast cancer 

were MUC1 (ENSG00000185499) and ERBB2 (ENSG00000141736). 

 

Figure 50. A) Over-representation analysis of GO terms involved in biological processes. Top 3 most significant 

by filtering Benjamini-Hochberg p-value of 0.05 are shown for each category of annotated TADs based on their 

standard residual (erroneous prediction rate) B) TPM (transcripts per million) expression of genes in normal 

tissues and C) expression of tissue-specific genes from normal tissues of corresponding cancer type (breast, liver 

and skin cancer) from GTEX TPM 30 database separated by residual annotation.  (Wilxcoxon test) 
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When examining gene expression in normal tissues corresponding to the COO of each 

cancer type, outlier TADs exhibited overall lower gene expression compared to non-outliers 

(Figure 50B). In liver cancer, under-predicted TADs have significantly lower expression levels 

than over-predicted TADs (p < 2.22*10-16) and non-outlier TADs (p < 2.22*10-16). In contrast, 

for skin melanoma, over-predicted TADs have significantly lower gene expression levels 

compared to under-predicted TADs (p = 0.0003) and non-outlier TADs (p < 2.22*10-16). 

Furthermore, I classified the annotated TADs outliers by their chromatin states (Figure 

51A). Chi-square test showed that there was a significant difference in chromatin states of 

annotated TADs outliers, p-value of 1.3*10-33, 1.69*10-26 and 7.77*10-7 for breast, liver and 

skin melanoma respectively. In breast and liver cancers, non-outlier TADs showed a higher 

proportion of repressed chromatin compared to over-predicted and under-predicted TADs. 

Also, in these cancers there was a higher proportion of over-predicted TADs with 

heterochromatin state. In skin melanoma, non-outlier TADs display a mix of low-active and 

repressed chromatin states similar to other two cancers, but under-predicted TADs are more 

characterized with a repressive state.  

 

Figure 51. A) TADs annotation by Akdemir et al. 2020. Based on active and inactive state (heterochromatin, low, 

low-active and repressed) B) TADs stability score of TADs boundaries distribution in annotated erroneous regions 

(Wilcoxon test). 
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In breast cancer, the stability scores for over-predicted TADs were significantly lower 

compared to non-outlier TADs (p-value=0.015), and under-predicted TADs (p-value=4.6*10-

6) (Figure 51B). Liver cancer followed a similar trend, with significantly lower stability scores 

for under-predicted TADs than non-outliers (p-value=2*10-10). Livers over-predicted TADs 

also showed reduced stability without statistical significance (p-value=0.29). Moreover, livers 

under-predicted TADs showed statistically significant lower stability than over-predicted ones 

(p-value=0.014). In skin melanoma, while the differences in stability scores among TAD 

categories were not statistically significant, there was a trend of lower stability in over-predicted 

compared to under-predicted (p-value=0.16) and non-outlier TADs (p-value=0.059). 

Under-predicted TADs were significantly enriched with SV-hotspots than non-outliers 

and over-predicted TADs (Figure 52A). This enrichment was evident across all three cancer 

types, with p-values of 6.22*10-110 for breast cancer, 3.85*10-07 for liver cancer, and 0.0116 for 

skin melanoma, as determined by the Chi-squared test. Over-predicted TADs in breast cancer 

show a similar level of SV-hotspot enrichment to non-outliers, while they are less abundant in 

liver and skin melanoma. Breast de novo SV signature 4 hotspots were more abundant in both 

under- and over-predicted TAD outliers (Figure 52B). Liver de novo SV signature 3 hotspots 

were exclusively found in the liver, as this is the only SV-hotspot signature I detected for this 

cancer. For skin melanoma, under-predicted TADs commonly exhibit both de novo SV 

signature 3 and 4 hotspots, whereas over-predicted TADs are associated only with skin de novo 

SV signature 3. 

Similar patterns were observed with kataegis regions, where under-predicted TADs in 

all cancer types demonstrate significant enrichment compared to other annotated TADs groups 

(Figure 52C).  This enrichment is particularly pronounced in breast cancer (p-value 4.68*10-8) 

and skin melanoma (p-value 3.42*10-14), with liver cancer showing a p-value of 0.098 

determined by Chi-squared test. Over-predicted outliers across all cancer types had a 

significantly lower percentage of them affected by kataegis. It appears that the severity of 

kataegis regions, determined by a higher number of mutations detected in kataegis regions, was 

positively correlated with the error rate of prediction on regions, absolute standard residual 

value (Figure 52D). This is apparently more profound in breast and skin melanoma cancers 

where the correlations are more positive in kategis defined regions compared to non-kataegis 

ones. The only stand out is liver cancer where the correlation was even lower in kataegis regions 

and not significant in both kataegis and non-kataegis regions unlike the other two cancer types.  
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Figure 52. A) Proportion of topologically associated domains (TADs) affected by SV-hotspot or not based on their 

annotation as over-, under-outliers or not an outlier B) Proportion of residual annotated TADs based on their SV-

hotspot mutational signature C) Proportion of TADs affected by SV-hotspot or not based on their annotation as 

over-, under-outliers or not an outlier D) Spearman correlation between mutations affected by kataegis and 

erroneous prediction rate, as well as between non-kataegis mutations and erroneous prediction rate 

 

The results from Fisher's exact test or Pearson's Chi-square test indicate that there was 

no statistically significant difference in the presence of SV-hotspot and kataegis affected TADs 

across any defined outlier and non-outlier groups, with the exception of non-outliers in breast 

cancer, where the p-value was 1.74*10-17 (Figure 53).  
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Figure 53. Proportion of SV-hotspots and kataegis affected TADs of over-predicted, under-predicted and non-

outlier regions across breast, liver and skin cancer. Each tested group is colored by Benjamini-Hoechberg 

corrected p-value of Fisher exact test or Pearson’s Chi-square test results 

 To conclude whether certain SBS mutational signatures contribute to higher prediction 

error rate in TADs COO model, I calculated Pearson's correlation of summarized SBS 

signatures in TADs and absolute standard residual (Table 10).  After correcting for multiple 

hypotheses testing and filtering for significant correlations, I selected the top five most 

significant correlations and compared them to the correlations obtained using all mutations. In 

breast cancer, four out of the five shown SBS signatures had higher correlations than all 

mutations: SBS40, SBS8, SBS5, and SBS3. SBS40 and SBS8 were the most abundant, with 

proportions of 14.16% and 11.58%, respectively. For liver cancer, three out of the five SBS 

signatures had higher correlations than all mutations: SBS8, SBS40, and SBS12. All three SBS 

signatures were present in more than 10% of mutations, with SBS40 being the most frequent at 

20.80%. In contrast, in skin melanoma, one of the most abundant signatures, SBS7a (81.06% 

of mutations), had a slightly higher positive correlation (~0.169) than all mutations (~0.162), 

while SBS7b had lower positive correlations with prediction error than all mutations.  
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Table 10. Top 5 strongest Pearson’s correlations of mutational signature present in more than 5% or 

all mutations and absolute standard residual per topologically-associated domain for breast and liver 

cancer alongside the correlation of all mutations with Benjamini-Hochberg corrected p-values lower 

than 0.05. Table also contains proportion of mutations belonging to each signature in aggregated tumor 

profiles 

Cancer type 
SBS mutational 

signature 

Pearson's 

correlation 
p-value 

Proportion of 

mutations (%) 

Breast 

All mutations 0.06163406 5.43*10-05 100 

SBS40 0.09273914 6.09*10-10 14.16 

SBS8 0.08685779 7.88*10-09 11.58 

SBS5 0.07849807 2.04*10-07 6.57 

SBS3 0.06441259 2.45*10-05 8.11 

SBS1 0.0563627 2.48*10-04 5.70 

Liver 

All mutations 0.23230902 5.18*10-23 100 

SBS8 0.30046776 2.00*10-38 10.99 

SBS40 0.25393662 2.68*10-27 20.80 

SBS12 0.24209204 7.44*10-25 20.49 

SBS92 0.22092379 4.86*10-21 7.87 

SBS22 0.19700881 7.14*10-17 5.44 

Skin 

All mutations 0.16185076 1.14*10-11 100 

SBS7a 0.16944069 1.01*10-12 81.06 

SBS7b 0.11643779 1.63*10-06 13.67 

 

Given that TADs with higher prediction error rates, as defined by standard residuals, 

were linked to SV-hotspots, kataegis regions, and specific mutational signatures, I calculated 

the correlation between mutations and histone modifications from normal tissues corresponding 

to the cell-of-origin for each cancer type. These calculations were grouped according to the 

influence of specific genomic features. Regardless of the specific groups of affected TADs, all 

mutations and closed chromatin modifications (H3K27me3 and H3K9me3) exhibited the 

strongest positive correlation for breast cancer (Figure 54A). On the other hand, COO open 

chromatin modifications had the strongest negative correlation in liver cancer regardless of the 

annotated TAD group. Skin melanoma showed the weakest correlations with closed chromatin 

histone modifications, with the highest positive correlations being 0.291 and 0.429 in under-

predicted TADs. Over-predicted TADs generally had the worst correlation compared to other 

annotated outlier TAD groups across all cancer types. The most noticeable difference between 

TADs affected by SV-hotspots and/or kataegis was the increase of negative correlation with 
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open chromatin marks compared to the regions not affected by those genomic features. This 

was particularly evident in breast cancer. 

Analysis of the correlation of SBS mutational signature and normal epigenomes of cell-

of-origin in TADs showed that the age-related SBS1 signature has a weaker correlation than 

expected in all cancers (Figure 54B). This was most apparent in liver and skin cancer where the 

SBS1 signature was present in smaller amounts compared to other analyzed signatures. In breast 

cancer, mutational signatures SBS8, SBS40, and SBS5 had the strongest correlations with both 

open and closed chromatin modifications. Although APOBEC-related mutational signatures 

SBS13 and SBS2 were quite abundant, they had weaker correlations with COO epigenome. In 

liver cancer, SBS24 and SBS23 signatures had the weakest negative correlations with open 

chromatin marks but very high positive correlations with H3K27me3. Interestingly, the 

abundant SBS12 signature in liver did not show a correlation with the same modification, 

H3K27me3. As for skin melanoma, SBS7b signature, which was less abundant than SBS7a, 

had stronger and statistically significant positive correlations with open chromatin. 
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Figure 54. A)  Spearman’s correlation of all mutations and histone modifications of cell-of-origin tissue on TADs 

annotated based on different criteria (containing or not SV-hotspots or kataegis regions or both, based on outlier 

annotation) B) Spearman’s correlation of SBS mutational signatures and histone modifications of cell-of-origin 

tissue with number absolute counts divided by 106 written in brackets of signatures in used TADs. Non-significant 

correlations, Benjamini-Hoechberg corrected p-value above 10-5 are labeled with ns. 

4.3.2.2. Improving the TADs COO model  

To enhance the accuracy of the TADs model, I excluded SV-hotspots, kataegis regions, 

and specific mutations associated with certain mutational signatures that were linked to higher 

error rates. In the aggregated breast cancer model, this adjustment led to an improvement in 

overall explained variance when kataegis- and SV-hotspot affected TADs were removed, with 

a Wilcoxon test p-value of 0.004 compared to the original model that included all TADs (Figure 

55A). Removal of SBS mutational signatures did not results in better model accuracy. However, 
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the proportion of correctly identified COO patients in breast cancer remained similar across all 

COO TADs model configurations (Figure 55B). For liver cancer, none of the TADs COO 

models setups resulted in significant improvement in either the explained variance of 

aggregated profiles or the accuracy of COO identification for individual patients. In contrast, 

the skin melanoma COO model experienced a notable decline in performance when kataegis-

affected TADs were excluded from the models (Wilcoxon test, p-value=0.001). 

 

Figure 55. A) Multiple linear regression models for the top prediction of mutation density of aggregated tumor 

profiles of breast, liver and skin cancer WGS based on 1 Mb regions that were either removed due to being affected 

by SV-hotspots and/or kataegis or excluded certain mutations due to their SBS signature origin. The SBS mutations 

which were removed are SBS13, SBS3, SBS8 and SBS40 for breast, SBS40 and SBS8 for liver and SBS43 for skin 

cancer. The figure shows the overall explained variance, depicted as the mean with standard deviation, derived 

from a 10-fold cross-validation analysis. B) Proportion of correctly and incorrectly identified COO for individual 

patients based on results of corresponding COO models in A). 

Only the random forest modifications of the TADs COO model using all TADs and 

aggregated mutational cancer profiles resulted in a higher explained variance with correctly 

identified COOs (Figure 56A). Statistically significant improvements in correctly identified 

COOs on aggregated profiles were observed when comparing multiple linear regression to the 

random forest model for breast (p-value=0.001) and liver (p-value=3*10-07) cancers. However, 

based on individual patient COO predictions, the random forest model performed similarly or 

even worse, as evidenced by the breast cancer results (Figure 56B). Unfortunately, the extreme 
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gradient boost TADs COO model yielded lower explained variances and incorrectly predicted 

the cell-of-origin for breast cancer as keratinocyte. The poor performance of the current extreme 

gradient boost TADs COO model was also evident in its inability to run successfully for 

individual patients due to low variance in model splits. 

 

Figure 56. A) COO models (multiple linear regression, random forest and extreme gradient boosting) for the top 

prediction of mutation density of aggregated tumor profiles of breast, liver and skin cancer WGS based on TADs. 

The figure shows the overall explained variance, depicted as the mean with standard deviation, derived from a 10-

fold cross-validation analysis. B) Proportion of correctly and incorrectly identified COO for individual patients 

based on results of corresponding COO models in A). 

4.3.2.3. Individual patient TADs COO model 

Incorrectly assigned COOs for individual patients included brain-related tissues, right 

atrium, keratinocytes, gastrointestinal tissues, esophagus and immune cells (Figure 57). The 

models show a high degree of consistency in predicting the same COO tissues across all 

methods, particularly for liver and skin cancers.  
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Figure 57. Alluvial plot illustrating the predicted cell-of-origin (COO) of individual patients across various COO 

model setups in both aggregated cancer data and individual patient mutational profiles. Assigned COO tissues 

that represent less than 4% in each cancer type are labeled as "Other". Single-base substitutions (SBS) which 

were removed are SBS13 for breast cancer, SBS40 for liver cancer and SBS43 for skin melanoma patients.  

The majority of correctly identified COO patients across all cancer types exhibited 

significantly higher explained variance and a greater number of mutations per patient in TADs 

(Figure 58). However, only the correctly identified COO patients with skin melanoma 

demonstrated a higher number of kataegis in TADs per patient. In contrast, breast cancer 

patients with incorrectly identified COOs showed a higher number of both kataegis and SV-

hotspots in TADs. For liver cancer, while the number of kataegis was higher in incorrectly 

identified COOs, the number of SV-hotspots did not differ significantly between the two groups 

of patients.  
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Figure 58. The distribution of explained variance, the number of mutations, kataegis and SV-hotspots separated 

by correct or incorrect COO identification of individual patients with TADs. Box plots show the median value, 

interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: 

p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Regarding the differences in the proportion of SBS mutational signatures in TADs 

between correctly and incorrectly identified COO patients using the TADs COO model, I found 

that SBS1 tended to be higher in incorrectly identified COO patients, with a significant 

difference detected in liver cancer (Figure 59). In breast cancer, SBS13 and SBS3 were 

significantly enriched in incorrectly identified COO patients, while SBS3 was enriched in 

correctly identified COO patients. Although not statistically significant, SBS2 and SBS40 

tended to be higher in incorrectly identified COO breast cancer patients. In liver cancer, most 

signatures tended to have higher abundance in incorrectly identified patients, except for SBS12, 

which was significantly higher in correctly identified COO patients. In skin melanoma, the most 

noticeable differences were the statistically significant differences in SBS7a and SBS7b, which 

showed opposite enrichments between the two groups of patients. SBS7a was more abundant 

in correctly identified COO patients, while SBS7b was more abundant in incorrectly identified 

ones, in agreement with 1 Mb models. Other more abundant signatures in skin melanoma, such 

as SBS3, SBS38, SBS40, and SBS8, showed higher proportions in correctly identified COO 

patients. 
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Figure 59. Proportion of SBS mutational signatures per patient separated by correct or incorrect COO 

identification of individual patients with TADs. Box plots show the median value, interquartile range as a box, and 

the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p 

<= 0.001, ****: p <= 0.0001 

4.3.2.3.1 Breast cancer 

The accuracy of correctly identifying the COO using TADs COO models resulted in a 

low proportion of correctly identified COO in all histological subtypes of breast cancer (Figure 

60). Adenoid cystic carcinoma, with only one patient, achieved the highest accuracy, with 100% 

of patients correctly identified but with only 1 sample. In contrast, several subtypes, including 

tubular and invasive cribriform carcinoma, pleomorphic carcinoma, neuroendocrine carcinoma, 

and medullary carcinoma, had no patients with correctly identified COO. Among the more 

common subtypes, mucinous adenocarcinoma, infiltrating duct carcinoma, lobular carcinoma 

(NOS), and duct micropapillary carcinoma showed varying accuracy rates of 35%, 27%, 26%, 

and 33%, respectively. For correctly identified COO patients, the number of mutations per 

patient and the explained variance were higher across several subtypes. Specifically, in 

infiltrating duct carcinoma, the difference in mutational count and explained variance between 

correctly and incorrectly identified patients was statistically significant. 
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Figure 60. A) Proportion of correctly identified cell-of-origin (COO) proportions using the topologically 

associated domains (TADs) separated by their histological subtype. The distribution of the number of mutations 

per patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Despite a significant difference in the number of mutations per patient among subtypes 

(Kruskal-Wallis test, p = 0.00084), only one patient from the Her2 subtype had its COO 

correctly identified using TADs COO models (Figure 61A). The majority of PAM50 subtypes 

were classified as infiltrating duct carcinoma. Based on their HRD status, HRD patients showed 

a higher proportion of correctly identified COO patients (41%) compared to non-HRD patients 

(30%) (Figure 61B). Additionally, the number of mutations per patient was significantly higher 

in HRD patients, who were predominantly of the infiltrating duct carcinoma subtype. 

Regardless of the HRD status, correctly identified COO patients exhibited a higher total 

number of mutations per patient in the used TADs compared to incorrectly identified ones 

(Figure 61C). HRD breast cancer patients had overall higher values of both mutation count and 

explained variance in the COO model compared to non-HRD patients.  
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Figure 61. A) Proportion of correctly identified cell-of-origin (COO) proportions using TADs, separated by their 

PAM50 subtype. The distribution of the number of mutations per patient is visualized as boxplots for each 

histological subtype.  B) Proportion of correctly identified cell-of-origin (COO) proportions using the top 40% 

mutated protein-coding genes, separated by their PAM50 subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.3.2.3.2 Liver cancer 

A high proportion of individual patients had its COO correctly identified with TADs 

COO model in the majority of liver cancer subtypes (Figure 62). In hepatocellular carcinoma, 

which is the most common subtype with 467 patients, 78% of patients were correctly identified. 

Hepatocellular adenoma and fibrolamellar hepatocellular carcinoma, each with 5 patients, had 

the highest accuracy, with 100% and 80% of patients correctly identified, respectively. 

Combined hepatocellular and cholangiocarcinoma subtypes, with 8 patients, showed a 75% 

accuracy, while cholangiocarcinoma, with 24 patients, had the lowest accuracy of 25% in COO 

identification. Correctly identified COO patients consistently had a significantly higher number 

of mutations per patient across almost all subtypes, with the most pronounced difference 

observed in hepatocellular carcinoma (p < 0.0001). Additionally, correctly identified patients 
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also had a higher explained variance in the models compared to incorrectly identified COO 

patients in all subtypes. 

 

Figure 62. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 40% mutated 

protein-coding genes, separated by their histological subtype. The distribution of the number of mutations per 

patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.3.2.3.3 Skin cancer 

The analysis of the histological subtypes of skin melanoma showed varying proportions 

of correctly identified COO patients across the different subtypes (Figure 63). The mucosal 

lentiginous melanoma and malignant melanoma (NOS) subtypes had the lowest proportion of 

correctly identified COO patients, at 39% and 31%, respectively. In contrast, the lentigo 

malignant melanoma with two and unknown melanoma subtypes with 10 patients achieved the 

highest accuracy, with 100% and 90% of patients correctly identified, respectively. Superficial 

spreading melanoma and nodular melanoma also displayed high accuracy, with 96% and 96% 

of patients correctly identified. Patients with correctly identified COO consistently exhibited a 

higher number of mutations per patient and higher explained variance compared to incorrectly 

identified COO patients across all subtypes. This observed difference was most notable and 

statistically significant in malignant melanoma (NOS) patients.  
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Figure 63. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 20% mutated 

protein-coding genes, separated by their histological subtype. The distribution of the number of mutations per 

patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.3.3 Gene-based cell-of-origin predictive models  

In the development of the gene-based COO model I made numerous preliminary 

multiple linear models on aggregated gene mutational profiles of breast, liver and skin cancer 

in order to select the best model setting based on various COO model setups.   

4.3.3.1. Lack of intron enrichment affects gene-based COO models 

In previous analyses, I detected a significant difference between WGS and WXS 

mutational profiles, as well as a difference in performance of COO models based on 1 Mb 

genomic regions and TADs. These differences were especially prominent in TCGA cohorts. 

For this reason, I first calculated the proportion of mutations in introns and exons to see if the 

performance differences were caused by varying enrichment between the datasets. As it is 

clearly shown on Figure 64, most of the WGS datasets were more enriched in introns, except 

the TCGA cohorts (BRCA-US, LIHC-US, SKCM-US), while WXS datasets were more 

enriched in exons, with the exception of the BRCA-UK cohort. 
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Figure 64. Proportion of detected mutations in intronic and exonic regions in all genes (human genome version 

hg19) from WGS and WXS data of breast, liver and skin cancer individual cohorts. (Chi-square test, p-value < 

2.2*10-16 for both WGS and WXS datasets) 

As there was a significant difference in intron enrichment between sequencing 

technologies and TCGA cohorts, I evaluated the performance of the top COO model of various 

settings where I used different gene sets and different normalizations (summed exonic 

mutations normalized by gene length, Gene exon model; summed exonic and intronic mutations 

normalized by gene length, Gene exon+intron model; and summed exonic mutations 

normalized by coding-sequence length, CDS model). For the WXS data, COO models did not 

result in correct cell-of-origin prediction in any of the settings for breast and liver cancers 

(Figure 65), for which the majority of models predicted brain-related tissues as the COO. Only 

the COO of skin melanoma was correctly predicted in all selected gene groups with the CDS 

model setting, with the exception of TIME genes. The highest explained variance (35%) was 

obtained with the use of protein coding genes. 
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Figure 65. The top performing multiple linear regression models for the prediction of mutation density of 

aggregated tumor profiles of breast, liver and skin cancer WXS in various gene settings. Coding-sequence (CDS) 

settings represent the count of mutations per exon normalized length by total CDS length. Gene setting implies 

summing mutations per exon or exon plus intron normalized by total gene length. The overall explained variance 

is reported across the 10-fold cross-validation.  

Given that the WXS-based COO model failed to accurately predict the COO in two 

cancer types, I conducted an additional assessment of the significance of intronic mutations in 

the COO models. I ran WGS-based Gene exon, Gene exon+intron and CDS models and 

observed a substantial decline in the accuracy of COO predictions and a significant reduction 

in the explained variance when intronic mutations were not present, which was most 

pronounced in the liver and skin cancer COO models (Figure 66). Among all cancer types, skin 

melanoma exhibited the highest overall percentage of explained variance with correct COO 

identification across all gene-based COO model settings, except Gene exon models. In liver and 

breast cancer, the correct COO was not identified using either all genes or tissue-specific genes, 

with the best models suggesting immune cells or adipose tissue as the likely COO. All cancer 

types showed the highest variance explained and correct COO identification when using the top 

40% of all mutated genes specific to each cancer type. Consequently, the following sub-

chapters focus on the characterization of the top N% mutated genes from WGS data and a 

detailed analysis of the WGS-based COO models for each cancer type. 
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Figure 66. The top performing multiple linear regression models for the prediction of mutation density of 

aggregated tumor profiles of breast, liver and skin cancer WGS in various gene settings. Coding-sequence (CDS) 

settings represent the count of mutations per exon normalized length by total CDS length. Gene setting implies 

summing mutations per exon or exon plus intron normalized by total gene length. The overall explained variance 

is reported across the 10-fold cross-validation.  

Preliminary downstream analysis of disease pathways indicated that outlier genes with 

higher than expected prediction errors (measured as standardized residuals) were implicated in 

pathways associated with male reproduction, such as spermatogenic failure and oligospermia, 

particularly in skin melanoma (ORA, p < 0.05). Given the unexpected nature of these findings, 

I investigated potential biases in standardized residual values with respect to chromosomal 

location. It was found that genes on the Y chromosome exhibited the highest absolute 

standardized residual values, followed by those on the X chromosome (Figure 67). This bias 

was notably pronounced in liver cancer, where genes on both sex chromosomes had higher 

error rates compared to the median value across all genes (Wilcoxon test, p-value < 0.05). 

Consequently, genes located on sex chromosomes were excluded from subsequent analyses to 

mitigate this bias. 
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Figure 67. A) Disease over-representation analysis (ORA) from DisGeNET of all WGS data outliers genes, 

absolute residual value greater than 2, determined in corresponding correct COO tissue. B) Log transformed 

absolute standard residual values per all genes. Autosomal chromosomes are colored grey while X and Y 

chromosomes are colored darkmagenta and darkblue. Dashed red line represents the median value of absolute 

standard residual values across all genes in each cancer type for the correct COO model. Box plots show the 

median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

4.3.3.2 Gene-based COO predictive model on WGS data 

 Firstly, I characterized the top N% most frequently mutated genes in breast, liver, and 

skin cancers, excluding genes from the sex chromosomes. Subsequently, I re-ran the gene-based 

COO models with these excluded genes to maintain consistency across all cancer types. The 

analysis and interpretation were focused on gene-based COO model results obtained from 

mutations detected by whole-genome sequencing data, due to the significantly superior 

performance observed across all three cancer types, particularly with the use of the top mutated 

genes. 
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4.3.3.2.1. Frequently mutated genes in different cancers are involved in 

brain-specific processes 

Frequently mutated genes in cancers are often reported based on their known 

implications in cancer or by focusing solely on driver mutations. However, since background 

mutations also accumulate in cancers, in addition to driver mutations, I examined the most 

mutated genes, considering all mutations regardless of their location in introns or exons.  

Analysis of all genes and protein-coding genes showed that, compared to breast and skin cancer, 

liver cancer had twice as many genes among 5% of most frequently mutated genes (Figure 

68A).  As the percentage of top mutated genes increases, the number of top mutated genes in 

skin cancer surpasses those in breast and liver cancers.  The majority of the genes were shared 

among cancers, with 468 overlapping genes in all cancer types for top 40% mutated genes 

(Figure 68B). Almost all of the top 40% mutated genes in breast and liver cancer overlap with 

the top all 40% mutated genes identified in skin cancer.  

The over-representation analysis (ORA) using Gene Ontology (GO) terms for the top 

40% mutated genes within each cancer type separately shows that most pathways are shared 

among cancers (Figure 68C). These pathways primarily involve brain-related processes such as 

the regulation of neuron projection development and synaptic transmission. Additionally, skin 

melanoma is enriched in the process of axonogenesis, while breast and liver cancers include 

locomotory behavior as enriched terms.  

Further validation of these findings was performed by re-running the ORA on the 468 

overlapping genes across all cancer types. The analysis confirmed that these genes are 

predominantly involved in brain-specific processes, including synaptic transmission, protein 

localization to synapse, and the regulation of neuron projection development (Figure 68D). 

Moreover, certain processes were uniquely enriched in most frequently mutated genes in breast 

cancer, such as the development of primary female sexual characteristics. 

 



131 

 

 

Figure 68. A) Number of top N% frequently mutated genes (all and protein-coding) in breast, liver and skin cancer. 

The x-axis represents the top N% of mutated genes, where N ranges from 5% to 50%. The y-axis shows the 

corresponding number of genes within each percentage category. B) Upset plot showing the overlap of top 40% 

mutated genes across different cancer types. C) Gene ontology (GO) over-representation analysis showing the top 

10 enriched pathways in each cancer type of top 40% mutated genes. D) Hierarchical clustering of enriched 

biological processes associated with 468 overlapping 40% all mutated genes found in breast, liver and skin 

melanoma cancers. Each row represents a biological process from GO terms, and processes are color-coded 

according to their statistical significance (p.adjust values), where darker blue shades represent more significant 

enrichments. The size of the circles corresponds to the number of genes associated with each process.  

 

Additionally, I examined the expression levels of the 468 overlapping genes in normal 

tissues using GTEx TPM data across 30 tissues. I found that these genes were more highly 

expressed in brain, nerve, and testis tissues (Figure 69). In contrast, their expression was 

significantly lower in normal breast (p=5.710*-14), liver (p=1.7*10-58), and skin (p=1.6*10-20) 

tissues compared to the highest expression levels in brain tissue, as determined by the Wilcoxon 

test. 
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Figure 69. Unsupervised clustering (average) using Euclidean distance of GTEX TPM normalized 30 tissues of 

468 overlapping 40% all mutated genes found in breast, liver and skin carcinoma tissues. Box plots show the 

median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR of normalized expression 

TPM values for each normal tissue. 

4.3.3.2.2 Breast cancer COO gene-based predictive model 

To investigate how genes can be used to predict the cell-of-origin (COO) based on the 

breast cancer gene mutational profiles and the epigenomes of normal tissues, I created various 

gene subgroups: all genes, protein-coding genes, tissue-specific genes, driver genes, genes 

grouped according to HMEC IS 10kb topologically-associated domains (TAD-grouped genes), 

and the top N% mutated genes. The multiple linear regression analysis using these defined gene 

groups demonstrated that the correct COO of aggregated breast cancer mutational profiles could 

only be reliably identified using either TAD-grouped or top N% mutated genes (Figure 70). 

Additionally, these same groups exhibited the highest explained variance. For instance, TAD-

grouped protein-coding genes had an explained variance of approximately 28%, while the top 

10% mutated protein-coding gene group showed an explained variance of around 54%. Other 

defined gene subgroups had about 10% explained variance when the COO was incorrectly 

identified, except for driver genes, which had an incorrectly identified COO with more than 

20% explained variance. Moreover, the second-best COO model, which was not the correct 

COO in any model setup, performed approximately 4% worse on average than the top COO 

model, with larger discrepancies observed in the top N% of mutated genes. Gene ontology and 
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the top 5% mutated genes failed in COO modeling due to the lower number of genes and overall 

mutations in them, so they were not included in downstream analysis.  

 

Figure 70. Multiple linear regression models for the prediction of mutation density of aggregated tumor profiles 

of breast WGS were trained on an extended set of 101 tissue sets but showing only the top 10 in each defined 

subgroup of genes. The overall explained variance is reported across the 10-fold cross-validation. 

Prediction on individual breast cancer patients across all COO model setups using 

various gene subsets resulted in the majority of patients having incorrectly identified COO. 

Only in the top N% mutated gene subsets, both for all genes and protein-coding genes, were 

the models able to correctly identify the COO for up to 10% of patients (Figure 71A), with the 

model trained on top 40% of all mutated genes achieving highest accuracy, and models trained 

on all genes, all TADs-grouped genes and protein-coding TADs-grouped genes achieving 

lowest accuracy. Across all models, the cell-of-origin assigned to individual breast cancer 

patients was identified as either immune cells or brain-related tissues (Figure 71B). Immune 

cells were predominantly assigned in models that included all genes. In contrast, when the 

analysis was restricted to protein-coding genes, there was a higher misclassification rate 

involving brain-related tissues. Additionally, a significant proportion of incorrectly identified 

COO were assigned as originating from the thymus. 
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Figure 71. A) The proportion of individual samples in which the prediction on an individual level matches the 

correct cell of origin of the highest explaining models in different modeling setups using various subsets of genes 

for breast cancer. B) Alluvial plot illustrating the cell-of-origin (COO) of individual patients across various COO 

model setups based on different gene subsets 

To investigate the significant differences observed between developed breast cancer 

cell-of-origin (COO) models based on different gene subsets, I first examined the gene length 

and the number of mutations within these subsets. I found that the mutation counts, normalized 

by gene length, exhibit considerable variability across different gene subgroups (Figure 72A). 

The top N% mutated genes showed the highest normalized mutational count, followed by all 

genes, protein-coding genes, and TIME genes. The Cancer Gene Consensus set had one of the 

lowest normalized mutational counts. When I examined gene length distributions, I found that 

they varied widely across different groups (Figure 72B). For instance, the all genes and all 

TADs grouped genes subsets displayed a wide range of gene lengths, from very short genes 

(around 102 bp) to very long genes (up to 107 bp). In contrast, the top N% mutated gene subsets 

exhibited a narrower range of longer gene lengths, with an increasing trend towards longer 

lengths in the most frequently mutated genes. Specifically, the top 10% and top 20% mutated 

gene subsets had the longest gene lengths on average. 
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Figure 72. A) Distribution of normalized mutation count per gene length of various groups of genes and B) gene 

lengths used for development of COO models in breast cancer. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. 

Moreover, based on the Spearman's correlation with the best assigned COO model 

epigenome, which indicates the potential cell-of-origin of breast cancer, I found that both the 

TADs grouped gene subsets and the top N% mutated genes exhibited the strongest positive 

correlation with repressive histone marks H3K9me3 and H3K27me3(Figure 73). While TADs 

grouped genes had higher positive correlation, top N% mutated had higher negative correlation 

with repressive chromatin marks. Specifically, the top 20% mutated protein-coding genes 

showed a strong positive correlation with H3K9me3 (0.732) and H3K27me3 (0.651) and strong 

negative correlations with H3K4me1 (-0.547) and H3K36me3 (-0.654). Similar trends, but 

weaker, were observed for other top N% mutated gene subsets, such as the top 40%, top 30%, 

and top 20% mutated genes, indicating a robust relationship between these repressive marks 

and the mutational profiles of breast cancer genes. Driver genes also exhibited higher 

correlations with the epigenome for their assigned COO, with correlations above 0.600 for 

H3K27me and above 0.490 for H3K9me3. However, unlike the top N% mutated gene subsets, 

driver genes with incorrectly identified COO demonstrated lower negative associations with 

open histone marks, H3K4me1 and H3K36me3. Also, all genes and tissue-specific gene subsets 

exhibited the weakest correlations, and their associations with repressive chromatin marks were 

in different directions compared to the other gene subgroups. 
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Figure 73. Spearman’s correlation of all mutations and histone modifications of top identified cell-of-origin tissue 

in various gene subgroups for breast cancer. White blank field represent not available histone marks in the dataset 

for specific epigenome of normal tissue 

There was no statistically significant difference between the SBS mutational profiles of 

various defined gene subgroups in breast cancer (Figure 74A). All defined gene subgroups were 

enriched with SBS12, SBS2, SBS40, and SBS8, which together accounted for more than 60% 

of the total breast cancer gene mutational landscape in each subgroup. The top N% mutated 

genes were more affected by kataegis and SV-hotspots than other groups, but none were 

associated with breast-epithelium super-enhancers (SE) (Figure 74B). The driver gene groups, 

CGC and TIME, had over 25% of genes with SV-hotspots or kataegis. Unlike the top N% 

mutated genes, they had the highest proportion of breast-epithelium SE. 
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Figure 74. A)  Proportion of mutational signature in genes separated by various gene subgroups of breast cancer 

B) Proportion of affected genes by either kataegis, SV-hotspot or are proximal to tissue specific super-enhancers 

(SE) from breast-epithelium tissue 

4.3.3.2.2.1 Top 40% mutated breast genes as best gene model 

I selected the top 40% most mutated genes, which produced the best results in the 

multiple linear regression COO gene-based model, and then ran random forest and extreme 

gradient boosting models to determine if the results would significantly improve. 

Unfortunately, the extreme gradient boosting model failed to run successfully and did not 

produce any COO predictions due to low mutation count and not enough variation in the splits 

of the advanced models. 

In contrast, compared to linear regression, the random forest COO model applied to 

aggregated breast cancer profiles resulted in a higher explained variance (~30%) for both all 

genes and protein-coding genes (Figure 75A). Additionally, other breast tissues ranked second 

in the model trained on top 40% protein-coding genes. 
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However, predictions on individual patients performed worse than the multiple linear 

regression model (Figure 75B), with 72 patients correctly identified by the multiple linear 

regression model and only 55 patients correctly identified by the random forest model.  

 

Figure 75. A) Random forest models for the prediction of mutation density of aggregated cancer profiles in   top 

40% mutated genes of breast WGS were trained on an extended set of 101 tissue sets but showing only the top 10 

in each defined subgroup of genes. The overall explained variance is reported across the 10-fold cross-validation. 

B) Proportion of correctly and incorrectly identified COO of individual patients using random forest model with 

top 40% mutated genes 

I decided to analyze in greater detail the top 40% protein-coding genes to identify 

potential new driver genes for breast cancer. Overall, I detected 20 under-predicted genes, 2 

over-predicted genes, and 393 non-outlier genes (Figure76A). Under-predicted genes had 

higher proportions of SV-hotspots and kataegis compared to non-outliers and over-predicted 

genes (Figure 76BC).  

Over-representation analysis (ORA) on databases of disease-gene associations using 

under-predicted genes did not yield significant terms related to breast cancer development after 

adjusting for multiple hypothesis testing. However, when searching for breast cancer-related 

diseases in the results, I found some terms that were present but did not reach statistical 

significance: DisGeNET term “C0678222 Breast Carcinoma” with 6 genes (p-value = 0.95): 

CTNNA2, EIF3E, TRPS1, ANKRD30A, ZFPM2, and TSHZ2. 
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Figure 76. A) Spearman correlation of observed vs predicted normalized number of mutations per gene in top 

40% mutated protein-coding genes in breast cancer. B) Proportion of regions affected by SV-hotspot or not based 

on their annotation as over-, under-outliers or not an outlier C) Proportion of regions affected by SV-hotspot or 

not based on their annotation as over-, under-outliers or not an outlier  

Afterwards, I examined TAD regions in which these genes occurred. The two over-

predicted genes had larger TADs stability score, which reflects the conservation of TAD 

boundaries across many cell types, than non-outlier and under-predicted genes, although this 

difference was not statistically significant (Figure 77A). I found a significantly different 

landscape of different outlier genes based on their location in certain TADs domain (Chi-square 

test, p-value=0.00238) (Figure 77B). Active genes were only found in non-outlier breast genes, 

while outliers were more enriched in more closed, repressive and heterochromatin TADs. 

 

Figure 77. A) TADs stability score of TADs boundries distribution in annotated erroneous regions B) TADs 

annotation by Akdemir et al. 2020. Based on active and inactive state (heterochromatin, low, low-active and 

repressed)  
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4.3.3.2.2.2 Patient characteristics based on the best gene COO model 

I analyzed the prediction results on individual patients from top 40% protein-coding 

gene-based COO models developed using multiple linear regression. Although the number of 

mutations per patient was significantly higher in correctly identified COO patients using the 

top 40% protein-coding genes, the explained variance was significantly lower for these 

correctly identified COO patients (Figure 78A). Despite the lack of statistical significance, there 

was a trend for SV-hotspots to be more prevalent in correctly identified COO patients, while 

kataegis occurrences were quite similar between correctly and incorrectly identified COO 

patients. 

When examining the proportion of SBS mutational signatures per patient in the top 40% 

protein-coding genes, which were among the most abundant and had noticeable effects in other 

developed COO models, I found that incorrectly identified COO patients had significantly 

higher proportions of SBS1, SBS3, SBS8 and SBS40 (Figure 78B). Additionally, SBS13 tended 

to be higher and SBS2 lower in incorrectly identified COO patients. 

 

Figure 78. A) The distribution of explained variance and the number of mutations separated by correct or 

incorrect COO identification of individual breast cancer patients. B) Proportion of SBS mutational signatures per 

breast cancer patient separated by correct or incorrect COO identification of individual patients. Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon 

test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Furthermore, I separated the breast cancer individual patients' COO results based on 

their histological type (Figure 79). Notably, metaplastic carcinoma had the highest proportion 

of correctly identified COO patients at 40%, followed by mucinous adenocarcinoma and 

infiltrating duct carcinoma at 6% and 8%, respectively. Patients with unknown cancer types 
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also had around 8% correctly identified COO. Other subtypes, such as tubular and invasive 

cribriform carcinoma, pleomorphic carcinoma, and neuroendocrine carcinoma, showed no 

correctly identified COO patients. 

Patients with correctly identified COO had a higher number of mutations and lower 

explained variance, particularly in infiltrating duct carcinoma, where the difference was 

statistically significant. Only the unknown subtypes showed a trend of higher explained 

variance alongside a higher mutational burden, but this was not statistically significant. 

 

Figure 79. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 40% mutated 

protein-coding genes, separated by their histological subtype. The distribution of the number of mutations per 

patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Figure 80 contains the relationship between mutation counts, histological types, and 

homologous recombination deficiency (HRD) status in predicting the cell-of-origin (COO) for 

breast cancer patients. Despite a significant difference in the number of mutations per patient 

among subtypes (Kruskal-Wallis test, p = 0.023), none of the subtypes, including Her2, LumA, 

LumB, Normal, and Basal, showed any correctly identified COO patients (Figure 80A). Most 

of the PAM50 subtypes were infiltrating duct carcinoma.  

Based on their HRD status, HRD patients exhibited a higher proportion of correctly 

identified COO patients (14%) compared to non-HRD patients (4%) (Figure 80B). 

Additionally, the number of mutations per patient was significantly higher in HRD patients, 

who were mostly of the infiltrating duct carcinoma subtype. A more detailed examination of 
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the number of mutations per patient and explained variance using the top 40% protein-coding 

models showed that HRD patients with correctly identified COO had a significantly higher 

mutation burden but lower explained variance compared to those incorrectly identified (Figure 

80C). Similarly, non-HRD patients with correctly identified COO also showed a significantly 

higher mutation burden and slightly higher explained variance, although the latter was not 

statistically significant. 

 

Figure 80. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 40% mutated 

protein-coding genes, separated by their PAM50 subtype. The distribution of the number of mutations per patient 

is visualized as boxplots for each histological subtype.  B) Proportion of correctly identified cell-of-origin (COO) 

proportions using the top 40% mutated protein-coding genes, separated by their PAM50 subtype.  Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon 

test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.3.3.2.3 Liver cancer COO gene-based predictive model 

Gene-based multiple linear regression COO models using various gene subgroups on 

aggregated liver cancer mutational profiles were able to identify the correct COO as liver tissue 

in almost all defined gene subgroups, except all and liver tissue-specific genes (Figure 81). The 

highest variance explained was achieved with top 40% protein-coding genes (~56%). The 

driver gene subsets, including the CGC and TIME genes, exhibit higher variances compared to 
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other subsets, with values reaching up to 30% and 40%, respectively. The liver-specific gene 

subset showed a smaller explained variance of around 10% for the best model, incorrectly 

predicting adipose tissue as the COO. In general, the top incorrectly identified COO for 

aggregated profiles in each gene subgroup had overall lower explained variance.  

Moreover, the next best COO model which was not liver COO performed approximately 

7% worse on average than the top COO model, with larger discrepancies observed in the top 

N% of mutated genes. Gene ontology and the top 5% mutated genes failed in COO modeling 

due to the lower number of genes and overall mutations in them, so they were not included in 

downstream analysis. 

 

Figure 81. Multiple linear regression models for the prediction of mutation density of aggregated tumor profiles 

of liver WGS were trained on an extended set of 101 tissue sets but showing only the top 10 in each defined 

subgroup of genes. The overall explained variance is reported across the 10-fold cross-validation. 

Prediction on individual liver cancer patients across all COO model setups using various 

gene subsets resulted in the majority of patients having incorrectly identified COO. The overall 

trend revealed that the top N% mutated genes subsets (particularly the top 10%, 20%, 30%, 

40%, and 50%) exhibit a higher proportion of correctly identified COO patients compared to 

other gene subsets (Figure 82A). Specifically, the highest proportion of correctly identified 

COO liver cancer patients was detected for the top 40% all and protein-coding genes, around 

~70%. The gene subgroups with the lowest number of correctly identified patients included the 
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comprehensive gene sets (all genes and protein-coding genes) as well as the TADs-grouped 

gene sets (both all genes and protein-coding genes within TADs).  

Most of the misclassified COO on individual patients was labeled as either brain-related 

tissues or immune cells (Figure 82B). Immune cells were predominantly assigned in models 

that included all and liver tissue-specific genes. Driver genes lead to increase of gastrointestinal 

tissue as primary identified COO for individual patients. Only when I used the top N% mutated 

gene subsets for COO model, did those misclassifications reduce. Depending on the top N% 

mutated gene subset, I still detected different proportions of incorrectly identified COO patients 

as brain, immune and even thymus as their COO. 

 

Figure 82. A) The proportion of individual samples in which the prediction on an individual level matches the 

correct cell of origin of the highest explaining models in different modeling setups using various subsets of genes 

for liver cancer. B) Alluvial plot illustrating the cell-of-origin (COO) of individual patients across various COO 

model setups based on different gene subsets 

The top N% mutated liver cancer genes exhibited the highest number of mutations per 

gene when normalized by gene length (Figure 83A). In contrast, protein-coding genes, CGC 

driver genes, and liver tissue-specific genes had the lowest mutational counts. When examining 

gene lengths, the top N% mutated liver cancer genes again stood out with the longest gene 

lengths compared to other groups (Figure 83B). TADs-grouped genes followed, with longer 
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total lengths but a higher number of detected outliers. Driver genes, including those from CGC 

and TIME, also had higher gene lengths. Conversely, liver tissue-specific genes and the set of 

all genes had the shortest gene lengths among all the subgroups. 

 

Figure 83. A) Distribution of normalized mutation count per gene length of various groups of genes and B) gene 

lengths used for development of COO models in liver cancer.  Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. 

 Furthermore, I observed that the correlation of aggregated liver cancer mutations with 

epigenomes for incorrectly identified COO, specifically as adipose for liver tissue-specific 

genes and bone marrow for all genes, exhibited much weaker positive correlations with closed 

chromatin modifications H3K9me3 and H3K27me3 (Figure 84). The strongest positive 

correlations with these closed chromatin modifications were found in driver genes and TADs-

grouped protein-coding genes, with correlations exceeding ~0.7. Conversely, the strongest 

negative correlations with open chromatin modifications from liver tissues were detected for 

the top N% mutated genes, particularly the top 30% protein-coding genes, with correlations 

nearing -0.7 for H3K4me1 and H3K36me3. Histone modification H3K4me3 showed the 

weakest negative correlation across all gene subgroups, except in the group of all genes. 
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Figure 84. Spearman’s correlation of all mutations and histone modifications of top identified cell-of-origin tissue 

in various gene subgroups. White blank field represent not available histone marks in the dataset for specific 

epigenome of normal tissue 

 The gene mutational landscape of liver cancer was relatively consistent across all gene 

subgroups shown in Figure 85A. The predominant mutational signatures in all groups were 

SBS40, SBS12, SBS23, SBS8, and SBS16. However, there was a notable difference in the 

genes affected by kataegis and SV-hotspots (Figure 85B). Kataegis were particularly abundant 

in the top N% mutated genes, affecting more than 50% of these genes, compared to other gene 

subgroups. Additionally, around 20% of the driver genes, including CGC and TIME, were 

affected by kataegis. Although SV-hotspots also impacted more top N% mutated genes than 

other subgroups, they affected only about 15% of these genes compared to kataegis. Super-

enhancers, regardless of the cell line, affected only a small proportion of CGC, TIME, and 

protein-coding genes and did not affect the top N% mutated genes at all. 
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Figure 85. A)  Proportion of mutational signature in genes separated by various gene subgroups of liver cancer 

B) Proportion of affected genes by either kataegis, SV-hotspot or are proximal to tissue specific super-enhancers 

(SE) from hepatocytes 

4.3.3.2.3.1 Top 40% mutated liver genes as best gene model 

For downstream analysis, I selected the top 40% most mutated liver genes due to their 

high accuracy in predicting the correct COO in both aggregated mutational profiles and 

individual patients. I re-ran the COO models using random forest and extreme gradient 

boosting, instead of the initial multiple linear regression. Only the random forest model 

produced COO predictions for both aggregated and individual patients, while the extreme 

gradient boosting model failed to run successfully with the current parameters. 

Using aggregated mutational profiles of the top 40% most mutated genes, the random 

forest COO model achieved a high explained variance of approximately 60% in identifying the 

correct COO for liver cancer (Figure 86A). However, predictions on individual patients yielded 

lower numbers of patients with correctly identified COO (360 compared to 332 for multiple 

linear regression and random forest, respectively; Figure 86B). 
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Figure 86. A) Random forest models for the prediction of mutation density of aggregated cancer profiles in top 

40% mutated genes of liver WGS were trained on an extended set of 101 tissue sets but showing only the top 10 in 

each defined subgroup of genes. The overall explained variance is reported across the 10-fold cross-validation. 

B) Proportion of correctly and incorrectly identified COO of individual patients using random forest model with 

top 40% mutated genes 

 Moreover, I analyzed the top 40% protein-coding genes to characterize their association 

with liver cancer. Out of 745 genes, 6 were identified as over-predicted and 24 as under-

predicted outliers based on their standardized residuals (Figure 87A). Only the under-predicted 

genes were affected by SV-hotspots and kataegis, whereas the over-predicted genes were not 

affected at all (Figure 87BC). However, although under-predicted genes were more frequently 

associated with SV-hotspots compared to non-outliers, this was not the case for kataegis 

enrichment. 

Over-representation analysis (ORA) on databases of disease-gene associations with 

under-predicted genes did not yield significant terms related to liver cancer development after 

adjusting for multiple hypothesis testing. However, when searching for liver cancer-related 

diseases in the results, I found some terms that were present but did not reach statistical 

significance: DisGeNET term “C2239176 Liver carcinoma” with 9 genes (p-value = 0.69): 

EPHA3, PREX2, SEMA3A, FNDC3B, NCOA2, CACNA2D1, MMP16, ZFPM2 and BASP1.  
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Figure 87. A) Spearman correlation of observed vs predicted normalized number of mutations per gene in top 

40% mutated protein-coding genes in liver cancer B) Proportion of regions affected by SV-hotspot or not based 

on their annotation as over-, under-outliers or not an outlier C) Proportion of regions affected by SV-hotspot or 

not based on their annotation as over-, under-outliers or not an outlier  

 

Afterwards, I examined the TADs regions where the outliers occurred. TADs with 

under-predicted genes had significantly lower stability scores than those with over-predicted 

genes, indicating that these TADs are less conserved across cell types (Figure 88A). Active 

chromatin states were only found in TADs with non-outlier liver genes, while outliers were 

more enriched in more closed, repressive and heterochromatin TADs (Figure 88B). 

 

Figure 88. A) TADs stability score of TADs boundaries distribution in annotated erroneous regions B) TADs 

annotation by Akdemir et al. 2020. Based on active and inactive state (heterochromatin, low, low-active and 

repressed)  
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4.3.3.2.3.2 Patient characteristics based on the best gene COO model 

When separating patients based on their correct or incorrect COO status as determined 

by the multiple linear regression COO model using the top 40% genes, I observed a significantly 

higher explained variance and number of mutations in correctly identified COO patients (Figure 

89A). The number of kataegis per patient in this 40% gene set was similar for both correctly 

and incorrectly identified COO patients. Although statistical significance was not detected for 

SV-hotspots, correctly identified COO patients tended to have a higher number of SV-hotspots 

than incorrectly identified ones. 

Examining the proportions of SBS signatures per patient in the top 40% protein-coding 

genes between the two groups of COO liver cancer patients, I found that incorrectly identified 

patients had a significantly higher proportion of SBS16 signature (Figure 89B). On the other 

hand, correctly identified COO patients had a significantly higher proportion of signature 

SBS12. All other signatures were quite similar between the two groups. 

 
Figure 89. A) The distribution of explained variance and the number of mutations separated by correct or 

incorrect COO identification of individual liver cancer patients. B) Proportion of SBS mutational signatures per 

liver cancer patient separated by correct or incorrect COO identification of individual patients. Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon 

test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

When patients were separated based on their histological types, I observed varying 

percentages of correctly identified COO across different types (Figure 90). Hepatocellular 

carcinoma, the most common subtype with 467 patients, showed a 65% accuracy in COO 

identification. In contrast, hepatocellular adenoma and fibrolamellar hepatocellular carcinoma, 

each with 5 patients, had lower proportions of 20% and 40%, respectively. Combined 

hepatocellular and cholangiocarcinoma, with 8 patients, has a 50% accuracy, while 
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cholangiocarcinoma, with 24 patients, shows a 29% accuracy in COO identification. Only for 

hepatocellular carcinoma, correctly identified COO patients had significantly higher mutational 

count per patient and a higher explained variance compared to incorrectly identified patients. 

This trend was consistent across all subtypes, with correctly identified COO patients generally 

exhibiting higher mutation counts and explained variance, although the differences are more 

pronounced in some subtypes than others. 

Figure 90. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 40% mutated 

protein-coding genes, separated by their histological subtype. The distribution of the number of mutations per 

patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.3.3.2.4 Skin melanoma COO gene-based predictive model 

The gene-based multiple linear regression COO models, developed using various gene 

subgroups using aggregated skin melanoma mutational profiles, successfully identified the 

correct COO as melanocyte across nearly all defined gene subgroups as the top model with the 

highest explained variance (Figure 91). The highest variances were obtained using top N% 

mutated skin melanoma genes and driver genes. On the other hand, skin tissue-specific genes 

had the lowest variance explained out of all developed modes. Out of all defined skin tissue-

specific genes, skin not exposed genes had the highest variance explained.  
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Figure 91. Multiple linear regression models for the prediction of mutation density of aggregated tumor profiles 

of breast WGS were trained on an extended set of 101 tissue sets but showing only the top 10 in each defined 

subgroup of genes. The overall explained variance is reported across the 10-fold cross-validation. 

 Prediction on individual skin melanoma patients across the majority of gene-based COO 

model setups using various gene subsets resulted in the majority of patients having incorrectly 

identified COO (Figure 92A). The only exception were the top N% mutated genes where we 

had more than 50% of patients correctly identified, the highest being in top 20% mutated genes. 

Besides the most mutated gene groups, TADs-grouped genes and both driver genes groups had 

close to ~20% patients with correct COO.  

The majority of incorrectly identified COO patients had their COO assigned to brain-

related tissues or immune cells (Figure 92B). Immune cells were predominantly assigned in 

models that included all genes and various skin tissue-specific gene groups. Driver genes lead 

to increase of gastrointestinal tissue as primary identified COO for skin melanoma patients. 

Only when I used the top N% mutated gene subsets for COO model, did those misclassifications 

reduce. Depending on the top N% mutated gene subset, I still detected different proportions of 

incorrectly identified COO patients mostly annotated as certain brain tissue. 
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Figure 92. A) The proportion of individual samples in which the prediction on an individual level matches the 

correct cell of origin of the highest explaining models in different modeling setups using various subsets of genes 

for skin melanoma. B) Alluvial plot illustrating the cell-of-origin (COO) of individual patients across various COO 

model setups based on different gene subsets 

Furthermore, I analyzed the normalized mutational count per patient in each specific 

gene group and found that the top N% mutated genes had the highest mutational counts and the 

longest genes (Figure 93AB). The skin-specific groups, both sun-exposed and non-exposed, 

had the lowest mutational counts per patient and among the shortest gene lengths. Specifically, 

the skin lower leg and suprapubic tissue groups had even shorter gene lengths but higher 

mutational counts compared to other genes. Interestingly, the TADs-grouped genes, despite 

their longer lengths, did not result in higher mutational counts than the other groups. 
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Figure 93. A) Distribution of normalized mutation count per gene length of various groups of genes and B) gene 

lengths used for development of COO models in liver cancer.  Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. 

 Based on the correlation analysis of correctly identified COO tissues, the top N% 

mutated genes exhibit the strongest negative correlations with open chromatin marks 

(H3K4me1, H3K36me3, H3K4me3) and positive correlations with closed chromatin marks 

(H3K9me3, H3K27me3) (Figure 94). As the percentage of top mutated genes decreases (from 

top 50% to top 10%), the negative correlations with H3K4me1 and H3K36me3 become more 

pronounced. Conversely, the positive correlations with H3K9me3 and H3K27me3 vary, 

increasing or decreasing depending on the gene group. 

In general, the positive correlations with open chromatin modifications were much 

weaker in the top N% mutated genes and TADs-grouped genes compared to driver genes or 

even tissue-specific genes. Skin tissue-specific gene groups exhibited higher and stronger 

positive correlations with closed chromatin modifications, surpassing those of other non-tissue-

specific gene groups. However, these skin-specific groups also demonstrated the weakest 

negative correlations with open chromatin marks. This suggests a unique chromatin landscape 

in skin tissue-specific genes, characterized by stronger associations with repressive chromatin 

states and weaker associations with active chromatin states. 
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Figure 94.  Spearman’s correlation of all mutations and histone modifications of top identified cell-of-origin tissue 

in various gene subgroups. White blank field represent not available histone marks in the dataset for specific 

epigenome of normal tissue 

 The gene mutational signature landscape of skin melanoma was relatively consistent 

across all gene subgroups shown in Figure 95A. SBS7a and SBS7b overwhelmingly dominated 

the gene mutational landscape in all groups. All gene groups were significantly affected by 

kataegis, with nearly 100% of the top N% mutated genes having detected kataegis regions 

(Figure 95B). Similarly, SV-hotspots were more prevalent in the top N% mutated genes, though 

their maximum proportion was around 30%. Super-enhancers, regardless of the cell line, 

influenced only a small proportion of CGC, TIME, protein-coding, and TAD-grouped PC 

genes, and had little to no effect on the top N% mutated genes. 
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Figure 95. A)  Proportion of mutational signature in genes separated by various gene subgroups of skin melanoma 

cancer B) Proportion of affected genes by either kataegis, SV-hotspot or are proximal to tissue specific super-

enhancers (SE) from breast-epithelium tissue 

4.3.3.2.4.1 Top 20% mutated skin melanoma genes as best gene model 

Since the highest accuracy of the gene-based model was achieved using the top 20% 

mutated genes, I selected these genes for downstream analysis. More complex machine learning 

models, such as random forest and extreme gradient boosting, were applied using the top 20% 

mutated genes (Figure 96). However, these models did not result in better predictions for 

individual skin melanoma patients. The extreme gradient boosting model even failed to run 

completely. On the other hand, the random forest model showed similarly high explained 

variance on aggregated mutational profiles, but a lower number of correctly identified COOs 

for individual patients (198 for random forest, compared to 211 for multiple linear regression).  
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Figure 96. A) Random forest models for the prediction of mutation density of aggregated tumor profiles in top 

20% mutated genes of skin melanoma WGS were trained on an extended set of 101 tissue sets but showing only 

the top 10 in each defined subgroup of genes. The overall explained variance is reported across the 10-fold cross-

validation. B) Proportion of correctly and incorrectly identified COO of individual patients using random forest 

model with top 20% mutated genes 

 I focused my analysis on top 20% protein-coding genes to get a better understanding 

why these genes have a positive contribution to gene-based COO models in skin melanoma. 

Out of 502 genes, 5 were identified as over-predicted and 14 as under-predicted outliers based 

on their standardized residuals (Figure 97A). SV-hotspots were only found in some non-outlier 

genes (Figure 97B), while kataegis affected all genes regardless of their outlier status (Figure 

97C).  

Over-representation analysis (ORA) on databases of disease-gene associations with 

under-predicted genes did not yield significant terms related to liver cancer development after 

adjusting for multiple hypothesis testing. However, when searching for skin and melanoma 

cancer-related diseases in the results, I found some terms that were present but did not reach 

statistical significance: “C0025202 melanoma” with 5 genes (p-value=0.38); HDAC9, GHR, 

CACNA1A, PDE1C and PRKCB.  
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Figure 97. A) Spearman correlation of observed vs predicted normalized number of mutations per gene in top 

20% mutated protein-coding genes in skin melanoma B) Proportion of regions affected by SV-hotspot or not based 

on their annotation as over-, under-outliers or not an outlier C) Proportion of regions affected by SV-hotspot or 

not based on their annotation as over-, under-outliers or not an outlier 

Moreover, I examined in which TADs regions the outliers occurred. Over-predicted 

gene outliers were mostly found in TADs with lower TAD stability score despite the lacking 

statistical significance (Figure 98A). All annotated outliers had quite similar profiles chromatin 

states of TADs (Chi-square, p-value = 0.65) (Figure 98B). 

 

Figure 98. A) TADs stability score of TADs boundaries distribution in annotated erroneous regions B) TADs 

annotation by Akdemir et al. 2020. Based on active and inactive state (heterochromatin, low, low-active and 

repressed) Box plots show the median value, interquartile range as a box, and the whiskers extend to 

IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 

0.0001 
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4.3.3.2.4.2 Patient characteristics based on the best gene COO model 

 Correctly identified COO skin melanoma patients had a significantly higher mutational 

count in the top 40% mutated protein-coding genes used in the COO model, as well as a 

significantly higher explained variance compared to incorrectly identified patients (Figure 

99A). While the number of kataegis regions was significantly enriched in correctly identified 

COO patients, there was no significant difference in the number of SV-hotspots per patient in 

the selected genes. Examining the gene mutational signature landscape, I observed significantly 

higher proportions of SBS7a, SBS7c, and SBS38 in correctly identified COO patients (Figure 

99B). Conversely, SBS7b was significantly more enriched in incorrectly identified COO 

patients. Age-related signature SBS1 was distributed similarly between both groups of skin 

melanoma patients.  

 

Figure 99. A) The distribution of explained variance and the number of mutations separated by correct or 

incorrect COO identification of individual skin melanoma cancer patient. B) Proportion of SBS mutational 

signatures per skin melanoma cancer patient separated by correct or incorrect COO identification of individual 

patients. Box plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

 Among all histological types of skin melanoma, mucosal lentiginous melanoma and 

malignant melanoma (NOS) had the lowest proportion of correctly identified COO patients, 

with 40% and 31%, respectively (Figure 100). In contrast, lentigo malignant melanoma and the 

unknown melanoma subtypes achieved the highest accuracy, with 100% and 90% of patients 

correctly identified, respectively. Superficial spreading melanoma and nodular melanoma also 

displayed high accuracy, with 84% and 91% of patients correctly identified. Correctly identified 

COO patients consistently exhibited a higher number of mutations per patient and a higher 

explained variance compared to incorrectly identified COO patients across almost all subtypes. 
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For acral lentiginous melanoma and malignant melanoma (NOS), despite the significantly 

higher mutational counts in correctly identified COO patients, there was no significant 

difference in explained variance between the correctly and incorrectly identified groups. 

Conversely, correctly identified COO patients in the mucosal lentiginous melanoma subtype 

exhibited both lower mutational counts and explained variance compared to their incorrectly 

identified counterparts. 

 

Figure 100. A) Proportion of correctly identified cell-of-origin (COO) proportions using the top 20% mutated 

protein-coding genes, separated by their histological subtype. The distribution of the number of mutations per 

patient is visualized as boxplots for each histological subtype. Box plots show the median value, interquartile 

range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, ns: p > 0.05 *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

4.4 RNA-seq single-nucleotide variants for prediction of the cell-of-

origin  

To evaluate whether mutations called from RNA-seq data can be integrated into the 

previously developed gene-based COO models using the gene mutational landscapes and 

epigenomic features of genes, I analyzed RNA-seq from breast, liver, and skin melanoma. This 

chapter provides a summary of the mutations called from RNA-seq data and presents gene-

based COO models utilizing the same gene subsets as those in section 4.3.3 Gene-based cell-

of-origin predictive models.  

4.4.1 Mutational landscape obtained by RNA-seq data 

After applying multiple filtering steps to RNA-seq called single-nucleotide variants, the 

median and standard deviation of RNA-seq detected mutations were 309 ± 616 for breast 

cancer, 390 ± 135 for liver cancer, and 31,691 ± 9,771 for skin melanoma. The number of 

mutations detected from RNA-seq data was consistently higher across all cancer types 
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compared to WXS, and lower than WGS (Figure 101A). In breast and liver cancers, where 

normal matching tissue was available and multiple variant-calling tools were utilized, the 

mutation profiles from RNA-seq data were more closely aligned with those obtained from WXS 

than with those from WGS. For skin melanoma, the distribution of mutations identified by 

RNA-seq, which were called exclusively by Mutect2, was similar to that of WGS data 

(Wilcoxon test, p-value = 0.53).  

 

Figure 101. A) Distribution of single-nucleotide variant (SNV) per patient across breast, liver and skin melanoma 

obtained by RNA-seq, whole-genome (WGS) or whole-exome sequencing (WXS). B) Pearson correlation analysis 

of the number of mutations identified via RNA-seq and WXS in the same 69 skin melanoma patients from the 

SKCM-US cohort. C) Proportion of various types of transversions (Tv) and transitions (Ti) in aggregated 

mutational profiles for RNA-seq, WGS, and WXS across breast, liver, and skin melanoma cancers. Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test 

to the reference group of RNA-seq, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

Moreover, the correlation between RNA-seq and WXS mutation counts with same skin 

melanoma patients from the SKCM-US cohort was found to be insignificant and slightly 

negative (R = -0.016, p-value = 0.89) (Figure 101B). The aggregated mutational landscape, 

defined by transversions (Tv) and transitions (Ti), revealed that RNA-seq mutations were 

predominantly enriched with A>G or T>C and G>A or C>T transitions (Figure 101C). 

Furthermore, the RNA-seq aggregated mutational profiles from all three cancer types were 

more similar to each other (Chi-square, p-value=1.21*10-53) than to other sequencing 

technologies within their respective cancer types, where the p-value was below 2.2*10-308. In 

breast cancer, the mutational profiles of WGS and WXS were more similar to each other than 



162 

 

those of RNA-seq. In liver cancer, the RNA-seq profile was much more similar to WGS, while 

WXS showed a distinctly unique pattern enriched with G>T transversions. As for skin 

melanoma, the WGS and WXS show much more abundant enrichment with G>A or C>T 

transitions than RNA-seq mutations.  

4.4.2 Gene mutational landscape obtained by RNA-seq data 

I analyzed the number and distribution of various gene types affected by mutations 

detected through RNA-seq compared to WGS and WXS in the following gene categories: 

immunoglobulin genes, non-coding genes, pseudogenes, mitochondrial genes, protein-coding 

genes, and ribosomal RNA (rRNA) genes (Figure 102A). Across breast, liver, and skin 

melanoma, the majority of mutations identified by RNA-seq, WGS, and WXS were located 

within protein-coding genes, which accounted for approximately 40% to 80% of the mutations. 

The most notable differences were a higher proportion of non-coding genes and pseudogenes 

in WGS than RNA-seq or WXS.  

 

Figure 102. A) Proportion of various gene types affected by SNVs identified through RNA-seq, WGS and WXS 

across breast, liver and skin melanoma cancers. The gene types include protein-coding genes, non-coding genes, 

pseudogenes, ribosomal RNA (rRNA) genes, immunoglobulin genes, and mitochondrial genes. B) Proportion of 

detected mutations found in exonic and intronic regions for each sequencing method (RNA-seq, WGS, WXS) across 

the same cancer types. 



163 

 

Additionally, RNA-seq detected a significantly higher proportion of mutations in 

immunoglobulin genes, particularly in breast and liver cancers, where approximately 4% and 

2% of the mutations, respectively, were found in these genes. In contrast, skin melanoma had 

around 1% of its mutations in immunoglobulin genes. Subsequently, I examined the enrichment 

of SNVs in exonic and intronic regions as detected by RNA-seq in comparison to WGS and 

WXS (Figure 102B). Across all three cancer types, RNA-seq and WXS exhibited a similar 

enrichment of SNVs in exonic regions, with over 55% of the mutations being localized in exons. 

Difference in enrichment was not detected for breast cancer RNA-seq and WXS mutations 

(Chi-square test p-value = 0.11), while other comparisons of RNA-seq and WXS in other 

cancers showed significant differences (p-values <= 0.05). In contrast, WGS detected a higher 

proportion of SNVs in intronic regions across all cancer types. 

Given the limited number of patients in the liver and breast RNA-seq cohorts, I focused 

on identifying the top 5 frequently mutated protein-coding genes that were mutated in more 

than 50% of the samples (Table 11). None of these genes were found in the Cancer Gene 

Consensus or TIME gene lists. I found that only the UTRN gene, which was frequently mutated 

in breast cancer as detected by RNA-seq, had also been previously identified as highly mutated 

in WGS breast cancer datasets. Additionally, only one liver gene, CYP2E1, was found to be 

influenced by super enhancers in hepatocyte cell lines. 

Table 11. Most frequently mutated protein-coding genes detected by RNA-seq in 13 liver and 5 breast cancer 

patients. 

Cancer Gene name Ensembl gene 

Percentage of 

patients with 

mutated gene 

WGS most frequently 

mutated group 

Super-enhancer 

affected tissue 

Breast 

 

CAPZB   ENSG00000077549 0.6 x x 

SDC3  ENSG00000162512 0.6 x x 

RNF115 ENSG00000121848 0.6 x x 

DPYSL3 ENSG00000113657 0.6 x x 

UTRN  ENSG00000152818 0.6 40% x 

PGM5  ENSG00000154330 0.6 x x 

Liver 

 

TMBIM6  ENSG00000139644 0.6923076923 x x 

ALB ENSG00000163631 0.6153846154 x x 

SPRN ENSG00000203772 0.5384615385 x x 

CYP2E1 ENSG00000130649 0.5384615385 x hepatocytes 

 



164 

 

  On the other hand, in skin melanoma I detected a substantial number of top N% mutated 

genes which I overlapped with the ones identified with WGS. First of all, the number of mutated 

genes increases substantially with the percentage of the top mutated genes considered (Figure 

103A). For instance, when considering the top 5% of mutated genes, 575 genes are identified. 

This number increases incrementally, with 9779 genes being identified at the 50% threshold. 

Secondly, when examining the overlap of top 10% mutated genes from both RNA-seq and 

WGS, I noticed that only 4 genes were overlapping, while the majority of the rest were unique 

to RNA-seq (Figure 103B). When I performed ORA of GO, I found significantly enriched terms 

related to in utero embryonic development, regulation of embryonic development, and response 

to oxygen levels (Figure 103C).  These processes indicate that the top mutated genes are 

involved in critical developmental and regulatory functions. Additional processes such as 

cellular response to peptide hormone stimulus, lipid import into cells, and RNA localization 

suggest diverse functional roles for these genes. 

 

Figure 103. Analysis of the top N% mutated genes in skin melanoma, determined by RNA-seq mutations. A) Bar 

plot depicting the number of top N% mutated genes in skin melanoma identified through RNA-seq data. The x-axis 

represents the top N% of mutated genes, where N ranges from 5% to 50%. The y-axis shows the corresponding 

number of genes within each percentage category. B) UpsetR plot showing the overlap sizes of top 10% mutated 

genes between RNA-seq and whole-genome sequencing (WGS). C) Hierarchical clustering of enriched biological 

processes associated with the top N% mutated genes identified through RNA-seq in skin melanoma. Each row 

represents a biological process from Gene Ontology (GO) terms, and processes are color-coded according to their 

statistical significance (p.adjust values), where darker blue shades represent more significant enrichments. The 

size of the circles corresponds to the number of genes associated with each process.  
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4.4.3 Gene-based COO predictive models using RNA-seq SNVs  

Despite encountering a substantial number of false positive mutations in the RNA-seq 

datasets, particularly within the skin melanoma cohort, I proceeded to develop the cell-of-origin 

models using the same methodologies applied to WGS and WXS gene-based COO models. 

Figure 104 shows the performance of these models across various gene groups, including all 

genes, protein-coding genes, driver genes, and the top 40% and 50% most frequently mutated 

protein-coding genes, based on aggregated mutational profiles from RNA-seq data. 

 

Figure 104. Multiple linear regression models for the prediction of mutation density of aggregated cancer profiles 

of breast, liver and skin cancer RNA-seq called single-nucleotide variants (SNVs) were trained on an extended set 

of 101 tissue sets but showing only the top 2 in each defined subgroup of genes. The overall explained variance is 

reported across the 10-fold cross-validation. Coding-sequence (CDS) settings represent the count of mutations 

per exon normalized length by total CDS length. Gene setting implies summing mutations per exon or exon plus 

intron normalized by total gene length. The overall explained variance is reported across the 10-fold cross-

validation.  

In breast cancer, the models using all genes were able to correctly identify the COO, 

irrespective of whether genes were normalized by coding sequence (CDS) length or overall 

gene length. The explained variance was approximately 43% for gene-length normalization and 

48% for CDS normalization. However, when compared to the next best tissue, which was not 

the correct COO for breast cancer, there was no significant difference in the model's explanatory 

power (Wilcoxon test, p-value = 0.94). Other gene groups, including driver genes and the top 

percentage of mutated protein-coding genes, did not perform well in predicting the COO for 

breast cancer. 
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 In the case of liver cancer, the most accurate and correct COO identification was 

achieved using the CGC genes normalized by overall gene length, with a high explained 

variance of approximately 50%. Additionally, the second best-performing tissue in the model 

was also another type of liver tissue, indicating a strong tissue-specific signal for liver cancer 

in the CGC gene group.  

Contrasting with breast and liver cancers, the skin melanoma models exhibited a 

different pattern. A significant number of gene groups, including the top 40% and 50% most 

frequently mutated protein-coding genes, were able to identify the correct COO. Despite this, 

the explained variance for these models was generally below 30%, indicating that while these 

models can identify the correct COO, the level of confidence or strength of the prediction is 

relatively low. 

Furthermore, when I used tissue-specific genes I was able to predict the correct COO 

using models based on aggregated mutational profiles in breast and skin melanoma cancers 

(Figure 105). In breast cancer, models developed using breast-specific genes correctly 

identified the tissue of origin with high explained variance, approximately 64% when 

normalized by gene length and 57% when normalized by CDS length. However, the models 

based on breast mammary tissue-specific genes failed to correctly predict the COO. In liver 

cancer, models using liver-specific genes did not successfully predict the correct COO. For skin 

melanoma, the use of skin-specific genes resulted in accurate COO prediction with models 

normalized by CDS length across all groups of skin tissues. However, gene-based normalization 

for skin-specific genes failed to predict the correct COO. The explained variance for skin cancer 

models was consistently below 20% across all setups. Furthermore, there were no significant 

differences between the explained variance of the best COO model and the next non-COO 

model result across all tissue-specific gene groups for each cancer type, as determined by the 

Wilcoxon test (p-value = 0.912). 
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Figure 105. Multiple linear regression models for the prediction of mutation density of aggregated cancer profiles 

of breast, liver and skin cancer RNA-seq called single-nucleotide variants (SNVs) were trained on an extended set 

of 101 tissue sets but showing only the top 2 in tissue-specific gene groups. The overall explained variance is 

reported across the 10-fold cross-validation. Coding-sequence (CDS) settings represent the count of mutations 

per exon normalized length by total CDS length. Gene setting implies summing mutations per exon or exon plus 

intron normalized by total gene length. The overall explained variance is reported across the 10-fold cross-

validation.  

Unfortunately, the COO prediction rates on individual patients were extremely low, 

where for breast and liver mostly one or two samples had the correct identified COO using all 

or tissue-specific genes, while skin melanoma RNA-seq had more patients but their overall 

proportion in the analysed cohort was extremely small (Figure 106). 

 

Figure 106. Proportion of correctly and incorrectly identified COO of individual patients using multiple linear 

regression model with top 40% mutated genes of breast, liver and skin cancer RNA-seq called single-nucleotide 

variants (SNVs). Coding-sequence (CDS) settings represent the count of mutations per exon normalized length by 

total CDS length. 
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5 Discussion 

The ongoing endeavor to outsmart cancer by ensuring early detection and effective 

treatment remains a dynamic and relentless challenge for scientists. To get a better 

understanding of carcinogenesis mechanisms, international consortia like the International 

Cancer Genome Consortium (ICGC), The Cancer Genome Atlas (TCGA), and the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) have collected extensive genomic data from diverse 

cancer patients using next-generation sequencing (NGS). Recent initiatives, such as ICGC-

ARGO, are expanding this work by including over 10,000 cancer cases with detailed clinical 

information, aiming to discover novel biomarkers and therapeutic targets. Identifying the cell 

of origin (COO) remains a significant challenge, as it influences treatment strategies and 

prognosis. Consequently, large datasets from these consortia are being used to develop machine 

learning tools to predict COO, though their performance varies across cancer types due to 

differing mutational landscapes (Kübler et al., 2019; Liu et al., 2020; Nguyen et al., 2022; Polak 

et al., 2015). However, these predictive tools vary in their performance across different cancer 

types, a discrepancy that may be attributed to the distinct mutational landscapes present in 

various cancers.  

So, I began my research by analyzing the genomic features of breast, liver and skin 

melanoma cancers from these cohorts prior to developing and improving the COO models 

based on the same principle as Polak et al. (2015).  

5.1 Mutational landscape in breast, liver and skin melanoma 

cancers 

Out of all the analysed cancers, skin melanoma had the highest mutational burden of 

single-nucleotides (SNVs) and indels in general. Skin melanoma is widely considered to be one 

of the most mutated cancer, especially compared to breast and liver cancers, primarily due to 

its significant exposure to ultraviolet (UV) radiation. UV radiation from sunlight induces direct 

DNA damage, leading to the formation of complex lesions cyclobutane pyrimidine dimers and 

6-4 photoproducts, which leave highly abundant C>T transitions associated with skin cancers 

(Alexandrov et al., 2020; Brash et al., 1991). Specifically, these C>T transitions often occur at 

the TCN and CCN sequence contexts, generating distinct mutational signatures such as SBS7a 

and SBS7b (Alexandrov et al., 2013, 2020). In addition to SBS7a and SBS7b, the detected less 

abundant UV-related mutational signatures, SBS7c and SBS7d, arise from rarer types of DNA 

damage. SBS7c is characterized by thymine to adenine (T>A) transversions at NTT 
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trinucleotide contexts, resulting from the misincorporation of adenine opposite to thymine 

residues in cyclobutane pyrimidine dimers. SBS7d, on the other hand, involves thymine to 

cytosine (T>C) transitions at NTT contexts, likely due to the erroneous insertion of guanine or 

cytosine during DNA repair processes (Alexandrov et al., 2020; Brash, 2015; Tate et al., 2019). 

Furthermore, due to the highly mutated landscape caused by extensive UV radiation exposure, 

skin melanomas are significantly enriched with kataegis regions. This abundance of mutations 

at smaller scales, as defined by kataegis, contributes to a higher detected number of these events. 

In a comprehensive pan-cancer analysis of 38 cancer types, kataegis events were detected in 

60.5% of the analyzed cancers, with notably high frequencies in lung squamous cell carcinoma, 

bladder cancer, acral melanoma, and sarcomas (Aaltonen et al., 2020). In skin melanoma, 

kataegis regions are predominantly enriched with SBS7a and SBS7b signatures, which are the 

primary UV-induced mutational signatures that are driving tumorigenesis in this cancer type. 

UV-driven mutations include not only single nucleotide variants but also insertions and 

deletions (indels) that accumulate as a result of DNA damage induced by UV radiation. Both 

cyclobutane pyrimidine dimers and 6-4 photoproducts can lead to double-strand breaks, 

prompting extensive DNA repair processes that contribute to the accumulation of deletions. 

One such repair mechanism is non-homologous end joining (NHEJ), an error-prone process 

that often results in the accumulation of deletions within the genome. This is represented by the 

highly abundant indel signature in skin melanoma ID8 which is characterized by deletions of 

≥5 base pairs. This signature is associated with the repair of DNA double-strand breaks by 

NHEJ and is correlated with age at diagnosis, reflecting the cumulative effects of UV exposure 

over time (Alexandrov et al., 2013; Tate et al., 2019). Additionally, another highly prevalent 

UV-associated indel signature in skin melanoma, ID13, has been identified in cancers from sun-

exposed skin areas, further emphasizing the significant impact of UV radiation on the genomic 

landscape of melanoma (Tate et al., 2019). 

In contrast to skin melanoma, where the mutational landscape is heavily influenced by 

exogenous factors such as UV radiation, breast cancer is primarily driven by endogenous 

factors. The most prominent of these is DNA damage caused by the activity of the 

apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes. This 

enzyme family contributes significantly to the mutational profile of breast cancer, as evidenced 

by the presence of mutational signatures SBS13 and SBS2 (Petljak & Alexandrov, 2016). 

APOBEC-associated mutations are not limited to only breast cancer; they are a common 

mutational process observed in approximately 75% of cancer types and more than 50% of all 

cancers analyzed (Alexandrov et al., 2020). In my analysis, I confirmed that the majority of 
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kataegis foci in breast cancer are indeed generated by APOBEC activity. These regions of 

hypermutation are characterized by clusters of cytosine to thymine (C>T) transitions and 

cytosine to guanine (C>G) transversions, reflecting the mutagenic action of APOBEC enzymes 

(Alexandrov et al., 2020; Petljak & Alexandrov, 2016; Taylor et al., 2013). Additionally, 

another highly abundant single base substitution (SBS) signature found in both breast and liver 

cancers, and frequently associated with kataegis regions, is SBS40. The etiology of SBS40 

remains unknown, although there is evidence suggesting a correlation between the frequency 

of these mutations and the age of patients in certain tumor types (Tate et al., 2019). SBS40 is 

known as one of the flat mutational signatures because it lacks a strong context-specific pattern, 

meaning that the mutations it comprises are relatively evenly distributed across different 

trinucleotide contexts, unlike APOBEC or UV-induced mutational signatures. This signature is 

observed across multiple cancer types and bears a resemblance to SBS5, further complicating 

the identification of its etiology (Alexandrov et al., 2020). Moreover, flat signatures like SBS5 

and SBS40 present significant challenges for accurate extraction and quantification using 

various mutation-calling software, due to their lack of distinct pattern (Wu et al., 2022). 

Therefore, any results regarding the impact of SBS40 on the accuracy of cell-of-origin models 

should be interpreted with caution, acknowledging the inherent difficulties in detecting and 

analyzing such flat signatures. Similar observation also applies to the flat SBS39 signature with 

high abundance in kataegis regions and unknown aetiology. Other highly abundant signatures 

in breast cancer are also flat signature SBS3, associated with homologous recombination 

deficiency in cancers, as well as SBS8 with unknown aetiology.  

Unlike skin melanoma and breast cancer, liver cancer exhibits a more complex and 

varied mutational landscape. While the highly abundant endogenous SBS40 signature is 

prevalent in liver cancer, other significant contributions to the mutational profile include 

SBS12, SBS16, SBS23, SBS24, SBS8, and SBS93. The etiologies of several of these 

signatures; SBS40, SBS8, SBS23, SBS16, and SBS93, remain largely unknown, raising 

questions about their origins. It is unclear whether these signatures are indeed intrinsic to liver 

cancer or if they represent artifacts introduced by the mutational signature calling tools used, 

potentially contaminated by other flat signatures such as SBS5, which is known for its broad 

presence across various cancers. In contrast, SBS12 and SBS24 are considered to be more liver-

specific signatures. SBS12, despite its unknown etiology, is observed at relatively low 

frequencies in liver cancer patients and may be indicative of liver-specific mutational processes 

(Tate et al., 2019). SBS24, on the other hand, is directly associated with exposure to aflatoxin, 
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a potent hepatocarcinogen, which was also observed in experimental system exposed to it 

(Alexandrov et al., 2020; Tate et al., 2019). 

Breast and liver cancers exhibit a more similar indel mutational landscape compared to 

skin melanoma, which is predominantly influenced by UV radiation. In both breast and liver 

cancers, substantial amounts of indel signatures ID1, ID2, and ID8 were detected. ID1 and ID2 

are common across a wide range of cancer types and are also found in normal cells, suggesting 

they represent background mutational processes that accumulate over time often called clock-

like signatures (Tate et al., 2019). ID8, on the other hand, is associated with the error-prone 

non-homologous end joining (NHEJ) repair pathway, which is often employed as an alternative 

repair mechanism in cancers with deficient homologous recombination repair, such as those 

with BRCA mutations (Davies et al., 2017; Tate et al., 2019). Liver cancer had the highest 

proportion of ID5, another clock-like signature, and ID3, which is strongly associated with 

exposure to tobacco smoking (Tate et al., 2019). 

These significant findings were primarily detected using whole-genome sequencing 

data, which offers a superior ability to detect a broader spectrum of mutations, providing a more 

comprehensive view on the mutagenic processes across all tumors. WGS captures mutations 

throughout the entire genome, whereas whole-exome sequencing focuses only on the coding 

regions of genes. As a result, the number of mutations detected in WXS datasets is significantly 

lower than those detected by WGS, which is expected due to the more limited genomic coverage 

of WXS. Interestingly, WGS has also proven to be more effective than WXS in detecting 

variants even within the exome (Belkadi et al., 2015). his may explain why the mutational 

landscapes analyzed from WGS and WXS of the same cancer type and even the same patients 

can show significant differences. 

While the observed mutational landscapes were most consistent for single nucleotide 

variants (SNVs) and single base substitution (SBS) mutational signatures in liver and skin 

cancer, liver cancer exhibited an abnormally high number of SBS29, a signature associated with 

tobacco chewing (Tate et al., 2019). In the WXS data for skin melanoma, there was a higher 

abundance of SBS38, a possible UV-associated signature characterized by C>A transversions 

in the CCA context (Tate et al., 2019). The detection of SBS38 in coding regions may suggest 

a previously unrecognized mechanism of UV-induced DNA damage that specifically affects 

genes, potentially expanding our understanding of how UV radiation contributes to mutagenesis 

in skin cells. Since insertions and deletions are relatively rare occurrences in genes, the distinct 

differences in the indel mutational landscapes observed between WGS and WXS datasets may 
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be attributed to the unreliable extraction of indel (ID) signatures from WXS due to the smaller 

number of detected indels 

The de novo extraction of structural variant signatures using the Palimpsest tool led to 

the identification of up to seven novel SV signatures across the analyzed cancers. These novel 

signatures exhibited low cosine similarity to the annotated SV signatures in the COSMIC 

database, which is likely due to differences in the methodologies used for extraction and the 

distinct classification systems for structural variants employed by each tool. Palimpsest uses a 

more detailed 38-class classification system for SVs, compared to the 32-class system used by 

COSMIC (Shinde et al., 2018; Tate et al., 2019). Despite these differences, two of the de novo 

SV signatures identified in skin cancer, namely skin SV3 and skin SV2, showed the highest 

cosine similarity to COSMIC's SV4 and SV6, respectively. The COSMIC SV4 signature is 

primarily composed of clustered (complex) translocations, whereas SV6 includes a diverse 

array of very large complex rearrangements, such as deletions, tandem duplications, and 

inversions (Tate et al., 2019). In mucosal melanoma, the presence of SV4 and SV6, along with 

a high number of kataegis regions, effectively separated the samples into two distinct groups 

(Newell et al., 2019). Breast cancer SV identification using the Palimpsest tool showed the 

poorest performance. The highest similarity was between breast de novo SV1 and COSMIC 

SV1 signature which is characterized by long tandem duplications and common in breast, 

ovarian, and uterine cancers (Tate et al., 2019). However, the well-known COSMIC SV3 

signature, which is associated with homologous recombination deficiency and is prevalent in 

breast cancer (Nik-Zainal et al., 2016), was not reliably detected in the de novo SV signatures 

identified in breast cancer. The closest de novo extracted signature to COMISC SV3 was breast 

SV2, although the cosine similarity was not the highest for breast de novo SV2. This 

discrepancy is likely due to the different classification systems used by the tools, which may 

heavily affect the detection and characterization of such signatures. In liver cancer, the de novo 

liver SV5 signature showed the closest resemblance to COSMIC's SV1, while liver SV6 was 

most similar to COSMIC's SV3 with the highest overall cosine similarities.  

Most studies on structural variants have primarily focused on their impact on the 

expression of nearby genes, which can be mediated through mechanisms such as enhancer 

hijacking or the disruption of topologically associated domains (Aganezov et al., 2020; Zhang 

et al., 2018, 2021). They are not confined to hotspot analyses, as they aim to explore a broader 

range of mechanisms that contribute to genomic alterations and their functional consequences. 

Consequently, research specifically targeting SV hotspots in cancer is relatively limited. 

However, there is one study that focused on the analysis of tandem-duplication COSMIC SV1 
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and SV3 rearrangement, or as they refer to them as RS1 and RS3, hotspots in 560 breast cancers 

(Glodzik et al., 2017). They hypothesized that these hotspots represent foci that are more 

susceptible to double-strand damage leading to NHEJ repairs generating large tandem 

duplications. While I found 227 breast de novo SV1 (most similar to COSMIC SV1) and 537 

SV2 (most similar to COSMIC SV3) hotspots, they detected only 4 SV3 hotspots and 33 SV1 

hotspots. The differences may be again due to different classification systems as well as 

different algorithms for calling peaks. More detailed assessment and optimization of the used 

SV-HotSpot algorithm (Eteleeb et al., 2020), as well as the implementation of others, is required 

to obtain more consensus SV hotspot profiles that reliably reflect the processes leading up to 

cancer. 

For the accurate analysis of various genomic features across different cancer types, and 

even among patients with the same cancer, it is crucial to consider not only the next-generation 

sequencing technology used for the data but also the specific computational tools employed. To 

achieve a more robust annotation of SVs, I recommend using multiple tools in addition to 

Palimpsest to identify novel SV signatures. It is also beneficial to incorporate refitting methods 

with existing COSMIC signatures to ensure consistency with the cataloged data in the COSMIC 

database. This approach would facilitate a more comprehensive and reliable representation of 

the SV landscape, enhancing the validity and accuracy of the analysis. In assessing SBS 

mutational signature calling, I evaluated multiple tools, all of which demonstrated extremely 

low reconstruction error, particularly for WGS data. However, there were still a lot of signatures 

with unknown aetiology and some which could represent artifacts. To further refine SBS 

calling, it is recommended to focus on tissue-specific signatures rather than using the broad set 

of all COSMIC signatures. Tissue-specific signatures have been thoroughly analyzed in specific 

cancers and provide a better biological interpretation of the processes driving tumorigenesis 

(Koh et al., 2020). For instance, using tissue-specific signatures can help identify and interpret 

the mutational processes that are particularly relevant to the cancer type under study, thus 

providing more targeted insights into its genomic landscape. However, it is important to 

acknowledge that the use of a tissue-specific set of signatures may hinder the detection of rare 

mutational processes that are present only in a small number of cancer samples and are not 

included in the existing set. As a result, these rare processes may go undetected, highlighting a 

significant trade-off in the analysis. Researchers must carefully consider these trade-offs in the 

context of their specific research questions and the broader implications for cancer genomics 

studies.  
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Therefore, to identify even rarer mutational signatures that could significantly impact 

cell-of-origin models, I decided to use a broad spectrum of COSMIC signatures. This 

comprehensive approach helps to ensure that less common signatures, which may play critical 

roles in tumorigenesis, are not overlooked. However, before analyzing how certain genomic 

characteristics influence these models, it was necessary to adjust the SBS calling to obtain 

profiles for 1 Mb genomic regions, topologically associated domains, and specific genes. Most 

mutational calling methods have a notable limitation: they can estimate the absolute and relative 

abundance of each mutational signature across patients but do not provide information on the 

specific locations of these mutations within the patient's genome. Only certain tools, like the 

Palimpsest tool used in this study, can assign mutational signatures to individual mutations 

(Shinde et al., 2018). However, this feature demonstrated the lowest performance among all the 

standard tools used. For other tools, I had to split the mutational context matrix by patients for 

each genomic feature or by genomic features (such as 1 Mb regions, TADs, and genes) and 

evaluated the mutational calling by calculating the reconstruction error. This approach 

significantly reduced the overall accuracy of the tools in reconstructing the original mutational 

contexts, as dividing the data by these features decreased the number of mutations within each 

context, thereby significantly reducing the power to accurately evaluate mutational signatures. 

Using a tissue-specific set of mutational signatures might improve the calling of signatures per 

feature, an approach that warrants further exploration. Additionally, reassessing the obtained 

results with newer tools such as SigProfilerAssignment (Díaz-Gay et al., 2023), which has 

shown high accuracy in assigning mutational signatures to individual mutations, could be 

beneficial. However, the performance of this tool has not been compared directly with the 

Palimpsest settings. Therefore, re-running and comparing the reconstruction error and 

mutational profiles using SigProfilerAssignment against those obtained with Palimpsest may 

result in more precise insights into the genomic landscape of cancer and its implications for 

cell-of-origin models. 

5.2 Cell-of-origin models using whole-genome and whole-exome 

sequencing 

The cell-of-origin approach developed by Paz et al. (2015) utilizing WGS leverages the 

biologically meaningful correlation between the tumor's mutational landscape and the normal 

epigenome to accurately predict the COO of each patient. However, when I applied their models 

to WXS data, the COO prediction was unsuccessful for both aggregated data and individual 
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patient cancer profiles across the analyzed cancers. This discrepancy can be attributed to the 

lower number of detectable mutations in WXS data, as it does not provide the complete genomic 

coverage like WGS (Guan et al., 2012). As a result, the WXS-based COO models, developed 

using 1 Mb genomic regions and topologically associated domains, were inadequate for 

accurate COO prediction.  

To my surprise, even the WXS gene-based COO model failed to predict the COO 

successfully. I suspect this failure is due to the quality of the WXS data itself. Notably, the COO 

models for breast and liver cancers were unable to correctly identify the COO using either gene 

or CDS profiles. However, when simulated gene and CDS profiles from the WGS were used, 

the predictions were accurate. Only the WXS COO models for skin melanoma, using CDS 

profiles, managed to predict the COO correctly. This success might be attributed to the higher 

mutational burden in skin melanoma compared to the other two cancer types, resulting in 

increased statistical power for the model. Furthermore, I found that COO models utilizing both 

intronic and exonic mutations in genes resulted in a better COO performance. Introns make up 

a substantial portion of the human genome, leading to a higher absolute number of mutations 

in these regions compared to the smaller exonic regions (Lander et al., 2001). Furthermore, 

mutation rates are often higher in intronic regions than in coding regions, likely because intronic 

regions can accumulate mutations without necessarily causing deleterious effects on protein 

function, allowing them to serve as better markers for COO identification (Hodgkinson & Eyre-

Walker, 2011). These findings highlight the impact of data quality and quantity on the 

performance of COO models. Therefore, when designing WXS experiments to identify the cell-

of-origin using this particular COO model, it is crucial to be aware of the platform's limitations, 

particularly in terms of exome capture (Clark et al., 2011), and modify the research accordingly. 

Additionally, these limitations may also contribute to the significantly lower COO prediction 

accuracy observed in WGS data of TCGA cohorts across various settings, potentially resulting 

in inadequate coverage of extensive genomic regions. 

However, other COO models, that rely solely on the variants inside genes and across 

multiple different cancer patients, have successfully predicted the COO across a wide range of 

samples and various cancer types using more or less the same TCGA/ICGC sample 

(Chakraborty et al., 2021; Dietlein & Eschner, 2014). Although most of these models’ 

performance is much lower than models developed by WGS, some can achieve model 

accuracies up more than 90% by applying deep neural network machine learning (Sun et al., 

2019). Other ways in which these WXS COO models improve their prediction rates is by using 
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additional features such as copy-number variation information per patient or by resorting to the 

integration of multi-omics data to achieve (Cai et al., 2022; Marquard et al., 2015). Many of 

these developed models rely on utilizing advanced machine learning approaches to select the 

used gene subset with questionable interpretability for each cancer type or rely on the 

predefined set known to be involved in carcinogenesis (He et al., 2020; Marquard et al., 2015). 

This discrepancy in WXS data usage suggests that the principle underlying my COO model is 

particularly sensitive to the highlighted concerns regarding exome capture limitations and data 

comprehensiveness. As a result, the primary conclusions of the COO model, which rely on a 

detailed analysis of the mutational landscape and its correlation with normal epigenomes, were 

based on WGS data. 

In addition to the quality of mutational data and the selection of next-generation 

sequencing techniques, I found that the choice of tissue-specific topologically associated 

domains did not significantly impact the accuracy of cell-of-origin predictions. This finding 

aligns with the fact that TADs are largely conserved across different cell types (Boltsis et al., 

2021; McArthur & Capra, 2021), which reduces their variability as a factor in improving COO 

model performance. I found that longer topologically associated domains containing more 

mutations improved the accuracy of COO models. However, it is the boundaries of TADs that 

play a crucial role in regulating the expression of nearby genes. These boundaries are known to 

contribute significantly to complex-trait heritability, particularly for traits related to 

immunologic, hematologic, and metabolic functions (Boltsis et al., 2021). Given the regulatory 

importance of TAD boundaries, it would be valuable to expand and improve COO models by 

incorporating these boundaries to better capture the structural and functional genome 

organization.  

5.2.1 Genomic feature and their contribution to COO models 

Developed models COO models using all single-nucleotide variant and epigenome of 

normal tissues across 1 Mb genomic regions and different topologically-associated domains 

confirmed the observations detected in previous researches using similar settings (Kübler et al., 

2019; Polak et al., 2015). 

The use of small insertions and deletions instead of SNVs in the developed COO models 

did not result in successful identification of the COO, with the exception of the 1 Mb genomic 

region in skin melanoma, which achieved an accuracy of approximately 30%. This was 
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significantly lower compared to the 80% accuracy obtained with SNVs, and it allowed for the 

correct identification of only a few patients. This finding aligns with our previous work (Bakšić, 

2022), with the notable difference that the random forest algorithm used in this study was unable 

to predict the correct COO for any melanoma cohorts. Indels are inherently less frequent in the 

genome compared to SNVs, primarily due to their distinct mutational mechanisms and the 

selective pressures they are subjected to. Indels, especially those in coding sequences, can have 

a significant impact on gene function by disrupting reading frames and altering protein 

structures. Consequently, they are more likely to be subject to purifying selection to maintain 

essential protein functions (Gagliano et al., 2019) making them unsuitable to use in this 

developed COO model.  

Other published cell-of-origin models seldom, if ever, incorporate indels as significant 

predictors for determining the COO. Nguyen et al. (2022) found that the mutational load of 

indels did not rank among the top 15 most significant features for predicting the COO across 

various cancer types. However, they identified an exception in pilocytic astrocytoma (CNS-

PiloAstro), where the mutational load of indels was the second most critical feature, just after 

regional mutational density (RMD). This suggests that while indels generally have limited 

predictive power in COO models for most cancers, such as liver, skin melanoma, and breast 

cancer examined in this research, they may play a more critical role in certain cancer types. 

Further research is needed to explore whether the indel count in other cancer types, such as 

pilocytic astrocytoma and other brain cancers, could serve as a valuable resource to enhance 

the accuracy of COO model predictions based on correlations with normal epigenomes.  

5.2.1.1 Mutational signatures 

Other important genomic features that have been assessed in predicting the COO are 

single base substitution (SBS) mutational signatures. Since the developed COO models heavily 

depend on the correlation between mutations and the normal epigenomes within defined 

genomic features, it is crucial to establish the relationship between SBS mutational signatures 

and the epigenome, as well as their impact on prediction accuracy in certain used 1 Mb regions 

or TADs. 

Interestingly, across all cancer types, the clock-like SBS1 signature showed the poorest 

correlation with the epigenomes of normal cells-of-origin for the corresponding cancer types. 

The correlations were notably better within TADs, which represent biologically meaningful 3D 

structural features critical for gene regulation and the maintenance of genomic stability (Long 
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et al., 2022). In contrast, 1 Mb genomic regions are more arbitrary and do not provide the same 

level of functional insight. Although SBS1 was not the signature with the strongest correlation 

to erroneous regions, it was documented that using SBS1 in conjunction with chromatin 

accessibility regions, defined by ATAC-seq, resulted in overall lower accuracy for COO models 

(Ocsenas & Reimand, 2022). Additionally, they found that the SBS1 signature in liver cancers 

showed a much stronger association with liver cancer chromatin accessibility profiles compared 

to normal tissues. In both liver and skin melanoma, COO predictions for patients within 1 Mb 

regions and TADs had a slightly higher proportion of SBS1, but its overall abundance was 

negligible compared to other signatures. 

Although I did not test whether removing SBS1 mutations would significantly change 

the accuracy of COO predictions, I focused on another age-related signature with a higher 

correlation with erroneous predictions and higher abundance: the SBS40 signature. The SBS40 

signature has been associated with transcriptionally active domains (Akdemir et al., 2020). 

Despite Ocsenas and Reimand (2022) showing that the inclusion of SBS40 in prediction models 

resulted in higher accuracies, my analysis found that removing this "erroneous" SBS40 

signature from breast and liver TADs did not significantly impact COO predictions in either 

aggregated or individual profiles. Nevertheless, I identified that correctly identified COO 

patients did have a higher proportion of SBS40 compared to incorrectly identified ones, 

supporting their findings. 

The most striking "erroneous" mutational signature identified in the 1 Mb genomic 

region model was the APOBEC-generated SBS13 signature in breast cancer. This signature 

exhibited the strongest correlation with erroneous 1 Mb regions and one of the weakest 

correlations with the normal cell-of-origin epigenome in both 1 Mb regions and TADs. The 

same APOBEC signature was associated with lower COO prediction accuracy in the study by 

Despite Ocsenas and Reimand (2022), but it was found to be among the top 15 most important 

features by Nguyen et al. (2022). Unfortunately, removing the APOBEC SBS13 signature 

significantly improved the COO model only in aggregated breast cancer profiles; while the 

predictions for individual patients remained largely unchanged. In breast cancer patients whose 

mutational profiles are predominantly characterized by APOBEC-associated mutations, the 

COO prediction tends to be less accurate. While these patients may still achieve a correct COO 

prediction in some instances, the overall impact of APOBEC mutations is insufficient to 

significantly enhance prediction accuracy across all individual cases. This limitation is 

particularly evident in the context of the COO model's objective, which is to provide reliable 
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predictions for each patient. The same can be said for HRD signature SBS3, another less 

accurate signature identified by Ocsenas and Reimand (2022). Moreover, unlike the APOBEC 

signature, which is found in early-replicating euchromatic regions, I observed that the SBS8 

signature, which occurs in late-replicating heterochromatic domains, is more enriched in TADs 

and even within the top 40% most mutated breast cancer patients with correctly identified COO. 

This suggests that mutations arising from uncorrected late-replication errors during cancer 

progression may be more relevant for COO model prediction. 

The liver-specific SBS12 signature has been identified as a crucial feature for COO 

prediction in multiple studies (Nguyen et al., 2022; Ocsenas & Reimand, 2022). My analysis 

confirmed its significance, as I detected a higher abundance of SBS12 in patients who were 

correctly identified as having liver cancer. Conversely, the SBS16 signature, another liver-

associated mutational signature, was more frequently observed in patients whose COO was 

incorrectly predicted. This suggests that while SBS12 is a reliable indicator of liver cancer 

origin, SBS16 may be less specific or indicative of different mutational processes that 

complicate accurate COO determination. 

In skin melanoma, the worst correlations with the melanocyte epigenome were observed 

for SBS43 in both 1 Mb regions and TADs. Currently, SBS43 is considered a potential 

sequencing artifact (Tate et al., 2019), and its removal did not significantly improve the COO 

model. Interestingly, I found that correctly identified COO patients were significantly enriched 

with the SBS7a signature, while incorrectly identified patients had a higher proportion of the 

SBS7b signature in both 1 Mb regions and TADs. Both signatures are UV-induced and result 

from photoproducts, making it challenging to determine precisely what differentiates these 

groups and affects the COO models without further experimental validation and mechanistic 

insight. 

In conclusion, the interpretation and application of SBS mutational signatures in COO 

models should be approached with caution, as their effects can vary significantly depending on 

the specific context and settings of the COO model.  

5.2.1.2 Under-predicted outliers affected by hotspots 

Catastrophic genomic events, such as kataegis and structural variant (SV) hotspots, have 

been frequently associated with regions of high mutational instability. These events are often 

observed in regions that are under-predicted outliers in both 1 Mb genomic regions and TADs 
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across various cancer types. This pattern is particularly evident in breast cancer, which exhibits 

the highest number of SV hotspots among the cancers analyzed. Specific analysis of individual 

SV signature hotspots is challenging due to previously highlighted limitations in SV analysis. 

Notably, the COSMIC HRD-associated signature SV3, which closely resembles the de novo 

breast SV1, was predominantly enriched with non-outlier regions in breast cancer models of 1 

Mb regions and TADs. In contrast, skin de novo SV3 (COSMIC SV4) within TADs had higher 

proportion of under-predicted TADs, while skin SV2 (COSMIC SV6) was significantly 

enriched with over-predicted 1 Mb outlier regions. These findings underscore the influence of 

cancer-specific SV hotspots on the erroneous prediction landscape, highlighting the need for 

more detailed interpretations of SV signature impacts in COO models. 

Kataegis regions present essentially hotspots of hypermutation that can distort the 

mutational landscape, making it difficult for models to accurately predict the true mutational 

burden. Therefore, COO models might predict a lower number of mutations than what is 

actually present, which can affect the precision of cancer origin predictions. Kataegis events 

are frequently linked with SV breaks, as demonstrated in multiple studies (Aaltonen et al., 2020; 

Nik-Zainal et al., 2012; Roberts et al., 2012). In my analysis, the presence of kataegis was 

particularly notable in under-predicted breast cancer 1 Mb genomic regions, where 42% of these 

regions also contained SV hotspots. This overlap suggests that areas with both kataegis and SVs 

are more error-prone, leading to inaccuracies in mutational burden estimates when using 

conventional COO models. Such regions, by concentrating a high number of mutations in a 

small genomic space, complicate the assessment of the overall mutational load. 

I detected, especially in breast cancer but also others, that TADs affected by kataegis 

and/or SV hotspots exhibit a stronger association of single nucleotide variants (SNVs) with 

regions marked by open chromatin and specific histone modifications. This observation can be 

attributed to APOBEC-associated mutations (SBS13 and SBS2), which constitute the majority 

of kataegis events and are typically concentrated in these accessible regions of the genome. 

APOBEC enzymes are known to induce mutations preferentially in areas of open chromatin, 

which are more transcriptionally active and have less compacted DNA, leading to higher 

mutation rates in these regions and TADs (Akdemir et al., 2020; Kazanov et al., 2015). The 

absence of a strong correlation when examining solely SBS signatures may be due to the 

predominance of flat signatures such as SBS5, SBS40, and SBS8. These signatures are less 

specific and can lead to misannotation when using tools like Palimpsest or applying other 

stringent signature analysis methods in the future. More complex mutational landscapes often 
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require a more detailed approach to signature analysis to accurately reflect the underlying 

biological processes. 

Interestingly, removing regions affected by kataegis and/or SV-hotspots improved the 

accuracy of the COO model for aggregated profiles but did not have the same effect for 

individual patients in breast cancer. The removal of kataegis regions in skin melanoma, for 

instance, reduced the COO model's accuracy, which is understandable given that melanomas 

are hypermutated tumors that are likely to exhibit more kataegis regions due to their high 

mutational burden. On the other hand, in breast cancer, kataegis and SVs represent complex 

regions where multiple repair mechanisms and proteins may be involved, indicating the need 

for further investigation to understand the impact on COO predictions fully. 

In Cancer of Unknown Primary Location Resolver (CUPLR) model (Nguyen et al., 

2022) addition of structural variant information significantly improved the COO prediction for 

cancer that are lacking informative features including central nervous system pilocytic 

astrocytoma, lung non-small cell carcinoma, and prostate cancer. This shows that adding SV-

related information could increase in certain tumors which needs further research in these 

developed COO model. 

Moreover, super-enhancers (SEs) were typically either sparse or completely absent in 

over-predicted regions and TADs. This lack of super-enhancers in these regions correlates with 

lower expression levels of tissue-specific genes compared to under-predicted and non-outlier 

regions, which generally contained a higher number of SEs. The study by Yang et al. (2023) 

highlights that chromatin marks at or near tissue-specific enhancer regions undergo significant 

changes during the progression to cancer. This is particularly evident in cases of Barret’s 

metaplasia and esophageal adenocarcinoma genomes, where the loss of tissue-specific 

enhancers and dynamic changes in somatic mutation patterns in these regions lead to a reduced 

correlation with the original COO chromatin marks. However, in breast, liver, and skin 

melanoma, the non-outlier regions or TADs with the best prediction accuracy either had the 

highest abundance or showed similar proportions to the more erroneous under-predicted 

outliers. This suggests that in these cancers, tissue-specific enhancers may not play as 

significant a role as they tissue-specific ones do in precancerous stated for Barrett’s metaplasia 

and esophageal adenocarcinoma. The same study by Yang et al. (2023) demonstrated that the 

implementation of more advanced machine learning algorithms, such as extreme gradient 

boosting, significantly enhanced the COO prediction accuracy for colorectal and esophageal 
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cancers. However, the prediction accuracy for liver cancer remained largely unchanged. In the 

present study, I observed similar findings: using an extreme gradient boosting approach did not 

significantly increase the COO prediction accuracy. Especially when using topologically 

associated domains to predict individual patients or in gene-based COO models, the algorithm 

failed to execute successfully. This was mainly due to the limited variance in data splits, which 

hindered the model's ability to capture distinct patterns necessary for accurate predictions. 

Further optimization of random forest and extreme gradient boosting parameters is required to 

improve the prediction accuracy across different genomic features used in COO models. 

 To further elaborate, under-predicted 1 Mb regions and topologically associated 

domains demonstrated a slightly higher enrichment of known driver genes, as identified by the 

Cancer Gene Census (CGC) or Tumor Immune Microenvironment (TIME), across most cancer 

types and their respective COO model setups. This suggests that these regions might contain 

critical genomic elements associated with cancer development and progression. Example of 

detected important cancer drive in under-predicted breast TAD is ERBB2, known as Her2, 

which is amplified and overexpressed in more than 15% of invasive breast cancers (Ng et al., 

2015). 

Under-predicted features could potentially harbor newly identified cancer genes that 

have not been extensively studied in these specific cancer types which was also done by other 

studies (Ocsenas & Reimand, 2022). This highlights the potential for these regions to contain 

novel oncogenes or tumor suppressors that could expand our understanding of cancer genomics. 

For this reason, investigating gene-based COO models in these under-predicted regions could 

provide valuable insights into the identification of new driver genes and enhance our current 

knowledge of cancer biology. 

5.2.2 Gene-based COO models 

The selected gene groups based on specific gene characteristics were unable to 

accurately identify the COO of most individual patients, even though they showed decent COO 

prediction based on aggregated mutational profiles. The prediction using all of the gene sets 

was significantly worse than the COO models developed using 1 Mb regions or TADs for each 

analyzed cancer type. The majority of wrongly identified COO patients were mistakenly 

categorized as having immune cells or brain-related tissues as their COO. This misassignment 

might be due to contamination of tumor microenvironment with immune or even recently 
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discovered nerve cells (Jeong et al., 2018) whose mutational profiles of all used genes can 

maybe outpower the cancers. However, this is a speculative theory that requires further analysis 

and validation. 

Most of the analysis of frequently mutated genes in cancer cohorts rely on driver, non-

synonymous mutations, that in some way lead to carcinogenesis or increase cancer fitness. 

However, background mutations as we already saw with mutational signatures can also tell us 

a lot about the consequences and processes leading up to cancer. For this reason, for the 

selection of top mutated genes, I did not filter mutations based on their impact and found them 

to be brain-related genes with little to no expression in normal tissues of corresponding cancer. 

These genes were significantly longer than other groups of selected genes, which allows for the 

accumulation of a greater number of mutations simply due to their increased length. To account 

for this potential bias, the COO models were normalized by gene length. This normalization 

ensures that the gene length does not influence the biologically meaningful interpretation of the 

results, allowing for a more accurate assessment of the relationship between gene mutations 

and cancer development. I hypothesize that these genes are in lowly expressed regions of the 

genome where DNA repair is not operating leading to the accumulation of mutations based on 

the original findings between mutational rate and chromatin (Polak et al., 2015). The low 

expression of these genes in normal tissues was also confirmed by the absence of tissue-specific 

enhancers and a high prevalence of top N% mutated genes affected by SV-hotspots and/or 

kataegis across various cancers. These genes were frequently found within closed chromatin 

regions, as annotated by TADs, which are less accessible and transcriptionally inactive.  

Incorrectly identified COO patients using the best top N% mutated gene subset COO 

models, showed similar enrichments with SBS mutational signatures in those subset of genes 

as did they in 1 Mb region and TADs model. In skin melanoma, SBS7a and SBS7c were 

characteristic for correctly identified one, while SBS7b for incorrectly. In breast cancer the most 

significant difference was higher enrichment of SBS8 and even SBS2 in correct COO patients, 

while other signatures especially age relate: SBS1, SBS40 and SBS5 were more abundant in 

incorrect ones. For liver cancer, the liver-specific mutational signature SBS12 was enriched in 

correctly identified patients. On the other hand, signatures like SBS16 and SBS3 were more 

common among incorrectly predicted cases. 

Using logistic regression models to analyze mutational signatures in genes has proven 

to be an effective method for determining cancer’s origin, achieving area under the curve 
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(AUC) values ranging from 0.76 to 0.93 (Wang et al., 2022). They also found that combining 

somatic mutation data with cancer-type-specific mutational patterns derived from circulating 

free DNA (cfDNA) resulted in a high prediction accuracy of 90% for breast and prostate cancers 

This indicates high accuracy in identifying the COO across various cancers using only an 

abundance of mutational signatures as predictors. For that reason, mutational signatures still 

represent a worthy challenge to investigate even further and implement in the COO model based 

on any genomic feature used in this research. 

I hypothesized that maybe early arising signatures as aging ones such as SBS1 and 

SBS40/5 poorly reflect the cell-of-origin. Signatures generated by endogenous or exogenous 

sources are those driving and allowing for correct COO identifications. For instance, although 

the SBS8 proposed aetiology is largely unknown, it is suspected to be involved with NER or 

HR repair processes (Tate et al., 2019). Various processes, including DNA repair mechanism-

related damages characterized by SBS8, accumulate in non-active, brain-related genes that are 

not crucial for the function of the analyzed tumors. These genes generally follow the normal 

epigenome until significant driver mutations and genes trigger tumor development. Therefore, 

it would be valuable to investigate the origins of driver mutations in these genes to determine 

the initial events that trigger tumorigenesis. For example, the E542K mutation in the PIK3CA 

gene has been associated with the APOBEC SBS2 mutational signature (Temko et al., 2018), 

which is indicative of the role of the APOBEC family of cytidine deaminases in generating this 

mutation. Similarly, in melanomas, the KIT K642E mutation is linked with the clock-like SBS5 

signature (Temko et al., 2018), suggesting that this mutation accumulates over time as a result 

of normal cellular processes rather than exogenous mutagens. 

In addition to using only somatic mutations or mutational signatures, incorporating gene 

expression data into the models has significantly improved their accuracy, achieving up to 97% 

accuracy in some cases (Abraham et al., 2021; He, Dai, et al., 2020; He, Lang, et al., 2020). 

This suggests that COO models, which are based on the correlation between mutations and 

epigenome modifications within genes, can be substantially enhanced by including RNA-seq 

expression data from normal tissues. Furthermore, including promoter regions in these models 

can also improve COO prediction accuracy. Promoter regions are key regulatory elements, and 

certain histone modifications, such as H3K27ac and H3K4me3, are particularly specific to these 

regions, marking active transcription sites and enhancing the expression of associated genes 

(Herrera-Uribe et al., 2020; Roadmap Epigenomics Consortium et al., 2015). 
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5.2.3 Patients characteristic affected by the models 

Among the various histological subtypes of liver cancer, cholangiocarcinoma patients 

often had the cell-of-origin incorrectly assigned to liver tissue in predictive models. This 

discrepancy arises because the true COO for cholangiocarcinoma is the cholangiocyte, which 

is an epithelial cell lining the bile ducts (Goral, 2017). These cells are distinct from hepatocytes, 

which are typically the primary cell type involved in other forms of liver cancer, such as 

hepatocellular carcinoma (HCC). During liver regeneration, pluripotent progenitor cells can 

differentiate into either hepatocytes or cholangiocytes, highlighting the complex cellular 

dynamics within the liver (Duncan et al., 2009). A COO model on 12 extrahepatic biliary tract 

cholangiocarcinoma samples (BTCAs) showed stomach tissues as COO for BTCAs, in contrast 

to hepatocytic predicted COO for hepatocellular carcinomas (HCCs) (Ha et al., 2020). Also, for 

the mixed hepatocellular carcinoma/intrahepatic cholangiocarcinoma subtype, the cell of origin 

was predominantly hepatocytic, despite the presence of mixed histological features. This 

suggests that, while these cancers share some characteristics with cholangiocarcinoma, their 

primary cellular origin aligns more closely with hepatocytes. Hepatocellular adenoma, a rare 

benign neoplasm of the liver, predominantly occurs in young women who have a history of oral 

contraceptive use (Wang & Zhang, 2022). This neoplasm was accurately identified as hepatic 

in origin using COO models that employed 1 Mb genomic regions and TADs. This successful 

identification underscores the capability of COO models to detect early, benign stages of liver 

neoplasms before they potentially progress to more malignant forms. 

In skin melanoma, the two histological subtypes with the poorest COO model 

predictions were diagnosed with malignant melanoma, not otherwise specified (NOS), and acral 

lentiginous melanoma (ALM), which typically occurs on the hands and feet. ALM is a rare 

subtype of melanoma that predominantly affects individuals of African American, Hispanic, 

and Asian descent, and is associated with a worse prognosis compared to non-acral melanomas 

(Bradford et al., 2009). The lower prediction accuracy for these melanoma types can largely be 

attributed to their lower mutational account compared to other types. 

As for breast carcinoma, a higher mutational burden did not necessarily correlate with 

the accurate prediction of the cell-of-origin, particularly in cases of invasive ductal carcinoma 

(IDC) and in patients with an unknown histological subtype. In contrast, patients with invasive 

lobular carcinoma (ILC) who were correctly identified by the COO model generally exhibited 

a higher mutational load. IDC and ILC are the two most prevalent types of breast cancer, each 
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characterized by distinct molecular and histological features, suggesting that their unique 

mutational landscapes may influence COO predictions differently. ILC is well-known for the 

loss E-cadherin loss, as well as showing CDH1 and PTEN loss, AKT activation, and mutations 

in TBX3 and FOXA1 (Ciriello et al., 2015). ILC has a more favorable prognosis due to its 

hormone receptor positivity, lower histological grade, HER2 negativity, and better response to 

endocrine therapy than IDC (Barroso-Sousa & Metzger-Filho, 2016; Filho et al., 2015). 

However, ILC patients with high-risk indicators, such as those who are hormone receptor-

negative and lymph node-positive, have shown worse overall survival (OS) compared to IDC 

patients in subgroup analyses, highlighting the complexity of prognostic factors within these 

subtypes (C. Yang et al., 2020). 

Kubler et al. (2019) showed that both ductal and lobular carcinomas have the same 

mature cell-of-origin despite their molecular and histological differences, suggesting that 

factors beyond the primary cell of origin influence their development and progression. Their 

study also found that homologous recombination deficiency (HRD), characterized by 

inactivation of BRCA1, BRCA2, or RAD51C, did not significantly influence the COO 

predictions when assessed using aggregated mutational profiles. My approach leveraged HRD 

information from both HRD classifiers, CHORD and HRDetect, to increase the number of HRD 

patients to assess the influence on COO model prediction (Štancl et al., 2022). Interestingly, 

HRD patients were less correctly identified than non-HRD patients using the 1 Mb region 

model. However, models utilizing TADs and the top 40% of most mutated genes resulted in 

better COO prediction accuracy for HRD patients. TADs could provide a more functionally 

relevant and structurally intact framework that captures the spatial and regulatory interactions 

influencing the genomic instability seen in HRD. While top 40% mutated genes may unravel 

new key driver genes for HRD. Unfortunately, none of the PAM50 groups resulted in correctly 

identifying the cell-of-origin for nearly any patients, regardless of the genomic feature used. 

For these numerous reasons, further detailed research is required to explore these findings and 

refine the predictive models for various breast cancer types. 

5.3 RNA-seq called mutations in gene-based cell-of-origin model  

RNA-seq called mutations resulted in significant high rate of false positive mutations, 

especially when using only tumor mode calling with Mutect2 of skin-melanoma. While paired 

both tumor and normal tissues alongside multiple variants calling algorithms resulted in a much 

more similar mutational count number to WXS than WGS technologies, aligned with good 
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practices in cancer genomics (Goode et al., 2013; Koboldt, 2020; Van der Auwera et al., 2013). 

There was still a significant bias in RNA-seq called mutations which is apparent from RNA-

seq profiles of transversions and transitions from different cancers were more similar to one 

another than to their corresponding cancers profiles detected by other NGS technologies. This 

was also apparent by high abundance of called A-to-G transitions. These transitions are caused 

by adenosine deaminases acting on RNA (ADARs) proteins which modify genetically encoded 

A to inosine (I) in double-stranded RNA (dsRNA) substrates (Bass, 2002; Savva et al., 2012). 

That results in increased number of A-to-G transitions in mRNA-sequencing data when aligned 

to the reference genome, which is quite abundant in human genes (Bazak et al., 2014). Although 

I did remove all the RNA-editing sites annotated in DARNED and RADAR databases, 

apparently majority of possibly new ones remained in analyzed dataset. Further improvement 

of calling the RNA-seq variants can be done by creating RNA-based panel of normal using for 

instance multiple normal tissues found in the GTEx database to filter out various RNA artifacts 

(Long et al., 2022). They also included in their pipeline filtered out of mutations found in 

immunoglobulin, pseudogenes and non-coding RNA alignments, as well as removing intronic 

mutations to improve the overall quality of the RNA-seq called mutations. I detected those 

enrichment od immunoglobulin genes and intronic mutations in my data, although the RNA-

seq intronic mutation was very similar in breast cancers RNA-seq and WXS mutations probably 

due to the designed library used in WXS to capture both gene body regions. As I wanted to 

compare the best predictive COO models based on different gene groups, I did not do the 

additional filtering of intronic mutations.  

Most frequently mutated genes also significantly differed from RNA-seq mutated ones 

to ones detected by WGS. Although the top ones, mutated in over 50% of sample in breast and 

liver cancer were not found in Cancer Gene Census, some of them were known to be involved 

in carcinogenesis. For breast cancer RNA-seq, I detected a UTRN gene, which encodes 

utrophin, a dystrophin-related protein, to also be presented in top 40% mutated genes by WGS. 

UTRN is a tumor suppressor gene found to be mutated in multiple cancers and to contain 

somatic truncating mutations in primary breast cancer (Li et al., 2007). In liver cancer, CYP2E1 

gene under regulation of hepatocytes super-enhancer is known to also act as a tumor suppressor 

by regulating Wnt/Dvl2/β-catenin (Zhu et al., 2022). Both of these detected tumor suppressors 

are downregulated in their corresponding detected cancers. As for skin melanoma RNA-seq 

mutations, majority of top mutated genes showed very little overlap to the WGS identified, with 

also varying enriched Gene Ontology terms for which these genes are involved. 
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Out of all used gene groups for developing the COO models, the tissue-specific ones 

managed to capture the highest model accuracy in breast cancer, while melanoma’s best model 

was with top N% mutated genes regardless of the CDS or gene length normalization. However, 

since the second non-COO model was very similar to the best identified one, this shows 

insufficient power and reliability in COO predictions which can be further tested using multiple 

runs with different seed settings. Individual predictions failed to identify the correct COO in 

most of the patients implying that further improvements and reevaluation of the whole gene-

base RNA-seq variant mutational COO models need to do in the future.  
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6 Conclusion 

In this thesis I developed multiple cell-of-origin prediction (COO) models based on 

mutational landscape and epigenomic profiles in 1 Mb genomic regions, topologically-

associated domain and genes for breast, liver and skin melanoma cancers and found following: 

1. High-quality mutational data, particularly data that includes intronic mutations, 

enhances the prediction accuracy of COO models, regardless of the genomic feature 

used 

2. Insertions and deletions (indels) alone do not provide sufficient power for reliable 

COO prediction across different cancer types 

3. The prediction of COO for any cancer type is not significantly influenced by tissue-

specific TADs, as TADs are conserved across different cell types and do not 

necessarily reflect tissue-specific genomic features 

4. Longer genomic features tend to contain more mutations, which contributes to a 

more accurate COO prediction 

5. APOBEC-generated mutations, which are primarily associated with kataegis 

regions, reduce the accuracy of COO models based on arbitrarily selected 1 Mb 

genomic regions in breast cancers and are enriched in genomic features of breast 

patients with incorrectly identified COO 

6. The removal of kataegis-affected regions significantly decreases COO prediction 

accuracy in hypermutated cancers like skin melanoma 

7. Structural variant (SV) hotspots within TADs reduce the COO model's prediction 

accuracy for aggregated mutational profiles in breast cancer 

8. Under-predicted genomic features are enriched with cancer driver genes, SV-

hotspots and kataegis events while regions where COO models perform well tend to 

have a higher presence of super-enhancers 

9. The most frequently mutated genes, involved in brain-related processes and 

typically found in more closed chromatin regions, offer the highest COO prediction 

accuracy in gene-based COO models 

10. Different histopathological subtypes of cancer exhibit varying levels of accuracy in 

COO model predictions 

11. Advanced machine learning methods, such as random forest and extreme gradient 

boosting, generally yield similar COO prediction accuracy. However, in cases with 
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a low number of mutations and insufficient variation, these models struggle to 

predict COO due to their complex data splitting mechanisms 

12. Mutations identified through RNA-Seq data often result in a high number of false 

positives, though they can still predict COO for cancer on aggregated mutational 

profiles 

To sum up, this thesis shows that the accuracy of predicting the cell-of-origin is greatly 

improved by high-quality mutational data, especially when considering intronic mutations and 

longer genomic features. Nevertheless, challenges persist in certain contexts, such as the impact 

of kataegis regions and structural variant hotspots, emphasizing the need for careful selection 

of genomic features and advanced machine learning approaches tailored to the complexities of 

cancer genomes.  
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Supplementary figure 1. Median transversions and transitions across all breast, liver and skin melanoma cancer 

type cohorts 
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Supplementary figure 2. A-F) Summary of somatic point mutations from different cancer types (breast, liver and 

skin cancer) from WGS or WXS data. The top panel contains the total number of point mutations in the samples. 

The bottom panel shows the somatic point-mutation signature compositions of the triplet mutational spectra. 

Samples are ordered by the total amount of mutations. 
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Supplementary figure 3. Indel type per cohort across different cancer types and sequencing technologies. Box 

plots show the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. 

 

Supplementary figure 4. Proportion of SV classes per breast, liver and skin cancer (Chi-square test, p-value = 0) 
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Supplementary figure 5. Multiple tissue specific metric across all analyzed datasets separated by on tissue specific 

and broad Gene Ontology (GO) terms 
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Supplementary figure 6. Number of tissue-specific genes for each RNA-seq dataset of normal tissue based on the 

extended Tau index.  
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Supplementary figure 7. A) Multiple linear regression models for the prediction of mutation density of aggregated 

tumor profiles in 1 Mb genomic regions of breast, liver and skin cancer WGS and WXS were trained on an extended 

set of 101 tissue sets but showing only the top one. The overall explained variance is reported across the 10-fold 

cross-validation. B) Proportion of correctly and incorrectly identified cell-of-origin (COO) of individual patients 

colored by their belonging cohort.  
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Supplementary figure 8. Multiple linear regression models for the prediction of mutation density of indel 

aggregated tumor profiles in 1MB genomic regions of breast, liver and skin cancer WGS and WXS were trained 

on an extended set of 101 tissue sets but showing only the top 15 in each defined subgroup of genes. The overall 

explained variance is reported across the 10-fold cross-validation. 

 

Supplementary figure 9. Explained variance for correctly and incorrectly identified COO of individual patients 

with 1 MB genomic regions COO multiple models for different breast cancer histological types.  Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon 

test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 
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Supplementary figure 10. Explained variance for correctly and incorrectly identified COO of individual patients 

with 1 MB genomic regions COO multiple models for different liver cancer histological types. Box plots show the 

median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon test, 

ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 
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Supplementary figure 11. Explained variance for correctly and incorrectly identified COO of individual patients 

with 1 MB genomic regions COO multiple models for different skin melanoma histological types.  Box plots show 

the median value, interquartile range as a box, and the whiskers extend to IQR±1.5*IQR. Two-sided Wilcoxon 

test, ns: p > 0.05 *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 

 

 

Supplementary figure 12. Multiple linear regression models for the prediction of mutation density of indel 

aggregated tumor profiles in TADs of breast, liver and skin cancer WGS and WXS were trained on an extended 

set of 101 tissue sets but showing only the top 15 in each defined subgroup of genes. The overall explained variance 

is reported across the 10-fold cross-validation.  
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