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SUMMARY

The Jacobi eigenvalue algorithm is a well-known iterative method used for solving the
eigenvalue problem of symmetric matrices. The process is based on matrix diagonaliza-
tion. In this thesis we study several modifications of the Jacobi method. We work on
both matrix and tensor numerical problems. First, we review and generalize the Eberlein
method, which is a Jacobi-type method for diagonalization of an arbitrary matrix. We
prove the global convergence of the Eberlein method under a broad class of generalized
serial pivot strategies with permutations. Moreover, we discuss the cases of unique and
multiple eigenvalues. Next, we consider block-partitioned matrices and introduce a block
version of the Eberlein method. We give a convergence proof for the block Eberlein al-
gorithm under the already mentioned class of generalized serial pivot strategies. Lastly,
we study the methods for approximate tensor diagonalization. We propose an iterative
Jacobi-type trace maximization algorithm for solving this problem on general tensors, as
well as the structure-preserving variant for the symmetric tensors. We prove the global
convergence for both of our algorithms. All theoretical work is accompanied by numerous
numerical examples.

Keywords: Jacobi-type method, matrix diagonalization, pivot strategies, global con-

vergence; tensor diagonalization.
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SAZETAK

Jacobijev algoritam je poznata iterativna metoda za rjeSavanje problema svojstvenih vri-
jednosti za simetriéne matrice. Postupak se temelji na dijagonalizaciji matrice. U ovoj
se disertaciji bavimo modifikacijama Jacobijeve metode koje koristimo za rjeSavanje nu-
merickih problema za matrice i tenzore. U prvom dijelu rada proucavat ¢emo Eberlein-
inu metodu Jacobijevog tipa za dijagonalizaciju opée matrice. Poopcit ¢emo Eberleininu
metodu i dati dokaz globalne konvergencije za Siroku klasu tzv. generaliziranih serijal-
nih pivotnih strategija s permutacijama. Analizirat ¢emo slu¢aj jednostrukih i visestrukih
svojstvenih vrijednosti. Nadalje, promatrat cemo matrice s blok-particijom te uvesti blok
verziju Eberleinine metode. Dat ¢emo dokaz konvergencije blok Eberleininog algoritma
za ve¢ spomenutu klasu generaliziranih serijalnih pivotnih strategija. Naposljetku, pro-
matrat ¢emo problem pribliZzne dijagonalizacije tenzora. Predstavit ¢emo iterativni algo-
ritam Jacobijevog tipa temeljen na maksimizaciji traga tenzora. Konstruirat ¢emo algori-
tam za opée tenzore te njegovu varijantu za simetri¢ne tenzore u kojoj je o€uvana polazna
simetri¢na struktura. Za oba algoritma dokazat ¢emo globalnu konvergenciju. Svi teorij-
ski rezultati ¢e biti popraceni brojnim numerickim primjerima.

Disertacija je podijeljena u Cetiri poglavlja. U prvom poglavlju dan je osvrt na rezul-
tate iz literature. Opisan je realni i kompleksni Jacobijev algoritam za rjeSavanje problema
svojstvenih vrijednosti i izvedene su formule za raCunanje kuteva transformacije. Opisano
je nekoliko klasa pivotnih strategija. Poglavlje se nastavlja teorijom o Jacobijevim ani-
hilatorima i operatorima koji se koriste u brojnim rezultatima o konvergenciji za stan-
dardnu Jacobijevu metodu i za druge metode Jacobijeva tipa. Koristit ¢emo tu teoriju za
dokaz konvergencije Eberleinine metode po elementima, ali i njene blok varijante. Prvo
poglavlje zavrSava osvrtom na teoriju o konvergenciji Jacobijeva algoritma.

Drugo poglavlje temelji se na clanku [10] od Begovi¢ Kovac i Perkovi¢ objavljenom
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Sazetak

2024. godine. Prvo je dan pregled postojeCih rezultata o konvergenciji Eberleinine
metode, za realni i kompleksni slucaj. Glavni dio poglavlja je proSirenje globalne konver-
gencije metode na Siroku klasu generaliziranih serijalnih pivotnih strategija. PokaZe se da,
za proizvoljnu pocetnu matricu A, Eberleinina metoda konvergira uz bilo koju strategiju
iz navedene klase. Niz matricaA®), k >0, koji se dobije nakon svake iteracije, konvergira
prema normalnoj matrici. Niz hermitskih dijelova dobivenih matrica, (A(k) + (A(k))*) /2,
k > 0, konvergira prema dijagonalnoj matrici takvoj da su na dijagonali realni dijelovi
svojstvenih vrijednosti od A. Ako sve svojstvene vrijednosti od A imaju razli¢ite realne
dijelove, niz A® konvergira prema dijagonalnoj matrici sa svojstvenim vrijednostima
od A na dijagonali. Inace, svojstvene vrijednosti s jednakim realnim dijelovima mogu
dovesti do ne-nul van-dijagonalnih elemenata u dobivenoj matrici. Kroz numericke pri-
mjere testirana je metoda na realnim i kompleksnim matricama, za pocetne matrice koje
su unitarno dijagonalizabilne i za one koje to nisu. Promatrana je promjena u matri¢noj
van-dijagonalnoj normi, tj., udaljenosti od dijagonalne matrice. Nadalje, pokazana je blok
struktura koja se pojavljuje ako pocetna matrica ima viSestruke svojstvene vrijednosti.
Naposljetku, pokazano je kako numericki rijeSiti problem kod ponavljajuéih svojstvenih
vrijednosti.

Trece poglavlje sadrzi prijedlog novog blok Eberleininog algoritma. Dan je kratki
uvod u blok matrice i blok algoritme. Opisana je blok verzija Eberleinine metode u kojoj
su matrice podijeljene u blokove. Zatim, predlozen je nacin za raCunanje transformacija
Ry i Sg, k > 0, te dan dokaz konvergencije algoritma uz generalizirane serijalne pivotne
strategije. Rezultati konvergencije su u skladu s onima za Eberleininu metodu po elemen-
tima. Numeri¢kim testovima pokazano je kako blok algoritam radi za razliCite veliine
blokova i za ponavljajuce realne dijelove svojstvenih vrijednosti.

Cetvrto i posljednje poglavlje orijentirano je na pribliznu dijagonalizaciju tenzora.
Temelji se na Clanku [11] od Begovi¢ Kovac¢ i Perkovi¢ objavljenom 2024. godine.
Ovdje je detaljno objaSnjena terminologija i pojmovi vezani uz tenzore koji se koriste
u tenzorskom racunu. Prvo je dan osvrt na postojece algoritme za dijagonalizaciju ten-
zora. Zatim je iznesen prijedlog algoritma koji se temelji na maksimizaciji traga tenzora,
kao u [65]. Algoritam koristi metodu alterniraju¢ih najmanjih kvadrata (ALS). Naime,

jedna iteracija algoritma na tenzoru reda d sastojat ¢e se od d mikroiteracija. Pokazana
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Sazetak

je globalna konvergencija naseg algoritma za opCe tenzore. Preciznije, pokazano je da
je svako gomiliSte dobiveno naSim algoritmom stacionarna tocka funkcije koju mak-
simiziramo. Ovaj rezultat istog je tipa kao rezultati konvergencije algoritama za dija-
gonalizaciju tenzora koji se baziraju na maksimizaciji Frobeniusove norme dijagonale
tenzora. Konvergencija vrijedi za sve ciklicke strategije uz dodatni uvjet na pivotni par
(p,q), zvan Lojasiewitzeva nejednakost gradijenta. Nadalje, na§ algoritam maksimizacije
traga prilagoden je kako bi se ocuvala struktura simetri¢nih tenzora. U tom slucaju, svih
d rotacija koje djeluju u jednoj iteraciji moraju biti iste. Prema tome, ovo vise nije ALS
algoritam jer se trag maksimizira po svim modovima istovremeno. Ipak, dokaz konver-
gencije ¢e i¢i uz bok dokazu za algoritam koji ne cuva strukturu. Numeric¢ki primjeri
ukljucuju testove oba algoritma na tenzorima razli¢itih redova, dijagonalizabilnih tenzora
i onih koji to nisu. Promatrano je povecanje traga tenzora i smanjenje van-dijagonalne
norme tenzora, te su dane usporedbe za razlicite ciklicke pivotne strategije.

Kljucne rijeci: Metoda Jacobijeva tipa, dijagonalizacija matrice, pivotne strategije,

globalna konvergencija, dijagonalizacija tenzora.



CONTENTS

Introduction 1
1 Jacobi method and related results 7
1.1 Jacobialgorithm. . . . . .. ... ... ... ... .. 7
1.1.1 Real Jacobi algorithm . . . . ... ... ............. 8

1.1.2  Complex Jacobi algorithm . . . . ... ... ... ... ..... 11

1.2 Pivotstrategies . . . . . . . . v v i i e e e e e 16
1.2.1 Wavefront and weakly wavefront strategies . . . . .. ... ... 19

1.2.2  Generalized serial strategies with permutations . . . . ... . .. 21

1.3 Jacobi annihilators and operators . . . . . . ... ... L. 24
1.3.1 Complexcase . . . . . .. ... i 24

1.32 Realcase .. ... .. ... . ... ... 28

1.4 Convergence of the Jacobimethod . . . . . . ... .. ... .. ..... 31

2 Convergence of the Eberlein diagonalization method under the generalized

serial pivot strategies 34
2.1 The Eberleinmethod . . . .. ... ... ... .. ... . ... ... 36

2.1.1 Complexcase . . . . . . v v v vt e e 36

212 Realcase . . ... .. ... ... 40
2.2 Convergence results from the literature . . . . . . . ... ... ... ... 44
2.3 Convergence under the generalized serial strategies . . . . .. ... ... 47
24 Numericalresults . . . . . .. .. Lo 57

3 Block Eberlein diagonalization method 63



Contents Contents

3.1 Ontheblockmatrices . . . . . .. ... ... ... .. ... ....... 64
3.2 Block Eberleinmethod . . . . . .. ... ... ... ... ... 66
3.3 Core algorithm for finding Sy . . . . . . ... ... . L. 70
3.4 Convergence of the block Eberlein method . . . . . ... ... ... ... 75
3.5 Numericalresults . . . . . . ... ... 85
351 TestMatrix1 . . . . .. ..o 87

352 TestMatrix2 . . . . . ..o 89

353 TestMatrix3 . . . . .. 92

354 TestMatrix4 . . . . .. 94

4 Jacobi-type methods for tensor diagonalization 99
4.1 Onthe higher-ordertensors . . . . . . .. ... ... .. ......... 99
4.2 Problemdescription . . . . . ... ... Lo 106
4.3 Maximization of the Frobenius norm of the diagonal . . . ... ... .. 110
4.4 Trace maximization . . . . . . . . . . ... oL e e 122
4.4.1 Algorithm for the general non-structured tensors . . . . . . . .. 122

4.4.2  Structure-preserving algorithm for the symmetric tensors . . . . . 127

4.4.3 Convergence of the tensor-trace maximization algorithm . . . . . 131

4.4.4 Convergence of the structure-preserving tensor-trace maximiza-

tionalgorithm . . . . . .. ... ... L Lo 137

4.5 Numerical experiments . . . . . . . . . . . ..o 140
Conclusion 149
Bibliography 150
Curriculum Vitae 157

Vil



INTRODUCTION

The Jacobi eigenvalue algorithm was initially proposed in 1846 by C. G. J. Jacobi, and
rediscovered in the mid 20th century upon the appearance of modern computers. This
is an iterative method for solving the symmetric eigenvalue problem with high relative
accuracy, [23,24,62,70]. Besides being known for its simplicity, it is well suited for
parallelization, [57, 69]. The method has been modified to deal with different matrix
structures, e.g., Hamiltonian matrices in [30], J-symmetric matrices in [60], Hermitian
matrices in [41,63], matrices in anti-triangular Schur form in [59]. A variant of the Jacobi
algorithm developed in [26] and [27] and used to compute the SVD of a general matrix
outperformed other algorithms, for example QR algorithm in terms of speed, but also
retained high relative accuracy property. The convergence of the Jacobi method has been
studied by many authors, see e.g., [9,38,56,58, 61], and the references therein.

For a starting matrix A, the main idea of the Jacobi method is to find the sequence of
rotation matrices that, when applied to A from both left (transposed rotation) and right (ro-
tation), result with a diagonal matrix D, such that the diagonal entries of D are eigenvalues
of A. As the Frobenius norm is invariant to the orthogonal transformations, in each itera-
tive step rotations Ry, k > 0, can be chosen to annihilate pivot element of the underlying
matrix and, consequently, increase the sum of squares of the diagonal elements. This pro-
cess is repeated for different pivot pairs until a diagonal matrix, or a good approximation
of a diagonal matrix is obtained.

In this thesis, we are going to study Jacobi-type algorithms for the (approximate) ma-
trix, block matrix, and tensor diagonalization. Matrices are denoted by capital letters,
e.g. A, B, C. When we observe block-partitioned matrices, we use bold capital letters, for
example A, B, C. On the other hand, tensors are denoted by calligraphic capital letters,

e.g. &, B, €. Our methods employ the main idea of the Jacobi eigenvalue algorithm.
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Namely, they are all iterative and, in each iteration step, in the matrix case, a transforma-
tion is applied from the left- and from the right-hand side. In the tensor case, this means
that a transformation is applied in all modes. In the Jacobi-type algorithms, one must first
determine a suitable form of the transformation. Then, in each iteration, one must find
the optimal transformation coefficients. Since these methods are iterative, their important
property is convergence.

The Jacobi method and each of the Jacobi-type methods depend on a pivot strategy
that defines an order in which the pivot positions are selected. The possible pivot positions
are those in the upper triangle of a matrix and they determine the transformation matrices.
Cyclic pivot strategies are the strategies in which, in the first set of iterations (first cycle),
we take all possible pivot positions exactly once in some prescribed order. Then, pivot
positions are repeated cycle-by-cycle, until convergence. The most well-known cyclic
strategies are serial strategies. In the row-wise serial pivot strategy, pivot positions are
taken row-by-row, from the first to the second to last row, and inside each row positions
are taken from left to right. Similarly, in the column-wise serial pivot strategy, pivot po-
sitions are taken column-by-column from the second to last column, and in each column,
positions are taken from top to bottom. In the matrix case, we are going to work with the
so-called generalized serial pivot strategies from [39]. In the tensor case, our convergence
proofs will be valid for any cyclic pivot strategy.

In contrast to the Jacobi method which solves the symmetric eigenvalue problem, the
Eberlein method, proposed by Eberlein [28] in 1962, is a Jacobi-type diagonalization
process for solving the eigenvalue problem on an arbitrary complex matrix. For a starting
matrix A, in each step of the iterative process, transformation 7, k > 0, is applied to the
underlying matrix from the right-hand side, and inverse transformation is applied from
the left-hand side. This transformation 7} is constructed as a product of two non-singular
elementary matrices, T, = RyS;. The matrix Ry, kK > 0, is a plane rotation, while S,
k > 0, is a non-unitary elementary matrix. Rotation Ry is chosen to annihilate the pivot
element of the Hermitian part of the underlying matrix. On the other hand, transformation
Sk reduces the Frobenius norm of the underlying matrix. Although the method is old,
nowadays it is interesting because it is very suitable for parallelization.

Veseli¢ [75] proved the convergence under the classical Jacobi pivot strategy, but for
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a modified Eberlein method where, in each step, the transformation 7} is either equal to
Ry or to ;. Hari [35] proved the global convergence of the original method under serial
pivot strategies on real matrices. Pupovci and Hari [67] studied the convergence of the
complex Eberlein method under weak wavefront pivot strategies. They also considered
parallelization for the Eberlein method and proved its convergence under pivot strategies
weakly equivalent to the modulus strategy from [58]. We extend their convergence results.

In the standard Jacobi method, instead of eliminating one pivot element in one itera-
tion step, we can annihilate an entire block of elements. This way we get a block Jacobi
algorithm. Begovi¢ and Hari [9] have given the most general result when they proved
the convergence of the block Jacobi method under generalized serial pivot strategies. In
general, block algorithms are more efficient than their element-wise counterparts. That
is the motivation for modifying the element-wise matrix algorithm into a block matrix
one. In particular, we observe the Eberlein method and introduce its block variation. The
transformations Ry, k > 0, which annihilate the pivot element are replaced by the block
transformations Ry, k > 0, which diagonalize the pivot block. The non-unitary elementary
matrices Sg, k > 0, that reduce the Frobenius norm become non-unitary block elementary
matrices Si, kK > 0, that reduce the Frobenius norm of the block matrix. Up to now, there
has been no convergence theory for the block Eberlein method.

Lastly, we study Jacobi-type diagonalization methods for tensors. Tensor diagonal-
ization has applications in independent component analysis [53], and signal processing
problems, like blind source separation, image denoising, etc. See, e.g., [17,71]. The
problem has been studied as the orthogonal [8,54,55,74], and non-orthogonal [71] tensor
diagonalization, for structured and unstructured tensors.

Formally, a tensor is an element of a tensor product of vector spaces. One can look
at it as a d-dimensional matrix, where the dimension d is called the order of the tensor.
Hence, a scalar, a vector, and a matrix are zero-order, first-order, and second-order tensors,
respectively. When we refer to a tensor, we assume that its order is at least three. Instead
of matrix rows and columns, tensor has fibers in d sides. Each side, or dimension, of a
tensor is called a mode. For an easier computation, we represent a tensor by a matrix.
Mode-m matricization of a tensor &/ is a matrix A, such that the columns of A, are

mode-m fibers of the tensor. There are different tensor decompositions. We work with
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Tucker decomposition originally introduced in [44]. It is a representation of a tensor &7
as a product of a core tensor . and d matrices, one in each mode.

If a tensor <7 allows orthogonal diagonalization, then the core tensor . obtained
from the orthogonal Tucker decomposition is diagonal. However, it is not always pos-
sible to completely diagonalize a tensor using orthogonal transformations. Even in the
symmetric case, contrary to the symmetric matrices, it is known that symmetric tensors
generally cannot be orthogonally diagonalized. Therefore, in most cases, a diagonal ten-
sor . is not achievable. Hence, our goal is to maximize tensor diagonal in a certain way.
In [8, 54, 55, 74], the authors developed the Jacobi-type algorithms for maximizing the
Frobenius norm of the diagonal of .. Contrary to this approach, Moravitz Martin and
Van Loan [65] worked with an algorithm that maximizes the trace of ., but without the
proof of convergence. Inspired by [65], we propose an algorithm based on tensor-trace
maximization.

The thesis is divided into four chapters. Chapter 1 is an overview of the results from
literature. We describe the standard Jacobi algorithm for the eigenvalue problem, both
for the real and the complex case, derive the relations for calculating the transformation
angles and describe several classes of pivot strategies. Then, we explain the theory of the
Jacobi annihilators and operators which is used to obtain some of the convergence results
for the standard Jacobi and other Jacobi-type methods. We are going to use it to prove the
convergence of the Eberlein method, both for the element-wise and for the block matrices.
We end the first chapter an overview of the convergence theory for the Jacobi algorithm.

Chapter 2 is based on the paper [10] by Begovi¢ Kovac¢ and Perkovi¢ published in
2024. First, we review the existing convergence results for the Eberlein method, both
for the real and for the complex case. We extend the global convergence result to a broad
class of cyclic pivot strategies, the generalized serial pivot strategies. We discuss the cases
of the unique and the multiple eigenvalues. We prove that, for an arbitrary starting matrix
A, the Eberlein method under any pivot strategy from the specified class converges. The
sequence of matrices A(k), k > 0, obtained after each iteration converges to normal ma-
trix. The sequence of the Hermitian parts of the obtained matrices, (A(k) -+ (A(k))*) /2,
k > 0, converges to a diagonal matrix, where the diagonal entries are the real parts of the

eigenvalues of A. If all eigenvalues of A have different real parts, then the sequence A%



Introduction

converges to a diagonal matrix with eigenvalues on the diagonal. Otherwise, the eigen-
values with equal real parts may lead to non-zero off-diagonal elements in the obtained
matrix. Within the numerical experiments we test the method on both complex and real
matrices, for the starting matrices that can be diagonalized using unitary transformations
(normal matrices) as well as for the matrices that cannot be diagonalized this way (ma-
trices that are not normal). We examine the change in the matrix off-norm, that is, the
distance from a diagonal matrix. Moreover, we show the obtained block structure that ap-
pears if the starting matrix has multiple eigenvalues. Finally, we explain how to overcome
the issue that appears for the multiple eigenvalues.

Chapter 3 contains the newly proposed block Eberlein algorithm. We give a short
introduction to block matrices and block algorithms. We describe our block version of
the Eberlein method in which all matrices are partitioned into blocks. Next, we suggest
how the transformations Ry and Sg, k > 0, should be taken. We prove convergence of the
proposed algorithm under the generalized serial block pivot strategies. The convergence
results are alongside those for the element-wise Eberlein method. Within the numerical
tests, we show how the block algorithm performs for different block sizes and for repeat-
ing real parts of the eigenvalues.

In Chapter 4, we focus on the approximate diagonalization of tensors. This chapter
is based on the paper [11] by Begovi¢ Kovac and Perkovi¢ published in 2024. Here, we
explain in detail the terminology and tensor notions used in tensor computations. First,
we give an overview of the existing algorithms for tensor diagonalization. Then, we pro-
pose an algorithm based on maximizing the trace of a tensor, like it is done in [65]. The
algorithm uses the alternate least squares (ALS) technique. Thus, one iteration of the
algorithm on an order-d tensor will be made of d microiterations. We prove the global
convergence of our algorithm for general tensors. More precisely, we prove that every ac-
cumulation point obtained by our algorithm is a stationary point of the objective function.
This result is of the same type as the convergence results for the tensor diagonalization
algorithms based on the maximization of the Frobenius norm of the diagonal. It holds
for every cyclic strategy assuming an additional condition, called Lojasiewitz gradient in-
equality, on the pivot pair (p,q). Moreover, we adapt our trace maximization algorithm to

obtain a structure-preserving algorithm for symmetric tensors. In the structure-preserving



Introduction

case, all d rotations applied in one iteration are the same. Therefore, this is no longer an
ALS algorithm because the maximization is pursued through all modes at once. However,
the convergence theory will be alongside the non-structured algorithm. Our numerical ex-
periments include tests on the tensors of different orders, both for diagonalizable and for
non-diagonalizable tensors. We inspect the increase of the tensor trace and the decrease

of its off-norm. We compare different cyclic pivot strategies.



1. JACOBI METHOD AND RELATED

RESULTS

In this chapter, we review the renowned Jacobi method for matrix diagonalization [46] for
the real as well as the complex matrix. We describe well-known pivot strategies with an
emphasis on the broad class of generalized serial pivot strategies that we work with later.
We set forth the theory of the Jacobi annihilators and operators commonly used to prove
convergence results for the Jacobi method. We state the convergence theory of the Jacobi

method from the literature.

1.1. JACOBI ALGORITHM

In 1846, Carl Gustav Jacob Jacobi in his work Uber ein leichtes Verfahren, die in der
Theorie der Sikularstorungen vorkommenden Gleichungen numerisch aufzulosen (On a
simple procedure for numerically solving the equations occurring in the theory of secular
perturbations) [46] proposed an iterative method for finding eigenvectors and eigenvalues
of a real symmetric matrix. The method uses plane rotations to reduce the matrix to a
diagonal form. Compared to the other state-of-the-art diagonalization methods, the main
advantage of the Jacobi method is its high relative accuracy, [23,24,62,70]. The method
has been modified to deal with different matrix structures [30,41,59,60,63] and to address
various problems of numerical linear algebra [15, 26,27, 64]. Its convergence has been

extensively studied; see, for example, [9, 38,56, 58,61].



Jacobi method Jacobi algorithm

1.1.1. Real Jacobi algorithm

The fundamental theorem of symmetric matrices states that a matrix A € R"*" is sym-
metric if and only if it has real eigenvalues and is orthogonally diagonalizable. In other

words, there exists an orthogonal matrix U € R"*" such that
A=U"DU,

where D € R"*" is a diagonal matrix. The equation above justifies the form of the Jacobi
iterations that we are going to describe now.

For a real symmetric matrix A € R"*", the Jacobi method is the iterative process
AR —gl'a®y, k>0, A© =4, (1.1)

where Uy, = R(px, qk, ¢x) are plane rotations

1

COS —sin @y Dk
R(pr, qr, o) = . (1.2)

sin @ cos @, dk

1

Orthogonal matrices Uy, are called elementary matrices [6], as they differ from the identity
only in a 2 X 2 submatrix. Sometimes, an elementary matrix is called a core transforma-
tion, [6]. They are determined by a pivot pair (py,qx) and a rotation angle @y. For a fixed
k, we say that the transformation from (1.1) rotates the element at the position (py, g ).
The method uses plane rotations to reduce the matrix to a diagonal form. After each
step k, matrices A®) become “more diagonal”. In order to describe the meaning of dis-
tance from the diagonal form, we define the matrix off-norm. The off-norm of A is the

Frobenius norm of its off-diagonal part,

off(4) = [|A —diag(A) | r = (1.3)
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It is easy to see that A is a diagonal matrix if and only if off(A) = 0. Observe that the
off-norm is not a matrix norm, as off(A) = 0 does not imply A = 0. Nevertheless, the

off-norm is a matrix norm on the vector space of matrices with zero diagonal,
{A e R"™"| diag(A) = 0}.

If A is symmetric, it is sufficient to work only with the upper-diagonal part. We define

(1.4)

which is again a matrix norm on the vector space of symmetric matrices with zero diago-
nal

A e R A=AT diag(A)=0}.
g

Let us fix the iteration step k. Then we simplify the notation by setting (px,qx) = (p,q)
and @, = ¢@. We first show how to calculate ¢, or rather its sine and cosine, that maximally
reduces the off-norm in one step of the Jacobi algorithm. Let A’ be the transformed

symmetric matrix A after one step of the Jacobi method, that is,

A'=R(p,q.9)"AR(p,q.9). (1.5)

Transformation (1.5) only changes the pth and gth row and column of A. For r # p, g

we have,

/ . / .
Apy = AprCOS QP +agrSINQ,a,,. = —aprSINQ + dgrCOS P,
a’rp = apCOS QP+ argSin @, a’rq = —aypSINQ +a,4COS Q.
We can easily see that the changes of these elements do not affect the off-norm because
7 \2 7 \2 2 2
(61 ) + (aqr> - apr + aqr?

2 2 2 2
(a;’p) + (a:’q) = arp + arq‘

On the other hand, the 2 x 2 submatrix of A which is at the intersection of the pth and gth

row and column is transformed as follows,

[a;p a;,q] _ {cosq) sin @ . (1.6)

', d —sin@ cosQ

Apg  Y4q

{app Apq

Apg Qqq

{cos @ —sin@
sin@ cosQ
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Thus, the optimal choice for the angle ¢ is the one that annihilates a,;, and a,,;, meaning

aj,, = da},, =0. Then, off*(A") = off*(A) — 2a3,. The transformation (1.6) then implies

1 )
Uy = Apg€OS(2¢0) — E(app —agg)sin(2¢) =0,

and

2ap,

tg(2¢) = (1.7)

app —dgq
Let
t=1gQ, A =2apgsign(apy —dgq), M= lapp—agql;
and use the double angle formula for tangent,

2t
g(29) = 172

in (1.7) to get
2t
1—12

A
0
This is a quadratic equation in variable ¢,

AP 2ur—A =t,
whose solutions are

_ —HEpPHA

A
[_

112

We choose the rotation angle from the interval | —%, ﬂ , and hence, ¢ and tg(2¢) are of the
same sign. Also, because U is non-negative, tg(2¢) and u are of the same sign. Therefore,

t and u are of the same sign, and we choose

 —u A ur+A?
= > :

t

It is necessary to multiply both numerator and denominator of ¢ by t + /2 + A2 to avoid

the catastrophic cancellation and ensure the computational stability,

A

eV

=

that is
2a,4sign(a,, —aqq)

|app — agql + \/|app —agql|* +4a3,

(1.8)

10
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The sine and cosine are then easily calculated,

1
COSQP = ——, sinQ = ! =1tcos Q. (1.9)

V1412 V1412
It remains to compute the diagonal elements a; » and a’qq. We know that orthogonal trans-

formation does not change the trace, i.e.,
/ + !/ +
dypt+ gy = app+agg.
. / .
We can easily compute a),, with

App AQpq
Apg Qqq

[cos [0)

sinfp} — 4T Apgle -

/ .
a,, = [cosq) sin (p} [
Using the trace indifference above, the other diagonal element is equal to
/
Agq = Agq — apgtg @.

We summarize one step of the real Jacobi method in the Algorithm 1.

1.1.2. Complex Jacobi algorithm

For a Hermitian matrix A € C"*", the complex Jacobi method is similar to the iterative
process (1.1), but the transformation matrices are now complex plane rotations. It takes
the form

ARD — iAWy k>0, A© =4,

where Uy = R(p, gk, Pr, 0 ) are

1
1
COS @y —e'% gin @y Dr
1
R(Pics Gies Py Okt) =
1
e '% sin @y COS @, dk
1
. 1 -
(1.10)

11
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Algorithm 1 One step of the real Jacobi algorithm. A € R"*" symmetric, pivot pair (p,q).
if a,, # 0 then

A =2ap,sign(a,, —aqq)

1= lapp —agq]

V= /12_‘_“2

_ A
r= u+v

_ 1
€= 1+1£2
s=Ic

App = App +1apq; Agq = Agq — apg; Apg =0
forr=1,...,p—1do

X = carp+Sar

Arg = —SArp 1 CAyg; Arp = X
end for
forr=p+1,....g—1do

X = Capy+ Sayq

Arg = —SApr +CAyg; Apr = X
end for
forr=qg+1,...,ndo

X = capr+Sagr

Agr = —SApr + Cagr; Apr = X
end for

end if

12
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Here, 1 stands for the imaginary unit. Unitary matrices U} are again elementary matrices,
that is, they differ from the identity only in a 2 x 2 submatrix. They are determined by a
pivot pair (pg,qx) and angles @ and oy. Analogous to the real case, angle ¢ is chosen
to eliminate the elements ag,i)qk and aé@,k of A®), while oy is selected to minimize the
off-norm of A%), In the complex case, the definition of the off-norm should include the

absolute values. We have

n
of?(A) = ¥ |ai;|*.
i.j=1
i#]
We repeat the process of finding the rotation parameters in one step of the Jacobi
algorithm. Let us fix the iteration step k. The off-norm again depends only on the 2 x 2

subproblem at the pivot position (p, q),

/ / PR TP * IO G

af,p aflnq :[ cgsq) e sm(p} [app Apg [ c((;sq) e'%sing (111)
Py o (1.

Apy  Ayq e '%sing  cos@ Apg gq) le7'%sing  cos@

The optimal angle ¢ is the one for which a;, = a},, = 0. After multiplying (1.11) with

p
the rotation matrix from the left, we get

“ging  cosQ 0 d Apg Agq) le'%sing  cos@

[ cos @ —e’“sin(p} a,, O _{al,p apq}{ cos @ —e’o‘sin(p}
e vl e ’

which is equal to

/ PV AN o % —10 o3 . 10 o
[ a,,cos Agql sm(p] _ [appcosq)+apqe sin @ appe’” s @ + ap, oS (p}
a

/ —10 o5 / —10 o5 11029
pp€  SINQ a,,Ccos Q@ AgpCOS P +agge "~sm@  —agpe™ SINQ + dgyq COS O

99

In the upper equation, elements at positions (1, 1) and (2,2), respectively, are equal which

implies
/ —10 _:
Ay, COS P = appCOS Q +apge ' sin @,
Uy, COS P = —agpe'® sin @ +ag, cos Q.
. . . . . / ,
By dividing both relations with cos ¢ we get the elements @),, and a,,,,

! —1
App = App +apge 18P,
! (104
Agq = Qgqq — Agpe tg Q.
Unitary transformations do not change the trace of the matrix so we have

— 4 U —ia _ 1o
App +0gq = Ay, +0yy = App+apge P +agq —agpe g P,

13
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which leads to the equality

o __ 1104
= dgp€ .

apge
Since ay, is the pivot element, we assume that a,, # 0. Then, from the equality above we

have

[£04 —10 404
P4 e ,

|apgle' e = |apgle
where we used the fact that a,, = |a,q|e'* and a,), = |ayyle”'%7. Now we divide the
equation by the right-hand side and get

e21(qu721(x — 17

or equivalently,

2100, — 2100 = 0.
Thus, a = ;. The optimal choice for o is then

o = arg(a,y). (1.12)

/

From the relation (1.11) we compute the expression for a,,,
. app, a —e'%sin
a,, = [cos@ €%sing] { pp pq} { (P}

21

_ % o2 2 s
= —appe " SIMPCOSP —agpe” " SIN” Q + dpy COS™ Q +agge ™ SIn QY cos ¢

— (—(app — dgq) cOS QSINQ + apge % (cos? @ — sin qo)) e’
1
= (—E(app — lgq) SIN2Q +apge " COSZ(P) e

The condition ¢’ , = 0 indicates that

P
1
—(app — agg)sin2¢Q = a,ze'*cos20,
> \dpp — dqq ¢ =apq ¢
so the choice (1.12) implies
2 T 2
tg(29) = 2 " _ _2lapd (1.13)

App—dgq  dpp —dgq
To find cos ¢ and sin ¢ in a stable way, we do as in the real case. Similarly as in (1.8),

we get the tangent,
2|apq|sign(app, —agq)

|app — agq| + \/|app — gql? +4|apyl?

Sine and cosine are then easily computed, equivalently to (1.9).

tgp = (1.14)

We summarize one step of the complex Jacobi method in the Algorithm 2. The com-

plex conjugate of number a is denoted by a*.

14
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Algorithm 2 One step of the complex Jacobi algorithm. A € C"*" Hermitian, pivot pair

(p,q).
if a,, # 0 then

A =2lapqg|sign(app — agq)

W= lapp — agql

v= VT2

_ A
r= u+v

_ 1
€= e
s=Ic

app = app tt|apgls agg = agq —tlapgl; apg=0; agp =0

st =¢e'%

forr=1,...,p—1do
X=carp+s darg
arg = —S"arp+ carg; arp =x
end for

forr=p+1,....g—1do

x = cayr+s"aj,
g = —S" @y, + Carg; apr =X
end for

forr=qg+1,....,ndo

X = cap,+s+aq,

Agr = —S§ Apr+Cagr; Qpr =X
end for

end if

15
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1.2. PIVOT STRATEGIES

In each iteration k of the Algorithms 1 and 2, pivot position is selected according to a
pivot strategy. In this section, we describe the well-known pivot strategies. Moreover,
we define a large class of pivot strategies with which we will work in Section 3. These
strategies were introduced in [7] and were studied later in [39] and [40].

For an n X n matrix, the set of all possible pivot pairs is denoted by &2, = {(i,j) : 1 <
i < j <n}. Notice that a pivot pair is chosen from the upper triangle of the matrix. The

pivot strategy determines the order of the pivot pairs in the algorithm.

Definition 1.2.1. A pivot strategy is any function
where Ny = {0,1,2,...}.

In the classical Jacobi strategy, in each step k of the algorithm, the pivot pair (p,q) =
(pk,qx) is chosen such that it contains the off-diagonal element with the largest absolute
value,

(k) (k)
a = max |a;;’|.
| Pq | (i.))EPn ’ ij ’

The search for a pivot pair requires going through the whole upper triangle of the matrix.
This strategy is not very popular in practice because it slows down the process for large
matrices. To overcome this problem it is better to know the pivot strategy in advance, not
to just establish it on the go. To this end, from now on we work with the periodic pivot
strategies. In such strategies [ is a periodic function. The pivot pairs are taken in some
prescribed order which is repeated again and again until convergence. If I has a period
T=N= @ and if its image is equal to 2, then I is called a cyclic pivot strategy.
That is, cyclic pivot strategy goes through every pivot pair in some specific order, on
repeat.

Let O (.) stand for the set of all finite sequences of elements from . C &, pro-
vided that each pair from . appears at least once in every sequence. Elements from

4 (.7) are called orderings of .7,

0 = (p0,40): (P1,q1)s- -+ (Prear) € O(F).

16
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The number of pairs r contained in the ordering &' is called its length. Pivot strategies and
orderings are connected in the following way. A periodic strategy I with period T defines

a sequence @7 which is an ordering of .7,
O;=1(0),1(1),....I(T—1) € O ().

Vice versa, if & = (po,qo0),(p1,91),---,(Pr—1,97—1) € ﬁ(ﬂ) is an ordering of pivot

pairs from .#, then the corresponding pivot strategy I, is defined by

Io(k) = (Pr(r)> Dei))

where 0 < (k) < T — 1 is determined by k = (k) (mod T), k > 0. That is, strategy I,
takes the pivot pairs ordered as in ¢, and then again and again.

Any transposition of two adjacent pivot pairs in &' € O (),

(pr7QV)7 (pr+laCIr+1) — (pr+17Qr+1)v (praQr)a

assuming that the sets { p,, ¢, } and {p,,1,q,+1} are disjoint, is called an admissible trans-
position in O. In that case, the rotation matrices U,, U, from the Jacobi method com-
mute because of their special structure. We, sometimes, also say that the pivot positions
(pr,qr) and (py11,4¢r+1) are commuting. We use several equivalence relations on O (.7),

S C P, (See, e.g., [40].)

Definition 1.2.2. Two sequences &@,6" € O (.), & C Z,, where the sequence O is
given as 0 = (po,qo), (P1,41),---, (Pr,qr), are said to be

(i) equivalent if one can be obtained from the other by a finite set of admissible trans-

positions. We write & ~ 0",

(ii) shift-equivalent if O = [0, 03] and 0" = [0,, 0], where [, | denotes concatena-

tion; the length of @ is called the shift length. We write & ~ €.

(iii) weak equivalent if there exist 0; € O (), 0 <i<t, such that every two adjacent
terms in the sequence & = 0y, 0, ...,0; = O’ are equivalent or shift-equivalent.

We write 0 ~ (.

17



Jacobi method Pivot strategies

@iv) reverse if
0" = (prar)s--- (p1,q1), (po,q0) € O(2,).

We write 0/ = 0.
(V) permutation-equivalent if there is a permutation q of the set .# such that

o' = (q(p())aq(QO))v (q<p1)aq(ql))’ XX (q(]?r)7q<6]r))-
We write ¢ £ ¢' or 0' = 0(q).

The Definition 1.2.2 (iii) implies that if & ~ ¢”, then there is a finite sequence & = 0,
0O),..., Oy = 0" such that

O~ O\ ~Oy~ O3504...0" or OO ~Cy~ O3~ 0y...0 (1.15)

If there are two or more consecutive equivalence or shift-equivalence relations, they can
be replaced by one such relation because of the transitive property of these equivalence
relations. The chains from (1.15) that are connecting & and ¢ are in the canonical form.
If the orderings & and &’ are equivalent (shift-equivalent, weak equivalent, permutation-
equivalent, reverse) then the same is said for the corresponding pivot strategies I, and
Iy,

Let us review some of the well-known and most frequently used cyclic strategies.
The most intuitive cyclic strategies are the row-cyclic I, = I, , and the column-cyclic
strategy I.o,; = Ig,,,, collectively named serial pivot strategies. They correspond to the

row-wise, and respectively, column-wise orderings,

Orow = (1,2),(1,3),...,(1,n),(2,3),(2,4),...,(2,n),...,(n—1,n),

Ocor = (1,2),(1,3),(2,3),(1,4),(2,4),(3,4),...,(1,n),...,(n—1,n).

To put it in words, row-wise orderings take upper-diagonal elements starting from the
first row from left to right, then elements from the second row, then third etc., until the
second to last row (with only one upper-diagonal element). Analogously, column-wise
orderings take upper-diagonal elements starting from the second column (with only one
upper-diagonal element), then elements from the third column from top to bottom, then

fourth column etc., until the last column.

18
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Another example of a cyclic strategy is the one derived from antidiagonal ordering

Odiag- Here, a pivot pair (p,q), 1 < p < g < n s followed by

(p+1,q-1) ifg—p>2,

(1,p+4q) ifg—p<2,p+q<n,
(p+q+1—n,n) ifg—p<2,n<p+q<2n—1,
(1,2) ifg=nand p=n—1.

We can describe the ordering ¢ using a matrix My € N, Mg = (m,p,), where
mgg = * and
Mpg =mgp =k, if (p,q) = (Pr-qx), P#q.
If I = I, then we write M; = M. For example, the matrix portrayals of orderings O,

U0 and the antidiagonal ordering 0,4, for n =5 are

« 01 2 3 « 01 3 6 « 012 4
0« 456 0 % 2 4 7 0356
Mow= 1|1 4 % 7 8|, Mp=|1 2 % 5 8|, Muigg=|1 3 = 7 8],
257 % 9 345 %9 257 %9
368 9 6 7 8 9 46 8 9 x

where the matrix elements, starting from zero, mark the order of pivot pairs in &’. Hansen
proved the equivalence of the row-wise and column-wise strategies [34]. More than that,
he proved that after each cycle, two equivalent strategies I, and I, generate the same

matrix.

1.2.1. Wavefront and weakly wavefront strategies

In 1989, Shroff and Schreiber [69] defined wavefront strategies. For a pivot element in a
wavefront strategy, the element directly above it and the element immediately to the left
of it are rotated before it. Likewise, the element directly under it and immediately right
to it are rotated after it. All three of the orderings Oy, Ocp and Oyiq, are wavefront

orderings.

Definition 1.2.3. Let & € O(2 (Z,) be a pivot sequence of length N = % and let
t(p,q) denote the place at which the pair (p,q) appears in ¢. Then € and I, are a

wavefront ordering and a wavefront strategy, respectively, if

t(p,q—1)<t(p,q) <t(p+1,9), 1<p<qg<n.

19
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The next easily proven lemma claims even more. For a pivot element in a wavefront
strategy, all elements above and to the left of it are rotated before it. Likewise, all elements

under and to the right of it are rotated after it.

Lemma 1.2.4 (Shroff, Schreiber [69]). In a cyclic wavefront ordering, for all 1 < p <

g<mnand 1 <i< j<n,
() t(p,q) >t(i,j)ifi<pand j<gq,
(i) t(p,q) <t(i,j)ifi>pand j >gq.

The matrix below illustrates this result. During one cycle, the elements rotated before

the pivot element x,, are denoted by <1, while elements rotated after it are denoted by >.

[« < < < < x x]
* <A A Xpg > D
* x > D> D>
*x > D> D
x> >

x>

L *_

Shroff and Schreiber proved that wavefront strategies are exactly those equivalent to

the serial pivot strategies. Next, we can define the following class of strategies.

Definition 1.2.5. A cyclic strategy is called weak wavefront strategy if it is weakly equiv-

alent to a wavefront strategy.

As mentioned above, the order of executing the commuting rotations does not influ-
ence the transformation that represents one sweep/cycle of the method. This suggests that
the Jacobi method is suitable for parallelization. Luk and Park [57, 58] proposed several
parallel strategies. For example, the antidiagonal ordering is easily transformed into a

parallel ordering by performing the rotations on the same antidiagonal at the same time,

*x 01 2 4 *x 01 2 3
0 x 3 56 0 x 2 3 4
1 3 « 7 8l —1|1 2 % 45
257 % 9 2 3 4 % 6
4 6 8 9 x 345 6 x

This can be done because the pivot positions on the same antidiagonal are commuting.

20
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To achieve more parallelism, we demonstrate another idea of Luk and Park for n = 5.
Start with applying a shift equivalence of length 3 to the antidiagonals ordering. Do
the admissible transposition of the pivot pairs (1,2) and (4,5). The resulting ordering
is weakly equivalent to the starting antidiagonal one. Observe that the rotations on the
antidiagonals commute. In addition to that, notice that the pairs (1,2), (3,5) and (1,3),
(4,5) commute. If we perform the commuting rotations at the same time, we get a parallel

ordering with two pivot pairs at every step. The evolution of the ordering is presented

below.
*x 01 2 4 x 3 4 5 7 x 2 4 57 *x 01 2 3
0 «x 3 56 3 x 6 89 2 x 6 89 0 x 2 3 4
1 3 «x 7 8 —=146 «x01[—14 6 x 0 1{— 1|1 2 % 4 0
257 % 9 58 0 x 2 58 0 x 3 2 3 4 x 1
4 6 8 9 x 79 1 2 « 79 1 3 « 3401 x

The final ordering is called parallel modulus ordering [58]. Formally, the parallel modu-

lus ordering follows the rule

t(p,q) = (p+q—3)( mod n).

In general, at every step there are | 5 | pivot pairs that are rotated in parallel. The modulus
ordering is weakly equivalent to the antidiagonal one. Therefore, it is a weakly wavefront

ordering.

1.2.2. Generalized serial strategies with permutations

Let us go back to the definition of equivalences on orderings and use it to define a broader
class of pivot strategies. In terms of the Definition 1.2.2 (v), if two pivot orderings &,0"

are permutation-equivalent, then
Mg = PTMgP,

where P is permutation matrix defined with Pe; = €q(i)» 1 <i<n, and Mgy, My are
matrices describing the corresponding orderings. It is not difficult to show (see [7]) that
one cycle of Jacobi method on matrix PT AP under the strategy I, corresponds to, up to

the sign of rotation angles, one cycle of Jacobi method on matrix A under the strategy ¢

21



Jacobi method Pivot strategies

Proposition 1.2.6. (Begovi¢ Kovac [7]) Let AW) be the matrix obtained from A after one
cycle of Jacobi method using the pivot ordering &'. Let P be a permutation matrix of order
n, and q is such that Pe; = ey ;). If we apply the Jacobi method on PT AP under the strategy

given by ordering 0" = (q(po),9q(40)),(q(p1),4(q1)),---,(a(pn-1),9(gn-1)), after one
cycle, we get PTAN)p.

Now we define a very broad class of pivot strategies that is derived from the serial
pivot strategies. We call them generalized serial pivot strategies [39].
Denote by IT(1/2) the set of all permutations of the set {l1,l; + 1,I; +2,...,l} for

Iy <. Let
6" ={0e O(2,)16=(1,2),(5:(1),3),(55(2),3),..., (1)), ..

o (mn=1),m), Gen T 3<j<nl.

(n)

The orderings from 4.’ go through the matrix column by column, starting from the
second one, just like in the standard column strategy /.,;. However, in each column pivot
elements are chosen in some arbitrary order. If &' € Cﬁc(n), then & is called a column-wise

ordering with permutations. An example of an ordering & € %,(5) is

x 02 39
0 =1 56
Mg=12 1 % 4 8
35 4 x 7
9 6 8 7 x

Similarly, the set of row-wise orderings with permutations is defined as
&" ={oecO(2,)]0=(n—1 —2 —1)),(n—2
r € ( n) | (n 7”)?(” 77:71—2(” )),(l’l 7Tn—2(n))7"'
o (LTQ2),. ., (Ln () el 1 <i< n—z}.

The orderings from %(n) start from the (n — 1)st row, that is element on the position
(n—1,n). Then they go through the elements of the (n — 2)nd row in some order, then

the elements of the (n — 3)rd row in some order, etc. At the end of the cycle there are the
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first row elements in an arbitrary order. For example,

*x 6 9 7 8
6 *x 5 3 4
Myp=19 5 x 1 2
731 % 0
8 4 2 0 =«

is an ordering & € (Kr(s). It can be shown that every ordering from ‘5,(") is permutation-

equivalent to some ordering from Cfc(n), where the permutation is equal to
(1 2 .- n>
n n—1 - 1/°
Using %C(") and ‘5,("), we can define two more sets of orderings. They contain order-

ings reversed to column-wise and row-wise orderings with permutations,
g = {oeO(z,)|0ed} and 7w = {00, 0 ea}.

For instance,

*x 9 7 5 1 *x 02 3 1
9 x 8 4 2 0 4 65
7 8 x 6 0 and |2 4 x 8 7
546 % 3 36 8 x 9
1 20 3 « 1 57 9

— —
are orderings from CKE-S) and ‘5@ , respectively. Together, these four sets of orderings are

called serial orderings with permutations,
< +
e =g v uguE.

From the set of serial orderings with permutations we get a very large set of the pivot
orderings if we derive an expansion of ‘6;(;) using the other equivalence relations from

Definition 1.2.2. Let
oy ={0e0@) o oo owolo o o eq)l,

where 0' € O (Z,). Strategies defined by orderings from %sggn) are called generalized
serial pivot strategies with permutations. In Chapter 2 we extend the convergence results

of the Eberlein method, which is a Jacobi-type method, to the set ‘ngl).
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1.3. JACOBI ANNIHILATORS AND OPERATORS

Jacobi annihilators and operators were first introduced in 1968 by Henrici and Zimmer-
mann [43]. They offer a different, more general perspective on the Jacobi method. Specif-
ically, an appropriate instance of the Jacobi annihilator corresponds to a single step of the
Jacobi algorithm, while a Jacobi operator with specific parameters coincides with one full
cycle of the Jacobi method. They are frequently used as a tool to achieve convergence
results for the Jacobi method [36—40]. We are going to use them in the same way in
Chapter 2. In this section we first define complex Jacobi annihilators and operators. Then

we comment on the simpler real case.

1.3.1. Complex case

Jacobi annihilators and operators are not applied on a matrix but on vectors representing

off-diagonal part of a matrix. Set

cj= : and ri:[ail,aiz,...,a,-7l~_|], for2 <i,j<n.
a.j*laj
Let vecoff : C"™" — C2N N = "("2—71), be a function defined by
T T T T 2N
a = vecoff(A) = [¢c3,¢5,...,¢,,12,73,...,ra] € C™.

It is easy to check that vecoff is a linear operator and a surjection. If A is Hermitian, a is

determined by strictly upper-triangular elements of A. In particular,

vecoff(A) == m )

T T

T .
where v = [c],c],...,cl']". For example, vecoff transforms matrix

* i 1+2i 3

to vector

i 1420 2 3 4—i 5 —i 1-2i 2 3 4+i 5]".
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From the previous example it is clear that vecoff is not invertible because it ignores
matrix diagonal. Therefore, we define a restriction vecoffy = vecoff ’ngn, where ng” is
the set of all n x n complex matrices with zero diagonal. For a vector a € C?V it stands
that

vecoff(vecoff, ! (a)) = a.

Furthermore, let v, : C"*" — C"*" be a linear operator that sets the matrix values at
positions (p,q) and (g, p) to zero, while the rest of the matrix is unchanged. Using the

operators vecoff and v we define the Jacobi annihilator.

Definition 1.3.1. Let U = R(p,q, ¢, ) be a complex rotation. Matrix Z,,(U) defined
by
Kpq(U) vecoff(A) = vecoff(v,,(U*AU)), A e C"™", (1.16)

1s called the Jacobi annihilator. The class of Jacobi annihilators % ;)q, o € [0,1],is a set

w
%pq: {%PQ(U) | U:R(p7q7goaa)7 @ZO, (XSZﬂ:, |COS(P| Z CO}

0
If =0, ;@pq is used instead of :@pq.

The effect of the Jacobi annihilator on a vector a can be described as follows. Firstly,
set A = vecoff, 1(a) as a two-dimensional representation of a. Matrix A is then trans-
formed by the rule A’ = U*AU, where U = R(p,q, @, o) is a complex rotation with an
arbitrary choice of ¢. Contrary to a single step of the Jacobi algorithm, as the rotation
angle is arbitrary, the element of A’ at the pivot position (p,q) does not have to be zero.
Nevertheless, to keep the property of canceling the pivot element, apply v, on the matrix

A’. The resulting matrix Ay is then again represented by a vector ¢’ using vecoff.

Algorithm 3 Applying the Jacobi annihilator, a’ = %Z,,(U)a

a € C?V arbitrary
A = vecoff, ! (a)
A =U*AU

0= Vpqg(A")

a’ = vecoff(Ay)
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If the angles ¢ and « are not arbitrary, but chosen such that they cancel the pivot
element, then this special case of the Algorithm 3 is equivalent to one step of the Jacobi
algorithm. In that case applying v,, on A" is unnecessary.

We give a theorem that explains the structure of the Jacobi annihilator and present an

example of a Jacobi annihilator for a 4 x 4 Hermitian matrix.

Theorem 1.3.2 (Begovi¢ Kovac [7]). Let Z = Z(R(p,q,¢,®)) be a Jacobi annihilator.

Let
o (j—1(j—2)/2+i, forl<i<j<n,
t(i,j) =
7(j,i)+N, forl<j<i<n.
be the function that indicates the position of the element g;; in the vector vecoff(A). Then

Z differs from the identity matrix Ipy in exactly 2n — 2 submatrices defined by

%T(M)T(M) =0, %f(q,p)f(q,p) =0,

and

Y

Rr(rp)e(rp) Kelrnp)i(rg) :[ cosQ e 'sing
—e'%sing  cos @

REr(ra)yetrp)  Pe(ng)t(rg)
Ze(p.r(pr) Palpr)sian) :[ cosgp  esing)
RErqn)i(pr) Prgr)tiar) e '%sing  cos@

where 1 <r<n,r¢ {p,q}.

Let A be a 4 x 4 Hermitian matrix and let U = U (2,4, 24, 0a4). For simplicity, denote
s24 = sin @4 and cp4 = cos @p4. Then Z»4(U) is a 12 x 12 matrix that differs from the
identity /1 in two diagonal elements and four 2 x 2 submatrices. Generally, the annihi-
lator cancels the pivot elements (p,q) and (g, p), so the diagonal elements on positions

7(p,q) and t(g, p) must be zero. Particularly,
Kr24)02.4) = X55 =0, Fr42)c42) = %111 =0.

In the Theorem 1.3.2, for r = 1 we get that

Kr(12)c(12) Fr(12)2(14) :[@1,1 %1,4}
Zr(14)c12) Zro(14)1(14) Hay Hag

[%1(2,1)@71) *%1(2,1)1'(4,1)] _ [%7,7 %7,10} _ [ 24 e’o‘24s24} .
—e

[ 24 e’“z“Szﬂ
—e' sy, cpp 1

Kra1)e21) Pro(a1)1(4,1) F107 %1010 1504 o4
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We get the position of the other two rotation matrices for r = 3. In summary, the Jacobi
annihilator %,4(U) takes the form

24 e %45y,

24 €%y,
—e' %45y co

o4 e ®Agy
€24 €% 54

—e' P25y 24
—e Mgy N

787’0‘243'24 €24
It will be useful to know that the spectral norm of a Jacobi annihilator is equal to one,
except for the case of the 2 x 2 annihilator, which is a zero matrix. This follows from the
structure of the annihilators.
In the same way the Jacobi annihilator corresponds to a single step of the Jacobi
method, the Jacobi operator corresponds to one sweep of the cyclic Jacobi method. We

define Jacobi operators and the class of Jacobi operators.

Definition 1.3.3. Let N = "(nz—fl) o € [0, 1], and let the ordering & € O (Z,) be given
as 0 = (po,40),(P1,41),--->(Pn—1,9n—1)- Then

jﬁw = {/ | j :'%pN71QN71’%PN72CIN72""@POCIO’ ‘%Pka S ’ggqu’ 0<k<N-— 1}

is the class of Jacobi operators associated with the sequence ¢ and w. The 2N x 2N

matrices ¢ from ¢ g are called Jacobi operators. If @ =0, we write ¢, instead of
/O
P2

Furthermore, Jacobi operators determined by mutually equivalent, shift-equivalent,
weak-equivalent, or permutation-equivalent pivot orderings are connected. Let us explain
this. By p(X) we denote the spectral radius of the matrix X, that is, the largest absolute

value of the elements in the spectrum of X. The following lemma holds.

Lemma 1.3.4 (Begovi¢ Kovac [7]). Let 0, 0’ € 0 (Z,) be two pivot orderings and let
Zo. Ze be the Jacobi operators determined by & and 0.

1. If 0 ~ 0, then /@’:jﬁ/.

2. IO X O then p(_ Zp) = p( L)
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3.0 R O then p(_ Zo) = p( L)

4. 0RO then || Zolr = Zo 2.

1.3.2. Real case

The definitions of the Jacobi annihilator and operator get simpler if A is a real symmetric
matrix. In that case, we want the Jacobi annihilator, and consequently the Jacobi operator,
to be real. To achieve that, we set the parameter & in Definition 1.3.1 to zero. In addition,

it is sufficient to observe only the upper triangle of A. Therefore, we redefine the function

vecoff. In the real case we have vecoff : R"*" — RN N = @,
a =vecoff(A) = [c} cf - c,ﬂT eRV,

where cj, 2 < j < n, are strictly upper-diagonal parts of the columns of A, as in the

complex case. For example, the operator vecoff acts as follows,

0
0 1 2 1
0 * 3 4| vecorr |3
13 %5 2
2 45 « 4

_5_

Again, vecoff is not an injection. Hence, we need its restriction. Let Sy be the set of all
n x n symmetric matrices with zero diagonal. We define vecoffy = vecoff|s,, which is a
bijection.

The properties of the real Jacobi annihilator are inherited from the complex one. The
function vecoff; ! maps an arbitrary vector a € RY to a matrix A € So. Then A is trans-
formed to A’ = UT AU, using the rotation matrix U = R(p,q, ) with an arbitrary choice
of ¢. This transformation does not necessarily cancel the pivot element. To achieve this
feature, we use the operator v, : R"*" — R"*" that sets the matrix elements at posi-
tions (p,q) and (g, p) to zero, while the rest of the matrix remains unchanged. We get
A( = Vpy(A"). Finally, the matrix obtained A, is again transformed into a vector ¢’ using
vecoffy. The real Jacobi annihilator is a matrix %,,(U) that describes the linear transfor-

mation from a to o,

Ry (U) vecoff(A) = vecoff(v,,(UTAU)), A cR™".
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D ® .
The class of Jacobi annihilators % o @ €10, 1], is a set

o
%pq: {%pq(U) | U=R(p,q,9), 0< ¢, |cosp| > a)}_

0
If =0, %pq is used instead of %pq.
Similarly to the complex case and Theorem 1.3.2, the next theorem describes the

structure of the real Jacobi annihilator.

Theorem 1.3.5 (Henrici, Zimmermann [43]). Let Z = Z%(R(p,q,®pq)), be a Jacobi an-

nihilator. Let
©(i,)) = (=10 ~2)/2+i
be the function that indicates the position of the element g;; in the vector vecoff(A). Then

Z differs from the identity matrix Iy in one diagonal element determined by

%’L’( = 07

,4)T(p,q)

and exactly n — 2 principal 2 x 2 submatrices defined by

[‘@T(np)f(w) Zr(rp)e(ra) | _C_OS Ppg SN Ppq] C1<r<p,
Zr(ra)eirp) Fr(rg)eing)|  SINPpg  COSPpg, 17T
[%mmmm Arlprysig | _ [COSPpg —SN@pg]
Peirgye(p.r) Hr(rgyeirg) | LSI0Ppg  COSPpg, ]
[‘%T(W)T(m) Zr(pryciar) | _ _Cf)s Ppg SN Ppq] . g<r<n.
%T(q,r)r(p,r) %T(q,r)r(q,r)_ LSINQp,;  COS Qpy, | -

Using the parity of sine and cosine and the definition of annihilator, it is easy to see

that
Z(R(P,q: Ppq))" = Z(R(P,q,—Ppq)).
Using Theorem 1.3.5, we construct an example of a Jacobi annihilator for A € R3S,
N =10. Let U = R(2,3,¢»3), and denote by sy3 = sin 3, c3 = cos 3. Then Z =
H»3(U) is a 10 x 10 matrix that differs from the identity ;¢ in one diagonal element and
three 2 x 2 submatrices. Generally, the annihilator cancels the pivot element (p,q), so the

diagonal element at position 7(p,q) must be zero. Particularly,

Kr(23)10(2,3) = X33 = 0.

29



Jacobi method Jacobi annihilators and operators

In Theorem 1.3.5, for r = 1 we get that

Zr(12)1012) Hr(12)2013) | _ {e@n %’12} _ [023 —Szzi .
Zr(13)2(12) Zo(13)1(13) 1 K 523 €23
We get the position of the other two rotation matrices for r =4 and r = 5. In summary,

the Jacobi annihilator %,3(U) takes the form

[c23 —s23
523 €23

C —S
) -

€23 —823
8§23 €23

1

Real Jacobi operators and the class of Jacobi operators is defined analogously to the

complex case. Moreover, Lemma 1.3.4 holds in the real case.
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1.4. CONVERGENCE OF THE JACOBI METHOD

In this section, we define the global convergence of the Jacobi method and list several

convergence results from the literature.

Definition 1.4.1. Jacobi method converges for a Hermitian (symmetric) matrix A if the

sequence

A0 =4 A AQ)

generated by the complex (real) Jacobi method converges toward a diagonal matrix A,
such that the diagonal elements of A are eigenvalues of A. The Jacobi method converges

globally if it converges for every starting Hermitian (symmetric) matrix A.

In the rest of the chapter, when addressing the convergence of the Jacobi method we
mean global convergence. In 1960 Forsythe and Henrici proved the convergence of the

Jacobi method under the row cyclic strategy.

Theorem 1.4.2 (Forsythe, Henrici [31]). Let the rotation angle ¢y, satisfy

T T
b, —= h<Z
O € [a,b], s <a<b<z,

and apply the sequence of the Jacobi transformations on a Hermitian matrix A. If off-
diagonal elements are annihilated using the cyclic row-wise strategy, then the Jacobi

method is globally convergent.

The Forsythe-Henrici condition is also often told using an equivalent formulation em-
ploying the cosine of the rotation angle. That is, the cosine of the rotation angle should
be bounded from below by some @ > 0,|cos ¢x| > @ > 0.

It is known that if the Jacobi method converges for some strategy /5, this implies
the convergence of the method for all strategies equivalent to /. That is to say, in 1963
Hansen [34] proved that after each cycle, two equivalent strategies I, and I, generate
the same matrix. This means that two equivalent strategies produce exactly the same
subsequence AKN) for each cycle k > 0. Therefore, the Jacobi method converges under

the set of wavefront strategies.
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Theorem 1.4.3 (Hansen [34]). Let I and I be two equivalent cyclic strategies that
begin with the same pivot element. Let AN ) and A'™) be matrices obtained after one full

cycle of the Jacobi method under strategies I, and I/, respectively. Then,

AN _ 4

More than that, in 1989 Shroff and Shreiber proved that the convergence under /,

implies the convergence for all strategies weakly equivalent to /.

Proposition 1.4.4 (Shroff, Schreiber [69]). Let 0 ~ &', 0,0" € 7 (2,). If the cyclic
Jacobi method converges under the strategy I, then it also converges under the strategy

I

As a consequence of the result, the Jacobi method converges under the class of weakly
wavefront strategies. The convergence of matrices A®), k > 0 to a diagonal matrix A is
equivalent to the convergence of their off-norms to zero [61].

Since we are going to explore the use of generalized serial pivot strategies with per-
mutations, defined in Section 1.2, we are going to need some newer results for the Jacobi
method under such strategies. Begovi¢ Kovac¢ and Hari [40] in 2021 produced a result for

a sequence of Jacobi operators defined by the ordering & € ‘fg).

Theorem 1.4.5 (Begovi¢ Kova¢, Hari [40]). Let 0 € ‘53(;). Suppose that & Lo X o
oo 0X 'R, 0" e CKS(;,') and that the weak equivalence relation is in canonical form
containing d shift equivalences. Then for any d + 1 Jacobi operators _#1, #,..., Zi+1 €

I g? ,0 < w <1, there is a constant Cn’a, depending only on n and @ such that it holds

N\ A1 72 Zaville < Cw, 0<Cho <1

Using the general result for Jacobi operators from Theorem 1.4.5, the authors proved

the convergence of the Jacobi method under the concerning strategies.

Corollary 1.4.6 (Begovi¢ Kovac, Hari [40]). Let A be a Hermitian matrix of order n.
Let 0 ¢ ‘ngl). Suppose that ¢ £ ¢’ X 0" or 0 X 0" X 0", 0" ¢ ‘ng,;l) and that the
weak equivalence relation is in canonical form containing d shift equivalences. Let A’ be

obtained from A by applying d + 1 cycles of the Jacobi method defined by strategy /. If
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all rotation angles satisfy ¢, € [—%, %], k <0, then there is a constant J;, depending only
on n such that

off?(A") < poff>(A), 0< 7y, <1.

In this thesis, we do not work on the original Jacobi method, but on its variants, the
so-called Jacobi-type methods. However, as we are going to see in the rest of the thesis,

many concepts presented in this chapter can be adopted for the Jacobi-type methods.
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2. CONVERGENCE OF THE EBERLEIN
DIAGONALIZATION METHOD UNDER
THE GENERALIZED SERIAL PIVOT

STRATEGIES

One of the generalizations of the Jacobi method is known as the Eberlein method. The
Eberlein method, originally proposed in 1962 by Patricia J. Eberlein [28], is a Jacobi-type
process for solving the eigenvalue problem of an arbitrary matrix. It is one of the first
efficient norm-reducing methods of this type. The iterative process on a general matrix
A € C"*" takes the form

AR — 1AW k>0, (2.1)

where A(®) = A and
T, = RSy

are non-singular elementary matrices, the same as in [6]. In particular, matrices Ry are
plane rotations and Sj are non-unitary elementary matrices. Transformations R} are cho-
sen to annihilate the pivot element of the matrix (A(k) + (A(k) )*) /2, while transformations
Sy reduce the Frobenius norm of A% In Eberlein’s experiments, the matrices A(k), k>0,
given by the process (2.1) converge to a normal matrix. Eberlein proved this convergence
only under a specific non-cyclic pivot strategy.

Veseli¢ [75] studied a slightly altered Eberlein algorithm where in the kth step only
one transformation is applied, R; or Sy, but not both at the same time. He proved the con-

vergence of this modified method under the classical Jacobi pivot strategy. Specifically, he
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showed that, for an arbitrary n X n starting matrix A the sequence A® k>0, converges
to a block diagonal normal matrix. At the same time, the sequence (A(k) + (A(k))*) /2 con-
verges to a diagonal matrix diag(g, W, ..., Uy), where {1, s, ..., 1, } are the real parts
of the eigenvalues of A. Later, Hari [35] proved the global convergence of the original
method under the column/row cyclic pivot strategy on real matrices. In [67] Hari and
Pupovci proved the convergence of the Eberlein method on complex matrices with the
pivot strategies that are weakly equivalent to the row cyclic strategy. In the same pa-
per authors considered the parallel method and proved its convergence under the pivot
strategies that are weakly equivalent to the modulus strategy.

In this chapter, we extend the global convergence result for the Eberlein method to
a significantly broader class of the cyclic pivot strategies — generalized serial strategies
with permutations, explained earlier in Section 1.2. We consider the method in the form
given in [67]. Our new result is the global convergence of the Eberlein method under the
generalized serial pivot strategies with permutations. It is given in Theorem 2.3.3. We
show that for an arbitrary n X n starting matrix A(O), the sequence A(k), k > 0, converges
to a block diagonal normal matrix. At the same time, the sequence (A(k) + (A(k))*) /2
converges to a diagonal matrix diag(u;, o, ..., W,), where {Ui, o, .., U, } are the real
parts of the eigenvalues of A. Moreover, we present several numerical examples and
discuss the cases of the unique and the multiple eigenvalues.

The chapter is organized as follows. In Section 2.1 we describe the Eberlein method,
its complex and real variant, while in Section 2.2 we state its convergence theory results
from the literature up to now. The main part of the chapter is contained in Section 2.3
where we prove the convergence of the method under the generalized serial pivot strate-

gies. Finally, in Section 2.4 we present the results of our numerical tests.
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2.1. THE EBERLEIN METHOD

As was mentioned in the introduction of this chapter, there are several variations of the
Eberlein method. The method can be applied to complex matrices using the transforma-
tions 7, € C"*", k > 0, or one can observe the real method with 7T}, € R"*", k > 0. Here
we mostly focus on the complex method. We describe it in Subsection 2.1.1. In Subsec-
tion 2.1.2 we outline the real case. We use the notation : = /—1. For a complex number

x, Re(x) stands for the real part of x and Im(x) stands for its imaginary part.

2.1.1. Complex case

The Eberlein method is an iterative Jacobi-type method used to find the eigenvalues and
eigenvectors of an arbitrary matrix A € C"*". One iteration step of the method is given by
the relation (2.1). In the kth iteration, transformation 7} is a elementary matrix that differs

from the identity only in one of its 2 x 2 principal submatrices YA"k determined by the pivot

pair (pi, qx),
R PONIIC)
T, = |'Bepv o]
[0 (k)
akPk akar
Matrix T is set to be the product of two nonsingular matrices, a plane rotation R; and
a non-unitary elementary matrix S;. That is, T = R;S;. Denote the kth pivot pair by
(p,q) = (Pr,qxr)- The pivot pair is the same for both Ry and Sy, and consequently for 7j.
In addition to (p,q), matrices Ry and Sj depend on the transformation angles oy, ¢, and
B, Wk, respectively. The pivot submatrix fk is equal to ?k = I?k:S'\k € C2*2, where

~ COS —e'% gin (pk} - [ cosh —1e'P sinh y; 2.2)

Ry = . Sk = .
T lem%sing,  cosgy “7 lie~Pesinhy;  coshy

We are going to show how to choose I/Q\k and §k in the Eberlein method. The proc-

ess (2.1) can be written with an intermediate step,
ARy AK) _>A(k+1),
where
Alk) R;A(k)Rk,

AR — g 1AW g k> 0.
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The transformations effect only the elements from the pth and gth row and column of

AWK The elements of AK) = (dg.{)) are computed as follows:

ag,‘) = ag.‘) if (i,7) and (p,q) are disjoint,

dg? = ag? coS @y + e’a"ag;) sin @y,

dgj) = al(llj) cos @y + e_’a"a,(k) sin @,

dg;) = ag]lf) cos @ —e "% a;k) sin @,

dl(;) = a(g) COS (o — e’“"ag;) sin @, (2.3)

1 .
dg;) = 5(a§,,2 + a((;f]) + d,(f;) cos2qy + é,ﬁ’;) sin2¢y),

_ 1 )
aé’f]) = E(ag;) +a£1]f]) — dl(,];) cos2¢ — é,(,lfl) sin2¢y),

- 1, :
g = 3¢ (1pg —dpg sin2y+ &py cos2¢).

1 o
‘7((112:2 (= Th(w)_ (q)sm2(pk+§pq c0s 2¢),

where
k k k
dp(q) == a(pp) — aq(q),

5152) = (af(vkq) + ag;,)) COS O — l(a;kq) — ag;,)) sin oy,

’718];) = (aﬁfq) - aé';)) oS O — l(afr,];) + ag;,)) sin 0.

Similarly, elements of A**1 are then obtained from A*¥) by the following rules:

Ef“) = 5’55) if (i, j) and (p, q) are disjoint,
agfr D — d;’? cosh y; + lelﬁkfl((;;) sinh y,

l(l;+1) = 5%) cosh y + leflﬁ"d(k) sinh v,
az(;;ﬂ) = dé’? cosh y —ze lﬁ’“a( )smh Vi,

ESH) = d(k) cosh y — ze’ﬁka( ) sinh Wi, 2.4
ag;rl) = %( 5713 + c(gq) +dh(q) COSth//kJrlépq sinh2y;),
a((]1(<1+1) = %(67% + dgﬁ,) - d}()];) cosh2yy — 15,5’2 sinh2y;),
apy ! = le’ﬁ C(5%) — 1l sinh 2y + €58 cosh 2yy),

él;ﬂ) = 2e71ﬁk(—7~71(7];) - zdﬁ’;) sinh 2y + gzgg) cosh2ys),
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where
k ~ ~(k
1 —d—al)
51%1 = (aqu) —I—a )COSﬁ (apq —a((;;,))smﬁk, (2.5)
nz()q) =(a gi/) —ag];))COSﬁ (aqu) +d£,p)) sin .
Let
BY = %(A(k) +(AW)"), (2.6)

B® = RiBWIR,.

The matrix B%) is the Hermitian part of AK) and, likewise, B¥) is the Hermitian part of

A®)_ Next, let C be an operator defined by
C(A) =AA" —A™A. 2.7)

We denote C(AK)) = (cl(f)) Cc(AM) = (El(f)) BW) = (bl(f)) and B¥) = (l;l(f)) Obviously,
C(A) =0, if and only if A is a normal matrix. The definition of C(A) is linked to one of
the measures of nonnormality of matrices given by Elsner and Paardekooper in [29]. The
reason C(A) is introduced because the convergence theorem 2.3.3 is going to state that
matrices A®X), k > 0, from the Eberlein process converge to a normal matrix.

The rotation Ry, is chosen so that the element of B%) at the pivot position (p,q) is

annihilated. The real number o, as well as the sine and cosine of ¢y in (2.2) are calculated

from the following expressions,

oy = arg(b%), (2.8)
(k)
2|b T
tan2¢y = %7 [ (2.9)
by —b 4’
pp qq9

These formulas are the same as for the complex Jacobi method on Hermitian matri-
ces, (1.12) and (1.13), applied on the matrix B® Then, in order to get sin @ and cos @ in

a stable way, we use formulas equivalent to (1.14) and (1.9),
k) - k k
26} sign(bf) — b))

k k k k K>
b — b+ B9 — b 12+ 463 2 (2.10)
tan @y

1 .
COSPp = ———, SiNQP = —F—o——.
& /1 +tan? @ & /1 +tan? @

tan @ =
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On the other hand, S, is chosen to reduce the Frobenius norm of AW Set
A= [AD7 — A%V 2.
Eberlein [28] proved that
A= AW - HA("“)H% = gpg (1 —cosh2y) — by sinh 2y
£ SEWP+1d8P)(1 — coshay) +Im(E 45" sinhays,

where
(k) - 2 2 2, k)2
8pq = ZI ) +| o) +| o) +ldg; |7
i—=1

h = —Re(1y)) sin By + Im(155)) cos B, @.11)
k L) () (k)% (k
=2 3 @l )
=1
i#p.q

It is shown in [28] that the choice of f; and y; such that

~(k)
tan B = _Re(?:))’ (2.12)
Im(épq)
~(k) Q)
Im dp 2
tanh yj = —5 (G )2 {‘(Jk/ ; (2.13)
8pq +2(|5pq| + |dpq | )
implies
1 ’Cpq|2 1| pq‘z (2.14)

A > > >
3(AW]z = 3 jA[3
The values of B and y; determined by (2.12) and (2.13) are an approximation of the

solution that maximizes A;. We compute hyperbolic cosine and sine from (2.13) as

1
\/ 1 — tanh? Illk’

that is, we take positive values of both functions.

tanh y;

\/ 1 —tanh? l//k’

coshy = sinhyy =

Instead of (2.13), we can use a simpler formula for computing v,

Re(&ﬁ,’fl)) sin B, — Im(é'g,l;)) cos P

tanh y;, = )
g+ 20185 P+ 145 12)

(2.15)

Let us prove that

W

Im(EXa) ) — 224 = Re(&ll)) sin B — Im(&)) cos Bi. (2.16)
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Recall that the pivot element of C( (k)) is

- 2% ()
Z i, Giy).
i—=1
Let
o b, b
Cpq = Xpg + EX (2.17)
where
~(k ~(k) ~(k)* ~k)x (k ~(k) ~(k)* ~(k)x (k
) = el by el ety - ayal)

Using simple manipulation of the real and imaginary parts we get
o) =l at) el
— Re(@l" ) — ") + (a4 a8
= Re(dyy"dyg) —Re(apqdyg ) +dm(afy"ds) — im(apg dby)
= Re(dy/dpg") — Re(dngdpy ") —Im(dgydy") — dm(apg dp”)
= —Re ((ap) —ay)dyy") —m (@) +ag))do”). (2.18)

From the relations (2.5) and (2.18) we obtain

Re(Zpy)) sin i — Im(Zpg >cosﬁk
(k)

= —Re (( )dN(k) ) sin B + Im (ag,q) + E,p))dﬁ(k) ) cos P
= Im( aqp)a?(k) cos B — (ag? —agp)d%k sin B )

(@pq
=1Im (( (@0 +a¥))cos B —1(al) — %)y sin By )dN(k )
= m(EWal). (2.19)
The equation (2.16) now follows from the relations (2.11), (2.17) and (2.19).

We summarize the procedure in Algorithm 4. One should keep in mind that it is not

needed to formulate matrices A®%) explicitly, only the pth and the gth row and column.

2.1.2. Real case

Suppose that A is a real matrix and we wish for the iterates A®) to stay real during the
process (2.1). In order to satisfy this request we modify the complex algorithm. Firstly,

we can take o = 7 and f; = /2. This implies

B | cosex sin(pk} 5 _ {coshy/k sinh y
K7 | —singy cosqpl’ ~ Lsinhy;  coshyl”
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Algorithm 4 Eberlein method

Input: A € C"*"
Output: matrix A%
A0 — 4

k=0

repeat

Choose pivot pair (p,q) according to the pivot strategy.

Find oy, using (2.8), and sin ¢y, cos @ using (2.10).

Alk) — RzA(k)Rk

Find By using (2.12), and sin y, cos y; using (2.15).

Al = g 1AW g,
k=k+1

until convergence

With the same intermediate step as before, the transformations effect only the elements

of the pth and gth row and column of A® We update the relations (2.3) for the elements

of A%) keeping in mind that oy, = 7 and f; = 7 /2:

a®) = o™ if (i,j) and (p,q) are disjoint,

ij ij

”g? = ag? COS @ — aé’f) sin @y,
dgl;) = aglg) COS @y — al(? sin @,
dg;) = ag;) COS @ + ag? sin @,
dg;) = ag) cos @ + ag;) sin ¢,

1, k k
01(71225( 5712+a£1q)+d1(7q)cos

) 1« k k
ayq = 5 (app +ayq —dp cos

(k)

(k) (k) | 00)

20+ EN) sin2¢y),
20 — @g? Sin2¢y),
3 1 -

i = 5 (~1pg + dpg sin 2 — &5 c0s 20),

_ 1 k
dgp = 5(npq +dpg sin2¢@y — g,Sq) cos2¢y),

(2.20)
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where

k k k
o8 =l

épq = (apq) "‘C’E]p) )s

k k
) = el

Similarly, from the relations (2.4), elements of AK+1) are then obtained by the following

rules:
ag-{H) = d(f) if (i, j) and (p,q) are disjoint,
ag;H) = a( )cosh Vi — ( )smh Vi,
al(]pcﬂ) = d( ) cosh Yk —i—d( ) sinh /%
aé’lfﬂ) = a( )coshwk at )smhl//k,

E;CH) = 5’}(  cosh llfk+c7§ ) sinh w, 2.21)
alfy ) = 2 (@) +al) + ) cosh 2y + &l sinh 2y,
age ) = ;(aﬁ,’;) + g — dby cosh2yy, — ey sinh2yy),
ag;+1) _ ;(ag,q) + 5117) —|—d~(q) sinh 2y, —|—e§7q) cosh2yy),
aé];rl) = %(dékq) + dt(]];,) d' q) sinh 2y, — eg,q) cosh2yy),

where
4~ a)

~(k ~(k ~(k
oy = aly .

As before, we do not need to calculate the angles @ and y directly. It is sufficient to
find the matrices ﬁk and §k. As in the complex case, ¢ is selected to annihilate the pivot
element of B*) while ; is chosen to reduce ||A*)||. The angle ¢ is calculated from the
relation similar to (2.9),

2b\%)

Y ’ k|
k k 4

tan2¢ =

This formula is the same as (1.7), using the real Jacobi method on symmetric matrices

applied on the matrix B, Considering that 8, = 7 /2 and that all the elements of A® are

42



Eberlein method

The Eberlein method

real, the formula (2.15) for y; is transformed into

(k)

C
tanh y;, = P4 ,
ghi +2 (@02 + (d5)?)

where gg,kq) is the same as in the complex case.
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2.2. CONVERGENCE RESULTS FROM THE

LITERATURE

In this section, we give an overview of the convergence results for the Eberlein method
under different pivot strategies. Let A be an arbitrary complex (real) matrix and let the
sequence

A0 =4 AN AQ)

be generated by the complex (real) Eberlein process (2.1). In studying the convergence
of the Eberlein method, we focus on several features. Firstly, we want the sequence of
Hermitian parts of A(k), that is, the matrices B("), k > 0, to converge to a diagonal matrix.
Secondly, we want the sequence (A(k) ,k > 0), to converge to a normal matrix A.

We are going to show that convergence of (B(k), k > 0) to a diagonal matrix will hap-
pen due to the the rotation part of the transformations 7, that is, plane rotations Ry, which
annihilate the pivot elements of B). On the other hand, the convergence of (A(k), k>0)
to a normal matrix will be the part of the transformation 7} that reduces the Frobenius
norm of A®). Further on, if all the real parts of the eignevalues of A are different, then
(A k > 0) will converge to a diagonal matrix A. Otherwise, if A has some eigenvalues
with equal real parts, A will be a block diagonal matrix, such that the diagonal block sizes
correspond to the number of times the same real part appears in the spectrum of A.

In each iteration k of the Algorithm 4, pivot position is selected according to the
pivot strategy. In [28], numerical experiments showed that the real and complex Eberlein
method converged under the cyclic row-wise strategy. Nevertheless, the convergence for
the real case was not given, while the complex case convergence was proved only under

a specific non-cyclic strategy.

Theorem 2.2.1 (Eberlein [28]). Let A € C"*" and let (A(k),k > 0) be a sequence gen-
erated by the Eberlein method. At every step k the pivot pair (p,q) = (p,qx) is chosen
such that

k k k
4P+ (el — ey
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is greater or equal to the average of all possible results for

4\cg-()\2—|— (cl(l-k) _05];_))2’ 1<i<j<n.

Then
lim [|C(A™)|} =0,

k—>oo

i.e., for k sufficiently large, AK) g arbitrarily close to being normal.

Veseli¢ [75] proved the convergence of a slightly modified Eberlein method for real
matrices. In this altered algorithm, only one transformation is applied in the kth step,
either R; or Si, but not both. He proved the convergence under the classical Jacobi pivot

strategy.

Theorem 2.2.2 (Veseli¢ [75]). Let A € R™". Let (A% k > 0) be a sequence generated

by (2.1) where Ty = Ry, or S, depending on which of the numbers

= max |a§l.€) +a(.l.<)| or % — max |c(k)|
iaj J Jt i,j tj

i#]j i#]

40

is larger. The pivot pair (pi,qx) = (p,q) is chosen to be that for which |ag§,) + ag;)| (or
\/ |c§,kq) |), p # q, achieves its maximum. Then

(i) The sequence (A(k) ,k > 0) tends to a normal matrix, that is,

lim C(A®) = 0.

k—yoo

(i1) The sequence of matrices (B(k) ,k > 0) tends to a fixed diagonal matrix,

lim BY = diag(i1, 12, . .., tn),

k—yo0

where U;, 1 <i < n, are real parts of the eigenvalues of A.

(iii) If p; # pj. then limy,..aly) = 0.

K _

(iv) If p; = pu; for a fixed pair i # j, and p, # p; for all r # i, j, then limy .. al(j Mij,

where L;; is the imaginary part of an eigenvalue corresponding to ;.

Hari [35] proved the convergence of the Eberlein method for real matrices under the

wavefront strategies.
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Theorem 2.2.3 (Hari [35]). Let A € R™" and let (A(k),k > 0) be a sequence generated

by the Eberlein method under a wavefront pivot strategy. Then

(i) The sequence (A(k),k > 0) tends to a normal matrix, that is,

lim C(A®) = 0.

k—yoo

(i1) The sequence of matrices (B(k) ,k > 0) tends to a fixed diagonal matrix,

lim B(k) = diag(,ula,u% ce- uu“n)a

k—yoo

where U;, 1 <i < n, are real parts of the eigenvalues of A.
(ifi) If 1 # . then limy_aly) = 0.

(iv) If p; = pu; for a fixed pair i # j, and p, # p; for all r # i, j, then limy ;.. ag.c) = Wij,

where L;; is the imaginary part of an eigenvalue corresponding to L;.

In [67] Pupovci and Hari provided the convergence proof for the complex Eberlein
method under the weakly wavefront strategies. In addition to that, they proved the con-
vergence of the complex method under a parallel modulus strategy and the strategies that

are weakly equivalent to it.

Theorem 2.2.4 (Pupovci, Hari [67]). Let A € C"*" and let (A(k),k > 0) be a sequence

generated by the Eberlein method under a weakly wavefront pivot strategy. Then

(i) The sequence (A(k) ,k > 0) tends to a normal matrix, that is,

lim C(A®) = 0.

k—>oo

(ii) The sequence of matrices (B(k) ,k > 0) tends to a fixed diagonal matrix,

lim BY = diag(11, 12, . .., tn),

k—yoo
where U, 1 <i < n, are real parts of the eigenvalues of A.

(iii) If p; # ;. then limy_..a!

. k
=0 and limy_,c ag.i) 0.
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2.3. CONVERGENCE OF THE EBERLEIN
METHOD UNDER THE GENERALIZED

SERIAL STRATEGIES

We prove that the iterative process (2.1) converges under any pivot ordering & € %sgl)

described in Section 1.2. First, we list several auxiliary results from the literature and
their direct implications. We use the notation introduced in Section 2.1.

(i) (Eberlein [28]) For [[A(®)||% we have

Ay = A2 — | a®HD |12 = AW)2 — ||a%H D)2 > o, (2.22)

(i) Since the sequence (||A®)||%, k > 0) is non-increasing and bounded from below by

zero, it is convergent. Therefore, inequalities (2.22) and (2.14) imply

lim &%) = 0. (2.23)

k—yo0

(iii) (Hari [35]) For A®) = RiAR;, k >0, and

E®) = A+ _ g0 (2.24)
we have
3
IEW < Snllepd] (2.25)

(iv) (Hari [35]) For B¥) = RiBWR,, k > 0, and

F®) = plk+1) _ k) (2.26)
we have
3
IFOE < Sniefl 2.27)

(v) For any k£ > 0, we have
C(AW) = C(RIAWRy)
=RA® (ALY R — R (AR AR R,
= R,t(A(") (AR — (AR AR) R,

= R;C(AM)R,. (2.28)
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Further, we prove the following two auxiliary propositions.

Proposition 2.3.1. Let (x;,k > 0) be a sequence of nonnegative real numbers such that

Xep1 =P +cr, 0<y<l. (2.29)
If limy_,.. ¢ = 0, then
li =0.
e

Proof. First, we show that the sequence (2.29) is bounded from above. Take
C = max{xg,supc}.
k

We prove the boundedness by mathematical induction. For k = 0,

C
< C<—=M, forO0<y<l.

Y
Assume that x; < M for some given k. Then, for k+ 1,
X1 = Y+ ex SYM+C=yYM+(1—y)M =M.

Therefore, x; < M for any k > 0.
For the limit superior, we take limsup;_,.,xy = L € R. Then,

L =limsupxy, 1 < ylimsupxy 4 limsupcy = L.
k—roo k—soo k—soo

Since 0 < y < 1, the upper inequality can hold only with L = 0. Since (x; ) is the sequence
of nonnegative real numbers, liminf;_,.,x; > 0. This implies that

limsupx; = liminfx; =0
k—so0 koo

and limy_,.,x; = 0. |

Proposition 2.3.2. Let H # 0 be a Hermitian matrix. Let (H®) k > 0) be a sequence

generated by applying the following iterative process on H,
H) — REHOR 4+ M® HO —H k>0, (2.30)

where R are complex plane rotations acting in the (py,qx) plane, py < qi, with the ro-
tation angles |@| < Z, k > 0. Suppose that the pivot strategy is defined by an ordering
O € ‘Kg) and that

lim off(M*)) = 0. (2.31)

k—ro0
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Then,

(k+1)

(k+1)
hm ’hpqu

=0 and hm‘hm ~0 (2.32)

imply
lim off(H*)) = 0.

k—yoo

Proof. The proof uses the idea of the proof of Theorem 3.8 from [40].
To simplify the notation, let (p,q) = (pk,qx) denote the pivot pair at step k. Transfor-
mation R; H ()R, does not annihilate the elements on positions (p,q) and (q,p) of H k),

but we can write it as
RiHMR, = vy (REHMR) + (REHWR) pg (epel) + (REHPR) gp (eqe),  (2.33)

where e, is the rth column vector of the identity matrix /,, and v, is as in (1.3.1). By using
the vecoff operator on equation (2.30) and the definition of a Jacobi annihilator (1.3.1),

from the relation (2.33) we get
x5 = Ry R ZO +m® k>0, (2.34)
where ¥ = vecoff(H®)), and

m®) = vecoff (M(k) + (REHORY) oy (epeg) + (RiHOR)gp (eqep))
= vecoff(M®)) + (RtH* )Rk)pqer(p,q) +(RpH* )Rk)qpef(q,p)

(k+1)

= vecoff(M®) + (g™ — My Yer(pq) + (M ) — Miy))er (2.35)

4,p)"

Here, 7(p,q) stands for the position of the matrix element x,, in the vectorization
vecoff(X) and e, ) is the column vector of the identity matrix Iy with one on posi-

tion 7(p,q). Relation (2.35) and the assumptions (2.31), (2.32) imply that

lim m® = 0. (2.36)

k—ro0
We denote the matrix obtained from H after ¢ cycles of the process (2.30) by H (eN),

Vector x™N) = vecoff(H™)) can be written as
I N

The Jacobi operator ¢ gN] that appears in the upper equation is determined by the order-

ing 0 = (po,q90),(P1,91),---,(PN—1,9n—1) € ﬁ(@n) and by the Jacobi annihilators,

N
g | = ‘%)PN—l,QN—1 (RtN—l)‘@PN—LQN—Z (RIN—Z) o '%le (R(t—l)N+1)<@P0#0 (R(I—I)N)a
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while

mi™ = Kpy—r.an-1(RN-1) - Fpy g1 Rie—1)n+1)Zpo.q0 (R(r—l)N)m((t_l)N)
+ Aoy gy (Rev-1) - Zp1q, (R(tfl)NH)m((t_l)NH)

oA Ry gy Riy—1)m N, (2.37)

From the fact that the spectral norm of any Jacobi annihilator is equal to one (or zero if it

is a 2 X 2 annihilator), the relation (2.37) indicates that
™ [l < [l IM 4+ [ CEONED 4 N2 4 N D, >
Thus, from the limit (2.36) we get

lim m!™ = 0. (2.38)

f—>o0

Since 0 € %Egn), i.e., the pivot strategy is generalized serial, suppose that & X &' X 6"
or 0 X o' R ", 0" c (53(;), and that the weak equivalence relation is in the canonical

form containing exactly d shift equivalences. For d 4 1 consecutive cycles we get

2N = /gt+d)N] o /gtﬂw] gm%((t_])m +m{ﬁ1]a t>1, (2.39)
where
{2@1 /ﬁﬂrd /ﬁt+1 [’N+/ﬁ’+d N /@[gt+2)N]m[(t+l)N]

T +/ﬁt+d [(t-Q—d—l)N]_{_m[(H-d)N]‘

Similarly as before, the property of the spectral norm of the Jacobi operator implies

”m[tN]

2 2 < [y OV ol DNl OV

and using the limit (2.38) we get

limm™  —o.

f—voo  dH+1] T

To the Jacobi operators from (2.39) we can apply the Theorem 1.4.5. We get

| NN g XN g Ny <, 0< < 1L (2.40)
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Looking at the spectral norm of (2.39) and using the bound (2.40) we obtain

d)N 1)N [tN
P PR P AR AR i Al R A

< wllx I+l

Considering that 0 <7, < 1 and Hm d +1 |2 — 0, as t — oo, we employ the Proposition 2.3.1
which yields lim;_c x( N) = 0. Therefore, iterations obtained after each cycle converge
to zero.

Additionally, for iterations 0 < k < N within one cycle, from the relation (2.34) we

have

x((tfl)NnLk)

= Zp gt Re-1w4k-1) gy (R 1w 1) B0 (R 1)~

+Zpi 111 Rie—1)ywi—1) - Rpra (R 1)NH),@pO’qO(1!3(171)1\,>,n((t—1)N)

+ R s R0y 1k-1) Ry gy (R 1y )m IV

+"'+<9Z’pk,1,qk,1(R(t—1)N+k—1)m((’*l)N”‘*l)-
In the same manner as before we get the inequality
=N
< 2 Iy 4 (| DMy = ONAD | |l DN

<2 I 4k max [m( DN,
0<r<k—1

Thus, lim, e || ~D¥*K)||, = 0, and it follows
lim || ®) |, =0.
k—roo
Finally, because off(H®)) = ||x® ||, k > 0, we have limy_,., off(HX)) = 0. [ |

Now we can prove the convergence theorem for the Eberlein method under the gener-

alized serial orderings with permutations, &' € ‘gs(g").

Theorem 2.3.3. Let A € C"*" and let (A(k) ,k > 0) be a sequence generated by the Eber-
lein method under a generalized serial pivot strategy defined by an ordering & € ‘fsgl).

Let the matrices B*) be defined as in (2.6), and the matrices C(A¥)) as in (2.7). Then
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(i) The sequence of the off-norms (off(B*)), k > 0) tends to zero,

lim off(B%)) = 0.

k—roo

(ii) The sequence (A(k) ,k > 0) tends to a normal matrix, that is,

lim C(AK)) = 0.

k—roo

(iii)) The sequence of matrices (B(k) ,k > 0) tends to a fixed diagonal matrix,

lim BX) = diag(uy, o, - .., ),

k—»oo

where U;, 1 <i < n, are real parts of the eigenvalues of A.

(k)

(iv) If ; # pj, then limy o a;; (k)

=0 and limy_. a;’ = 0.

Proof. (i) For F%) defined as in (2.26) we have
B¥) — grpkR, + FO k> 0. (2.41)
On the pivot position (p,q) in the step k we have
bpq " = b + g

where F®) = ( f-(-k)).

1

Relations (2.27) and (2.23) imply limy .. F®) = 0 and limy_,.. fix) = 0. Further-

more, the rotation Ry is chosen to annihilate Bl(,kq). It annihilates 1351];), as well, because
B® is Hermitian. Therefore, limj_,c bﬁ,’i,“) = 0 and limy_,o. b‘(,];H) = 0. Matrix

B = B is Hermitian by the definition and the iterative process (2.41) satisfies the

assumptions of the Proposition 2.3.2. Hence,

lim off(B%)) = 0.

k—boo

(ii) For E®) defined as in (2.24) we have

C(A(k“)) = C(AW +E(k)).
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Then,

CAKDY = (A0 4 WY (AR 1 ERys — (AR 1 Ry« (A(K) 4 g k)Y

— Ak (A(k))* +EW® (A(k))* + (A(k) +E("))(E(k))*

— (AMYE0 _ (EWY A0 _ (ZK) 1 E<k>)*E<k>

where
w (k) :A(k+1)(E(k))* _ (A(k+1))*E(k) +EW® (A(k))* _ (E(k))*g(k).
Moreover, applying the relation (2.28), we can write (2.42) as
C(AM 1)) = Ric(AMR, + W),

Using the properties of the norm and the inequality (2.22) we get
IW®llr

< AR ED) | p+ AN EO |+ | EQ AR+ (W) AW

< JAEHD e [ED) e + A D ED e+ [ED £ |AD e + [ED) 1A

=2 EWp (A% V)lp + [AD )

<4EW|pl|AD |,

and

W ® 7 < 16/ ED | FIADI7

It follows from the relations (2.24) and (2.25) that
[WWIE < 161 EW 7 AlIF < 24025 4] -
Thus, relation (2.23) implies
hm ||W HF = (2.43)

We consider the off-diagonal and the diagonal part of C (A(k)) separately. Similarly

as for matrices B¥), on the pivot position (p,q) in the step k we have

k+1 k
o) =+l
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(iii)

where W = (w*)). Relations (2.23) and (2.43) imply limy_,ech ) = 0. Tt is

ij
easy to check that matrices C(A%)), k > 0, are Hermitian. Then limy_,. cé’;’q) =0

and we can use the Proposition 2.3.2 again. We get

lim off(C(A)) = 0. (2.44)
k—yoo
It remains to show that
lim )
—>00

Set A®) = BK) 1 7z(K)  \where (B(k)) is Hermitian, as in (2.6), and Z®) is skew-

Hermitian. Then,
C(A(k)) — (B(k) +z®)(BW +Z(k))* _ (B(k) +z®y=(BW) 4 Z(K)
— Bk 4 gkl z(k)* 4 7 (k) glk)* | 7(k) 7(k)*
_ g gk) _ gy 7(k) _ (k)" glk) _ 7(k)* (k)

= 2(z® k) _ k) z(K)) (2.45)

The diagonal element of C(A%)) is given by

()0

(k) _(k)
Zy by b2 )-

ij ©ji

=2y (
=1

J

It is proven in part (i) that limy_,., off(B)) = 0, that is,

lim %) =0, fori ;.
k—voo
Thus,
lim i) =2 (z{p} — b2 ) =0, (2.46)

Relations (2.44) and (2.46) imply the assertion (ii) of the theorem.

In part (i) of the proof we showed that matrices B® tend to a diagonal matrix.
The fact that the diagonal elements of the matrix limy_,. B*) correspond to the real
parts of the eigenvalues of A is then proved as in [67], using the assertion (if) of this

theorem.
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(iv) Using the relation (2.45) and parts (i)—(iii) of the theorem it follows that

0= lim c(j) =2 lim Z ( (k) —bg‘)z(k.))

k—ro0 k—>o0 — rj

(0 0.@Y © N
_21352,(41' bji —bii’z; ) =2(pj — W) lim 7,7, 1<ij<n.

(k) _

If u; # Ui, then limy_, o 3 (k) _

= 0. Finally, since hmk_mb =0 for i # j, we get

aff =b% +4P 50 and o) = () - () -0, asko e

Therefore, starting with an n x n matrix A, the Eberlein method under a pivot strategy
defined by any generalized serial pivot ordering converges to some matrix A. If all real
parts of the eigenvalues of A are different, then A is a diagonal matrix. If the real parts
u; and u; of the eigenvalues of A are the same, then we cannot claim that the corre-
sponding off-diagonal elements al(f) and aﬁ-’f) tend to zero. This can result with blocks on
the diagonal of A. Assuming that the diagonal elements of A are arranged such that their
real parts appear in decreasing order, based on Theorem 2.3.3, we reach the following
conclusion. The matrix A is a block diagonal matrix with block sizes corresponding to
the number of times the same real part appears in the spectrum of A.

The eigenvalues with different real parts can be read from the diagonal of A. Pairs of
complex conjugate eigenvalues with non-repeating real parts, if they create a block, will
correspond to 2 x 2 matrices with Re(a;;) = p;. Such eigenvalues are easy to read from
2 x 2 blocks. For the repeating real parts, the blocks can be bigger. In our numerical tests,
we observed that the blocks appear in case there are complex eigenvalues with the same
real but different imaginary parts. The size of such a block corresponds to the number
of those eigenvalues with the same real parts. In contrast, repeating real or complex
eigenvalues did not create blocks in practice. In order to find all eigenvalues of A, it
remains to find the eigenvalues of the bigger blocks of A. To that end, for example, the
nonsymmetric Jacobi algorithm for the computation of the Schur form discussed in [64]
can be applied.

Another approach to find the eigenvalues contained in the blocks of A is as follows.

Let d be a random nonzero complex number. It is easy to check that for any n X n matrix
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M with the spectrum (A1,4;,...,4,), the spectrum of dM is equal to (dA;,dAy,...,dA,).
Let us show this. Let A be an eigenvalue of M, and let x be a corresponding eigenvector.
That is,

Mx = Ax.

We multiply both sides by d and get,
dMx = dAx = Adx.

Therefore, dA is an eigenvalue of dM, with the same corresponding eigenvector x.

Now we return to our goal of finding the eigenvalues contained in the blocks of A.
We take d to be a complex number with nontrivial imaginary part, that is, Im(d) # 0. We
multiply the obtained block diagonal matrix A by d. The eigenvalues of dA are equal to
the eigenvalues of A multiplied by d. Therefore, if there are complex eigenvalues of A
with the same real but different imaginary parts, they turn into eigenvalues of dA with
different real (and imaginary) parts. That being said, applying the Eberlein method again,
this time to dA, yields a diagonal matrix A;. The algorithm applied to dA will converge
more quickly because the starting matrix is already nearly diagonal. After we get Ay, all
eigenvalues of A are found simply by dividing the eigenvalues of A, by d.

In order to avoid doing the Eberlein method twice, we can do the preconditioning
step, scaling by d, on the starting matrix A. Then we apply the Eberlein method to dA
to obtain a diagonal matrix Ay;. Again, diagonal elements of A; are multiples of the
eigenvalues of A. Thus, we divide them by d to get the eigenvalues of A. We can always
do this procedure to bypass the possible diagonal blocks and not concern ourselves with
the repeating real parts of the eigenvalues. Therefore, we can assume that the matrix
A does not have eigenvalues with repeating real parts, but different imaginary parts. In
conclusion, this means that, in practice, the sequence (A(k), k > 0) will converge to a

diagonal matrix carrying the eigenvalues of A.
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2.4. NUMERICAL RESULTS

Numerical tests of the Algorithm 4 under the generalized pivot strategies with permuta-
tions are presented in this section. All experiments are done in Matlab R2021a.

To depict the performance of the Eberlein algorithm, we observe three quantities;
off(AK)), off(BX)), and ||C(A®)||r. The results are presented in logarithmic scale. The
algorithm is terminated when the change in the off-norm of B becomes small enough,

1078, According to Theorem 2.3.3, both off(BX)) and ||C(A®)|| should converge to

ZEro.
Eberlein on a 50x50 matrix Eberlein on a 50x50 matrix
ol ‘ ‘ ]
10 45
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100¢
off(B) off(B)
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1020 : 1
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-20 | i
10 100k =
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(a) Complex algorithm, random A € (C0x30, (b) Real algorithm, random A € [R30x30,

Figure 2.1: Change in off(A®%)), off(B*)) and ||C(AW))|| for different pivot strategies.
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In Figure 2.1 the results of the Eberlein algorithm on a non-structured random complex
matrix are shown, as well as the results of the real Eberlein algorithm on a non-structured
random real matrix. We test the algorithm under different pivot strategies. Each line
represents the results of a different pivot strategy I, O € ‘fs(;). Strategies are randomly
chosen at the beginning of the algorithm. No pivot strategy is superior to others. A
strategy that leads to the fastest convergence on one matrix will be slow on a different
matrix. We observe that off(B*)) and ||C(A®) || converge to zero in both complex and
real algorithm, although the convergence is slower for the real algorithm. In the complex
case off(A) converges to zero, as well. That is, the matrix is diagonalized. However, this
is not the case for the real algorithm. The reason is that the real algorithm formed the
blocks for the eigenvalues with the same real part.

The algorithm is significantly faster if it is applied on a normal matrix, see, for ex-
ample, [32,56]. We construct a unitarily diagonalizable (i.e., normal) 400 x 400 matrix
A =AO such that we multiply some chosen complex diagonal matrix from the left-
and right-hand side by a random unitary matrix. In Figure 2.2, we see the results of the
Eberlein method under a randomly chosen pivot strategy I, & € ‘Kégn), applied on a diag-
onalizable complex matrix. Here we do not show ||C(A®))||r because A(?) is normal, that
isC (A(O)) = 0, and it stays normal during the process. For this reason, transformations Sj

are equal to the identity matrix /,,.

Eberlein on a 400x400 matrix

10°F 1 100F

off(A) off(B)

10'10, 4 10—10,

1020 . . . . . 1020 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Cycle Cycle

Figure 2.2: Progress of the off-norms of A® and BY) for a unitarily diagonalizable com-

plex matrix.
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In order to show the block diagonal structure of A®) discussed at the end of the previ-
ous section, we applied the Eberlein method to the matrices from C!9%19 and C>0*3°, To
generate the starting matrix A, we first set the upper triangular matrix 7 to have the spec-
ified diagonal elements. Then we multiply 7 by a random unitary matrix Q, A = Q*T Q.
In our implementation of the algorithm, we introduce an additional condition so that the
real values of the diagonal elements appear in decreasing order. That is achieved by, if
necessary, translating the angle oy by 7/2 in the kth step of the process. The evolution of
the matrix structure of the iterates is shown in Figure 2.3. Specifically, the figure shows
the logarithm of the absolute values of the elements of A®) The lighter squares represent
the elements that are larger in absolute value. According to Theorem 2.3.3, the algorithm
should converge to a block diagonal matrix in both cases described below.

In Figure 2.3a, we have a 10 x 10 matrix with the spectrum
{5,4,3,1+£2i,1+i,—1,-2,-3}.

Thus, we deal with distinctive eigenvalues and there are two complex conjugate pairs of
eigenvalues with the same real part. On the other hand, in Figure 2.3b, we have a 50 x 50
matrix. Its spectrum consists of two random complex numbers of multiplicity ten and
three pairs of complex conjugate complex numbers, each of multiplicity five.

For both matrices, after a few cycles we can faintly see the diagonal blocks. After a
few more cycles the block diagonal structure is clear. For the first matrix, the obtained
4 x 4 block has eigenvalues that are (approximately) 1+i and 1+ 2i. The rest of the
diagonal carries the real eigenvalues of the original matrix. Furthermore, for the second
matrix we see three blocks that correspond to three pairs of complex conjugate eigenval-
ues. The rest of the diagonal corresponds to two repeating eigenvalues, and they do not
form blocks despite the tenfold multiplicity of each eigenvalue. Compared to the part that
formed the blocks, for the repeating eigenvalues there are no other eigenvalues with the
same real, but different imaginary part.

To corroborate the discussion at the end of the previous section, for the 50 x 50 matrix
we multiply the obtained block diagonal matrix A with a complex number d with non-
zero imaginary part. In Figure 2.3c we see that running the Eberlein method again on

dA fully diagonalizes the matrix. We point out that we get the same result if we do the
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multiplication dA at the beginning and apply the Eberlein method only once to obtain a
diagonal matrix Ay;. The eigenvalues of the starting matrix are recovered by dividing the

values on the diagonal of A, by d.

10 x 10 matrix

cycle 4

(a) Two complex conjugate pairs of eigenvalues with the same real part that formed a 4 x 4 diagonal

block.

50x50 matrix

cycle 3 cycle 7 — A

(b) Three complex conjugate eigenvalues formed 10 x 10 diagonal blocks, while the rest of the
diagonal carries two repeating eigenvalues.

50x50 matrix
cycle 5 — Ay

(c) Applying Eberlein method again on dA fully diagonalized the matrix.

Figure 2.3: Block diagonal structure and solution.
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In Figure 2.4 we test the accuracy of the Eberlein method. The top graph demonstrates
that the Eberlein method on a random 50 x 50 matrix converged to the same solution as
the Matlab eig function. The bottom graphs show the relative errors in the real and
imaginary parts of the obtained eigenvalues with respect to the solutions obtained by the

Matlab function eig.
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Figure 2.4: Accuracy of the Eberlein method in comparison to the Matlab eig function.

Furthermore, we want to test the accuracy of the eigenvectors generated by the Eber-
lein algorithm. Because matrices AWK converge to a matrix A, as k tends to infinity, the
sequence of transformations 7} also converges to some non-singular matrix V. That is,

from the Eberlein algorithm we get
Ax~VIAV.

Columns of V correspond to eigenvectors of A. We compare columns of V with the
appropriate eigenvectors given by the Matlab function eig. We scale both vectors such
that their first coordinate is one and then observe their difference component-wise. We
can only do this kind of comparison for one-dimensional eigenspaces. In Figure 2.5 we

show the accuracy of three randomly chosen eigenvectors for a random 50 x 50 matrix.
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Eberlein on a 50x50 matrix

Accuracy of the real Accuracy of the imaginary
parts of the eigenvectors parts of the eigenvectors

10—13 L

10-14 L

error
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eigvector component - real part eigvector component - imaginary part

Figure 2.5: Accuracy of the eigenvectors from the Eberlein method in comparison to the

Matlab eig function.

In summary, in this section we showed the numerical behaviour of the Eberlein algo-
rithm. The numerical results depict the theoretical results given in Theorem 2.3.3. For
BW = %(A(k) + (AW)*) the sequence (off(B%)),k > 0) converges to zero, that is, the Her-
mitian part of A(K) converges to a diagonal matrix. For C(A®)) =A%) (A(K) ) — (AK))*4 (k)

the sequence (C(A®)), k > 0) converges to zero, that is, A

converges to a normal ma-
trix. Moreover, we showed that if the real parts of the eigenvalues of A are different, then
AWK converges to a diagonal matrix. Otherwise, the blocks corresponding to the repeating
eigenvalues may be formed. Regarding the accuracy of the method, we compared it to the

Matlab eig function, and the results are satisfying.
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3. BLOCK EBERLEIN

DIAGONALIZATION METHOD

In this chapter we propose a new type of the Eberlein method, the block Eberlein method.
In general, block algorithms assume a block structure of a given matrix. Contrary to the
element-wise algorithms that work on matrix elements, block algorithms work on n X n
blocks of elements at once. Therefore, instead of going through the matrix sequentially
element by element, we take sets of elements (blocks) and do the corresponding com-
putation on the entire block. After that we move onto the next block. Scalar operations
from the element-wise algorithms are replaced by matrix operations, while zero and one
become zero matrix and identity matrix. If we take a block algorithm with 1 x 1 blocks,
then the block algorithm becomes an element-wise algorithm. On the modern computers,
block algorithms are usually more efficient than their element-wise counterparts.

Recall that one step of the element-wise Eberlein method consists of two parts. For the
underlying matrix A we first annihilate the pivot element of the matrix B = (A+A*) /2,
that is, the Hermitian part of A, using a unitary transformation. This corresponds to the
diagonalization of a 2 X 2 pivot submatrix of B. Secondly, we use non-singular complex
rotation to reduce the Frobenius norm of A. Hence, one step of the block Eberlein al-
gorithm should have two parts, as well. In the first part we are going to diagonalize the
pivot block of B. Compared to the element-wise case, where this meant annihilating one
element of B, now we will need to diagonalize a pivot submatrix. This can be done in
different ways, for example, by using the complex Jacobi algorithm on the pivot block of
the Hermitian matrix B. In the second part the goal is to reduce the Frobenius norm of A
and this is a challenging part of the Block Eberlein algorithm.

First,we give a short introduction to the block matrices and present the block Eberlein
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method. Furthermore, we suggest a core algorithm for finding the norm-reducing transfor-
mation. Our main result is the convergence theorem that corresponds to the one proved
in Chapter 2 for the element-wise case. In particular, we prove that the block Eberlein
method converges under the generalized serial block pivot strategies with permutations.

Finally, we perform numerical tests for the proposed block method and present the results.

3.1. ON THE BLOCK MATRICES

We first give a short introduction to block matrices. We denote block matrices in boldface

capital letters, e.g., A, B, C. Let

T = (ny,ny,...,ny) (3.1

be an integer partition of n € N, where n; > 1, forall 1 <i <m,andny+ny+---+n, =n.

The partition 7 determines the block partition of an n X n matrix A,

All A12 v Alm ni
A21 A22 cen A2 nyp

A= " (3.2)
Ami Am .. Aum | nm

Diagonal blocks A;;, 1 < i < m, are square matrices, while the off-diagonal blocks can
be rectangular. Generally, block A;; has dimension n; X nj, forall 1 <i,j <m. If 7 =
(1,1,...1), then the block matrix is actually an element-wise matrix. For example, given
below is an 8 x 8 matrix represented as two block matrices using different partitions,

m =(2,3,2,1) and m, = (1,3,4), respectively,

¥ | ¥ X | ¥ ¥ ¥ | % *
¥ % X | % * X |*x *x

¥ X X | ¥ ¥ ¥ | %X *x
¥ | % X | % X X |*x *x
¥ x x| % ¥ ¥ |x *x

* | ¥ K| K ¥ X | *x *
¥ *x X | % * X |x *x

¥ X X | ¥ ¥ ¥ | % *
* X X XX X X | ¥
* K X K| X X X | ¥
* K X XX X X | ¥
I S R I R S Sl
* Kk X XX X X | ¥
* X X XX X X | K¥
* XK X K| X X X | ¥
EE S R R R S Sl

Recall that the block elementary matrix is a matrix differing from the identity only in

a 2 x 2 submatrix. For a partition 7 and a pivot pair (p,q), the n x n block elementary
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matrix E,, differs from the identity matrix in an (n, +n,) % (n, + n,) block submatrix.

For p < g it takes the form

1

but we are going to assume that p # q. The (n, +n,) x (n, +ny) block submatrix qu,
qu _ { Epp Epq }
Eqp Eqq
is called the pivot submatrix of E,,. We denote the function that maps ﬁpq toann xn

matrix E,, by &. We write
EPCI = éa(pvanpq)‘

Let us call attention to the effect of multiplying a block matrix by a block elementary
matrix on the left and right-hand side. In particular, let A be a block matrix with block
partition 7 as in (3.2), and let E,; be a block elementary matrix determined by a pivot
pair (p,q) and partition 7. Multiplying A by E,, from the left-hand side, that is, E, A,
changes only the pth and gth block rows of A. The rest of the blocks of A remain the same.
Similarly, multiplication from the right-hand side, AE,, alters only the pth and gth block
columns of A. Together, multiplying E,,AE,,, changes exclusively the pth and gth block
rows and columns of A, leaving the other blocks intact. This is completely analogous to
the element-wise case where a matrix A is multiplied from the left and right-hand side by

an elementary matrix.
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3.2. BLOCK EBERLEIN METHOD

We are going to illustrate our algorithm for the block Eberlein method. Let A be an
arbitrary n x n block matrix of the form (3.2) with the partition 7 as in (3.1). The block

Eberlein method is the iterative process
A =T IAWT, k>0, (3.3)

where A©) = A, and
T =RiSk, k=0,

are non-singular block elementary matrices. The block matrices Ty, and consequently Ry
and S, have the same block partition as the matrix A% In our case, the partition 7 is
fixed throughout the process, so we omit it in the notation. In a general case, it would be
possible to have an adaptive partition that is changing throughout the process. As it was
mentioned earlier, if 7 = (1,1,...,1), i.e., all blocks are in fact just elements, the block
Eberlein method comes down to the element-wise Eberlein method.

The same way as in the Chapter 2, the process (3.3) can be written with an intermediate

step,
AR L &Y 5 Al
where
AY _RIAVR,, 3.4)
Ak g 130 k>, 3.5)
Let B be the Hermitian part of AWK,
B® = % (A4 (A0, (3.6)

Let (p,q) = (pk, qx) be the pivot pair in the kth step. The pivot submatrix of A% is given

by ) ]
w [ AL Al

A =
Pq k k) |>
A A |
while the corresponding submatrix of B is of the same form,
Pq :
| Bayp Bgqg |
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~(k ~(k ~(k)\ *
Because B(*) is Hermitian, the submatrix B;q) is also Hermitian. Thus, B;p) = <B;q) > .

The kth step consists of two parts, the first part corresponding to the relation (3.4) and the

second one corresponding to (3.5). In the first part we are looking for the unitary block

k ) .
( ). In order to achieve this,

elementary matrix Ry that diagonalizes the pivot submatrix B vq

~(k
we find the unitary (n, 4+ ny) X (n, +n,) matrix R;q) ,

(k) p(k)
(k) R R
qu _ [ pp prq ] ,

such that

k k * k k k k k+1
R RO T ol ol ][R RG] AT o
R p®) O || gl pl) 0 Ak |

(k) p(
ap  Tqq Bgp  Byg ap  qq

where Ag;rl) and Ag;rl) are diagonal matrices. Then, we set

5 (k)

Ry = éa(p7q7qu)'

.=k . . o
We determine R, by applying the complex Jacobi method (see [39]) to the Hermitian
~(k
matrix B;q) . Instead of the Jacobi method, other diagonalization methods can be used,
as well. In the second part we need to find the non-singular (and non-unitary) block
~(k
elementary matrix S that reduces the Frobenius norm of A( ). Similar to the first step,
(k)

. . alk
we find a non-unitary (1, +ng) x (n, +ng) matrix S, ,

50 _ [ Sy St ] |

o
and set
B 0
Sk — éa(pvq7qu)' (37)

The second part is more difficult than the first part. We are going to describe it in details

in Section 3.3. The procedure for the full block Eberlein method is given in Algorithm 5.
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Algorithm 5 Block Eberlein method
Input: A € C"

Output: matrix A(k), block elementary matrix T
A=A Ty=1

k=0

repeat

Choose block pivot pair (p,q) according to the pivot strategy.

~(k ~(k
Find R;q) which diagonalizes the Hermitian matrix Bz(w) using complex Jacobi al-
gorithm.
_ 5 (k)
Set Ry = g(p7Q7qu)'
~(k
AY Z RAWR,

(k)

Find §p]; which reduces Frobenius norm of K(k) using Algorithm 6.

oK)
Set Sg = E(p,q,S,4)-
Ak =513 %,
Tir1 = TiRySk
k=k+1

until convergence

In the block algorithm pivot pairs refer to blocks. For the partition T = (ny,ny,...,ny),
the set of all possible pivot pairs is &, = {(i,j) : | <i < j<m}. A block pivot strategy
is any function

I:N()%c@m.

The same way as we built the set nggn), we build the set of generalized serial block pivot
orderings with permutations, %S(Z’), defined in [7]. First, we define the set of column-wise

(row-wise) orderings with permutations,

2" ={0e0(2,))0=(1,2),(1(1),3),(6(2),3)....,

e (Tn(1),m), o (Tp(m—1),m), el D 3<j< m}
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B — {ﬁe O(P0) | 6 =(m—1,m),(m—2,5no(m—1)),(m—2,Tn_a(m)),...
L(1L,7Q2),..., (1L, z(m) Tell+m 1 <i< m—2}.

The orderings from %’ (%’ m) ) go through the matrix block column by block column
(block row by block row), starting from the second one (the second to last one). In each
block column (block row) pivot elements are chosen in some arbitrary order. Then, using
%’5") and %ﬁ") we define two more sets of orderings. They contain orderings reversed to

block column-wise and block row-wise orderings with permutations,

B {ﬁeﬁ( P 0 € B >} and B = {ﬁeﬁ( )|ﬁ“e%’('")}

Together, these four sets of orderings are called serial block orderings with permutations,
B = 2™ OB B LB,

Finally, we get a very large set of the block pivot orderings if we derive an expansion

of %’ﬁg) using weak and permutation equivalence relations from the Definition 1.2.2. Let
2y ={oecOw@,) 0o o oaoloXo o e},

where 0’ € ﬁ ). Strategies defined by orderings from %’s(g) are called generalized
serial block pivot strategies with permutations. In Section 3.4 we prove the convergence

of the block Eberlein method under this broad class of strategies.
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3.3. CORE ALGORITHM FOR FINDING THE

NORM-REDUCING TRANSFORMATION S;

We now describe the details of computing the block elementary matrix Sy from the rela-
tion (3.5) that reduces the Frobenius norm of the underlying matrix K(k) obtained in (3.4).

Recall that multiplying E,,AE,,, changes only the pth and gth block rows and block
columns of A, leaving the other blocks intact. That being said, the block elementary
matrix Sy affects the K(k) by reducing the Frobenius norm of the pivot block rows and
block columns. On the other hand, finding the block submatrix §§,]2 requires the same
block pivot rows and columns. This is in correspondence with the element-wise Eberlein
method, where we needed the entire pivot rows and columns to compute the transforma-
tion §k from (2.2). Let us point out that computing the block elementary matrix Ry, or

k

rather finding the block submatrix lA{( )

. . .o (k ..
g » Tequires only the pivot submatrix A;q) . This is

the reason the second part of the kth step of the block Eberlein process (3.3), finding S,
1s more complicated and numerically exhausting.
Here we construct the core algorithm for finding S, for some fixed step kK > 0. The

(k)

input arguments are the block matrix A" € C™" with block partition 7 and the pivot

(k)

pair (p,q) = (px,qx)- The goal of reducing the Frobenius norm of A" can be achieved

in more than one way. Our core algorithm is the iterative process

~(I+1) ~=(I)
A =S'AS, >0, (3.8)

0

~( ~(k
where A = A( ), and S; € C"", [ > 0, are block elementary matrices with the same

block partition 7. Each transformation S; reduces the Frobenius norm of Z(l . We apply
them iteratively in order to get as big reduction as possible. Note that, although the
relation (3.8) involves n X n matrices, matrices S; differ from the identity only in the
pivot submatrix. Then, the pivot submatrix §g2 is computed as a product of the pivot
submatrices of S;. The next iterate A& s obtained using (3.7) and (3.5).

Let us describe the construction of S;, for some fixed / > 0. The matrix S; is computed

in the same way as the non-unitary matrix Sy from the element-wise Eberlein method

studied in Chapter 2 (see relation (2.2)). It depends on an index pair (r,s) = (r;,s;) and
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transformation angles fB; and y;, like in (2.2). It has the following form,

1

cosh y; —1e'P sinh 17 r
Sl = e . 3.9

1P sinh y; coshy; §

1

The transformation angles are calculated using the formulas (2.12) and (2.15). Notice that
the latter formula requires all elements from the rth and sth rows and columns of Z(l).
That is why our iterations (3.8) work on whole matrices instead of the pivot submatrices.
Since the outer algorithm is a block algorithm, we focus on the (p,q) pivot submatrix of
X(”. This means that we choose pairs (r,s) exclusively from the upper triangle of the

(p,q) pivot submatrix. To be precise, we have

nm+-+n,  +1<r<ni+---+n, 1 +n,—1,
r<s<ni+---+n, 1+np,
or

m+-tng g +1<r<n+---+ng1+n;—1,
(3.10)
r<s<nj+---+ng1+ng,
or
nt-dnp g +l<r<ni+---4n, 1+np,
m+-tng+1<s<n+--+n41+ny.

l

~(k ~
Finally, the pivot submatrix S;q) is computed as a product of st),

[ > 0. The procedure is
summarized in Algorithm 6.

In theory, the Algorithm 6 should run until the maximal reduction of the Frobenius
norm is achieved. This is numerically challenging as it requires many iterations. However,
in practice, there are several other stopping criteria that can be used in Algorithm 6. In

our implementation, we choose pairs (r,s) from the set defined by (3.10) according to
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Algorithm 6 Finding §g;)

~(k
Input: A( ) € C™", block pivot pair (p,q)

Output: AK+D) ¢ crxn, §§qu) € Cnptng)x(np+ng)
2O 2k 50

A =ASy =1y,

=0

repeat

Choose pair (r,s) from (3.10).

Find (n, +ng) x (n,+ ny) block matrix §£i)
~(1
Sl = éb(paQ7S;(’s))
~=(I+1) = l)
=S,'A S,
QU+ sihg)
Spg = SpqSrs

[=1+1

until stopping criterion is satisfied

(l)’ §(k) _ §(l)

AT = X pq pq

the row-wise ordering in the pivot submatrix (p,q), taking each pair exactly once. Then,
the number of iterations in the Algorithm 6 is equal to the number of all possible pairs
(r,s), ie., I = (n,+ny)(ny, +n,—1)/2. That is sufficient, in practice, to achieve the
convergence of the Algorithm 5, without being too computationally exhausting. Another
option would be taking only one pair (r,s) for each pivot submatrix (p,q), i.e., stopping
when [ = 1. For example, for each (p,q) we can randomly choose one pair (r,s). This
way block algorithm converges in practice, although much slower, provided that for each
block (p,q), all possible pairs (r,s) are chosen enough times.

We are going to illustrate how to find §§,]2 using the Algorithm 6. Let the pivot subma-
trix be a 4 x 4 matrix, and let (p, q) be the given pivot pair. To start, we set §(0) =1 CH4,

Pq

Then, we update this matrix by consecutively multiplying it with the computed matrices

<)

S,,, forl=0,1,...,5. Index pairs (r,s) are chosen from the upper triangle of the 4 x 4

pivot submatrix in the row-wise ordering,

*x 01 2
0 x 3 4
1 3 x5
2 4 5 %
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To simplify the notation, for [ = 1,2,...,6, we donote cosh y; and sinh y; by ch; and shy,

respectively. After the first iteration, / = 1, we have

ch; —1ePrshy 0 0
s _gl0 _ e~ "Pi gh, chy 00
pq — 712 0 0 1 0
0 0 0 1

Notice that in the first iteration, the elements in the first and second column are the only
ones that were transformed. This is the property we mentioned before of multiplying a

. . . . . .q
matrix by an elementary matrix from the right-hand side. Next, we obtain the matrix 853)

~(1 ~2)  al)al) 0401
and multiply it with Séq)' The product Séq) = S;q) S(13) = SE;S%;, takes the form
chich,  —wePrshy  —wePrchishy, 0
e Prshichy  chy  ePFPghishy 0
1e"P2shy 0 chy 0
0 0 0 1

. - . . . ol
Observe that in this iteration only six elements of the previously computed S;q) were

changed, the ones in the first and third column. After the next iteration, / = 3, we have

<3

0)g(h)5x(2)
Spq =

Sl2 Sl3 Sl4 )

which is equal to

chjchychs —1e'Pr sh; —1e'P chj shy —1e'Ps chy chp shj
e~ P shj chy ch; e!=Pi+h) shj shy el(=Bi+53) shj chj shs
1e~P2 shy chy 0 chy e!(=P+P3) shy shy
1e~'P3 shy 0 0 chs

Now, all elements in the first and fourth column were transformed. At the end of the
(0) (5)

. . ~(0 ~
cycle, the product of all six submatrices Sy, , ..., S34, transformed all elements of the

. . . gl . . .
starting pivot submatrix S;q) . The resulting matrix, for [ =5, is

which is given in (3.11).
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(e

9o Syo LYo

oUs SYI £Y2 g, _a1

SUS €YD ¢, a1

€ys £gr 1

A YO EYS TS (¢ g, 2+
£ys 7ys tyo &tﬁ%&v Yo+

9ys Yo <o 9?1 —

AWQO mﬂm Nﬂm AmQ+NQ\V~® +
Sqs s 2go &+a¢mv 2US o121+

9o Yo o

Sys €ys <ys Amnkntn\fmtv

Syo yus o 121

€Yo Cys g1

A Syo tys cyo Iys (g—sg)® +

S TUS TS 1S (s v 197
Sys o Iyo sgi?! — v oo+

AEQ S 1S (197 +

vys Iyo rgh?1 — v 9ys 9?1 —

A O EUS YOS (541,72 +

S PUS TUS TS (594 vg g4 19,7+
Sys o Iyo sgi?! — v 9ys o121+

A "2 €US TUS (19292 +

7S 140 21 — v 9yo

Sys €ys <yo Iys Ammlmu...ilfﬁ +
Syo vys Tys ys (rg—g+1g—)P1 T

Syo 7o Iyo

EgO YO 1Ys 1,21

A Syo ys o Iyo g1~

S TS S TUD (591 vg ) 21—
Sys ryo Iys (Sg+1g)i° — v 9yo+

A ryo <ys Iyo 21—

g8 TS (g4 1,2 — v S 9,21

A Syo eys <y Iyo el —

S TS S 140 (5. v 22! —
sys vyo Iys (Sg+1g)i° — v 9ys o121+

A vo cys Iyo 21—

S TUS (v 41,2 — v o

S EYS Ty 1Y (g e+
A PUS TS 1Y (g _og),2 +

4o 1S 1,21 — v Syo

£qo 2o Iyd
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3.4. CONVERGENCE OF THE BLOCK EBERLEIN

METHOD

Recall that in the Algorithm 6, the block elementary matrix Sy is computed as a product of
matrices S;,/ =0,...,L—1, where L = (n,+ny)(n, +ny—1)/2, and (p,q) = (px,qx) is
the block pivot pair. That is, we stop the algorithm after one sweep of the pivot submatrix.
Notice that matrices S; also depend on k, but we o(gnit it in the notation for the sake of

simplicity. The same is true for block matrices A  that denote the intermediate steps

~(k
between A( ) and A%t For a fixed k, we have,

L—1
Sc=[1S: (3.12)
1=0
Therefore,
~(I+1) _]z(l)
A =S,°A S, [=0,...,.L—1, (3.13)
~(0) (k) *) (k1) =~(L) ) . .
where A =A""=R;AYRy, and A =A . Let (r;,s;) be the index pair chosen in

~=(1)
the /th step. According to (2.14), reduction of the Frobenius norm of A is non-negative,

that 1s, we have

=) »
=(I) ~(I+1) 1 ‘C ’
A |Z-|A 2>_ L >, 3.14
A 7= IIF_3HA(,<)H% > (3.14)
=(I) ~
where C(A ) = (&).

In the next propositions and the following paragraphs, we show that the assertions

analogous to (2.22), (2.23), (2.25), (2.27), and (2.28) are also valid in the block case.

Proposition 3.4.1. Let A® k>0 bea sequence generated by applying the iterative

process (3.3) on a matrix A. Then, for [|A® |2 we have
A= [AOE— [ACVE > 0. (3.15)

Proof. In the kth step of the process (3.3), we observe the reduction of the Frobenius
=(1)
norm for A®), which is a sum of the reductions for all A ', [ € {0,1,...,L—1}. From

the inequality (3.14) it follows,
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(k+1) 2 (k 2
= [|A® 3 — A% 2 = AV - HA o H

L=1 7/ ~(I) ~(I+1)
=Z(||A 1K) 2 5
=0 3

Proposition 3.4.2. Let AW k>0, bea sequence generated by applying the iterative

process (3.3). We have
~ x5 (k)

ff(C(A

im M =0, (3.16)

e AP

where C (K(k)) pq 1s the pivot submatrix of C (K(k)

).

Proof. From the previous proposition we see that the sequence (]|A* H 7, k > 0), is non-

increasing. Since it is bounded from below, it is convergent. Then, inequality (2.14)

implies
Lzl Gl
m ” =0. (3.17)
e 55 AW 2

~()
The notation of the limit in (3.17) makes sense because matrices A , and therefore

=(I)
C(A ),l=0,...,L—1,depend on k. The limit (3.17) implies

c
lim —=%— =0, [=0,...,L—1. 3.18
k1~>oo”A(k)H%, ’ Y (3.18)

~(k =~
The matrix C(A( )) is Hermitian, and thus, limy_,c csm/HA(k) |2=0,1=0,...,L—1. The
assertion (3.16) follows directly from the fact that the index pairs (r;,s;),/ =0,...,L—1,

~ ~(k
are chosen from the upper-triangle of the pivot submatrix C(A( )) pq- |

Proposition 3.4.3. Let AW k>0, bea sequence generated by applying the iterative

process (3.3). For A" = RAAMR,, k >0, and

g — Akt 30 (3.19)
we have
IE®|2 3,0 e 151|2
2 <2y . (3.20)
20 1AW
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Proof. Similarly as in Chapter 2, we write E; as

L—1 /. _
EK) — AGK+D) _g(k) _ Z <X(l+l) —K(l)) |

From the inequalities (2.24) and (2.25) we get

z(l) 13 2 | rls1|2 E i [S1|2
2" & AP

H%_Z on
1:02 HA

L1 ~(1+1
EVF<Y 1A -
=0 7

Proposition 3.4.4. Let AW k>0, bea sequence generated by applying the iterative

process (3.3). For ﬁ(k) = R,tB(k)Rk, k >0, and
F — gkt _ g 3.21)
we have
L ! rs |2
IF®)2 < 2 Z HA” (3.22)

Proof. The proof is similar as the proof of Proposition 3.4.3, only instead of inequali-

ties (2.24) and (2.25) we use inequalities (2.26) and (2.27). Then,

L—1 Q:(H-l) 3 L—1 Crri |2
IFOZ < Y ||B ||F < >n? o
i=0 2" = 1AW)2
[ |
Furthermore, for any k > 0, we have
~(k
cAY) = Ric(AWR,. (3.23)

In Chapter 2, Proposition 2.3.2 plays a major role in the proof of Theorem 2.3.3, the
convergence of the element-wise Eberlein method under the generalized pivot strategies.
Specifically, the proposition is used to prove that the off-norms of B®) and C(A(k)) tend
to zero. In the block case, this role is going to be fulfilled by Theorem 3.4.5. Before we

state this result, we take a step back and observe a general Jacobi-type process
AW = AW k>0, (3.24)

where A() = A, and Tk, k > 0, are block elementary matrices. We give three assumptions

on the process (3.24):
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A1 block pivot strategy is defined by an ordering & € ,%’S(?);

A2 there exists a sequence of unitary block elementary matrices Uy, k > 0, such that

lim (7 — Uy) = 0; (3.25)

k—ro0

A3 for the diagonal blocks Ul(,],f;,k and o®) = Gmin(Ul(,]g,k) we have

o = liminfa® > 0,
k—yoo

where Opin(X) is the smallest singular value of matrix X.

The assumption A1 determines the strategies that we work with: generalized serial block
pivot strategies with permutations. If 7y are unitary transformations, then the assumption
A2 is trivially true. On the other hand, in the block Eberlein process, matrices T = Ty
are non-unitary. Therefore, we need to prove that the assumption A2 holds in the block
Eberlein case. Regarding the assumption A3, recall that the necessary condition for the
convergence of the Jacobi method was that the cosine of all the transformation angles ¢
are bounded from below by some strictly positive constant [31]. The assumption A3 is a
generalization of this condition for the block elementary matrices.

The next theorem refers to the convergence of the iterative process (3.26). Like we
mentioned before, we are going to use it in order to prove the convergence of the block

Eberlein algorithm.

Theorem 3.4.5. Let H be an n x n matrix with the partition 7 = (ny,...,n,,). Let H®),

k > 0, be a sequence generated by applying the iterative process
HD — Ut HW U +M®, HO =H, k>o0. (3.26)

If the assumptions A1 and A3 are true, then the following relations are equivalent,

@ (k+1)
f(A g )
k—o0 HA(k)HF ’
(i)
lomAwy_
e (A0
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Proof. The proof is essentially the same as the proof of Theorem 7.1. from [7]. |

Now, let us focus back to the block Eberlein method, which is a special case of the
general Jacobi-type process. Before we use the results from Theorem 3.4.5 in order to
prove the convergence of our block method, we need to show that the assumptions A2
and A3 are satisfied for the process (3.3).

Matrices S; are chosen to reduce the Frobenius norm of Z(l). Consequently, matrices
S reduce the Frobenius norm of A®). As it was said in the proof of the Proposition 3.4.2,
the sequence ||[A®)||z, k > 0, is clearly non-increasing and bounded from below by zero.
Hence, it is convergent. It follows that, as the process progresses, the elementary matri-
ces Sy have a smaller and smaller influence on the norm of AKX Precisely, in the rela-

tion (3.12) matrices S;, [ = 0,...,L — 1, are of the form (3.9), where the transformation

angles are calculated using (2.15). Then, the limit (3.18) implies that,

limtanhy; =0, for [=0,...,L—1,

k—boo

which indicates

Y

lim sinhy; =0, and Ilimcoshy;=1, for [=0,...,L—1
k—yoo k—yo0

because we take positive value for the hyperbolic cosine. If follows that for each [ =
0,...,L—1, we have that S; tends to identity, as k — o. Then, relation (3.12) implies that
the matrices Sy converge to I, as well. Therefore, the sequence T = RSy, k > 0, tends
to U = Ry, k > 0. Since Ry are unitary matrices, the assumption A2 is true for the block
Eberlein process.

It is left to show that the assumption A3 is true as well. The assumption A3 is true if

the matrices Uy are the so-called UBC transformations defined in [25].

Definition 3.4.6. A class of unitary transformations with a given 2 x 2 block partition is
called a class of UBC (Uniformly Bounded Cosine) transformations, if the singular values

of the diagonal blocks can be bounded from below by a function of the dimension.

Furthermore, in [25] Drmac proved that for every unitary n X n matrix U and for every
partition © = (ny,n,), n| +ny = n, there exists a permutation matrix P such that for the

leading n; x n; block of U = UP we have
Gmin(Ulll) > Yr > 07
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where 7Yy is a constant depending only on n1 and ny. Hari [38] showed that the strictly
positive lower bound depends only on the dimension 7.

In the block Eberlein process, multiplying the unitary transformation Ry in (3.4) with a
permutation matrix P, such that R; P, is a UBC transformation will not change off(g(k)),
nor will it disturb zeros in the matrix fs(k) = RZB(k)Rk. Therefore, without the loss of
generality, we can use UBC matrices in (3.4). We have showed that the sequence of
transformations Ty in the block Eberlein process tends to the unitary matrices of the form
U = Rg. Hence, as Ry are UBC matrices, the assumption A3 is satisfied for the block
Eberlein process (3.3).

We are now ready to prove the main result of this chapter, a generalization of the
Theorem 2.3.3 to the block case. We look at the convergence of the block Eberlein method
under the strategies determined by :%’S(?), thus, the assumption A1 is satisfied. Moreover,

we demonstrated that the process (3.3) satisfies A2 and A3, as well. That is, we showed

that the block Eberlein process is associated with a general Jacobi-type process (3.24).

Theorem 3.4.7. Let A € C"™" be a block matrix with partition @ = (ny,...,n,) as

in (3.2), and let (A(k) ,k > 0) be a sequence generated by the block Eberlein method under

m)

a generalized serial pivot strategy defined by an ordering &' € %s(g . Let the matrices B®)
be defined as in (3.6), and the matrices C(A¥)) as in (2.7). Then

(i) The sequence of the off-norms (off(B*)), k > 0) tends to zero,

lim off(B*)) = 0.

k—yo0

(ii) The sequence (A(k) ,k > 0) tends to a normal matrix, that is,

lim C(A)) = 0.

k—boo

(ii1)) The sequence of matrices (B(k) ,k > 0) tends to a fixed diagonal matrix,

lim BY = diag(u, o, - - -, hn),

k—roo

where U;, 1 <i < n, are real parts of the eigenvalues of A.

(iv) If 1 # 11, then limy_coas) = 0 and limy_eoa's’ = 0.
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Proof. The proof follows the proof of the Theorem 2.3.3.

(1)

(ii)

For F*) defined as in (3.21) we have
BMD — REBOR+FX | k> 0. (3.27)

For the pivot submatrix determined by the pivot pair (p,q) = (pk,qx), we have

Skt1) =) (k)
B, =By +F,,,

(k)

= ~(k
where Bg,kq) is the pivot submatrix of B ".

(k)

Relations (3.22) and (3.17) imply limy_, F®) = 0 and limy_,.. F,,, = 0. Further-

more, the rotation Ry is chosen to diagonalize ﬁgi]) Therefore,

lim off(B),

k—ro0

)=0.
Because Frobenius norm of A(k), k > 0, converges, the same is true for the sequence
|IB®||r, and we have
~(k+1
off(BLy )

im ——F—— =

k—oo ||B(") |F
The assumptions A1 and A3 are satisfied for the block Eberlein process. The itera-
tive process (3.27), therefore, satisfies the assumptions of Theorem 3.4.5. Hence,
off(B))
im-————= =

e
The limit

lim off(B*)) =0,

k—boo

is true, as well, because ||B(k)\ F» k > 0 converges.

For E®) defined as in (3.19) we have
k+1)y — (AR L m(k)
C(A )=C(A" +EW).
Then, in the same manner as in (2.42),
c(A® D) = cAY) 1 W), (3.28)

where
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Using the properties of the norm and the inequality (3.15), in the same way as we

did in the proof of the Theorem 2.3.3 (ii), we get
~ (k)
W <4EW || A™F,
and
W2 < 16][E® 212"

It follows from the relations (3.19) and (3.20) that

L1 2
WO < 16][E®|F[A[F < 2407 ”MJM%'
= 1AW

Thus, relation (3.17) implies

lim WO = (3.29)

Next, we consider the off-diagonal and the diagonal part of C (A(k)) separately.

Applying the relation (3.23), we can write (3.28) as
CAM) = RIC(AWR, + WK, (3.30)

Hence, similarly as for the matrices B, for the pivot submatrix in the step k we
have

(k)

CAkD),, = C(A W

)pq+qua

~ ~(k — (K
where C(A( )) pq and C(AK+1)y pq are pivot submatrices of C(A( )) and C(A*T),
respectively. Relations (3.16) and (3.29) imply limy_,.. off(C(A**1)) pq) = 0. Be-

cause the sequence |A¥) |z, k > 0, is convergent, so is the sequence |[C(AX))|

Fs

k > 0, and we have e
off(CAKY),)

1
ko [|C(AW)||r

We can once again use Theorem 3.4.5, this time on the sequence C (A(k)), k> 0.

We get
(k+1)
o Off(CAA™ ) pg) _ 0.
ke [|C(AW)||
and
lim off(C(A®)) = 0. (3.31)

k—ro0
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It remains to show that, for the diagonal elements of C (A(k)), we have

klimcl(l.k) =0, i=1,...,n

—>00
Set A®) = BW 1 2(®) where (B*)) is Hermitian, as in (3.6), and Z®) is skew-
Hermitian part of AW, Repeating the same calculation as in the relation (2.45), we

obtain
C(A(k)) _ 2(Z(k)B(k) _ B(")Z(")). (3.32)

The diagonal element of C(A®) is then given by

ij “ji

B =2y (96— p 1))
j=1

It is proven in part (i) that limy_,., off(B*)) = 0, that is,

lim bl =0, fori+ .

k—ro0

Thus,
lim cl(f) =2 (zg()b

k—boo

(“—bwé”):o. (3.33)

ii i i

Now, relations (3.31) and (3.33) imply the assertion (ii) of the theorem.

(ii1) In part (1) of the proof we showed that matrices B®) tend to a diagonal matrix.
The fact that the diagonal elements of the matrix limy_, . B correspond to the real
parts of the eigenvalues of A is then proved as in [67], using the assertion (ii) of this

theorem.

(iv) This part is proved as the corresponding part (iv) of Theorem 2.3.3, but instead of

the relation (2.45) we use the relation (3.32) for block matrices.
[ |

Let us recapitulate. Starting with an n X n complex block matrix A© = A with the
partition 7 = (ny,...,ny), the sequence of block matrices (A k > 0)generated by the
block Eberlein method under any generalized serial block pivot strategy converges to a
normal matrix A. The Hermitian parts of AW converge to a diagonal matrix with the

real parts of the eigenvalues of A, u;, i = 1,...n, on the diagonal. In addition, if two
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eigenvalues of A have different real parts, that is, if y; # u;, then the corresponding off-

(k) (k)
ij and a it

diagonal elements a tend to zero. Consequently, if all the eigenvalues of A
have different real parts, A is a diagonal matrix. On the other hand, if the real parts of
two or more eigenvalues are equal, then the matching off-diagonal elements might not
vanish, resulting in non-trivial off-diagonal blocks in A. These off-diagonal blocks do not
necessarily match the partition 7. They can stretch across and/or be divided in several
blocks determined by 7. This complication can be solved by preconditioning the matrix
A.

Same as in the element-wise case, we can precondition the starting matrix A by scal-
ing it with d € C, where Im(d) # 0. Then, we apply the block Eberlein method to dA
which, with probability one, does not have eigenvalues with the same real and different
imaginary parts. This process results with a diagonal matrix A;. Diagonal elements of

A4 are multiples of the eigenvalues of A. Finally, we simply divide them by d to get the

eigenvalues of A.
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3.5. NUMERICAL RESULTS

Numerical tests of the Algorithm 5 under the row-wise pivot strategy are presented in this
section. All experiments were performed in Matlab R2021a.
To depict the performance of the block Eberlein algorithm, we observe three quan-

tities; off(AK)), off(B*)), and ||C(AK)]

r, and how they change after each cycle, just
like we did in Chapter 2 for the element-wise algorithm. The results are presented in
logarithmic scale. The algorithm is terminated when the change in the off-norm of BK
becomes small enough, 1078, Acording to the Theorem 3.4.7, we expect both off(B(k))
and ||C(A®)||r to converge to zero, while the convergence of off(A%)) depends on the
eigenvalues of the starting matrix A. If A is a normal matrix, then it remains normal
throughout the process. Thus, there is no need to observe ||C(A®)||5 for normal matri-
ces. For simplicity, we take the partition & = (ny,ny,...,n,) to have all blocks of the
same size, ny = ny = ... = n,,. Obviously, the size of the blocks depends on the number
of blocks, m. We test the algorithm for different block sizes, one, two, five, and ten. Each
line in the figures represents the results for a different block size. Using the blocks of size
one should come down to the element-wise Eberlein method.

In order to show the block structure of A¥) discussed at the end of the previous section,
we will apply the Eberlein method on matrices with repeating real parts of the eigenvalues.
Additionally, we are going to test the accuracy of the block Eberlein method for different
block sizes and compare it to the element-wise Eberlein. We are going to show the relative
errors in the real and imaginary parts of values obtained on the diagonal of A®), regarding
the eigenvalues obtained by the Matlab eig function.

Let us first present the test matrices.
1. TestMatrix1: Matrix A; € C"*" is constructed as a random matrix:
e A_l=randn(n)+1li*randn(n);

2. TestMatrix2: Matrix A, € C"*" is constructed as a random matrix with the desired

condition number c.

* U=orth(randn(n)+li*randn(n)); V=orth(randn(n)+li*randn(n));
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e s=randn(n,1)+li*randn(n,1); (s is a vector)

s =s()*( 1-((c-1)/c)*x(s(1)-s)/(s(1)-s(end))); (linear stretch of

existing s)
* A_2 = Uxdiag(s)*V’;

3. TestMatrix3: Matrix Az € C"*" is constructed as an ill-conditioned matrix with

fast decaying eigenvalues.

e L=diag((1+1)"4,2+2)7%,... . (n4+m)"9);
e Q=orth(rand(n)+1li*rand(n));
o A_3=Q*XxQ’;
Matrix A3 is a normal matrix, meaning that C(A3) = A3Aj — A3A; =0.

4. TestMatrix4: The spectrum of A4 € C"*" consists of a random complex number
and a pair of complex conjugate numbers, with multiplicities m; and m,, respec-

tively. The multiplicities of the eigenvalues add up to n, that is, m; + 2my = n.

a_l=rand(1)+1i*rand(1); a_2=rand(1)+li*rand(1);

* a=[repelem(a_1,m_1),repelem([a_2,a_2’],m_2);

Y =diag(a);

. Q:orth(rand(n)+1i*rand (Il)) ’

A_4=Q*2XxQ’;
Preconditioning step:

e d=rand(1)+1li*rand(1);

e dA_4=dxA_4;
Matrices A4 and dA4 are also normal.

We analyze the test matrices and present the results in the following subsections.
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3.5.1. TestMatrix1

We consider TestMatrix1 for n = 100. Figure 3.1 shows the results of the block Eberlein
method applied to the matrix A;. Generically, random matrices are not normal and have
different eigenvalues. We expect that off(B%)) and ||C(A®))|, k > 0, converge to zero
for all block sizes. However, the larger the blocks, the less cycles are needed for these
values to converge. This observation repeats itself in almost all of the following examples.
Furthermore, because all eigenvalues are simple, we expect off(A(k)), k > 0. In fact,

Figure 3.1a confirms our prediction.

Block Eberlein for a 100x 100 matrix

Block size

off(A)

Block size
1
2
5
10

off(B)1070F

1 0»20 b

70

Block size

1
2
5
10

|cpor

1040k

Cycle

(a) Change in off(A*)), off(B®)) and ||C(A™) || for different sized blocks.

Figure 3.1: Results for TestMatrix1, for n = 100.
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In Figure 3.1b we see the structure for the starting matrix A and the matrix A obtained
by the block Eberlein algorithm, for a block size equal to five. In particular, the figure
shows the logarithm of the absolute values of the elements of AW, Lighter shaded squares
represent the elements larger in absolute value. The obtained matrix A is diagonal, and A

should carry eigenvalues of A on the diagonal.

Block Eberlein for a 100x 100 matrix, block size = 10
A A

(b) The starting matrix A and fully diagonal matrix A obtained from the block Eberlein algorithm.

In Figure 3.1c we can see the accuracy of the block Eberlein method in comparison
to the Matlab eig function. More precisely, as A is diagonal, it carries approximations of
the eigenvalues of the starting matrix. That is, we see that the relative errors in both real

and imaginary parts of the obtained eigenvalues are around 10~

Block Eberlein accuracy for a 100x100 matrix

Accuracy of the imaginary
parts of the eigenvalues

Accuracy of the real

parts of the eigenvalues

-1
10 101 F

e
N

relative error

relative error

<
N

10713 ¢ - - -13 - -
Element-wise Eberlein 10 Element-wise Eberlein
block size = 1 block size = 1
block size = 2 block size = 2
block size = 5 | block size = 5
block size = 10 block size = 10
107 10
A - N © - - O O o = o Q o ¥ © = © o T O @ ©
f o v © - = © ® O o W ®» - 9Q © ¥ © a4 © 9O W ©
A OH o v 4 o ¥ - I © o N ® © ¥ - 9 K © & «~ o™
- v o ¥ ® = W © © ~ 4 © ~ © K L © M o ¥ ™
 ® ¥ ®© © o <o o o N < a 2 e @ ¥ ¥ © - O oS5 o
0 4 ) d : . 3 > . )
T 9 ¢ ¥ o 3 & ¥~ o T 9 ¥ 7 8 d ¥ o = =
real part <

imaginary part

(c) Accuracy of the block Eberlein method in comparison to the Matlab eig function.

Figure 3.1: Results for TestMatrix1, for n = 100.
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3.5.2. TestMatrix2

This example is constructed to demonstrate how does the block Eberlein method works on
random well-conditioned matrices. In Figure 3.2 we show the results of the Algorithm 5
on a 50 x 50 non-structured random complex matrix A,, with low condition number,
¢ = 2. Figure 3.2a shows that off(A®)), off(B®)) and ||C*)||, k > 0 converge to zero for

all block sizes.

Block Eberlein for a 50x50 matrix
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(a) Change in off(A®)), off(B®)) and ||C(A®))]| for different sized blocks.

Figure 3.2: Results for TestMatrix2, for n = 50 and ¢ = 2.
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In Figure 3.2b we see the structure of the starting matrix A, and the matrix A obtained

by the Algorithm 5, for a block size of five. This partcular matrix A is diagonal.
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(b) The starting matrix A, and fully diagonal matrix A obtained from the block Eberlein algorithm.

In Figure 3.2c we can see the accuracy of Algorithm 5 in comparison to the Matlab

eig function. Again, we see that the relative errors in real and imaginary parts of the

obtained eigenvalues are around 10712,

relative error

(c) Accuracy of the block Eberlein method in comparison to the Matlab eig function.
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Figure 3.2: Results for TestMatrix2, for n = 50 and ¢ = 2.
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In addition to the accuracy of the eigenvalues, we want to test the accuracy of the
eigenvectors generated by the block Eberlein algorithm. We already showed that the
transformations 7; converge to block rotations R;. More than that, from the fact that
matrices A® converge to a matrix A, the sequence of 7; also converges to some non-
singular matrix V. Similar as in the element-wise case, from the block Eberlein algorithm
we get

A~V IAV.

Columns of V correspond to eigenvectors of A. Again, we compare columns of V with
the appropriate eigenvectors given by the Matlab function eig. First, we scale both vec-
tors such that their first coordinate is one and then observe their difference component-
wise. Let us point out that we can only do this kind of comparison for one-dimensional
eigenspaces. All eigenvalues of matrix A; are different, and therefore all its eigenspaces
are one-dimensional. In Figure 2.5 we show the accuracy of three randomly chosen eigen-

vectors for matrix A;.

Block Eberlein accuracy on a 50x50 matrix
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Figure 3.3: Accuracy of the eigenvectors from the Eberlein method in comparison to the

Matlab eig function.
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3.5.3. TestMatrix3

For the TestMatrix3, we consider n = 50 and d = 3. The constructed matrix Az is a
normal matrix. Hence, we do not observe the Frobenius norms of C(A(k)), since all
C(AW), k > 0,are zero matrices. Again, both off(A%)) and off(B%)), k > 0, converge
to zero for all block sizes (see Figure 3.4a). As expected, the block Eberlein algorithm
converged to a fully diagonalized matrix A (see Figure 3.4b). Although the condition
number of Az (cond(A3z) =1.25- 109) is significantly larger than the condition number of

A (cond(A;) = 2), the accuracy for the TestMatrix3 is not inferior (see Figure 3.4c).

Block Eberlein for a 50x50 matrix
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(a) Change in off(A®¥)) and off(B") for different sized blocks.

Figure 3.4: Results for TestMatrix3, for n = 50 and d = 3.
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Block Eberlein for a 50x50 matrix, block size = 5

A
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(b) The starting matrix A3 and fully diagonal matrix A obtained from the block Eberlein algorithm.
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(c) Accuracy of the block Eberlein method in comparison to the Matlab eig function.

Figure 3.4: Results for TestMatrix3, for n = 50 and d = 3.
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3.5.4. TestMatrix4

This example is constructed to demonstrate that the block diagonal structure of A, dis-
cussed in the element-wise Eberlein in Chapter 2, also turns up in the block Eberlein
case. Recall that, in the element-wise Eberlein algorithm, in Figure 2.3, we introduced
an additional condition so that the real values of the diagonal elements appear in decreas-
ing order. Due to that and Theorem 2.3.3, the algorithm converged to a block diagonal
matrix. Specifically, it is because obtained diagonal elements corresponding to the eigen-
values with the same real part were arranged successively, and the matching off-diagonal
elements that had not converged to zero formed a block. In contrast to that, in the block
case, this condition would not imply a block diagonal matrix. The reason is that the eigen-
values with the same real part may be located in more than one block. If we could assume
that all the eigenvalues sharing the same real part are located inside the same block, then
the resulting matrix would be block diagonal. Still, this is not something that is assumed.
Thus, the non-zero off-diagonal elements need not to appear only in the diagonal blocks,
but rather in the off-diagonal blocks.

We consider TestMatrix4 for n = 20, my = 10, my = 5. The spectrum of A4 consists
of a random complex number a; of multiplicity ten, and a pair of complex conjugate
numbers, a; and a3, each of multiplicity five. That is, the real part of a; appears 10 times
in the spectrum of A4, while the corresponding imaginary parts are all equal. Furthermore,
the real part of a, (and a3) also appears 10 times in the spectrum of A4. The imaginary
parts of a; and a; are different and each appears five times in the spectrum of Ay4.

In Figures 3.5a and 3.5b we see that by applying the block Eberlein method on Ay,
the off-norm off(A(k)), k > 0, does not converge to zero and we obtain a block matrix,
but not diagonal matrix, A. Matrix A is nearly diagonal. The non-zero off-diagonal
values correspond to the pair of complex conjugate eigenvalues a, and a3. The repeating
eigenvalue a; appears on the diagonal while the matching off-diagonal parts are trivial,
despite the tenfold multiplicity. Compared to the part with non-zero off-diagonal, for the
repeating eigenvalue a; there are no other eigenvalues with the same real, but different

imaginary part.
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Block Eberlein for a 20x 20 matrix
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(a) Change in off(A®¥)) and off(B®)) for different sized blocks.

Block Eberlein for a 20x20 matrix, block size = 2

(b) The starting matrix A4 and block matrix A obtained from the block Eberlein algorithm.

Figure 3.5: Results for TestMatrix4, for n = 20, m; = 10, my = 5.
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The real and imaginary parts of values obtained on the diagonal of A are compared
to the eigenvalues of the starting matrix A4. The results are shown in Figure 3.5c. The
accuracy of the eigenvalue a; is very good, both for the real and imaginary part, as a;
appears on the diagonal of A. That is the case for the real parts of the eigenvalues a; and
ay, as well. Because of the non-trivial blocks that correspond to a> and a3, we can not

expect the same accuracy for their imaginary parts.
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(c) Accuracy of the block Eberlein method in comparison to the Matlab eig function.

Figure 3.5: Results for TestMatrix4, for n = 20, m; = 10, my = 5.

We solve the problem and simply avoid the discussion about the repeating real parts
of eigenvalues by preconditioning the starting matrix. As in the element-wise case, we
are going to multiply the starting matrix A4 with a complex number d such that Im(d) #
0. Then, with probability one, matrix dA4 has no eigenvalues with the same real and
different imaginary parts. Applying the block Eberlein method on dA4 yields a fully
diagonal matrix Ay, as seen in Figures 3.6a and 3.6b. Eigenvalues of A4 are retrieved by
dividing the values on the diagonal of A; by d. According to the Figure 3.6¢, both real

and imaginary part of all eigenvalues are again highly accurate.
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Block Eberlein for a 20x20 matrix, with preconditioning
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(a) Change in off(A®)) and off(B") for different sized blocks.

Block Eberlein for a 20x20 matrix, with preconditioning, block size = 2
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(b) The starting matrix dA4 and fully diagonal matrix A, obtained from the block Eberlein algo-

rithm.

Figure 3.6: Results for TestMatrix4, for n = 20 and m; = 10, mp = 5.
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Block Eberlein accuracy for a 20x20 matrix, with preconditioning
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(c) Accuracy of the block Eberlein method in comparison to the Matlab eig function.

Figure 3.6: Results for TestMatrix4, for n = 20, m; = 10, my = 5.

In summation, this section shows how the block Eberlein algorithm behaves numeri-
cally. Similarly as for the element-wise Eberlein, the Hermitian part of AW converges to
a diagonal matrix, while A(k), k > 0 converges to a normal matrix. Moreover, if the real
parts of the eigenvalues of A are different, then AW converges to a diagonal matrix with
eigenvalues on the diagonal. Otherwise, the eigenvalues with equal real parts may con-
tribute to non-zero off-diagonal elements. In comparison with the Matlab eig function,
our block algorithm achieves satisfactory accuracy results, in line with the element-wise

Eberlein method.
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4. JACOBI-TYPE METHODS FOR

TENSOR DIAGONALIZATION

4.1. ON THE HIGHER-ORDER TENSORS

Higher-order tensors, that is, multiway arrays of order three or more, have in recent
decades found a wide spectrum of applications, including numerical linear algebra [14],
multiway data analyses [50], signal processing [17,19,66,71], image processing and ma-
chine learning [4]. More examples of applications can be found in [49].

A tensor is an element of the tensor product of vector spaces, R" @ R @ --- @ R",
[12,33,52]. It can be observed as a multiway array from R”1*"2**" _[20]. A d-tuple
(ny,ma,...,ng) defines tensor dimensions or modes. The number of dimensions d is called
the order of a tensor. In this chapter we denote vectors, or the first order tensors, by low-
ercase letters (e.g. a,b,...). Matrices, or second order tensors, are denoted by uppercase
letters (e.g. A,B,...), while tensors of order three or more are denoted by calligraphic
letters (e.g. <7, %, ...). The element of tensor <7 on position (iy,i,...,i;) is denoted by
aj,i,--iy;- A tensor can be considered as a set of vectors. Analogously to matrix columns
and rows, these vectors are called tensor fibers. They are defined by fixing all indices
except one. Hence, matrix columns are mode-1 fibers, and matrix rows are mode-2 fibers.
Higher-order tensor has fibers in d modes. See Fig. 4.1 for illustration. Paint 3D was used
to generate tensor illustrations in this chapter.

One can also observe two-dimensional sections of a tensor, called slices. They are
defined by fixing all indices except two. The 3rd-order tensor has horizontal, frontal, and

lateral slices (see Fig. 4.2).
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(a) Mode-1 fibers (b) Mode-2 fibers (c) Mode-3 fibers

Figure 4.1: Fibers of a 3rd-order tensor

=

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure 4.2: Slices of a 3rd-order tensor
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It is often useful to have a matrix reperesentation of a tensor. This is going to sim-
plify complicated tensor computations. We achieve that by reordering tensor elements
into a matrix. Mode-m matricization or unfolding of an ny X ny--- X ng tensor 2 is an
M X (] -+ My | My g1+ - - Mg ) MAtrix A(y)» such that the columns of A,,,) are mode-m fibers
of /. Formally, in mode-m matricization, tensor element (i1, i, ...,i;) maps to the matrix
element (iy,, j), where

d k—1
j= 1+ Z(ik—l)Nk, Nk: Hnl.
k=1, =1,
k#m I#m
Following this mapping rule there are, in total, d different unfoldings of an order-d tensor.

For example, let o7 € R**3*2 be given by its two frontal slices

15 9 13 17 21
2 6 10 14 18 22
esD=13 5 4 ZERD=115 19 23
4 8 12 16 20 24

There are three matricizations of tensor .7,

1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23}’
4 8 12 16 20 24

1 2 3 4 13 14 15 16
Ap=|5 6 7 8 17 18 19 20|,
10 11 12 21 22 23 24

O

and
a1 23 4 5 6 7 8 91011 12
G713 14 15 16 17 18 19 20 21 22 23 24]°

Column ordering in mode-m matricization mapping given above can be defined dif-
ferently [47]. As long as it is consistent with the related tensor calculations, the specific
column ordering does not matter. However, the matricization rule that we use is the one
that is commonly used in the literature.

We now define tensors with symmetric and anti-symmetric structure. A tensor of order

d with each mode of the same length, o7 € R™*"**" ig called symmetric if
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for any pair of indices (i, j), 1 <i, j < n. Some authors call it a supersymmetric tensor [13,
48]. This means that the entries of a symmetric tensor are invariant to index permutations.

In a third-order tensor .« we have
Qjjk = Qijkj = Ajik = Ajki = Akij = Ak jis

for any indices 1 < i, j,k < n. Consequently, all unfoldings of a symmetric tensor are

equal,

For example, third order tensor ./ given with its slices,

~N O
o O O
W o0

1 56 540
A, )=1|5 4 0, F(,5,2)=14 2 9|, F(:,:,3)=
6 0 7 09 8

is symmetric, and all matricizations are in the form of

S B~ W
N O
S B~ W

4
2
9

o O O
~N O
o O O
W o0

1
Ay =4 =Ap) = 2

We say that a tensor .o/ € R"""**" is antisymmetric if
a.i.j..=—a._j.i.,
for every pair of indices (i, j). It follows from this property that
a..i.=—a._.i.=0.

Hence, only non-trivial elements of an antisymmetric tensor are the ones with all indices

distinct. An example of an antisymmetric third order tensor is given below,

00 O 0O 0 2 0 -220
A, )=10 0 =2, (:,2)=10 0 0|, Z(:,,3)=1|2 0 0
02 O -2 0 0 0O 0 O

Order-d tensor 7 is called diagonal when an entry a;,;,...;, is zero if it has at least two
different indices, i; # i,,. Hence, only entries a;...;, for i = 1,....d, can be non-trivial. An

example of order-3 dimension-3 diagonal tensor is given below,

1 00 0 00 00O
(::,1)=10 0 0|, <(,:2)=10 2 0|, <(53)=10 0 O
0020 000 0 0 3
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Moreover, multiplying a matrix by other matrices from the left- or right-hand side can
be generalized to multiplying a tensor by matrices from each of the d sides. The mode-m

product of tensor o7 € RM*m%X X and matrix X € RP*™ is a tensor %,
B = XmX c Rnl><...><nm,1><p><nm+1><,,,><nd’

such that

By = XA(). 4.1)

This can be expressed element-wise as

m
(' X X i i ia = Y, Girieig i
im=1
Another property is inherited from the matrix case — if ./ defines a multilinear operator,
the mode-m product with the matrix X relates to a change of basis.

Let us discuss these notions for a second order tensor, i.e. matrix A € R"*". Mode-1

matricization of A is A, while mode-2 matricization of A is its transpose, that is
Aqy=A and Ap =AT. (4.2)

Furthermore, let B=A x X, that is B(l) = XA(l). Using (4.2) we have B = X A. Therefore,
mode-1 product of matrix A with matrix X is equivalent to multiplying A by X from the

left-hand side. Similarly, let C = A X, Y or, equivalently, C(y) = YA(;). Then we have
CT=yAT = c=ar".

Hence, mode-2 product of matrix A with matrix Y is equivalent to multiplying A by Y7
from the right-hand side. We can now observe what happens when multiplying simulta-
neously in both modes. We get
Ax X x2Y = (XA) x, Y = XAYT,
4.3)
AxoY x1 X = (AYT) x; X = xAYT,
Clearly, the order of multiplication in distinct modes is irrelevant. On the other hand,

order of multiplication is important when multiplying in the same mode,

Ax1X x1Y = (XA)x1Y =YXA=Ax; (YX). (4.4)
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Properties (4.3) and (4.4) for simultaneous mode multiplication are true for order-d ten-

sors in general. We have

A Xy X XY = X, ¥ XX, m+#n. 4.5

A XX XY = X (YX). (4.6)

We are now ready to define Tucker decomposition [72] of a tensor, named after Led-
yard R. Tucker. It was originally proposed by Hitchcock [44]. It decomposes order-d
tensor o/ € R™M>*"2>X>Md into a core tensor . multiplied in all modes with matrices

Uy e RW*" i=1,...,d, respectively. Decomposition is written as
JZ/:yxlthzUz“'XdUd, (4.7)

where .7 is of same order and dimension as tensor 7.

The notion of tensor rank is different from matrix rank in a sense that it is not defined
as the number of linearly independent mode-m fibers. Instead, we first define rank one
tensor as any tensor .« € R"1*"2*"d that can be written as an outer product of d vectors,
that is

of —uMoy@o...oyd (4.8)

The vector outer product is denoted by o and we have that, element-wise,

Qjjiyeiy = ugll)ul(zz) . --ul(j), forall1 <i, <n,, 1<m<d.

In other words, an entry of a tensor is the product of the corresponding vector entries.
Notice that if in (4.8) we have u(!) = u(®) = ... = (@) then the corresponding rank one
tensor is symmetric because its elements are indifferent to index permutations.
In general, each tensor can be written as a linear combination of rank one tensors,
v YL Y (1) 4 @ (@)
o = Z Z Z Qiyiyeiy (el.l oe; 006 ), 4.9)
i1=lir=1 ig=1

where e(T) e R"™ 1 <m<d, is a unit vector with i,, entry equal to one. The de-

i
composition (4.9) is actually a decomposition with respect to the canonical basis for
R" @ R ®---®R™, Tensor rank is defined as the smallest number r such that .o/

can be written as a linear combination of » rank one tensors,

i

rank(«7) = min{r | o = ¥ Aul" oul o 0u”}.
i=1

104



Tensor diagonalization On the higher-order tensors

Figure 4.3: Order-3 tensor . = u'") o u® o u(® is of rank one.

Tensor decomposition

g = Z?Liugl)ou@ o~~-oul(d),

i
i=1
when r is minimal is called tensor rank decomposition. 1t was introduced by Hitch-
cock [44] in 1927. It was later rediscovered by Harshman [42] who named it PARAFAC
(for parallel factors), and, separately, by Carrol and Chang [16] who called it CAN-
DECOMP (canonical decomposition ). 1t is often referred to as CP (CANDECOMP/
PARAFAC) decomposition.
The inner product of two tensors o7, 28 € R™ *™**"d ig defined as
ng o om ng
(o, B)=Y Y - Y aii-igbisir-iy- (4.10)
ii=li=1  ig=1
The tensor norm induced from the inner product (4.10) is a generalization of the Frobenius

norm for matrices. It is given by

ny ny ng
l|r= ()= | Y Y Y &, .

ii=lir=1 ;=1
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4.2. PROBLEM DESCRIPTION

In this chapter, we observe the tensor generalization of the matrix singular value decom-
position,

A=UxvT, 4.11)

where U and V are orthogonal matrices, and ¥ is a diagonal matrix. For a tensor .¢7 it is

in the form of Tucker decomposition
%:yXIUIXQUz---XdUd, (4.12)

where matrices U;, i = 1,...,d, are orthogonal, and the core tensor . plays the role of

the diagonal matrix X from (4.11). Relation (4.12) can also be written as
S = x Ul xUf - x, U, (4.13)

A tensor is said to be orthogonally diagonalizable if it can be transformed into a diag-
onal tensor using orthogonal transformations in each mode. That is, for a diagonalizable
tensor <7, we can find orthogonal matrices U;, i = 1,...,d, such that the core tensor .%
is diagonal. The matrices U; represent change of bases in each mode i. It is known that
matrices can always be orthogonally diagonalized, and said diagonalization is achieved
using SVD. In contrast to matrices, a general tensor can not be diagonalized [68]. More
specifically, not even every symmetric tensor can be diagonalized by orthogonal transfor-
mations. We are going to explain why.

We can observe the tensor digonalization problem from another perspective. To keep
the notation simple, in the decomposition (4.12), let d = 3, and U = Uy, V = U,, and
W = Us. Every tensor o/ € R can be written as a linear combination of rank one

tensors as

n n n
A = 31U VxaW =Y Y Y op(ujovjow), (4.14)
i=1j=1k=1

where u;, v; and wy are ith, jth and kth column of orthogonal matrices U, V and W,
respectively, and o;jx is the element of tensor . in the position (i, j, k). Diagonalizing
a tensor is then equivalent to finding vectors u;, v; and wy, such that o;;; = O unless

i = j = k. Hence, if a tensor 1s diagonalizable, it can be decomposed in a way that (4.14)
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has at most n» summands,

o = Zcii,-(u,-ov,-owi). (4.15)
i=1

To show that not even every symmetric tensor can be diagonalized, let U =V =W.
The symmetric rank of a symmetric tensor is the smallest number r such that tensor .o

can be decomposed as

of = Z?Li(u,-ouioui). (4-16)
i=1

If r 1s minimal, decomposition (4.16) is known as symmetric rank decomposition [20].

The symmetric rank of a generic symmetric tensor of order d > 3, according to Alexander-

1)

except in finite number of cases where it should be increased by one. This number exceeds

Hirschowitz theorem [3], is

the dimension n. On the other hand, according to (4.15), a diagonalizable tensor has a
rank not greater than n. To sum up, the change of bases that will diagonalize a generic
symmetric tensor does not exist.

Hence, we try to find the approximate tensor diagonalization, such that tensor . is
as close as possible to a diagonal one. We measure the distance of a tensor </ from a

diagonal tensor using the tensor off-norm that is defined as
oft(«) = || ||f — || diag(</)]|7-

The off-norm is actually the Frobenius norm of the off-diagonal part of the tensor. In order

to obtain the approximate tensor diagonalization, we want to minimize the off-norm
off(&7) — min.

Using the fact that Frobenius norm is invariant to orthogonal transformations, the problem
is equivalent to maximizing the (squared) Frobenius norm of the diagonal,
n
Y af . — max. 4.17)
i=1

The relative off-norm of </ is given as
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and it can also be used to measure distance from .o/ to a diagonal tensor. Obviously, a
diagonal tensor has the relative off-norm equal to zero. The relative off-norm of a general
tensor is close to one.

In our maximization problem, the goal is to make off-diagonal elements become less
and less significant as opposed to diagonal elements. Keeping (4.13) in mind, we define

an iterative process,
™ = " i Ry, )T %2 Ry )"+ xa (Rua)”s k>0, O=o, (418)

where Ry, i,Ru, k- ,Ru, x € R"*" are plane rotations. They depend on an index pair

(px,qrk), called the pivot pair, and a rotation angle ¢ as follows,

| -
1
cos @ —sin ¢ Dk
1
Ry, k= R(prs qi, o) =
1
sin ¢y, COoS O dk
1
. 1 -
(4.19)

It is crucial to notice that the rotations in (4.18) change only elements of .o/ (k=1) with
indices containing p; or g;. This enables us to reduce the problem to a2 X2 x --- X 2

subproblem, which we go through in detail later. After k iterations (4.18) we get
d® = a7 5, (U o U+ x g (U)T, (4.20)
where U, l(o) = I,,, and the orthogonal matrices U l(k) can be expressed as
(k—1)

v =u* Ry, 1=1,...d.

We study two different approaches to the iteration process (4.18). The first is to max-
imize the Frobenius norm of the diagonal of the iterates <7 %). In Section 4.3 we give the

Jacobi-type algorithms and the convergence results from literature [8, 45, 54,55, 65, 74].
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The second approach is to maximize the trace of the iterates .o/ ®). We design a Jacobi-
type algorithm that maximizes the trace and prove its global convergence in Section 4.4.

In Section 4.5 we present the results of our numerical experiments.
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4.3. MAXIMIZATION OF THE FROBENIUS NORM

OF THE DIAGONAL

In this section we observe only third order tensors. Therefore, decomposition (4.12) be-
comes simpler,

%:yXIUXQVX:;W, (421)

where U,V and W are orthogonal matrices of appropriate dimension. The goal is to find
U,V,W such that core tensor .7 is as close to a diagonal tensor as possible. The approach
we take in this section is to maximize Frobenius norm of the diagonal of .. Let O, be the
set of n x n orthogonal matrices. We define the objective function f: O, X O, X O, — R
as

fU,V,W) =||diag(e/ x1 UT 2V x3WT)|7. (4.22)

Various authors have designed Jacobi-type algorithms [8, 54,55, 65,74] for tensor diago-
nalization that solve the problem of maximizing (4.22). We summarize the ideas behind
the algorithms and state the main convergence results.

The core idea of these methods is to reduce an n X n X n problem to a 2 X 2 x 2
subproblem. In the following text, we denote matrices and tensors of dimension two with
a hat, that is, A € R2¥2, &7 € R2*2%2 Fora pivot pair (p,q), 1 < p < g < n, subtensor "
is constructed as

@:7 1) = {appp apqp} 7 g/f(:, 12) = [appq apqq} _ (4.23)
Aqpp  9qqp Agpq  9qqq
Then the subproblem is
7 = xR, x2RY x5 RY,, (4.24)

where Ry, Ry, Ry € R?*? are plane rotations, and .7 € R?*?*2 is given as

F1) = [GP”’ GW} F(002) = {G”Pq Opaa | (4.25)
Ogpp  Oqqp O4pq  Oqqq
In the iterative process
o™ = o/ * D 5\ RE <2 RY <3 RYy 4, (4.26)

each iteration k consists of three steps:
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Step 1. Choosing a pivot pair (pg,qx);

Step 2. Computing rotation matrices ﬁU, k,k\V,kyk\W, & € R?*2 which maximize the Frobenius

norm of the diagonal of a corresponding subtensor 7™ in (4.26);
Step 3. Updating orthogonal matrices U ®) v® wk) with
Ul =y®=URy,, v =yElg, — wh =wk-lgy (4.27)

where Ry i, Ry, Ry x € R"*" are formed as in (4.19) using corresponding matrices

from the Step 2.

We then have
A0 = o (UM iy (VT 55 (WENT (4.28)

These steps are repeated until convergence. Usually, the stopping criteria for the iterative
process (4.26) is a fixed number of iterations or the change in Frobenius norm of the
diagonal of <7®) becoming small enough. The algorithms vary in Step 2., finding the
orthogonal matrices that solve the subproblem, as well as in Step 1. which is important
for the convergence results.

In [65], Van Loan and Moravitz Martin proposed an algorithm for third order tensors
that is a generalization of the Jacobi SVD algorithm for matrices. Decomposition (4.14)

+ 02 is maximized.

of the tensor <7 is computed such that 9qq

Ggpp
Let us define operators we need for this algorithm, vec and reshape. Operator vec, if
used on a matrix A € R”*" yields a vector in R™" that is formed by stacking columns of
A, from the first to the nth column. Analogously, for a tensor o7 € R"*"*" the vector
vec() € R" is formed by stacking mode-1 fibers of 7. We can write the subtensor o

from (4.23) as

- T

vec(o) = [“ppp Agpp Apgp Yqqp Y9ppq Yapg 9pqq aqqq} : (4.29)
Operator reshape rearranges vector elements into a matrix, the opposite of what vec does.
If b € R™, then reshape(b,m,n) returns an m X n matrix whose columns are sub-arrays

of b, of length m. For example,

— a a a a
reshape(vec(&),2,4) = | PPP “PaP TPP4 PRI
Aqpp Qqqp Gqpg Aqqq
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which is actually equal to mode-1 unfolding of 7.
Vector outer product uovow € R™M*"2%" can be expressed as a vector wQ@v®u €

R™™2" "where ® denotes the Kronecker product,
vec(uovow) =wRveu.

Computations in [65] involve (4.14) in the vector form,
n n n
vec(o/) =) Y Y ol @vi®u), (4.30)
i=1j=1k=1

where u;, v; and wy are ith, jth and kth column of orthogonal matrices U, V and W,

respectively. The equation above can also be represented as matrix and vector product,
a=WeVel)-o,
or equivalently,
c=WlevlieUuT). a,

where a = vec(«/) and ¢ = vec(.). In the 2 X 2 x 2 subproblem (4.24) we want to find
plane rotations ﬁU,R\V,ﬁw € R?*2 which maximize Ggpp + quqq in

Oppp Appp
Ogpp Agpp
Opgp Apgp
o, a
9P | — (RF. @ RL@RL) | 7997 | . (4.31)
w @Ry Q Ky

Oppq Appq
Ogpq Agpq
Opqq Apqq
| O4q4q | | 9944 |

Solving the subproblem consists of three microiterations. We hold two variables constant

while varying the third:

61 =(I®I®R])a,
o= (I®RL®1)6),

63 = (Riy @ 1®1)3),
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that is, holding two of the modes fixed, we optimize in only one mode at a time. This ap-
proach is known as alternating least squares (ALS). Indeed, after the third microiteration
we get

63 = Ry 0 I N(I®R, @ (I®I®RE)a= (Rl @ RE @ RE)a.

Each of the microiterations above are equivalent with respect to permutation of tensor
elements. In other words, each of the steps is performed in the same way, but looking

from a different perspective, i.e. mode. Therefore, we only show how to find Ry in
Appp
Aqpp
U Apgp
~ ~ a
6=(IRQI®R))a= v aap |
Ry . Appq
Ry | | 4%apq
Apaq
| Aqqq

such that 62, + 62  is maximized. It is sufficient to find k\U which maximizes the

ppp 999
Frobenius norm of the diagonal of ﬁ{,A, where

A= [appp “pqq]
Agpp  Aqqq

Let the SVD of matrix A be

ol 21 ]
0 ool l—s ¢

where (¢, s) is a cosine/sine pair. If we do have a 2 x 2 matrix Z such that the Frobenius

2[5 ol 152

1s maximized, we then set I/Q\(T] =ZUT . Itis shown in [65] that Z is constructed using right

norm of the diagonals of

singular vector of matrix M associated with the smallest singular value, where

M— {st GIC}‘

018 Ox¢C

The method from [65] for case 2 x 2 x 2 is given in the Algorithm 7.
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Algorithm 7 Jacobi compress 2 x 2 x 2 [65]

Input: o € R2x2x2

Output: orthogonal matrices ﬁy,ﬁv,ﬁw cR*>*? &

o) = VCC(JZ?S

for 1=1,2,3 (each mode) do
% Solves o] = (I 1@ RY) Gy
B = reshape(06;_1,2,4) (or according to the current mode /)
Y =B(1:2,1:2),%,=B(1:2,3:4)

A~

A=[E(:1) %2(:,2)]
O»s OjcC
| o

:(/21
<t
Il
%)
<
=
>
Il

[0,5,V] =svd(M), Z= { Vi Yzz}
—V22 V12
Rl =zU0"
81 = VeC( [RlTil | RleQ} )
end for

G =03, Rw =Ry, Ry =R3, Ry =R,

Lastly, we say something about choosing pivot pair (p,qx) = (p,q), 1 <p < q<n,
in each iteration. In any cyclic pivot strategy the idea is to sweep through the whole
tensor making a cycle, and then repeat until convergence. On the other hand, Jacobi
compress method of Van Loan and Moravitz consists of three sweeps, one for every ori-
entation/mode of the tensor, and then repeating the process until convergence. If tensor
</ is diagonalizable, Jacobi compress algorithm yields U, V and W which diagonalize it,
that is, . is diagonal. For non-diagonalizable tensors, numerical convergence is seen in
practice. However, to the best of our knowledge, the proof of convergence of Algorithm 7
is not given.

Begovi¢ Kovac [8] designed similar algorithm along with the proof of convergence.
Each iteration k is again in the form of (4.26). Matrices Ry x, Ry k, R i are set to be the
plane rotations that depend on a pivot pair (p, ¢) and an angle ¢. Using the ALS approach,

the iteration k consists of three microiterations. Again, in each microiteration we hold two
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variables constant and vary the third one. We have

B = d(k_l) XIR(Y:I’]( X I x31, (432)
¢ =P x11 xR x31, (4.33)
™ =€ x I x21 3Ry, (4.34)

where % and ¢ are intermediate steps. As before, combining the three expressions above
using the mode-m properties (4.5) and (4.6) we get the iterative process (4.26). Next,
matrices U,V,W are updated using (4.27) and the process is repeated until convergence.
While the pivot pair is the same for all three matrices Ry x, Ry «, Rw, (in a single iteration
k), the angle ¢ is computed to maximize the Frobenius norm of the diagonal in each
microiteration, and is generally different for each rotation. We now give the method to
compute the desired angle. For a given pivot pair (p,q), it is sufficient to look only
at a 2 X 2 x 2 subproblem. Let the subtensors o and 5/”\ be as in (4.23) and (4.25),
respectively. We observe the first microiteration (4.32) and calculate Ry . Looking at the

mode-1 matricizations, we have
By =RL Ay, (4.35)

or element-wise,

bppp  pgp Pppg bpyq } :{ cosg  sing
bapp  baap  bapq  baqq —sing cos¢

{appp Apgp  Appq Apqq
Aqpp Qqqp Aqpq Aqqq

Rotation angle ¢ is chosen to maximize the function

g(¢) = bfjpp + bf[qq = (cosPa,pp +sin (])aqpp)2 + (—sin@a,gq + cos ¢aqqq)2. (4.36)

The angle ¢ we want to find must satisfy ¢’(¢) = 0, thus we get

Z(apppaqpp - apqqaqqq)
tan(29) = 5 PRI P 4.37)
ppp T %qqq — “paq — Yqpp

There is no need to explicitly calculate ¢ for Ry k. Actually, it is sufficient to find the sine

and cosine of @. To do this efficiently, define

_ . 2 2 2 2
A =2(apppagpp — ApggQqqq) - Sign (al,p[, + 00— Apgqg — aqpp) ,

2 2 2 ‘
)

|2 B
K= |appp+a Apgq — Ypp

ppp q9q9
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and r = tan @. After some calculations we obtain the quadratic equation in ¢,
A2 +2ur—A =0,

with solutions
_ TH— P+ A2

h =
? p)
It is necessary to multiply both numerator and denominator of #; by u + /% +A2 to

1

ey
e R

avoid the catastrophic cancellation,

A
H=——.
B/ 12+ A2
We get,

. Ii .
cos ¢; = Slnq)i:—’:ticosq)i, i=1,2.

\/1+ti2’ 1+

Finally, calculate both solutions and use the one that gives bigger value of the func-

tion (4.36). The other rotation angles are computed analogously, with respect to remaining
mode-m matricizations.

Although this algorithm converges in practice for every cyclic strategy, there is an ad-
ditional condition for choosing pivot pairs that ensures convergence in theory. We choose

a pair (pg,qr) = (p,q) as the pivot pair only if at least one of the following conditions is

satisfied:
(Vv f,VR(p,q,0))| > n||Vy fll2, (4.39)
(Vwf,WR(p,q,0))| > n[[Vw fll2, (4.40)

where 0 < n < % and R(p,q,0) = %R(p,q,@ ot These inequalities are called the
Lojasiewitz gradient inequalities and are a commonly used tool in proving convergence of
non-linear optimization algorithms [1,5,51], and specifically tensor decomposition algo-
rithms [73]. In Algorithm 8 we give Begovi¢ Kovac¢’s method for approximate orthogonal

tensor diagonalization [8]. The convergence of Algorithm 8 is given in Theorem 4.3.1.

Theorem 4.3.1. Every accumulation point (U,V,W) obtained by Algorithm 8 is a sta-
tionary point of the function f defined by (4.22).
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Algorithm 8 Jacobi-type algorithm for the approximate tensor diagonalization [8]

Input: o/ € R™"",

Output: orthogonal matrices U,V,W
o0 = of
Uy=VW=W =1,
k=1
repeat
Choose pivot pair (p,q).
if (p,q) satisfies (4.38) then
Find cos ¢ and sin ¢ for Ry .
B ="V 5 R
Uk — U(k_l)RU,k
end if
if (p,q) satisfies (4.39) then

Find cos ¢ and sin ¢ for Ry .

C =% X2R€,k
vk — V(k—l)RVk
end if

if (p,q) satisfies (4.40) then
Find cos ¢ and sin ¢ for Ry 4.
7™ =€ x3R},
w k) — W(k’l)RWJ{

end if

until convergence
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Next, we are focusing on the approximate diagonalization of a symmetric tensor. Pre-
vious algorithms are designed for a general real tensor without any specific structure.
During one iteration, multiplying with different rotation matrices in each mode does not
preserve symmetry. Therefore, we must make some adjustments to the problem state-
ment. Recall that a symmetric tensor is invariant to index permutations and therefore all
of its unfoldings are equal. Also, due to its symmetric structure, orthogonal matrices U,V

and W in decomposition (4.21) must be equal,
o = x1Ux,U x3U. 4.41)

Consequently, objective function becomes simpler. The goal is to find orthogonal matrix

U which maximizes the function f; : O, — R, given as
f(U) = ||diag( e/ <, UT x2UT x3UT)| 3. (4.42)
In the kth iteration of the symmetry preserving algorithm we have
O = "1 5 (R)T 50 (R)T x5 (Re)T, o0 =7 (4.43)

where Ry is a plane rotation chosen to maximize the Frobenius norm of the diagonal of
o ®), Again, matrices Ry depend on the pivot pair and the rotation angle.

In [55], Li, Ushevich, and Comon give some convergence results regarding the unique-
ness of the stationary point for the cyclic Jacobi algorithm given below in the Algorithm 9.
It does not use the Lojasiewitz gradient inequality to decide on a pivot pair, but rather goes
through all of the pairs in a row-wise manner. In this case we do not have the proof of

convergence for Algorithm 9.
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Algorithm 9 Cyclic Jacobi algorithm

Input: &7 € R™"*" gymmetric, & > 0, Uy = I,
Output: orthogonal matrix U
O = of
k=1
repeat
Choose pivot pair (py,gx) according to the row-wise cyclic strategy

Find 6; that maximizes the function
2+(8) = £{(U* VR(pr, 41, 0)) (4.44)
Set Ry = R(px, gk, Ok)
d®) = g7 k=1) XlRIY; ><2R]{ ><3R]Zw
Uk =pyk-DR,

until convergence

U=y

In [54], the same authors provided another Jacobi type algorithm for this problem,
along with a convergence proof. Jacobi-PC algorithm is a cyclic Jacobi-type algorithm
that uses a proximal term. Additional assumption on the smooth function f; is that it is

periodic with period 7 /2, that is

fs(UR(p,q,0)) = fs(UR(p,q,0 + 7/2)).

The method is given in Algorithm 10. In each iteration, the angle 6; which maximizes the

function g, can be computed algebraically by solving a polynomial equation.

Theorem 4.3.2 (Li, Ushevich, Comon [54]). Every sequence U (k), k > 0 generated by

Algorithm 10 converges to a stationary point U € O,, for any starting point U ©),
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Algorithm 10 Jacobi-PC algorithm [54]

Input: &7 € R™"*" gymmetric, & > 0, Uy = I,
Output: orthogonal matrix U
O = of
k=1
repeat
Choose pivot pair (py,gx) from some cyclic strategy

Find 6; that maximizes the function

§:(8) = f,(U DR (py,qx,0)) — &¥(6),

where

¥(0) = 2sin®(0)cos*(0).

Set Ry = R(pr, 9« 6k)
ﬂ(k) = %(kfl) ><1R},7€w XQRI{ ><3R]Zw
Uk =yk-DR,

until convergence

U=yu®

When it comes to tensor diagonalization, the most general case is observed in [74] by
the same authors. They design and prove the convergence of the gradient-based Jacobi-
type algorithms for approximate diagonalization of a complex tensor on the unitary group
%,. They consider a class of functions that generalize the joint approximate Hermitian
diagonalization of tensors. For tensors .27} of order dj, integers ¢;, 0 < #; < d;, and oy € R,

[ =1,2,...,L, define the objective function

L
fe) =Y aylldiag(at x U™ x, U 5, UT - xq, UT)|IE, (4.45)
=1

where UT and U" represent the transpose and Hermitian transpose of the matrix U, re-
spectively. The conjugate transpose is applied only in the first #; modes, and in the re-
maining d; — t; modes, the (non-conjugate) transpose is applied. To solve the joint ap-

proximate diagonalization of tensors <7, the goal is to maximize the function fc. This
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general case, for L = 1 and #; = 0, also includes symmetric diagonalization problem cov-
ered before in (4.42). Using Lojasiewitz gradient inequality in their complex Jacobi-type
algorithm enabled them to prove that every accumulation point U of the generated se-
quence {U (k)}kzo is a stationary point and they were able to obtain global convergence
rates. Moreover, an accumulation point U is the limit point if it satisfies certain regularity
conditions. In addition to that, the speed of convergence is linear if the Hessian at U has

full rank.
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4.4, TRACE MAXIMIZATION

We take another approach to approximately diagonalize a tensor. Inspired by the algo-
rithm of Moravitz Martin and Van Loan [65], instead of maximizing the Frobenius norm
of the diagonal, we maximize the trace of . using the ALS approach. That is, for a given

tensor &7 € R *" of order d > 3, we are looking for its decomposition
S = x U] x,UF - <, U, (4.46)
such that the trace of the core tensor .7,

() =Y S, (4.47)

d
i=1
is maximized.

Apart from the paper [65], trace maximization was addressed in [21] and [74]. Of
those papers, only [74] offers the convergence proof for their algorithm, but exclusively
for tensors of even order. Here we prove the convergence of our algorithm for tensors
of order d > 3. The convergence results are analogous to those from [8, 54]. Since we
are maximizing the trace, our objective function is different than those in [8, 54], and it
is a function of d variables because we are solving the problem for tensors of order d. In
particular, we are going to prove that every accumulation point (Uy,Us,...,U,) obtained
by our algorithm is a stationary point of the function f defined by (4.48). Moreover, we
adapt our trace maximization algorithm to obtain the structure-preserving algorithm for
symmetric tensors. Such algorithm will no longer be an ALS algorithm, since we need

to optimize over all modes at once, but the convergence theory will be along side the

non-structured ALS algorithm.

4.4.1. Algorithm for the general non-structured tensors

Trace maximization of the tensor . from (4.46) is equivalent to the problem of finding d

orthogonal matrices Uy, U, ...,U, that maximize the objective function
fULU,...\Ug) = tr(f x UL xoUT - xqUD). (4.48)

To solve this problem we develop a Jacobi-type algorithm using the ALS approach where

each iteration contains d microiterations. In one microiteration we fix d — 1 matrices and
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solve the optimization problem for only one matrix, i.e. we optimize in only one mode at a
time. In the kth iteration of the iterative process (4.18) we apply d plane rotations onto the
underlying tensor &7 (*=1)one in each mode. As before, each plane rotation depends on
the pivot pair and the angle ¢. The pivot pair is the same for all matrices Ry, «, [ =1,...,d,

but the rotation angle is, in general, different for each of those matrices.
(k) ] —

The results of d microiterations building the kth iteration are denoted by <7,

1,...,d. They are computed as
AN = N T DGR o I xal, 1=1,...,d. (4.49)

We set
k — k
,ﬁzfo():;zf’(k 1), sz(k)zszfd().

Relations (4.49) can also be written as matrix products
k k
()0 = RE (A Dy, 1=1,...d, (4.50)

where each rotation Ry, x changes only two rows in the corresponding mode-/ matriciza-
tion (szfl(ﬁ)(l). This scheme is well defined because combining all microiterations (4.49)

gives the iteration (4.18). Using the properties of mode-m product (4.5) and (4.6) we get

d(k) = ((ﬂ(k_l) XlR{h,k Xol--- Xdl) X11X2R52,k ><3[--- Xdl)---

T k—1 T T T
ST AT xd—lldeUd,k :bQ{( ) XlRUl,k XZRUz,k"' deUd,k'

In the kth iteration of the algorithm we have tensor .o/ (k) and matrices Ul(k), 1< <d.

For the current pivot position (pk,qx) we seek to find the rotation matrix Ry, . Using

Ry, x we update the transformation matrix U l(k) and form the auxiliary tensor W‘l(k),

%(k) = o/* V) x| Ry, 4.
Since

/05y Ry = (7 1 (U )T x (UF)T o (U )T < RE

=/ X (Rl]}hk(Ul(k*l))T) Xz(Uz(kfl))T...Xd(Uﬁgk—l))T’

it follows that
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We repeat the same computation for modes [ = 2,...d, one by one, and do the updates

k k
A = < R g

k—1
Uz( :Uz( >RU1J<-

We still need to explain how we choose pivot positions (p,qx) and rotations Ry, k.
k > 0. Regarding the choice of the pivot pairs, our algorithm uses cyclic pivot strategies.
That means that we go through all possible pivot pairs (p,q), 1 < p < g < n, in some
prescribed order, making a cycle, and then repeat that same cycle until convergence. As
we are going to see in Subsection 4.4.3, the convergence results hold for any cyclic pivot
strategy. Still, in order to ensure the convergence we need to set an additional condition

(Lojasiewitz gradient inequality) — pivot pair (p,q) must satisfy the condition

’<VU[f(U1aU27- 7Ud)7UlR(p7Qa0)>’ > nHVUZf(UlvU27" '7Ud)H27 (451)

for at least one mode [, 1 <1 <d, where 0 <n < % and R(p,q,0) = %R(p,q,q)) oo’
If a pair (p,q) does not satisfy the condition (4.51) for any /, we move onto the next pair.
Even though this condition may seem restrictive, we will show in Subsection 4.4.3 that
for every [ = 1,...,d, there exists at least one viable pivot pair. Thus, the algorithm will
not stop because the condition (4.51) is not fulfilled.

Now, let us see how the rotation angles are calculated. We fix the index k and assume
that the pivot pair is (pr,qx) = (p,q), 1 < p < g < n. We observe an order-d subtensor
42?\6 R2%2xX2 of o7 We need to find 2 x 2 rotations R\U,, [=1,...,d, such that the trace

of the subtensor

o _ 7o pT T T
y:%leUI X2RU2' XdRUd

is maximized. To this end we use mode-/ matricizations from (4.50). This gives

() oy =Ry, (A1), [=1,....d. (4.52)
Since the mode-/ matricization is obtained by arranging all mode-/ fibers into columns,
elements in the same column have all indices the same except the /th one. Therefore,
relation (4.52) can be written as

cos® sin@
—sing cos¢

ap...p o dg..qpq..q
(1=1) (i-1) | >

ap..pgp..p " dg..q

() (1)

(1) (1)
ap'.p ce aq,..qpq...q] _
Ap..pgp..p " 4q..q

[ (I=1) (I=1)
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where in matrices (52/71\_1)(1) and (42?\) (1) the elements at the position (2, 1) have the /th
index equal to ¢ and the elements at the position (1,d) have the /th index equal to p. In

order to maximize the trace of (<) ;) we define the function

g1(9) = te((A) ) = ap.p +al g
= (cos (])ag,l:,p +sin q)ag:;ép,_.p) + (—sin ¢agfqlgq.,_q + cos (])agl:ql) ). (4.53)

Setting the derivative of g; to zero leads to the equation

0=g/(¢) = —singa\l 2 +cosdal phy »—cosdat oo o —singal )

— —sing(ay_p) +a\))) +cosd(al .. — S apa.a):

By rearranging this equation and dividing it by cos ¢ we get the formula for the tangent

of the rotation angle
-1

(I-1) )
g’q"'q. (4.54)

a (l
_ 9p..pgp..p —9q..q
tang = -1 (-1
ap..p ‘|‘aq.. q

This procedure is the same forall / =1,2,....,d.

The explicit angles for ﬁlTj yeen ,R\[TJ are not needed in order to perform the transfor-
1 d
mations (4.49). We only need sine and cosine of the corresponding angles. We compute

those from (4.54) using the transformation formulas

1 t
Cosy = —————, singj=————=tandcos¢;, i=1,2. (4.55)

++/1+tan2¢’ ++/1+ tan? ¢

We calculate both solutions and take the one that gives a bigger value of the function g;
from (4.53). Notice that both function values will have the same absolute value but a
different sign because sin ¢, = —sin ¢; and cos ¢» = —cos @;. Therefore, we can take the
angle ¢;, i = 1,2, which gives a positive value of the function g;.

We sum up this subsection in Algorithm 11.

Input arguments in Algorithm 11 are the initial tensor </ (©) and the starting approxi-
mations of the orthogonal transformations Ul(o), 1 <1 <d. A simple starting point is to

set /0 = o7 and take U l(o) as identity matrices,
0=, Uv¥=1 1<i<a (4.56)

We call (4.56) an identity initialization. It works very well in most of the cases.
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Algorithm 11 Tensor-trace maximization

Input: 70 ¢ Rmwexn O cpmen 1 -1 4
Output: orthogonal matrices U;, [ = 1,...,d
k=1
repeat

Choose pivot pair (p,q).

%(k) — (k=)

for I=1:d do

if (p,q) satisfies (4.51) for [ then
Find cos ¢ and sin ¢ for Ry, ; using (4.54).

AEAYE I

(k) _ y,(k=1)
Uz —Uz RUhk

end if
end for
(k
o ® = g )

until convergence

However, identity initialization is not an option if, for example, 7 is an antisymmetric

tensor. Recall that the only non-trivial elements of an antisymmetric tensor are the ones

with all indices different. Therefore, in equation (4.54) for the tangent of the rotation

angle, both the numerator and the denominator are equal to zero, and the algorithm fails.

That is why we must use a different initialization. One solution to this problem is to

precondition the tensor <7 using the HOSVD [22]. We have

%:ﬁxlﬁl ><2(72-~-><d6d,

where 171 are matrices of left singular vectors of matricizations A(l), 1 <[ <d. Then, the

HOSVD initialization is given by

O = o 5, UF x,U0F -+ x4 U7,

v =0, 1<i<d

In Section 4.5 we will further discuss these two initializations.

(4.57)

126



Tensor diagonalization Trace maximization

4.4.2. Structure-preserving algorithm for the symmetric tensors

Algorithm 11 does not preserve the tensor structure since it applies different rotations in
different modes. Still, it can be modified to preserve the symmetry of the starting tensor
by setting the transformation matrices from (4.12) to be the same in each mode. That
means that now, for a symmetric tensor <7, we are looking for the decomposition of the
form

= x1UxU---x,U, (4.58)

where U is orthogonal.

As we did before, we can write the core tensor . as
yZﬂX]UT ><2UT~~- XdUT.

Thus, for a symmetric tensor <7 we need to find the orthogonal matrix U that maximizes

the objective function
f(U) =tr(Z x Ul x,UT -+ UT). (4.59)
Now, in the kth iteration of the algorithm we have
A0 = 6D s R %o RT - x4R, k>0, &=, (4.60)

where Ry is a plane rotation of the form (4.19). It is interesting to notice that in the matrix

case, d = 2, the trace would remain constant throughout the iterations (4.60) because
tr(UTAU) = tr(A),

but that is not the case for the higher order tensors.
Rotations Ry depend on the pivot position and the rotation angle. Pivot positions are
chosen in any cyclic order, same as in Algorithm 11, with the condition that the pair (p,q)

is taken as a pivot pair if it satisfies the inequality

[(V£(U),UR(p,q,0))| = nlIV£5(U)]l2, (4.61)

which is analogous to the condition (4.51).
When choosing the rotation angle, we now need to consider all modes at once. Hence,

this is not an ALS algorithm. Because of that, the formula for the tangent of the rotation

127



Tensor diagonalization Trace maximization

angle is more complicated than the one from (4.54). We get a polynomial equation in
tan ¢, where the order of the polynomial is equal to the order of the tensor d. Here, we
derive such equation for d = 3 and d = 4. This calculation follows the same steps for
d>4.

Let d = 3. Again, we observe a two-dimensional subproblem
JZ?\: f//\XIR X2 R ><3R,

for a fixed pivot pair (p,q), where

o~

(1) =

Y

a a — a a
ppp Gpgp } . A(2) = [ ppq  9paq
Agqpp  Qqqp Agpg  Aqqq

and

R— { cos¢ —sing

sin¢g cos¢

We choose the angle ¢ that maximizes the function

—

gs(9) =tr(Y) = tr(@/%\leT ><2RT ><3RT).

Using the fact that .7 is a symmetric tensor, function g; can be written as

gs(9) = cos® Oappp + 2cos ¢ sin 0a,pg +cos @ sin’ Oapyq+ cos? ¢ sin dappg
+2¢08 § sin® @t pgq + 5in> Py — cOS% @ Sin Pat gy + 208 ¢ sin® Pay g
— sin® Pappp + cos’ Pageq — 2cos? ¢ sinPapgg +cos sin’ Oappg
= 08 ¢ (appp + Aggq) + 308 P SN P (appg — Apgq)

+3¢08 9 8in% @ (appg + apgg) +5i0° O (aggq — appp)-

We have
0= gh(9) = 3c0S’ ¢ (appg — Apgg) +3¢08* P sin @ (2a,pg +2apgg — dppp — Agaq)
Dividing this equation by —3 cos’ ¢ we obtain the cubic equation for r = tan ¢,
3 2
(appg +apgg)t” + (Appp — Aggq +2appg — 2apgq )t

+ (appp + Agqq — 2appg — 2apgq)t + (Apgg — appg) = 0. (4.62)
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Now, let d = 4. The two-dimensional subproblem is in the form of
o = .7 X1 Rx3Rx3R 4R,
for a fixed pivot pair (p,q), where

—

(0, 1,1) =

a a —~
prpp  @papp } . (2,1 =
Aqppp  YGqqpp

@//\(;,;,1,2) = [ ZPPP‘I qupq } , JZ?\(I,i,Z,Z) —
qpprq q9prq

and

_ { cos¢ —sing

sing cos¢

We choose the angle ¢ that maximizes the function

—

gS(¢) = tr(Y) = tr(@?\XIRT ><2RT ><3RT ><4RT).

Using the symmetric property of sz/fj function gy becomes

gs(9) = cos* O (apppp + Agqqq) — 4cos’ ¢ Sin @ (apgqq — Apppq)

+12cos? 0] sin? 0a,pgq +4cosd sin’ O (apgag — Apppq) + sin? O (apppp +agqqq)-

Differentiating over ¢ and setting the derivative to zero yields

4 3.
0= 8;(‘?’) = —4cos” @(apggg — Apppg) +4c08” P Sin P (6appgq — Apppp — Agqqq)
+ 2408 ¢ sin® @ (Apggq — Apppg) — 408 O Sin> O (6app0q — Apppp — Ggqaq)

. 4
—4sin” @ (apgqq — apppq)-
Dividing this equation by —4 cos* ¢ we obtain the quartic equation for = tan ¢,

4 3 2
(@pgag — apppa)t” — (@pppp + Aggqq — 6Appag)t” — 6(apgaq — Apppq)t

+ (@pppp + gqqq — 6ppaq)t + (Apgaq — Apppg) = 0. (4.63)

Depending on the order d of the tensor <7, we solve equations (4.62) or (4.63) for ¢t and
calculate cos¢@ and sin¢ using the formulas (4.55). Then we take a real solution that
gives the highest value of the function g;. From a theoretical point of view, solutions
of (4.62) and (4.63) can be calculated using a rather complicated formula for the roots of

the general cubic/quatric equation. In practice, we use Matlab function roots.
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Algorithm 12 Symmetry-preserving tensor-trace maximization

Input: &7 € R™"*" symmetric

Output: orthogonal matrix U

A
U =p,
k=1
repeat

Choose pivot pair (p,q).

if (p,q) satisfies (4.61) then
Find cos ¢y and sin ¢ for R using polynomial equation
A0 = o7 &1 5  RT o RY - x4 RY
Uk =yk-DR,

end if

until convergence

This calculation follows the same steps for d > 4. The complete procedure using the
identity initialization is given in Algorithm 12.

We have observed one intriguing thing. Instead of Algorithm 12 for symmetric ten-
sors, one can take its modification where the rotation angle is chosen as the optimal angle
in only one (e.g. first) mode. On the contrary, in the computation of (4.62) and (4.63)
when choosing the optimal angle we considered all modes at once. The advantage when
optimizing the angle in only one mode is that the computation is much simpler, we get a
linear equation in tan @, the same as in (4.54). The modification is given in Algorithm 13.
Our convergence proof is valid only if the rotation angle is optimal regarding all modes
at once, but the modified algorithm has some interesting properties that can be seen in
Figures 4.11 and 4.12 in Section 4.5. Note that Algorithm 13 does not lead to the same
process as Algorithm 11, because it still applies the same rotation in all modes, unlike the

Algorithm 11 when applied to a symmetric tensor.
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Algorithm 13 Mode-1 modification of Algorithm 12

Input: &7 € R™"*" symmetric

Output: orthogonal matrix U

A
U =p,
k=1
repeat

Choose pivot pair (p,q).
if (p,q) satisfies (4.61) then
Find cos ¢y and sin ¢ for Ry using (4.54) for [ =1,

gk =)
tan @y = —E’,f_l’; E’]'{"_ql’; .
ap.p +aq. .4
A0 = o7 =) 5  RT o RT - x g RY
Uk =yk-DpR,
end if

until convergence

4.4.3. Convergence of the tensor-trace maximization algorithm

The convergence of the new algorithms is analogous to the convergence results from [8,
54]. Compared to the algorithms where the squares of the diagonal elements are max-
imized, maximization of the trace leads to a simpler algorithm. In this section we are
going to show that Algorithm 11 and Algorithm 12 converge to the stationary points of
the objective functions (4.48) and (4.59), respectively. The proofs follow the basic idea
from the paper [45] that was adopted in [8].

First, we define the function f: R™" x R™" x ... x R™>" & R,
FULUs, ... . Ug) = tr(f x UL xoUT - xqUT) (4.64)

= Z ( Z ailiz--~id”i1r,(l)”izn(Z)"'”idr,(d)) :

iy yig=1
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Function f is the extension of the objective function f from (4.48) to the set of all square

matrices. We calculate Vy, f , 1 <[ <d, element-wise as

of "
ou - Z iy dpymipgycigUiyr (1) - - - Uiy (1=1)Ripy i (141) - - - Yigr(d)
mry(l) iy i enig=]1

T T T T
= (fQ{ X1 U1 e X Ul_1 X+1 Ul+1 e Xd Ud )r...rmr...r-

Firstly, we compute V f(Uy,Uy, ...,U,). Then, in order to get Vf(Uy,Us, ..., Uy), we
project V f onto the tangent space at (U;,U>, ...,Uy) to the manifold O, X Oy, X - -+ X O,.

In the simpler case, for d = 1, the tangent space at U to O, is of the form [2]
Ty0, = {UQ: Q" = —Q} = USyew(n),

where Sgew(n) is the set of all n x n skew-symmetric matrices. The projection of Vi f

onto the tangent space at U to Oy, is
Proj(Vy f) = UA(U),

where the operator A: O, — Sgew(n), is defined as

_ ur'vyf—(vuH)'u

AU): 5 (4.65)
Then, we have,
Vf(U17U27'~'7Ud):[VUlf(U17U27"'7Ud) VUdf(UlaUZa"'7Ud) }
=Proj [ Vu,f(U,Us,...,Us) -+ Vy, f(U1,Us,...,Uy) |
=[ UAU) -+ UsAU) .

Using the operator A, we can simplify the convergence condition (4.51). For 1 <[ <d,
we have

IVu, f(U1,Us,....Ug)|l2 = JUAU) |2 = ||AU)]]2,

and

(Vu, f(Uy,Ua,...,Uq),UR(p,q,0)) = (UA(U;),UR(p,q,0)) = (A(U;),R(p,q,0)).

132



Tensor diagonalization Trace maximization

Since

R(p7Qa0): )

and A(U;) is a skew-symmetric matrix, we get
<A(U1),R(p,q,0)> = _ZA(Ul)pq~
Therefore, the condition (4.51) can be written as
2|A(UL) pgl = nlIAU) |2- (4.66)

Now it is easy to prove that it is always possible to find a pivot pair that satisfies the
convergence condition. Lemma 4.4.1 is a straightforward generalization of Lemma 3.2

from [8].

Lemma 4.4.1. For any differentiable function f: O, x O, X --- x O,, — R, orthogonal
matrices Uy, Us,...,U; € Oy, and 0 < < % it is always possible to find index pairs

(pu,,qu,), 1 <1<d, such that
(Vo f (U, U, Ua), UR(pu;»qu;, 00) | Z 0|V f (U, U, - Ua) 2,

where R(p,q,0) = %R(P;qa‘l)) =0’

Proof. Forany [ =1,...,d itis always possible to find an index pair (p,q) such that
1
(AU pgl = AU |2-

Forn = %, we get
2IA U pyyqu, | Z AU 12,

that is, inequality (4.66) is satisfied for (py,,qu,) = (p,q). As inequalities (4.66) and

(4.51) are equivalent, this proves the lemma. ]
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In Lemma 4.4.2 we show that if (Uy,Ua,...,Uy) is not a stationary point of the func-
tion f, then applying one step of the Algorithm 11 to any point in the small enough neigh-
bourhood of (Uy,Us,...,U;) would increase the value of f. The proof of Lemma 4.4.2

follows the steps of the proof of Lemma 3.4 from [8].

Lemma 4.4.2. Let {U, l(k)}kzo’ 1 <1< d, be the sequences generated by Algorithm 11.
LetUy,U,,...,U, be ad-tuple of orthogonal matrices satisfying Vf(U1,Us,...,Uy) #0.

Then there exist € > 0 and é > 0 such that

k1)

U Tl <e, Vi=1,....d,

implies

foPu® oy - oD oY oy > s (4.67)

Proof. Here we denote R; = R(px,qx, u, k). For a fixed iteration k we define d functions

W RSR1=1,2,...,d, as

W (01) = FWOR IR (g, 00), U8, o),

hz(cd)(%) = f(Ul(k_l)Rl,k,Uz(k_l)Rz,k, - ,Ufi_ll)Rd_l,k,Uék_l)R(pk,qk,¢d)),

and

h[(cl)(¢l) :f(Ul(k_l)Rlvk"" ’U[(ET])RI—],IQUl(k_l)R(pk,qk,¢[),Ul(_,'li11)7,_,7Ud(k_1))’

for 2 <1 < d — 1. The rotation angle in Algorithm 11 is chosen such that

max i (9) =1 (9.0 = F(UF VR U VRO YUY, 1<i<a
1

Moreover, we know that after each microiteration / in the Algorithm 11 the value of the

objective function f does not decrease, that is,

fo® o oy > pw®uP, .ol o)

>.> o ufY o) (4.68)
> oV oY o),

To prove the inequality (4.67) we need at least one sharp inequality in (4.68).
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Since Vf(U1,Us,...,Uy) # 0, we have

Vu, f(U1,Us,...,Uy) #0,

for at least one partial gradient Vy, f, 1 <1 <d. Let us assume that m, 1 <m <d, is the

smallest index such that
Vu,f(U,Us,...,Uq) #0. (4.69)
Since f is C*, from the relation (4.69) it follows that there exists € > 0 such that

w = min{[Vo, (UL U, Ul s [Un—Tnlla <€} >0, 470)

Let U,gl Y be such that HU (k=1) ~Upnl2 < &, and Ul(k), 1 <1 <d, generated by one

iteration from the Algorithm 11. Then

f(Ul(k),Uz(k), . .,Ud(k)) —f(U](k_l),Uz(k_l), o 7U¢$k—1))
> f(Ul(k)7 cee 7Urglk),Un(1]:11), R ,U[gkil)) —f(Ul(k)’ . ’Uyglk_)]7UI£1kil), . ’chkfl))
2 1" (0n) = 1" 0), @.71)

is true for any angle ¢,. We are going to find a particular ¢, that will ensure that

h,(cm)(d)m) — h,(cm) (0) > 0. We need the Taylor expansion of the function h,(cm) around 0.
It is given by
m) (m) QN Lo mym gy o2
(@) = Iy (0) + (") (0) @ + 5 (") " (8) Oy 0 <& < . (4.72)
Denote
(m)\ 1
M = h < oo,
omax () (&)l
Then we can write the Taylor expansion (4.72) as
¢ (9m) =1 (0) = (1" (0) g — —M¢>,i. (4.73)

Therefore, using relations (4.71) and (4.73) we obtain
k) o (k k k—1 k—1 k—1 m 1
0030 U = o0 ) = ) (0)9n — 5M6; 474
The derivative (h,(cm))’ () is calculated as

<VUmf(U1(k)ﬂ"'7Un(1kf)laljlglk7 )R(PkaCIk (Pm) r£1k+]1)7 7Ud(k71))7UI£1kil)R(pk7Qka¢m)>'
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From the fact that R(py, qx,0) = I, we get the value of (h,(cm))’ at ¢, =0,

(h"Y(0) = (Vo FO0, .. u® oY oY USSR (g, 0)). (4.75)
Hence, Lemma 4.4.1 and equation (4.75) imply
(A (0)] > n[IVe, f 0P, ... u® ol o)L (4.76)

Relation (4.70) together with the inequality (4.76) gives the lower bound on |(h,(€m))’ (0)],

(A™Y (0)] > nu > 0. 4.77)

Finally, we go back to inequality (4.74). For ¢, = Ai,[(h,(cm))’ (0), using the relation

4.77), we get

Using Lemma 4.4.2 we are going to prove that Algorithm 11 converges to a stationary

point of the objective function.

Theorem 4.4.3. Every accumulation point (U;,Us,...,U,) obtained by Algorithm 11

is a stationary point of the function f defined by (4.48).

Proof. Suppose that U, are the accumulation points of the sequences {U. l(j ) i1, 1<1<d,

generated by Algorithm 11. Then there are subsequences {Ul(j )} je» 1 €N, such that
(U N e =T, 1<1<d.
Further on, suppose that
VT, Ts,....Ug) #0. (4.78)
Then, for any € > 0 there are K; € %], 1 <[ <d such that

k—1)

o " T <e, vi=1,...4,

136



Tensor diagonalization Trace maximization

for every k > K, K = max{K; : 1 <1 <d}, and Lemma 4.4.2 implies that

fo® oo - pw*D oY oYy > s,

for some 6 > 0. Therefore, we have

FwP U Uy S e,

when k — oo,
Since f is a continuous function, convergence of (U l(j ), 2(j ), LU ng )) implies the
convergence of f (Ul(j ),Uz(j ) ey Uéj )) and we got a contradiction. Hence,
Vf(U] 7U2, e ,Ud) — O,
that is, (Uy,Us,...,Uy) is a stationary point of the function f. [ |

4.4.4. Convergence of the structure-preserving tensor-trace maximization

algorithm

To prove the convergence of Algorithm 12 we follow the same scheme as for Algo-
rithm 11. We should keep two things in mind. First, the function that is being maximized
by the Algorithm 12 is a function in only one variable. Second, unlike the Algorithm 11,
this is not an ALS algorithm. These two facts will actually simplify the lemmas needed
for the proof.

Instead of Lemma 4.4.1, we can now use Lemma 3.1 from [54].

Lemma 4.4.4 (Li, Ushevich, Comon [54]). For every differentiable function f;: O, —
R,U€0y,and 0 < n < % it is always possible to find index pair (p,q) such that (4.61)
holds.

Lemma 4.4.5 is similar to Lemma 4.4.2, but instead of d microiterations we observe

one iteration.

Lemma 4.4.5. LetU (k), k > 0, be the sequence generated by Algorithm 12. For U € 0,
let V£ (U) # 0. Then there exist € > 0 and § > 0 such that [|[U*~D —T||, < & implies

£UW) = fw*Y) = 8.
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Proof. The proof follows the same reasoning as the proof of Lemma 4.4.2

For a fixed iteration k we define the function A : R — R,

h(9) = £(U*R(pr k. 9)).

The rotation angle in Algorithm 12 is chosen in such a way that

max hi(9) = hil v i) = U VR(pr, g, 0w i) = £(UR).

Moreover, we have

i (0) = fi(USDR(pr, g1, 0) = (UKD,

Thus,
D) = (9 k) — hi(0) > he(9) — hi (0),

AN
for any angle ¢. We want to find some ¢ such that ;(¢) — A (0) > 0.

We use the Taylor expansion of the function A around 0,

hi(9) = hi(0) + k. (0)¢ + = h”(é)¢2, 0<&<9.

For
M = max |k < oo,
max [H(E)
it follows from the relation (4.79) that

AU~ AUED) > 1 (0)9 — S Mo™

Using Lemma 4.4.4 we get

H,(0) = (V £, (U
= (VAU* D), U*DR(py, gk, 0))

“NR(pr, q1,0), U VR (pr, i, 0))

> n||VAU* D).

Since ||[U%1) —T ||, < &, there exists &€ > 0 such that

o= min{[[V£(U)l2: |U-Ull2 <&} >0,

and it follows from (4.81) and (4.82) that
|1(0)] = .

(4.79)

(4.80)

(4.81)

(4.82)
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Now we can prove the convergence of Algorithm 12.

Theorem 4.4.6. Every accumulation point U obtained by Algorithm 12 is a stationary

point of the function f; defined by (4.59).

Proof. The proof is analogous to the proof of Theorem 4.4.3. Instead of Lemma 4.4.2 it

uses Lemma 4.4.5. [ ]

We end this section with the expression for V f;. We define the extension of the objec-
tive function f; as fy: R™"* — R,

n n
AU) =tu( x1UT xqUT - x,UT) = Z < Z ailiz...iduilruizr'"uidr>

r=1 l'l,...,idzl

n n n
_ d . ko .
- k Am...mip 1. igUmpWig qr - Uigr

r=1m=1k=1 it aeig=1
It 1yensia#M

Element-wise, the gradient of £, is given by

8];& d d n
Z k kuty,, E Am..migyy..igWipr " Uigr

dumr = i1 somsig=1
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where U 1s a matrix equal to U 1n all entries except for the mth row where the entries of
Uy are equal to zero. Then, V f; is the projection of V f; onto the tangent space at U to the
manifold O,,. That is,

V/(U) = Proj Vf,(U) = UA(U),

where the operator A is defined by

UV fs—(Vuf)'U
_ 5 :

AU):
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4.5. NUMERICAL EXPERIMENTS

In the final section of this chapter we present the results of our numerical experiments.
All the tests are done in Matlab R2021a.

For both Algorithm 11 and Algorithm 12 we observe two values in each iteration —
trace and relative off-norm of a current tensor. The trace is the objective function which is
expected to increase in each microiteration and converge to some value. The algorithms
stop when the change of the trace after one cycle is less than 10~*. The relative off-norm

of a tensor o7 is given by
off(.e7)
17

Obviously, the relative off-norm of a diagonal tensor is equal to zero. On the contrary, the

relative off-norm of a random tensor is close to one.

The algorithms are applied on general random tensors and random tensors that can be
diagonalized using orthogonal transformations. Random tensor entries are drawn from
the uniform distribution in the interval [0,1]. Orthogonally diagonalizable tensors are
constructed such that we take a diagonal tensor with random uniformly distributed entries
from [0, 1] on the diagonal and multiply it in each mode with random orthogonal matrices
(obtained from QR decomposition of random matrices).

Figure 4.4 shows the convergence of the trace and the relative off-norm in the Algo-

rithm 11 for diagonalizable 20 x 20 x 20, 10 x 10 x 10 x 10 and 5 x5 x5 x5 x5 x5
1

tensors, for different values of 1 from (4.51). One can observe that for larger n, n = _,
the trace converges to a lower value than for smaller 1. Moreover, in these examples for
n= % the relative off-norm converges to a number greater than zero, while for the smaller
7 it converges to zero. This means that for n = % the algorithm converges to a different
stationary point, the one that is not a diagonal tensor, than for smaller 1. Therefore, from
our observations, we recommend using a smaller 7.

We repeat the same experiment as the one described above, but this time on non-
diagonalizable 20 x 20 x 20, 10 x 10 x 10 x 10 and 5 x 5 x5 x5 x 5 x 5 tensors. Here
one cannot expect the relative off-norm to become equal to zero. The results are shown

in Figure 4.5. Same as in Figure 4.4, for n = % we get the convergence to a different, less

desirable, stationary point of the function f.
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Figure 4.4: Convergence of Algorithm 11 for different values of 1 on tensors of order 3,

4 and 6 that are diagonalizable using orthogonal transformations.
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Figure 4.5: Convergence of Algorithm 11 for different values of 17 on random tensors of

order 3 and 6.
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The bar graphs in Figure 4.6 show how 7 affects the number of microiterations in
each iteration of the Algorithm 11. The test is done on non-diagonalizable tensors of
order d =3, 4, 5 and 6. If n is bigger, the condition (4.51) is more restrictive and more
microiterations are skipped. For example, ford =3 and n = %, 38.6% of iterations contain
only one microiteration and only 12.7% contain maximum number of microiterations. On

the other hand, for n = m, 99.8% of the iterations consist of all three microiterations.
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0.8+ [
. 1 =

=
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n
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0.4r
0.3r
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Figure 4.6: Portion of the number of microiterations within one iteration for different

values of 17 on random tensors of order d = 3,4,5,6.

In Section 4.4 we discussed different initialization strategies for the Algorithm 11. In
Figure 4.7 we compare the identity initialization given by (4.56) with the HOSVD initial-
ization given by (4.57). The results are shown for a non-diagonalizable 10 x 10 x 10 x 10
tensor during the first 10 iterations. When a tensor is preconditioned using HOSVD it
becomes closer to a diagonal one. Thus, the starting trace value is higher in the case of

the HOSVD initialization than for the identity initialization. Also, the starting relative
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off-norm is much closer to the limit value, significantly under the value of 1. Regardless,
the algorithm that uses the identity initialization catches up after the first few iterations.
Both initializations give equally good approximations and converge to the same value.
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Figure 4.7: Comparison of different initialization strategies for Algorithm 11 for a random

tensor of order 4 during the fist 10 iterations.

In Figure 4.8 we consider the trace maximization algorithm opposed to the Jacobi-
type algorithm that maximizes the squares of the diagonal elements. Although the trace
maximization is not equivalent to the maximization of the Frobenius norm of the diagonal,
our numerical examples show that the off-norm of a tensor is decreasing, that is, the
Frobenius norm of the diagonal is increasing, when the trace is increasing. We observe
the performance of Algorithm 11 and Algorithm 8 [8] on two random 20 x 20 x 20 tensors,
one orthogonally diagonalizable, and one non-diagonalizable. We can see that the results
of both algorithms are comparable.

Next, we compare Algorithm 11 with another trace maximizing method from [65].
The other algorithm is similar to Algorithm 7 as it constructs orthogonal matrices Ry, Ry
and ﬁw from (4.31) using SVD of a certain matrix. To the best of our knowledge, there is
no proof of convergence of this Jacobi compress trace algorithm, even though it numer-
ically converges after just a few iterations. In Figure 4.9 we compare the two methods
on the same 20 x 20 x 20 tensors. We see that the trace in the Jacobi compress algorithm
does not converge. Regardless, the relative off-norm for both non-diagonalizable and or-
thogonally diagonalizable tensor is comparable for the Jacobi compress trace algorithm

and our Algorithm 11. Additionally, it numerically converges after just a few iterations.
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Figure 4.8: Trace maximization compared to the maximization of the squares of the diag-

onal elements for one diagonalizable and one random tensor during the first 10 iterations.

d=3,n=20
10 10°
8 L
6 L
tr(A off(4)
(4) 4r Al
| Jacobi compress trace
2 ——— Algorithm 11 - 7y = 50%
ol Jacobi compress trace
——— Algorithm 11 - g, = ﬁ
-2
0 5 10 0 5 10
Iteration lteration
d=3,n=20
1
80 0.9¢
0.8t
60 1 1 0.7
tr(A) % ' Jacobi compress trace
40+ 06l ——— Algorithm 11 - 7 = ﬁ
20 Jacobi compress trace 0571
——— Algorithm 11 - g, = ﬁ
0 : : : : 0.4 :
0 2 4 6 8 0 5 10
Iteration Iteration

Figure 4.9: Trace maximization using Algorithm 11 compared to the Jacobi compress

algorithm from [65] for one diagonalizable and one random tensor during the first 10

iterations.
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Lastly, we observe the symmetric case. We present the convergence results of Algo-

rithm 12 for a diagonalizable 20 x 20 x 20 tensor in Figure 4.10.
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Figure 4.10: Convergence of Algorithm 12 on a random 3rd-order tensor.

Additionally to the Algorithm 12 we observe its modification, a hybrid approach be-
tween the Algorithms 11 and 12. In the Algorithm 12 the rotation matrix is chosen by
optimizing the angle with respect to all modes, which leads to a polynomial equation of
order d, (4.62) or (4.63). As this can be computationally challenging, we investigated
another approach. From the relation (4.54) used in the Algorithm 11 we compute the ro-
tation angle that is optimal in one mode /, for example / = 1. Because of the symmetry, it
does not matter which mode we consider. Then we apply this same rotation in all modes,
as it is done in the Algorithm 12, to preserve the symmetry. This mode-1 modification
is given in Algorithm 13. We present its performance in Figure 4.11, where we compare
its results with the Algorithm 12. The convergence results from Subsection 4.4.4 hold for
Algorithm 12, but not for the modified Algorithm 13. In practice we observed that both
Algorithm 13 and 12 converge to the same solution, although the modification converges

slower. Analogous results were obtained for the non-diagonalizable tensors.
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Figure 4.11: Convergence of Algorithms 12 and 13 on a tensor of order 3 that is diago-

nalizable using orthogonal transformations.

Still, the symmetry-preserving Algorithm 12 has some limitations when dealing with
tensors of even order, specifically tensors with both positive and negative elements on
the diagonal approximation [21]. Although the convergence theorem is still valid, the
acquired stationary point of the objective function is not its global maximum. This be-
haviour can be seen in Figure 4.12 where we apply the Algorithm 11, the Algorithm 12, as
well as its modification Algorithm 13 on a random orthogonally diagonalizable symmet-
ric 4th-order tensor. A symmetric 4th-order diagonalizable tensor is constructed by taking
a diagonal tensor with diagonal elements drawn uniformly from [—1, 1], that is multiplied
in each mode by a same random orthogonal matrix. In numerical experiments we ob-
served some interesting things. Algorithm 11 yielded matrices U;, 1 <1 <4, equal up to
sign, specifically —U; = U, = Uz = Us. Moreover, obtained diagonal elements are good
approximations of the absolute values of eigenvalues of the starting tensor, except for one
value which is of negative sign. As seen in Figure 4.12, Algorithm 13 does not find the
maximal trace. However, the approximation is as good as for the Algorithm 11 (in terms

of the off-norm). Additionally, the obtained diagonal elements are good approximations

of the eigenvalues of the starting tensor.
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Figure 4.12: Convergence of Algorithm 11, Algorithm 12, and its modification Algo-

rithm 13 on a symmetric 4th-order tensor that is diagonalizable using orthogonal trans-

formations.
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CONCLUSION

The goal of this thesis was to improve some old algorithms and propose new Jacobi-type
algorithms to solve the problem of matrix and tensor diagonalization. In the matrix case,
we expanded the convergence results for the Eberlein method to generalized serial pivot
strategies with permutations. Next, we proposed a block variant of the Eberlein method
and proved its convergence under the same broad class of pivot strategies. In the tensor
case, we designed two new algorithms for the approximate tensor diagonalization. One is
an algorithm for general tensors, and the other one is a structure-preserving algorithm for
symmetric tensors. We proved that both algorithms converge globally, that is, for every
starting tensor, for every cyclic pivot strategy. All theoretical results were accompanied
by various numerical examples.

This work opened up numerous questions and research directions. In order to im-
prove the computation time of the Eberlein algorithm and other highly accurate Jacobi-
type methods, one can try implementing mixed-precision arithmetic. This could espe-
cially be beneficial for the block Eberlein algorithm, particularly the part for finding the
norm-reducing transformation Sy, which is rather slow compared to the state-of-the-art
algorithms. In the tensor case, the complexity of the computations grows exponentially
with order d. This problem could be approached with new randomization techniques for
tensor diagonalization, as well as for similar multilinear problems. Moreover, parallel

pivot strategies for Jacobi-type algorithms on tensors are worth exploring.
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