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Topological orbital angular momentum 
extraction and twofold protection of vortex 
transport

Zhichan Hu    1,5, Domenico Bongiovanni1,2,5, Ziteng Wang1,5, Xiangdong Wang1, 
Daohong Song    1,3, Jingjun Xu    1  , Roberto Morandotti    2, 
Hrvoje Buljan    1,4   & Zhigang Chen    1,3 

Vortex phenomena are ubiquitous in nature. In optics, despite the 
availability of numerous techniques for vortex generation and detection, 
topological protection of vortex transport with desired orbital angular 
momentum (OAM) remains a challenge. Here, by use of topological 
disclination, we demonstrate a scheme to confine and guide vortices 
featuring arbitrary high-order charges. Such a scheme relies on twofold 
topological protection: a non-trivial winding in momentum space due to 
chiral symmetry, and a non-trivial winding in real space due to the complex 
coupling of OAM modes across the disclination structure. We unveil a 
vorticity-coordinated rotational symmetry, which sets up a universal 
relation between the vortex topological charge and the rotational symmetry 
order of the system. As an example, we construct photonic disclination 
lattices with a single core but different Cn symmetries and achieve robust 
transport of an optical vortex with preserved OAM solely corresponding 
to one selected zero-energy vortex mode at the mid-gap. Furthermore, we 
show that such topological structures can be used for vortex filtering to 
extract a chosen OAM mode from mixed excitations. Our results illustrate 
the fundamental interplay of vorticity, disclination and higher-order 
topology, which may open a new pathway for the development of 
OAM-based photonic devices such as vortex guides, fibres and lasers.

Vortices are observed in a wide range of natural systems, from vortices 
of quantum particles and living cells to tornados and black holes1–9. In 
optics, vortices are typically characterized by a circulating flux that 
gives rise to orbital angular momentum (OAM)10, playing a crucial role 
in numerous optical phenomena and applications10–15. Apart from clas-
sical waves, vortex beams carrying OAM have been experimentally 
realized with photons3, electrons4 and even non-elementary particles 
such as neutrons5, atoms and molecules6. The ability to generate and 

manipulate vortex beams has sparked substantial scientific interest, 
leading to research in fundamental phenomena and enabling unconven-
tional implementations across different fields. Like all localized waves, 
however, vortices of any field tend to spread out during evolution.

Confining vortex flows is important across diverse areas of science 
and technology. For instance, in free space, localized vortex beams 
naturally diffract due to their wave nature, making them susceptible 
to atmospheric turbulence and other environmental factors. 
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a multi-site rather than a single-site core for confining the vortex mode. 
In curved or engineered three-dimensional (3D) synthetic materials34–37, 
localized higher-orbital and vortex states can also emerge, but they rely 
on complex design of topological defects, and the localized states are 
not zero-energy OAM modes. In fact, a single-channel TVG has never 
been realized. In the so-called Dirac-vortex topological structure, the 
‘vortex’ refers to a Kekulé modulation of a Dirac lattice with a vortex 
phase (as in the Jackiw–Rossi model)38–40, but the bounded mode itself 
is not an OAM mode.

Here, we demonstrate a universal principle for the realization of 
robust vortex transport by using specially designed topological dis-
clination structures. As illustrated in Fig. 1a, a vortex beam preserves 
its circular shape and phase singularity along the central waveguide—
the single-site disclination core in a C3-rotational and chiral-symmetric 
lattice. It is ‘doubly’ protected by both non-trivial momentum-space 
(k-space) band topology and real-space topology, with the latter char-
acterized by the non-trivial winding of complex vortex-mode coupling 
(Fig. 1b). The k-space band topology gives rise to the localized mid-gap 
(zero-energy) vortex states protected by chiral symmetry, while the 
real-space non-trivial winding ensures the selection of just one OAM 
mode along the disclination core without the interference from all 
other possible modes. The principle applies to any high-order OAM 
modes with topological charge l for any rotational order n of the Cn 
lattice symmetry, as long as 2l/n is not an integer. We unravel this condi-
tion as the vorticity-coordinated rotational symmetry (VRS)—essential 
for the real-space protection of vortex transport in topological disclina-
tions. Experimentally, we employ a laser-writing technique to establish 

High-order vortices, characterized by topological charges ||l|| > 1, are 
particularly prone to disintegration during propagation, often break-
ing up into several ‘pieces’ of singly charged vortices16 and further 
complicating their control and manipulation over long distances.  
To effectively confine an optical vortex without distortion in shape and 
preserve its OAM during transport is crucial, particularly for OAM-based 
optical communications17. However, unlike vortex generation and 
detection10,11, vortex transport with preserved OAM is a non-trivial task. 
Addressing this challenge requires innovative approaches in both 
theoretical design and experimental implementation to create robust 
and efficient vortex transport systems17,18.

Recently, there has been a surge of interest in the study of topologi-
cal disclinations19–25, unveiling non-trivial topological phases, including 
higher-order topological phases26–28. Topological disclinations, as a 
representative type of topological defects of a point-group rotational 
symmetry, can support localized topological states within the bulk20,21,29 
rather than at the boundaries30. However, lattice defects and disclina-
tions typically break chiral symmetry, a key element for topological 
protection in a large family of topological insulators31. If disclinations 
are designed to preserve chiral symmetry, their bounded states can lie 
exactly in the middle of the bandgap and be pinned at zero energy24—
reminiscent of Majorana-bound states19. Such chiral-symmetric dis-
clinations are ideal for the realization of a topological vortex guide 
(TVG), where spectral isolation, OAM-mode spatial confinement and 
topological protection can be guaranteed. Nevertheless, most topo-
logical disclination structures established so far, including the recent 
work on disclination-based vortex nanolasers32 and solitons33, consist of 
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Fig. 1 | Illustration of doubly protected vortex transport via topological 
disclinations. a, A schematic of a vortex travelling through the core of a 
disclination lattice that has C3 rotational symmetry and chiral symmetry (CS). 
The lattice features two sublattices with a single-site core at the centre, where a 
vortex is transported, guided and topologically protected. b, A Venn diagram of 
the underlying topology associated with vortex guidance. The light-blue region 
represents a non-trivial momentum-space winding (illustrated with a non-empty 
winding loop) as typical for a chiral-symmetric structure. The yellow region 

represents a non-trivial real-space winding (illustrated with complex coupling 
vectors winding) when the disclination lattice features a VRS. The overlapping 
region is where a vortex can have twofold (both real- and momentum-space) 
topological protection during propagation in a non-trivial disclination structure. 
c, Numerical simulations showing (2) robust propagation of a doubly protected 
high-order vortex (l = 2) to a distance L through the disclination core that serves 
as a TVG, but (1 and 3) the same vortex expands and breaks up during transport 
when the twofold protection is absent.
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different photonic disclination lattices as a test bench and observe that 
optical vortices with topological charges l = 1, 2, 3 can be protected 
by non-trivial C3 and C5 structures, but an l = 2 vortex breaks up into a 
quadrupole-like pattern in the C4 structure owing to the lack of 
real-space protection. Numerical simulations (Fig. 1c) further cor-
roborate the conditions needed for protected vortex transport. Moreo-
ver, we show that, under a mixed-mode excitation, our topological 
approach leads to an effective vortex filter, which extracts and protects 
the transport of a selected OAM mode while filtering out other 
unwanted modes. Our work represents a demonstration of 
single-channel TVGs for robust transport of vortices in any system41.

Results
Our disclination lattices are constructed by ‘cutting and gluing’20,21 a 
two-dimensional Su–Schrieffer–Heeger (SSH) lattice42,43 that results 
in a single-site core at the centre of the structure (Methods and 
Extended Data Fig. 1). Three disclination lattices featuring C3-, C4- and 
C5-rotational symmetry are established by laser-writing waveguides 
in an otherwise uniform crystal (Supplementary Note 1). A typical 
example of the C3 disclination and corresponding results are shown in 
Fig. 2, where Fig. 2a is the disclination lattice. The 3D intensity plots in 
Fig. 2b(1)–b(3) clearly illustrate the difference between a guided and 
an unguided vortex. Figure 2c(1) is the input vortex beam with l = 1 
used to probe the central disclination core. The input beam size is 
36 μm, and it expands to about 240 μm after 20 mm propagation 

through the crystal (without any written waveguide), as seen from the 
corresponding output intensity pattern (Fig. 2c(2)) and interferogram 
(Fig. 2c(3)). In contrast, when the same vortex is launched into the 
disclination core, its intensity is well confined in the core, preserving 
both the vortex ring pattern and the topological charge (Fig. 2c(4)). 
Results from numerical simulations (Fig. 2c(5)) agree well with such 
observations, showing the robustness of the vortex transport even at 
much longer distances through the vortex guide (Methods, Extended 
Data Fig. 2 and Supplementary Note 2). Likewise, a high-order vortex 
with l = 2 (Fig. 2d(1)–d(5)) or l = 3 (Extended Data Fig. 3) is also well 
guided in the disclination core.

Protection by momentum-space topology
To understand the essence of the ‘double protection’ needed for the 
TVGs, let us first consider the k-space band topology, characterized 
by the theory of topological invariants in momentum space31,44. The 
band structure of the disclination Hamiltonian considering complex 
vortex-mode coupling for a Cn-symmetric lattice is calculated using 
the tight-binding model (Methods and Supplementary Note 4). In our 
model, the k-space band topology lies in a chiral-symmetric topologi-
cal phase, which ensures that the topological defect states appear right 
at zero-energy mid-gap (see Fig. 3a(1),a(2) for l = 1 and l = 2 cases in 
the C3 lattice) and occupy only one sublattice (Fig. 3b(1),b(2),c(1),c(2)). 
In contrast to photonic crystals or photonic crystal fibres, here the 
vortex modes are spatially localized modes in the bandgap of 
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Fig. 2 | Experimental demonstration of vortex transport along a single 
channel in topological disclination. a, A laser-written photonic lattice featuring 
C3-rotational symmetry and chiral symmetry with a single-site disclination core, 
where a dashed white circle marks the core location for excitation with a vortex 
beam. b, (1–3) 3D intensity plots of the experimental results showing that an 
input vortex (1) expands dramatically in free space without TVG (2), but it is well 
guided after propagating through the disclination core with TVG (3). c, (1) 
Intensity pattern of the input vortex beam; (2) output intensity distribution and 

(3) interferogram of a single-charge l = 1 vortex beam after 20 mm of free 
propagation without the lattice, where the spiral fringes exhibit vorticity; output 
intensity pattern of the vortex beam after propagating through the disclination 
lattice from (4) experimental measurement and (5) numerical simulations.  
d, (1–5) Results corresponding to (c, 1–5) but obtained for a high-order vortex 
with a topological charge l = 2. The top-right insets in (4) and (5) are 
interferograms to identify the vortex phase singularity.
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propagation constants, as opposed to time-domain frequencies. The 
disclination states here cannot be characterized by the topological 
invariants conventionally used for higher-order topology, for example, 
the fractional charge density20,23,27. To solve this issue, we employ the 
concept of the multipole chiral number (MCN)28. The MCN is a bulk 
integer topological invariant N  recently developed for predicting the 
number of degenerate zero-energy corner states in higher-order top-
ological systems enriched by chiral symmetry. It is essentially a 
real-space representation of the winding number generalized from 
one- to higher-dimensional systems. Since the number of lattice sites 
belonging to different sublattices in our Cn-symmetric disclination 
structures are not equal (Fig. 1a), we use N  to evaluate the overall dif-
ference between the multipole moments of two sublattice wave func-
tions (Fig. 3d,e and Supplementary Note 5). Physically, it describes the 
winding of the wave function for the B sublattice with respect to the A 
sublattice. To present the whole structure of a Cn lattice, we use differ-
ent coordinates for every sector of the Cn lattice to define multipole 
operators with respect to the central defect and thus get N. The system 
is topologically non-trivial when d2 < d1, where the dimerization param-
eters d1 and d2 are the waveguide distances associated with the intra-cell 
and inter-cell coupling in the SSH model, respectively28,31,43. In this case, 
a non-zero N  corresponds to a non-trivial winding in the momentum 
space, as depicted in Fig. 1b. For example, in Fig. 3d, N = 2 indicates 
that there are two degenerate zero-energy vortex states (Fig. 3a(1),a(2)) 
with opposite vortex-phase circulation. In contrast, if d2 > d1, we have 
N = 0 (Fig. 3d), implying a topologically trivial winding and the absence 
of topological disclination states. Results for other examples of Cn 
lattices are shown in Extended Data Fig. 4. This generalized MCN can 
be applied to characterize higher-order topological phases in other 
non-periodic Cn-symmetric structures that exhibit chiral symmetry. 
Results in Fig. 3 highlight one key ingredient needed for protecting the 
vortex transport: momentum-space topology featured by chiral sym-
metry of the disclination structure. The role of chiral symmetry is to 

guarantee that the guided vortex mode is at zero energy. In practice, 
even if the mode is not exactly at the middle of the bandgap, it can still 
enjoy topological protection if it resides close to the mid-gap.

Protection by real-space topology
Notwithstanding that there are two degenerate zero-energy vortex 
modes, robust transport of a vortex requires that only a single vortex 
state be present at the disclination core during propagation. Every 
waveguide can support both clockwise (l < 0) and anti-clockwise (l > 0) 
phase circulations; thus, there are two types of vortex mode coupling 
between waveguides (Fig. 4a(1)): the same-vorticity mode coupling 
(SVMC), which is always real regardless of the coupling direction, and 
the direction-dependent opposite-vorticity mode coupling (OVMC). 
The OVMC can be illustrated by a coupling vector tOV (Supplementary 
Note 4) in the complex plane (Fig. 4a(2)). To ensure that a TVG supports 
only a single clockwise (or anti-clockwise) vortex mode at any propaga-
tion distance, no anti-clockwise (or clockwise) components should 
arise at the disclination core during the transport, as analysed in Sup-
plementary Note 6. This indicates that the collective contribution of 
the OVMC from all waveguides across the entire lattice to the disclina-
tion core must be zero.

In a Cn disclination lattice, we evaluate the OVMC between the core 
and all other waveguides belonging to each distinct sector and then 
examine the winding of the complex coupling T j  from each of the n 
rotational sectors (see Fig. 4b(1)–b(3) for the C3 lattice, Fig. 4c(1)–c(3) 
for the C4 lattice and Fig. 4d(1)–d(3) for the C5 lattice). Real-space topol-
ogy can be examined by defining a coupling winding number as

w = 1
2πi

n
∑
j=1

ln (
T j+1

T j
) . (1)

We find that w is non-zero only when 2l/n is not an integer number, 
indicating the existence of a topologically non-trivial phase. In this 
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Fig. 3 | Momentum-space protection of zero-energy vortex modes via 
topological disclination. a, (1) Calculated eigenvalues of single-charge vortex 
modes in a C3 chiral-symmetric disclination structure, where two degenerate 
vortex modes (red) appear right at mid-gap but with opposite vorticity (l = 1 and 
l = −1); (2) corresponding results obtained for a pair of high-order (l = 2 and 
l = −2) vortex modes in the same C3 structure. b,c, (1) Intensity (b) and phase (c) 
distributions of the l = 1 vortex mode, showing confinement mostly at the 
disclination core. Exponentially decaying ‘tails’ distribute only in the same 
(next-nearest-neighbour) sublattices with a π-phase difference—a characteristic 
of SSH-type topological states (d1 and d2 mark the intra-cell and inter-cell 
spacing, respectively); (2) corresponding results obtained for a pair of high-order 

(l = 2 and l = −2) vortex modes in the same C3 structure. Note in (c, 2) there is a 
4π phase circulation for each vortex, and the vortex in the centre again has a 
π-phase difference compared with those in the ‘tails’. d, Calculated topological 
invariant. The MCN N , which equals 2 when d1 is larger than d2, indicates a 
topologically non-trivial regime with two zero-energy disclination modes. e, An 
illustration of multipole moments in the C3 structure, where q̃ and p̃ are the 
differences in dipole and quadrupole moments between sublattices, 
respectively. We show three sets of coordinates (xi, yi) with i = 1, 2, 3, which 
correspond to three sectors of the C3 disclination structure, to generate the 
multipole operators.
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case, we have the total complex coupling ∑n
j=1T j = 0. On the contrary, 

when 2l/n is an integer, w  becomes zero and also ∑n
j=1T j ≠ 0  (Sup-

plementary Note 7). In the examples of C3 and C5 lattices, the coupling 
winding is found to be non-zero for both l = 1 and l = 2, thus resulting 
in protected vortex transport (Figs. 2 and 4f(1)–f(3)). However, in the 
C4 lattice (Fig. 4e(1)), the winding is non-zero for l = 1 but vanishes for 

l = 2. As such, the C4 lattice can stably guide a single-charge vortex 
(Fig. 4e(2)) but not a double-charge vortex. In the latter case, the l = 2 
vortex breaks up into a quadrupole-like pattern (Fig. 4e(3)), in agree-
ment with simulation results (Fig. 1c and Extended Data Fig. 2). This 
winding picture (see also Fig. 1b) resembles the skyrmion-like spin 
texture in a magnetic structure45. Here, the non-trivial real-space 
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Fig. 4 | Real-space protection of vortex transport and universal rule for 
VRS-mediated non-trivial winding. a, (1, 2) An illustration of two types of vortex 
mode coupling between two waveguides where κ  is the coupling amplitude; the 
SVMC is not direction dependent (1), while the OVMC features a coupling 
coefficient tOV dependent on θ as plotted in (2). b–d, In a Cn-symmetric 
disclination structure, all coupling contributions to the central vortex mode can 
be calculated by sectors as illustrated for C3 (b, 1–3), C4 (c, 1–3) and C5 (d, 1–3) 
disclination structures, where T j  is the equivalent coupling for all OVMCs in each 
sector; (b, 1) depicts the collective OVMC coupling from the three sectors, (b, 2,3) 
represent real-space winding for charges 1 and 2 vortices in the C3 disinclination, 
and (c, 1–3) and (d, 1–3) follow the same layout as (b, 1–3) but are for C4 and C5 
disclinations, respectively. To guarantee that only a single vortex mode (l = 1 in 
the third row; l = 2 in the fourth row) is present at the disclination core, the 

complex coupling T j  must have a non-zero winding number (w ≠ 0), as shown. 
This is better described by the VRS that demands a non-integer value of 2l/n for 
twofold protection, as summarized in a (3), where blue (orange) indicates 
protected (unprotected) vortex modes. Taking l = 2 as an example, the vortex is 
protected in the C3 disclination owing to non-trivial winding w = 1 (b, 3), but it is 
not protected in the C4 disclination since 2l/n = 1 is an integer and w = 0 in this 
case (c, 3). A vortex is topologically protected only under non-zero winding 
conditions. e,f, Experimental results obtained from C4 (e, 1) and C5 (f, 1) 
disclination structures, which show that, as in C3 disclination (Fig. 2), both l = 1 
(f, 2) and l = 2 (f, 3) vortices are also protected in the C5 disclination, however,  
in the C4 disclination, the l = 1 vortex is protected (e, 2) but the l = 2 vortex is  
not protected (e, 3), in agreement with the winding picture and the relation 
plotted in a (3).
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winding of the complex coupling vectors depends on the lattice rota-
tional symmetry order n with respect to the vortex topological charge 
l  for a chosen OAM mode. For this reason, we name it vorticity- 
coordinated rotational symmetry (VRS). Although not easily visualized 
in a simple picture, we can consider the VRS intuitively as follows. For 
a given clockwise (or counter-clockwise) vortex mode excitation at the 
disclination core, coupling along an arbitrary closed path in the Cn 
disclination structure will not induce counter-clockwise (or clockwise) 
vortex modes when coming back to the disclination core. This is guar-
anteed by real-space topology: one can always find other correspond-
ing paths in the structure that are equivalent up to a rotation by 2π/n, 
such that the interference of all these OVMC paths is zero, which in turn 
protects the excited vortex mode. Hence, the VRS can be thought of 
as a rotational symmetry that coordinates with the vorticity of the 
optical field, and it sets up a universal rule for real-space protection of 
a single high-order vortex (with either clockwise or anti-clockwise 
phase circulation but without mixing) propagating along the Cn dis-
clination core.

We further explore the general cases featuring arbitrary n and l  
and theoretically prove that the total complex couplings accounting 
for the OVMC between the central defect waveguide and all contribu-
tions originating from n sectors vanish if and only if the winding num-
ber is non-zero, which requires a non-integer 2l/n (Supplementary 
Notes 6 and 7). Such a condition (summarized in Fig. 4a(3)) sets up a 
universal rule for protecting the transport of a single high-order vortex 
(with either clockwise or anti-clockwise phase circulation but not 
both) along the Cn disclination core (Supplementary Note 8). By con-
sidering the alternative example of a C5 disclination for even higher 
topological charges, we show that a vortex beam with l = 5 or l = 10 
cannot maintain its shape during propagation, but other high-order 
OAM modes are well guided as long as 2l/5 is non-integer (Extended 
Data Fig. 5), further validating the established condition. Results in 
Fig. 4 highlight another key ingredient needed for protecting the 
vortex transport: real-space topology mediated by the VRS of the 
disclination structure.

Topological extraction of an OAM mode
The presented features of real and momentum-space topology can be 
readily employed to single out a selected OAM mode (non-trivial) from 
a mixed-mode excitation, while other modes (trivial) dissipate into the 
bulk. In Fig. 5, we show a proof-of-concept demonstration. For a mixed 
excitation of l = 1 and l = 2 modes, by judiciously choosing the lattice 
parameters (Supplementary Note 3), we achieve different transport 
dynamics of the OAM modes through a single waveguide versus a dis-
clination structure: in a single waveguide, beating between l = 1 and 
l = 2 modes leads to a strongly deformed and unstable vortex pattern 
(Fig. 5b(1)–b(4)), whereas, in the TVG, the l = 2 mode is ‘filtered’ out 
but the l = 1 mode is preserved during transport (Fig. 5c(1)–c(4)). In 
Fig. 5a, we also plot the modal weighting into the OAM basis (OAM 
mode distribution) before (blue) and after (red) filtering takes place, 
which clearly shows that the l = 2 mode is suppressed after propagat-
ing through the TVG, especially when compared with a single waveguide 
that does not have any filtering (Methods). These experimental results 
along with numerical simulations clearly demonstrate that topological 
disclinations can be implemented to extract and transport a desired 
OAM mode, promising for structure-based vortex filters.

Discussion
We have demonstrated the fundamental principle behind OAM mode 
extraction and twofold protection of vortex transport via 
chiral-symmetric topological disclinations. The principle allows for 
robust guidance of a single zero-energy vortex mode, or for selection 
of one of the degenerate OAM modes from mixed-mode excitations, 
which cannot be achieved in topologically trivial waveguide structures 
including specially designed optical fibres12,17. Even if the structure has 
non-trivial topology in momentum space, that is, it supports 
zero-energy mode due to chiral symmetry inherent to the SSH-like 
system, it can support and protect an OAM mode only when the VRS is 
also satisfied. This reflects the interplay of vorticity, symmetry and 
topological phases. Detailed stability analyses under different pertur-
bations (respecting chiral symmetry, subsymmetry46 and rotational 
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Fig. 5 | OAM extraction (filtering) from mixed-mode excitation via topological 
disclination. a, A comparison of the OAM-mode distribution between input and 
output (after exiting the TVG) under mixed excitation, which is obtained by 
projecting the experimentally measured results onto the calculated OAM 
eigenmodes of the waveguide; the insets show the input intensity pattern (top) 
and the corresponding interferogram (bottom) for a mixed-mode (l = 1 and l = 2) 
excitation. b, Output from a single waveguide under mixed excitation. The 
intensity ratio between the two modes determines the overall output pattern, 
which changes and rotates as the relative phase is varied from (1) π/3 and (2) 2π/3 
to (3) 5π/6 (the l = 2 vortex cannot be eliminated during propagation, leading to 

an overall broken vortex pattern); (4) corresponding simulations. c, (1–3) Output 
from the C3 disclination under the same excitation corresponding to (b, 1–3), 
showing that the l = 2 vortex is filtered out (due to that the structure is made in 
this case topologically trivial for the l = 2 mode, although the VRS is still valid), 
whereas the protected l = 1 mode is preserved; (4) corresponding simulations. In 
b (4) and c (4), the corresponding simulations confirm that the protected vortex 
preserves its shape and undergoes robust propagation along the disclination 
core—even for long distances (c, 4), in contrast to what happens in a single 
waveguide (b, 4) (Supplementary Media File (1)). The top-right insets are 
interferograms obtained to identify the vortex phase singularity.
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symmetry) are presented in Supplementary Notes 9 and 10, confirming 
the advantage of twofold protection from the TVG approach. In Sup-
plementary Note 11, we show how a high-order vortex (l = 5) remains 
guided (no diffraction, no splitting) in the TVG, however it dramatically 
diffracts and breaks up into multiple l = 1  vortices under the same 
perturbation in the absence of a waveguide (Extended Data Fig. 6 and 
Supplementary Media File (3)).

Over the past decades, guiding light has been based on the para-
digm of either total internal reflection or photonic bandgaps, but 
recent exploration has heralded new mechanisms for unconventional 
transport, including, for example, guiding light by geometric phases47, 
by centrifugal barriers from the OAM of light itself48 and by optical 
Coriolis forces around the Lagrange points49. Our topological approach 
certainly opens a new avenue for guiding light, particularly for pro-
tected vortex transport.

While this work focuses mainly on the fundamental principle, it may 
bring about a solution to the long-standing challenge of controlling vor-
tex transport applicable to different fields, since the underlying physics 
for topological protection of vortices is broadly valid. For instance, it 
may be applied to acoustics and topolectrical circuitry where chiral 
symmetry has already been realized24,50,51. In technologically important 
structures like photonic crystals, recent work has demonstrated that 
photonic crystal fibres can be designed to host topological super-
modes across multiple cores52. Thus, we envision that our scheme may 
be adopted for the design of microstructured optical fibres enabling 
protection of OAM modes in future communication networks17. With 
the rapid advancement of integrated vortex generation11,32,53,54, the 
topological approach may open a pathway for routing and protecting 
vortices, particularly classical and quantum OAM modes, from one place 
to another with unprecedented transport properties.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Construction of single-site disclination lattices
The Cn-symmetric disclination used in this work is constructed by a 
modified cutting and gluing procedure20,21. Compared with previous 
lattice structures derived from the standard two-dimensional SSH 
model42, our disclination structure is uniquely designed to have a 
single-site core, yet featuring chiral symmetry.

As illustrated in Extended Data Fig. 1a,b, the conventional disclina-
tion structures belong to either the type-I or type-II categories20,21. The 
type of disclination is identified by the amount of translation and 
rotation of a vector around a chosen path (depending on the translation 
value [a] and the Frank angle Ω)23. Type-I disclination lattices with Frank 
angle Ω = −90∘ and the holonomy value of a closed path around the 
core [a](4) = 0  are terminated by weak bonds at the centre location 
(Extended Data Fig. 1a). Complementarily, type-II lattices with Ω = −90∘ 
and [a](4) = 1 have strong bonds around the defect core (Extended Data 
Fig. 1b). In the non-trivial phase, the Wannier centres (quadrangular 
yellow stars) are positioned at the intersection among four-unit cells. 
We note that chiral symmetry is not present in both types of 
disclination20.

The Cn disclination with a single-site core used in our work cannot 
be simply categorized as one of the above classes, and its formation 
requires the removal of some lattice sites instead of just cutting and 
gluing. To guarantee the existence of zero-energy bound states, we 
appropriately modify an initial type-II disclination structure. The result-
ing lattice displays three-unit cells composed of four sites intersecting 
at the centre, each of which belongs to one of the C3-symmetric sectors 
(Extended Data Fig. 1c). We first shift every lattice sector with respect 
to the core until the three nearest waveguides perfectly overlap. The 
white arrows in the inset indicate the directions to shift the lattice sites. 
Then, any overlapped (extra) lattice sites that break chiral symmetry 
in the traditional disclination structure are removed, so that the array 
index is still uniform. In a similar way, other Cn-symmetric lattices can 
be readily constructed. A characteristic difference between our scheme 
and those previously shown type-I and type-II disclinations is that our 
single-core Cn disclinations possess chiral symmetry and can thus sup-
port topologically protected zero-energy bound states.

Discrete vortex Hamiltonian
In the OAM domain, we express the real-space Hamiltonian of a 
Cn-symmetric disclination lattice with topological charge l  under the 
tight-binding approximation as

H = ∑
R,R′ ,l

ξ (R−R′) [κSVc†R,lcR′ ,l + κOVe2ilθ(R−R
′)c†

R,lcR′ ,−l] , (M1)

where ξ (R−R′) = e−ρ||R−R′ ||  is the hopping amplitude between two 
nearest-neighbour waveguides of the Cn-disclination lattice located at 
the positions R and R′, and ρ is a scale factor. The hopping amplitudes 
are approximated as an exponential decay function of the difference 
|R−−−R′′′| (ref. 55). The parameter κSV  describes the SVMC, while κOV 
describes the OVMC, with θ (R−R′) being the azimuth angle of the vector 
R−R′. c†

R,l  is the creation operator at the lattice site with position R, 
corresponding to a vortex mode with a topological charge l. An analo-
gous definition is given for the annihilation operators. The vortex band 
structures reported in Fig. 3 are calculated by diagonalizing H  for the 
same C3-disclination structure, but distinct l  values. Related 
vortex-mode distributions are found by retrieving both clockwise 
(l < 0) and anti-clockwise (l > 0) components from the calculated 
eigenvectors of H .

Experimental methods
We create three disclination photonic lattices with C3-, C4- and 
C5-rotational symmetries by employing a site-to-site CW-laser-writing 
technique in a 20-mm-long photorefractive crystal43,56. For the C3 lattice 

shown in Fig. 2a, the intra-cell and inter-cell waveguide distances (cor-
responding to d1 and d2 in Fig. 3b(1)) are, respectively, 57.5 μm and 
42.5 μm for guiding the l = 1 vortex, and 69 μm and 51 μm for guiding 
the l = 2 vortex. In the writing process, an ordinary-polarized laser 
beam with a 532 nm wavelength and a low power of about 70 mW is 
phase-modulated in the Fourier domain by a spatial light modulator, 
to create a quasi-non-diffracting beam at variable writing positions. 
Every waveguide remains intact during each set of measurements 
owing to the photorefractive ‘memory effect’43,56. The probing process 
is performed by launching into the disclination core an extraordinary- 
polarized vortex beam at the same wavelength with different topologi-
cal charges. The probe vortex is generated by imposing a helical phase 
together with an amplitude modulation on a Gaussian-like beam 
assisted with the spatial light modulator, which can be described as 
Ψ (x, y,0) = Ar|l| exp(− r2

w2
) exp(ilφ) . This indicates that the probe beam 

features a high-order vortex with a topological charge l  (here, A is an 
amplitude parameter, r = √x2 + y2  and φ = tan−1 (y/x) are the radial and 
azimuthal coordinates, while w is a normalization width). Such gener-
ated vortices resemble the Laguerre–Gauss beams that carry OAM. 
Experimentally, interferograms are obtained by setting the interfer-
ence between the vortex beam and a reference quasi-plane wave or 
spherical wave to identify the vorticity (see Supplementary Note 1 for 
more details). Numerically, we calculate the guided modes (eigen-
modes) of individual waveguides in the disclination structure using 
experimental parameters and find that the mode profiles well fit those 
of Laguerre–Gauss modes. Thus, since the excitation beam is modu-
lated to have radial modes approximately matching the eigenmodes, 
it will evolve into a disclination vortex mode during propagation 
through the structure with preserved OAM.

To demonstrate OAM filtering from a mixed-mode excitation, in 
Fig. 5, we plot the modal weighting into the OAM basis (OAM mode 
distribution) before and after the filtering from our experimental 
results. The OAM spectrum is obtained by calculating ||⟨Ψexp|Ψl⟩||

2
, where 

Ψexp is the amplitude of the light field from the experimental output 
beam in the disclination core, and Ψl is the eigenmode of our photonic 
waveguide obtained from numerical simulations (with an induced 
index change Δn/n = 1.11 × 10−4 and a waveguide width 36 μm; similar 
to our experimental condition). Both Ψexp and Ψl are normalized so that 
||⟨Ψexp|Ψexp⟩||

2 = |⟨Ψl|Ψl⟩|
2 = 1 . The possible OAM modes involved under 

this condition are l = −3, −2, −1, +1, +2, +3. The amplitude of the experi-
mental output is directly acquired from the charged-coupled device 
(CCD) image, with its corresponding phase measured through the 
plane-wave interferogram using the method previously established57. 
Due to the limitation of the method (projecting experimental data onto 
the eigenmodes calculated for an ideal single waveguide) to attain the 
OAM spectrum, small portions of initially unexcited modes (for exam-
ple, l = 0) appear to be present at output, but in reality, these modes 
are not involved.

Numerical methods
The propagation dynamics of an optical vortex beam are simulated 
using a continuum model of the nonlinear Schrödinger-like equation 
(NLSE)46

i∂Ψ
∂z

= − 1
2k

∇2
⟂Ψ − kΔn0

n0

Ψ

1 + IL (x, y) + IP (x, y)
, (M2)

where Ψ (x, y, z) is the electric field envelope, x and y denote the trans-
verse coordinates, z  is the longitudinal propagation distance and 
∇2
⟂ = ∂2/∂x2 + ∂2/∂y2 is the transversal Laplacian operator. Here, k  is the 

wavenumber in the medium, n0 = 2.35 is the refractive index for our 
specific photorefractive crystal and Δn0 = −n3

0r33E0/2 is the refractive- 
index change, where r33 = 280 pm V−1 is the electro-optic coefficient 
along the crystalline c axis, and E0 is the bias electric field. The two 
terms IL(x, y)  and IP (x, y)  denote the intensity patterns of the 
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lattice-writing and lattice-probing beams, respectively. To confirm the 
theoretical prediction of TVG formation in the proposed Cn-disclination 
lattice, experimental measurements are also corroborated by numerical 
simulations using the NLSE in equation (M2) (Supplementary Note 2). 
For a linear vortex-beam excitation, the NLSE solutions are found via 
a split-step Fourier transform method under the condition that IP (x, y, z) 
is weak, so the probe beam itself does not undergo nonlinear self-action 
during propagation.

Data availability
Data supporting key conclusions of this work are included within the 
Article and its Supplementary Information. All other raw data that 
support the findings of this study are available from the corresponding 
authors on reasonable request.
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Extended Data Fig. 1 | Realization of C3-symmetric disclination lattices with a 
single-site core at the center. a, b Schematics of conventional disclination 
structures with C3-symmetry, constructed from a standard 2D SSH model 
through a ‘cutting and gluing’ procedure, belonging to type-I (a) and type-II (b) 
classifications23. Shaded gray quadrilaterals highlight the unit cells, where the 
yellow stars correspond to the Wannier centers, the black circles are lattice sites, 
and the red arrows illustrate the calculations of the Frank angle Ω for the type-I 

lattice20. c Illustration of the disclination process used to realize a single-site-core 
C3-lattice from the associated type-II disclination structure. Gray circles mark the 
waveguides removed from the original type-II lattice array, red and blue dots are 
lattice sites for A and B sublattices, respectively, and the white arrows in the 
upper middle inset indicate the shifting and merging directions. Such a 
constructed disclination lattice still features chiral symmetry.
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Extended Data Fig. 2 | Numerical simulations of the topological vortex guide 
by chiral-symmetric disclinations. Propagation of the probe vortex is 
simulated under single-site excitation at the core (circled in a1-c1) of C3, C4 and 
C5-symmetric disclination lattices. a1 C3 disclination lattice. a2-a5 Output 
intensity distributions of an l = 1 (a2, a3) and l = 2 (a4, a5) vortex beam from the 
lattice at selected distances z = 20mm (a2, a4) and 200mm(a3, a5), 
highlighting the protected topological vortex transport. Insets are the 
corresponding numerical interferograms, showing the phase singularity from 

fringe bifurcations. b1-b5 Same layout as in a1-a5 but for the C4-symmetric 
lattice. In this case, the l = 1 vortex is ‘doubly’ protected by topology, while the 
l = 2 vortex is not protected due to the lack of real-space topological protection 
depicted in Fig. 4 of the main text, breaking into a quadruple-like structure at the 
core with ‘tails’ populating both sublattices. c1-c5 Same layout as in a1-a5 but for 
the C5-symmetric lattice, which shows again robust transport for both l = 1 and 
l = 2 vortices because they satisfy the requirement of vorticity-coordinated 
rotational symmetry.
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Extended Data Fig. 3 | Experimental results showing the comparison between 
topologically protected and unprotected transport of a high-order (l = 3) 
vortex. a1 Input intensity pattern of the l = 3 vortex beam. a2-a3 Output 
intensity patterns after free propagation (in the crystal without lattice structure) 
taken at (a2) 10-mm and (a3) 20-mm propagation distances, exhibiting 
diffraction. a4 Interferogram of the pattern in (a3) with a spherical wave, 
displaying the high-order vorticity. b1 A laser-written nontrivial C5 disclination 
structure featuring twofold topological protection. b2-b4 Topologically 

protected output results obtained from the nontrivial disclination, presenting 
guided output with preserved vorticity. c1-c4 Corresponding results from a 
deformed C5 disclination structure (c1), where the lattice parameters (for the 
dimer chains along two marked directions) are tuned intentionally so as the 
two-fold topological protection is disrupted. The lattice parameter tuning leads 
to the VRS breaking since the rotational symmetry is no longer satisfied. As the 
propagation distance increases, the vortex beam breaks up and disintegrates 
into multiple low-order vortices (marked by small dashed circles in c4).
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Extended Data Fig. 4 | Generalized multipole chiral numbers used for 
describing the topological phase of Cn-symmetric disclination lattices. a 
Schematic illustration showing the definition of coordinate axes in the three 
groups of a nontrivial C3-symmetric disclination lattice marked by dash-dotted 

lines. b1, c1 Topological invariant of the multipole chiral number N , calculated 
for a C3-symmetric disclination lattice and for the l = 1 (b1) and l = 2 (c1) vortex 
modes. b2, c2 Corresponding calculations for a C4-symmetric lattice, and b3, c3 
for a C5-symmetric lattice.
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Extended Data Fig. 5 | Protected and unprotected high-order vortex modes in 
a C5-symmetric disclination lattice. a Schematic illustration of the chiral-
symmetric C5-disclination lattice. b Calculated eigenvalues for the |l| = 5 vortex 
modes of the lattice, where two degenerate defect modes appear right at zero 
energy but with opposite phase vorticity. c1, c2 Two examples showing 
unprotected high-order vortex modes with topological charge l = 5 (c1) and 
l = 10 (c2) after a propagation distance Z = 40 (simulation from the tight-

binding model). In these cases, the vorticity-coordinated rotational symmetry 
(VRS) is not satisfied because 2l/n is an integer. d1, d2 Two examples showing 
protected high-order vortex modes with topological charge l = 8 (d1) and l = 12 
(d2). Here, the VRS is satisfied because 2l/n is not an integer. These results for 
different high-order vortices in the same disclination structure further validate 
the real-space topological protection pictured in Fig. 4 of the main text.
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Extended Data Fig. 6 | Comparison of a guided high-order vortex in TVG (top) 
vs. unguided propagation with vortex splitting in free space (bottom) under 
perturbation. a1 Intensity distribution of C3-disclination lattice. a2 Intensity 
pattern of a high-order vortex beam with topological charge l = 5 at the onset 
distance. b1-b2 Output intensity after propagation in the C3-disclination lattice 
under background perturbation, selected at (b1) 10mm and (b2) 20mm, 
highlighting that the l = 5 vortex is well-guided without breakup through the 

TVG. b3 Interferogram from the guided vortex corresponding to (b1), indicating 
that the high-order phase vorticity remains intact. c1-c3 Same layout as b1-b3 
when the l = 5 vortex propagates in free space (without the disclination 
structure) under the same background noise. The vortex beam experiences 
significant expansion and distortion, in both intensity and phase profiles: in 
particular, the interferogram of (c3) exhibits clearly vortex splitting into multiple 
l = 1 phase singularities, marked by 5 dashed circles.
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