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1. INTRODUCTION 
 

1.1 Schwann cells and their role in the peripheral nervous system 
 

The peripheral nervous system (PNS) includes the cranial nerves, spinal nerves, peripheral 

nerves and neuromuscular junctions. Nerve fibers (axons) of these nerves extend far from the clusters 

of neuron cell bodies (ganglions) to conduct information towards and away from the central nervous 

system (CNS). They are bound together by sheaths of connective tissue, with the endoneurium 

surrounding individual fibers, perineurium binding fibers into fascicles and epineurium binding 

fascicles into nerves [1].  

 

Figure 1 Structure of an adult peripheral nerve. 

Nerve fibers, or axons, are surrounded with a myelin sheath and are bound together with a layer of connective 

tissue, called the endoneurium. Fibers are further bound into fascicles and surrounded by the perineurium. Many 

fascicles brought together and surrounded by the epineurium make up an adult peripheral nerve. Figure adapted 

from [1]. 

 

The sheath adjacent to the neuron membrane (neurilemma) is the endoneurium (Figure 1). It 

contains blood capillaries that provide nutrients and oxygen, as well as transport macrophages for 

nerve protection. The endoneurium also contains cells that are unique for the PNS, Schwann cells 

(SCs). The SC membrane forms a multilayered insulating lipid sheath (myelin sheath) enwrapping the 

axon in segments (Figure 2). Each segment belongs to a single SC and is separated by non-myelinated 
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spots (nodes of Ranvier, Figure 2). These spots make the border between adjacent SCs and allow the 

signal to be propagated in a series of jumps from node to node. The myelin sheath prevents signal loss 

and reduces any additional metabolic requirements for neural activity [1]. 

 

Figure 2 Schwann cells surround the axon and form the myelin sheath. 

The Schwann cell membrane forms a myelin sheath which enwraps the axon in segments. Each segment belongs 

to a single Schwann cell and is separated by non-myelinated spots (nodes of Ranvier). These spots make the 

border between adjacent Schwann cells and allow a continuous propagation of the nerve signal. Figure adapted 

from https://shwannomawebpaper.wordpress.com/ on 11.08.2016. 

 

First described by physiologist Theodor Schwann [2], the Schwann cells, glia of the PNS, are 

derived from the neural crest and migrate together with nerve cells to form peripheral nerves [3]. They 

have various roles in the PNS, such as being involved in nerve development and regeneration, or 

cleaning up of neuronal debris [4]. Furthermore, they provide trophic factors for neurons [5], modulate 

neuromuscular synaptic activity and can recruit antigen-presenting cells to the site of injury [6].  

SC precursor cells originate from the neural crest and, along with generation of immature SCs, 

can develop into melanoblasts [7], parasympathetic neurons [8] and endoneurial fibroblasts, which 

form the connective tissue that appears in nerves [9]. Survival of SC precursor cells is essentially 

dependent on neuronal signals [10, 11], while immature SCs are less neuron-dependent and can rely 

on the secretion of their own autocrine signals [10, 11]. Further immature SC proliferation and 

differentiation, though, remains neuron-dependent to a great extent [12].  

Immature SCs develop into myelinating or non-myelinating cells (Figure 3) that retain their 

phenotypic plasticity and can switch back to former developmental stages in response to nerve injury 

[13], which is a characteristic that contributes to the striking regenerative properties of the PNS.  

https://shwannomawebpaper.wordpress.com/
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Figure 3 Four stages of Schwann cell development. 

Schwann cell precursor cells originate from the neural crest and, while developing towards the Schwann cell 

lineage, can form myelinating or non-myelinating Schwann cells, which retain their phenotypic plasticity and 

can switch back to former developmental stages in response to nerve injury. Figure adapted from [14]. 

 

Myelinating SCs remain consistently dependent on neurons and, even though they have the 

ability to survive without axonal contact in response to nerve damage, after longer periods of no 

axonal contact, most of them eventually die [15]. Similarly, neurons need the presence of SCs for 

normal branching and target interactions in early development [12, 16], as well as their neurotrophic 

support for cell differentiation [17] and survival in later stages of development. The role of SCs in 

nerve cell differentiation makes the pronounced interdependence between these two cell types 

especially interesting in regards to deciphering the biology of tumors originating from the sympatho-

adrenal lineage of the PNS, neuroblastomas.  

 

1.2 Neuroblastoma 
 

Neuroblastoma (NB) is a solid tumor originating from trunk neural crest-derived neuroblasts that 

most commonly affects infants and children. Tumors most frequently arise in the adrenal glands or 

ganglia but, in some cases, also in other sites like the abdomen or chest. The biology of NB differs 

greatly among different types of tumors and the characteristics are highly dependent on the age of the 

patient, as well as stage and genetic profile of the tumor [18]. Manifestations can range from 

spontaneously regressing to very aggressive metastasizing forms and several genomic alterations, 

which can be linked to the different patterns of clinical behavior, have so far been identified. 
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Tumors can be divided into 2 major types [18]:  

1. Type 1 NBs are characteristic for very young patients and show numerical chromosome 

abnormalities (NCAs) (near triploidy) (Figure 4), without additional segmental 

chromosome abnormalities (SCAs) [19, 20]. SCAs in general go together with diploidy or 

tetraploidy [21], although can sometimes occur in near-triploid NBs, thereby affecting the 

prognostic impact of these tumors [20]. Type 1 NBs show high expression of the TrkA 

(tropomyosin receptor kinase) neurotrophin receptor and have the ability to undergo 

differentiation in the presence of normal SCs and its ligand NGF (nerve growth factor) in 

the microenvironment, or spontaneous regression (apoptosis) in the absence of NGF [22], 

frequently leading to a favorable clinical outcome for patients (in both cases). 

 

2. Type 2 tumors (Figure 4) are associated with patients of older age and an unfavorable 

advanced tumor stage that is linked to frequent SCAs - like an unbalanced gain of 

chromosome arm 17q, which is a frequent event in both subtypes (2A, 2B). Subtype 2A 

often has additional segmental losses of chromosome arms 3p, 4p and/or 11q and gain of 

chromosome 7. Subtype 2B is characterized by MYCN amplification, frequently 

associated with 1p deletion [23]. Type 2 tumors also show high expression of the TrkB 

neurotrophin receptor and its ligand BDNF (brain-derived neurotrophic factor). Activation 

of the TrkB-BDNF autocrine signaling pathway leads to invasion, metastasis, 

angiogenesis and drug resistance [24].  

 

Figure 4 The major genomic alterations involved in neuroblastoma development. 

Type 1 neuroblastomas are tumors with a favorable clinical outcome, which have the ability to undergo 

differentiation in the presence of NGF in the microenvironment, or apoptosis in its absence. Type 2 

neuroblastomas are clinically unfavorable and linked to frequent SCAs, with the subtype 2B tumors being the 

most rapidly progressive ones. NCAs: numerical chromosomal abnormalities; SCAs: segmental chromosomal 

abnormalities; NGF: nerve growth factor; TrkA/B: tropomyosin receptor kinase A/B. Figure adapted from [18]. 
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Although aggressive forms of neuroblastoma frequently relapse and lead to death of patients, 

NB is considered as one of the cancers with the highest probability to undergo spontaneous regression 

[25]. This phenomenon contributed to classification of a subset of infants currently designated as L1, 

L2 and MS stages according to the International Neuroblastoma Risk Group (INRG) staging system 

[26]. MS stage patients present small primary tumors, less than 10% of bone marrow involvement, are 

less than 18 months of age at diagnosis and the tumors lack MYCN amplification. Additionally, the 

tumors of these patients were shown to be mostly near triploid with whole chromosome gains [27]. 

Fully mature types of tumors, so-called ganglioneuroma, are composed of few ganglionic cells 

(differentiated neuroblasts) that are surrounded by a dense SC stroma. There are also intermediate 

types called ganglioneuroblastomas, in which the extent of the SC stroma varies, which is directly 

correlated with the level of tumor maturation, as well as to a favorable prognosis [28, 29]. The finding 

that the SCs in these tumors do not originate from NB cells was first described by Ambros et al. [22]. 

1.3 Previous research on the Schwann cell – neuroblastoma interaction in 

fully mature neuroblastomas  

 

SCs originate from a pluripotent neural crest cell (Figure 5) and thus share a common 

progenitor with neuroblasts, which is why they were for long considered to be of neoplastic origin. 

This was based on two observations: first, in ganglioneuroma and ganglioneuroblastoma, SCs 

frequently make up the majority of the tumor mass and second, in neuroblastoma in vitro cell cultures, 

besides the neuronal-type cells,  an additional fibroblast-like cell type, was found and considered to 

represent SCs [30, 31]. However, Ambros et al. showed that, in MYCN amplified NB cell lines, these 

fibroblast cells with flat morphology are revertants (senescent cells), and not SCs [32, 33], proving 

that these previous assumptions were misconceptions. 

 

Figure 5 Immunofluoresence-stained cryosection of a fully mature neuroblastoma (ganglioneuroma). 

Cells positive for the differentiation marker NF200 are shown in red and cells positive for the Schwann cell 

marker S100 in green. Cell nuclei labeled with DAPI-stain are shown as blue. Nuclei negative for either of the 
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markers belong to fibroblasts or blood vessels. The predominance of stromal Schwann cells in the tumor is 

clearly visible. Image kindly provided by Tamara Weiss, CCRI, Vienna. DAPI: 4', 6-diamidino-2-phenylindole; 

CCRI: Children’s Cancer Research Institute. 

 

As the physiologic properties and functions of SCs became clearer in the early 1990s, the 

interest for their role in tumor maturation arose, and several groups aimed to decipher this matter. 

Nonetheless, this was challenging at that time, since cells in ganglioneuromas do not proliferate and 

conventional cytogenetic methods could not be used. Ambros et al. used in situ hybridization and 

immunohistochemical analysis on paraffin sections, together with flow cytometry, to measure DNA 

content and detect numerical and segmental chromosomal aberrations [22]. They demonstrated that 

SCs in ganglioneuromas have a diploid DNA content and a disomic in situ hybridization pattern, 

whereas the ganglionic cells showed clonal aneuploidy (e.g. trisomy) [22], suggesting that SCs in 

ganglioneuromas and ganglioneuroblastomas are cells of non-neoplastic origin that invade the tumor 

and form a specialized tumor stroma. 

Based on these data, they proposed a model (Figure 6) in which undifferentiated aneuploid NB 

cells secrete chemotactic factors that recruit SCs. The neuron-associated mitogens provoke SC 

proliferation and migration, and the SCs migrate into the tumor using neuritic processes for their 

guidance. Further stimulated by the NB cells, once in tumor proximity, the SCs secrete neurotrophins, 

such as NGF, BDNF and CNTF (ciliary neurotrophic factor), that act on NB cells and inhibit NB cell 

proliferation, induce cell differentiation and/or apoptosis, leading to a fully mature tumor [22]. 

 

Figure 6 Proposed model of neuroblastoma maturation.  

Favourable neuroblastoma cells have the ability to attract Schwann cells by secretion of Schwann cell-recruiting 

chemotactic factors. Once in tumor proximity, the Schwann cells secrete neuritogens that inhibit neuroblastoma 

cell proliferation, induce cell differentiation and/or apoptosis, in that way stimulating the formation of a fully 

mature neuroblastoma. Figure adapted from [22]. 
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The proposed model is supported by the fact that aggressive MYCN non-amplified types of 

tumors can present with a SC stroma after chemotherapy [34], indicating the proposed ability of tumor 

cells to recruit SCs. Secondly, the SCs present in differentiating tumors can frequently be found at the 

outer portion of the tumor and are not intermingled with NB cells in a way that would be expected if 

they arose from the same cells as tumor cells [22]. Moreover, SCs occurring in fully mature NBs, 

ganglioneuromas, cannot be distinguished from SCs present in the PNS in their spatial organization 

[22]. These SCs have also been shown to have only limited morphological similarities to neoplastic 

SC versions that form schwannomas [35]. Another important fact is the high expression of high and 

low affinity NGF receptors, p140trkA and p75NGFR, respectively, in aneuploid forms of NB [36, 37]. The 

ligand for these receptors, NGF, is essential for inducing differentiation of sympathetic neuronal cells 

and, since SCs are a valuable source of NGF, they could, according to the proposed model [22], 

trigger the maturation process in NB.  

Soluble SC-secreted factors that mediate the SC-NB cross-talk and that could influence 

neuroblastoma maturation, have so far been investigated by several groups. SPARC (secreted protein 

acidic and cysteine rich) is an example of a factor that was identified as one of the SC-derived 

inhibitors controlling neuroblastoma tumor angiogenesis [38]. Another example is PEDF (pigment 

epithelium-derived factor), that was shown to induce tumor cell differentiation in vitro. Its 

recombinant form was shown to have the same effects in vitro and in vivo [39]. However, the analysis 

of the SC secretory profile has so far been restricted to single candidate factors and a comprehensive 

analysis has not yet been performed. 

 

1.4 Preliminary data on Schwann cell - neuroblastoma in vitro co-

cultivation  
 

The published [35] and new preliminary data of the Tumor Biology group at the Children’s 

Cancer Research Institute (CCRI), Vienna, on in vitro co-cultivation experiments of primary human 

peripheral nerve-derived SCs and NB cell lines with different genetic backgrounds, derived from high-

risk NB patients (representing type 2 tumors, Figure 4), have confirmed a tumor-inhibiting and 

differentiation-inducing effect of SCs on NB cells, as examined by flow cytometry and 

immunocytology manuscript in preparation. These experiments also demonstrated induction of 

apoptosis according to TUNEL assays, all together proving that the SC-NB interactions in the tumor 

can be replicated in vitro. Furthermore, SC-NB transwell cultures that prohibit direct cell-cell contact, 

while media and proteins diffuse freely through the microporous membrane of the insert, demonstrated 

that secreted factors are involved, since the effects were similar as with direct co-cultivations 

(manuscript in preparation). 
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1.5 Hypothesis and aim of study  
 

Based on the hypothesis that SCs secrete factors that have an anti-proliferative and 

differentiation-inducing effect on NB cells, the aim of this master thesis was to investigate the 

mechanism of this process by identifying the factors involved, and defining the concentration and 

combination needed to provoke inhibition of cell proliferation and induction of cell differentiation of 

neuroblastoma cells. 
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2 MATERIALS AND METHODS  

 

2.1 Cell lines and cell culture 
 

Cultivation of NB cell lines was performed using αMEM complete medium (αMEM+): 

αMEM (Gibco, Austria) containing 10% fetal bovine serum (FBS; Sigma-Aldrich, Austria), 25 mM 

HEPES buffer solution (Pan Biotech, Germany), 1 mM sodium pyruvate (Na-pyruvate, Pan Biotech, 

Germany) and 1% Penicillin/Streptomycin (P/S, Pan Biotech, Germany). The cell lines used and their 

genetic characteristics are listed in Table 1. 

Table 1 Characteristics of neuroblastoma cell lines used in in vitro cultivation experiments. 
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INSS stage 3 3 4 n.a. 4 

Patient outcome DOD CR n.a. n.a. DOD 

MYCN amplification Yes 

dmin 

No Yes 

dmin 

Yes 

HSR 

No 

Ploidy di-/tetra-ploid aneuploid diploid n.a. diploid 

17q gain Yes Yes Yes n.a. Yes 

1p loss Yes Yes Yes Yes No 

Reference [33, 40] [33, 40] [41] [42] [43] 

INSS: International neuroblastoma staging system; n. a.: not available; DOD: dead of disease; CR: complete 

remission; dmin: double minute chromosomes; HSR homogenously staining region; wcUPD: whole 

chromosome uniparental disomy. 

 

All cell lines were previously derived from tumor tissue or bone marrow samples from INSS 

stage 3 or 4, i.e. high-risk NB patients. Tumor tissue and bone marrow samples were provided by the 

St. Anna Children’s Hospital, Vienna. Informed consent was obtained for the collection and research 

use of human tumor tissue and bone marrow samples according to the guidelines of the Council for 

International Organizations of Medical Sciences and the World Health Organization and was approved 

by the local ethics committees of the Medical University of Vienna and the St. Anna Children’s 

Hospital.  

The cells were stored in liquid nitrogen, or at -80 °C in an FBS solution with 10% 

Dimethylsulfoxid (DMSO, Roth, Germany). When needed, cells were thawed, αMEM+ was added 
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and they were kept in a CO2-incubator (5% CO2) at 37 °C. Cells were sub-cultured after reaching 80% 

confluency. Media was removed, cells were rinsed with 1x Dulbecco’s Phosphate-Buffered Saline (D-

PBS, PAN Biotech, Germany) and detached by adding 1.5 mL of Accutasse (cell detachment solution, 

PAN Biotech, Germany) for a 75 cm2 culture flask (T75), or 700 μL for a 25 cm2 sized culture flask 

(T25), respectively, for 2-3 minutes. αMEM+ media was added in a volume of 8 mL, the cell 

suspension was transferred to a 15 mL tube and centrifuged at 1100 rpm for 5 minutes at 4 °C (all cell 

detachment, harvesting and splitting procedures mentioned throughout the text have been performed in 

the same manner, if not otherwise stated). The pellet was resuspended in αMEM+ medium, in a 

volume depending on the splitting ratio (i.e. for a 1:2 splitting, 1 mL of αMEM+ medium was used) 

and the cells were further cultured in a total volume of 12 mL media for a T75 culture flask or 7 mL 

media for a T25 flask, including 1/3 of conditioned media (media conditioned by the NB cell line from 

the previous passage) (e.g.. for a T75 flask, 8 mL of fresh and 4 mL of conditioned media was 

combined). 

 

2.2 Isolation of human Schwann cells from peripheral nerve tissue and 

their co-cultivation with the STA-NB-6 cell line 

 

2.2.1 Isolation of nerve fascicles  

 

Peripheral nerve tissue samples were provided by the Department of Orthopedic Surgery or 

the Department of Plastic and Reconstructive Surgery at the Vienna General Hospital. Informed 

consent was obtained for the collection and research use of human peripheral nerve tissues according 

to the guidelines of the Council for International Organizations of Medical Sciences and the World 

Health Organization and was approved by the local ethics committees of the Medical University of 

Vienna and the St. Anna Children’s Hospital. Human peripheral nerves were collected during 

reconstructive surgery, amputations or organ donations of male and female patients between 16 and 70 

years of age. Nerves were stored in sterile saline for 1–3 h until further processing. 

The peripheral nerve was washed one time with cold 1x D-PBS, transferred into an autoclaved 

glass dish and covered with αMEM+ medium (Figure 7a). The nerve was cut with the use of a lancet 

into pieces of around 3 cm in length and any extra connective or adipose tissue was thereby removed. 

Nerve fascicles were pulled out of the epineurium using forceps and separated from the remaining 

tissue into a different autoclaved glass dish containing αMEM+ medium (Figure 7b). The fascicles 

were further cut into 5 mm pieces. The isolated cut fascicles were equally distributed into wells of a 6-

well plate (Figure 7c) and incubated overnight in 2 mL of digestion solution (αMEM+, 0.125% 

collagenase Type IV (GIBCO), 1.25 U/ml Dispase II (SIGMA) and 3 mM CaCl) at 37 °C [44]. 
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Figure 7 Schwann cell isolation procedure. 

a) Peripheral nerve tissue covered with αMEM+; b) pulled nerve fascicles covered with αMEM+; c) nerve 

fascicles in 2 mL digestion solution. 

 

2.2.2 Coating of culture dishes 

 

Surfaces of culture dishes were coated with 0.01% Poly-L-lysine Hydrobromide solution 

(PLL, Sigma-Aldrich, Austria), which was added in a volume of 1 mL to each well of a 6-well plate 

and distributed equally. The plate was shaken every minute to maintain the equal distribution of the 

solution. After 10 min, the wells were gently washed two times with ddH20 and the plate was left to 

dry for 2 h at room temperature (RT) [44]. The plate was then incubated at 37 °C with 1 mL of 

Laminin solution (6 μg/mL in 1x D-PBS, Engelbreth-Holm-Swarm murine sarcoma, Sigma-Aldrich, 

Austria) and washed the following day two times with 1x D-PBS, after which 1 mL of Schwann cell 

expansion media (SCEM; MEMα, 1% P/S, 2% FBS, 1 mM sodium pyruvate, 25 mM HEPES, 10 

ng/ml human FGF basic, 10 ng/ml human Heregulinβ1, 5 ng/ml human PDGF-AA (all PeproTech), 

0.5% N2 supplement (GIBCO) and 2 µM forskolin (SIGMA) [44]) was added to each well. The same 

procedure was used for coating of transwell inserts. 

2.2.3 Schwann cell seeding  

 

After overnight incubation, residual tissue was mechanically resuspended with a pipette to 

ensure homogeneity of the solution. After the addition of αMEM+, digested tissue was transferred into 
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15 mL tubes and centrifuged at 1000 rpm, RT. The pellet was resuspended in 1 mL SCEM and 

transferred to coated wells that already contained 1 mL of SCEM. Electrostatic charge was reduced by 

tapping the 6-well plate on a paper tissue soaked with Mikrozid (Mikrozid Liquid, Schülke & Mayr, 

UK). The cells were cultured for 5-7 days (Figure 8) and half of the media was changed every 2-3 

days [44]. 

 

Figure 8 Schwann cells growing on a coated well 5 days after seeding.  

A Schwann cell is indicated with the black arrow. 

 

2.2.4 Schwann cell purification procedure 

 

After 7 days in culture, SCs were purified from fibroblasts by addition of ice cold Accutasse 

for 2-3 minutes [44]. Cells were gently washed off with a pipette, collected into 15 mL tubes and 

centrifuged at 900 rpm for 5 minutes at 4 °C. The pellet was resuspended in 1 mL αMEM+ and 500 

μL of the suspension was transferred to 2 wells of an uncoated 6-well plate that already contained 2 

mL of αMEM+ media each. Electrostatic charge was reduced as mentioned previously. The plate was 

incubated for 30 minutes at 37 °C [44], allowing the fibroblasts to attach. The supernatant that mostly 

contained SCs in suspension was further centrifuged at 900 rpm for 5 min [44], cells were counted and 

100 000 cells/well were seeded in duplicates in a fresh plate coated as described previously, serving 

either as Schwann cell control (Figure 9) or for co-cultivation with the STA-NB-6 cell line.  

The SCs were seeded in media consisting of conditioned SCEM and freshly prepared SCEM 

at a ratio of 1:1 [44]. After 1.5 days, half of the media was changed to αMEM+. On day 3 after 

seeding, the entire media was changed to αMEM+ and 140 000 cells of STA-NB-6 cells were added 

for co-cultivation experiments. 
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Fibroblasts that remained in the uncoated plate after the purification procedure were kept and 

cells from one well were transferred to a coated well. They were cultivated in αMEM+ and half of the 

media was changed every 3-4 days.  

SCs and fibroblasts, as well as all cells from co-cultivation and transwell cultures, and all STA-NB-6 

cells mentioned in the following paragraphs, were cultivated for a maximum of 17 days.  

 

Figure 9 Purified Schwann cells serving as control in αMEM+, 7 days after the purification procedure. 

Fibroblasts are visible as flat, substrate adherent cells, indicated with the white arrow, between mostly di- or tri-

polar Schwann cells, indicated with the black arrow. 

 

2.2.5 Direct Schwann cell/STA-NB-6 co-cultivation  

 

STA-NB-6 cells, used for co-cultivation experiments, were not sub-cultured for at least 3-4 

days before the start of the experiment to ensure that they reach a high cell number. The media was 

changed 2 days before. Cells were maximally 80% confluent when harvested, and 140 000 cells were 

added to wells (Figure 10) already containing SCs in a drop-wise manner, thereby not disturbing cells 

growing at the bottom of the well. Cells were carefully distributed throughout the well by gentle 

shaking and electrostatic charge was reduced as described above. Half of the media was changed every 

3-4 days. Furthermore, 300 000 STA-NB-6 cells from the same flask were seeded on a coated well as 

control cells. Cells were sub-cultured at a ratio of 1:2 when necessary, and half of the media was 

changed every 3-4 days. 
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Figure 10 Schwann cells and STA NB 6 cells in αMEM+, 5 days after co-cultivation. 

The black arrow indicates Schwann cells, the white arrow indicates neuroblastoma cells. 

 

2.2.6 Transwell Schwann cell/STA-NB-6 culture  

 

SCs were seeded in duplicates, 100 000 cells/well. STA-NB-6 cells were seeded in duplicates 

on the coated surfaces of inserts (Transwell Permeable Supports, 24 mm Inserts/0.4 μm Polyester 

Membrane, Corning Inc.), in the same number as for the co-cultivation experiments (i.e. 140 000 

cells/well). The transwell (TW) inserts were then transferred on top of the wells, while ensuring there 

is enough media underneath (around 3 mL) and inside the insert (around 800 μl), so that constant 

exchange of media is allowed (Figure 11). Additionally, 300 000 STA-NB-6 cells were seeded in 

duplicates to serve as transwell controls. Half of the media was changed every 3-4 days, very carefully 

in order to avoid the STA-NB-6 cells geting transferred to the bottom well containing SCs. For this 

reason, it was important to change pipette tips between changing medium of the well and the insert, 

and to gently transfer the insert to a separate plate with the use of forceps while sub-culturing STA-

NB-6 cells.  

 

Figure 11 A scheme of a 6-well plate and a transwell insert. 

The microfluidic transwell inserts contain micropores on the bottom for ensuring constant media flow between 

the insert and the well, while prohibiting direct cell-cell contact. Figure adapted from [45]. 
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2.3 Collection of culture supernatants  
 

Culture supernatants from co-cultivation and transwell experiments, as well as from 

corresponding SCs and STA-NB-6 controls and fibroblast cultures, were collected and centrifuged at 

1200 rpm for 10 minutes at 4 °C. The supernatants were collected into labelled protein low-bind tubes 

(Protein LoBind Microcentrifuge Tubes, 1.5 mL, Eppendorf), snap-frozen and stored at -80 °C. 

 

2.4 Identification of Schwann cell-secreted factors in co-cultivation and 

transwell supernatants 
 

2.4.1 Cytokine Antibody Arrays 

  

Supernatants from 2 previous independent co-cultivation and transwell experiments with 5 

different NB cell lines (Figure 12, Sample), as well as from corresponding controls, were pooled, 

respectively, and analyzed for the presence of various cytokines, chemokines, growth factors and 

proteases (which will from now on be referred to as ´factors´ for simplicity) with cytokine antibody 

arrays (CAA or protein arrays, RayBio Human Cytokine Antibody Array G-Series 4000, RayBiotech 

Inc., USA). Each of the 5 arrays used, contained antibodies for 55 different factors printed on their 

glass surface, so, in total, 275 factors could be detected. 

It is important to note that all reagents and samples were added only to wells that contain 

printed antibodies on their glass surface (Figure 12) and that all steps that include aspiration were 

carried out with extreme care touching only the corners of the well with a pipette tip. After the protein 

arrays were equilibrated to RT, 100 μL of 1x blocking buffer was added into each well and incubated 

for 30 minutes at RT. The blocking buffer was decanted and the remaining liquid was aspirated, after 

which 100 μL/well of undiluted sample (culture supernatant) was added. The chambers were covered 

with adhesive film and incubated for 2 h at RT. The adhesive film was removed and the samples were 

aspirated. The wells were washed 3 times for 2 min with 150 μL of 1x wash buffer I. After the last 

washing step, glass slides were placed into a container, submerged in wash buffer I and washed with 

gentle rocking two times for 10 min. This step was repeated with 1x wash buffer II. After the buffer 

was decanted and aspirated, 70 μL of streptavidin fluor was added to each well, the chambers were 

covered with adhesive film and aluminum foil on top and incubated for 2 h at RT while being gently 

shaken. The streptavidin fluor was removed and the two washing steps with wash buffers I and II, 

respectively, were repeated in the same manner as described above. The glass slides were then 

removed from the frame assemblies, placed in 30 mL centrifuge tubes and washed while being gently 

shaken, two times with wash buffer I for 10 minutes, afterwards one time with wash buffer II for 3 
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minutes. The glass chips were then removed from tubes, vigorously rinsed with de-ionized water and 

dried for 20 minutes in a laminar flow hood protected from light. A simplified version of the protocol 

is shown on Figure 13. 

 

Figure 12 Scheme of samples and their distribution on protein arrays. 

The 3 subarrays, shown right, contain the same antibodies for 55 factors printed on their glass surface. 

Supernatants of the 24 samples, shown left, were added to wells of the arrays and were tested for the presence of 

these 55 factors. This procedure was performed 5 times, with 5 different arrays containing antibodies for 

different factors, so, in total, 275 different factors could be detected. The cell lines used and their characteristics 

are listed in Table 1. CTRL: control; CoCu: co-cultivation; TW: transwell; NB6: STA-NB-6; NB10: STA-NB-

10. 

 

Figure 13 Simplified scheme of the protein array protocol.  

After the addition of samples, the arrays are incubated with a cocktail of biotinylated antibodies, followed by 

fluorescently labeled-streptavidin. The signals are detected with a laser scanner. Figure adapted from RayBiotech 

CAA User Manual.  
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2.4.2 Measurement and data analysis  

 

Fluorescence signals were obtained with the GenePix 4000 array scanner (Molecular Devices) 

using the green channel (Cy3) at an excitation frequency of 532 nm and 700 PMT. The image files 

generated in this way were aligned to respective .gal files (RayBiotech) and Gene Pix Pro 7 

(Molecular Devices) was used to create .gpr files. Each spot was manually inspected on the .gpr file 

images to ensure accuracy. After background correction and normalization to the internal control, 

averages of logarithmic (log2) fluorescence intensity (FI) values of direct (CoCu) and indirect (TW) 

experiments were calculated for each cell line. The mean fluorescence intensity (MFI) ratio of these 

experiments when compared to CTRLs was calculated. The MFI values were combined for all cell 

lines and proteins that had an at least 2-fold increase in secretion in CoCu/TW experiments as 

compared to controls, together with a p ≤ 0.05 value, were selected for visualization. Data was 

uploaded into the Qlucore Omics Explorer V3.1 software to generate Principle Component Analysis 

(PCA) plots and heatmaps. 

2.5 Fluorescence activated cell-sorting of co-cultivated cells 

 

2.5.1 Fluorescence-activated cell sorting (FACS) 

 

Replicates from co-cultivation and transwell experiments, as well as their corresponding 

controls, were harvested and pooled, and the pellet was resuspended in 250 μL FACS buffer (0.1% 

FBS, 0.05% Na-azide in 1x D-PBS), or in 400 μL for samples nr. 2 and 6 (Table 2).  

Table 2 Samples used for FACS-sorting and the corresponding antibodies used. Antibody specifications are 

listed in the text. 

SAMPLE Antibody 

1 SC CTRL (αMEM+) GD2-A546 / p75NTR A647 

2 SC/STA NB 6 CoCu GD2-A546 / p75NTR A647 

3 SC TW GD2-A546 / p75NTR A647 

4 STA NB 6 TW GD2-A546 

5 STA NB 6 TW CTRL GD2-A546 

6 STA NB 6 CTRL GD2-A546 

7 Fibroblasts on coated surfaces GD2-A546 

8 Fibroblasts without coating GD2-A546 

CTRL: control; SC: Schwann cell; CoCu: co-cultivation; TW: transwell.  

Cells were transferred into FACS tubes and the following antibodies were added: 4 μL of 

p75NTR-A647 (rabbit anti human, Cell Signalling, USA; labelled with AlexaFluor647 [A20173], 

ThermoFisher Scientific, USA; diluted 1:60 in FACS buffer) and 5 μL of GD2-A546 (humanized 
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chinese hamster, POLYMUN GmbH, Austria; labelled with AlexaFluor546 [A10237], ThermoFisher 

Scientific, USA; diluted 1:10 in FACS buffer).  

The samples were incubated in the dark for 30 minutes at 4 °C, washed one time with 1 mL of 

FACS buffer and centrifuged for 5 minutes at 1200 rpm and 4 °C (all washing steps for FACS 

procedures were performed in this manner). The pellet was resuspended in 200 μL FACS buffer and 8 

μL of 2μg/mL 4', 6-Diamidino-2-Phenylindole (DAPI) solution in 1x D-PBS was added. Cells were 

filtered through a cell strainer (BD) to remove clumps and sorted at FACS Aria (BD) in tubes 

containing 1.5 mL FBS. Sorted cells were then centrifuged at 1200 rpm for 5 minutes at 4 °C, the 

pellet was resuspended in 1 mL 1x D-PBS and transferred to a RNA-free tube (RNAse free, 

Eppendorfer). After another centrifugation step, the pellet was finally resuspended in 700 μL of Qiazol 

(Qiazol Lysis Reagent, Qiagen, Germany) and stored at -80 °C. 

2.5.2 Gene expression analysis 

 

Analysis of already existing RNA sequencing (RNAseq) data was performed using a custom 

RNA-sequencing pipeline built with Anduril [46] and with Qlucore Omics Explorer V3.1 software. 

Differentially expressed genes for the dataset were selected as |logFC| > 2 and q ≤ 0.05. 

2.6 Cultivation of STA-NB-6 and STA-NB-10 NB cell lines in the presence of 

recombinant proteins identified as Schwann cell-secreted factors 
 

Table 3 Initial concentrations of the recombinant proteins analogous to Schwann cell-secreted factors selected 

for addition to STA-NB-6 and STA-NB-10 cell lines. 

 

 

 

 

 

 

 

 

 

 

 

FACTOR SOLVENT CONCENTRATION  

(ng/mL) 

PROVIDER 

IGFBP6 dH2O/0.1 % 

BSA/PBS 

100 Peprotech 

BDNF dH2O/0.1 % 

BSA/PBS 

40 Peprotech  

CNTF 5mM Na3PO4, pH 

7.5/0.1 % 

BSA/PBS 

10 Peprotech  

GDNF dH2O/0.1 % 

BSA/PBS 

30 Peprotech 

β-NGF dH2O/0.1 % 

BSA/PBS 

20 Peprotech 

PTN dH2O/0.1 % 

BSA/PBS 

50 Peprotech  

FGF7 dH2O/0.1 % 

BSA/PBS 

10 Miltenyi 

Biotec 

EGFL8 50 mM Tris HCL, 

10 mM reduced 

glutathione 

100 Abnova 
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STA-NB-10 and STA-NB-6 cell lines were seeded at a density of 250 000 cells/well and in 2 

mL of α-MEM+. Recombinant proteins were added to the media the following day, at concentrations 

(Table 3) that were chosen according to literature data. Each protein was added as a single factor, and 

a combination of all proteins was also tested with all the same concentrations as for single factors. The 

cells were sub-cultured when required, and/or 2/3 of media supplemented with recombinant factors 

was replenished every 3-4 days. All cell lines were cultivated in this manner until day 8 or day 17 after 

the start of the experiment, with the two time-points according to the procedure used for SC-NB co-

cultivation and TW experiments (manuscript in preparation). 

 

2.6.1 Cell proliferation rate measurement of STA-NB-6 and STA-NB-10 cell lines by flow 

cytometry 

 

Cells were incubated with 1 μM EdU (Life Technologies, USA) for 14 h and were harvested, 

washed 1x in αMEM+ media, then resuspended in 100 μL of FACS buffer. The cell solution was split 

and 50 μL was used for the proliferation assay, while the remaining 50 µL for the differentiation 

assay. After centrifugation at 1200 rpm for 5 min at 4 °C (all centrifugation and washing steps for the 

FACS procedure were performed in this manner), 200 μL Roti-Histofix (acid free, pH 7, phosphate-

buffered formaldehyde solution 4 %, Roth, Germany) was added and cells were fixed for 20 minutes 

at RT, protected from light. They were afterwards washed in 1 mL 1x D-PBS / 1 % FBS and the pellet 

was resuspended in 100 μL of 1x EdU Perm/Wash Click-iT EdU Alexa Fluor 647 Flow Cytometry 

Assay Kit (Thermo Fisher Scientific, USA) for permeabilization. Cells were washed with 1 mL EdU 

Perm/Wash and resuspended in 100 μL of Click-it reaction cocktail (Click-it, Life Technologies, 

USA) and incubated for 30 minutes at RT. 

After a washing step with 1 mL of the EdU Perm/Wash, cells were again resuspended in 50 

μL of the same buffer and 3 μL of the GD2-A546 antibody (humanized chinese hamster, POLYMUN 

GmbH, Austria; labelled with AlexaFluor546 [A10237], ThermoFisher Scientific, USA; diluted 1:100 

in FACS buffer) was added and incubated for 30 min at 4 °C. Samples were washed with 1 mL of the 

EdU Perm/Wash, cells were resuspended in 100 μL of the EdU Perm/Wash and 1 μL of FxCycle 

Violet stain (Thermo Fisher Scientific, USA) was added and incubated for 20 minutes at 4 °C, 

protected from light. Samples were analyzed immediately without washing with the flow cytometer 

(Fortessa, Beckton Dickinson, BD Biosciences, Austria). 
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2.6.2 Cell diferentiation measurement of STA-NB-6 and STA-NB-10 cell lines by flow 

cytometry 

 

For measurement of cell differentiation, 5 μL of the GD2-A546 antibody (specifications as 

described previously) was added to 50 μL of cell suspension and incubated for 20 minutes at 4 °C, 

protected from light. Cells were then washed with 1 mL of FACS buffer, the pellet was resuspended in 

100 μL of Cytofix/Cytoperm solution (Fixation/Permeabilization kit, BD Biosciences,Austria) and 

incubated for 20 minutes at 4 °C, protected from light. Samples were then washed with BD 

Perm/Wash buffer (diluted 1:10 with ddH2O), resuspended in 50 μL of the BD Perm/Wash and 5 μL 

of the NF200-A647 antibody (mouse anti human, Millipore, USA; labelled with AlexaFluor647 

[A20173], ThermoFisher Scientific, USA; diluted 1:40 in FACS buffer) was added and incubated for 

20 minutes at 4 °C, in the dark. Cells were finally washed one time with 1 mL of the BD Perm/Wash, 

resuspended in 100 µL Perm/Wash and analyzed with the flow cytometer (Fortessa, BD, Austria). 

 

2.7 Isolation of mouse Schwann cells from peripheral nerve tissue (Nervus 

ishiadicus) 
 

Animal studies have been approved by the Medical University of Vienna institutional review 

board for animal ethics (GZ 66.009/0274-II/3b/2010). Mice peripheral nerve tissue samples (Nervus 

ishiadicus) were provided by the Anna Spiegel Scientific Institution of the Medical University of 

Vienna. The SC isolation procedure was performed in the same manner as described for human 

peripheral nerve tissue. Since mice nerves are significantly smaller than human ones (Figure 14a), 

there was no need for cutting with a lancet, so the fascicles were pulled out directly from the fibers 

with the use of forceps, and cleaned from the remaining tissue, as much as it was possible considering 

the size. The isolated fascicles (Figure 14b) were equally distributed into 3 wells and incubated for 3h 

in 2 mL of digestion solution (αMEM+, 0.0625% collagenase Type IV (GIBCO), 0.625 U/ml Dispase 

II (SIGMA) and 3 mM CaCl) at 37 °C.  
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Figure 14 Mouse Schwann cell isolation. 

a) isolated nerves in D-PBS; b) nerve fascicles covered with αMEM. 

 

After 3 h, the tissue was mechanically resuspended with a pipette tip and the solution was 

transferred into 15 mL tubes. The wells were rinsed with αMEM+ which was added to tubes, together 

with 8 mL of fresh media. The tissue was centrifuged as stated for human SCs, and seeded on coated 

wells, in 2 mL SCEM. The cells were cultured for 3 weeks in SCEM. Due to the large amount of 

fibroblasts present, the purification procedure needed to be performed once a week and half of the 

media was changed every 3-4 days (Figure 15). 

 

Figure 15 Mouse Schwann cells growing in Schwann cell expansion media after two purification procedures.  

A lot of fibroblasts are still visible, as bigger flat cells, even after two purification rounds, due to the challenging 

isolation procedure. Fibroblasts are indicated with the white arrow, while the Schwann cells with a black one. 
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Considering the low amount of mouse SCs that could be obtained by this procedure, all of the 

mouse SCs were used for co-cultivation with the STA-NB-6 cell line. They were seeded on one coated 

well. Half of the media was changed to αMEM+ 1.5 days after seeding and 50 000 STA-NB-6 cells 

were added 3 days after seeding, with complete change of media to αMEM+. For the STA-NB-6 

control, 200 000 cells were seeded on a coated well in αMEM+. Half of the media was changed every 

3-4 days for both the co-cultivation culture and the control, and the cells were cultivated for 17 days.  

2.7.1 Cell proliferation rate measurement of the mouse Schwann cell/STA-NB-6 co-

cultivation by flow cytometry 

 

Cell proliferation of the mouse SC/STA-NB-6 co-cultivation was measured on day 17 after the 

start of the experiment, with the time-point chosen according to previous human SC co-cultivation 

experiments with NB cell lines (manuscript in preparation). The entire procedure was performed in the 

same manner as described for the STA-NB-6 and STA-NB-10 cell lines, up to the point after the 

addition of the Click-it reaction cocktail, after which samples were resuspended in 50 μL of the EdU 

Perm/Wash buffer with the addition of the following antibodies: 1μL S100-FITC (rabbit anti-mouse; 

DAKO, Austria; labelled with FITC [Z25342], ThermoFisher Scientific, USA; diluted 1:50 in FACS 

buffer); 3 μL GD2-A546 antibody (hamster anti-mouse, POLYMUN GmbH, Austria; labelled with 

AlexaFluor546 [A10237], ThermoFisher Scientific, USA; diluted 1:100 in FACS buffer); 2.5 μL 

Vimentin (rabbit anti-mouse, DAKO, Austria; diluted 1:10 in FACS buffer). 

Samples were incubated for 30 minutes at 4 °C, after which they were washed with 1 mL of 

EdU Perm/Wash and resuspended in 50 μL of the same buffer with the addition of 5 μL of Gt-anti-Ms-

A594 antibody (goat anti mouse, Li-Cor Biosciences, USA; labelled with AlexaFluor594 [A10239], 

ThermoFisher Scientific, USA; diluted 1:1000 in FACS buffer). After 20 minutes of incubation at 4 

°C, samples were washed with EdU Perm/Wash and resuspended in 100 μL of buffer. The FxCycle 

Violet stain was added in a volume of 1 μL and the samples were incubated for 20 minutes at 4 °C 

before measurement with the flow cytometer (Fortessa, BD, Austria). 
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3 RESULTS  
 

3.1 Identification of Schwann cell-secreted factors in control, co-

cultivation and transwell supernatants  
 

The identification of factors that are involved in the SC-NB crosstalk was done by a 

comprehensive analysis of the SC secretome, starting with the identification of proteins present in cell 

culture supernatants by protein arrays. 

 

3.1.1 Protein arrays identified 49 factors with an increase of secretion in co-

cultivation/transwell experiments when compared to controls 

 

For the analysis of the secretome of SCs in direct CoCu) or indirect (TW) contact with NB 

cells, when compared to the secretome of SCs and NB cells alone (controls), supernatants from 2 

independent co-cultivation and transwell experiments, respectively, with 5 different NB cell lines, as 

well as from corresponding controls, were pooled and analyzed by protein arrays. After fluorescence 

signal visualization (Figure 16b), background subtraction and data normalization, 49 factors were 

identified (Figure 17) with an at least 2-fold increased secretion in CoCu/TW experiments as 

compared to NB controls. 
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Figure 16 Protein array fluorescence signal visualization. 

a) Scheme of antibodies spotted on one of the sub-arrays. Each antibody is spotted in duplicates on the 

array to enable calculation of the average of intensities. The first three spots (upper left corner) are 

positive controls representing a dilution series of biotinylated immunoglobulins G that were used for 

data normalization. The last two spots (lower left) are negative controls, printed with a buffer already 

containing proteins, which are identical to background signals on arrays b) examples of signals obtained 

with the same sub-array in supernatants from the co-cultivation and transwell experiments of Schwann 

cells with the STA-NB-6 cell line in the upper panel, and the Schwann cells alone and STA-NB-6 cells 

alone, as controls, in the lower panel. SC: Schwann cell; NB6: STA-NB-6 cells; CoCu: co-culture; TW: 

transwell culture, CTRL: control. 

 

49 factors were increased in co-cultures/TW culture as compared to control NB cultures, while 

10 of them were differentially secreted in co-cultures when compared to SC control (Figure 17). The 

increase in secretion ranged in log2 fold changes from 1 (CFD) to 8 (CCL7), with the value of 1 

presenting a 2-fold increase (Figure 17). 
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Figure 17 49 factors identified by protein arrays. 

Cell culture supernatants of control or Schwann cell/neuroblastoma co-cultivation and transwell experiments 

were analyzed with protein arrays for the presence of 275 different cytokines and growth factors. An average 

fluorescence intensity value for the co-cultivation and transwell experiments was calculated and compared to 

values of neuroblastoma controls or Schwann cell controls. 49 proteins had an increase of secretion in CoCu/TW 

when compared to NB CTRL (shown in blue), while 10 proteins had an increase of secretion when compared to 

SC CTRL (shown in red). CoCu: co-culture; TW: transwell culture; CTRL: control; MFI: mean fluorescence 

intensity. 

 

The normalized data from the protein arrays was further uploaded into the Qlucore Omics 

Explorer to visualize the data-set and evaluate similarities and/or differences between the samples by 

generating heatmaps and PCA plots. In unsupervised hierarchical clustering, two main clusters were 

visible: direct SC-NB co-cultivation, transwell and SC control samples clustered together (Figure 18), 

while the second cluster contained all NB control samples, even though NB cell lines with various 

genetic backgrounds were used (Figure 18).  
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Figure 18 A heatmap showing unsupervised hierarchical clustering of samples based on the top 49 differentially 

secreted factors derived from the normalized protein array data. 

Up-regulated factors are shown in red, downregulated in blue. All cultures containing Schwann cells, including 

co-cultures, transwell cultures and Schwann cell controls clustered together and are abbreviated by SC, for 

simplicity. Cultures containing only NB cells are abbreviated by NB. CTRL: control, CoCu: co-culture; TW: 

transwell. 

 

Also, PCA plots (Figure 19) clearly visualized the NB-containing samples clustering distantly 

from all samples that contained SCs. 
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Figure 19 PCA plot showing clustering of all samples analyzed by CAA. 

Samples containing only neuroblastoma cells cluster away from all samples containing Schwann cells. SC/NB 

TW: Schwann cell/neuroblastoma transwell culture; SC/NB CoCu: Schwann cell/neuroblastoma co-culture; SC: 

Schwann cell control; NB: neuroblastoma control; NB TW: neuroblastoma transwell controls; aMEM CTRL: 

aMEM media control.  

 

3.2 Prioritization of candidate neurotrophic/neuritogenic factors 
 

Literature research was performed for each of the 49 identified factors to investigate whether 

they suit the criteria for further functional validation on NB cell lines. As sources for literature 

research UniProtKB (www.uniprot.org/), the NCBI gene database (www.ncbi.nlm.nih.gov/gene) and 

PubMed (www.ncbi.nlm.nih.gov/pubmed; with search terms: [factor name] and [Schwann cells]; 

[factor name] and [neuroblastoma]) were used. 

Twelve, out of 49 proteins, were shown to have functions in immune cell attraction (Figure 

20; Table 4), most of them being cytokines and chemokines, such as CCL7, CXCL8, CXCL3, 

CXCL2, CCL11, CCL20, CXCL6, CCL13, CCL2, CCL8, PF4, or to be involved in the activation of 

complement, such as CFD.  

http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/gene
file:///C:/Users/Helena/AppData/Roaming/Microsoft/Word/www.ncbi.nlm.nih.gov/pubmed


28 
 

 

Figure 20 Functional annotation of 49 differentially secreted factors based on literature research.  

The bars and corresponding values are the same as in Figure 17, only annotated. Factors that were shown to be 

involved in immune cell recruitment, to have tumor-promoting functions, or to function as proteases, receptors 

or components of the extracellular matrix were excluded from further analysis. To obtain a complete picture, 13 

candidate factors were looked up in gene expression data. MFI: mean fluorescence intensity. 

  

Table 4 Twelve factors involved in phagocyte recruitment.  

Protein names and proposed functions are according to www.uniprot.org. 

 

FACTOR 
 (gene symbol) 

PROTEIN NAME 
 

PROPOSED FUNCTION 

CCL7 C-C motif 
chemokine 7 

Chemotactic factor that attracts monocytes and 
eosinophils, but not neutrophils. 

CXCL8 Interleukin-8 Attracts neutrophils, basophils, and T-cells, but not 
monocytes. 

CXCL3 C-X-C motif 
chemokine 3 

Chemotactic activity for neutrophils. 

CXCL2 C-X-C motif 
chemokine 2 

Hematoregulatory chemokine. Expressed at sites of 
inflammation.  

CCL11 Eotaxin Promotes the accumulation of eosinophils. 

CCL20 C-C motif 
chemokine 20 

Attracts lymphocytes and, slightly, neutrophils, but not 
monocytes. 

CXCL6 C-X-C motif 
chemokine 6 

Chemotactic for neutrophil granulocytes. 

CCL13 C-C motif 
chemokine 13 

Attracts monocytes, lymphocytes, basophils and 
eosinophils, but not neutrophils. 

CCL2 C-C motif 
chemokine 2 

Attracts monocytes and basophils, but not neutrophils or 
eosinophils. 

CCL8 C-C motif 
chemokine 8 

Attracts monocytes, lymphocytes, basophils and 
eosinophils. 

PF4 Platelet factor 4 Chemotactic for neutrophils and monocytes. Released 
during platelet aggregation. 

CFD Complement 
factor D 

Complement activation. 

http://www.uniprot.org/
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Thirteen, out of 49 factors, were shown to have tumor-promoting functions (Figure 20; Table 

5), such as IL11, SERPINE1, VEGFA, PROK1, MIF, IGFBP1, IGFBP2, PGF, ANGPT1, VEGFC and 

HGF, and/or to be involved in angiogenesis, e.g. ANG, VEGFA, SPP1, ANGPT1, VEGFC, MIF.  

Table 5 Factors with a tumor-promoting and/or pro-angiogenic effect.  

Protein names and proposed functions are according to www.uniprot.org., if not otherwise stated. 

 

FACTOR 
 (gene symbol) 

PROTEIN NAME 
 

PROPOSED FUNCTION 

ANG Angiogenin Angiogenic factor that supports primary and 
metastatic tumor growth [47]. 

IL11 Interleukin-11 Stimulates the proliferation of hematopoietic stem 
cells and megakaryocyte progenitor cells. 

SERPINE1 Plasminogen activator 
inhibitor 1 

Serine protease inhibitor. Shown to promote 
metastasis in neuroblastoma [48]. 

SPP1 Osteopontin Produced by various tumor cells and is suggested 
to be involved in angiogenesis [49]. 

VEGFA Vascular endothelial 
growth factor A 

Induces endothelial cell proliferation, promotes 
cell migration, inhibits apoptosis and induces 
permeabilization of blood vessels. 

PROK1 Prokineticin-1 Directly influences neuroblastoma progression by 
promoting the proliferation and migration of 
neuroblastoma cells. 

MIF Macrophage migration 
inhibitory factor 

It has been linked to fundamental processes such 
as control of cell proliferation, cell survival, 
angiogenesis, and tumor progression [50]. 

IGFBP1 Insulin-like growth factor-
binding protein 1 

Promotes cell migration. 

IGFBP2 Insulin-like growth factor-
binding protein 2 

Binds to the ECM and enhances proliferation and 
metastatic behavior of neuroblastoma cells [51]. 

ANGPT1 Angiopoietin-1 Plays an important role in the regulation of 
angiogenesis, endothelial cell survival, 
proliferation, migration, adhesion and cell 
spreading. 

PGF Placenta growth factor Promotes tumor cell growth. 

VEGFC Vascular endothelial 
growth factor C 

Growth factor active in angiogenesis, and 
endothelial cell growth, stimulating their 
proliferation and migration. 

HGF Hepatocyte growth factor 
receptor 

Increase in HGF/c-Met expression was correlated 
with enhanced invasiveness and activation of 
proteases degrading the extracellular matrix [52]. 

 

Considering their phagocyte attracting and tumor-promoting functions, these proteins were 

excluded from further validation assays in NB cell lines. In addition, 11 factors were excluded because 

of other functions (Figure 20; Table 6), such as MMP10, MMP3 and PI3 which are proteases; 

TNFRSF1A, EGFR, PLAUR, AXL, IL6ST and TNFRSF11B that are receptors; or components of the 

extracellular matrix, e.g. NID1 and DCN. 

http://www.uniprot.org/
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Table 6 Factors excluded as candidates based on their functions as proteases, receptors or components of the 

extracellular matrix.  

Protein names and proposed functions are according to www.uniprot.org.  

 

FACTOR 
 (gene symbol) 

PROTEIN NAME 
 

PROPOSED FUNCTION 

MMP10 Stromelysin-2 Can degrade fibronectin, gelatins of type I, III, IV, 
and V; weakly collagens III, IV, and V. 

MMP3 Stromelysin-1 Can degrade fibronectin, laminin, gelatins of type I, 
III, IV, and V; collagens III, IV, X, and IX, and cartilage 
proteoglycans. 

PI3 Elafin Neutrophil and pancreatic elastase-specific 
inhibitor of skin. 

TNFRSF1A Tumor necrosis factor 
receptor superfamily 

member 1A 

Receptor for TNFSF2/TNF-alpha and homotrimeric 
TNFSF1/lymphotoxin-alpha. 

EGFR Epidermal growth factor 
receptor 

Receptor tyrosine kinase binding ligands of the EGF 
family. 

PLAUR Urokinase plasminogen 
activator surface 

receptor 

Acts as a receptor for urokinase plasminogen 
activator. 

AXL Tyrosine-protein kinase 
receptor UFO 

Receptor tyrosine kinase that transduces signals 
from the extracellular matrix into the cytoplasm by 
binding growth factor GAS6. 

NID1 Nidogen-1 Sulfated glycoprotein widely distributed in 
basement membranes and tightly associated with 
laminin. 

IL6ST Interleukin-6 receptor 
subunit beta 

Signal-transducing molecule. The receptor systems 
for IL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 utilize 
it for initiating signal transmission. 

TNFRSF11B Tumor necrosis factor 
receptor superfamily 

member 11B 

Acts as decoy receptor for TNFSF11/RANKL and 
thereby neutralizes its function in 
osteoclastogenesis. 

DCN Decorin May affect the rate of fibrils formation. 

 

The remaining 13 factors (Figure 20; Table 7) were further analyzed to confirm their 

upregulation on RNA level and investigate whether they are upregulated by SCs or NB cells in co-

cultures and transwell cultures, as well as to confirm the expression of the corresponding receptors on 

NB cell lines. The protein array data were therefore compared to gene expression data (RNA-seq) of 

FACS-sorted SCs and NB cells from co-cultures, transwell cultures and controls, and analyzed by 

Qlucore Omics Explorer. 

 

 

  

http://www.uniprot.org/
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Table 7 13 candidate factors that were further analyzed by gene expression analysis.  

Protein names and proposed functions are according to www.uniprot.org., if not otherwise stated. 

 

FACTOR 
 (gene symbol) 

PROTEIN NAME 
 

PROPOSED FUNCTION 

IL6 Interleukin-6 It induces myeloma and plasmacytoma growth 
and induces nerve cells differentiation. Silverman 
et al. [53] showed that neuroblastoma cells induce 
production of IL6 in stromal cells. 

CXCL5 C-X-C motif chemokine 5 Shown to have an effect on nerve regeneration by 
inducing neurite growth [54]. 

FSTL3 Follistatin-related protein 
3 

Antagonizing protein for members of the TGF-beta 
family that is involved in differentiation of 
hematopoietic cells. 

GDF15 Growth/differentiation 
factor 15 

Shown to be secreted by Schwann cells in the 
lesioned peripheral nervous system [55]. 

TGFBI Transforming growth 
factor-beta-induced 

protein ig-h3 

Shown to significantly reduce proliferation and 
invasion of neuroblastomas in vitro and in vivo 
[56]. 

CCL5 C-C motif chemokine 5 Together with GPR75, may play a role in neuron 
survival. 

IGFBP6 Insulin-like growth factor-
binding protein 6 

A member of the IGF system shown to be 
associated with the growth-arrest in 
neuroblastoma cells [57]. 

IGFBP3 Insulin-like growth factor-
binding protein 3 

Exhibits IGF-independent anti-proliferative and 
apoptotic effects mediated by its receptor 
TMEM219/IGFBP-3R. 

FGF7 Fibroblast growth factor 7 Plays an important role in the regulation of 
embryonic development, cell proliferation and cell 
differentiation. 

PDGFA Platelet-derived growth 
factor subunit A 

It´s expression was shown to be significantly 
associated with patient survival in advanced-stage 
tumors [58]. PDGF isoforms were also shown to 
induce morphological changes showing neuronal 
cell maturation in a wide variety of neural crest-
derived human tumor cell lines [59]. 

CXCL16 C-X-C motif chemokine 16 It´s receptors were shown to be involved in the 
retention of metastatic neuroblasts in the bone 
marrow through interaction with CXCL16-
expressing stromal cells [60]. 

TIMP1 Metalloproteinase 
inhibitor 1 

Functions as a growth factor that regulates cell 
differentiation, migration and cell death, and 
activates cellular signaling cascades via CD63 and 
ITGB1. 

FST Follistatin Involved in differentiation of hematopoietic cells. 

 

Additionally, 6 neurotrophins (Table 8) known from previous research for their effects in the 

CNS or PNS were also considered as candidates. Since these proteins were not included on the protein 

arrays (PTN and EGFL8), or not shown as differentially secreted (BDNF, GDNF, CNTF and NGF), 

their gene expression levels were also analyzed and visualized by Qlucore. 

http://www.uniprot.org/
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Table 8 Factors chosen from literature research.  

Six neurotrophins were chosen in addition to the ones identified by protein arrays. All the proposed roles are 

according to www.uniprot.org., unless otherwise stated. 

FACTOR 
 (gene symbol) 

PROTEIN NAME 
 

PROPOSED FUNCTION 

BDNF Brain-derived 
neurotrophic factor 

During development, promotes the survival and 
differentiation of selected neuronal populations of 
the peripheral and central nervous systems. 
Participates in axonal growth, path finding and in the 
modulation of dendritic growth and morphology. 

GDNF Glial cell line-derived 
neurotrophic factor 

Neurotrophic factor that enhances survival and 
morphological differentiation of dopaminergic 
neurons and increases their high-affinity dopamine 
uptake. 

CNTF Ciliary neurotrophic 
factor 

CNTF is a survival factor for various neuronal cell 
types. Seems to prevent the degeneration of motor 
axons after axotomy. 

NGF Beta-nerve growth 
factor 

Activates cellular signaling cascades through receptor 
tyrosine kinases to regulate neuronal proliferation, 
differentiation and survival. 

PTN Pleiotrophin Secreted growth factor that induces neurite 
outgrowth. Binds the receptor ALK, which induces 
activation of the mitogen-activated protein kinase 
pathway, an important step in the anti-apoptotic 
signaling of PTN and regulation of cell proliferation. 

EGFL8 Epidermal growth 
factor-like protein 8 

Chosen based on previous research performed by 
Weiss, Taschner-Mandl et al. [44]. 

 

3.3 Gene expression analysis of FACS-sorted cells from co-cultivation, 

transwell and control cultures 

 

3.3.1 Gene expression analysis led to selection of 8 factors 

 

Gene expression (RNA-seq) data used in this master thesis was previously obtained by RNA-

sequencing of FACS-sorted SCs and STA-NB-6 cells from the same co-culture, transwell culture and 

controls from which supernatants were used for protein arrays, together with additional SC samples 

and NB cell lines (STA-NB-2, STA-NB-7 and STA-NB-15 cells).  

This RNA-seq dataset was used to analyze mRNA levels of the 13 factors selected with 

protein arrays and 6 additional neurotrophins selected from literature in different NB cell lines, SCs 

alone and one co-cultivation/transwell experiment. In addition, the expression of their corresponding 

receptors on different NB cell lines was investigated, since the factors can act on NB cells only if their 

corresponding receptors are present on these cells. 

Based on the gene expression data, 2 factors, out of the 13 selected with protein arrays and 

literature research, were chosen as candidates, IGFBP6 and FGF7. IGFBP6 was highly expressed by 

http://www.uniprot.org/
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SCs, but not by NB cells (Figure 21) and the recently described receptor PHB2, an IGF signaling-

independent receptor [61], was highly expressed in NB, while SCs had very low levels (Figure 21). 

Similarly, FGF7 was high in SCs (Figure 21) and its receptor FGFR2 [62] present at high levels on 

NB cells (Figure 21).  

All the 6 additional neurotrophic factors, chosen from literature, were, as expected, highly 

expressed by SCs, with the exception of CNTF and PTN, being highly expressed by both SCs and NB 

cells (Figure 21). CNTFR, the receptor for CNTF, was upregulated by NB cells (Figure 21), although 

LIFR and IL6ST, parts of the same receptor complex [63], were upregulated by both SCs and NB cells 

(Figure 21). PTN binds several receptors, some of which are PTPRZ1 [64-67] and PTPRA [68], that 

were mainly upregulated by SCs (Figure 21), but also ALK [69, 70] that was expressed at high levels 

in NB cells (Figure 21).  

NGFR and GFRA1, receptors of NGF and GDNF [71], respectively, were highly expressed in 

SCs (Figure 21), but comparison to unrelated cell types (mononuclear cells) showed that both 

receptors are also highly expressed by NB cells, although at lower levels as compared to SCs (data not 

shown). Moreover, the other receptors for NGF and GDNF, NTRK1 and RET [71], respectively, were 

upregulated only in NB cells (Figure 21). NGFR, like NTRK2 [71], also binds BDNF [71], which was 

mostly upregulated in NB cells (Figure 21). It is currently unknown to which receptor EGFL8 binds, 

since its structure was just recently described and it has so far unknown function [72].  

Taken together the 8 selected factors showed high mRNA levels in SC samples and high 

expression of the corresponding receptors in NB cells making them suitable candidates for functional 

validation in NB cell cultures. 
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Figure 21 Heatmaps showing RNA expression levels of the 8 selected Schwann cell-secreted proteins and their 

corresponding receptors in different neuroblastoma and Schwann cell samples. 

a) Expression levels of the selected factors, b) expression levels of the corresponding receptors. The 

receptors correspond to their ligands as follows: BDNF – NGFR, NTRK2, ; GDNF – GFRA1, RET; 

CNTF – LIFR, CNTFR, IL6ST; NGF – NGFR, NTRK1; PTN –ALK, PTPRZ1, PTPRA; IGFBP6 –  

PHB2; FGF7 – FGFR2. The receptor for EGFL8 is unknown. Samples were abbreviated according to 

cell type for simplicity. SC: Schwann cell; NB: neuroblastoma. 

 

3.4 Functional validation of 8 candidate factors  
  

In order to functionally validate the 8 candidate factors, their corresponding recombinant 

proteins were added at different concentrations, separately and in combination, to cell media of two 

NB cell lines derived from aggressive tumors, STA-NB-6 and STA-NB-10. The STA-NB-6 cell line 

was previously demonstrated to be sensitive to direct/indirect interaction with SCs in co-cultures, and 

STA-NB-10 to be less sensitive (manuscript in preparation). Flow cytometry-based assays were used 

to measure the reduction of cell proliferation and induction of cell differentiation of NB cells, as well 

as to define the concentration and combination needed to induce these effects. 
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3.4.1 Flow cytometry-based cell proliferation and differentiation rate measurement 

confirmed the proposed effects of selected proteins on STA-NB-6 cells 

 

In these experiments, NF200 expression, as marker for neuronal differentiation, and EdU 

incorporation, as indicator of proliferative activity, were measured by flow cytometry-based assays.  

First, STA-NB-10 cells were cultivated in the presence of candidate neurotrophic/neuritogenic 

factors for 17 days. In previous co-culture experiments with SCs, the STA-NB-10 cell line showed 

only moderate responsiveness regarding inhibition of proliferation, and did not show any 

responsiveness concerning differentiation (manuscript in preparation). Similarly, there was no 

significant effect of any of the factors at the tested concentrations with regard to cell proliferation or 

differentiation on the STA-NB-10 cell line. Some of the factors, e.g. IGFBP6, BDNF, CNTF, GDNF 

and PTN, even slightly increased proliferation (Figure 22), although not significantly, while EGFL8 

slightly decreased cell proliferation on day 17. Combination of all 8 factors also had no significant 

effect, although a slight decrease of cell proliferation is visible on day 17 (Figure 22). 

 

Figure 22 Relative proliferation and differentiation rates of the STA-NB-10 cell line cultivated in the presence or 

absence (control) of chosen recombinant proteins for 17 days.   

Mean+/-SEM values of normalized EdU incorporation data and normalized NF200 MFI values from 3 

independent experiments were calculated to analyze the relative effect on cell proliferation and neuronal-like 

differentiation, respectively. The single factors showed no significant effect on cell differentiation at these 

concentrations, while IGFBP6, GDNF, CNTF, BDNF and PTN even slightly increased cell proliferation. The 

combination of all factors slightly decreased cell proliferation on day 17, but had no effect on cell diferentiation. 

EGFL8 data was derived from one experiment and was thus not considered for statistical analysis, although a 

slight decrease of cell proliferation is visible on day 17. CTRL: control; MFI: mean fluorescence intensity. 

 

Second, STA-NB-6 cells were cultured in the presence of 8 candidate factors, separately or in 

combination, for 8 and 17 days, respectively. This cell line showed strong responsiveness to SCs in 

co-cultures already on day 8 in previous experiments, which was even more pronounced on day 17 
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(manuscript in preparation). However, addition of factors demonstrated no significant changes of 

proliferation (Figure 23a), nor differentiation (Figure 23b) on day 8. Significantly decreased 

proliferation in the presence of NGF (20 ng/mL) and PTN (50 ng/mL) (Figure 23a) was shown on day 

17, and increased neuronal-like differentiation in the presence of PTN on day 17 (Figure 23b). NGF 

also had a pronounced effect on cell differentiation, although it was not statistically significant (Figure 

23b).  

 For PTN, two cell populations were clearly visible by flow-cytometry analysis of 

differentiation (Figure 24a, differentiation, PTN), one expressing low levels of NF200 and the second 

high levels, probably representing more differentiated (mature) NB cells. Neuronal-like differentiation 

induced by PTN and NGF, as compared to CTRL, was also confirmed by axonal outgrowth, as 

visualized by phase contrast microscopy (Figure 24b, NGF; PTN; CTRL).  

All other factors, except FGF7 and BDNF, showed a trend towards increased differentiation 

(Figure 23b) and decreased proliferation (Figure 23a) on day 17 at the initial tested concentrations, 10 

and 40 ng/mL, respectively. For FGF7 and BDNF, that did not show any effect on cell proliferation or 

differentiation at initial concentrations, concentration was doubled in additional experiments, and 

BDNF showed a more pronounced effect at 80 ng/mL on both cell proliferation (Figure 23a) and 

differentiation (Figure 23b), when compared to the lower concentration used. FGF7, however, failed 

to reduce cell proliferation or induce differentiation even at higher concentration, 20 ng/mL (Figure 

23a, b).  

Even though only one experiment was performed with EGFL8 (100 ng/mL), it showed an 

unexpected effect on day 8, with an increase of cell proliferation (Figure 23a) and decrease of cell 

differentiation (Figure 23b), while on day 17, a pronounced effect in decreasing cell proliferation 

(Figure 23a) and increasing cell differentiation (Figure 23b).  

Surprisingly, combination of all factors at tested concentrations had no significant effect on 

cell proliferation at both time-points (Figure 23a), while cell differentiation was affected on day 17, 

although not significantly (Figure 23b). 
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Figure 23 Relative cell proliferation and differentiation rate of the STA-NB-6 cell line, 8 or 17 days, 

respectively, after the addition of recombinant proteins. 

a) Mean+/-SEM values of normalized EdU incorporation data from 3 independent experiments were 

calculated to analyze the relative effect on cell proliferation. Most of the factors, except NGF and 

EGFL8, showed no effect on day 8. NGF and PTN significantly decreased cell proliferation on day 17 

at tested concentrations. All factors, except FGF7 and BDNF, showed a tendency towards decreased 

proliferation at initial tested concentrations, while for FGF7 and BDNF the initial concentration was 

doubled. FGF7 failed to decrease cell proliferation even at the double concentration, while BDNF 

showed a pronounced effect both on day 8 and day 17. Combination of all factors had no effect on day 

8, nor day 17. EGFL8, although only tested in one experiment and thus not considered for statistical 

analysis, showed an unexpected effect on day 8 with an increase of cell proliferation, and a pronounced 

decrease on day 17. 

b) Mean+/-SEM values of normalized NF200 MFI values from 3 independent experiments were calculated 

to analyze the relative effect on cell differentiation. None of the factors showed a significant effect on 

day 8, while PTN showed a significant effect in increasing cell differentiation on day 17 at the tested 

concentration. NGF also had a pronounced effect on cell differentiation, although it was not significant. 

All factors, except FGF7, showed a tendency towards increasing cell differentiation at tested 

concentrations on day 17. EGFL8 showed an unexpected effect, with a decrease of cell differentiation 

on day 8 and a pronounced increase on day 17. Asterisks indicate statistically significant differences 

compared to CTRL, *p ≤ 0.05. CTRL: control; MFI: mean fluorescence intensity. 
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Figure 24 Representative flow cytometry plots and microscopic images.  

a) Representative plot of the flow-cytometry gating strategy. Neuroblastoma cells are detected as GD2-A546 

positive cells. b) The proliferation rate of neuroblastoma cells is measured as the percentage of EdU 

incorporation, while c) the differentiation rate as the expression value of the NF200 marker. NF200-APC 

histograms show MFI values for STA-NB-6 cells cultured in the presence NGF or PTN for 17 days, respectively, 

as compared to untreated control. On the histogram for PTN (right), two cell populations are clearly visible - one 

expressing low levels of NF200, presented by the lower peak, and the second high levels, presented with the 

higher peak, probably representing more differentiated neuroblastoma cells. This is also visible on the histogram 

for NGF (middle), although less, whereas not visible at all for control cells (left). d) Representative phase 

contrast microscopy images of cultures. The prolongation of neural processes upon cultivation in the presence of 

PTN and NGF is clearly visible when compared to control. The microscopic images in d) and NF200-APC 

histograms in c) are not from the same experiments. NB: neuroblastoma cells; CTRL: control; MFI: mean 

fluorescence intensity value. 

 

 

3.5 Pilot study: Isolation of Schwann cells from mouse peripheral nerve 

tissue and co-cultivation with the STA-NB-6 cell line 
 

A pilot experiment was conducted to assess whether it is possible to culture SCs isolated from 

mouse peripheral nerves, and whether their in vitro co-cultivation with human NB cells will have an 

effect on NB cell proliferation and differentiation. The human SC isolation procedure was successfully 

adapted to mouse peripheral nerve tissue and the mouse SC could be cultivated and further co-
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cultivated with the STA-NB-6 cell line (Figure 25a) in the same manner as with human SCs, although 

the number of mouse SCs obtained was rather low. Furthermore, it was possible to measure the rate of 

STA-NB-6 cell proliferation in co-cultures with mouse SCs (Figure 25b), proving that the isolation 

and cultivation of SCs from mouse peripheral nerve tissue and co-cultivation with human NB cells is 

feasible. However, no effect on NB proliferation was observed, probably due to the very low numbers 

of mouse SCs used in this experiment.  

 

Figure 25 Co-cultivation of mouse Schwann cells with the STA-NB-6 cell line and flow cytometry measurement 

of the cell proliferation rate of STA-NB-6 cells. 

a) Microscopic image of the mouse Schwann cell/STA-NB-6 co-cultivation. The white arrow indicates Schwann 

cells, and the black one neuroblastoma cells. Due to the low number of Schwann cells obtained by isolation from 

mouse peripheral nerve tissue, the number of neuroblastoma cells added was also lower. The gating strategy of 

the flow cytometry cell proliferation rate measurement can be seen on flow cytometry plots, with all cells shown 

on b) the FSC/SSC plot; c) separate gating into GD2+S100- neuroblastoma cells, GD2-S100+ Schwann cells and 

GD2-S100- fibroblasts on the GD2/S100 plot; d) an univariate (single-parameter) histogram showing 

incorporation of EdU for measurement of cell proliferation with a peak for GD2+S100- NB cells negative for 

EdU incorporation, on the left side, and EdU positive cells, on the right. NB: neuroblastoma cell; FB: fibroblasts; 

SC: Schwann cells. 
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4 DISCUSSION  
 

SCs are suggested to be essential for the benign clinical behavior of ganglioneuroma, acting 

via neuritogenic, anti-proliferative and pro-apoptotic signals. The exact mechanism of this unique 

tumor-stroma crosstalk is, however, still unknown. In this study, SC-secreted factors and 

corresponding receptor expression was investigated using protein arrays and RNA-sequencing data. 

This study identified PTN as a potential factor involved in the SC-NB interaction. The in vitro 

experiments conducted here showed that addition of 50 ng/mL of recombinant PTN to cell media for 

17 days causes a reduction of cell proliferation and induction of neuronal-like differentiation of a NB 

cell line derived from an aggressive tumor, STA-NB-6. The growth-impairing effect of PTN was 

demonstrated in vitro by cultivation of STA-NB-6 cells in the presence of the recombinant protein and 

measured by flow cytometry-based readout assays. In addition to PTN, NGF was also shown to have a 

significant proliferation-reducing effect on STA-NB-6 cells, which confirms previous investigations of 

NGF in NTRK1/TrkA over-expressing neuroblastoma cells [58, 73]. 

4.1 PTN-a mediator of the SC-NB interaction  
 

In this study, PTN was recognized as a potential factor involved in the SC-NB interaction. 

Recombinant PTN was shown to decrease proliferation and induce neuronal-like differentiation of 

STA-NB-6 cells in vitro. This sheds new light on its role in disease and tumorigenesis, since it is 

considered to be a tumor growth- and angiogenesis-inducing factor [74, 75], and makes PTN suitable 

for further testing in other NB cell lines, as well as other tumor types. 

PTN is a secreted neurite outgrowth-promoting factor usually associated with the extracellular 

matrix that acts in several tissues through different receptors. In the CNS, it is widely expressed during 

development [76] and it regulates neurogenesis [77], neural migration [78] and differentiation [79, 80]. 

The expression in the adult brain is constricted to certain regions, such as the hippocampus [81], where 

PTN is involved in learning and long-term memory processes [82]. In the PNS on the other hand, its 

function has so far mostly been investigated in the context of nerve regeneration after peripheral nerve 

injury [15, 83]. The possibility that PTN is secreted by tumor-associated SCs in ganglioneuroma and 

may thus be linked to the benign phenotype of these tumors was, until now, not thoroughly 

interrogated.  

It is well known that PTN is associated with the pathogenesis of neurodegenerative diseases, as 

well as with inflammation and cancer development. Unlike some tumors, such as breast carcinoma, in 

which PTN is highly expressed and implicated as a tumor-growth factor [84, 85], in neuroblastoma, 

low levels of PTN are correlated to poor prognosis [86]. Interestingly, PTN expression was shown to 
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be significantly higher in favorable types of neuroblastoma than in unfavorable ones [86-88]. In line 

with the findings demonstrated in this study, Nakagawara et al. hypothesized in their work that it is 

possible that PTN ‘acts on neuroblastoma cells to potentiate the neuronal and/or Schwannian 

differentiation’ [86]. Since ganglioneuromas are composed of few fully differentiated ganglionic cells 

that are surrounded by a dense SC stroma, it is very likely that the highly expressed PTN in 

ganglioneuromas originates from SCs. Transcriptome analysis of the SC fraction of ganglioneuromas 

could clarify this open question. In the gene expression data presented in this work, PTN was 

expressed by SCs, but also by NB cells. It was previously observed that highly aggressive NB cells, 

especially those with MYCN amplification, express much lower amounts of PTN than cells without 

MYCN amplification [86, 87]. Similarly, this study showed slightly higher expression of PTN by the 

MYCN non-amplified STA-NB-6 cell line, while STA-NB-7 and STA-NB-15, both MYCN-amplified 

cell lines, presented very low PTN expression. 

The preliminary in vitro co-cultivation data suggesting the tumor growth-inhibiting and 

differentiation-inducing effect of SCs on NB cells (manuscript in preparation), together with the 

validation of the anti-tumor effect of PTN on STA-NB-6 cells presented in this work, indicate that 

PTN might indeed be one of the factors involved in the SC-NB interaction that provoke neuroblastoma 

maturation. 

4.2 PTN signaling in neuritogenesis and neuroblastoma 
 

PTN’s neurite-outgrowth abilities were demonstrated to be conducted through the ALK (anti-

anaplastic lymphoma kinase) receptor [89]. Although ALK was shown to be more active in favorable 

neuroblastoma tumor types than in unfavorable ones [87], its activation is considered to frequently 

initially occur in neuroblastoma oncogenesis [87]. In 8-10% of neuroblastoma patients, ALK 

activation is due to activating point mutations in its tyrosine kinase domain [90, 91]. It is speculated, 

however, that ALK activation in many tumor types, as well as neuroblastoma, depends on the activity 

of a ligand [87, 90, 92].  

ALK has two known ligands belonging to the same family of growth factors, PTN and MK 

(midkine) [93]. MK was shown to compete with PTN for ALK binding [70]. Opposite to PTN, high 

MK levels in NB are correlated with poor prognosis [68, 86], and MK was shown to be expressed 

relatively weakly in ganglioneuroma [86]. Moreover, MK occurs frequently and at high levels in all 

stages of neuroblastoma [86, 93], especially in undifferentiated and aggressive neuroblastomas, and 

MYCN amplified tumor cells [86]. ALK activation and overexpression were shown to be concomitant 

with MK upregulation in neuroblastoma [87]. The growth-impairing effects of PTN on STA-NB-6 

cells demonstrated in this work, suggests that the two ligands, although sharing structural similarities 
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[93], might have opposite effects on ALK activation in neuroblastoma, which may depend on the 

equilibrium of both factors in the tumor microenvironment. 

In the MYCN amplified NB cell lines used in this study, i.e. STA-NB-7 and STA-NB-15, ALK 

expression was elevated as compared to the MYCN non-amplified STA-NB-6 cell line, in which it was 

low, even though PTN had a significant effect on this cell line. Phosphorylation of ALK in cells 

should be evaluated in future studies to investigate ALK activation, since it was shown that the ligand-

induced ALK activation might be mediated through alternative mechanisms [94], suggesting that PTN 

signaling might be conducted through various receptors. Another receptor that binds PTN is PTPRZ1 

(protein tyrosine phosphatase receptor type Z1) [64, 65], which was shown to be predominantly 

expressed in the CNS [95]. PTN acts as an inhibitory ligand for PTPRZ1 by inducing oligomerization 

of the receptor, thereby preventing its tyrosine phosphatase activity [96]. During reparative re-

myelination in the CNS, PTN acts through PTPRZ1 to promote oligodendrocyte differentiation [67]. 

In this study, PTPRZ1 was shown to be highly upregulated by SCs, in which it was shown to act as the 

putative F3 receptor [97]. This receptor has, so far, not been investigated in NB, which might be 

interesting to pursue in future studies, since it was showed that PTN stimulates tyrosine 

phosphorylation of ALK through the PTN/PTPRZ1 signaling pathway [98]. An alternative receptor 

that can interact with PTN is PTPRA (protein tyrosine phosphatase receptor type A, or LRP) [68, 99]. 

This receptor was shown to be upregulated and involved in the DMSO-induced neuronal 

differentiation of N1E-115 neuroblastoma cells [100]. High PTPRA expression in SCs was 

demonstrated in this study, but also in STA-NB-7 and STA-NB-15, MYCN amplified cell lines, 

suggesting that PTN might act through PTPRA in MYCN amplified cell lines. 

Other reported receptors that could be analyzed in further experiments are neuropilin-1 [75], 

N-syndecan [101], integrin α4β1, α6β1 [102]. Altogether, PTN signaling is most likely conducted 

through multiple receptors, and PTN and corresponding receptor expression analysis should be 

expanded to other cell lines to investigate the mechanism involved. 

4.3 Confirmation of the growth-impeding effects of NGF 
 

The results of this study demonstrated that the patient-derived NB cell line, STA-NB-6, 

expresses TrkA and responds to NGF stimulation by decreased proliferation, neuronal differentiation 

and neurite outgrowth. This is also in concordance to previous knowledge, since TrkA activation, 

besides inducing differentiation, can inhibit angiogenesis, mediate apoptosis and cause growth arrest 

[58]. Interestingly, NTRK1 (TrkA), high-affinity receptor for NGF, has similar expression patterns as 

PTN in NB. Ganglioneuromas and favorable NBs were shown to express high levels of TrkA [36, 

103]. TrkA expression is also very low or absent in MYCN-amplified cell lines [37, 73]. In this study 

the MYCN non-amplified cell line, STA-NB-6, had higher TrkA expression levels than the MYCN-
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amplified STA-NB-15, explaining at least in part the ability of the STA-NB-6 cell line to respond to 

SCs. 

4.4 Examination of the SC secretome  
 

The comprehensive analysis of extracellular factors produced by human SCs performed in this 

study revealed 49 differentially secreted proteins in co-cultures/TW cultures compared to NB CTRL, 

and 10 proteins compared to SC CTRL, suggesting that the majority of factors are secreted by SCs. 

Moreover, the heatmap and PCA plot presenting protein array data demonstrated that all cultures 

containing Schwann cells, including co-cultures, transwell cultures and Schwann cell controls, cluster 

together and distantly from NB-containing samples, thereby, again suggesting a dominant contribution 

of Schwann cells to the analyzed secretome. These results, thus, together with the various roles that 

SCs exert in physiological and pathological conditions [4, 12, 13, 16] known from literature, justify 

the lower number of proteins presented in co-cultures/TW cultures when compared to SC CTRL. 

Most of the 49 identified proteins had functions already attributed to SCs, but some of them 

have not been implicated in SC function yet. Among those, 2 potentially neuritogenic factors, IGFBP6 

and FGF7, were tested in in vitro assays. FGF7 failed to reduce cell proliferation or induce 

differentiation at both concentrations tested, 10 and 20 ng/mL, respectively. IGFBP6, however, 

showed a slight decrease of proliferation and increase of differentiation at a concentration of 100 

ng/mL. IGFBP6 was in previous research mostly examined in the context of its IGF-II binding 

abilities and was demonstrated to inhibit NB cell growth in vitro and in vivo [57, 104]. However, an 

IGF-independent role of IGFBP6 was recently discovered [61], involving signaling through PHB-2. 

PHB2 was upregulated in all NB cell lines analyzed in this work, suggesting that in addition to PTN 

and NGF, IGFBP6 is a potential SC-secreted protein that can affect NB growth and differentiation. 

Evaluation of 6 additional proteins known from literature, revealed EGFL8 as a potential 

proliferation-reducing and neuritogenesis-inducing factor. Only one experiment with EGFL8 was 

performed as part of this master thesis. Nevertheless, EGFL8 showed a pronounced effect on STA-

NB-6 cells at a concentration of 100 ng/mL. EGFL8 was recently described to be produced by repair 

type SCs upon injury and in culture [44]. Its low expression was shown as an unfavorable prognostic 

marker for colorectal and gastric cancer, respectively [72, 105]. However, the knowledge on its exact 

function is still very limited, and it has mostly been correlated with EGFL7, which shares similar 

structure and molecular weight in mice [106]. EGFL7 was shown to exhibit its neuritogenic activity on 

neural stem cells by enabling neural differentiation in the brain through inhibition of NOTCH [107]. 

EGFL8 might act in a similar way in the PNS, in promoting cell cycle arrest and axonal outgrowth. 

Since inhibition of NOTCH in NB was shown to induce cell cycle arrest and tumor shrinkage in 
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xenograft mice [108], its potential role in neuronal differentiation via NOTCH should be further 

investigated. 

EGFL8 and PTN could not be directly detected in the SC secretome because their antibodies 

were not included on the arrays used for analysis. Their levels in SC supernatants should be quantified 

by e.g. ELISA assays. Two additional co-cultivation experiments using the STA-NB-6 cell line were 

performed as part of this thesis and their supernatants were stored for future quantification of secreted 

factors, while the cells were FACS-sorted for RNA isolation and the RNA will be further sequenced. 

NGF, BDNF, GDNF, CNTF were not identified by the protein arrays as differentially secreted 

between the co-cultivation/TW experiments and controls, probably because of their very low 

concentrations in cell supernatants. It is known, however, that Schwann cells are a rich source of NGF 

[109], BDNF and CNTF [4, 110], as well as GDNF [111], which is why they were chosen for the 

analysis. Thus, although easy to handle and appropriate for a comprehensive analysis, a limitation of 

the cytokine antibody arrays is low sensitivity.  

Future experiments should investigate receptors and downstream pathways activated by PTN, 

IGFBP6 and EGFL8 in NB cells, resp., e.g. by introducing receptor-blocking antibodies together with 

transcriptomic analysis of cells cultivated in the presence or absence of these factors. Additionally, 

titration experiments are required to determine a possible concentration dependent effect on NB 

differentiation, proliferation and/or apoptosis.  

4.5 SC recruitment plays an important role in tumor maturation 
 

Similar experiments were recently conducted by Pajtler et al. who induced differentiation of 

TrkA-expressing NB cells by addition of SC-conditioned media to cells in culture [112]. However, 

their goal was different. They aimed at identifying key molecules upregulated by NB cells that would 

have the ability of SC attraction, i.e. proliferation and migration [112]. They identified NRG1 and 

furthermore, showed that it induces secretion of NGF by SCs [112], consequently leading to 

neuroblastoma cell differentiation. In agreement with this, substantial upregulation of NGF by SCs 

upon co-cultivation was here presented. This corroborates the hypothesis, that the SCs in favorable 

neuroblastoma, i.e. ganglioneuroma, are reactivated and recruited to the tumor site, where they are 

able to proliferate considerably, explaining their predominance in these tumors [22, 32, 113]. 

The human SC-NB co-cultivation model developed by the Tumor Biology group, CCRI, 

Vienna (manuscript in preparation), might be used in future studies for an in-depth research of these 

pathways with the aim of gaining insight into yet unknown SC-attracting/proliferation inducing 

molecules and exploring the SC-NB cross-talk. 
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4.6 The therapeutic aspect 
 

Despite the extensive research that has been conducted in the last 2 decades, the 5-year overall 

survival rate of high-risk NB patients, that are over 1 year of age and present with metastatic disease, 

is still around 40-50% [18, 114]. Agents intending to induce neuroblastoma differentiation, such as 5-

bromo-2’-deoxyuridine [115], 13-cis-retinoic acid [116] or agents that increase intracellular calcium 

[117] were already tested in clinics. Identification of biologicals and their application in 

neuroblastoma treatment has, however, been hampered by lack of knowledge and challenges in 

delivering growth factors, due to the severe side effects arising with systematic application, as was the 

case with the administration of NGF in numerous disorders [118, 119]. 

One example of a differentiation-inducing protein is PEDF. PEDF was identified in SC 

supernatants and later shown to be present in mature ganglionic cells and SCs in 

ganglioneuroblastomas and ganglioneuromas analyzed by immunostaining [39]. Moreover, 

recombinant PEDF administered in low doses had the ability to induce NB cell differentiation in vivo 

and in vitro, as well as increase the numbers and survival of Schwann cells [39]. Hence, the authors 

suggested that its clinical administration could stimulate a multifaceted antitumor feedback loop with 

the potential to limit tumor growth and indicated that additional SC-derived differentiating agents are 

yet to be discovered [39]. These findings are in line with the results presented in this work, which 

propose PTN, IGFBP6 and EGFL8 as potential anti-neuroblastoma components of the SC secretome. 

The discovered growth-impairing effects of PTN, IGFBP6 and EGFL8 form basis for further in vivo 

experiments. This may contribute to the development of new therapies for aggressive neuroblastoma. 

4.7 An in vivo mouse model for studying SC-NB interaction  
 

A pilot experiment showed that it is feasible to isolate and culture SCs from mouse peripheral 

nerves according to the protocol established for human SCs. Further, they were successfully co-

cultivated in vitro with human STA-NB-6 cells, and mouse SC and NB cell proliferation was 

measured in the co-cultivation experiment. The number of SCs obtained was, however, very low, since 

the small size of mouse peripheral nerves made the isolation challenging. Thus, for future 

experiments, SCs from several animals may be pooled to allow e.g. in vitro co-cultivation 

experiments. Moreover, culture conditions need adaptation. Nevertheless, the pilot experiment shows 

that it would be feasible to establish a NB xenograft model to validate the in vitro findings and test the 

effect of PTN, and other factors, on neuroblastoma growth in vivo. 

Neuroblastoma xenograft models in athymic (nu/nu) mice have so far been used for in vivo 

studies of the SC-NB interaction [112, 120]. Pajtler et al. inoculated a mixture of rat SCs and NB cells, 

suspended in matrigel, subcutaneously (s.c.) in the flank of mice [112]. In this way, they could show 
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that NTRK1 induction in neuroblastoma xenografts mixed with primary SCs significantly reduces 

tumor growth in vivo [112]. On the other hand, Liu et al. injected NB cells intrafascicularly to show 

that mSCs can infiltrate the tumor and promote human neuroblast differentiation, induce apoptosis, as 

well as inhibit proliferation and angiogenesis [120]. 

Xenograft models have also been used to test the effect of SC-secreted factors, such as PEDF 

and SPARC [38, 39]. Crawford et al. treated fully established tumors with recombinant PEDF 

injections s.c. into 3 sites/tumor/day, which they continued for 4 days [39]. They were able to show 

that even a short treatment with recombinant PEDF causes local tumor differentiation [39]. An 

interesting method was used by Chlenski et al., in which purified SPARC was delivered continuously 

for 3 weeks with s.c. implanted osmotic pumps [38]. SPARC was released at a rate of 62.5 ng/h [38]. 

In this manner, they showed complete cessation of tumor growth for the first 2 weeks in SPARC-

treated mice, while, during the third week, a slight increase in tumor size was observed, with the tumor 

volume still being significantly smaller than in control animals [38]. 

Continuous delivery of recombinant protein neuritogens, would be suitable also in the case of 

the newly identified PTN and other factors. According to the in vitro findings in this study, treatment 

should be carried out for at least 17 days and daily doses adjusted to prior dose-response testing. 

Continuous treatment via pumps should be compared with intra-tumoral application to identify the 

optimal way of application. Furthermore, sets of experiments with varying concentrations could be 

conducted 2 or 3 weeks after injection of NB-provoking cells, when the tumor is established, to test 

the effect on tumor growth, in combination with experiments immediately after injection. In this way, 

it could also be tested if PTN has an influence on tumor incidence. 

 
 

 

 

 

 

 

 

 



47 
 

5 CONCLUSION 
 

This study identified PTN as a potential factor involved in the Schwann cell-neuroblastoma 

interaction that causes decrease of cell proliferation and increase of cell differentiation when added to 

cell media of STA-NB-6 cells at a concentration of 50 ng/mL for 17 days. NGF was confirmed as a 

neuritogenic factor in STA-NB-6 cells at a concentration of 20 ng/mL. Additionally, IGFBP6 and 

EGFL8 were identified as potential SC-secreted proteins that affect STA-NB-6 cell growth. The 

combination of all factors (PTN, NGF, IGFBP6, EGFL8, BDNF, GDNF, CNTF and FGF7) had no 

significant effect on STA-NB-6 cell proliferation and differentiation. There was no significant effect 

of any of the factors at the tested concentrations on cell proliferation or differentiation on the STA-

NB-10 cell line. 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

6 SUMMARY 

6.1 SUMMARY 
Schwann cells are essential for the maturation process of benign forms of neuroblastoma, 

ganglioneuroma, acting via neuritogenic, anti-proliferative and pro-apoptotic signals. The goal of this 

master thesis was to identify Schwann cell-secreted proteins involved in the cross-talk with 

neuroblastoma cells, and define the concentration and combination needed to induce a growth-

impairing effect in neuroblastoma cells. Eight factors were chosen based on protein array results, 

RNA-sequencing data and literature research: IGFBP6, FGF7, CNTF, PTN, NGF, BDNF, GDNF and 

EGFL8. They were functionally validated in vitro by cultivating two neuroblastoma cell lines derived 

from aggressive tumors, STA-NB-6 and STA-NB-10, in presence of corresponding recombinant 

proteins. The effects were measured by flow cytometry. PTN, IGFBP6 and EGFL8 were identified as 

Schwann cell-secreted proteins that cause reduction of cell proliferation and induction of neuronal-like 

differentiation of STA-NB-6 cells, when individually added to culture media for 17 days. NGF was 

confirmed as a neuritogenic factor of STA-NB-6 cells. The combination of all factors had no 

significant effect on STA-NB-6 cells. The factors had no significant effect on STA-NB-10 cells. This 

work forms basis for further in vitro and in vivo experiments to address the effect of these factors on 

neuroblastoma growth in xenograft models. 

6.2 SAŽETAK 
Schwannove su stanice neophodne za proces sazrijevanja benignih tipova neuroblastoma, 

ganglioneuroma, djelujući kroz neuritogenične, anti-proliferativne i pro-apoptostske signale. Cilj ovog 

diplomskog rada bio je identificirati proteine koje izlučuju Schwanove stanice, a koji sudjeluju u 

njihovoj interakciji sa stanicama neuroblastoma, te definirati koncentraciju i kombinaciju potrebnu za 

inhibiciju rasta stanica neuroblastoma. Usporedbom rezultata dobivenih pomoću analize proteina i 

podataka dobivenih sekvenciranjem transkriptoma s podacima iz literature, izabrano je osam faktora: 

IGFBP6, FGF7, CNTF, PTN, NGF, BDNF, GDNF i EGFL8. Za funkcionalnu potvrdu njihova 

djelovanja in vitro, odgovarajući su rekombinantni proteini dodani u medij korišten za kultiviranje 

dviju staničnih linija neuroblastoma porijeklom iz agresivnih tumora, STA-NB-6 i STA-NB-10, te je 

učinak izmjeren pomoću protočne citometrije. Ovo je istraživanje identificiralo PTN, IGFBP6 i 

EGFL8 kao proteine koje izlučuju Schwannove stanice, koji, kada su individualno dodani staničnom 

mediju tijekom 17 dana, smanjuju proliferaciju i potiču diferencijaciju STA-NB-6 stanica. NGF je 

potvrđen kao neuritogenični faktor STA-NB-6 stanica. Kombinacija svih navedenih faktora nije imala 

značajni učinak na STA-NB-6 stanice. Faktori nisu imali značajan učinak na STA-NB-10 stanice. 

Ovaj rad daje osnovu za daljnja in vitro i buduća istraživanja in vivo, za ispitivanje učinka navedenih 

faktora na rast neuroblastoma metodom staničnog eksplantata. 
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