
Compaction of nucleic acids

Marion, Sanjin

Doctoral thesis / Disertacija

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:999923

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-29

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:999923
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:1623
https://dabar.srce.hr/islandora/object/pmf:1623


FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

Sanjin Marion

Compaction of nucleic acids: physical
mechanisms and biological relevance

DOCTORAL THESIS

Zagreb, 2017.





FACULTY OF SCIENCE
DEPARTMENT OF PHYSICS

Sanjin Marion

Compaction of nucleic acids: physical
mechanisms and biological relevance

DOCTORAL THESIS

Supervisor:
dr. sc. Antonio Šiber

Zagreb, 2017.





PRIRODOSLOVNO - MATEMATIČKI FAKULTET
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Summary

Keywords: physical virology, nucleic acids, confinement, DNA condensation,
protein-DNA mixtures, crowding

Packing of nucleic acids inside (naturally occurring) confined spaces presents an in-
triguing problem of compacting a long and highly charged polymer into a small space
possibly crowded with other particles (proteins). For example, viruses have a large amount
of genomic information that is encoded in nucleic acids packed in small spaces resulting in
high densities of matter. The arising interactions are coupled to the confinement giving a
more complex phase diagram than expected in bulk. In this work we study the problem
of packing nucleic acids in confined spaces in the context of physical virology. First, we
study compacted states of DNA including condensed DNA in cells and confined DNA
in bacteriophage capsids. We apply polymer and liquid crystal theory along with mean
field approximations for the bending energy to characterize the state of DNA. The re-
sulting framework is used to explain in vivo ejection of DNA from a bacteriophage into a
Gram-positive bacteria based only on thermodynamic considerations, without invoking any
active cellular mechanisms. The packing mechanism for DNA with condensing proteins in
adenoviruses is studied by comparing Langevin dynamics simulations of effective particle
models, representing condensing proteins, with experimental data. The DNA is found to
act as an effective medium for condensing core protein interactions. A backbone of DNA
linking the condensing proteins is not needed to explain the experimental results. To
further explain such systems, we construct a full model of packed polymer and condensing
proteins inside spherical confinement using Langevin dynamics. Internal organization of
condensing particles shows that they tend to cover themselves with the DNA polymer
which provides an effective medium for interactions with other condensers, confirming the
applicability of our effective model for core particle organization in adenoviruses. Crowd-
ing of the viral interior and confinement influences the conformation of the DNA and
protein, facilitating more direct contacts between the DNA polymer and the condensing
particles, and modifying the interactions between them. Our model is able to explain
the general internal organisation of adenovirus cores, and provide insight into packing of
genetic material in similar systems.
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Chapter 1

Introduction

Prologue

Applying physical concepts to biological problems is not a new endeavour. Still, due
to the complexity of physical phenomena of Life, there is ample opportunity for new
developments. It is within this overlap of physics and biology that we find the problem of
compaction of nucleic acids. The problem that all organisms face, from viruses and cells to
humans, is how to store the largest amount of information in the smallest space possible,
be it genetic information or the entirety of knowledge accumulated by mankind. What
interests us is how simple organisms compact this information, and store it for future use.

The simplest organism we can find is probably a virus, although it is debatable if it
is alive. Consisting of barely a container and its genetic information, it is the prototype
of one of the simplest "nano-machine" Nature has produced. If we would aspire to make
nano-machines of our own, it is in viruses we should find inspiration.

1.1 Background

1.1.1 Nucleic acids as polymers

A nucleic acid is the basis of Life, containing in itself the instructions for the assembly
of all proteins necessary for functioning of organisms. The nucleic acids DNA (deoxyri-
bonucleic acid) and RNA (ribonucleic acid), are polymers made from monomers known
as nucleotides. A pair of nucleotides in a double stranded DNA forms one monomeric
unit called a base pair. They form the building blocks of the DNA double helix, and
contribute to the folded structure of both DNA and RNA. Our primary interest lies in
the compaction of either double stranded DNA (dsDNA) or single stranded RNA (ss-
RNA). Double stranded DNA, in the most common B-form, has base pairs (bp) of length
Lbp = 0.34 nm and base radius D ≈ 1 nm. Single stranded RNA on the other hand, has
a radius of about D ≈ 0.5 nm.
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Chapter 1. Introduction

The simplest model of a polymer is that of a ideal chain [1]. An ideal chain can be
represented as a random walk of a step of length a, the monomer unit length, in a three-
dimensional space. For example, RNA can be represented as a freely rotating chain with
taking into account that the angle θ between two neighbouring bond vectors will depend
on the chemical structure of the bond. This enables the calculation of many statistical
parameters of such a polymer [1].

The most important difference between RNA and DNA will be in the stiffness of such
molecules. While, RNA is well represented by a freely jointed chain with a monomer size
a = 1 nm consisting of ∼ 3 nucleotides, DNA is usually better represented as a worm like
chain (the Kratky-Porod model) [1]. In contrast to the ideal chain where each bond is
rigid, the worm like chain is not completely rigid and can fluctuate and bend. The length
scale on which the natural fluctuations of the worm like chain overcome the inherent chain
stiffness is called the persistence length Lp. The length scale after which the correlation
of tangent vectors displaced by l on the contour reduces by a factor e−1:

〈u(r)u(r + l)〉r = e
− l
Lp (1.1.1)

is by definition the persistence length Lp. This allows one to use the Kuhn length, which
is twice the persistence length lb = 2Lp, to renormalise the behaviour of the worm like
chain into an ideal chain, albeit with a new bond length of lb [2]. In addition to governing
statistical behaviour of the chain, Lp is also a measure of the energy required to bend a
DNA of length L into a curve with a radius of curvature R [3]:

Fb = 1
2kBT

LLp
R2 , (1.1.2)

where Lp = EI/kBT with E the Young modulus and I the moment of inertia of the cross
section of DNA.

A realistic chain can not cross itself, as each segment excluded a volume in space, thus
forming a self avoiding random walk. This excluded volume v is a result of the interaction
potential U(r) between two chain segments. In essence, v is related to the Boltzmann
factor for finding the segment at any point in space. The probability of finding a point in
space occupied by an particle is given via the Mayer f -function [1]:

f(r) = e−U(r)/kBT − 1, (1.1.3)

such that the excluded volume is the integral of f(r) over all available volume:

v = −
∫
f(r)d3r. (1.1.4)

The Flory theory of a polymer in a good solvent [1] then gives that the interaction energy
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Chapter 1. Introduction

of a polymer with itself, or segments from another polymer, is given by the excluded
volume as

Fint = kBT
vn2

V
(1.1.5)

with n the number of chain beads (segments) of excluded volume v in volume V .

1.1.2 Electrostatics in solutions

Electrostatics in water solutions containing salt ions is governed mostly by classical
physics. The existence of a solution of ions complicates matters by giving a background
medium which screens all electrostatic interactions, as we will now show. In order to
determine the electrostatic potential φ from a charge distribution in space, one can use
Poisson’s equation connecting the electrostatic potential and the local charge density
c = ∑

i ci of all the charge species i in the medium.

∇2φ(r) = −4π
ε
c(r), (1.1.6)

and connect it with the Boltzmann distribution

ci = c0
i e
eziφ(r)/kBT (1.1.7)

for finding a concentration ci of charged species with valency zi at a point in space. This
Poisson-Boltzman equation can be linearised to obtain the famous Debye-Huckel (DH)
equation [4] and further simplified for monovalent salts (c1 = c2 = c0, z1 = −z2 = 1) :

∇2φ = λ−2
D φ(r) (1.1.8)

where λD is the Debye-Hückel screening length:

λD =
√
εkBT

8πe2c0
. (1.1.9)

The solution of this equation for a point charge gives the most important result of the DH
equation – counterions screen the electrostatic potential so that it acquires the Yukawa
form [4]:

φ(r) ∼ 1
rκD

e−κDr. (1.1.10)

The result is that all electrostatic interactions at length scales smaller than the screening
length κ are practically unchanged, while interactions are exponentially suppressed at
larger length scales.
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Chapter 1. Introduction

1.1.3 Virology

Figure 1.1: Sketch of an virus with icosahedral symmetry – an adenovirus. a)
Icosahedral shell organization with a model showing the roles of different capsid proteins. (b)
Core structure of the shell from cryo-EM with a schematic representation of the core contents,

including DNA and core proteins (V, VII and µ). Taken from Ref. [5].

As the basic application of our work lies in better understanding how viruses work,
we shall present a physicist’s caricature of what a virus is. A virus consists of at least
a genome, either DNA or RNA, and a container made out of protein protecting it (the
capsid). The taxonomy of viruses is diverse, e.g. one can base it on the type of nucleic acid
or the shape of the container [6]. We will focus only on two groups of viruses relevant in our
work: a) tailed bacteriophages, and b) viruses with icosahedral symmetry. In discussing
icosahedral viruses, we will additionally limit ourselves to types that are known to use
condensing agents to compact their genome in the capsid (adenovirus, polyomavirus).

The basic building block of viral capsids with icosahedral symmetry are repeating
proteins which triangulate the viral capsids. It is into this capsid that the genome is
packed, either during assembly of the capsid shell or afterwards via cellular motors, and

4



Chapter 1. Introduction

onto which different protein receptors are located [6]. A typical example of icosahedral
capsid structure can be found in the adenovirus (Fig. 1.1).

Figure 1.2: A tailed bacteriophage. Sketches of tailed bacteriophages with marked capsids
containing the genome (double stranded DNA) and tails of various lengths. Taken from Ref. [7].

Bacteriophages are viruses which specifically attack bacteria. Their structure is simple
(Fig. 1.2), they have a capsid of either icosahedral or prolate shape protecting their genome,
a protein tail (in most cases), and receptors enabling the ejection of their genome inside
bacteria. Tailed phages contain dsDNA and represent 96% of all known bacteriophages
[7]. Tailed bacteriophages are represented with great variety: typical tail lengths are in
the ranges 10-800 nm, capsids sizes 30-160 and genome lengths in the range of 14− 498
kbp (thousands of base pairs) [8].

1.2 Overview

Packing of nanoparticles, synthetic polyelectrolytes and genomes in a confined space is
fundamentally and technologically important. From one aspect, it is a study of the inter-
actions in a macromolecular complex with molecular signatures of "life", thus important
for understanding life processes [9]. On the other side, viruses are evolved nano-machines
with a "purpose" to penetrate the cellular membrane for delivery of their "cargo", the
genome [6]. Any modifications to this cargo, e.g. by using a designed macromolecule
or nano-particle, carries a significant potential for applications in personalised medicine
(targeted drug or genome delivery). Still, there is a lack of fundamental understanding of

5



Chapter 1. Introduction

the state of DNA in a viral capsid at different densities and thus the physics behind the
viral packaging of genetic material and subsequent infection process [9, 10].

Although the problem of packing a polymer, either flexible or semi-flexible, into confined
spaces of different geometries (slits, cavities) has been extensively studied [2], the intricacies
brought about by a three-dimensional cavity have only been approached recently [11].
Depending on the flexibility of the polymer, its degree of confinement, density and any
(excluded volume) interactions a rich phase diagram is expected [12]. The phase diagram
is expected to be traversed by DNA during its ejection from a bacteriophage [10].

The understanding of DNA phase states and the polymorphism of DNA conformation in
confinement [10] requires an approach combining and bridging different theoretical models.
The isotropic (disordered) state at low densities is known to have a phase transition to a
liquid crystal state. This happens in bulk liquid crystals due to the inherent anisotropy in
the excluded volume of long polymers [13]. Still, experiments find intricacies not expected
in bulk encouraging new approaches to modelling confined liquid crystals [14, 15]. The
liquid crystal phase covers roughly one third of the density diagram [10, 12] and ends in a
dense condensed phase [16, 17]. It is known that the formation of dense phases of DNA
(condensed DNA) depends on a combination of electrostatic and hydrophobic interactions
between different segments of the negatively charged DNA backbone in a background
of mono- and multi-valent counterions [9, 17]. In this sense the densely packed DNA in
viruses, e.g. bacteriophages, is a relatively simple case well suited to study confined DNA
phases without the complications of a cellular (in vivo) environment [17].

An open question regarding DNA packaged into viruses is what are the mechanisms
of its release into the cell. The explanation of all the relevant (thermodynamical) forces
guiding the ejection of dsDNA from tailed bacteriophages into bacterial cells is, in spite
of 50 years of research, still missing [18, 19]. The ejection starts as a release of DNA from
the fully packed viral capsid (protein coating of the bacteriophage). The DNA is packed
to extreme densities and exerts a pressure of 25− 100 atm on the capsid [9, 20]. Models
developed and tested in vitro (see [18] and references therein) predict that the ejecting
force resulting from even such a dense packing is insufficient to completely transfer the
DNA into the cell interior. Although cells have smaller turgor pressures than fully packed
bacteriophages [21], the ejecting force (and pressure) in the capsid drops sharply as it
empties [22]. A recent single molecule Hershey-Chase experiment [23] hints that in vivo
ejection is controlled not by the amount of DNA left inside the capsid but by the amount
ejected into the cell. This means that once the pressure built-up in the bacteriophage is
spent on the DNA ejection, a cellular mechanism takes over. There have been various
proposed mechanisms for completion of the ejection but it appears that none of these
models give a definite answer while experiments suggest a coexistence of many different
mechanisms.

6



Chapter 1. Introduction

Packing of DNA in confinement has been studied both experimentally and theoretically
for some time, but what happens when interacting proteins are added to the mix is un-
known. There are reasons to believe that some viral proteins may be evolutionary adapted
to encapsidate nucleic acids [24]. This may be relevant for encapsidation of synthetic
cargo [25]. A good example are adenoviruses which package dsDNA into the viral capsid
accompanied by viral DNA-binding proteins, which may help in charge neutralization and
condensation [5]. There is no high resolution structural data for any of these proteins, and
the exact conformation of this mixture of polymer (DNA) and nano-particles (proteins)
is still not known. The DNA, being partially bound or neutralized by the proteins, may
be modelled as an effective medium for the DNA-binding proteins. Here the effects of the
viral capsid may induce a degree of ordering in the distribution of these proteins. Similar
effects have been recently seen in the chromatin organization in capsids of SV40 virus
where the coupling between packing proteins and the confinement influences the state of
the packaged DNA material [26].

The crowded environment of polymers/polyelectrolytes and nanoparticles is also inter-
esting from the biological viewpoint as it parallels with the crowded cell interior. Crowding
has been shown to lead to many different phenomena, e.g. renormalization of bare in-
teractions [27] and anomalous diffusion [28]. It is known to be relevant for both nucleic
acid compaction [29, 30, 31, 32] and protein folding [33]. But the exact nature of this
mechanism and the repercussions it may have on our understanding of cellular functions
are not known.

1.3 Outline of work

Chapter 2 "Compacted DNA" covers the topic of condensed and confined DNA. We
explain parts of the phase diagram for confined DNA in 3D confinement and apply it to
understanding DNA phases in bacteriophages, the interplay of various free energy terms
and the ejection process from a phage. We contribute to understanding the problem of
in vivo DNA ejection from bacteriophages by giving a thermodynamic model explaining
ejection into Gram-positive bacteria.

Chapter 3 "Nucleic acids and condensing proteins in confinement" deals with the subject
of how condensing proteins interact with nucleic acids in a confined environment. We
will discuss basics of packaging nucleic acids in confinement, and how the confinement
and crowding influence elementary interactions. We apply this models to explain the
organization of viral capsid interiors containing condensing core proteins and DNA.

7





Chapter 2

Compacted DNA

A part of the work presented in this chapter has been previously published in:
[34] S. Marion and A. Šiber, “Ejecting Phage DNA against Cellular Turgor Pressure,”
Biophys. J. 107,1924–1929 (2014).

DNA is considered to be compacted if its spatial extent has been reduced due to an
external influence. In its native state, when located inside a physiological solution, dsDNA
has the conformation of a self-avoiding walk in space [35], i.e. a random coil. Two major
compaction mechanisms which will be considered are: a) condensation of DNA in a dense
phase, and b) confinement of DNA inside a small volume. Specifically, we will consider
confinements into three-dimensional cavities [11]. The motivation for considering states of
compacted DNA is to understand the process of genome ejection from bacteriophages into
cells but also the packing of DNA in viruses. During viral ejection from a bacteriophage
into a cell, the DNA moves from one container into another, form a viral capsid into a
crowded cellular interior. We will first try to understand how these different compacted
states behave, before combining our understanding to explain in vivo ejection from a
bacteriophage. Although in vitro ejection has been successfully resolved [36, 37, 38], the
in vivo case with all its biological intricacies is still lacking a solid explanation [18].

2.1 Condensation of DNA

Condensation of DNA is known to take place in various conditions [39]. In a dilute
solution, DNA-DNA interactions are strongly repulsive resulting in DNA performing a self
avoiding walk in space, producing a so called random coil. But, if the strong electrostatic
repulsive interaction between parts of the DNA is suppressed, the DNA as any polymer
might condense in globules [2], or specifically for DNA, even in dense hexagonal phases
[40, 41]. The hexagonal phases of DNA are known to be induced by multivalent cations,
which mediate a net attractive interaction between the DNA strands. Other methods for

9



Chapter 2. Compacted DNA

condensation include neutral polymers, where by using the osmotic pressure produced by
Polyethylene glycol (PEG) one can measure the forces resisting the osmotic compation,
and simultanuesly measure the unit cell of the hexagonal packings [40, 40]. Examples of
multivalent cations that act as condensing agents include cobalt hexamine (3+) [40], and
compounds present in vivo like polylysine [30] and spermidine (3+) [29].

Condensation of DNA with multivalent ions has been demonstrated in controlled bi-
ological conditions. Electron microscopy shows that DNA collapses in globules, toroids
and rods, with toroids being a preferable state in biological conditions (See references in
[42] and [41]). It was also shown that in the presence of condensing agents like spermi-
dine, bacteriophages eject DNA which forms toroidal condensates, even when confined in
liposomes [43]. The interior of the cell is known to be a crowded environment with DNA
condensing agents, both causing condensation of DNA [29, 30, 31, 32]. Thus, we study
how DNA condensation can be modelled using the continuum model of Ubbink and Odijk
[16, 42] in order to understand condensed phases of DNA, especially those found in cells,
as a basis for explaining in vivo ejection of DNA from bacteriophages.

2.1.1 Ubbink-Odijk continuum model

The continuum model of Ubbink and Odijk (U-O) [16, 42] examines the free energy
of a DNA condensate in a dense hexagonal phase from the three-dimensional shape of
the condensate. The model treats the free energy of the condensate F = Fv + Fs + Fb as
having three distinct contributions coming from: the bulk contribution Fv proportional to
the volume V , the surface free energy contribution Fs and the elastic energy contribution
Fb due to the bending of the "DNA bundle". The resulting problem is to obtain the shape
of the condensate that corresponds to the free energy minimum arising from an interplay
of surface and bending effects.

In our consideration, we limit our modelling to systems with rotational symmetry
around the z-axis. The total free energy Ftor is minimal when the condensate has the
shape of a torus [16, 37, 42], but there are other possibilities like rods [30] which are not
relevant in physiological conditions [44]. We will optimize the shape of this condensate by
finding the closed curve which produces the final surface of revolution. The free energy
of the DNA condensate will be given as a functional F [C] of the curve C which defines
this cross section (Fig. 2.1). Numerically, the curve C is treated as an ordered set of N0

points {ri, hi}.

We will obtain the free energy per base pair of the condensed DNA as a function of
its length L = V/A0. Here V is the condensate volume and A0 the area of the base of
the hexagonal lattice A0 =

√
3d2/2 of DNA strands and d the closest neighbour distance

between DNA strands. In this section we will take the value d = 4 nm as in the work of
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Ubbink and Odijk [16, 42]. Other parameters are the base pair length Lbp = 0.34 nm and
the persistence length Lp = 50 nm valid for physiological monovalent salt concentrations
[45].

The volume contribution to the free energy is given as a negative (attractive) part
proportional to the DNA volume −γV or when integrated over a rotational body at a
distance r from the axis of symmetry with a unit area of drdh

Fv = −kBTγ
∫∫

{r,h}in C

2πrdrdh. (2.1.1)

where γ is an effective condensing pressure, r is the radial coordinate and h the rotation axis
coordinate in the cylindrical coordinate system (Fig. 2.1b). The surface contribution
is given by a positive contribution proportional to the surface area σS represented by the
integral

Fs = kBTσ
∮
C

2πrdl, (2.1.2)

where σ is the surface tension. The total bending energy is given as Lp/2R2 per unit
length of a circular loop of DNA wound at a radius R [3] with persistence length Lp ≈ 50
nm in physiological conditions [45]. The total binding energy is obtained from an integral
of thin circular fibres over the cross section area with a cylindrical symmetry:

Fb = kBT
LpL

2V

∫∫
{r,h}in C

2πr
r2 drdh. (2.1.3)

Before proceeding to minimizing the resulting free energy, we must examine the physical
content of the constants γ and σ.

Figure 2.1: a) Cross-sectional areas (in green) for various DNA condensates of the same
volume, b) Coordinate system used assuming cylindrical symmetry around the axis of

rotation for the torus and inversion symmetry for axis h. Slice shows the hexagonal DNA
ordering.
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Non-dimensionalisation of the Ubbink-Odijk equation

In the U-O model a non-dimensional parameter α [16] is used to quantify the relative
impact of the surface versus bending free energy contributions. It is obtained by scaling
all the spatial variables in F = Fb + Fs:

F̃ =
∫ R+r

R−r

H(X)
X

dX + α
∫
C
XdL(x) (2.1.4)

where α is defined as

α = 4σV 4
3

LpL
= 4σA

4
3
0 (LbpNbp)

1
3

Lp
. (2.1.5)

The non-dimensional parameter α will define the shape of the condensate. Because α0 is
a function of the length of DNA in the condensate, we will define α0 = α(N0

bp) as the α
when all the DNA base pairs N0

bp, e.g. from a virus, are in the condensate. The shape of
the condensate, and not just its volume, will depend on the amount of DNA L = LbpNbp

in the condensate:

α(Nbp) =
(
Nbp

N0
bp

) 1
3

α0. (2.1.6)

When optimising the shape of the toroid, we will change the length of DNA but keep
the values of the surface and volume energy density constant, in essence we start from
a certain α = α0 which is then reduced if the quantity of condensed DNA is decreased.
Because α0 is a coupling parameter of the total surface and total bending energy of a
toroid, by changing the length we will vary the ratio of these contributions.

Connection between σ and γ

The volume contribution of the free energy divided by the volume Fv/V can be obtained
by summing the contribution f0 (a calculation of f0 is given in Ref. [42]) from all the
pairs of interacting strands times the density of base pairs:

− Fv
V kBT

= 6f0
Nbp

LA0
= 6f0

LbpA0
= γ. (2.1.7)

For the surface contribution, the free energy divided by the surface area will be propor-
tional to the number of neighbours (∼ 2 for the hexagonal lattice) lost due to the reduced
coordination of the surface and the number of base pairs on the surface divided by the
surface area:

Fs
SkBT

=
2f0N

2D
bp

Ld
= 2f0

Lbpd
= σ. (2.1.8)
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Figure 2.2: Cross sections of the toroid (only upper halves shown) for different starting
α0. Each sub-figure shows the effect of reducing the length (volume) of the condensed
DNA on the shape while keeping σ (and γ) constant. Arrows show the direction of

reducing the total condensate volume. Take note of different scales on the x and y axes
of the sub-figures.

It follows that σ and γ are related as:

γ = 2
√

3
d
σ. (2.1.9)

We can now represent the volume free energy contribution via the surface (tension) constant
σ

Fv
kBTNbp

= 1
Nbp

γV = 1
Nbp

(
2
√

3
d
σ

)
(A0LbpNbp) = 3dLbpσ (2.1.10)

or vice versa.
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2.1.2 Optimizing the DNA condensate shapes

In order to obtain the optimal shapes for DNA we minimize the free energy function
with contributions from Eq. (2.1.2), (2.1.3) and (2.1.10) to obtain

Ftor
kBT

= LpL

2V

∫∫
{r,h}in C

2πr
r2 drdh+ σ

∮
C

2πrdl − 2
√

3
d
σV, (2.1.11)

for a fixed DNA length L = V/A0. This is achieved via numerical optimization of Ftor(C),
i.e. by a minimization of a multidimensional function Ftor(ri, hi) (Fig. 2.1). The opti-
mization was performed in Python using the Numba JIT compiler [46] with 20 coordinate
pairs (ri, hi) representing the upper half of the base of the rotational body.

A representative example of minimization of the free energy given by Eq. (2.1.11) for
four starting α0 with different numbers of DNA base pairs Nbp is shown on Fig. 2.2). The
figure represents how a DNA condensate’s shape changes as the amount of DNA becomes
smaller. When α0 is small (Fig. 2.2a,b), tori with shorter DNA present a tendency to
only reduce the toroid major axis while maintaining a circular cross section. For larger
α0 (Fig. 2.2c,d), tori no longer have a circular cross section. As the bending contribution
is smaller for large α(L), the condensate collapses in a globule with a small cylindrical
"void" near r = 0 due to the bending energy diverging there. A crossover between these
two behaviours (the "thin torus" and "fat sphere") occurs when α ∼ 10.

When the bending energy dominates (see Fig. 2.2a) we expect a thin torus with a
circular cross section whose free energy can be approximated using a variational approach.
We first approximate the free energy (without the volume contribution) as:

Fslim
kBT

= LpL

2V
V

R2 + σS. (2.1.12)

To obtain the major radius R of the torus, we minimize the free energy with respect to R
while keeping the volume V fixed:

R =
(

Lp√
2πA0σ

) 2
5

V
1
5 . (2.1.13)

Now, the total free energy per base pair is obtained as:

Fslim
kBTNbp

= 5
(
Lpσ

4π4A2
0L

3
bp

8

) 1
5

N
− 2

5
bp . (2.1.14)

In the "fat sphere" limit (see Fig. 2.2d) the bending contribution is considered
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negligible, so only the surface energy has a noticeable contribution:

Ffat
kBTNbp

= 3
√

4πσ (3A0Lbp)
2
3 N

− 1
3

bp . (2.1.15)

Figure 2.3: Free energy per base pair in the U-O model as a function of the number of
base pairs Nbp in the condensate; only surface and bending contributions are included.
The points are values obtained numerically while the lines are power law fits. The
vertical dashed line corresponds to the length for which the U-O surface-bending

coupling constant α0 is defined for a DNA of 169 kbp (T4 DNA). Different α parameters
were obtained by fixing the DNA persistance length at Lp = 50 nm and varying σ (and
thus γ) using Eq. (2.1.5). The points on this curve correspond to the starting shapes in

Fig. 2.2 The two limiting scaling exponents are shown.

We calculate the sum of surface and bending energies for different α in Fig. 2.3. The
dependence of the free energy on the number of base pairs with the included surface and
bending terms is between the limiting power laws of the thin torus and the fat sphere.
We note that both α0 = 0.1 and α0 = 1 curves are in the thin torus regimes, while the
α0 = 100 curve is approaching the fat sphere regime. In the fat sphere regime there is an
exclusion cylinder at x = 0 due to a divergence in the bending free energy.
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2.1.3 Minimal packed length for condensate stability

For DNA to be in the condensed state, the total free energy Ftor must be negative.
When we add the volume contribution to the previously calculated surface and bending
contributions (Fig. 2.3) we see that all α0-curves follow the same trend (see Fig. 2.4):
there exists a minimal length for stable condensation (F < 0).

Figure 2.4: Free energy per base pair in the U-O model as a function of the number of
base pairs Nbp in the condensate; the values have been scaled by division with α0 (at
maximal packing). Thus, the y-axis corresponds directly to the curve α0 = 1. The

horizontal dashed line corresponds to the asymptote for extremely large Nbp. The entropy
contribution T∆S for α0 = 1, and the scaled T∆S/α0 corresponding to the α0 = 0.1

curve, are marked on the left y-axis with arrows. Parameters are the same as in Fig. 2.3.

In the fat sphere limit, the minimal base pair quantity for stable packaging can be
obtained from Eq. (2.1.15) and (2.1.10). Thus, without bending the Ubbink-Odijk model
requires at least Nmin ≈ 40 base pairs. In the thin torus limit for the α0 = 0.1 curve, we
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obtain from Eq. (2.1.14) and (2.1.10) that at least Nmin ≈ 2500 base pairs are needed for
a stable condensate. This matches the interpolated numerical value obtained from Fig.
2.4.

We now analyse what happens if entropy is treated separately from the free energy
densities included in the model. The entropy penalty for condensing a semi-flexible
random coil can be approximated by using the free energy from undulations of a semi-
flexible polymer [47] as ∆S/Nbp = Lbp/Lp = 0.0068. Comparing this entropy penalty with
the values given in the model we find that the condensation in the α0 = 0.1 case is not
stable, while for the α0 = 1 case it increases the minimum number of base pairs by roughly
10%, and is negligible for higher α0 (note the markings on the right y-axis at Fig. 2.4).
Bloomfield [48] suggests that the minimal length for DNA condensation is between 150
and 400 base pairs for a dilute DNA solution. Also, he gives a value for the condensation
energy on the order of −0.07 kBT per bp corresponding to our α0 = 1 curve, consistent
with the previous discussion and other similar approaches [49].

2.2 Phases of confined DNA

Figure 2.5: Phase diagram of a confined polymer. Different regimes for a confined
semi-flexible polymer are shown. The x-axis shows the total length of polymer inside

confinement with different persistence lengths Lp marked (for details see Ref. [12]). Note,
the polymer monomer size a is set a = 1 so that both the capsid length and persistence
length are given as non-dimensional quantities in the units of the monomer size. The

y-axis shows the radius Rc of the confinement. The arrow (blue) shows the approximate
position and direction of the proposed ejection path for a bacteriophage (see text for

details). This figure has been adapted from Ref. [12].
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Confined DNA differs from bulk DNA solutions. Depending on the interplay of the DNA
persistence length Lp, capsid confinement radius Rc and the total length L of encapsidated
DNA we expect several regimes. When scaling arguments are applied to a DNA molecule
confined in a capsid of radius Rc one can expect four distinct phases [12] before a dense
crystalline-like packing is reached at high densities (Fig. 2.5). When the confinement size
is smaller than the persistence length of DNA, the DNA molecule will be stiff, and will be
pushed against the interior of the confinement. We will call this the bending dominated
regime. In the opposite case, although the DNA will be bent inside, this bending energy
will not dominate over excluded volume interactions. Within this regime, we expect a
confined ideal polymer chain followed by a semi-dilute regime and finally a liquid crystal
state [12]. At high density, in all the regimes the DNA will enter a dense hexagonal state
[40].

The simplest regime is the bulk regime, as here the dimension of the DNA random
walk in space is smaller than the size of the confinement, and requires no special treatment.
After the DNA coil spatial extend starts to probe the confinement, the DNA enters the
ideal chain regime ("dilute") in confinement as the DNA can not significantly interact with
the capsid, but it determines the local concentration of DNA. The transition into this
regime happens at

√
LbpN0Lp ≈ 2Rc [50] which for Lp = 50 nm and Rc = 30 nm amounts

to N0 = 200 bp. At larger lengths the DNA enters the confined ideal chain regime – the
dominant free energy contribution is a confinement penalty coming from bending. After
the ideal chain the DNA enters the (mean field) semi-dilute regime – here the bending
contributions are overcome by excluded volume self-interactions. At even higher densities,
the excluded volume and bending influence the local director, the tangent on the curve
of the DNA, to become correlated with that of the nearest neighbours to facilitate denser
packing. The DNA locally orders into a liquid crystal phase [13, 51]. It is known that the
packing progresses firstly trough a nematic then cholesteric regime and ending in a dense
hexagonal packing manifest as an inverse spool (see Fig. 2.6) [10]. This inverse spool
has an axis of symmetry left from packing of DNA trough a portal in the viral capsid.
The completely packed DNA strand has a cylindrical symmetry around this axis passing
through the tail and center of the capsid.

The bending regime is the least studied, as in physiological conditions the persistence
length of DNA is just above the threshold for the transition in a bending dominated
regime. Many experiments find the DNA inside the capsid as being in a liquid crystalline
state [10]. The transition from an isotropic (disordered) to liquid crystal (ordered) state
seems to happen at about 30% packing in the case of phage, and the transition in a
hexagonal state at about 70% [10]. But, if the temperature of the partially filled viral
capsid is reduced by 20 degrees, the DNA adopts a conformation of an inverse spool (Fig.
2.6d), the signature of a bending dominated regime [10]. So, it seems that packed DNA
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Figure 2.6: Examples of different DNA packing regimes. a) Cholesteric liquid
crystal DNA ordering inside partially filled capsids. Figure adapted from Ref. [10], b)
Reconstruction of dense ordered organization inside epsilon15 phage capsids obtained
from icosahedraly averaged electron micrographs. Figure adapted from Ref. [52], c)

Micrograph od two bacteriophages ejecting DNA inside a liposome in the presence of the
spermidine condensing agent. The resulting DNA torus has hexagonal ordering (as in
Fig. 2.2). Figure adapted from Ref. [43], d) DNA inverse spool. The DNA enters the
capsid portal (tail), and packs as a spool with cylindrical symmetry startinge from the

outer layers inwards. Figure adapted from Ref. [53].

is just outside the bending dominated regime, which is initiated by enhancement in the
stiffness at low temperatures. The ejection of DNA from a bacteriophage capsid is thus
expected to follow through several packing regimes (representing a horizontal path trough
the phase diagram on Fig. 2.5). In vivo, it will progress from a high density hexagonal
phase, trough the liquid crystal, and finally the semi-dilute state before almost none is
inside and the force of ejection drops to zero. In the bending regime, ejection is expected
to be simpler, with only a change of the ordering and packing organization as the length
of the encapsidated DNA is reduced.

In what follows, we will first discuss how the bending energy can be calculated in both
the bending-dominated and the liquid crystal regimes, before continuing to study the free
energy of packed DNA in the ideal chain, and the liquid crystal regimes.

2.3 Bending of confined DNA

The bending of DNA is especially relevant in viral capsids, as the typical persistence
length of the DNA (Lp ≈ 50 nm) is comparable to the size of viral capsids (Rc ∼ 30− 50
nm) [54]. The bending energy is affected by the confinement, effectively limiting the
maximal radius of curvature of a DNA contour to the size of the capsid Rc. In this regime
the best approach is to model the DNA as a worm-like chain with a dominant contribution
from bending. The bending energy of a single strand of DNA can be expressed as an
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integral of its local radius of curvature R over the full contour length [3]

Fb = 1
2LpkBT

∫ 1
R(r)2dl(r) (2.3.1)

where dl follows the contour. The bending energy in confinement becomes large for tightly
wound DNA as the the minimal bending energy is limited with the capsid radius Rc as
∼ R−2

c . When the Kuhn length of DNA 2Lp, which represents one step in the random walk
of the DNA, is larger than the diameter of confinement 2Rc the DNA random walk becomes
frozen by the confinement [12]. We can see this if we compare the the thermal energy
available to one persistence length segment to the corresponding bending contribution.
DNA inside a confining sphere of radii Rc has a minimal free energy when its radius of
curvature is equal to the radius of the confinement. A length Lp of such DNA would have
a free energy of ∼ 1

2kBTLpLp/R
2
c , comparable to the thermal energy of ∼ 1

2kBT per degree
of freedom. The conformation of such DNA is effectively dominated by bending.

First, we shall discuss a simple mean field bending model, that is applicable if the DNA
is not tightly bent (not in the bending regime in Fig. 2.5), as a basis for future discussions.
Afterwards, we will discuss an effective loop model for tightly bent ordered DNA [55] and
extend it to include also transition to a disordered state [56].

2.3.1 Mean-field bending model

The bending energy of a DNA strand in a spherical confinement of volume Vc can be
written as

Fb
kbT

= Lp
2

∫
sphere

ρ(r)K2(r)d3r (2.3.2)

where K(r) = 1/R(r) is the local curvature, the integration is limited to the inside of the
sphere, and ρ(r) is the local density of DNA. We will make an approximation of a mean
local bending energy, such that there exist an expected value of the bending 〈K2〉 in place
of the true K2(r) together with the assumption that the density ρ = LbpNbp/Vc inside the
confining volume Vc is homogeneous.

We know that
K(r) = |∇su(r)| (2.3.3)

where ∇s is applied along the curve of the DNA strand, and u(r) is the tangent vector
for a DNA strand at position r. u(r) can be decomposed in a spherical coordinate system
with its center coinciding with the center of the spherical confinement:

u = urr̂ + uθθ̂ + uφφ̂. (2.3.4)

As we expect rotational symmetry inside the confinement, we can simplify the calculation

20



Chapter 2. Compacted DNA

of the local curvature. We will consider a simplified case where there is no θ or φ dependence
in the projections of u on r̂, θ̂, φ̂; only a dependence on a order parameter, and possibly a
dependence of ur on r. Here, we neglect correlations between neighbouring parts of the
strand inside the capsid, except radial correlations due to boundary conditions on the
surface of the sphere. Thus, we can imagine the capsid consisting of infinitesimal boxes
with a given probability distribution f(u) for finding a piece of DNA in a given direction
u; this probability distribution can be either isotropic or give a measure of ordering.

We calculate the changes of the unit vectors of the coordinate system as we locally
move from one point to the other to obtain the local curvature:

K(r) =
∣∣∣∣∣r̂
(
∂ur
∂r

+ uθ
r
− uφ

r

)
+ θ̂

(
ur
r
− cos θ
r sin θuφ

)
+ φ̂

(
ur
r

+ cos θ
r sin θuθ

)∣∣∣∣∣ . (2.3.5)

Here, we must have ur(r = Rc) = 0 due to boundary conditions; the strand cannot
penetrate the capsid walls. But, to simplify the problem we will neglect the additional
effects of the boundary by taking ur to have a constant value inside the capsid. This
violates the boundary conditions, but is consistent with either an inverse spool or liquid
crystal ordering. In the inverse spool the DNA smoothly transitions between layers with
a minimal ur. If we were to take ur then the distribution function fn needs to also be
dependent on the azimuthal angle and possibly the distance from the center, requiring a
more complex model.

From

K2(r) = 1
r2 (uθ − uφ)2 + 1

r2

(
ur + cos θ

sin θ uθ
)2

+ 1
r2

(
ur −

cos θ
sin θ uφ

)2

(2.3.6)

after some simplifications and partial integration over r and φ we obtain

Fb
kbTNbp

= 3LpLbp
8πR3

c

4πRc

(uθ − uφ)2 +
∫ π

2

θ0

(
ur + cos θ

sin θ uθ
)2

sin θdθ+

∫ π
2

θ0

(
ur −

cos θ
sin θ uθ

)2

sin θdθ
 (2.3.7)

where the integrals diverge for θ0 → 0. This is because the integrals can be interpreted
as the winding of loops of increasingly smaller radius around the symmetry axis (analogy
to the inverse spool model). But, due to the finite dimensions of the DNA strand we can
enter a minimal distance that is achievable. Thus, we introduce a lower cut-off length of
R0 which is much smaller than R so Rcθ0 ≈ R0. It follows after neglecting higher orders
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of θ0 (θ0 � 1):

Fb
kbTNbp

= 3LpLbp
2R2

c

[
(uθ − uφ)2 + 2u2

r − 2ur(uφ − uθ) + (u2
φ + u2

θ)(−1 + log 2− log(θ0))
]
.

(2.3.8)
Here, we identify R0 as the "correlation hole" in the inverse spool model which should
depend on the length of DNA inside. At smaller packed lengths, the DNA will prefer to
fill the outer parts of the capsid as filling the center increases the bending energy [9]. Note
that the derived formulas are only valid when the density of DNA is homogeneous inside
the confinement. Our approximations are not valid at low densities, e.g. near the end of
DNA ejection from a bacteriophage.

We approximate the bending energy by the expected value of the bending energy for a
given distribution function f(β) such that

Fb → 〈Fb〉 =
∫
Fbf(β)dΩ (2.3.9)

The projections of the tangent vector on the spherical coordinate system axis are

ur = sin β sinψ
uφ = sin β cosψ
uθ = cos β

(2.3.10)

where we have redefined the values of β and ψ to be in a new spherical coordinate system
where ẑ is in the direction of the director field which we take to be φ̂ (to recover the inverse
spool model in the completely ordered state). Now, from the property of the distribution
function that f(β) = f(π − β) and its independence on the azimuthal angle we can show
that the expected value of the projections are zero by definition

〈ur〉 = 0
〈uφ〉 = 0
〈uθ〉 = 0

(2.3.11)

and that the mixed terms are also zero

〈uruφ〉 = 0
〈uruθ〉 = 0
〈uθuφ〉 = 0

(2.3.12)

Using the preceding equation we can simplify Eq. (2.3.8) to obtain

Fb
kbTNbp

= 3LpLbp
2R2

c

[
〈u2

θ〉+ 〈u2
φ〉+ 2〈u2

r〉+ (〈u2
φ〉+ 〈u2

θ〉)
(

ln
(2Rc

R0

)
− 1

)]
. (2.3.13)
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By using trigonometric expressions and taking into account that the distribution is not
dependent on the azimuthal angle ψ

Fb
kbTNbp

= 3LpLbp
2R2

c

[
1 + 1

2〈sin
2 β〉+ (1− 1

2〈sin
2 β〉)

(
ln
(2Rc

R0

)
− 1

)]
(2.3.14)

or by introducing the order parameter from liquid crystal theory S[f ] = 〈P2(cos β)〉:

Fb
kbTNbp

= LpLbp
R2
c

[
1− S + (1 + 1

2S) ln
(2Rc

R0

)]
(2.3.15)

In the isotropic state S = 0, so:

Fb
kbTNbp

= LpLbp
R2
c

(
ln
(2Rc

R0

)
+ 1

)
(2.3.16)

and in the fully ordered state S = 1, so

Fb
kbTNbp

= 3
2
LpLbp
R2
c

ln
(2Rc

R0

)
(2.3.17)

which corresponds to the expression obtained by integrating the bending over an inverse
spool [55]. We can use standard values typical for a λ-phage to obtain an estimate of the
difference in bending energy between these two states. The bending energy changes from
the isotropic to the completely ordered phase by a factor of ≈ 5% (full packing) to ∼ 25%
(low packing density) depending on the length of encapsidated DNA.

Note the term ∼ lnRc present in the isotropic state is also seen in the work by Morrison
and Thirumalai [57] – although their lnRc term is not extensive and lacks an equivalent
lower cut-off R0. The parameter R0 is easily identified as the inaccessible region in the
center of the spool like configuration, i.e. DNA cannot fill the central volume of the spool
due to its finite size and the corresponding bending energy. When the bending energy is
small with respect to electrostatics, R0 can be obtained from a variational approach at
high density [9]:

R0(N) ≈ 10Rc√
N
. (2.3.18)

which is of use when the system is in the liquid crystal regime and beyond, but is not
useful at low densities. In the disordered case, we can obtain a similar scaling at large
packing by variationally treating the competition of excluded volume and bending energy,
albeit this is of limited use as the disordered state is known to transition into an inverse
spool at high density [22]. Alternatively we can use a constant value comparable to the
width of a DNA base pair R0 = 2.5 nm.
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2.3.2 Loop bending model

In the bending dominated regime, the DNA persistence length is larger than the
confining radius Lp > Rc. The major contribution to the free energy comes from bending
which is determined by the possible conformations the DNA strand can have inside the
confinement. We approach the problem by finding an elementary DNA conformational
unit which we can use as an effective quasi-particle akin to Kuhn segments in bulk [1]. The
DNA is expected to be bent into the shape of the confinement so it will layer around the
interior surface. We will define our effective unit as one loop of DNA which forms a circle.
This method was first introduced by Purohit [22, 55] to model DNA in the inverse spool
packing organization inside viral capsids, and was later studied for elastic wires packed in
spherical confinement [56, 58].

Figure 2.7: a) Schematic for the inverse spool model with loops. Taken from Ref. [59]. b)
Reconstruction of stiff wire packing experiment inside spherical confinement. Adapted from Ref.
[56]. c) Drawing of the integration method used for determining the order S dependence of the
loop radius r scaling with the total length L of confined DNA. The shaded area represents

represents the volume filled with DNA which is obtained from the intersection of the large circle
of radius R = r/(1− S) (blue) and the capsid sphere of radius Rc (red).

We can now define basics elements of the DNA loop model. The bending energy
change dF for an infinitesimal increase dl of packaged DNA length from L to L+ dl can
be represented as

dF = 1
2kBTLp

dl

r2(L) (2.3.19)

where r(L) is radius of curvature forced on the length dl of DNA by the available free
volume. This internal radius r will become smaller as more DNA is packed inside and
layered on the interior surface, also leading to a non-linear increase of bending energy.
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Also, depending on the symmetry of packing, r will have different functional dependences.
We can construct two simple cases (See Fig. 2.7a,b): a) DNA packages with a cylindrical
symmetry ("inverse spool"), b) DNA packages randomly, filling equally the interior surface
("onion").

In the case of an inverse spool packing, the internal radius r corresponds to the
cylindrical radial distance. As the length of DNA L is increased inside the capsid, r
changes according to [55]

r(L) = Rc

√
1− (ξL) 2

3 (2.3.20)

with ξ = 3A0
4πR3

c
where Rc is the spherical confinement radius and A0 is the cross sectional

area per DNA strand. The cross sectional area will depend on the DNA-DNA electrostatic
repulsion, and will for full packing represent the area per DNA strand in hexagonal packing.
This results in a total bending energy of:

Fb
kBT

= 3Lp
2R2

cξ

[
− 3
√
ξL+ 1

2 ln
(

1 + 3
√
ξL

1− 3
√
ξL

)]
(2.3.21)

In the "onion" like regime the internal radius goes as:

r(L) = Rc
3
√

1− ξL (2.3.22)

leading to a total bending energy of:

Fb
kBT

= 3Lp
2R2

cξ

[
1− (1− ξL) 1

3
]

(2.3.23)

We see that the bending energy per unit of length grows with L as smaller loops carry a
larger bending contribution in both regimes, which is a necessity as experiments clearly
show that the ejection force is length dependent [22].

The packing of DNA inside viral capsids is expected to progress first as a disordered
"onion" packing corresponding to Eq. (2.3.22) and at longer packaged lengths to change into
an ordered "inverse spool" configuration. The bending energy of an onion configuration we
calculate is expectedly lower than in the ordered case as it does not introduce an energetic
penalty for loops to cross each other. Each loop crossing will produce stronger electrostatic
repulsion and require some degree of bending. We can make an estimate of such effects
by introducing a scaling relationship accounting for direct collisions of loop pairs.

The free energy penalty coming from collisions of two DNA loops should be be propor-
tional to the square of the local loop density ρ2

loop (probability of finding two particles at
one place), the total volume Vc in which the collisions could happen, the excluded volume
for interactions v and the probability Pcollision of the collisions happening. We can thus
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write a scaling relationship:

Fcollision ≈ kBTρ
2
loop × Vc × v × Pcollision. (2.3.24)

The probability of the collision will depend on the way DNA is packed. If packing is
progressing in the inverse spool, then collisions (crossings) between two loops are non-
existent. On the other hand, if all DNA loops are disordered the collisions will happen
always. We are here led to define a order parameter S, in line with liquid crystal theory
[60], such that S = 1 in the inverse spool and S = 0 in the onion model. With a mixture
of two packing regimes the order parameter will be in the range S ∈ [0, 1]. The collision
probability for any two DNA loops to cross each other is a sum of the probability of one
being ordered and the second disordered, with a multiplicity of two, and of both being
disordered, leading to:

Pcollision = 2× S × (1− S) + (1− S)× (1− S) = 1− S2. (2.3.25)

A rough estimate for the excluded volume v would be to take it as being equal to the
maximal excluded volume of two DNA rods of persistence length Lp and effective width
D, v = 2L2

pD. This gives the basic scaling of for the energetics of loop packing.

To calculate the collision free energy, we determine the number of loops nh(L) in
confinement. The number of loops will grow with L non-linearly depending on the packing
type. For an increase of DNA length of dL the number of loops increases as

dnh = dL

2πr(L) (2.3.26)

from which one can calculate the number of loops in both regimes by simply integrating
using eq. (2.3.22) or (2.3.20). This gives sufficient information to calculate the total
bending energy in both cases.

In reality, DNA will not always be completely ordered or completely disordered inside
the system. The DNA will transition between these regimes during viral ejection, similarly
to the way it transitions from the liquid crystal state with lower DNA stiffness [10]. To
study this effect, one can construct an effective model of packing between the S = 1
(inverse spool) and S = 0 (onion) regimes. The simplest model for a transition between
these two packings for which it is possible to calculate how r scales on L is by producing
an interpolation between these two regimes. To obtain how r(L) scales, we construct a
geometric model (Fig. 2.7c) of a cross section of our confining sphere and another sphere
of radius R. The spheres are placed such that for S = 1 the inner sphere radii R → ∞
so that it represents a cylinder, and for S = 1 the inner sphere radii R → r so that it
represents the inner surface of the packaged DNA ("onion shell"). Assuming R = r/(1−S)

26



Chapter 2. Compacted DNA

allows us to calculate the volume V (r, S) of the cross section of the two spheres. It is this
volume that is filled as more DNA is inserted. Because of the shape of volume, an effective
radius of the current loop r is defined. Numerically one obtains how r(L) depends on the
order S (Fig. 2.8). For S = 0 and S = 1 we obtain the analytical results, while for a
varying degree of order we obtain a smooth transition between these regimes. This allows
the calculation of how the free energy in the model depends on the amount of packaged
DNA.
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Figure 2.8: Dependence of loop radius r(N) as a function of packing percentage for
several different order parameters S. Symbols mark the inve,rse spool (S = 1) and
onion-like (S = 0) packing limits given by Eq. (2.3.20) and (2.3.22), respectively.

The total free energy can be estimated using our scaling relationship based on the
numerically obtained r(N,S) (Fig. 2.8) with both the bending energy and collision en-
ergy depending on the ordering inside, i.e. by using our previous approximation for the
contribution of collisions Ftot(N,S) = Fcollision(N,S) + Fb(N,S) (Fig. 2.9). We see there
are two local free energy minima. First is at S = 0, corresponding to the onion model.
The second, at S = 1 represents the inverse spool model, and is a global minima because
there are no loop collisions. Interestingly, there is an energy barrier separating the ordered
(S = 1) and disordered (S = 0) regimes, which becomes larger as the packing is increased
from a larger number of loops. For full packing, we see that S = 1 becomes globally
unfavourable as a result of our model not treating high density phases correctly.

The loop model presented here gives interesting insight into packing of stiff DNA
inside confinement. First, it predicts that the inverse spool phase is more stable, but
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Figure 2.9: Total free energy in loop model with contributions from bending Fb(N,S)
and collisions Fcollisions(N,S) as a function of the order parameter for different lengths of
packed DNA (here represented as packing fractions x = N/N0). At full packing a dense

hexagonal phase with DNA strand separation of d = 2.8 nm is assumed.

it also predicts that it is possible that packaging could remain stuck in the disordered
phase, because of the energy barrier. This could produce a hysteresis between packing
and unpacking, when the disordered phase can persist for long lengths during packaging,
but will be suppressed during ejecting the material. We can also relate our model to
packing of stiff wires in spheres [56, 58], where it could be applied to give analytical fits
to experimental data of partially ordered packings.

Torsion can be relevant for packing, even leading to a lower degree of ordering when
there is no mechanism for relaxation [56]. In reality, packing in the disordered phase
consists of small ordered groupings of wires. Whenever the coiling radius becomes too
small, a new loop is started at a different orientation [56]. So each layer seems to be ordered
in respect to itself, but with a different orientation between different layers. This seems
to minimize the crossing penalty. At higher densities, Stoop et al. [56] see a transition to
a "inverse spool" packing regime, as predicted by the loop model.

2.4 Confined DNA in the isotropic regime

After discussing the DNA bending, and specifically the bending dominated regime of
DNA confinement, we will continue with the regimes where the bending contribution to
the free energy is not dominant. Going in the opposite direction to that of in vivo ejection
(Fig. 2.5), we start in the isotropic regime, and follow into the liquid crystal regime. The
DNA at low packing densities, below 30% of packed total length, is considered to be in
the isotropic, or disordered, phase [10]. This phase has two distinct regimes [12]: a) the
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first part is the ideal chain regime, when the whole DNA does not feel the confinement,
b) the second is when the correlation length between different DNA segments become
comparable to the size of confinement, and behaves as if being part of a semi-dilute bulk
solution [11]. As DNA is a strongly charged polyelectrolyte, we will focus on contributions
coming from angle dependent excluded volume interactions, which will dominate the free
energy [13, 14]. In this section, we will explain the state of the DNA, its free energy, and
use the resulting information to give estimates on pressures and forces involved during
the last parts of DNA ejection.

When the DNA behaves as an ideal chain, i.e. when it can be represented as a random
walk within confinement, we can renormalizes the length scales to reduce the case to that
of an ideal chain [2]. We use a coarse graining scheme due to Khokhlov and Semenov [61].
The DNA is treated as an ideal polymer with a new renormalized monomer size (the Kuhn
length) of 2Lp, thus consisting of n = L/(2Lp) segments. This representation includes the
"self-interaction" of the DNA strands. We must make a distinction between 2Lp, which is
the Kuhn length and becomes a measure of spatial extent, and the persistence length Lp,
which is related to the mechanical stiffness.

In order to model the DNA in the isotropic regime, we must first determine the
interactions between two segments of the DNA. Due to the confinement, these segments
are forced to exist much closer to each other than in free space. This spatial exclusion
coming from screened electrostatic interactions is called the excluded volume, and gives a
measure of the crowdedness inside the capsid.

DNA-DNA interactions

When two parts of a DNA molecule are in close proximity, they exert a repulsive force
on each other. Effectively, each part of the DNA excludes a volume around it depending on
the strength of the interaction. When the density of particles is such that there is more free
volume than excluded volume, these particles are consider to be barely interacting. As the
density increases, the excluded volume becomes a good measure of the free energy required
to obtain such a packing. We will use measured DNA-DNA interaction parameters from
the seminal work by Rau and Parsegian [40] to obtain how the excluded volume behaves,
taking into account the mutual orientation and distance of two DNA segments.

The dominant part of the excluded volume for two DNA molecules comes from screened
electrostatic interactions. Due to its local rigidity DNA behaves as a long rod with a linear
charge density λ and effective width D inserted into a salt solution with electrostatic
screening length κ−1. A solution of the linearised Poisson-Boltzmann equation (Debye-
Hückel) for the interaction of two long charged DNA rods with electrostatic screening
(Lp >> κ,D) which have their points of closest separation at r1 and r2 and a mutual angle

29



Chapter 2. Compacted DNA

of γ between direction vectors (directors) n1 and n2 is given by [62]

U12(r1, r2) = πλ2

εκ

e−κ|r1−r2|

sin γ (2.4.1)

where λ is the effective linear charge density related to the effective charge per monomer
νeff as

λ = νeffeNbp

LbpNbp

= νeffe

Lbp
. (2.4.2)

The bare charge of DNA is ν0 = 2 elementary charges per base pair, but in physiological
conditions due to Manning-Oosawa counterion condensation [63] the effective charge is
reduced from its bare value ν < ν0.

The angle dependent electrostatic excluded volume (second virial coefficient) is then
calculated as [13, 51]

β(n1,n2) = 1
V

∫ ∫
(e−

U12(r1,r2)
kBT − 1)dr1dr2 (2.4.3)

which for the case of two charged rods of length Lp at a closest separation of x = |r1− r2|
reduces to

β(n1,n2) = 2L2
p sin γ

∫ ∞
D

(1− e−
U12(x,γ)
kBT )dx (2.4.4)

Because of the ambiguity in choosing the effective linear charge density due to correlations
and screening we opt to use an experimental fit which includes both hydration repulsion
and screened electrostatic interactions between two parallel rods as measured by Strey et
al. [64]

U(r) = a
e−κHr
√
κHr

+ b
e−κr√
κr
. (2.4.5)

where κ−1
H and κ−1 are the hydration and electrostatic decay lengths, respectively. Follow-

ing the outline for skewed rods [62], with a mutual angle of γ at a minimal distance x, we
obtain for the angle dependent potential:

U(x, γ) =
√
π

2
a

κH

e−κHx

sin γ +
√
π

2
b

κ

e−κx

sin γ . (2.4.6)

From this we can numerically calculate the angle dependent excluded volume β(n1,n2) in
(2.4.3). Representative values for a 100mM monovalent salt solution are κ−1

H = 0.3 nm,
κ−1 = 0.974 nm, a = 1.7 · 104 kBT/nm and b = 85 kBT/nm [64].

Modelling the DNA in the isotropic regime

When the end-to-end distance of the encapsidated DNA is< comparable to the capsid
size, it starts to interact with its confinement. The free energy of the DNA will be
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dominated by bending with excluded volume interactions becoming relevant at higher
densities. Using pairwise interactions, a Flory scaling approach [2] when L2

p < Rca

[12] gives that the free energy scales with the number of DNA monomers as F ∼ n2.
Scaling arguments give the results up to a constant of order unity. In contrast, numerical
simulations combined with mean field modelling give the free energy at low density for a
worm like chain confined inside a spherical surface as [57]

F = 0.56LPL
R2
c

− 1.1Lp
Rc

+ 3 ln(Rc). (2.4.7)

which also gives a bending contribution, with terms Lp/Rc and ln(Rc), not obtained in
typical scaling arguments [12] but it neglects strong electrostatic interactions. We can not
return to Eq. (2.3.15) for the mean field bending as it assumes a homogeneous packing
which is not yet established. The loop bending model as given by Eq. (2.3.23) in the
disordered (or ordered) regime provides a better estimate.

In order to construct the free energy, we will use our loop bending Eq. (2.3.23) and
combine it with pairwise interactions of the excluded volume type. When the worm like
chain starts to intersect we add the excluded volume interactions inside a spherical cavity
[2]

Fv = kBTv
n2
p

Vc
(2.4.8)

where the relevant quantity is not the number of monomers Nbp/V but the number of
"persistent segments" inside the confinement:

np = LbpNbp

2Lp
. (2.4.9)

Here, v is the isotropic excluded volume obtained by averaging the angle dependent
excluded volume from Eq. (2.4.4) over all possible mutual (random) angles between two
persistence segments of DNA:

v = 1
2

∫ ∫
β(n1,n2) 1

4π
1

4πdΩ1dΩ2. (2.4.10)

We can integrate the excluded volume

v = 1
8

∫ π

0

∫ π

0
β(sin γ) sin θ1dθ1 sin θ2dθ2 (2.4.11)

where γ is the angle between the current directors θ1 and θ2. We can change the origin of
the first coordinate system so that it always coincides with the second, thus:

v = 1
4

∫ π

0
β(γ) sin γdγ (2.4.12)
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leading to

v = L2
pD

(
lnA+ γe
κD

− 1
)
−
L2
p

2κ

∫ π

0
| sin γ| ln(| sin γ|) sin γdγ. (2.4.13)

After integration we obtain the final equation for the isotropic excluded volume [13]:

v = L2
pD

(
lnA+ γe
κD

− 1
)
−
L2
p

κ
(ln 2− 1). (2.4.14)

Here D is the effective width of the DNA, γe ≈ 0.577 a numerical constant and κ−1 the
electrostatic decay length. We can make an estimate of the excluded volume in viral
capsids by taking typical parameters D ≈ 3 nm and νeff = 1.9) and an electrostatic decay
length of 0.977 for 100 mM salt [64] and evaluate to obtain v ≈ 2200 nm3. For a viral
capsid of radius Rc = 30 nm, we obtain Vc ≈ 50v. Thus, when 50 persistence length
segments (about 2.5 µm of DNA) is inside the capsid, all the available volume is excluded.
This gives us a good estimate of the range of validity of models which take into account
only the pairwise term in the virial expansion.

We can finally write the free energy for the whole isotropic regime as

Fd
kBT

= 3Lp
2R2

cξ

[
1− (1− ξL) 1

3
]

+ v
3

4πR3
c

(
L

Lp

)2

. (2.4.15)

This provides one equation for estimating the free energy before the DNA enters a liquid
crystal regime. Notably, for extremely short lengths L → 0, the bending term reduces
to the exact formula. Alternatively, if we have reason to believe that there is a strong
tendency for ordered packing, e.g. as simulated [57], we can use the spool bending model
given by Eq. (2.3.21) [59].

2.5 Liquid crystalline DNA phase

The liquid crystal phase is identified by local ordering of the DNA strands such that
local DNA strand direction vectors (directors) become correlated on a global scale. This
transition from an isotropic phase to a liquid crystal is known to closely resemble the same
transition in concentrated unconstrained DNA solutions [65]. We base our modelling of the
liquid crystal phase on adding small perturbations to bulk models. These perturbations
are caused by spherical confinement and manifest themselves as a limit on the possible
director field in the ordered phase and the addition of bending free energy.

As the DNA is one long strand confined inside a viral capsid, the confinement limits
the possibilities for the liquid crystal global director to these that do not penetrate the
capsid and have a minimal amount of tight bends. Additionally, we will assume that there
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is no positional variation in the local ordering, i.e. that we have nematic ordering [60].
This leads us to approximate the director for a liquid crystal nematic order as the unit
vector for the polar angle φ̂ with f(β) the probability distribution for finding a DNA rod
at an angle β towards φ̂. A flat distribution of f(β) means that all directions in space
are equally probable (disordered state), while if f(β) = δ(β) it would mean that all DNA
strands are directed as φ̂ (ordered state). A similar approach was adopted by Oskolkov
et. al. [14] as they also studied the effects of confinement on the spatial dependence
of polymer density and ordering with an Onsager approach [51]. They use only steric
interactions and take into account the first correction to the entropy due to spatial and
directional inhomogeneities. But they do not explicitly include the connectivity of the
polymer contour and the resulting bending energy, which we expect to modify the isotropic
to nematic liquid crystal transition.

Onsager model for a liquid crstal

We use a modification of the Onsager approach for rods with excluded volume effects
to treat the liquid crystal ordering. We extend this approach by addition of the mean
field bending given by Eq. (2.3.15) calculated before and study how it affects the liquid
crystal transition. The Onsager approach [51] we adapt here [13] predicts the liquid crystal
transition well, although it does not account for other non-nematic orderings.

In the Onsager approach, the free energy Flc(f(β) is a functional of the probability
distribution function f(β) for finding a local DNA strand oriented at an angle β to the
the director φ̂ and can be written as [13]

Flc
kBTNbp

= 1
Nbp

S− 1
Nbp

∆Sor[fn]+Fbend[fn]
kBTNbp

+ 1
2

n′2

NbpVc

∫ ∫
β(n1,n2)fn1fn2dΩ1dΩ2 (2.5.1)

where np is the number of persistent segments np = LbpNbp
2Lp but all coming from the same

DNA in our case, which is in contrast to the standard Onsager approach.

The content of the terms in Flc is the following. The last term given in Eq. (2.5.1)
is the anisotropic excluded volume given by Eq. (2.4.4) and represents the first term in
the virial expansion for DNA-DNA interactions. The resulting integral averages over all
director orientations of two DNA strands with directors n1 and n2. The orientational
entropy can be obtained from the director distribution function [66]

∆Sor[fn] = − L

2Lp
σ(fn) = − L

2Lp

∫
f

1
2 (cos θ)∆f 1

2 (cos θ)dΩ (2.5.2)

wtih ∆ given as:
∆ = 1

sin θ
∂

∂θ
sin θ ∂

∂θ
. (2.5.3)
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The bending contribution we take is from our mean field bending model given by Eq.
(2.3.15), which was averaged over all the confined interior. This approximates the bending
energy in a homogeneous mixture of volume Vc:

Fbend[fn]
kBTNbp

= LpLbp
R2
c

[
1− S[fn] + (1 + 1

2S[fn]) ln
(2Rc

R0

)]
. (2.5.4)

This term is not present in the standard liquid crystal approach to DNA [13], and allows
us to study the effects of bending on the transition point. From experiments (see Ref. [10]
and references therein) we know that in monovalent salt conditions there is no exclusion
hole in the center of the capsid thus justifying our homogeneous approximation.

In order to solve the resulting equation we use the Onsager ansatz [51]:

f(θ) = α

4π sinhα cosh (α cos θ) (2.5.5)

dependent on a parameter α. Instead of having to solve for a continuous function f(θ) we
can now solve for the parameter α. As a measure of the order, we will use the nematic
order parameter S = 〈P2(cos θ)〉[60]. The preceding ansatz allows us to directly connect
the order parameter S and the parameter α.

Finally, the order dependent part of the free energy can be written as:

∆F
kbTNbp

= Lbp
2Lp

σ(α) + Ab〈P2(cos θ)〉+
(
Lbp
Lp

)2 2L2
p

κV
[(lnA+ γe − κD) ρ(α)− ρtwist(α)]

(2.5.6)
where the constants are

Ab = LpLbp
R2
c

[1
2 ln

(2Rc

R0

)
− 1

]
. (2.5.7)

and
A =

πν2
eff lb

L2
bpκ

. (2.5.8)

The order independent part amounts to:

Fbend[fn]
kBTNbp

= LpLbp
R2
c

[
1 + ln

(2Rc

R0

)]
(2.5.9)

For the bending contributions we take R0 = 2.5 nm as a representative value as it
approximates the radius of the inaccessible area in the middle of a spool-like packing with
the diameter of DNA.
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Application to the state of DNA inside viral capsids

One can proceed to minimize the free energy for the Onsager model as a function of
the number of base pairs present inside the capsid. A full calculation for the free energy
given by Eq. (2.5.1) with the possibility of ordering into a nematic liquid crystal is shown
in Fig. 2.10. We use three representative values of the monovalent salt concentration 150
mM and 500 mM with experimentally measured potential parameters [64]. We see that
the phase transition, manifest as an abrupt increase in the order parameter S, happens
at Nc/Nmax ∼ 20% of packing, with smaller salt concentrations expectedly inducing an
earlier transition due to stronger electrostatic interactions.

Figure 2.10: Free energy per base pair (chemical potential) in the Onsager approach as given
by Eq. (2.5.1) for one DNA molecule encapsidated in a spherical capsid of radius Rc = 30 nm

with Lp = 50 nm. Lines show the results of calculations for tw different monovalent salt
concentrations (100 mM, 500 mM) as a function of the number of DNA base pairs N inside the

capsid. The connected sysmbols are corresponding values of the order parameter S (right
y-axis). The maximal number of packed base pairs was Nmax = 58.6 kbp.

Figure 2.11 shows the transition point, via the fraction of total packed DNA, for the
transition into a liquid crystal state as a function of persistence length with and without the
bending contribution. We note that the persistence length contributes both as a measure
of bending stiffness and a length scale for the renormalization of the polymer random
walk, so that without bending we return to a bulk liquid crystal transition. As expected
there is a clear trend for earlier ordering as the persistence length is increased. The added
bending contribution significantly influences the transition point at low salt conditions.
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A comparison with experiments which give a transition at 30% encapsidated length, e.g.
in T5 [65], would indicate that the effective persistence length is somewhat lower than
Lp = 50 nm, or that we missed some important term like twist effects [67]. Comparing the
transition points, without and with bending, we see that bending suppresses the transition,
possibly because in the ordered case there are tight bends near the center of the capsid
that are energetically costly.

Let us discuss the values of the persistence length in the contest of the transition point.
It is expected to be around 50 nm in the bulk with only monovalent salts to become
larger when the salt concentration is decreased [45, 68]. A small amount of multivalent
ions remaining inside the capsid could however lower the persistence length. Also, recent
experiments on the flexibility of DNA on length scales shorter than its persistence length
show that the worm-like chain model overestimates the bending energy at small length
scales [69], although this is not yet certain [70]. Thus, we use Lp = 50 nm as a reference for
the flexibility of DNA and test how a change of DNA stiffness alters the transition point.
Notably, temperature can also influence the persistence length. A change of ambient
temperature from 40◦C to 5◦C has been shown to cause an increase of the persistence
length of ∼ 10 nm [71]. According to Fig. 2.11, a change of about 10 nm, could cause a
transition to a disordered state. This could explain experimental results on partially filled
capsids where the liquid crystal state was shown to be extremely sensitive to temperature
[10].

Our results on the liquid crystal transition point are in contrast to Molecular dynamics
simulations (MD) [72] which give a liquid crystal transition at roughly two times the
encapsulated length than in experiments (∼ 70%) [10]. Although there has been some
controversy recently regarding the treatment of entropy in some MD studies [73, 74, 75],
we believe that the main reason is in the under-representation of the anisotropy of the
DNA interstrand interactions. MD studies usually use a coarse-grained model of a bead
spring with added "dihedral angles" to mimic the effects of a persistence length [76]. Here
each bead effects screened electrostatic interactions on other beads based on the rational
notion that a line of charged point particles will produce the same interaction as a charged
rod. If we examine one "solid" rod of length ∼ Lp we find that in a bead spring model it
would have ∼ 100 point particles of charge unity. Such a construction has a pronounced
cylindrical symmetry. With DNA there also exists a delocalized cloud of counterions
screening the bare interactions [77] which is included in the experimentally determined
interactions [64]. Thus, we opted for coarse graining the DNA into rods with anisotropic
interactions.

Although many theoretical models [37, 55] and numerical simulations [72, 78, 79]
predict that an exclusion hole should always exist, irrespectively of the packing fraction
and solvent conditions, experiments indicate that this is the case only in partially filled
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Figure 2.11: Critical length of DNA for phase transition from isotropic to liquid crystal as a
function of DNA persistence length. Results are given for three different salt concentrations and

with or without any bending contribution to the liquid crystal free energy. Capsid size is
Rc = 30 nm. For other parameters see preceding section.

capsids at low temperatures or with added condensing agents [10]. Quenching of mostly
empty capsids from room temperature to ∼ 4◦ C cases a transition from a homogeneous
isotropic state to an inverse spool with a depletion of DNA density in the core of the
capsid [10]. The assumption of a homogeneous density of particles is valid in the limit of
Lp � Rc where there is no preference for the DNA to leave the central part of the capsid
due to costly bends in the contour. In analogy to the Odijk two phase picture for dense
packings [80, 81], we propose that as the bending contribution is increased the center of the
capsid will behave as a exclusion hole for the DNA. This happens when the electrostatic
repulsion energy is not large enough to maximize the distance between the strands. DNA
in the center of the capsid has a tendency to stretch outwards, thus decreasing the effective
volume taken by the DNA and increasing the density of interacting DNA rods. In our
interpretation of the experiments a decrease in temperature can cause an increase in the
persistence length, thus changing the ratio between bending and electrostatic excluded
volume energies on behalf of the former. Such a transition from a homogeneous state
will take place when the bending energy of random packing of DNA loops given by Eq.
(2.3.23) is able to overcome the excluded volume interaction that is spreading the DNA
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throughout the whole capsid volume:

3Lp
2R2

cξ

[
1− (1− ξL) 1

3
]
∼ v

3
4πR3

c

(
L

Lp

)2

. (2.5.10)

We can think of it as the condition that the excluded volume repulsion overpowers the
bending contribution at higher densities – forcing the DNA to fill all the volume at the
cost of increased bending. Using parameters from this section, we obtain a transition
at around ∼ 30% packing, albeit highly sensitive to the value of the persistence length.
From experimental measurements of the DNA persistence length we that a change of
temperature of ∼ 20◦ causes a change of ∼ 15% in the persistence length, which could be
enough to explain the before-mentioned partial onset of exclusion hole formation. This
would indicate that the state of packaged DNA at in vivo temperatures is just outside the
bending regime.

2.6 Viral ejection in vivo

Ejection of dsDNA from bacteriophages is, in spite of half a century of active research,
still poorly understood [18, 82]. The process of ejection is of major importance in the viral
infection process. The ejections begins with the bacteriophage attaching to the bacteria
and the removal of a protein "cork" (tail portal covering) which stops the densely packed
DNA from exiting [54]. The DNA is packed to extreme densities and exerts a pressure of
25− 100 atm on the bacteriophage capsid [9, 20]. Models developed and tested in vitro
(see [18, 82] and references therein) predict that the ejecting force resulting from even
such a dense packing is insufficient to completely transfer the DNA into the cell interior.
Estimates of cellular pressure in bacteria range from 0.1− 25 atm [21, 83, 84]. Although
cells have smaller turgor pressures than fully packed bacteriophages, the ejecting force
(and pressure) in the capsid drops almost exponentially as it empties [22] indicating that
ejection should stall before the genome is fully ejected.

Models of DNA ejection based on the continuum theory by Ubbink and Odijk [16, 42]
have been applied to explain the ejection when both the ejected and encapsidated DNA
is condensed [37]. In the model by Tzlil et al. [37] the capsid DNA, being confined, has
a non-optimal shape which generates the force ejecting it from the capsid all until the
ejection force is balanced by a external counterforce. If this in vitro model is applied to in
vivo cases it predicts that ejection stalls when the cellular turgor pressure is larger than
about 0.5 atm. Typical cellular pressures are estimated to be 0.3−5 atm for Gram-negative
[21, 83, 84] and 15 − 25 atm for Gram-positive bacteria [84]. This would indicate that
ejection cannot proceed without some help.

Typical in vitro experiments do not provide a clean separation between two (three)
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compartments, one in the virus (immersed in the extracellular fluid), and the other in
the cell [17], which is a key feature of the ejection process we aim to include in the
model presented in this section. The theoretical models applied in in vitro, which assume
condensed DNA inside the capsid, may thus have a limited applicability in the in vivo
conditions.

Condensing agents are found in some capsids but this is not a general situation and has
been related to reduced infectivity [85]. Many viral capsids are permeable to small ions
so we expect intra-capsid solvent conditions analogous to those in their exterior. Because
typical extracellular fluids have no condensing agents in sufficient concentrations, DNA
ejection into bacteria is expected to proceed from a non-condensed state.

A recent single molecule Hershey-Chase experiment [23] hints that in vivo ejection is
controlled not by the amount of DNA left inside the capsid but by the amount of DNA
ejected into the cell. This means that once the pressure built-up in the bacteriophage
is spent on the DNA ejection, a cellular mechanism must take over. This has been
documented in vivo in bacteriophages T5 [86] and T7 [87]. A variety of mechanisms have
been proposed for completing the ejection: nano-motors or enzymes that ratchet in the
stalled part of the DNA [87, 88], a solvent flow through the semi-permeable capsid and
into the cell simultaneously flushing the DNA trough the tail [89], osmotic pressure from
proteins remaining in the capsid [90] and diffusion of DNA with assisted pulling from
proteins in the cell [91]. It appears that none of these models give a definite answer while
experiments suggest a coexistence of many different mechanisms.

We will calculate the pressures and forces driving the last parts of viral ejection using
thermodynamic models of the DNA inside the capsid (in an isotropic state) and condensed
DNA inside the cell (Sec. 2.1), and compare them to bacterial internal pressure (turgor
pressure). The phage DNA is modelled as one long strand of total length L0 and per-
sistence length Lp ≈ 50 nm [54] able to move between two compartments with different
thermodynamic conditions – the virus and the cell. It is thus partitioned in two pieces,
one of length L inside the virus head and tail, and the other of length L0 − L in the cell.
Our premises are that DNA is in a non-condensed state in the capsid and in a condensed
state in the cell.

2.6.1 DNA inside the cell

DNA is condensed in the cell due to the presence of multivalent cations during ejection,
but not necessarily afterwards. Condensing DNA inside the cell does not necessarily
inhibit its function. A high reaction rate, and thus a high DNA transcription rate, was
demonstrated with condensed DNA [92]. Multivalent ions and osmolytes condense the
DNA. The shape of the condensate is a result of a competition between DNA-DNA
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attractions mediated by the cations and unfavourable effects of DNA bending (See Sec.
2.1).

The DNA inside the cell is treated as being condensed in a "hexagonally packed con-
tinuum" within the U-O model of Sec. 2.1. The packaging inside the cell is modelled
similarly as by Tzlil et al. [37] as a DNA condensate in the Ubbink-Odijk model [16, 42].
The volume V of the condensed DNA is proportional to the contour length L of the DNA
V = A0(L0−L) with A0 the area per unit length of DNA. The DNA condensate has a free
energy Ftor = −γV +σS+Ebend as presented before. The total free energy Ftor is minimal
when the condensate has the shape of a torus [37], but there are other possibilities like
rods which may become relevant if the DNA stiffness is greatly reduced [30]. A different
shape would only change the surface and bending energy terms to some degree and provide
a small correction to our conclusions.

The DNA in the condensate is assumed to be hexagonally packed with the area per unit
length of DNA A0 = πd2

0/
√

12 – the packing constant for hexagonally packed cylinders
[37]. Here d0 ≈ 2.8 nm is the experimentally determined closest separation between DNA
strands with added condensing agents [40]. We note that Tzlil et al. [37] model the surface
free energy contribution by assuming the loss of half of DNA nearest neighbours while
we assume the loss of a third of the nearest neighbours as derived by Ubbink and Odijk
[42]. This constitutes a minor correction to the surface free energy term, but may become
important if used to determine model parameters from toroid shapes.

The approximation adopted by Tzlil et. al. assumes the toroid to have the shape of a
thin torus as in Sec. 2.1. We will adopt this approximation due to its simplicity, but also
provide a full minimization of the total free energy for various DNA lengths. We calculate
the free energy of the condensate based on the variational approach result for the major
radius R given by Eq. (2.1.14) so that the minimal free energy of a toroidal condensate
[37] is

Ftor = −ε0(L− L0)
1− b

(
A2

0Lp
d4

0ε0

) 1
5

(L− L0)− 2
5

 , (2.6.1)

where ε0 = A0γ is the condensation free energy per unit length in an ideally packed
hexagonal lattice and b = 1.308 a constant. This ε0 was determined by Tzlil et al. [37] by
fitting the toroid major axis to experimental data for λ-DNA in a solution of polylysine
which is also present in some bacteria [30]. As they chose a different surface term than
the original model [16] and us, the condensation free energy per unit length they obtain
γT is smaller than the one obtained here γUO. The shapes of toroids in the U-O model
are determined by a non-dimensional parameter [16]

α = σV
1
3d2

0
Lp

(2.6.2)
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which depends on the choice of surface energy σ. By using a different choice for the
surface energy the fits to toroid shapes would correspond to different values of the surface
free energy σ than in the original model. Because σ is derived from γ, we have that the
Ubbink-Odijk model, adopted here also by us, has γUO = 3

2γT = 0.15 kBT/nm3 (∼ 6
atm) - this difference arises solely from different treatment of the missing neighbours at
the surface of the toroid (one third missing in [16] - γUO ∼ 6 atm vs. one half missing in
[37] - γT ∼ 4 atm). An alternative approach to fitting is to obtain the condensing energy
per unit length from osmotic force measurements [40], e.g. a 20 mM solution of Cobalt
Hexamine corresponds to 0.024kBT/nm3. The comparison of the two values obtained
(0.15 kBT/nm3 vs. 0.024 kBT/nm3) shows that the thermodynamics of the condensed
DNA importantly depends on the condensing agent.

When most of the viral DNA is in the condensate, L� L0, the surface and bending
terms in Eq. (2.6.1) are negligible [37]. This is because the largest contribution to the
free energy of tori comes from the bulk term in Ftor as can be seen from

1.308
(
A2

0Lp
d4

0ε0

) 1
5

L
− 2

5
0 � 1. (2.6.3)

The contributions of the surface and bending terms in the free energy are thus much
smaller from the bulk contribution, as can also be seen in Fig. 2.3.

To confirm the wider applicability of this statement we also perform a full minimization
for toroids with different lengths of DNA, corresponding to different phage genomes. The
minimization of free energy yielded the optimal shape together with the corresponding
volume free energy Fvol = γV , surface free energy Fsurf = σS and the bending energy
Fbend as in Sec. 2.1. The optimal condensate shapes are shown in Fig. 2.12 with the
corresponding energy contributions.

2.6.2 DNA in the capsid

Assuming repulsive DNA-DNA interactions in the capsid (non-condensed DNA), the
total force on the DNA will tend to eject it from the capsid. We will only consider the last
stages of ejection, because we want to determine whether it can finish successfully. The
free energy inside the capsid is the free energy of a confined semi-flexible polymer with
isotropic excluded volume interactions and bending energy:

Fcapsid
kBT

= L2/s0 + 1
2
LpL

R2
c

(2.6.4)

where we take the simplest bending contribution from the DNA barely filling the interior
capsid surface. The isotropic excluded volume can be estimated by using Eq. (2.4.4)
[13]. We obtain that the excluded volume of one DNA persistence length segment is
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Figure 2.12: a) Optimal DNA toroid shapes for several different lengths of DNA
corresponding to well known phages[54] (See text for details). Only the upper halves of the
cross sections are shown. b) The calculated correction to turgor pressure ∆Π (see main text)
for the DNA condensate in the cell as a function of genome length arising from the surface

Fsurf and bending Fbend free energies. Figure from Ref. [34].

v ≈ VcL
2
p/s0 with s0 ≈ 73 · 103 nm2 a constant depending on the interactions and the

capsid size. We take the spherical confinement radius Rc = 30 nm as a representative
value for bacteriophage capsid size. This amounts to v ≈ Vc/80 (v ≈ VC/30) for Lp = 30
nm (Lp = 50 nm) in a 100 mM salt solution.

2.6.3 Tug of war

We now study the balance of forces, the tug of war, near the end of ejection so that we
can determine the maximal cellular turgor pressure that can be overcome. The crowded
cellular interior exerts a turgor pressure Π on the volume V of any foreign material to
banish it from the cell [93] while the effect of condensation draws in more DNA to the
condensate. The balance of free energy in the cell is thus Fcell(L) = (Π − γ)A0(L0 − L)
which is always negative if Π < γ. The DNA will tend to enter the cell in spite of the
turgor pressure, due to the favorable condensation conditions. Our estimates for γ are
between 4 and 6 atm depending on the choice of model parameters. We take γ ≈ 4
atm for the turgor pressure that condensing agents in a cell could overcome on their own.
Additional contributions, ∆Π, come from unfavourable free energy contributions for DNA
in the capsid Fcap and corrections to surface and bending energy terms in the condensate
(Fig. 2.13).

In order to better characterize the last stage of ejection, we will study the chemical
potential for DNA inside the capsid so that we can relate it to the turgor pressure inside the
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cell. The additional chemical potential for the DNA in the cell when the turgor pressure
is increased by ∆Π is ∆ΠA0, and this should be matched by the chemical potential in the
capsid to avoid the stalling of the ejection. When the two chemical potentials are equal

µ = ∂Fcell
∂L

= ∆ΠA0 = ∂Fcap
∂L

∣∣∣∣∣
L∗

(2.6.5)

the ejection will stall at some length L∗. From this we determine the maximal additional
∆Π that can be overcome by the virus because the DNA is ejected from the capsid. We
now study effects due to the confinement in the capsid which was the cause of the driving
force in the early stage of ejection.

Some bacteriophages have tails of considerable length t so we examine if they influence
the ejection process. The entropic penalty for confining a semi-flexible polymer in a tube
of diameter w [94] is

Ftail
kBT

≈ t

λ
ln Lp

λ
(2.6.6)

where λ = w2/3L1/3
p is the Odijk deflection length. For a tail with w ≈ 2.75 nm [54]

the effective chemical potential from the tail is Ftail/t ≈ 0.27kBT/nm. This is enough
to oppose an additional 1.5 atm of turgor pressure in the cell and is independent on the
length of the tail. However, the effect of the tail onsets only when the last DNA base
pair exits the capsid and enters the tail (i.e. when L = t). This suggests a barrier in the
chemical potential that needs to be overcome for total ejection when 4 atm< Π < 5.5 atm
(as will be shown later). In Nature, phage tails have lengths in the range of 10− 800 nm
[8], so the fact that the penalty for confining DNA is independent on the tail length raises
questions regarding evolutionary reasons for long tails. We can assume that in addition
to ensuring that the DNA end is ready for ejection, and not lost in the packed DNA, it
provides some benefit to the phage.

DNA is a charged polyelectrolyte with strong repulsive electrostatic interactions be-
tween any two points on its contour. Interactions between nearby parts of the contour
act to give it its large persistence length comparable to the radius of the nearly spherical
capsid Lp ∼ Rc. When the DNA touches the capsid, any increase of length L will force the
DNA to bend in order to conform to the shape of the capsid. The bending energy in such
a situation can be approximated by that of a loop of DNA with radius Rc, kBTLLp/2R2

c .
A comparison with the previously neglected bending energy of the condensate (see eq.
2.6.1) reveals that they are matched for Rc ≈ 50 nm according to the thin torus model [37].
Smaller capsids could enhance the chemical potential, e.g. in the case of λ phage with
Rc ≈ 30 nm [54], the change of ∆µ ≈ 0.03kBT/ nm is enough to compensate for ≈ 0.15
atm of turgor pressure. Any direct interactions between the DNA and capsid appear to
be negligible - viral ejection experiments show no evidence of attractive forces [95] and
because dsDNA bacteriophage capsids have no considerable charge [24] only weak van der
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Waals interactions are possible.

When the length of the DNA in the capsid is large enough, L� Lp, the DNA chain
statistics resemble that of a random walk of np = L/Lp persistence length segments
[61]. This approximation is valid for steric interactions in bulk as long as Lp ≤ Rc

[12]. The interaction energy between different parts of the DNA strand in confinement
may be estimated on the basis of the excluded volume v between two segments [12]. The
corresponding Flory free energy of interaction in the capsid of volume Vc is Fv ≈ kBTn

2
pv/Vc.

This contribution vanishes as L → 0 so it can not help the ejection in its latest stages.
The excluded volume between two DNA segments can be approximated as that between
two charged rods. This interaction is intrinsically anisotropic, but at low packing fractions
(near the end of ejection) there is no order and we can average this over all possible mutual
angles between two cylinders. We obtain v = L2

pDC0 where D is the DNA diameter
(D ≈ 2.5 nm) and C0 is a numeric constant. The excluded volume interactions will
contribute to the total free energy as kBTC0DL

2/Vc but only in the regime when there
are at least several persistence length segments inside the capsid. For Rc ≈ 50 nm in
100 mM monovalent salt, v/Vc ≈ 1/30 resulting in the effective chemical potential being
an increasing function of length ∂Fv/∂L ≈ 2L/Lp0.013 kBT/nm . If, say, 10 persistence
lengths of DNA are in the capsid the repulsive force is sufficient to oppose ∼ 0.8 atm of
turgor pressure.

We represent the general dependence of the chemical potential for DNA inside the virus
in Fig. 2.13. When the cellular turgor pressure Π is larger than the effective condensing
pressure γ in the cell, the net driving pressure Π− γ > 0 on the viral DNA will tend to
repel it from the cell. When the net repulsive cellular pressure is smaller than the tail
confinement penalty µtail = Ftail/t (corresponding to ≈ 1.5 atm) the DNA will be stuck in
the virus - the tail of length t will be completely filled, and some length L− t will reside
inside the capsid. The stalling length is a result of all the repulsive interactions in the
capsid cancelling out with the net driving pressure in the cell. Note, however, that if the
whole DNA from the capsid (of length L− t) enters the tail, the additional asymmetry in
the free energy of the two thermodynamic reservoirs onsets. This is due to the confinement
penalty of the DNA in the tail. With a partially filled tail, the derivatives of the free
energy per unit length (the chemical potential) in the virus (the DNA length increases in
the virus) and in the cell (the DNA length increases in the cell) are not the same. The
thermodynamical balance is thus broken, and the thermodynamical gradient necessary for
the ejection is restored. Therefore, there exists a potential barrier which the DNA needs
to overcome for its capsid-side end to enter the tail and be swiftly ejected.

We now estimate whether the thermal fluctuations may overcome the free energy
barrier. Because the capsid DNA is not condensed it is coupled to a solvent heat bath
at temperature T . From the equipartition theorem, the encapsidated DNA will have
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Figure 2.13: Chemical potential for DNA of length Lin inside the virus. Two
different regions are marked, one for L < t when the DNA end is inside the tail of length t, and
the other when the DNA end is insite the capsid. A sketch of chemical potentials in the cell
corresponding to different behaviours are indicated. Π3 − γ3 represents the case when the
turgor pressure is so large that it causes the ejection of DNA to stall at length L3. Π2 − γ2
represents the case when the turgor pressure matches the chemical potential inside the tail,

leading to DNA ejection. Π1 − γ1 is similar to the previous case, but when the turgor pressure
is much lower than the chemical potential inside the DNA, where the major contribution to

ejection comes when the DNA end enters the tail.

∼ 1
2kBT thermal energy per degree of freedom. A semi-flexible polymer of length L can be

partitioned into a random walk of np ≈ L/Lp steps with each step of length Lp having two
degrees of freedom (two angles) and the origin being at the tail entrance. The resulting
DNA thermal energy is ∼ 1kBT/Lp, or ∼ 0.02kBT/nm which corresponds to a fluctuation
in the maximal turgor pressure of ∼ 0.1 atm. We can argue that the ejection can happen
in a finite time if the barrier corresponds to up to, say, three standard deviations ∼ 0.3
atm.

We conclude that the mechanism of viral ejection from some dsDNA bacteriophages
into Gram-positive bacteria could be explained as a competition between the resisting
turgor pressure and a free energy gain from condensation of the ejected part of the DNA.
From the experimental data for the condensation energy of DNA, we estimate that a turgor
pressure in excess of 4 atm can be overcome by unassisted ejection in line with recent
molecular dynamics simulations [96]. This value is somewhat reduced for smaller phages,
as given in Fig. 2.12. Our model does not exclude additional ejecting mechanisms like
the osmotic pressure from proteins remaining in the capsid [90] and pulling from proteins
in the cell [91] and such mechanisms can help to overcome even larger turgor pressures
than obtained here.
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Chapter 3

Nucleic acids and condensing proteins
in confinement

A part of the work presented in this chapter has been previously published in:
[97] A. J. Perez-Berna, S. Marion, F. J. Chichon, J. J. Fernandez, D. C. Winkler, J. L.
Carrascosa, A. C. Steven, A. Šiber, and C. San Martin, “Distribution of DNA-condensing
protein complexes in the adenovirus core,” Nucleic Acids Res. 43, 4274–4283 (2015).

Some viruses have capsids filled only with nucleic acids, while it is more rare to find
viruses that have proteins aiding in the condensation of genetic material. Without con-
densation the cargo of genetic material packed in the capsid can exert pressures sufficient
to cause capsid bursting. Condensing agents like proteins facilitate genome packing. Pro-
teins located inside viral capsids are known to have various roles in the viral infection
process like scaffolding during assembly [98] and helping maturation [5, 99]. Some viral
core proteins have roles in binding DNA, such as baculovirus [100], adenovirus [101],
mimivirus [102] and poxviruses [103]. A special case is the polyomavirus type Simian
Virus 40 (SV40) which "borrows" cellular histones to pack its DNA into a minichromo-
some [104]. Adenoviruses and SV40 have been shown to have DNA directly condensed by
these nucleoproteins in unperturbed capsids [26, 97]. The details of how DNA and these
condensing proteins interact and organize are still unknown as standard experimental
techniques can not provide insight due to an apparent lack of viral core symmetry. The
basic assumption for decades has been that the viral core has an ordered structure with
the same symmetry as the capsid. However, icosahedraly averaged Cry-EM of adenovirus
capsids indicates a more or less flat density profile [5, 105, 106], lacking any DNA shelling
or ordering like other structurally related viruses [19, 107, 108]. Similarly to adenoviruses,
the polyomavirus SV40 cores have a flat density profile seen both in Cryo-EM [109] and
SAXS [26], with no pronounced DNA ordering.

The study of genomes inside viral capsids helps understand the viral infection process
and the host cell response [6], but also the basic principles for targeted cargo delivery
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with viruses or other nanocages [110]. Of special importance is the application of viruses
that contain condensing proteins, like adenovirus, in gene therapy [111, 112]. Although
adenovirus applications are in clinical trials, the packaging mechanism is still a mystery [5].
To help understand the packing mechanism in viruses, we will study the basic principles
of packing a polymer (DNA) and proteins inside viral capsids. First, we will study the
internal organization of adenoviruses using the available experimental data on the core
organization [97]. With statistical indicators we will characterize the core organization
and construct a simple model of condensing proteins to explain the apparent lack of
core structure. Later on, we will make a full model with both the polymer (DNA) and
condensing agents inside confinement and relate it to experimental findings in adenoviruses
and polyomaviruses.

3.1 DNA and core protein organization in
adenoviruses

Adenoviruses are among the largest non-enveloped icosahedral viruses with a core di-
ameter of ≈ 65 nm (see Fig. 1.1) [106]. They are common infectious agent in humans and
other vertebrates, being responsible for a wide array of diseases: from mild respiratory
infections (the common cold) to life threatening conditions like pneumonia [6]. In aden-
oviruses the DNA is constrained inside the viral capsid by DNA-condensing proteins [101],
which reduce the pressure on the capsid and aid stability [97]. Most of the evidence on
internal organization was based on studying disrupted cores, in which clusters and fibres
are seen. These clusters and fibres seemed related to the chromosome structure [113] thus
implying some kind of order. Two models based on studying disrupted capsids have been
proposed for the organization of the adenovirus core. One of these assumed an ordered
structure of proteins and DNA forming a cluster of 12 protein "spheres" with icosahedral
symmetry [114, 115, 116], while the other a chromatin like structure [117, 118, 119]. Small
angle neutron and X-ray scattering indicates structures with a size ∼ 3 nm[120]. More
recent cryo-EM of undisturbed viral cores does not show any symmetry or order in the
viral core [5, 105, 106]. It may be that the original appearance of fibres and clusters with
disrupted cores is an artefact of sample preparation [121], or that crowding inside the
cores changes the interparticle interactions in an unknown way.

There are no structural data for any of the adenovirus core proteins, but it is assumed
that the protein clusters consist of three different core proteins (called V, VII and µ) [5],
out of which two are proposed to contribute via universal mechanisms [122] bridging two
DNA strands (protein µ) or wrapping DNA (protein VII) [123]. Our working hypothesis,
based on analysis of experimental data is that these proteins exist as clusters with a size
∼ 3 nm as determined in opened cores. Due to their resemblance to chromosomes, we call
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them adenosomes. Chromosomes use highly basic histone proteins that wrap the DNA,
forming thus protein-DNA complexes called nucleosomes which allow the linear dimensions
of the DNA to be reduced several orders of magnitude [113]. A similar mechanism of
packing exists in polyomavirus SV40 which has ∼ 20 nucleosomes in its core, which are
found in a "molten droplet" shape caused by confinement effects [26]. The interaction of
histones with DNA is well documented, unlike the case of adenosomes.

Adenovirus cores have about 200 protein particles (adenosomes) which are assumed to
bind or wrap DNA. We will first discuss experimental data on adenovirus core protein
positions. We will attempt to explain the organization of adenovirus core particles using
an effective adenosome model in order to give insight on the apparent lack of organization
of the core and make estimates on the internal capsid pressure.

3.1.1 Cryo-EM of Adenovirus cores

Cryo-EM maps were obtained in the group of Carmen San Martin on single undisturbed
adenovirus particles [97]. The interior of the cores was identified as having higher density
"points" embedded in a weaker density background (Fig. 3.1a). These points of higher
density were interpreted as consistent with previous data indicating a beaded pattern in
the DNA-protein core complex when extracted from the capsid [118, 119], and not with
the model consisting of 12 large spheres. We hypothesized that each high density region
corresponded to an adenosome – similar to the chromatin picture proposed earlier [119].
The position of each adenosome center was manually determined by visual inspection
of the individual virus maps in 3D (Fig. 3.1a,b). We found no preferred direction or
orientation for the adenosome cluster (Fig. 3.1c). Weaker densities between adenosomes
did not seem to follow a definite pattern. Statistical analysis was performed on a total of
20 virion cores. The adenosome selection procedure yielded between 190 and 280 positions
per viral particle corresponding to the center of regions of high density within the core,
with the mean across all analysed particles of N = 230± 30, also consistent with previous
observations on disrupted cores [118].

Visual inspection of the cryo-EM maps indicates lack of pronounced order or symmetry
in the core. To confirm this we first checked if there was any asymmetry in the distribution
of adenosome positions. The adenosome coordinates were represented in a coordinate
system with the z-axis directed along the line connecting two opposite capsid icosahedral
vertices [5], and the origin of coordinate system was positioned at the center of mass
for each adenosome cluster (i.e. the set of adenosome positions in each viral particle).
Projections of the data on the alignment axis and the perpendicular plane did not show
any sign of preferred direction and no sign of five-fold symmetry was found [97].

49



Chapter 3. Nucleic acids and condensing proteins in confinement

Figure 3.1: Cryo-EM of adenovirus core particles analysis. a) Central 2D section of a
single virus particle. The highest density regions are shown in black. Densities identified as

adenosomes are encircled in white. Notice that circular outlines in the presented 2D slice have
different radii because they are cross-sections of spherical markers used for picking the
adenosome centers in 3D, b) Surface rendering showing the adenovirus capsid cut open,
obtained from averaging 20 individual virus tomograms after aligning with respect to an

icosahedral reference (gray). The core density has been computationally removed. Cyan spheres
(4.5 nm in diameter) indicate the positions of adenosomes for the viral particle shown in panel
a, c) The histogram of the averaged probability for finding adenosome particles in a horizontal

slice, i.e. when all the particle positions are projected on the line connecting two opposite
capsid icosahedral vertices[5]. For each viral particle, the origin of the coordinate system was

set at the center of mass of the adenosome cluster. Figure adapted from Ref. [97].
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3.1.2 Statistical analysis of core particle positions

In order to determine if the distribution of adenosomes is random or not, we statistically
analyse adenosome positions inside the core "cluster"(Fig. 3.2a-c). First, we constructed
radial distribution function R0(d) (RDF) for the adenosomes in all viruses. The RDF
R0(d) represents the probability of finding two particles at a center-to-center distance d,
calculated for all particle pairs in the adenosome cluster. The distributions of inter-particle
distances were calculated from a dataset consisting of pairwise distances for all pairs of
adenosomes within each viral particle, then averaged across the 20 different viral particle
maps. The maximal interadenosome distance d is about 70 nm, the internal diameter of
the capsid. Due to the finite size of the viral core, the number of adenosome pairs becomes
smaller with larger distances leading to R0(d) to reduce to 0 at the maximal distance of
70 nm. This complicates comparison with bulk systems where with proper normalization
R0(d) saturates to 1 for sufficiently large d.

To obtain a quantity characteristic only of the interactions between the adenosomes and
without the influence of finite size effects, we need to appropriately scale the distributions.
The resulting normalized RDF R(d) should saturate to unity at large interparticle distances
and can then be compared with its well known counterparts in bulk materials [124]. The
scaling requires a calculation of the cluster shape factor, f(d), which gives less statistical
weight to particle pairs with high mutual separation to compensate for the finite sample
size. For a spherical cluster of radius Rc [125] the cluster shape factor is given by

f(d) =
(

1− d

2Rc

)2 (
1 + d

4Rc

)
; d < 2Rc. (3.1.1)

so that the normalized RDF R(d) can be obtained from the RDF R0(d) using R(d) =
R0(d)/f(d). Scaling of experimental data with the shape factor for a sphere produced the
desired behavior of RDFs at large distances. When a numerically obtained scaling factor
f(r) for an icosahedron was used there were no noticeable differences. We may thus treat
the adenosome cluster shape as a sphere. As a "bonus", the shape factor also enables us
to determine the effective radius of the adenosome cluster, since the requirement that the
RDF reduces to unity for large interparticle distances fixes the appropriate value of Rc.
Small changes in Rc cause large deviations in RDF as r approaches 2Rc, which enables
us to pinpoint Rc with some precision. We thus obtained Rc = 35± 2 nm consistent with
experimental data on internal radii of capsids [106]. Note also that the experimental data
exhibits pronounced noise as d approaches 2Rc as there are very small number of pairs
available there and the sampling is poor – for this reason the RDFs in Fig. 3.2 are shown
only up to about 60 nm as the RDFs for d larger than 60 nm are dominated by noise
augmented by f(d).

RDFs indicate an effective repulsive nature of the adenosome-adenosome interaction at
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Figure 3.2: Statistical indicators of the adenosome position dataset. The three
statistical indicators (radial distribution function, nearest neighbour distance distribution and

density distribution) constructed from experimental data on adenosome positions are
represented by green circles. The icosahedron random points reference is represented by a

dashed line. Figure adapted from Ref. [97].

small distances, featuring a characteristic depletion for distances smaller than 8 nm where
no pairs are observed. Were the positions of particles random, it would give a constant
value of 1 in R(d) as seen in the icosahedron reference calculation in Fig. 3.2a) obtained
from 230 randomly distributed dots in an icosahedron of mid-radius of 35 nm. The slow
decay of probability as d approaches zero indicates a very soft interaction potential [125].
The RDF reduces from about 1 to about 0.5 in a radial interval of 3 nm (from d ∼ 8 nm to
d ∼ 5 nm), and reaches 0.1 at d = 3.5 nm below which there is practically no probability
of finding a particle pair. This leads us to define a hard particle diameter of ∼ 4 nm
(effectively impenetrable), and a soft diameter of about ∼ 10 nm, where the RDFs start
to decay. In their study of X-ray scattering on HAdV-2. Devaux et al. [120] reported a
scattering maximum corresponding to 2.9 nm which could be interpreted as the hard core
of our soft adenosomes. One should also note a small-amplitude, yet persistent peak at 10
nm, suggesting a very weak degree of adenosome first neighbour positional correlation as
expected for a "fluid-like" state. Beads of 9.5 nm diameter connected by variable lengths
of dsDNA had been observed in disrupted cores [119]. This is comparable with the soft
diameter estimation obtained here.

We can use the previously obtained adenosome parameters to estimate the degree of
crowding inside the capsid. Using the experimental hard particle diameter, the adenosomes
have a volume fraction of φhard = 0.043, while the soft particle diameter predicts a volume
fraction of φsoftad = 0.67 (quite close to the density limit of 0.64 for random packing of
monodisperse hard spheres [126]). For comparison, the lower limit for the volume fraction
of DNA inside the capsid can be obtained by treating the DNA as a fibre of length 12µm
and base-pair width of 2.5nm thus obtaining φDNA ∼ 0.33. We conclude that there is little
available free volume. The presence of a crowder can significantly influence the effective
interactions [27, 127], rendering any comparison with the measurements done on diluted
capsid interiors doubtful.
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As a second indicator of the core organization we analysed the distribution p(dNN) of
nearest neighbour distances, dNN for all the adenosomes in a virus, normalized so that
the total probability is unity. The nearest neighbour distribution gives some additional
insight on the RDF for small inter particle distances. As Fig. 3.2b shows, when com-
pared against the random icosahedron reference calculation (effectively an ideal gas of
adenosome particles), one observes that the mean value of the adenosome distribution,
dNN is displaced (outward) by ∼ 2 nm from that expected for a random distribution.
The position of the maximum in the random distribution for nearest neighbours scales as
d
rand

NN ∼ 3
√

2/(3N)Rc. The shift of the distribution is a consequence of the repulsive nature
of the inter-adenosome interaction which pushes them further apart than would be the
case for a random distribution, leading also to a narrower probability distribution of the
nearest neighbour distances.

Finally, as the third indicator, we analysed the density of adenosome positions as a
function of the distance from the cluster center of mass (Fig. 3.2c). A decrease of density
is observed in regions with large radial distances producing a depletion layer known in the
polymer field theory [2, 12]. A self consistent calculation for a polymer in the semi-dilute
regime, confined inside a spherical cavity of radius Rc, gives ρ(r) ∼ tanh [(Rc − r)/ξ]2 with
ξ the correlation length. This profile seems to cover the basic shape of the distribution,
however RDF shows no evidence of bonds. In our case the depletion layer is partially a
geometric effect with a similar shape to the field theory result, due to reduction of available
volume in the icosahedron as the radius increases from that of the inscribed sphere to that
corresponding to the circumscribed sphere. This would lead to a ξ ∼ 1 nm, much smaller
than we would expect. Still, a comparison with the density profile obtained for random
points inside an icosahedron revealed additional unexplained depletion effects (Fig. 3.2c).
Also, there is a lack of any shelling near the capsid surface which is usually seen with
confined polymers [67] and spherical particles [128].

The statistical analysis has revealed several representative features in the experimental
dataset. Firstly, a soft repulsive interaction between effective adenosome particles is seen
in RDF and nearest neighbour distributions. Secondly, a flat profile in the density of
particles which slowly decays to zero at the capsid surface. We will now try to reproduce
the internal organization of adenosomes with models which account for different possible
ways in which the DNA can interact with adenosomes.

3.1.3 Modelling the core proteins

The system we are dealing with consists of condensing proteins interacting with the
DNA, confined in the capsid, immersed in a salt solution. Because of a lack of information
on the structure of the adenosome particles, we opted for simple models which reproduce
basic features of the experimental data while giving some basic insight into the underlying
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physics. The large quantity of condensed DNA crowds the capsid and for all effective
purposes it would be difficult to identify if different parts of DNA are close on the DNA
contour. Thus, we treat the DNA as an effective medium which may, in specific models,
directionally connect the adenosomes influencing the spatial conformation. This motivates
treatment of particles in the simulations as quasiparticles – condensing proteins dressed
with parts of the DNA surrounding them. Yet, even with such a simplified picture, we
may construct very different coarse-grained models, representing different relevant physical
effects involved.

We used molecular dynamics (MD) to simulate the interior structure of the viral capsids.
MD was performed in LAMMPS Molecular Dynamics Simulator [129] using a Langevin
thermostat [130] with 230 interacting particles in confinement at room temperature kBT =
1. Sampling of the MD data was done after a sufficiently long equilibration / thermalization
run – 200 simulation snapshots were taken during 2 ·106 Verlet time-steps and statistically
averaged over 50 different runs with random starting conditions. To identify effects
related solely to the specific nature of the geometry, in all the simulations presented we
have preserved the icosahedral symmetry of the confinement. The confining icosahedron
interacts with the adenosome particles via a superposition of a soft repulsive Morse
potential and an repulsive potential of the Weeks-Chandler-Andersen type [131]. The
range of the hard potential was chosen to be extremely small so as to properly mimic a
hard wall, while the soft potential parameters were found by fitting the numerical data to
the experimental RDF, maintaining the hard wall fixed. Other specifics of the simulation
are detailed in the corresponding sections.

Adenosomes as a fluid with short-ranged soft repulsive interactions

The simplest model represents the adenosomes as a fluid with soft repulsive interactions,
confined in a capsid with which it also interacts repulsively. This means that the details
of the DNA packing are completely smeared, i.e. the DNA only renormalizes the inter-
adenosome interactions. This does not mean that a possible pronounced association of
the condensing proteins and the DNA is not accounted for by the model. The model
can indeed account for such effects, but only in the short range sense; the protein-DNA
association can be included in the effective potential, but no topological constraints related
to the finite length of DNA or to its elasticity survive in the coarse-grained representation.

In the soft repulsive fluid model, interactions between adenosomes are represented by a
potential function vr(d), where d is the separation between adenosomes. As a sufficiently
simple model for vr(d), we chose the shifted Morse potential and determined the parameters
of the potential that best fit the experimental data using molecular dynamics simulations.
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Figure 3.3: Statistical indicators of the adenosome position dataset, and their
comparison with expected values for the fluid model. The three statistical indicators
(radial distribution function, nearest neighbour distance distribution, and density distribution)
constructed from experimental data on adenosome positions are represented by green circles.
The simulations performed with the fluid model are represented by full lines. Figure adapted

from Ref. [97].

The potential (shifted Morse) is given by

vr(d) =

 D
[
e−2κ(d−d0) − 2e−κ(d−d0) + 1

]
, d < d0;

0, d > d0.
(3.1.2)

where d0 is the potential cut-off radius. Comparison of the results of the molecular dynam-
ics simulations with the experimental data yielded the best-fit potential parameters D ≈ 1
kBT , d0 ≈ 11 nm, and κ ≈ 0.08 nm−1. The soft part of the capsid-adenosome interaction
is well modelled with the same cut-off distance but with a smaller κ ≈ 0.055 nm−1 (and a
short-range hard-core repulsion enforcing the impenetrability of the confinement).

We have also considered other models for vr(d), and we find that the pronounced
softness of the potential is its robust feature, regardless of the model used. The model of
very soft, disconnected quasi-particles reproduces very satisfactorily the radial distribution
function (Fig. 3.3a) and the nearest neighbor distance distribution (Fig. 3.3b) observed in
experiments. The only (slight) deviation from the experimental data is seen in the density
ρ(r) near the capsid wall at 30− 40 nm (Fig. 3.3c) - there we see a slower decay of the
experimental density than predicted by the simulation. This may indicate that the effective
confining potential induced by the capsid has a complicated spatial dependence, rendering
the regions just below the icosahedron vertices more approachable to the adenosomes than
those below the icosahedron sides. Additionally, we have assumed that the effective inter-
adenosome potentials are independent of their position in the capsid. As these potentials
are mediated by the DNA background, it seems likely that they will be different when the
two adenosomes are close to the capsid than when they are deep in the bulk of the core.
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Adenosomes as a regular array of beads on a string

If the adenosomes are similar to nucleosomes [113], then the appropriate model would
consist of quasiparticles linked together by the DNA to form an effective polymer. We
may model the DNA "background" in this case as a yardstick, imposing certain distances
between the proteins along the chain (equilibrium bond length, l0, constant throughout
the chain). In such a model, any increase and decrease of the interprotein distance would
require energy, the parabolic dependence on the change of distance being the simplest
choice. So, in addition to the soft adenosome repulsion, vr(d), that acts between all of the
adenosome pairs, in this model the adenosomes are also connected along the chain with a
harmonic potential between two neighboring adenosomes. The harmonic potential used
to model the DNA connecting the adenosome particles is given by

vs(d) = k

2 (d− l0)2 , (3.1.3)

where l0 is the equilibrium length of the spring and k is the bond spring constant. The
equilibrium bond length l0 chosen in this model cannot be completely arbitrary, since
there is a finite amount of DNA in the adenovirus core. We will first estimate possible
values for the equilibrium bond length and the bond spring constant k.

Equilibrium bond lengths l0 can be estimated based on the ratio of DNA length to
number of adenosomes. The upper limit is thus lmax0 = 12 µm /230 = 52 nm, but this
does not include any DNA associated with (wrapped around) the condensing proteins.
With effective diameter of the condensing proteins ∼ 4.5 nm, a single wrap of DNA on the
protein uses up about 2(4.5/2 + 2.5/2)π ≈ 22 nm, so that the length of DNA remaining
for linking the two adenosomes is 52− 22 = 30 nm. We chose representative bond lengths
of 30 nm, 8 nm and 19 nm corresponding to: approximately one turn of DNA around the
adenosome; the shortest possible DNA linkage length consistent with the experimental
data; and a value in between. The value of 8 nm is consistent with the proposed minimal
contact distance between two adenosomes, e.g. as seen in the dimensions of beaded strings
in disrupted cores [119] while still shorter bonds significantly modify the exclusion zone
in the RDFs.

Assuming a straight linker piece of DNA between two adenosomes, the energetics of
its lengthening (DNA stretching) and shortening (DNA bending) can be estimated and
approximately related to the bond constant of a simple harmonic bond. We assume that
the persistence length of DNA is Lp = 50 nm in physiological conditions. The two most
important mechanisms for shortening of the bond length d−l0 are DNA molecule stretching
and bending. The bending energy to bend a straight DNA piece of length l0 to an arc of
radius R is

Fb = kBT
1
2
lpl0
R2 (3.1.4)
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Figure 3.4: Comparison of radial distribution function without and with a strong
harmonic bond. The radial distribution function is shown for the soft fluid model from Fig.
3.3 (red dashed line) compared to a model of beads on a string for equilibrium bond length

l0 = 19 nm and bond strength k = 1 kBT .

with lp ≈ 50 nm the persistence length of DNA. This can be expanded for small changes
in the curvature 1/R to obtain:

Fb
kBT

= 12lp
l20

(l0 − l) = c(l0 − l), (3.1.5)

where l is the linear distance between the DNA ending points in the bent state. As the
potential energy dependence on the extension l0 − l is linear (it is a quadratic function of
l0/R) we match the two potentials 1

2k(∆l)2 = c(L0 − L) for different plausible extensions
∆l = 1, 2, 5 nm. For Lp = 50 nm and l0 = 19 nm we find k ∼ 3, 1.6, 0.7 kBT/nm2. In
the case of stretching, the bond constant was found to be k ∼ 10 − 100 kBT/nm2 after
matching a molecular dynamics harmonic potential model to experimental data for DNA
[76]. This gives k ∼ 10 kBT / nm2 and k ∼ 1 kBT / nm2 for stretching and bending
respectively, both of which are quite stiff and produce significant correlations in the RDFs
as we have checked numerically. This is easily seen if one considers that a bond of strength
1 kBT/nm2 would allow thermal energy to move the particle position only

√
2 nm from

equilibrium, resulting in a large correlation in RDF (Fig. 3.4). However, different, and
more complicated effective bonds can be envisaged in a crowded and strongly confined
environment and soft harmonic springs may mimic such a situation. That is why we
have chosen the bond constant of k ≈ 0.05 kBT/ nm2, a smallest value that still yields
noticeable disagreement with at least one experimental indicator. It is also almost two
orders of magnitude smaller than the conservative estimate for DNA bending.

Results presented in Fig. 3.5 indicate that the existence of any type of bond worsens
the agreement with the experimental data. Soft 8 nm bonds shift the nearest neighbour
distance away from the experimental data because a short bond forces spatial nearest
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Figure 3.5: Statistical indicators of the adenosome position dataset, and their
comparison with expected values for the soft fluid with springs model. The three
statistical indicators (radial distribution function, nearest neighbour distance distribution, and

density distribution) constructed from experimental data on adenosome positions are
represented by green circles. The simulations performed with the model of beads on a string are
shown for equilibrium bond lengths l0 = 8 nm, 19 nm, and 30 nm, respectively. Figure adapted

from Ref. [97].

neighbours to also be the nearest neighbours on the bead-string backbone. One also
observes a stronger correlation peak in the RDF with a corresponding "anti-correlation"
peak at ≈ 15 nm – although such a bond could be hidden in the experimental RDF
it produces clear changes in the nearest neighbour distribution. The density shows a
peak near the capsid surface due to an increased order imposed by confining a "polymer"
[132]. If we take a larger bond equilibrium length of l0 = 30 nm we see that the RDF
deviates from unity at large interparticle distances – adenosomes do not conform to a
spherical cluster. This is easily explained, as a bond length comparable to the capsid
diameter requires that the adenosomes explore the space beneath the icosahedron vertices
to minimize their free energy. Also, there is a reduction of density around 10 nm from the
capsid wall inconsistent with the experimental data (Fig. 3.5c). The model with 19 nm
bond lengths shows a combination of these characteristic effects with the addition of a
correlation peak in the RDF at the bond length (Fig. 3.5a, inset). Clearly, stiff bonds with
large k show up as clear maxima at ∼ l0 in RDFs due to distance correlations imposed by
the bond length. This result that we find in our simulations (with large k’s) is contrary to
what is seen in experiments (no pronounced maxima in RDF), and we conclude that the
inter-adenosome bonds, if they exist, must be very easy to stretch and compress (weak) in
thermal equilibrium. In that case, the correlations between the adenosome positions are
thermally smeared and the linkage, although present may not be seen in the indicators.
Irrespective of the equilibrium bond lengths chosen, the model of beads on a string is in
worse compliance with the experimental data than the model of fluid of soft interacting
particles.
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3.1.4 Core organization as a mixture of effective particles

Based on our two basic effective models for adenosomes we conclude that there is no
evidence of a strict type of ordering in their positions inside the capsid. Adenosomes exist
as a fluid of soft particles without a strictly (and stiffly) defined DNA backbone. The DNA
appears to act only as an effective medium for the soft inter-adenosome interactions in the
crowded environment. The essential feature of adenosomes is a soft repulsive interaction
they impose on neighbouring adenosomes, so that they, in lowest order approximation,
behave as a fluid of soft repulsive spheres. This interaction results in a finite excluded
volume, and the nearest neighbor distance distribution shifted to larger values than would
be expected for random points in an icosahedron. The range of the repulsive interaction
is quite large, 3 nm, significantly larger than the range of electrostatic interaction in the
Debye-Huckel approximation (about 1 nm at 150 mM salt concentration). The simplest
model of adenovirus core that accounts for most of the indicators is that of hard spheres
(condensing proteins) living in a "soup" of DNA where the DNA mediates an effective soft
repulsive interaction.

No evidence of a strict yardstick-like linkage between the adenosomes is seen in any of
the experimental indicators - the data can be adequately explained by using the previous
model of soft particles in confinement. However, numerical studies [132] do not strictly
exclude other types of "links": a) extremely weak bonds (as those we investigated), b) a
distribution of bond lengths where adenosomes slide along the contour, c) sliding bonds
where the total length of non-bound DNA fluctuates - in dynamical terms, this signifies
easier rearrangement of adenosomes in the DNA background than would be expected if they
were tied together by stiff linker DNA pieces. The existence of adenosome filaments after
disrupting the virion [118, 119] does imply some kind of "springs" between the adenosomes.
Such interactions in disrupted cores, however, do not necessarily imply the same inside
the crowded environment of the core [133].

The outward pressure on the capsid

Internal pressure has been measured or estimated inside other dsDNA viruses (bacterio-
phage and herpesvirus) and it appears to originate from the strong repulsion between the
nucleic acid strands in close proximity [19, 134]. The soft repulsion between adenosomes
gives a modest internal pressure in the adenovirus capsid. The outward pressure on the
capsid from the adenosomes in the effective medium obtained from the simulations is
0.055± 0.002 atm. It is not clear at present if such a modest outward pressure would play
a role in the initial stages of adenovirus uncoating, but it should be mentioned that there
are additional contributions to the pressure, not accounted for by the numerical model.
Recent estimates using atomic force indentation of capsids [135] give the internal pressure
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on the order of ∼ 30 atm [123], two orders of magnitude larger. Although the uncertainty
of pressures from indentation experiments is high, it would be interesting to see if we can
correct for contributions omitted in the model.

The outward pressure obtained in the best fit (soft repulsive) model is obtained on
the basis of an effective particle picture. A calculation of the pressure ptot, including all
particles present in the capsid, would in the lowest order (of the virial expansion) consist of
contributions from DNA and adenosome entropy of confinement (pDNA + pad), DNA-DNA
(pDNA−DNA), adenosome-adenosome (pad−ad) and DNA-adenosome (pDNA−ad) interactions:

ptot ≈ pDNA + pDNA−DNA + pad + pad−ad + pDNA−ad. (3.1.6)

As we do not know the exact composition of the core nor the bare potentials acting between
the proteins and DNA, we constructed our soft repulsive model by renormalizing the bare
interactions to include the effect of the crowded DNA medium. Thus, the molecular
dynamics result for the pressure pMD includes the adenosome entropic contribution (pad)
and effective adenosome-adenosome (p̃ad−ad) interactions:

pMD ≈ pad + p̃ad−ad. (3.1.7)

This value is a lower bound on the true pressure (pMD ≤ ptot). Because each adenosome has
a certain amount of DNA associated with it (within the soft core radius d0) we assume that
all the DNA-adenosome interactions are included in p̃ad−ad. Also, from the association of
the DNA in the soft core radius with the adenosome we assume that this DNA is screened
by the adenosomes. The contributions including the DNA, pDNA−DNA + pDNA−ad, are to
some degree included in pMD. The only remaining DNA-DNA interactions unaccounted for
are in the capsid volume not filled by the (soft) effective adenosomes, Vc(1−φsoftad ) ≈ 1/3Vc.
Assuming a homogeneous density of DNA in the capsid, we estimate that about one third
of the DNA produces a nearly homogeneous background field of electrostatic interactions.
The pressure of such field can be roughly estimated in the Debye-Hückel approximation
for a homogeneously filled spherical capsid [9]

pe =
(
Nq

Vc

)2 1
2κ2ε

(3.1.8)

where N is the number of unscreened basepairs of DNA, q = 2e the number of charges per
base pair, 1/κ ≈ 1 nm the Debye electrostatic screening and ε ∼ 5 the dielectric constant
of an effective medium consisting of proteins and DNA [136]. Putting in N = 35000/3 we
obtain pe ∼ 0.06 atm, comparable to pMD. We can thus increase the lower bound on the
adenosome pressure to ∼ 0.12 atm. This is still at least one order of magnitude smaller
than in the case of unscreened DNA charge interactions, observed in some bacteriophages
[19], but not implausible as we have basic proteins helping the condensation of DNA

60



Chapter 3. Nucleic acids and condensing proteins in confinement

particles.

3.2 Mixtures of a polymer and condensing particles
in confinement

Modelling virion core structures consisting of DNA and condensing proteins has so far
been based on effective models. Both our work from the previous section [97] and the work
done by Saper et al. on SV40 cores [26] only implicitly accounted for the presence of DNA,
included by adding a tethering bond between proteins or by modifying interactions. The
phase behaviour of DNA with binding proteins in dilute solutions is interesting [137], but
the question remains how it is influenced by confinement or crowding. In this section, we
use a model which explicitly includes both the condensing proteins and the polymer (DNA)
inside a spherical confinement. We study such a mixture in the context of adenovirus
and polyomavirus cores – in confinement and without confinement to mimic opened cores.
The explicit treatment of DNA allows us to investigate how the condensers are connected
by the DNA. It permits insight in the unordered, but not random, interiors of crowded
viral capsids.

First, we will introduce the numerical model used to simulate the system. Afterwards,
we will define and adopt several statistical indicators which will be used to study the
effects of the parameters of the system on the internal organization and connectivity
of condensing proteins and polymer. Results obtained for a DNA-like polymer will be
compared to experimental data on adenoviruses [97] and polyomaviruses [26].

3.2.1 Molecular dynamics simulations

To sample the possible configurations of our system, we performed molecular dynamics
simulations using the LAMMPS programming package [129]. In the simulations we set
kBT = 1 so that the units of energy represent the thermal energy, and we use the radius
of the polymer bead a0 = 1 as the basic unit of length. We study a fixed length of DNA
mixed with condensing agents inside a spherical confinement. Our system comprises of
two particle types: spheres representing condensing agents and polymer beads on a string,
representing DNA or RNA, confined inside a sphere of radius Rc (Fig. 3.6). The number
of polymer beads Np of size Rp = a0 is defined trough the volume fraction φp they occupy
inside confinement such that Np = φpR

3
c/R

3
p ∗ cp where cp ≈ 1.015 is a correction due to

neighbouring beads overlapping. Neighbouring beads are connected with a FENE spring
modelling DNA-DNA bonds [76, 138]. Condensing agents (condensers), representing
proteins, are implemented as spheres of radii Rs interacting with each other with repulsive
Lennard-Jones interactions. Condensers interact with polymer beads by a short range,

61



Chapter 3. Nucleic acids and condensing proteins in confinement

Figure 3.6: Simulated mixture of DNA and condensing proteins (spheres) in a
spherical confinement. Figure shows five "slices" out of a mixture in spherical confinement
(black outline). a) Confined mixture of DNA with volume fraction φp = 0.3 corresponding to

Np = 8221 polymer beads, φs = 0.05, stiffness K = 25, condenser-DNA binding energy
ε = 2kBT and condensing particle radii of Rs = 1 for a total of Ns = 1350 condensers.

Condensing particles are represented as yellow spheres, and the DNA polymer as a blue coil. b)
Same as in a, except the radii of condensing particles is Rs = 3 for a total of Ns = 50

condensers.

almost contact, non-specific attractive interaction, such that the energy gained in a "bond"
is ε. The attractive part of the potential lies within a layer of width a0 outside the sphere
(condenser) surface. There are a total of Ns condensing spheres (condensers) related to
their volume fraction φs inside the confinement with Ns = φsR

3
c/R

3
s.

Molecular dynamics simulations were performed using the Langevin thermostat [130].
The corresponding equation

mi
d2ri
dt2

= Fi − λi
dri
dt

+
√

2kBTλiηi(t). (3.2.1)

is solved for all particles i in the system. Here Fi represents the total force on the particle
i, mi the mass of the particle, λi the friction coefficient, kB the Boltzmann constant and
T the temperature. The mass of the particles is dependent on the particle radii Ri such
that mi = R3

i and the friction coefficient as λi = Ri according to Stokes law. ηi(t) is a
random time-dependent Gaussian δ-correlated noise of unity magnitude. The simulation
region is confined to a sphere of radius ≈ Rc (representing the viral capsid) by inserting
a repulsive potential on at a sphere of radii Rc + 1 so that the probability of finding a
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particle with radial coordinate r > Rc is negligible.

The polymer is modelled with a beads on a spring model [76]. Neighbouring beads in
the polymer interact with the finitely extensible nonlinear potential (FENE) representing
bonds of the form:

UFE(d) = −1
2KFEr

2
0 ln

(
1− d2

r2
0

)
(3.2.2)

where d is the distance between two neighbouring beeds, KFE = 30 kBT/a2
0 and r0 = 3.0a0.

The stiffness of the DNA (bending rigidity) is represented by a potential depending on
the angle θ between three neighbouring beads in the polymer. The potential is given by

Ub = Kb(1 + cos θ) (3.2.3)

where Kb = 25a0 corresponding to a persistence length of Lp = 2a0Kb or in our nondimen-
sional units Lp = 2Kb.

All interactions between particles of the same type (polymer-polymer and sphere-sphere)
and the confinement are repulsive only Lennard-Jones with the potential energy

U(r) = 4εLJ

( b
r

)12

−
(
b

r

)6
+ εLJ if r < 21/6b (3.2.4)

where b is a constant equal to a sum of the diameter of the interacting particle b = 2Ri,
or for the case of confinement-particle interactions to b = Ri + a0. The cut-off for the
potential is such so that the resulting force is 0 at the cut-off. For all particle-particle
cases εLJ = 1, while for confinement-particle interactions εLJ = 10 (in units of kBT ) is
used ensuring that the effective confinement has a radii of Rc.

Interaction between condensers (spheres) and polymer beads is of the Lennard-Jones
type

Us−p(r) = 4ε
( b

r

)12

−
(
b

r

)6
+ ε if r < 2.8b, (3.2.5)

with b = Rs + a0. This interaction results in a non-specific binding with the maximum
bond energy of ε. The spatial extent of the attractive potential allows only one layer of
polymer beads to interact (attractively) with the condensing sphere.

In order to set up the initial state of the system, we first randomly place condensers
inside along with a random walk representing the DNA in confinement. Interactions
between all particles are initialized to act as a soft repulsive force with a barrier for
penetration (and crossing) of a height of 100 kBT and harmonic bonds between beads. The
total energy of the system was minimized by iteratively adjusting atom coordinates using
the provided procedure [129]. Afterwards the system was imbued with true interactions
and the total energy minimized again. Then the system was equilibrated for at least
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500 000 time steps using a Verlet time integrator with timestep dt = 0.05. After the
system internal energy was equilibrated (Fig. 3.8), the system configuration was sampled
every 10 000 timesteps for 300 000 timesteps. An alternative method for generating the
starting configuration was tried in order to minimize the polymer knotting or entanglement.
The system was generated in a five times larger confinement, and then the confinement
radius was slowly reduced to Rc – but no significant difference was found in the pressures
(Fig. 3.7). When studying systems with the confinement removed, the configurations were
obtained using the preceding protocol without without any confinement in a bounding box
of sufficient size with periodic boundary conditions. After at least 1200000 equilibration
steps to allow the released cores to thermalise, the system configuration was sampled every
10 000 timesteps for 300 000 timesteps.

Figure 3.7: Comparison of standard protocol used here with an alternate aimed
to reduce entanglement and knotting. System parameters were φp = 0.3, Kb = 20, Rs = 1

and ε = 2 with Rc = 30.

Model units and choice of parameters

All subsequent graphs are shown in non-dimensional units: ε in units of kBT , distance
(Kb, Rs, r, d) in units of a0, and pressure in units of kBT/nm3. This allows one to compare
the results for different polymers. The correspondence between our model and (double
stranded) DNA is obtained by taking a0 ≈ 1 nm leading to ∼ 4 base pairs per polymer
bead [76], and K = 25 leading to Lp ≈ 50 nm valid for DNA in physiological conditions.
For (single stranded) RNA one needs to take a0 = 0.5 nm, leading to ∼ 2 nucleotides per
polymer bead with Kb = 0. The pressures given here can be converted to atmospheres
(atm) by multiplying by ≈ 240kBT/a3

0. To make comparisons to real systems, we will
focus on a capsid radius of Rc = 30a0 matching the internal mid radii of adenoviruses
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Figure 3.8: Representative equilibriation graph for Langevin dynamics. All data is
represented as a function of time with time=0 corresponding to the start of thermalization,

time = 500 000 corresponding to the end of thermalization (vertical dashed line), while the time
range from 500 000 to 800 000 was used for sampling of configurations. Panel a shows the

dependence of the total energy of the system, panel b the energy of polymer bending, and panel
c the pressure exerted on the confinement. System parameters were φp = 0.3, φs = 0.05,

Kb = 25 and ε = 2 with Rc = 30.

(∼ 32.5 nm) [106]. We note that polyomavirus SV40 has a comparable capsid radius of
18 nm [139]. We take a DNA volume fraction of φp = 0.3 and condensing agent volume
fraction of φs = 0.05 as a representative sample of adenovirus core organization based
on considerations in the previous section [97]. Note that we do not include long range
electrostatic repulsion, which significantly influences the magnitude for the pressure on
viral capsids [9]. Similar coarse grained modelling of SV40 virial cores show that steric
interactions are sufficient to explain the internal structure [26]. In our modelling, we
see no significant difference in the studied indicators if we include such interactions at
a large computational cost as it increases the numerical cut-off radius. This is because
electrostatic interactions decay rapidly so that the interaction tail that remains after
the Lennard Jones interaction dies out is negligible compared to the thermal energy for
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determining the configuration, but it influences the total pressure.

3.2.2 Statistical indicators

We will use two statistical indicators to indicate organization of the core: namely the
particle probability density ρ and normalized radial distribution function R. Additionally,
two indicators of polymer-condenser interconnectivity will be used: the wrapping number
w and the connectivity γ. All ρ and R given here were averaged first over configurations
corresponding to different snapshots in time, and then averaged for different randomised
simulation starting conditions. The same was done for w and γ, with exception that we
use the probability distributions of these values p(w) and p(γ) for each configuration and
then average those. We will now proceed to define each of these indicators.

Particle probability density

The radially symmetric (angle-averaged) probability density ρ(r) is calculated by de-
termining the probability of finding a particle, at a position in the interval 〈r, r + ∆r〉
from the confinement center. The resulting probability distributions are normalized such
that

∫∞
0 ρ(r)4πr2dr = 1. We opt to present the probability density, and not the particle

density, as it allows direct comparisons between different condenser sizes, and thus a
different particle number in the system.

Radial distribution function

In order to determine the correlations between positions of condensing proteins, we
use the normalized (reduced) radial distribution function R(d) [125]. The normalized
radial distribution function is obtained by taking the radial distribution function R0(d)
and normalizing to account for the finite size and shape of the "sample" in question. The
radial distribution function R0(d) is defined as the average number of particles n(d) found
at a distance d from any particle in the system

R0(d) = 1
4πr2Nρ0

〈n(d)〉 (3.2.6)

where N is the number of particles, ρ0 = N/V the average particle density found at
distance d from the particle, averaged over all particle pairs in the configuration. The
particle density has in itself the volume V which does not necessarily correspond to the
whole volume of the confinement Vc. In some cases, condensers might not access the whole
interior, due to being bound to the polymer and preferring to be away from the repulsive
confinement. The function R0(r) obtained on a finite sample, in our case a spherical cluster
of particles, decays to 0 for r = 2Rc, due to the largest distance between two particles in
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such a cluster being two times its radius. But, in order to be able to compare correlations
to bulk samples, or between two samples of different size, one needs to renormalise the
size (and shape) effects. The normalized radial distribution function is then defined as
R(d) = R0(d)/f(d) where f(d) is the shape factor. The shape factor f(d) has the property
of f(0) = 1 and decays to zero at sufficiently large d. Shape factors can be obtained in
analytical form for most basic shapes with homogeneous density, but in our case although
the shape is spherical, we do not have a homogeneous particle density. The shape factor
is obtained by normalizing the radial density-density distribution function [125]:

f(d) = 1
v0

∫
ρ(x)ρ(x + d)d3x. (3.2.7)

f(d) represents the probability of finding two units of density ρ(r) at a mutual separation
of d. v0 is a normalization constant ensuring f(0) = 1.

Our normalized radial distribution functions R(d) are obtained by first calculating the
shape factor from the corresponding particle density function ρ(r). We then use the sum
rule property of the shape factor [125]:

∫ ∞
0

2πr2f(r)dr = V (3.2.8)

giving us the volume of the sample. This sum rule allows us to recheck the effective radius
of confinement in our simulation runs, and we find that the confinement radius is always
within 1% of the specified value. The radial distribution function R0(d) is then calculated
with the obtained true particle volume V for each configuration, and then averaged over
all configurations obtained in simulations. After that, we use the shape factor to obtain
the normalized radial distribution function R(d) = R0(d)/f(d).

Polymer-condenser wrapping and connectivity

In order to study how DNA polymer beads interact with condensers we need to define
what constitutes a bead bound to a condenser. A polymer bead at rb and condenser at
rs are considered bound if their center to center distance d = |rb − rs| is such that the
bead-condenser interaction is attractive, i.e. (Rs + a0) − a0/2 < d < (Rs + a0) + a0/2.
This corresponds to the bead being located in the attractive part of the condenser-DNA
interaction potential.

The wrapping number w of a particular condenser is defined as the longest length of
DNA, in number of beads, that is bound to it (see Fig. 3.9a). For each snapshot, we make
a probability distribution function p(w) that any condenser in the current configuration
has the longest continuous length of DNA consisting of w beads. The total probability
of such a function is normalized to unity ∑∞

j=0 p(w = j) = 1. The value p(w = 0)
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Figure 3.9: Sketch of wrapping and connectivity indicator construction. Polymer
beads are shown as grey filled circles, with a black circle in the middle, and with bonds between
neighbouring beads as black lines connecting their centers. Green circles without markings in
the center represent condensers. a) Two polymers touching a condenser are shown. Red arc on
polymer beads show which beads are bound to the condenser. One segment with wrapping 1
and one segment with wrapping 3 are shown, leading to w = 3 for this bead. b) Method of

calculating γ is shown. The shortest path connecting the two condensers is marked with darker
polymer beads with filled centers. The red dashed line represents the total path between two

condensers, while d marks the shortest distance. c) Representative example of γ values
obtained from geometrical constraints.

thus corresponds to the probability that a condenser has no polymer beads bound to it,
while p(w) corresponds to the probability that a condenser has the longest number of
continuously wound beads equal to w. Note, p(w) does not give any information of the
number and distribution of shorter bound segments < w, or if there are multiple segments
of length w. As such, w is an indicator of the maximal achieved wrapping length on the
condenser.

The connectivity γi = mini{li}/di is defined as the inverse ratio between the nearest
(point to point) distance di = |ra − rb|, between any two condensers a and b, and the
shortest DNA contour distance mini{li}, from a set of possible contour distances {li}, if
we follow a contour of DNA starting at bead ja bound to condenser a and leading to bead
jb bound to condenser b (See Fig. 3.9b):

li = 2Rs +
max(ja,jb)−1∑
k=min(ja,jb)

|rk − rk+1|. (3.2.9)

As it is possible to have two paths along the contour connecting two condensers, we use
(ja, jb) which give the shortest path along the contour mini{li}. With this definition, two
condensers directly touching have γ = 2Rs+0

2Rs = 1, as well as two condensers connected
by a straight line of polymer beads. Thus, γ indicates if the polymer connecting two
condensers is direct (γ ∼ 1), or goes in a sideways or wobbly manner (γ > 1). For each
distinct pair i of condensers, we find its γi values and make a probability distribution
p(γ) for each configuration. The resulting probability configuration is then averaged over
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multiple snapshots done over different timesteps and with different initial conditions.

3.2.3 Pressures of packing

An important indicator of viral stability is the pressure exerted on the capsid which
depends on the amount of packaged DNA [140]. The resulting stress on the capsid is
different for various capsid structures [141] and is known to cause capsids to burst [142].
In order to tie our results close to experimentally relevant indicators, we will discuss
how the pressure on the capsid P changes with different parameters before continuing to
discuss the internal organization of packaged polymer and condensers. The pressures we
obtain do not include a significant quantitative contribution from long range electrostatic
interactions. Electrostatic interactions can not compete with steric interactions at high
densities due to their fast decay [26], such as those studied here, but are a necessity for
predicting viral pressures [9].

Note, all points on pressure graphs in this subsection are an average of at least 12
different initial conditions with 30 different snapshots in time per initial condition.

Polymer only packing
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Figure 3.10: Pressure from a confined polymer at different volume fractions.
Pressure as a function of polymer volume fraction for three stiffness constants Kb. Full lines
show a fit to the data at low volume fractions φp ≤ 0.15 with a power law P ∼ φn exponent n
of 2.25± 0.05, 2.01± 0.06 and 2.0± 0.1 for Kb = 0, 25, 100, respectively. Dashed lines show a fit
to the data at high volume fractions φp ≥ 0.3 with a power law exponent of 4.5± 0.1, 4.4± 0.1

and 4.5± 0.1 for Kb = 0, 25, 100, respectively. The radius of confinement was Rc = 30.
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Before studying the influence of condensers on the polymer, we examine how pure
polymer behaves inside a confining sphere. We study how the pressure P exerted on the
confinement depends on the volume fraction φp of confined polymer for different stiffness
constants Kb (Fig. 3.10). Our simulations indicate two regimes, at low and high packing
with a crossover at φp ∼ 0.15. At low concentrations, the pressure scales as P ∼ φnp with
n between 2.0 and 2.25, while at high densities, n ≈ 4.5.

Figure 3.11: Figure of a confined polymer with different bending stifness Kb.
Figure represents one snapshot of a polymer in confinement (the confinement is not visible) at

φp = 0.2 and Rc = 30 for different Kb, as indicated.

If we define an order parameter S, such that S = 〈P2(cos θ)〉 as in nematic liquid
crystals (Sec. 2.5), but with taking into account the radial component of the vector, we
obtain S = 0 in all cases confirming a visual representation that the system is globally
disordered, albeit there is a degree of local ordering seen with larger Kb (Fig. 3.11). A
transition into a ordered (nematic) liquid crystal has been seen in similar simulations
[72], albeit in that study the polymer representing DNA self-interacts with long range
repulsive interactions. Additionally, the confinement is gradually filled trough the virus
tail. It is this gradual filling combined with long range interactions that seems to induce
an ordered packing similar to experiments with filling spheres with stiff wire [56]. We also
assume that the addition of condensing particles will inhibit local ordering of the polymer
due to condensers acting as impurities. This view is consistent with Cryo-EM images of
adenoviruses [5] which show no core ordering.

Polymer scaling theory based on the approach by Flory [2] provides scaling behaviours
for several polymer regimes. At sufficient densities a flexible polymer is assumed to be in a
semi-dilute regime with a scaling analogous to bulk solutions [12]. This semi-dilute regime
is characterized by the polymer scaling as if it was surrounded with other (impenetrable)
polymers forming an effective cavity. The free energy of a polymer in the semi-dilute
regime scales as F ∼ Npφ

1/(3ν−1)
p , with ν = 0.588 the Flory exponent [2, 11]. From

P = −∂F/∂Vc we obtain that the pressure scales as

P ∼ φ3ν/(3ν−1) (3.2.10)
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or P ∼ φ2.25 (the des Cloizeaux law [2]). Cacciuto and Luijten [11] numerically confirmed
that the scaling for polymers confined to a cavity is the same as in bulk semi-dilute
solutions. Using Eq. (3.2.10) they obtain from their simulation ν ≈ 0.594 for a polymer
consisting of hard sphere beads without bending ( their confinement size would be Rc = 40
in our units). If we take our values for Kb = 0.0, corresponding to a model of RNA,
we obtain a value of ν = 0.6, also consistent with the Flory exponent. We attribute
the small difference in exponents due to different models for polymer bead interactions
– softer Lennard-Jones interactions we use give a different excluded volume. For higher
Kb = 25, 100 we see a reduction of the exponent to a scaling of roughly P ∼ φ2

p. This
exponent is the one obtained in the (mean-field) approximation at semi-dilute densities
[2, 12], for cases when the excluded volume is dominant, and corresponds to the Flory free
energy Eq. (2.4.8) overpowering the bending penalty for confinement.

At high density (φp > 0.15), the semi-dilute scaling picture breaks down [11]. For
flexible polymers, the correlations between monomers become too large, while for semi-
flexible polymers the first virial expansion in density (proportional to the excluded volume)
is lacking of higher order terms. Cacciuto and Luijten [11] show that from φp = 0.15 up
to the maximum value they test φp = 0.3 the system enters a concentrated regime, and
the pressure from numerical simulations scales roughly as P ∼ φ3

p. Theoretical mean

100 101 102 103

Kb

10-4

10-3

10-2

10-1

100

P

φp = 0. 1

φp = 0. 2

φp = 0. 3

φp = 0. 4

Figure 3.12: Pressure from a confined polymer of different persistence length.
Pressure as a function of polymer stiffness Kb = Lp/2 for different polymer volume fractions φp.
Full lines show a fit to the data at Kb ≤ 25 with a power law P ∼ Kn

b exponent n of 0.1± 0.2
for all φp. Dashed lines show a fit to the data at Kb ≥ 100 with power law exponents n of
0.6± 0.1 (φp = 0.1), 0.67± 0.06 (φp = 0.2), 0.69± 0.05 φp = 0.3 and 0.66± 0.03 (φp = 0.4).

The radius of confinement was Rc = 30.
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field calculations indicate a scaling of P ∼ φ3
p at intermediate densities before entering

the concentrated regime [12]. Our data indicate that after φp = 0.3 the system enters a
high density regime with a well defined scaling of P ∼ φ4.5±0.1

p suggesting a concentrated
polymer regime. A degree of caution is needed in this interpretation as the exponent at
high densities could be dependent on the choice of the polymer bead interaction potential.
It appears that previous works [11, 143, 144] did not show investigate scaling regime
comprehensively.

We can also see how the pressure P depends on the values of the stiffness constant
Kb. From the previous chapter we know that the DNA should have a transition from a
bending dominated to a flexible regime at Lp = 2Kb ∼ Rc. Fig. 3.12 shows such a scaling
behaviour happening for Lp between Rc and 2Rc, as expected [12]. The scaling behaviour
in the flexible regime (Kb ≤ Rc) shows no strong dependence of the pressure on the value
of the persistence length P ∼ L0.1±0.2

p , albeit the pressure does grow weakly with Lp. 2Lp
is the new monomer size of the effective polymer [2]. In the bending dominated regime
(Kb ≥ 100) we see a power law behaviour P ∼ L0.64±0.03

p inconsistent with both bending
models of onion given by Eq. (2.3.23) and inverse spool by Eq. (2.3.21) loop packing
which predict P ∼ Lp. There is no direct experimental test of this scaling dependence
as far as we know of but the loop models are able to predict scaling at constant Lp for
wire packing in spheres [56]. Some simulations and mean field models also predict Lp
dependence in the bending dominated regime [57], albeit at low densities.

With molecular dynamics simulations we obtain scaling exponents for the pressure
of confined polymers. We confirm the existence of a flexible and bending dominated
regime as bending stifness is changed, with a transition at 2Kb = Lp ∼ Rc. At different
concentrations, we find first the semi-dilute for flexible polymers and the mean-field
(Flory) semi-dilute for rigid polymers. At higher concentrations the pressure enters the
concentrated regime with the same scaling independent of bending stiffness. Interestingly,
in the bending dominated regime we obtain a scaling of the pressure on Lp inconsistent
with any of the theoretical models discussed here (Sec. 2.3).

Condenser and polymer packing

We now study how different condensers influence the pressure of a confined mixture of
condensers with the polymer. Figure 3.13 shows the pressure exerted by the mixture of
polymer (DNA) and condensers on the capsid as a function of the volume of condensing
particles for different condensing particle radii Rs. When only a polymer is confined
(φs = 0) the pressure exerted on the capsid is a growing function of polymer volume
fraction φp (Fig. 3.10). If condensing proteins are added with a condensing energy larger
than kBT , the addition of condensing materials first reduces the pressure until a minimum
is reached for a certain φs, after which the pressure rises again. At higher volume fractions
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Figure 3.13: Pressure on confinement for different condenser binding energies.
Pressure as a function of condenser volume fraction for three condenser radii Rs with condenser

binding energy ε as indicated. Both panels have φp = 0.3, Rc = 30.0, K = 25.

of condensers, steric repulsion becomes the dominant force and the pressure increases
irrespective of the size or binding strength of the condensers. With weak binding, an
increase of the volume fraction of condensing proteins always increases the pressure.

There exists an optimal volume fraction of condensers when the capsid pressure is
maximally reduced. With smaller condensers (Rs = 1) the addition of condensing agents
contributes to lowering the pressure with an optimal concentration (here φs = 0.08) where
the pressure exerted on the capsid is reduced by more than 50%. For larger condensers,
the lowering of capsid pressure is suppressed, leading ultimately to an increase of pressure
with added condensers (at Rs = 3). The observed behaviour of pressure comes from the
total number of binding sites available for DNA-condenser interactions. If the size of the
condensing particle Rs is increased, while the volume fraction is kept the same, the total
binding energy that can be realized is decreased. The maximal binding sites that can
be realized per condenser is proportional to the surface area ∼ εR2

s, while the number of
condenser particles Ns is proportional to ∼ φsR

−3
s . This means that that the free energy

that can be realized from binding goes as ∼ εφsR
−1
s . Thus, if the volume fraction is the

same, smaller condensers are able to better connect the DNA and stabilize it because they
are capable of permeating the crowded DNA structure better to realize more bonds.

With mixtures, more protein content φp leads to an increase of pressure (Fig. 3.14).
Independent of the binding strength, at large φp, the pressure has a value dependent
only on the bending stiffness Kb. When crowding becomes dominant, a fixed number of
condensers can not contribute to reducing the pressure. The asymptotic value at high φp,
defined by Kb is approached with a different power law for each ε.

A comparison of pressure for different condenser-DNA binding strengths at φp = 0.3, 0.4
shows two binding regimes (see Fig. 3.15), one when the binding energy ε is smaller than
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Figure 3.14: Pressure from condensers at different polymer volume fractions.
Pressure as a function of polymer φp for different Kb and ε at φs = 0.05 with Rc = 30.0. Lines
represent a power law fit P ∼ φn for φ ≥ 0.4 with power law coefficients in the bending regime:
5.04± 0.08 (Kb = 100 and ε = 0.5) and 5.63± 0.04 (Kb = 100 and ε = 2), and in the flexible

regime: 4.81± 0.08 (Kb = 0 and ε = 0.5) and 5.99± 0.03 (Kb = 0 and ε = 2).

Figure 3.15: Pressure on confinement for different condenser binding energies at
three different polymer volume fractions. Pressure as a function of interaction energy for

three condenser radii Rs at polymer fraction φp = 0.3, 0.4, 0.6 All panels have φs = 0.05,
Rc = 30.0, K = 25. Horizontal dashed line represents the pressure without any condensing

proteins, except for φp = 0.5 where the pressure without condensers is 0.254.

the thermal energy (weak binding) and one when ε is larger than the thermal energy (strong
binding). The major difference is that for strong binding (ε > kBT ) smaller condensers are
better in reducing pressure, while for weak binding (ε < kBT ) larger condensers are better.
In the strong binding regime a single bound bead is thermally stable, while in the weak
binding regime more than one is needed for stable binding. In the weak binding regime, we
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find that an increase in condenser size reduces the pressure on the capsid. However, in this
regime it is still more favourable to have no condensing proteins inside the capsid, as any
increase of number of condensers increases the pressure. As each condenser contributes
to the total free energy less than kBT via binding, other contributions become relevant
– the entropic contribution to the pressure dominates over the binding part. At higher
polymer volume fractions (Fig. 3.15 for φp = 0.4), and with the same condensing protein
volume fraction, we see the same two regimes (strong and weak binding) but they no longer
correspond to a net decrease of pressure. Only at higher binding energies, depending on
the size of condenser, does the addition of condensers reduce the pressure. Crowding
becomes the dominant contribution, requiring stronger condenser binding to negate it. At
even higher volume fractions (Fig. 3.15 for φp = 0.5), there exists a maximum in the
pressure at about ε ∼ kBT . Regarding a reduction of pressure, it becomes optimal to
either have no binding or extremely strong binding. It seems that bonds comparable to
the thermal energy somehow stiffen the structure, enhancing the pressure. Biologically, it
seems that only with strong binding with lower crowding do condensing proteins contribute
to reducing the pressure exerted on the capsid. Larger weak binding condensers do not
inhibit the internal pressure significantly, so their presence is "tolerable" if they are required
to facilitate other aspects of the infection process.

Figure 3.16: Pressure on confinement for different condenser sizes. Pressure as a
function of condenser size for two condenser binding energies at three different φp = 0.3, 0.4, 0.5.

Dashed lines represent the pressure without any condensers. All panels have φs = 0.05,
Rc = 30.0, K = 25.

Figure 3.16 shows how the pressure changes with the size Rs of condensers. Both at
φp = 0.3 and φp = 0.4 we see no crossover between pressure lines for different binding
energies. With strong binding, we see that the pressure saturates with an increase of
Rs, even resulting in a increase of pressure at around Rs = 4 with respect to the case
without condensers. For weak binding, we see a decrease of pressure with an increase of
Rs. A similar trend is seen for φp = 0.4, albeit only strongly bound Rs = 1 decrease the
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total pressure. A decrease in pressure with Rs in the weak binding can be explained as
being influenced by a decrease of entropic pressure, which is proportional to the number of
particles. On the other hand, in the strong binding regime the pressure saturates at high
Rs, likely as the total energy of binding, ∼ εφsR

−1
s , is reduced at high Rs. At φp = 0.5

larger and strong binding condensers increase the pressure with respect to weak binders.
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Figure 3.17: Pressure from a confined polymer with condensing proteins for
different poylmer stifnesses. Pressure as a function of polymer stiffness Kb = Lp/2 for two
different volume fractions of φp = 0.3 (left panel) and φp = 0.4 (right panel) at φs = 0.05 with
Rc = 30.0. Full lines show power law fits with a scaling exponent 0.1± 0.1. Dashed lines show a
power law fit with exponents: a) for φp = 0.3 we have exponents 0.62± 0.05 (Rs = 1.0 and
ε = 0.5), 0.85± 0.01 (Rs = 1.0 and ε = 2), 0.62± 0.05 (Rs = 3.0 and ε = 0.5) and 0.69± 0.03

(Rs = 3.0 and ε = 2), b) φp = 0.4 with exponents 0.58± 0.03 (Rs = 1.0 and ε = 0.5), 0.66± 0.02
(Rs = 1.0 and ε = 2), 0.60± 0.01 (Rs = 3.0 and ε = 0.5) and 0.61± 0.02 (Rs = 3.0 and ε = 2).

The addition of condensing proteins will also influence the dependence of the pressure
on the polymer stiffness. A comparison of scaling with different parameters (Fig. 3.17)
indicates that the bending dominated regime and the flexible polymer regime persist in
spite of added condensers (Fig. 3.12). In all cases, a higher bending stiffness increases the
pressure and makes binding ultimately inefficient in reducing the pressure. In the flexible
regime (2Kb < Rc) there is no well defined scaling on the persistence length Lp, just a
monotonous rise in the pressure. In the bending regime at lower crowding (φp = 0.3) we
can argue that there are two possibilities. Weak binding and large condensers produce a
scaling P ∼ Kn

b with the exponent n ∼ 0.6 similar to the scaling with only polymer (Fig.
3.12). If the condensers have a strong binding energy (ε > 1kBT ), the scaling relationship
is changed. In order to approach the same high Kb pressure value, the scaling on Kb in the
bending regime approaches an exponent of 1. At higher crowding (φp = 0.4), the pressure
reduction with strong and small condensers is less relevant, and the resulting asymptotic
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scaling exponent is also smaller. Thus, strong condensers are more influenced by a stiff
polymer backbone, initiating a faster return to a pure (repulsive) pressure value.

We conclude that the presence of condensing agents with a polymer in confinement
influences the total pressure exerted on the confinement. There exists an optimal condenser
volume fraction which minimizes the pressure, but only with strong binding and sufficiently
small condensers able to realize many bonds with the polymer. At higher polymer densities,
the crowding effect overcomes the reduction of pressure from condensers. We find two
regimes in both volume fraction of packaged cargo and stiffness of the polymer – an
increase in concentration brings a change from a semi-dilute to a concentrated regime,
and an increase in bending stiffness changes the system from a flexible polymer to the
bending dominated regime.

3.2.4 Internal organization

We will now study how different parameters influence the internal organization of
confined mixtures of condensing proteins and polymer. Experimentally it is possible to
probe both the density and radial distribution function for condensing proteins using
either electron microscopy [97, 121] or small angle X-ray scattering [26]. Our aim is to
study how parameters of the model influence these experimentally accessible indicators.
Additionally, our inclusion of an explicit polymer allows us to study how crowded and
confined mixtures of polymer and condensers are interconnected. Based on the analysis
of the pressures we will concentrate on confinements matching the typical size of viral
capsids, with strong and weak binding, and both flexible and stiff polymers. Afterwards,
the implications of these findings will be discussed in the context of virology and artificial
nano-cargo delivery.

All statistical indicators presented here have been averaged for at least 48 random
initial states of the system, with 30 snapshots in time per each initial state.

Polymer only packing

Packing of polymers inside spherical confinement is a well studied problem [11, 143, 144],
examined also in the context of DNA packing and ejection in bacteriophages [72, 79,
145, 146], allows us to benchmark our model before continuing studying mixtures with
condensing particles. Fig. 3.18 shows how the probability density for polymer beads
depends on a choice of stiffness constants at different polymer volume fractions φp. At
low densities (φp = 0.05) thepolymer stiffness has a profound influence on its density
profile. A flexible polymer (Kb = 0) fills the interior and has a depletion layer at the
walls of the capsid, the same as obtained in polymer field theory, with a density profile
ρ(r) ∼ tanh2[(Rc− r)/ξ] for r < Rc where ξ is the mean field correlation length dependent
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Figure 3.18: Probability density for different sifness constants Kb and polymer
volume fractions φp for Rc = 30.0.

on the volume fraction φp [12]. On the other hand, a stiff polymer (Kb = 100) in the
bending regime has an exclusion hole in the center of the confinement, the bending stiffness
forcing it to cover the interior of the confinement surface to minimize its bending energy.
The case with Kb = 25, corresponding to the stiffness of DNA when a0 = 1 nm, lies in
between these two regimes, with the exclusion zone starting to form. Although DNA lies
outside the bending dominated regime, its density profile shows similarities to profiles of
higher bending stiffness.

At intermediate densities (φp = 0.2), just beyond the semi-dilute regime, we see that
the polymer fills the whole volume of the confinement. A flexible polymer (Kb = 0) still
has a depletion layer near the confinement, but it is barely visible. Stiffer polymers are
located with a high probability in well defined layers near the surface of the confinement
with a higher stiffness giving a higher probability. This layering is a direct consequence of
interactions with the confining surface, and is a known effect both in confined polymers
[67] and spheres [128]. At higher densities, the difference between polymers of different
stiffness becomes less pronounced, as the lack of free volume and the topology of the chain
determines the packing density.

Confinement size effects

The size of confinement can influence the internal organization of the system. Our
primary interest lies with large confinement radii which we can compare to viruses. For
example, adenoviruses filled with DNA would correspond to Rc = 30 nm with a0 = 1
nm. But, smaller confinements, e.g. representing protein cages, with Rc ∼ 8 nm are also
interesting for applications in nano-cargo delivery [110]. We first test large confinement
radii, which would correspond to both adenoviruses and polyomaviruses.

Fig. 3.19 shows the dependence of the particle probability density ρ and connectivity
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Figure 3.19: Structure variation for different confinement radii Rc. Particle
probability density ρ and connectivity p(γ) are shown for φp = 0.3, φs = 0.05, ε = 2, Kb = 25.

Figure 3.20: Probability density for different small confinement radii Rc for a
flexible (Kb = 0) and stiff polymer (Kb = 100). Particle probability density ρ and

connectivity p(γ) are shown for φp = 0.3, φs = 0.05 and ε = 2.

γ for different confinement radii comparable to viral capsids. The density ρ shows the
same general profile in all cases, but γ shows a difference between different Rc. A larger
probability for finding two condensers directly connected, i.e. a small γ, is seen i small
confinements. This is expected as the complexity of paths is smaller with less DNA
connecting the system. When the confinement becomes comparable to the size of the
particles in the simulated mixture (Fig. 3.20) one begins to see changes in the density
due to finite size effects, but also subtle changes in the radial distribution function. As
our primary interest lies in viral capsids, we will not discuss this case further.

Internal organization at varying polymer density

Figure 3.21 shows the polymer density profile for various polymer volume fractions
with the stiffness corresponding to that of DNA (Kb = 25) with added condensing proteins
(φs = 0.05). The general trend with all condenser sizes is that the presence of condensers
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Figure 3.21: Polymer density profile with added condensers for different polymer
volume fractions. Data is shown for stifness Kb = 25 (DNA) with condenser volume fraction
φs = 0.05 confined in a sphere of radius Rc = 30 for different combinations of condenser radius

Rs = 1, 3 and condenser binding strength ε = 0.5, 2.

does not influence the density in a major way if the condensers are weakly binding. When
condensers bind strongly (ε = 2kBT ), they produce a more compact structure at low
densities, albeit still filling most of the available free volume. Larger condensers at low
densities produce a more spread out polymer density. In all cases layering in the area near
the confinement surface is observed at sufficiently high densities.

The density distribution of condensers (Fig. 3.22) exhibits similar behaviour as the
polymer density. When the binding is weak and the condensers are small, the condenser
densities follow similar trends as the polymer densities. Strong binding shows a different
profile with the cluster of condensers and polymer becoming more compact without any
significant ordering near the confinement until φp = 0.45. A reduction in the pressure
(Fig. 3.14) is correlated with more compact structures. The first layer of condenser
density at the confinement surface is suppressed in comparison to the second (interior)
layer, especially with strong binding. We argue this is a combination of two effects: a)
the polymer is pushed outwards from the center of the confinement due to its bending
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Figure 3.22: Condenser density profile for different polymer volume fractions.
Data is shown for stiffness Kb = 25 (DNA) with condenser volume fraction φs = 0.05 confined
in a sphere of radious Rc = 30 for different combinations of condenser radius Rs = 1, 3 and

condenser binding strength ε = 0.5, 2.

rigidity, and b) if condensing particles constitute the outermost layer, they have a reduced
number of polymer bead neighbours thus reducing the opportunity for binding. With
larger condensers (Rs = 3) configurations show depletion of probability near the center of
the confinement.

The radial distribution function R(d) for condensers (Fig. 3.23) indicates that the
correlation of the particle positions is highly dependant on the size and binding strength
of condensing proteins at all densities. Small condensers (Rs = 1) show that a high density
leads to a better correlation of first neighbour condensers. In the case of strong binding,
both low and high polymer volume fractions show a high correlation for the first neighbour
(first peak). But, in between concentrations have a reduction in the probability of finding a
condenser at a direct contact with another one (at d = 2Rs ≈ 2), where a minimum is seen
for φp = 0.3 and φp = 0.4. In this case the second peak, attributed to one polymer bead
in between two condensers (at d = 2Rs + a0 ≈ 3), becomes dominant. Larger condensers
exhibit a reduction in the probability of direct contact of two condensers irrespectively of
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Figure 3.23: Radial distribution function of condensers for different polymer
volume fractions. Data is shown for stiffness Kb = 25 (DNA) with condenser volume fraction
φs = 0.05 confined in a sphere of radious Rc = 30 for different combinations of condenser radius

Rs = 1, 3 and condenser binding strength ε = 0.5, 2.

the binding strength. It seems that the presence of a polymer forces two condensers to be
more distant, as it is energetically more favourable for them to be bound. Interestingly,
with larger condensers (Rs = 3) this effect leads to a almost complete elimination of the
direct contact, which is present even when more than one bond, as in the case with ε = 1/2,
is needed for binding to be thermally stable. At high volume fractions φp = 0.5 all the
peak positions are moved to lower values, as the particles are at s sufficient density to
warrant closer contacts.

The wrapping number w, which corresponds to the longest length of a continuous
polymer segment whose beads are bound to the same condenser, is shown in Fig. 3.24
for different polymer volume fractions. Small and weak binding condensers at low con-
centrations are unbound with significant probability. At high densities, we see saturation
at w = 2, the same value seen for all small and strongly bound condensers. The limiting
factor is in this case the size of the condenser. Larger condensers seem to efficiently wrap
the polymer, and as such can bind the polymer even with weak binding. Additionally,
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Figure 3.24: Wrapping for different polymer volume fractions. Data is shown for
stiffness Kb = 25 (DNA) with condenser volume fraction φs = 0.05 confined in a sphere of

radius Rc = 30 for different combinations of condenser radius Rs = 1, 3 and condenser binding
strength ε = 0.5, 2.

the distribution p(w) is much wider, and increases with an increase of polymer volume
fraction. The strength of the binding is also not a major factor, as it seems that it is the
confinement that forces the polymer to more tightly interact with condensers.

For small condensers with Rs = 1 we see that the most probable winding number is
w = 2 for both binding regimes, meaning that most of the condensers will bind maximally
two connected DNA beads. An increase of condenser radius enables a larger w on average,
as the DNA can have longer segments bound to the condenser as both the surface is larger
and the required polymer bending smaller. The obtained growth is proportional to Rs and
surprisingly shows no major dependence on the interaction strength, again indicating that
the dominant effect comes from confinement, and not interaction strength in this regime.
From the wrapping indicator we conclude that when the size of the condensing particles
is small, Rs ∼ 1, they predominantly act as bridger molecules, while larger condensers
(Rs > 3) approach the behaviour expected for wrapping particles [122].

We have found that the condensers bind small segments of polymer on them, but
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Figure 3.25: Connectivity indicator for different polymer volume fractions. Data is
shown for stifness Kb = 25 (DNA) with condenser volume fraction φs = 0.05 confined in a
sphere of radious Rc = 30 for different combinations of condenser radius Rs = 1, 3 and

condenser binding strength ε = 0.5, 2.

that does not provide information on how or if different beads are interconnected by the
polymer backbone. We can study how condenser pairs are connected via the polymer
backbone to see if the connecting DNA follows the shortest path between them. For each
pair of condensers we construct the connectivity indicator γ = mini{l}/d which is the
ratio between the smallest distance along a contour of DNA connecting these two proteins,
and the closest (point to point) distance d between them. Figure 3.25 shows how the
probability distribution for p(γ) changes for different polymer volume fractions. We see
that Rs = 1 condensers have a flat probability distribution for γ indicating that any two
condensers are mostly connected indirectly. There is a small maximum at roughly γ ∼ 1.5
that seems to be related to spatially nearest neighbours directly interconnected with the
contour. A higher density slightly enhances more direct contacts. If we increase the
condenser radius, we see that smaller γ become increasingly more probable, meaning they
are more directly connected. As the cross section of a condenser goes like ∼ πR2

s a "random
walk" (in a crowded and confined environment) has a much higher probability of stumbling
across a nearby condenser. A stronger interaction facilitates more direct connections, for

84



Chapter 3. Nucleic acids and condensing proteins in confinement

then the probability for small γ is larger, while maintaining the same position of the peak
in p(γ) is maintained. The presence of condensers with stronger binding seems to force
the DNA to have a more directed path between any two condensers.

Figure 3.26: Connectivity indicator between nearest neighbours for different
polymer volume fractions. Data is shown for stiffness Kb = 25 (DNA) and condenser

binding strength ε = 2 with condenser volume fraction φs = 0.05 confined in a sphere of radius
Rc = 30 for different condenser radiuses Rs = 1, 3.

We can also use γ, the ratio between the DNA length connecting two condensers and
their mutual distance, to study how relaxed the interconnectivity is in the neighbourhood
of condensers. We can define γNN = mini{lNN}/dNN as the ratio of the shortest contour
length connecting two spatially nearest neighbours and their mutual distance. Figure 3.26
shows the variation of γNN with φp for different condenser sizes in the strong binding
regime. For Rs = 1 there are three major contributions to p(γ): a) at γNN ∼ 1 from
direct contacts trough one polymer bead located between two nearest neighbours, b) at
γNN ∼ 1.25 coming from the polymer touching (grazing) two neighbouring beads touching
at a mutual distance of d = 2Rs, and c) at γNN ∼ 2 most probably coming from the
polymer grazing two neighbouring beads at a mutual distance of d = 2Rs+a0 (second peak
in Fig. 3.23). At low volume fractions φp and small condensers (Rs = 1) the system is
relaxed and nearest neighbours are contacted indirectly. As φp is increased, and although
the volume fraction of condensers is present, we get more directly connected condensers
as the crowding has increased. Larger condensers posses a slightly more pronounced
probability of finding direct contacts between them, but have shorter indirect contacts
centred at γNN ∼ 1.25. This is because larger condensers have a higher probability of direct
contacts due to their larger size thus reducing the total number of possible topological
paths in respect to smaller condensers.

We conclude that higher densities of polymer enhances binding until we reach the
concentrated regime when the crowding inhibits efficient binding. Small condensers are
more able to permeate the structure and distribute themselves than larger condensers.
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Larger condensers are unable to be directly in contact, as they are limited by the polymer
they have bound, or wrapped, on themselves. Crowding large condensers with more
polymer enhances this wrapping.

Formation of polymer-condenser quasi-particles

Larger condensing particles indicated (Fig. 3.23) a tendency for the mutual distance
between closest condensers to increase. We identify two major contributions in R(d), one
from direct contacts between two condensers at d = 2Rs, and another from a polymer
located in between two closest condensers at d = 2Rs + a0. In the strong binding regime
we see a transition from a mixture of direct and DNA-mediated contacts to only DNA-
mediated condenser contacts for large condensers. The direct contact between condensers
is slightly less probable in respect to a condenser-bead-condenser contact for Rs = 1. With
larger condensing particles, the direct contact between condensers becomes suppressed,
and all interactions are mediated by a polymer layer around the condensers. This becomes
more relevant for larger (Rs = 3) condensers with strong binding, so we test how do the

Figure 3.27: Structural change for different radii Rs of condensing proteins.
Graphs show normalized radial distribution functions R, wrapping w and the probability

distribution for connectivity for all particle pairs p(γ) and for just spatialy nearst neigbours
p(γNN ). Parameters were Rc = 30.0, φp = 0.3, φs = 0.05 and ε = 2.
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indicators change with condensing proteins of different radii Rs (Fig. 3.27). An incrase
of condenser radius to Rs = 3 shows that direct contacts between condensers are highly
improbable – there is always a at least one polymer bead in between two condensers.
When the radius is further increased to Rs = 5, we see two close peaks at d = 2Rs + a0

and d = 2Rs + 2a0 with equal statistical weight. The increase of radius has allowed
the condensers to cover themselves each with their own polymer "layer". The system
transitions from a state where condensers can interact directly, to a state where each
condenser is covered by at least a layer of polymer which mediates all interactions, a
form of quasi-particle like the one one used in the previous section in our effective model
of adenosomes [97]. This formation of quasi-particles is followed by an increase in the
wrapping indicator w.

An increase of condenser size also enchances wrapping and makes the core better inter-
connected, as p(γ) show a higher probability of direct paths between any two condensers.
From the wrapping indicator we conclude that when the size of the condensing particles
is small (Rs ∼ 1), they predominantly act as bridging molecules, while larger condensers
(Rs > 3) approach the behaviour expected for wrapping particles [122]. The connectivity
of nearest neighbours γNN indicates a transition between a more sparse relationship at
Rs = 1 to a more direct connectivity for larger Rs. These changes in connectivity can be
attributed to an increase in the cross section of the condensers.

Figure 3.28: Layering comparison for two binding strengths. Graphs show normalized
radial distribution functions R and density probability for condenser particles ρ(r). Parameters

were Rc = 30.0, φp = 0.3, φs = 0.05, Rs = 3 and Kb = 25.

The formation of adenosomes covered with a "halo" of polymer beads can also be seen
in the density(Fig. 3.28). After the system transitions from a mixture of direct contacts
and indirect (polymer mediated) contacts to only indirect, we see a change in the density.
First, the outermost layer of condensers in direct contact with the confinement disappears.
Secondly, two peaks evident in the density ρ at a distance Rs + a0 and Rs + 2a0 from the
edge of the confinement become comparable for ε = 2 – the first one from a quasi-particle
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directly contacting the surface, the second from an additional layer of polymer between
the quasi-particle and the confinement wall. Additionally, a peak at roughly 2Rs from
the confinement surface begins to form. Thus, we see quasi-particles in both the radial
distribution function R and in the density ρ. Surprisingly, this is followed by negligible
differences in the interconnectivity of condensers, only direct links p(γNN = 1) becoming
slightly more probable, and also a negligible difference in p(w) between the weak and
strong binding case. So although wrapping is connected to formation of the quasi-particle,
it is not sufficient.

Condenser volume fraction

Figure 3.29: Nearest neighbour connectivity for different condenser volume
fractions φs at Rs = 1. Data is shown for stifness Kb = 25 (DNA) with polymer volume
fraction φp = 0.3 confined in a sphere of radious Rc = 30 for condenser binding strengths

ε = 0.5, 2.

Beforehand we have fixed the condenser volume fraction φs = 0.05 at the value that is
both expected inside adenovirus cores, and the minimum in pressure obtained for Rs = 1
and ε = 2 condensers. An increased amount of condensers enhances the direct contact
between condensers and suppresses any layering. The connectivity γ remains the same
on the scale of the whole confined system, but the nearest neighbour connectivity γNN is
changed for small condensers (Rs = 1). Figure 3.29 shows how an increase of condenser
volume fraction changes the local connectivity of condensers. Surprisingly, an increase
of condenser volume fraction makes the nearest neighbour links less direct, although the
probability to find another condenser at the minimal distance R(d ≈ 2Rs) is increased. It
seems that the increased crowding complicates the paths the polymer must take between
neighbouring condensers, although the density of condensers is larger.
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Figure 3.30: Density and radial distribution function for different bending
stiffness. ρ and R are shownfor different bending stifness parameters Kb. Parameters were

Rc = 30, ε = 2, Rs = 3, φs = 0.05 and φp = 0.3.

Figure 3.31: Wrapping for different bending stiffness. p(w) is shown for two different
condenser radii Rs for different bending stifness parameters Kb. Parameters were Rc = 30,

ε = 2, φs = 0.05 and φp = 0.3.

Comparing various bending regimes

Figure 3.30 shows how the bending stiffness Kb for flexible (Kb = 0), stiff (Kb = 100)
and DNA-like (Kb = 25) polymers influence the internal organization in confinement.
Stiff polymers are found to reduce the layering of polymers on condensers, while flexible
polymers enhance the quasi-particle picture from before. As the stiffness is reduced, the
density ρ exhibits a transition from two peaks for condensers and polymers near the
surface of the confinement, into one merged peak for the quasi-particle. Similarly in R we
see a widening of the first peak for the flexible polymer, corroborating the quasi-particle
picture. Interestingly, wrapping (Fig. 3.31) indicates that flexible polymers have a larger
winding number w for small condensers, and smaller w for larger condensers, with respect
to stiff polymers. Stiffer polymers, once they make contact with a condenser, have a
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higher probability of continuing on the same path, grazing the surface of the condenser.
Such paths allow the stiff polymers to be slightly diverted to follow the shape of large
condensers more closely, in order to achieve more binding opportunities with the same
condenser. Flexible polymers have almost no correlation between subsequent steps in their
"random walk", and are expected to more easily, temporarily, leave the neighbourhood of
a condenser.

3.2.5 Opening the capsid

To understand what is the degree that confinement influences the structure, we study
how removing the confinement influences the mixture. We first show an example of
confined wrapping w and nearest neighbour connectivity γNN for parameters close to the
ones we believe match the conditions in adenoviruses best (Fig. 3.32).

Figure 3.32: Connectivity of DNA and condensing proteins with confinement.
Probability distributions for the wrapping number w and γNN = mini{lNNi }/dNN averaged for
all condensing particle pairs which are nearest neighbours are shown in the weak (ε = 1/2) and
strong (ε = 2) binding regime for different values of the condenser radius Rs. Parameters were

Rc = 30, φp = 0.3, φs = 0.05 and stiffness K = 25.

After the capsid is removed and a sufficient time has passed for the system to equilibrate,

90



Chapter 3. Nucleic acids and condensing proteins in confinement

Figure 3.33: a) DNA and condensing particle cluster after removing confinement. Same as
Fig. 3.6 except the capsid confinement has been removed. b) Cryo-EM of opened adenoviruses

showing a compact core and remnants of the capsid. Adapted from Ref. [121].

we see that the structure has relaxed but retains the general shape of a cluster (Fig. 3.33a).
In the case of small weakly binding condensers (ε = 1/2kBT ) almost all of the condensing
particles leave the cluster.

To gain insight on the internal connectivity we study wrapping (w) and connectivity
(γ and γNN) for DNA condenser mixtures without spherical confinement as shown in Fig.
3.34. Wrapping w shows the most striking difference from previous results in confinement.
In all cases, the tendency for wrapping has reduced. In the case of strong binding, the
dependence of w on size has become weaker, indicating that the entropic penalty for the
DNA to remain near the bead remains stronger than the energy gained from binding. In
the weak binding regime, we see that most of the smaller condensers do not have any DNA
bound to them (seen as p(w) = 0), as they have escaped the cluster. Larger condensers
for Rs = 5, and Rs = 3, show the same wrapping profile for both weak and strong binding
regime. When the size of the condenser becomes more comparable to the persistence
length of DNA, the binding is able to "bend" the DNA to touch the surface.

The contour lengths of DNA connecting condensers, as represented in γNN (Fig. 3.34),
indicate a more sparsely connected, if connected at all, structure for weak binding without
confinement. Smaller condensers do not participate in forming any network and leave the
structure, while larger condensers start to exhibit the general profiles seen with confinement
for which the probability for direct links (small γNN) becomes larger than for indirect links.
Strong binding indicates a similar structure as in confinement. The DNA links for nearest
neighbours shows the most striking difference for small and weak binding condensers where
there are no direct links between condensers, only indirect ones where DNA subsequently
touches two condensers during its random walk (γNN ∼ 1.4). In contrast, strongly bound
condensers exhibit the same general trend as in the confined case, except the structure
is more relaxed, with indirect links becoming more probable. This confirms the visual
conclusion that strongly binding condensers retain the same general connectivity as in
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Figure 3.34: Connectivity of DNA and condensing proteins with confinement
removed. Probability distributions for the wrapping number w and γNN = mini{lNNi }/dNN
averaged for all condensing particle pairs which are nearest neighbours are shown in the weak
(ε = 1/2) and strong (ε = 2) binding regime for different values of the condenser radius Rs. All
other parameters are the same as in Fig. 3.32 but with the spherical confinement removed.

confinement, while weak condensers cause a loss of connectivity except for larger condensers
where several bonds can be achieved simultaneously to "anchor" the condenser inside the
structure. If we take γ for all connections in the system, we find minor differences from
the confined case implying that the global connectivity remains the same.

3.2.6 Implications for viral packing

By using molecular dynamics simulations of mixtures of explicit DNA and condensing
proteins we investigated the organization of material inside viral capsids. The approach we
presented enables us to expand on the effective model of core quasi-particles (adenosomes)
and show that we can explain some basic experimental features: the depletion layer near
the capsid surface and that core particles interact as effective quasi-particles.

The parameters used for the condenser and polymer model correspond to a simplified
model applicable to adenoviruses if we take a DNA volume fraction of φp = 0.3 and
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condensing agent volume fraction of φs = 0.05 [97]. Density profiles for Rs ∼ 1 in the
strong binding regime (Fig. 3.22) follow the experimental profiles showing a flat density
profile inside and a gradual decay of the probability for finding condensers close to the
capsid surface – a depletion layer of particle density. The total density as it would be seen
in electron microscopy, would be a weighted sum of DNA and protein densities. The DNA
in this regime shows little layering (Fig. 3.21), as does the condenser density distribution
(Rs = 1 in Fig. 3.22), and has the same general profile seen in core protein density for
condensing particles in adenoviruses (Rs = 1 in Fig. 3.2) [97] and chromatin in SV40 [26].
The existence of surface layering is a well known feature of models with only spherical
particles [128] and only DNA polymers [67] and originates in the confinement wall inducing
"ordering". This particle layering near the capsid surface is not necessarily seen only in
density, but also happens in the orientation of elongated condensing proteins near the
capsid walls as seen in coarse grained models of polyomavirus SV40 [26]. Thus, care
is needed when interpreting the origin of density fluctuations from electron microscopy
images, as their origin can come from any combination of the preceding effects.

Comparing the radial distribution functions obtained from simulations (Fig. 3.23) to
those obtained for condensing proteins in adenoviruses [97], we see we can reproduce two
basic behaviours. First, there exists a regime where condensing proteins do not interact
directly but through a DNA medium. If there was tethering between two condensing
particles, it would present as a high probability at finding the two particles at some
mutual distance. No such evidence for tethering is seen. Combined with the density ρ(r)
depletion layer seen also in adenoviruses, it seems that our model can successfully cover
the basic internal structure in adenoviruses. This is in spite of the simplicity of our model,
and seems to be a feature of the crowded and confined environment. We can also compare
to the core organization of histone proteins inside SV40 viral capsids [26]. Histones can
be modelled as oblate particles which wind DNA aorund them [113], so our model would
constitute an oversimplification. Yet, Cryo-EM of SV40 cores also indicates lack of ordered
core organization [109] which is also collaborated by SAXS studies corroborated with a
coarse grained model of histones in an effective medium of DNA confined in a viral capsid
with attractive interactions [26]. The coarse grained model by Saper et al. [26] treats
the SV40 capsid as being filled with oblate ellipsoids with steric repulsion, non-specific
binding and tethered by a harmonic spring to simulate the backbone of DNA connecting
the histones. They find that the core structure exists in a disordered state with densities
that correspond to the experimental evidence. Although the basic geometry is different
because of the shape of condensing particles, we can compare general trends for the density
as chromatin is estimated to have a binding energy of ∼ 6 kBT [113]. Our density profiles
in the strong binding regime for Rs ∼ 1 (Fig. 3.22) best approximate the density seen,
corresponding also to a model of oblate ellipsoidal particles with nonspecific long range
attraction, tethered with a harmonic spring approximating DNA. Alternate models used
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by Saper et al. [26] for a tighter/closer tethering have the same basic structure as we
see in the case of larger condensing particles. Although similarities are seen, our results
indicate that the addition of a polymer can provide different explanations for the same
behaviour as does tethering combined with a different particle shape. In the case of SV40
it is well known that chromatin does indeed wrap DNA around it, giving plausibility
for the tethering model. To consistently prove that tethering is not seen in vivo due to
crowding a more complex model for the condensing proteins is needed as is the inclusion
of possibly attractive interactions with the capsid [24, 26].

Removal of confinement (Fig. 3.33a) for parameters close to those expected in aden-
oviruses has shown a relaxed but still compact structure. Although it was thought that
after opening of adenovirus capsids, the core resembles a fibre structure [118, 119], recent
experiments have shown that this is an artefact from sample preparation [121]. Cryo-EM
shows that most adenovirus cores after the removal of the capsids remain compact (Fig.
3.33b) [121], validating paralels between the model behaviour and adenoviruses. Similarly,
in SV40 it is known that the state of its minichromosome depends on the experimental
conditions [147] as the view that chromosomes in vivo exist as ordered structures is being
challenged [148, 149]. The finding that cores remain compact is not surprising, but it is
interesting to study the degree of structural change.

The scarcity of experimental evidence on the packing of nucleic acids with condensing
proteins has motivated us to make direct comparisons with the only two systems with
direct experimental evidence of internal structures: adenovirus [97] and polyomavirus
[26, 104]. Papovaviruses from the family of polyomaviruses also have genomes condensed
with histones forming a minichromosome [104]. There is no evidence of order in the viral
core, even in the areas close to the inner capsid surface [150]. On the other side, BK virus
from the polyomavirus family shows a small degree of core ordering (shelling) near the
capsid walls [151], which could be caused by higher density, or a change of interactions as
supported by both our model (caused by crowding) and Saper et al. (caused by different
interaction screening) [26]. There exist other possible candidates with core proteins that
could be capable of acting as condensers: baculovirus [100], mimivirus [102] and poxviruses
[103]. The same lack of capsid internal ordering is seen in the giant mimiviruses [102] and
the vaccinia poxvirus [152]. Vaccinia exhibits an increase in total density near the capsid
surface[152] – reminiscent of our increase in the probability for finding larger condensers
at the confinement surface in respect to the center. Clearly, there is ample opportunity
for testing of our results.

Obtained density profiles of protein content inside viral capsids, and radial distribution
functions for these proteins, provide a picture of a disordered structure. Density profiles
are able to explain the lack of symmetry and order seen in viral capsids of adenoviruses
[5, 97] and polyomaviruses [26, 151]. The correlations between condensing protein positions
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shows that DNA can be considered an effective medium, mediating condenser-condenser
interactions. We find no direct DNA tethering between condensers, the connections
between them being mostly random for smaller condensing particles, and directed for
larger condensers. The internal connectivity between condensers mediated by DNA is
found to be indirect and with no evidence of direct winding of large lengths of DNA.
For the polymer, the interior of the capsid is a crowded environment where the lack of
possible configurations promotes winding of DNA around condensers. Confinement and
crowding seem to influence the way condensers with non-specific binding interact with the
polymer – we see that different sizes of condensers promote linker molecules to approach
the behaviour expected from wrapping particles [122]. The resulting crowding facilitates
more direct contacts between the DNA polymer and the condensing particles. We conclude
that confined mixtures of DNA and condensing proteins are importantly influenced by
confinement and crowding, and not only the exact interactions, which may, in certain
regimes, be secondary.
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Conclusions

By studying different phases of pure DNA in its compacted form, we were able to
characterize the DNA condensed inside a cell and DNA confined inside viral capsids. The
state of confined DNA was studied in different regimes which depend on the DNA stiffness,
confinement size and electrostatic screening. We showed how emptying of such a capsid
could proceed thus paving the ground for further understanding of the interplay of forces
during ejection of viral dsDNA from bacteriophages into cells. We examined in vivo
ejection of non-condensed DNA from tailed bacteriophages into bacteria. The ejection
is dominantly governed by the physical conditions in the bacteria - the confinement of
the DNA in the virus capsid only slightly helps the ejection. In spite of the assumptions
that passive ejection is not possible, we show that the mechanism of viral ejection from
dsDNA bacteriophages into Gram-positive bacteria could be explained as a competition
between the resisting turgor pressure of a cell and a free energy gain from condensation
of the ejected part of the DNA. The premise of condensed DNA in the cell enables us
to estimate the maximal bacterial turgor pressure against which the ejection can still be
fully realized. The thus calculated pressure (∼ 5 atm) shows that the ejection of DNA
into Gram-negative bacteria could proceed spontaneously, i.e. without the need to invoke
active mechanisms.

The packing mechanism for DNA in adenoviruses has long evaded a precise description
since the viral core, including DNA and proteins, lacks icosahedral order characteristic of
the virus protein coating (capsid). We analysed experimental cryo-EM images showing
an apparently random distribution of unknown core particles inside the adenovirus core.
These core particles, called "adenosomes", are identified as complexes of core proteins which
condense parts of the genome. Our analysis of their positional relationships shows that
the core lacks symmetry and strict order, yet the distribution of the condensing proteins
is not entirely random. The features of the distribution can be explained by modelling
the condensing proteins and the part of the DNA each of them binds as very soft spheres,
interacting repulsively with each other and with the capsid. The DNA appears to act
only as an effective medium for the soft interadenosome interactions. A backbone of DNA
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linking the condensing proteins is not needed to explain the experimental results. We
conclude that although these condensing proteins are connected by DNA in disrupted
virion cores, the in vivo capsid is a crowded environment changing the effective interactions
involved in the packing of the DNA material.

Modelling of virion core structures was approached using Langevin dynamics simula-
tions which include both condensing proteins and an explicit DNA polymer inside spherical
confinement. The DNA and polymer interact attractively via non-specific interactions.
We find there exists an optimal concentration of condensing particles which helps packag-
ing of the genome by reducing the interior pressure. Internal organization of condensing
particles shows that they tend to cover themselves with the DNA polymer which provides
an effective medium for interactions with other condensers, confirming the applicability of
our effective model for core particle organization in adenoviruses. Crowding of the viral
interior and confinement influences the conformation of the DNA and proteins, changing
how DNA interconnects the condensing proteins. It facilitates more direct contacts be-
tween the DNA polymer and the condensing particles. We find no direct DNA tethering
between condensers, the connections between them being mostly random for smaller con-
densing particles, and directed for larger condensers. The internal connectivity between
condensers mediated by DNA is found to be indirect and with no evidence of direct winding
of large lengths of DNA. Our model is able to explain the general internal organisation of
adenovirus cores, and provide insight into packing of genetic material in similar systems.

Outlook

Modelling mixtures of DNA and condensing proteins will become increasingly important
in the domain of virology as experimental techniques are starting to unravel even unordered
cores [26, 97, 153]. More complex systems can be studied within the same framework in
order to test how different DNA condensing molecules (linkers, bridgers and wrappers)
[122] influence the internal organisation and viral capsid pressures. Full DNA and protein
models also enable comparing nano-indentation of viruses using atomic force microscopy
[135] and determining how the core proteins interact with the DNA and affect the internal
pressure [123] or influence capsid stability [154]. Studying the packing of DNA with
proteins inside viral capsids, might provide information on how cellular crowding, through
changing interactions [27], influences chromosomal packing [148, 149] or even protein
folding [27].
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1 Uvod

Pakiranje nanočestica, sintetičkih polimera i genoma u ograničeni prostor je od izrazi-
tog fundamentalnog i tehnološkog značaja. S jedne strane, to je proučavanje interakcija
unutar makromolekularnog kompleksa s mnogim potpisima "života" pa je stoga važno
za razumijevanje životnih procesa [9]. S druge strane, virusi su evoluirani nano-strojevi
sa "svrhom" prolaska kroz staničnu membranu radi dostavljanja svog "tereta", genoma
[6]. Bilo kakve izmjene tog tereta, kao što je korištenje dizajniranih makromolekula ili
nanočestica, nose sa sobom značajan potencijal za primjene u osobnoj medicini (ciljano
dostavljanje lijekova ili genska terapija). Ipak, temeljno razumijevanje stanja DNK u
virusnom omotaču pri različitim gustoćama pakiranja, a samim time i fizike koja stoji
iza pakiranja virusnog genskog materijala i potonjeg procesa infekcije [9, 10], je nepot-
puno. Iako je problem pakiranja savitljivog ili polu-savitljivog polimera u ograničene
prostore dobro definirane geometrije (pukotine, šupljine) bio intenzivno proučavan [2], tro-
dimenzionalne šupljine tek su nedavno postale predmetom istraživanja [11]. U ovisnosti o
savitljivosti polimera, stupnju ograničenja, gustoći i interakcijama (isključenog volumena)
očekuje se bogati fazni dijagram [12]. Za razumijevanje faznih stanja DNK i polimorfizma
njezinih konformacija u ograničenom prostoru [10] potreban je pristup koji kombinira i
međusobno povezuje različite teorijske modele. Što se tiče izotropnog (neuređenog) stanja
(pri malim gustoćama) dobro je poznat fazni prijelaz u tekući kristal. Do faznog prijelaza
dolazi zbog svojstvene anizotropije u isključenom volumenu dugih polimera [13].

Unatoč tome, rezultati eksperimenata ukazuju na neočekivane pojave u uzorcima
makroskopskih dimenzija što potiče razvoj novih pristupa u modeliranju tekućih kristala
u ograničenom prostoru [14]. Faza tekućeg kristala pokriva otprilike trećinu dijagrama
gustoće [10, 12] te završava u gusto kondenziranoj fazi [16, 42]. Poznato je da formiranje
gustih faza DNK (kondenzirana DNK) ovisi o kombinaciji elektrostatskih i hidrofobnih
međudjelovanja između različitih dijelova negativno nabijene DNK "kičme" i pozadine
jedno- i više- valentnih protuiona [9]. U tom duhu, gusto pakirana DNK u virusima (npr.
bakteriofagima) je relativno jednostavan slučaj prikladan za proučavanje faza ograničene
DNK bez složenosti koju donosi stanični (in vivo) okoliš.
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Jedno od glavnih otvorenih pitanja vezano uz pakiranje DNK u viruse odnosi se na
mehanizme njezinog oslobađanja u stanicu. Unatoč 50 godina istraživanja, objašnjenje
svih relevantnih (termodinamičkih) sila koje vode izbacivanje dvostruke uzvojnice DNK iz
repatih bakteriofaga u bakterijsku stanicu, još uvijek nedostaje [18, 19]. Izbacivanje počinje
kao oslobađanje DNK iz potpuno ispunjenog virusnog omotača (proteinske presvlake
bakteriofaga). DNK je pakirana do ekstremnih gustoća te na omotač vrši pritisak od
25 − 100 atm [9, 20]. Modeli razvijeni i testirani in vitro (vidi [18] i reference unutar)
predviđaju da sile izbacivanja prouzročene čak i takvim ekstremno gustim pakiranjem
nisu dovoljne za potpuni prijenos DNK u unutrašnjost stanice. Iako stanice imaju manji
osmotski tlak od potpuno pakiranih bakteriofaga [21], sila izbacivanja (a time i tlak
u omotaču) brzo pada kako se omotač prazni [22]. Nedavno provedeni Hershey-Chase
experiment na razini jedne molekule [23] nagoviješta da izbacivanje in vivo nije kontrolirano
količinom DNK preostale u omotaču već količinom izbačenom u stanicu. To znači da nakon
što se tlak nakupljen u bakteriofagu "potroši" na izbacivanje DNK, proces preuzimaju
stanični mehanizmi. Predloženi su različiti mehanizmi za završetak izbacivanja, no čini se
da ni jedan ne daje cjelokupnu sliku, dok eksperimenti nagovješćuju postojanje mnoštva
različitih mehanizama.

Postoje razlozi za vjerovati da su neki virusni proteini evolucijski prilagođeni za oma-
tanje nukleinskih kiselina [24], što bi moglo biti važno za pakiranje umjetnog tereta u
proteinski omotač [25]. Dobar primjer su adenovirusi koji pakiraju (dvolančanu) DNK
u virusni omotač s DNK-vežućim proteinima, koji potencijalno pomažu u neutralizaciji
naboja i kondenzaciji [5]. Ni za jedan od ovih proteina ne postoje strukturni podaci visoke
rezolucije, i točna konformacija takve mješavine polimera (DNK) i nanočestica (proteini)
još nije poznata. Pošto je DNK djelomično vezana na protein ili neutralizirana zbog pri-
sutnosti proteina, može se modelirati kao efektivni medij za DNK-vežuće proteine. Ovdje
pak efekti virusnog omotača mogu prouzročiti određeni stupanj uređenja u raspodjeli
tih proteina. Slični efekti su nedavno opaženi u organizaciji kromatina u virusu SV40
gdje vezanje između proteina i prostornog ograničenja mijenja stanje spakiranog DNK
materijala [26].

Prenapučeni okoliš polimera/polielektrolita i nanočestica također je zanimljiv s biološke
točke gledišta jer se može povezati s prenapučenom unutrašnjosti stanice. Pokazano je
da prenapučenost vodi na mnoge pojave kao što su renormalizacija golih interakcija i
anomalna difuzija [28]. Unatoč tome, točna priroda ovog mehanizma kao i posljedice koje
bi mogla imati na naše razumijevanje zbijanja DNK nisu poznati.
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2 Sažimanje DNK

DNK se smatra sažetom ako je njena prostorna protežitost smanjena zbog vanjskog
utjecaja. U prirodnom stanju DNK, kao i svaki polimer, ima konformaciju nasumičnog
šetača u prostoru. Tretiraju se dva najvažnija mehanizma sažimanja DNA: a) kondenzacija
DNK u guste faze [16, 37, 42], b) trodimenzionalno prostorno zatočenje DNK u male
volumene [2, 11].

2.1 Kondenzirana DNK

U razrijeđenim otopinama, DNK-DNK interakcije su snažno odbojne te je za konden-
zaciju DNK potreban jak poticaj. Poznato je da kondenzacija DNK može imati različite
uzroke [39] te da se pri ekstremnim gustoćama kondenzacije manifestira u obliku heksa-
gonalne faze [40, 41]. Heksagonalne faze DNK mogu biti uzrokovane viševalentim ionima
poput kobalt heksamina (3+) [40], ili spojevima prisutnim in vivo poput polilizina [30] i
spermidina (3+) [29]. Alternativno, kondenzacija može biti uzrokovana vanjskim tlakom
nekog polimera, npr. polietilen glikola [40, 40]. Kondenzacija DNK demonstrirana je i
u kontroliranim biološkim uvjetima(vidi [42] i [41] te reference unutar). Kondenzirana
DNA u unutrašnjosti stanice se smatra posljedicom prenapučenog okruženja s prisutnim
kondenzirajućim proteinima [29, 30, 31, 32].

Koristimo kontinuumski model Ubbinka i Odijka [16, 42] kako bismo karakterizirali
kondenzirane faze DNK, posebice one koje nalazimo u stanicama, te ga kasnije primije-
njujemo za opis izbacivanja DNK iz bakteriofaga u stanicu. Ubbink i Odijk (UO) [16, 42]
model opisuje slobodnu energiju DNK kondenzata u gustoj heksagonalnoj fazi preko tro-
dimenzionalnog oblika kondenzata. Model tretira ukupnu energiju kondenzirane DNK
u tri dijela: a) energetski doprinos proporcionalan volumenu koji teži kondenzaciji, b)
energetski doprinos proporcionalan površini uslijed gubitka energetski povoljnih veza, te
c) elastični doprinos od savijanja snopa DNK koji se odupiru formiranju kondenzata.
Elastični doprinos će težiti širenju kondenzata u oblik torusa kako bi se snop DNK što
manje savijao, dok površinski doprinos teži urušavanju kondenzata u globulu (sferu). Nu-
meričkom optimizacijom oblika DNK kondenzata u UO modelu istražuju se mogući oblici
kondenzata te konačne ovisnosti o količini kondenzirane DNK u kondenzatu, kao i njenoj
stabilnosti pri malim duljinama kondenzirane DNK.

2.2 Faze zatočene DNK

DNK koja je prostorno zatočena unutar sfere pokazuje specifično ponašanje. U ovisnosti
o međusobnom djelovanju duljine ustrajnosti Lp, radijusa Rc sfernog zatočenja i ukupne
duljine DNK L očekujemo nekoliko režima [12]. Pri velikim gustoćama DNK ulazi u
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gustu heksagonalnu fazu [40], a ispod tih gustoća njeno ponašanje ovisi o njenoj krutosti.
Kada je duljina ustrajnosti manja od radijusa zatočenja nalazimo se u fleksibilnom režimu.
Pri malim koncentracijama DNK se ponaša kao fleksibilni polimer u polu-razrijeđenom
režimu koji pri većim koncentracijama prolazi kroz lokalno uređenje niti DNK u režim
tekućeg kristala. U fleksibilnom režimu glavni doprinos dolazi od energije savijanja pri
malim koncentracijama, dok pri većim koncentracijama nadvladava doprinos od interakcija
isključenog volumena. Te interakcije isključenog volumena uzrokuju lokalno uređenje u
tekući kristal [13, 51], prvo kroz nematičku, a zatim kolesteričku fazu [10]. Ukoliko je
radijus zatočenja manji od duljine ustrajnosti, DNK se nalazi u režimu dominiranom
savijanjem (kruti polimer). Ovaj režim je najmanje proučavan budući da je DNK u
fiziološkim uvjetima upravo iznad granice prijelaza u taj režim [10, 65].

2.3 Savijanje zatočene DNK

Slobodna energija zatočene DNK opisuje se u dva režima pomoću modela srednjeg
polja. Prvo, opisuje se energija savijanja DNK pri gustoćama kada DNK u potpunosti
ispunjava prostor te kada energija savijanja nije dominanti član u slobodnoj energiji. Cilj
je opis doprinosa savijanja za prijelaz u tekući kristal. Energija savijanja DNK opisuje se
preko lokalne zakrivljenosti u prostoru [3] za koju je pretpostavljena cilindrična simetrija.
Svaka lokalna "ćelija" DNK, ovisno o globalnom parametru uređenja, ili slijedi cilindričnu
simetriju ili biva neuređena. Rezultat je doprinos savijanju slobodne energije koji ovisi o
parametru uređenja koji se može dobiti iz teorije tekućih kristala.

U režimu savijanja, kada je savijanje DNK dominantni doprinos slobodnoj energiji,
konstruira se efektivni model temeljen na definiciji nove kvazi-čestice. Uslijed izražene
kompeticije duljine ustrajnosti i radijusa zakrivljenosti, DNK je pritisnuta uz unutraš-
njost zatočenja te poprima oblik petlji [22, 55]. Definiranjem petlji kao kvazi-čestica za
pakiranje, konstruira se slobodna energija u ovisnosti o načinu slaganja petlji. Navedeni
izrazi se poopćuju tako da uključuju međusobno presijecanje petlji kako bi mogli opisati
kontinuirani prijelaz iz uređenog u neuređeno stanje, poput onog uočenog u pakiranju
elastičnih žica u sfere [56, 58].

2.4 Zatočenje u izotropnom režimu

Diskutira se režim fleksibilnog polimera pri prelasku iz razrijeđenih u polu-razrijeđene
otopine, a netom prije prijelaza u tekući kristal. Prvo se računa isključeni volumen DNK
temeljem kutno ovisnog interakcijskog potencijala DNK prikazane preko nabijenih štapića
[13, 14]. Radi izračuna interakcije koriste se eksperimentalno određeni parametri inte-
rakcije [62] koji uzimaju u obzir elektrostatsko zasjenjenje kao i složenije pojave poput
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kondenzacije protuiona [63]. Dobiveni isključeni volumen omogućuje računanje interak-
cije u izotropnom režimu primjenom Flory relacije [2]. Dobivene interakcije isključenog
volumena se, uz prethodno dobivene izraze za energiju savijanja polimera, primjenjuju
u opisu slobodne energije prostorno zatočene DNK. DNK lanac se renormalizira [61]
u efektivni polimer s dimenzijom monomera jednakoj Kuhnovoj duljini, tj. dvostrukoj
duljini ustrajnosti [2].

2.5 Faza tekućeg kristala

Opisuje se prijelaz iz neuređenog, izotropnog, režima u stanje tekućeg kristala nematič-
kog uređenja [60]. Iako je poznato da je niz faznih prijelaza zatočene DNK sličan onome
makroskopskog sustava, točan utjecaj energije savijanja na točku prijelaza nije poznat
[65]. U svrhu razjašnjenja tog utjecaja, u Onsagerov model za tekući kristal [13, 14, 51]
se ugrađuje energija savijanja ovisna o globalnom uređenju proizašla iz prijašnjih razma-
tranja. Uz pretpostavku da se prijelaz odvija direktno iz neuređenog u nematičko stanje,
bez kolesteričkog uređenja, minimizira se Onsagerova slobodna energija u prostornom za-
točenju. Uspješno se predviđa točka prijelaza u tekući kristal na usporedivim gustoćama
pakiranja kao i u eksperimentima [10, 65].

Rezultati dobiveni Onsagerovim modelom stavljaju se u kontekst iznosa duljine us-
trajnosti DNK [45, 68] te osjetljivosti iste na promjene u temperaturi [71]. Navedeno
može objasniti nagle promjene režima, iz fleksibilnog u režim savijanja, koji su uočljivi u
eksperimentima [10]. Također, diskutira se činjenica da molekularno-dinamičke simulacije
predviđaju prijelaz u tekući kristal na znatno većim koncentracijama [72] od eksperimen-
talno izmjerenih [10].

2.6 Viralna ejekcija u bakteriju

Saznanja is prethodnih sekcija se primjenjuju na proces in vivo izbacivanja DNK iz
bakteriofaga s repovima u bakterije. DNK se tretira kao da se nalazi unutar dva vezana
spremnika s različitim pripadnim slobodnim energijama. Temeljna pretpostavka je da je
DNK u nekondenziranom stanju u kapsidi (prvi spremnik), a u kondenziranom stanju u
stanici (drugi spremnik).

Prenapučena sredina stanice teži kondenziranju DNK [30, 37], ali i njenom izbacivanju
iz stanice [93]. Primjenom Ubbink-Odijk modela [16, 42] uz proračun doprinosa konden-
zacije, saznajemo da se zbog kondenzacije DNK u stanici može poništiti oko 4 − 6 atm
staničnog tlaka. Dodatne korekcije zbog točnog oblika DNK kondenzata, koji ovisi o vrsti
bakteriofaga i duljini njegove DNK, mogu nešto smanjiti taj tlak. S druge strane, DNK u
virusnoj kapsidi ima više doprinosa koji teže izbacivanju, no ti doprinosi teže nuli kako se
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smanjuje količina zatočene DNK. Diskutiraju se utjecaji elektrostatskog odbijanja, ener-
gije savijanja i prostornog zatočenja DNK u rep bakteriofaga [94]. Uz pomoć termalnih
fluktuacija, pokazuje se kako doprinosi zatočenja u bakteriofagu mogu premašiti još do 1
atm tlaka unutar stanica.

Tipične Gram-pozitivne bakterije imaju unutrašnje tlakove stanica u rasponu 0.1− 5
atm, dok su Gram-negativne u rasponu 5-25 [21, 83, 84]. Stoga, zaključuje se da je
mehanizam izbacivanja viralne DNK iz bakteriofaga u Gram-pozitivne bakterije moguće
objasniti primjenom termodinamičkih argumenata. Uobičajeni pristup koji priziva aktivne
mehanizme (stanične motore) ili druge doprinose izbacivanju [18] nije nužan kako bi
objasnio in vivo ejekciju DNK.

3 Nukleinske kiseline i kondenzirajući proteini u
prostornom zatočenju

U ovom poglavlju proučava se, za viruse rijetki, mehanizam pakiranja nukleinskih
kiselina uz pomoć kondenzirajućih proteina. Poznato je da proteini koji se mogu naći
u jezgrama virusa mogu imati različite uloge prilikom sastavljanja i sazrijevanja virusa
[5, 98, 99]. Neki virusi kao što su bakulovirus [100], adenovirus [101], mimivirus [102] i
poxvirus [103] u jezgrama sadrže i proteine za koje je poznato da se vežu na DNK. Za
adenoviruse [5] i poliomavirus SV40 [26, 104] postoje direktni dokazi da ti kondenzacijski
proteini potpomažu sažimanje DNK. Ove vrste virusa su također obilježene nedostatkom
ikozaedarske simetrije u svojim jezgrama koja se manifestira ravnim profilom gustoće
[5, 26, 105, 106, 109], u suprotnosti s drugim sličnim vrstama virusa gdje se DNK pakira
u guste uređene slojeve [19, 107, 108]. Nepostojanje teorijskih modela koji opisuju nedos-
tatak uređenja i općenito pakiranje nukelinskih kiselina s kondenzirajućim (vezujućim)
proteinima (bez kondenzacije) motivira daljnje proučavanje.

3.1 Organizacija DNK i jezgrenih proteina u adenovirusima

Poznate su dvije temeljne teorije organizacije DNK u adenovirusima: jedna koja pret-
postavlja dobro definiranu ikozaedarsku strukturu [114, 115, 116] te druga koja pretpos-
tavlja formiranje "narukvice" poput one u kromatinu [117, 118, 119]. No, kako ne postoje
dokazi ikozaedarske strukture, oba predložena modela su upitna [5, 105, 106]. U svrhu
objašnjenja naizgled nasumične raspodjele kondenzirajućih proteina u jezgrama adenovi-
rusa, vrši se statistička analiza eksperimentalnih podataka o uređenju nakupina jezgrenih
proteina (tzv. "adenosomi").
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Statistička analiza položaja jezgrenih proteina

Položaji proteinskih čestica (adenosoma) dobiveni su iz Cryo-EM slika neošttećenih
virusnih čestica [97]. Eksperimenti ukazuju na postojanje oko 200 adenosoma, u skladu s
drugim eksperimentima [118], za koje se pretpostavlja da vežu ili namataju adenovirusnu
DNK. Prostorna raspodjela adenosoma prati se pomoću raspodjele vjerojatnosti nalaženja
prvih susjeda na nekoj uzajamnoj udaljenosti, vjerojatnosti nalaženja drugog adenosoma
na nekoj radijalno simetričnoj udaljenosti te putem radijalno simetrične gustoće čestica.
Analiza pokazuje da iako su adenosomi neuređeno posloženi unutar kapside adenovirusa,
položaji i međusobni odnosi adenovirusa nisu posljedica nasumičnog pakiranja. Dodatno,
analiza ukazuje na dimenziju adenosoma koja je u skladu s očekivanom dimenzijom čestica
dobivenih u razorenim kapsidama adenovirusa [118]. Interakcija između adenosoma je
izrazito mekana, bez indikacija čvrstog vezanja kakvog bi očekivali u kromatinskom modelu
s dobro definiranim duljinama veza. U gustoći adenosoma je vidljiv osiromašeni sloj uz
površinu kapside. Gustoća pakiranja adenosoma i DNK je izrazito velika, te upućuje na
prenapučenost koja može utjecati na interakcije.

Modeliranje adenosoma

Kako bismo dodatno opisali unutrašnjost adenovirusa, koristi se Langevinova dinamika
[129, 130]. Adenosomi se tretiraju kao efektivne čestice čija je meka interakcija [131]
određena medijem DNK u kojem se nalaze. Time se prisustvo DNK tretira implicitno
kroz efektivne interakcije adenosoma. Usporedba efektivnog modela čestica te efektivnog
modela čestica adenosoma povezanih harmoničkom oprugom (veza), ukazuje kako model
s dobro definiranim vezama ne odgovara eksperimentalnim rezultatima u proučavanim
statističkim indikatorima.

Organizacija jezgri kao mješavine efektivnih čestica

Temeljem modeliranja, utvrđeno je kako se adenosomi u kapsidi ponašaju kao efek-
tivne čestice (kvazi-čestice) bez međusobnog vezanja. Prenapučeno okruženje DNK i
proteina modificira osnovne interakcije. Povezanost DNK i proteina, ukoliko postoji, se
može jedino manifestirati preko veza fleksibilnih ili slabo definiranih duljina. Model nam
također omogućuje procjene donje granice unutarnjeg tlaka viralne kapside od oko 0.1
atm, što je nekoliko redova veličina manje od tlaka izmjerenog kod gusto pakirane DNK
u bakteriofagima [9, 19, 134].
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3.2 Mješavine polimera i kondenzirajućih proteina u
prostornom zatočenju

Dosadašnji modeli sažete DNK i kondenzirajućih proteina bili su temeljeni na impli-
citnoj prisutnosti DNK putem stvaranja veza i modificiranja interakcija između proteina
[26, 97]. Temeljem modela analognog sustava bez prostornog zatočenja [137], očekuje se
zanimljivi fazni dijagram. Stoga proučavamo takve mješavine u kontekstu pakiranja u
adenovirusima [97] i poliomavirusima [26], s ciljem boljeg razumijevanja procesa pakiranja
i unutarnje organizacije.

Simuliranje putem molekularne dinamike

Mješavina polimera i sfera, koje predstavljaju kondenzirajuće proteine, se modelira
putem Langevinove dinamike [129, 130]. Istovrsne čestice interagiraju putem odbojnih
međudjelovanja, dok je interakcija kondenzirajućih proteina i polimera privlačna i nespeci-
fična. Sve repulzivne interakcije su prikazane preko isključivo odbojnog Lennard-Jonesovog
međudjelovanja, dok je veza između pojedinih kuglica ovisna o njihovoj međusobnoj uda-
ljenosti [138] i lokalnoj savijenosti kako bi prikazivala krutost konture [76]. Navedena
mješavina je zatočena u sferu koja sa svim česticama međudjeluje odbojno.

Statistički indikatori

U svrhu opisivanja unutarnje organizacije polimera i kondenzirajućih čestica (proteina)
koristimo dva indikatora unutarnje strukture te dva indikatora međusobne povezanosti po-
limera i kondenzirajućih čestica. Kao indikatori unutarnje organizacije koriste se radijalno
simetrična gustoća vjerojatnosti nalaženja čestica ρ te radijalno simetrična raspodjela vje-
rojatnosti nalaženja čestica R. Kao indikatore međusobne povezanosti definiramo faktor
omatanja w i faktor povezanosti γ. Faktor omatanja definira se kao najveća kontinuirana
duljina polimera koji je u direktnom kontaktu (vezi) s istom kondenzirajućom česticom.
Faktor povezanosti se definira kao najkraća udaljenost po konturi polimera koja pove-
zuje dvije vezujuće čestice podijeljena s njihovom prostornom udaljenošću. Svi navedeni
indikatori se konstruiraju temeljem više reprezentativnih konfiguracija sustava.

Tlakovi pri pakiranju

Unutrašnji tlak u kapsidama koristi se kao indikator stabilnosti virusa [140, 141, 142].
U tu svrhu diskutira se kako različiti parametri kondenzirajućih proteina i polimera utječu
na tlak prije proučavanja unutarnje organizacije. Prvo se proučava ponašanje tlaka u
slučaju pakiranja samog polimera unutar zatočenja. Simulacije potvrđuju postojanje dva
režima u ovisnosti o krutosti polimera: pri malim krutostima, kad je duljina ustrajnosti
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manja od dimenzije sfernog zatočenja, polimer pokazuje skaliranja u skladu s teorijom
fleksibilnih polimera [2, 12]. U slučaju kad je duljina ustrajnosti veća od dimenzije sfernog
zatočenja, uočava se skaliranje dominirano duljinom ustrajnosti polimera, ali različito od
onoga koje se dobiva u modelima srednjeg polja. U ovisnosti o koncentraciji, potvrđeno
je postojanje polurazrijeđenog režima za fleksibilne polimere [11] te Flory režima za krute
polimere [2, 12].

Prisustvo kondenzirajućih proteina uz polimer utječe na tlak. Ovisno o koncentraciji
polimera, postoji optimalna koncentracija kondenzirajućih proteina koja smanjuje tlak
u usporedbi sa zatočenim samim polimerom. Polimer s kondenzirajućim proteinima
i dalje zadržava osnovne režime s obzirom na svoju duljinu ustrajnosti. Skaliranja s
koncentracijom i duljinom ustrajnosti ostaju ista kao i bez proteina, osim u slučajevima
kad je protein uspješan u smanjenju ukupnog tlaka.

Unutarnja organizacija

Statistički indikatori omogućuju uvid u unutarnju organizaciju te usporedbu s eksperi-
mentalnim rezultatima elektronske mikroskopije [97, 121] i raspršenja X-zraka pri malim
kutevima [26]. Proučava se utjecaj snage vezanja proteina, duljine ustrajnosti polimera, di-
menzije zatočenja te veličine kondenzirajućih čestica na unutarnju organizaciju mješavina
kondenzirajućih proteina i polimera. Naglasak je na proučavanju dimenzija zatočenja koje
odgovaraju adenovirusima i poliomavirusima te duljini ustrajnosti koja odgovara DNK.

Nadalje se promatra utjecaj različitih količina kondenzirajućih proteina te polimera
na međusobne odnose kondenzirajućih proteina. Statistički indikatori gustoće i radijalne
distribucije čestica ukazuju na postojanje režima u kojem kondenzirajući proteini na sebe
omotaju različite dijelove polimera te međudjeluju indirektno – samo posredstvom svojih
polimerskih omotača. Navedeno potvrđuje kvazičestičnu sliku korištenu pri modeliranju
organizacije adenosoma u adenovirusima. Također, uočena je i pojava osiromašenog sloja
čestica uz površinu sfernog zatočenja, sukladno analognoj situaciji kod adenovirusa.

Indikatori međusobne povezanosti polimera i kondenzirajućih proteina, faktor omatanja
w i faktor povezanosti γ, pokazuju da su kondenzirajući proteini neizravno povezani putem
polimera. Ne postoji jasna kontura DNK koja ih naizmjence povezuje, kao kod kromatina u
slobodnom prostoru [113]. Polimer se omata na kondenzirajući protein, te faktor omatanja
prvenstveno ovisi o stupnju prenapučenosti prostora.

Otvaranje kapsida

U svrhu proučavanja kako prostorno zatočenje utječe na pakiranje polimera i virusa,
uspoređuju se statistički indikatori međusobne povezanosti sa i bez prostornog zatočenja.
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Naglasak je na korištenju parametara koji bi najbliže odgovarali situaciji u adenovirusima.
Ukidanje zatočenja za jako vezujuće proteine pokazuje relaksirane, ali i dalje kompaktne,
strukture. Indikatori međusobne povezanosti ukazuju da nedostatak zatočenja i pre-
napučenosti, značajno smanjuje indeks omatanja kondenzirajućih proteina s polimerom.
Postojanje kompaktnih struktura je sukladno s eksperimentima koji pokazuju kompaktne
jezgre adenovirusa nakon razbijanja kapsida u in vivo uvjetima [121].

Posljedice za pakiranje u virusima

Diskutiraju se rezultati prethodnih sekcija na unutarnju organizaciju virusa za koje
postoje eksperimentalni podaci: adenoviruse [97] i poliomaviruse [26, 104]. Zaključuje se
da je ovdje razvijeni model u stanju predvidjeti organizaciju jezgri tih virusa usprkos svojoj
jednostavnosti. Model uspješno predviđa oblik profila gustoće čestica bez ikozaedralne
simetrije te postojanje kvazi-čestica kondenzirajućih proteina. Nedostatak direktnog ve-
zanja između proteina može upućivati na promjenu načina kako kondenzirajući proteini
poput kromatina međudjeluju s DNK u prenapučenoj sredini. Prenapučena sredina potiče
direktnije kontakte između proteina i polimera te možda može mijenjati prirodu vezanja
s nukleinskim kiselinama [122]. Postoji mogućnost primjene modela na druge, za sada
neistražene, jezgre virusa: bakulovirus [100], mimivirus [102] i poxvirus [103].

4 Zaključak

Proučavajući različite faze sažete DNK karakterizirali smo kondenziranu DNK u živim
stanicama te prostorno zatočenu DNK u virusnim kapsidama. Diskutiran je utjecaj rigid-
nosti molekule DNK, veličine zatočenja te elektrostatskog zasjenjenja. Navedeni teorijski
formalizam je primijenjen na proces izbacivanja viralne DNK iz glave bakteriofaga u sta-
nicu. Usprkos uvriježenim pretpostavkama da proces izbacivanja virusne DNK zahtjeva
uključenje aktivnih staničnih mehanizama, poput staničnih motora, pokazali smo da je
za uspješnu ejekciju u Gram pozitivne bakterije dovoljno primjeniti termodinamičke argu-
mente. Objašnjenje je temeljeno na ravnoteži potpomažućeg utjecaja DNK kondenzirane
unutar stanice, zbog prostorne prenapučenosti i kondenzirajućih proteina, te energetske
cijene zatočenja unutar malih virusa.

Iako je pakiranje DNK u prostornom zatočenju proučavano, malo je poznato o tome
kako prisustvo kondenzirajućih proteina utječe na organizaciju (strukturu) unutrašnjosti
kapsida. Adenovirusi i poliomavirusi spadaju u kategoriju virusa u kojima posebni proteini
potpomažu pakiranje DNK u kapside. Detalji mehanizma pakiranja su nepoznati, no
poznato je da pakirane sredice nemaju ikozaedralnu simetriju kao što je slučaj s kapsidama
i mnogim drugim virusima te vrste. U svrhu boljeg razumijevanja pakiranja, analizirali
smo eksperimentalne podatke o položaju nakupina proteina i DNK (tzv. adenosomi)

108



Prošireni sažetak

u jezgrama adenovirusa. Iz statističke analize međusobnog odnosa položaja adenosoma
pokazali smo da su sredice virusa, iako naizgled nasumične, posložene po određenom
obrascu. Svojstva statističkih raspodjela ukazuju na to da adenovirusi međudjeluju putem
mekog potencijala uzrokovanog modifikacijama DNK medija u kojem se nalaze. Ne
nalazimo dokaze o postojanju povezanosti između parova adonosoma, poput one koju
bismo očekivali kod nukleosoma. Zaključujemo da su rezultantne interakcije posljedica
toga da je unutrašnjost kapside prenapučena sredina koja mijenja efektivne interakcije
između čestica.

Dosadašnje modeliranje jezgri virusa, koje sadrže nukleinske kiseline i kondenzirajuće
proteine, bilo je temeljeno na modelima koji tretiraju prisustvo DNK implicitno kroz
mijenjanje interakcija i stvaranja veza između proteina. Primjenom Langevinove dinamike
simulirali smo mješavinu kondenzirajućih proteina koji se nespecifično vežu na polimer i
eksplicitnog polimera (DNK ili RNK) u sferičnom prostornom zatočenju. Medij, uslijed
prostorne prenapučenosti, mijenja efektivne interakcije. Posljedica je da zbog zatočenja
polimer teži prekrivanju kondenzirajućih proteina. Pokazali smo da prisustvo polimera
stvara kvazičestice poput adenosoma, potvrđujući valjanost efektivnog modela kojeg smo
primijenili na adenovirusima. Također, ne pronalazimo stvaranje dobro definiranih veza
između kondenzacijskih proteina. Veze između proteina se pokazuju nasumičnim i indi-
rektnim. Modelom možemo uspješno objasniti općenite trendove u profilima gustoće i
korelacije položaja jezgrinih proteina u adenovirusima te primijeniti principe na druge
vrste poput poliomavirusa.

Modeliranje mješavina nukleinskih kiselina i kondenzirajućih proteina će u budućnosti
imati sve veću važnost kako se eksperimentalne tehnike budu približavale direktnom opa-
žanju neuređenih sredica [26, 97, 153]. Razvijeni model može se primijeniti na testiranje
kako različite vrste kondenzirajućih proteina [122] utječu na unutarnju organizaciju i tlak
kapsida. Otvorena je i mogućnost simuliranja eksperimenata stiskanja kapsida mikro-
skopom atomskih sila [135] s ciljem utvrđivanja odnosa proteina i nukleinskih kiselina
[123]. Ovakve studije omogućuju proučavanje fenomena poput stanične prenapučenosti te
utjecaja kojeg prenapučena sredina ima na pakiranje kromosoma [148, 149] ili savijanje
proteina [27].
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