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Nucleon transfer reactions at energies close to the Coulomb barrier always played an

important role in nuclear structure and reaction dynamics studies. It has been shown that

heavy-ion reactions are an ideal tool for the study of the residual interaction in nuclei, in

particular the components responsible for the couplings and correlations.

The main subject of the present thesis is the study of the properties of the nuclear force

which are not accounted for by the mean field description, especially the role played by

neutron-proton correlations. This has been addressed by measurements of multinucleon

transfer reactions performed with the new generation magnetic spectrometer PRISMA and

its ancillary detectors. The experimental differential and total cross sections and total

kinetic energy loss distributions for the final reaction products have been extracted and

compared with the predictions of the GRAZING model for heavy-ion transfer reactions,

based on semi-classical theory.

The main objective was to search for an experimental signature of transfer of correlated

neutron-proton pairs in the region near the Z = 20 and N = 20 shell closures. Through the

simultaneous study of the absolute cross sections for all channels populated via transfer

of nucleon pairs (±nn), (±pp) and (±np), and their comparison with the theoretical

predictions, we explored the possible effect of (np) correlation. The findings have been

also corroborated with results obtained at energies below the Coulomb barrier, where the

excitation energies of the final reaction products are expected to be small.

The comparison of the experimental results with the semi-classical calculations that

include only the transfer of independent particles shows that the experimental cross sec-

tion of (+1p+ 1n) channel is enhanced, indicating the possibility of a presence of a (np)

pair degree of freedom. The analysis of these inclusive data was corroborated by a com-

plementary analysis of γ-particle coincidences, where PRISMA has been used in coupled



operation with the CLARA γ array. From the analysis of these coincidences, the pop-

ulation strength of excited states has been extracted for different transfer channels. In

particular, for 42K, reached via the (+1p+1n) channel, a strong population of the 7+ state

has been evidenced. Since this can happen when a neutron and a proton occupy the same

f7/2 orbital, the finding may give a further support to the presence of a neutron-proton

correlation.
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Reakcije prijenosa nukleona na energijama blizu kulonske barijere važne su i u prouč-

vanju strukture jezgara i mehanizma reakcije. Pokazalo se da su teškoionske reakcije

odličan način proučavanja rezidualne interakcije u jezgrama, naročito dijelova odgovornih

za vezanje i korelacije.

Glavna tema ovog doktorskog rada je proučavanje svojstava nuklearne sile koja nisu

uključena u opis pomoću srednjeg polja, posebno uloga korelacija između neutrona i

protona. To se proučavalo mjerenjem reakcije prijenosa mnogo nukleona s magnetskim

spektrometrom velikoga prostornoga kuta PRISMA i njegovim pomoćnim detektorima.

Dobiveni su diferencijalni i ukupni udarni presjek, raspodjela gubitka kinetičke energije

za sve produkte reakcije, te su uspoređeni s teorijskim predviđanjima modela GRAZING.

Glavna ideja je potraga za eksperimentalnim potpisom prijenosa koreliranog para

neutron-proton u području blizu Z = 20 i N = 20 zatvorenih ljusaka. Istodobnom us-

poredbom apsolutnog udarnog presjeka za sve kanale koje su pobuđeni prijenosom para

nukleona, (±nn), (±pp) i (±np), te njihovom usporedbom s teorijskim predviđanjima,

traženi su mogući efekti (np) korelacija. Rezultati su potvrđeni s rezultatima dobivenim

na energijama ispod kulonske barijere, gdje se očekuju male energije pobuđenja produkata

reakcije.

Usporedba mjerenih rezultata s polu-klasičnim računima koji uključuju samo pri-

jenos neovisnih čestica pokazuje da je (+1p+ 1n) kanal pojačan, što može ukazivati na

moguć doprinos (np) korelacija. Analiza inkluzivnih podataka je nadopunjena dodatnom

analizom γ-fragment koincidencija, kada je PRISMA korištena s CLARA γ detektorom.

Ove koincidencije omogućuju proučavanje snage pobuđenja različitih stanja. 42K kanal,

pobuđen putem prijenosa jednog protona i neutrona, pokazuje jako pobuđenje 7+ stanja.



Taj rezultat se može shvatiti kao dodatna potvrda prisutnosti korelacije neutron-proton,

jer se 7+ stanje može opisati kao stanje u kojem su neutron i proton u istoj f7/2 orbitali.

(160 stranica, 109 literaturnih navoda, 97 slika, 12 tablica, izvornik na engleskom jeziku)
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Prošireni sažetak

Nuklearne reakcije prijenosa na energijama bliskim kulonskoj barijeri oduvijek su važne u

proučavanju nuklearne strukture i dinamike reakcija. Pokazano je da su teškoionske reak-

cije odličan način za proučavanje rezidualne interakcije u jezgrama, posebno za prouča-

vanje komponenata odgovornih za vezanje i korelacije. Glavna tema ovog doktorskog rada

je istraživanje svojstava nuklearne sile koja nisu uključena u opis pomoću srednjeg polja,

posebno uloga korelacija neutron-proton. To će se proučavati mjerenjima reakcija pri-

jenosa mnogo nukleona na magnetskom spektrometru nove generacije PRISMA i vezanim

detektorima.

Teškoionske reakcije i korelacije

Nuklearne reakcije inducirane različitim probama jedan su od osnovnih alata za prouča-

vanje atomske jezgre od njenog otkrića do danas. Većina dosadašnjeg znanja rezultat je

proučavanja reakcija i strukture jezgara blizu doline stabilnosti. Zadnjih desetljeća, zbog

razvoja novih instrumenata i radioaktivnih snopova, interes se proširio prema neutronski

i protonski bogatim jezgrama.

U sudaru teških iona jezgre mogu izmijeniti nekoliko kvanata energije i momenta im-

pulsa ili mase i naboja, ili mogu proizvesti složenu jezgru u procesu fuzije. Na energijama

bliskim kulonskoj barijeri reakcije prijenosa čine velik dio ukupnog udarnog presjeka reak-

cije, te upravo zbog toga imaju veliku ulogu u istraživanjima strukture jezgara. Reakcije

prijenosa izazvane lakim ionima su dale važne podatke za konstrukciju modela ljusaka i

shvaćanje svojstava korelacija među nukleonima u nuklearnom mediju. Prijenos više nuk-

leona je moguć u reakcijama s teškim jezgrama što daje mogućnost proučavanja relativne

uloge prijenosa jedne čestice ili para. Prijenosom više nukleona dobije se i mogućnost

istraživanja mehanizma reakcije, pogotovo prijelaz prema duboko neelastičnim sudarima.

U teškoionskim mjerenjima blizu kulonske barijere mogu se identificirati produkti reak-

cije gdje je projektil izgubio samo umjerenu količinu energije i razmijenio samo nekoliko

nukleona s metom. Takve reakcije se nazivaju kvazielastične. Karakterizira ih kutna

raspodjela koja obično ima dobro definiran vrh na kutu okrznuća. Pobuđuju dobro defini-

rana stanja, koja su obično niskoležeća u energiji s relativno visokim spinovima. Ovisno o



broju prenešenih nukleona i gubitku energije u odnosu na ulazni kanal, ove reakcije poste-

peno prelaze u duboko neelastične sudare u kojima dolazi do velikog gubitka energija, uz

zadržavanje informacije o ulaznom kanalu. Karakterizira ih kutna raspodjela koja raste

prema prednjim kutevima.

Kao što je već spomenuto, prijenosi parova u reakcijama prijenosa mnogo nukleona

(MNT) omogućuju istraživanje korelacija među nukleonima. Prijenos para nukleona se

može dogoditi na dva načina: sekvencijalno gdje se nukleoni prenose jedan po jedan, ili

simultano gdje se prenose u jednom koraku, kao par. Do sada je u teškoionskim reakcijama

pokazano da sekvencijalni prijenos dominira, iako su u oba procesa važne korelacije.

Mogući efekti korelacija neutron-neutron (nn) i proton-proton (pp) već su raspravljani

u revijalnom članku [1] i tamo navedenim referencama. Dva su moguća načina istraživanja

korelacija putem reakcija prijenosa, te su prikazana u ovom radu. Prvi način je mjerenje

kutne raspodjele na fiksnoj energiji projektila, blizu kulonske barijere, a drugi je mjerenje

funkcije pobuđenja na fiksnim kutevima, do duboko ispod barijere.

Prvim načinom je pokazano da vjerojatnost za pobiranje neutrona opada u jednakim

koracima za svaki prenešeni neutron, kao što se i očekuje kod prijenosa neovisnih čestica.

Udarni presjek za protone se ponaša drugačije i udarni presjek (−2p) kanala je gotovo

jednak udarnom presjeku (−1p). To naznačuje doprinos procesa koji uključuju prijenos

koreliranog para protona, a ne samo uzastopan prijenos jednog po jednog protona. Ova

asimetrija u ponašanju protona i neutrona, koja je uočena u svim do sad proučavanim

reakcijama, javlja se zbog udarnog presjeka koji je gotovo red veličine veći za kanal pri-

jenosa neutrona u odnosu na kanale prijenosa protona, pa je tako doprinos prijenosa para

neutrona prikriven.

Drugi način je primjenjen na jezgrama zatvorenih ili poluzatvorenih ljusaka 96Zr+40Ca

i supervodljivom sustavu 116Sn+60Ni gdje je glavni cilj bilo proučavanje korelacije među

neutronima. Mjerena je ukupna funkcija pobuđenja od energije kulonske barijere do oko

25% ispod nje. Korištenje inverzne kinematike i detektiranje iona na prednjim kute-

vima osigurava dostatnu kinetičku energiju lakšem partneru što je bitno za masenu ra-

zlučivost, dok fokusiranost u prednje kuteve u laboratorijskom sustavu rezultira većom

efikasnošću. Na enerijama ispod kulonske barijere proizvedene jezgre imaju malu energiju

pobuđenja, svega nekoliko MeV-a, što bitno umanjuje složenost računa vezanih kanala

i olakšava kvantitativno određivanje efekta korelacija nukleon-nukleon. Mikroskopska
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teorija, koja uključuje korelacije nukleon-nukleon, je po prvi put dobro opisala vjero-

jatnost prijenosa dva nukleona, i u obliku funkcije pobuđenja i u apsolutnoj veličini, u

teškoionskom 116Sn+60Ni sustavu.

Također je važno proučavanje uloge korelacija neutron-proton (np). Nuklearni modeli

ukazuju da bi takve korelacije trebale biti najjače za N ∼ Z jezgre gdje protoni i neutroni

popunjavaju iste orbitale. Isprobano je nekoliko tehnika za proučavanje (np) korelacija:

mjerenja energija vezanja i usporedba s teorijom, gama spektroskopija, reakcije izbijanja

(np) para. Dodavanje ili uklanjanje para nukleona iz parno-parne jezgre putem reakcija

prijenosa trebala bi biti važna dodatna metoda. Kako je raspodjela udarnog presjeka

po različitim izlaznim kanalima određena optimalnom Q-vrijednosti upotrebom stabilnih

snopova najjače se pobuđuju kanali pobiranja neutrona i ogoljavanja protona. Kako bi

se proučila (np) korelacija potrebno je pažljivo izabrati sistem gdje mehanizam reakcije

omogućuje pobuđenje i kanala pobiranja i ogoljavanja i protona i neutrona. Razlog leži

u tome što je interpretacija (−1p−1n) kanala uglavnom komplicirana zbog sudjelovanja

sekundarnih procesa, poput evaporacije neutrona, dok bi (+1p+ 1n) kanal trebao biti

pobuđen direktnim mehanizmom i efekti evaporacije bi trebali biti manji.

Usporedba eksperimentalnih udarnih presjeka za (+1p+ 1n) kanal s onima individu-

alnih, (+1n) i (+1p), kanala trebala bi dati informaciju o (np) korelacijama. Dodatna

usporedba (±nn), (±pp) i (±np) kanala s teorijskim modelima je važna kako bi se vidjelo

koji su stupnjevi slobode bitni u opisu mjerenih diferencijalnih i ukupnih udarnih presjeka,

te utjecaj korelacija. U tu svrhu napravljena su dva mjerenja: mjerenje diferencijalnih

i ukupnih udarnih presjeka, te raspodjele energija u 40Ar+208Pb s PRISMA-CLARA

postavom iznad kulonske barijere, te mjerenje funkcije pobuđenja u 92Mo+54Fe do ∼20%

ispod barijere.

Eksperimentalni postav

Magnetski spektrometar je idealan za mjerenja reakcija prijenosa jer je moguće u isto vri-

jeme odrediti masu i naboj, diferencijalni i ukupni udarni presjek, te raspodjelu ukupnog

gubitka kinetičke energije različitih izlaznih kanala, a kada je vezan s gama detektorima

i koincidentne elektromagnetske prijelaze za svaki proizvedeni izotop. PRISMA je mag-

netski spektrometar velikog prostornog kuta nove generacije koji radi na principu rekon-

strukcije putanja iona unutar magnetskih elemenata. Optički elementi PRISME su dipol
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i kvadrupol, a korekcija optičkih aberacija dobiva se upravo rekonstrukcijom putanja do-

gađaj po događaj na osnovi mjerenja položaja na ulazu i izlazu iz spektrometra, te vremena

proleta. Detektorski sustav se sastoji se od ulaznog detektora, ploče s mikrokanalićima

velike površine (MCP) te detektora u fokalnoj ravnini, višežičanog lavinskog brojača s par-

alelnim pločama (MWPPAC) i ionizacijske komore (IC). MCP i MWPPAC detektor daju

informacije u položaju na ulazu i fokalnoj ravnini, u X i Y smjeru, te služe i za mjerenja

vremena proleta. IC detektorom se mjeri gubitak energije i ukupna kinetička energija.

Glavna karakteristika ovog spektrometra je upravo veliki prostorni kut od 80 msr, te ve-

lika prihvatljivost momenta ±10%. Raspon masa za koji PRISMA najbolje funkcionira

je između A = 20 − 200 što je u skladu sa snopovima i energijama karakterističnim za

Tandem akceleratorski sustav laboratorija u Legnaru.

Detektor je radio u koincidenciji s CLARA sustavom germanijskih detektora velike

čistoće koji je bio postavljen blizu mete, te nasuprot PRISME. Sustav se sastoji od 25

četverodijelnih detektora, od kojih je svaki smješten u štit od Comptonovog zračenja.

Karakterizira ga odlična energijska razlučivost (0.6% za Eγ = 1.33 MeV) i efikasnost

fotovrha (3% za Eγ = 1.33 MeV). Koincidencija PRISMA i CLARA omogućuje da se

svakom produktu reakcije pridruži odgovarajući γ spektar.

Eksperiment i analiza mjerenja

U mjerenju diferencijalnog i ukupnog udarnog presjeka u 40Ar+208Pb reakciji korišten je

snop 40Ar energije 260 MeV, što je otprilike 30% iznad kulonske barijere. Lakši fragmenti

su identificirani u PRISMI koja je bila smještena na tri različita kuta, pokrivši više od 20

stupnjeva kutne raspodjele. Osim diferencijalnog i ukupnog udarnog presjeka, mjerena je

i raspodjela gubitka kinetičke energije.

Prvi korak u analizi je kalibracija svih detektora, kako bi se dobile fizikalne veličine.

Identifikacija svih događaja se dobiva rekonstrukcijom putanja, koja koristi jednadžbe

gibanja iona u magnetskim elementima i mjerene parametre (ulazni i položaji na fokalnoj

ravnini, vrijeme proleta, gubitak energije i ukupna kinetička energija). Parametri koji su

povezani sa spektrometrom, kut na koji je spektrometar položen i magnetska polja, su

poznati i namješteni prije početka analize. U prvoj aproksimaciji se pretpostavi da su

putanje planarne u PRISMA ravnini i da su magnetski elementi idealni. Gibanje iona

unutar kvadrupola je hiperbolično defokusirajuće u horizontalnoj ravnini, te sinusoidalno
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fokusirajuće u vertikalnoj ravnini. Nakon toga ioni ulaze u dipol, gdje zbog Lorentzove

sile putanje prate kružno gibanje. Nakon dipola pretpostavlja se da putanje prate ravne

linije. Rezultati rekonstrukcije putanja su polumjer zakrivljenosti unutar dipola, ukupna

duljina puta, ukupna energija oslobođena u ionizacijskoj komori putem vremena proleta,

te domet iona u ionizacijskoj komori.

Nuklearni naboj Z se dobiva mjerenjem gubitka energije, ili dometa iona u ionizaci-

jskog komori, i ukupne energije u ionizacijskoj komori smještenoj u fokalnoj ravnini. Na-

jintenzivnija raspodjela događaja pripada izotopima argona, od kojih je najprisutniji 40Ar

koji je elastično i neelastično raspršen, a ostale linije se mogu identificirati uz pomoć

Bethe-Bloch formule. Nakon toga se za svaki pojedini element trebaju identificirati nabo-

jna stanja, što se radi uz pomoć ρβ - E matrice (taj izbor proizlazi iz izraza E ∼ qBρv)

gdje najintenzivnija raspodjela odgovara najvjerojatnijem nabojnom stanju izračunatom

pomoću formule 3.12. Nakon toga, maseni brojevi se dobiju množenjem A/q vrijednosti

s identificiranim q (A = qBρ/v). Identificirani su prijelazi od (+4p) do (−5p), te su

prikazani na slici 3.13.

Analiza CLARA podataka počinje s kalibracijom svih energijskih spektara za što se

koristi 152Eu radioaktivni izvor. Uz pomoć 152Eu izvora određena je i efikasnost CLARA

detektora. Koristi se tanka meta, te su γ zrake emitirane u letu, zbog čega je potrebna

Doppler korekcija koja se radi na osnovi mjerenja brzine PRISMA spektrometrom. Ako

se pretpostavi binarna reakcija, može se odrediti i brzina i smjer teškog partnera te se

može napraviti i Doppler korekcija njegovog γ spektra.

Funkcija odziva spektrometra

Shvaćanje mehanizma reakcija jako ovisi o određivanju apsolutnog udarnog presjeka te

je u tu svrhu potrebno precizno odrediti karakterističnu funkciju odziva spektrometra.

Pronalaženje te funkcije zasniva se na simulaciji putanje iona, uzimajući u obzir kine-

matiku reakcije, geometriju magnetskih elemenata i detektora. Kako se rekonstrukcija

putanja oslanja na preciznom određivanju magnetskih i rubnih polja, namještanje mag-

netskih polja, koje se radi kako bi simulacija u potpunosti odgovarala mjerenju, je ključna

točka u proučavanju funkcije odziva. U tu svrhu se koristi pretpostavka da za iste fizikalne

uvjete otklon nabojnih stanja mora biti isti u mjerenju i simulaciji. Procedura se radi

korak po korak, prvo za dipol za koji se uzimaju putanje duž optičke osi spektrometra, a
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zatim se gleda kvadrupol. Nakon toga se stvara velik broj događaja koje slijede uniformnu

raspodjelu u energiji i izotropnu u kutevima, te se prenose kroz spektrometar. Funkcija

odziva se tada može definirati kao omjer izlazne, odnosno raspodjele na fokalnoj ravnini,

i ulazne raspodjele događaja. Pokazalo se da odziv spektrometra ovisi na složen način o

ulaznim kutevima i impulsu iona. Tako dobivena funkcija odziva spektrometra koristi se

za korekciju diferencijalnog i ukupnog udarnog presjeka zasebno za svaki reakcijski kanal.

Glavna korekcija za sve kanale koji su proučavani je, kao što se i očekivalo, na rubu

kutnog prihvata s velikim razlikama u apsolutnim vrijednostima koje ovise o izlaznom

ionu i kinetičkoj energiji.

Funkcija odziva, prije nego što se primijeni na mjerenja, je testirana ulaznom raspod-

jelom izračunatom poluklasičnim modelom GRAZING. Kao što je pokazano [1] ovaj model

dobro reproducira, u apsolutnim vrijednostima, oblik kutne raspodjele jednonukleonskih

kanala (+1n) i (−1p). Izvrsno slaganje između izvornih ulaznih raspodjela i korigiranih

raspodjela događaja pokazuje valjanost tako izračunate funkcije odziva.

Eksperimentalni rezultati

Mjerena reakcija 40Ar+208Pb pokazuje vrlo simetričnu raspodjelu oko 40Ar, pobuđeni su i

kanali pobiranja i ogoljavanja i protona i neutrona. Prvo je za te kanale pogledana raspod-

jela gubitka kinetičke energije (TKEL) koja direktno predstavlja energije pobuđenja dvije

jezgre. Može se primjetiti da TKEL raspodjela za neutronske prijenose ima najveći do-

prinos blizu optimalne Q-vrijednosti. Što se prenosi više nukleona, posebno protona,

raspodjela se sve više odmiče od te vrijednosti prema većim gubitcima energije.

Mogu se definirati dvije vrste događaja, jedan s izraženim vrhom na maloj TKEL,

koji će biti označen kao kvazielastično raspršenje (QE). Drugi karakterizira veliki gubitak

energije, vidi se formiranje dugog repa u distribuciji, te će biti označen kao duboko nee-

lastično raspršenje (DIC). QE se dobro vidi u kanalima za prijenos neutrona. Duboko

neelastični sudari, koje karakterizira veliki prijenos energije, se obično prepoznaju po

širokim kutnim raspodjelama. Čak i ako postoji razlika u vrijednostima gubitka energije

za ova dva slučaja, teško ih je razdvojiti, jer je njihovo preklapanje prilično veliko. Među-

tim, očekuje se da će doprinos DIC biti sve veći na prednjim kutevima. Osim toga, veliki

gubitak energije postaje izraženiji kako se više čestica prenosi.

Dvije komponente prisutne u TKEL spektru su odijeljene za svaki kut u TKEL-masa
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matrici. Dio s nižim vrijednostima TKEL, do ∼20 MeV, je označen kao QE, a dio iznad

kao DIC. U ovom odjeljivanju uzete su u obzir Q-vrijednosti osnovnog stanja.

Vezanje magnetskog spektrometra PRISMA s gama detektorom CLARA iskorišteno

je za dobivanje udarnog presjeka za elastični kanal. Na prednjim kutevima elastično

raspršenje je dobro aproksimirano Rutherfordovim udarnim presjekom, te se tako dobiva

apsolutni faktor normalizacije (u mb/sr) za sve ostale kanale reakcije. Faktor normal-

izacije se dobije za svaku od kutnih postavki PRISME zasebno. Vrijednost tog faktora

normalizacije odražava i trajanje mjerenja na svakoj od postavki spektrometra.

Opisana procedura određivanja funkcije odziva omogućuje spajanje kutnih raspodjela

mjerenih različitim postavkama PRISME u jedinstvenu kutnu raspodjelu, a primijenjena

je na svaki eksperimentalni diferencijalni udarni presjek odvojeno. Ova procedura prim-

jenjena je po prvi puta za magnetski spektrometar velikog prostornog kuta. Diferencijalni

i ukupni udarni presjeci za svaki kanal prijenosa prikazani su u Poglavlju 5. Eksperimen-

talni diferencijalni udarni presjeci korigirani za funkciju odziva PRISMA spektrometra za

(+1n) i (−1p) kanale pokazuju oblik gaussijana u uskom rasponu kuteva s maksimumom

blizu kuta raspršenja. Svi jednonukleonski kanali pokazuju takvu kutnu raspodjelu tip-

ičnu za kvazielastični proces. Kako se prenosi više protona raspodjela postaje sve ravnija

i počinje gubiti QE svojstva. Uz povećanje prijenosa protona distribucija postaje šira na

prednjim kutovima, što je pogotovo vidljivo za pobiranje protona. Zato su i napravljene

kutne raspodjele za QE i DIC dio. QE kutne raspodjele imaju oblik gaussijana s maksi-

mum na kutu okrznuća kao što se i očekuje, dok je DIC raspodjela puno ravnija i raste

prema prednjim kutevima.

Ukupni udarni presjeci su dobiveni integracijom kutnih raspodjela, a integrirani su i

preko ukupnog TKEL raspona i preko QE dijela. Pobiranje neutrona slijedi trend uočen u

prijašnjim mjerenjima, gdje ukupni udarni presjek konstantno pada sa svakim prenesenim

neutronom. S druge strane ogoljavanje protona ne slijedi taj trend, i (−2p) kanal je po

jakosti sličan (−1p) kanalu.

Vezanje magnetskog spektrometra PRISMA i gama detektora

CLARA

Kako bi proučili individualna pobuđena stanja, elektromagnetski prijelazi za svaki de-

tektirani izotop u PRISMI izmjereni su gama detektorima CLARA. Ta mjerenja pružaju
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komplementarne podatke relevante za korelacije, jer informacije o korelacijama mogu biti

skrivene u inkluzivnom karakteru udarnih presjeka. Reakcije ovog tipa, kvazielastične,

favoriziraju određenu selektivnost u pobuđenim stanjima, odnosno pobuđuju se stanja

na određenim energijama pobuđenja, momentima impulsa ili stanja određene strukture.

Kratkodosežna interakcija sparivanja razdjeljuje jakost prijenosa oko različitih konačnih

stanja, te γ spektar može dati važne dodatne informacije.

Rezultati koji govore o strukturi izotopskih lanaca argona i klora su publicirani u

referencama [2] i [3]. U ovom radu ćemo se koncentrirati na izotope kalija. Spektar 42K

pokazuje jaku pobuđenost niskoležećih stanja negativnih pariteta, koji se mogu gledati

kao multiplet nastao vezanjem nesparenog protona u d3/2 i nesparenog neutrona u f7/2.

Osim toga vide se jaka stanja pozitivnog pariteta na višim energijama. Njih se može

opisati pobuđenjem protona u f7/2 orbitalu i njegovo vezanje s nesparenim neutronom u

istoj orbitali. Spektar pokazuje dobro slaganje s modelom slabog vezanja (engl. weak-

coupling model). Posebno je jako pobuđeno stanje 7+. To isto stanje je bilo daleko najjače

pobuđeno stanje u reakciji prijenosa deuterona u 4He+40Ar sustavu.

Rasprava

Rezultati za različite kanale su uspoređeni s rezultatima teorijskih modela kako bi se

ustanovilo koji su stupnjevi slobode bitni u opisu mjerenog diferencijalnog udarnog pres-

jeka. Na taj način procijenjeni su efekti mogućih (nn), (pp) i (np) korelacija. Usporedba

je napravljena s poluklasičnim GRAZING modelom [1, 4–6]. Model se koristi kako bi

se izračunalo na koji način se dijeli ukupni udarni presjek reakcije na različite izlazne

kanale, ali ne uključuje korelacije među nukleonima. Tretira reakcije prijenosa mnogo

nukleona i u kvazielastičnom i duboko neelastičnom režimu (do određene energije). Jez-

gre su opisane kao ansambl nezavisnih čestica, koje vibriraju oko svog sferičnog položaja,

a glavni stupnjevi slobode su površinske vibracije i jednočestični prijenosi. Do sada je

uspješno primjenjen u opisu niza teškoionskih sustava.

GRAZING dobro opisuje sve jednočestične prijelaze. Čisti neutronski kanali su također

jako dobro opisani, naročito u ukupnom udarnom presjeku, te se slažu s prijenosom neo-

visnih nukleona. (±2n) kanali su, kao i u prijašnjim reakcijama, dobro opisani GRAZING

modelom. S druge strane, (±2p) kanali su, i kada se gleda samo kvazielastični dio udarnog

presjeka, pojačani u odnosu na model, što sugerira prijenos koreliranog para protona uz
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prijenose nezavisnih protona. Ponovno opažena asimetrija u neutronskom i protonskom

kanalu se može objasniti udarnim presjekom koji je za oko red veličine veći u neutronskom

sektoru.

Usporedbom s GRAZINGom vidi se da su jednonukleonski prijenosi, i (+1p) i (+1n),

vrlo dobro opisani, dok je eksperimentalni kvazielastični udarni presjek za (+1p+ 1n)

kanal pojačan ∼ 2.5 puta u odnosu na račun (vidi sliku 7.11). Ta činjenica ponovno

sugerira doprinos koreliranog prijenosa neutrona i protona uz njihov nezavisni prijenos.

Razdvajanje kvazielastičnog i duboko neelastičnog dijela udarnog presjeka napravljeno je

pomoću već spomenute raspodjele gubitka kinetičke energije nakon što je uočeno da je

kutna raspodjela šira od teorijske, posebno za mjerenje na prednjim kutevima i proteže se

na puno veće gubitke energije od teorijskog predviđanja. Nakon razdvajanja, kvazielastični

diferencijalni udarni presjek ima oblik gausijana s maksimumom na kutu okrznuća kao

što se i očekuje, te se daleko bolje slaže u svom obliku s teorijskim predviđanjima, ali je

i dalje pojačan u odnosu na model.

Važnost prijenosa koreliranog para neutrona i protona odražava se i u najjače pobuđenim

stanjima u jezgri 42K. Njegov gama spektar pokazuje da pored očekivanih niskoležećih

stanja negativnih pariteta, čija struktura se može promatrati kao multiplet koji proizlazi

iz spajanja nesparenog protona u d3/2 i nesparenog neutrona u f7/2 orbitalama, pobuđenje

stanja pozitivnih pariteta na višim energijama značajno doprinosi. To se može objasniti

kao pobuđivanje protona u f7/2 orbitalu i njegovo spajanje s nesparenim neutronom u

istoj orbitali. Ovo snažno pobuđenje stanja opisane strukture može odražavati prijenos

koreliranog para.

Kako bi detaljnije proučili efekt (np) korelacija mjerena je funkcija pobuđenja za

92Mo + 54Fe sustav do energije duboko ispod kulonske barijere PRISMA spektrometrom.

Mjerenje slijedi uspješan niz već napravljenih mjerenja na jezgrama zatvorenih i polu-

zatvorenih ljusaka 96Zr+40Ca i supervodljivom sustavu 116Sn+60Ni gdje je glavni cilj bilo

proučavanje korelacija među neutronima. Preliminarni rezultati pokazuju jako pojačanje

(+1p+ 1n) kanala u odnosu na prijenos nezavisnih nukleona.

Zaključak

Diferencijalni i ukupni udarni presjek, te raspodjele energije mjerene su PRISMA spek-

trometrom u 40Ar+208Pb sustavu na energiji blizu kulonske barijere. Mjerenje je napravl-
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jeno na tri različite kutne postavke kako bi se pokrio najznačajniji dio kutne raspodjele

i omogućilo dobivanje ukupnog udarnog presjeka. Analiza je napravljena za svaki (Z,A)

kanal odvojeno. Određivanje funkcije odziva omogućilo je po prvi puta spajanje tri ra-

zličite kutne raspodjele mjerene spektrometrom velikog prostornog kuta u jedinstvenu

raspodjelu, te određivanje apsolutnog udarnog presjeka za sve kanale prijenosa. Anal-

iza elastičnog raspršenja je iskorištena za određivanje apsolutne normalizacije mjerenih

podataka.

Disertacija predstavlja detaljnu studiju mnogih kanala otvorenih u reakciji prijenosa

mnogo nukleona i fokusira se na proučavanje svojstava reakcije, poput diferencijalnog

i ukupnog udarnog presjeka, te raspodjele ukupnog gubitka kinetičke energije. Pri-

jenos nekoliko nukleona omogućuje i proučavanje relativne uloge prijenosa jednog ili para

nukleona. Istodobnim proučavanjem udarnih presjeka različitih kanala, (±nn), (±pp) i

(±np), i njihovom usporedbom s teorijskim modelima koji uključuju samo prijenos neza-

visnih nukleona, gledao se doprinos korelacija nukleon-nukleon. Također je proučavan

doprinos drugih mehanizama reakcije, odnosno doprinos duboko neelastičnog raspršenja

u ukupnom udarnom presjeku, što je omogućeno velikim prihvatom PRISME ili dopri-

nos sekundarnih procesa poput evaporacije neutrona što je omogućeno PRISMA-CLARA

koincidencijama.

Kao prvi korak, udarni presjek je uspoređen s teorijskim računima koji prijenos nuk-

leona tretiraju pomoću nezavisnog mehanizma, dakle korelacije nisu uključene. Opaženo

pojačanje trebalo bi biti potpis doprinosa prijenosa koreliranog para. Rezultati su us-

poređeni s GRAZING računom koji dobro opisuje podatke, posebno kvazielastični udarni

presjek, za (±xn) i (±1p) kanale. Činjenica da su jednonukleonski kanali dobro opisani

govori da su stukturalna svojstva i dinamika reakcije dobro opisani modelom. Kanali

prijenosa dva protona su pojačani u odnosu na račun, a isto vrijedi i za (+1p+1n) kanal.

Utjecaj (np) korelacija je dalje istraživan pomoću γ spektra 42K, koji može pružiti važne

dodatne informacije. Osim očekivanih niskoležećih stanja, vidi se jako pobuđenje 7+

stanja koje se može objasniti vezanjem protona i neutrona u f7/2 orbitalama.

Reakcije prijenosa dva nukleona vrlo su važne u proučavanju sparivanja u jezgrama.

Nažalost, u teškoionskim reakcijama sam mehanizam reakcije je vrlo kompleksan. Takva

mjerenja mogla bi biti komplementarna mjerenjima reakcija prijenosa induciranih lakim

ionima, ili mjerenjima ispod kulonske barijere s manjim brojem otvorenih reakcijskih
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kanala. Pojačanje (+1p+ 1n) kanala u odnosu na model koji ne uključuje korelacije, te

jakost opaženog stanja gdje su neutron i proton u istoj orbitali i izduženoj konfiguraciji,

trebalo bi biti uspoređeno s mikroskopskom teorijom, gdje su uključeni svi bitni stupnjevi

slobode i u stukturi i dinamici reakcije. Važno je razviti mikroskopski račun tako da

uključuje prijenose parova velikog angularnog momenta. Sparivanje u jezgrama, korelacije

među nukleonima, te kako takve korelacije djeluju u reakcijama prijenosa vrlo su važna

istraživanja i za buduća mjerenja s radioaktivnim snopovima.
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Introduction

Since the discovery of atomic nucleus, a variety of nuclear reactions with different probes

were used to study its properties. Most of the knowledge so far is coming from reactions

and studies of structure of nuclei close to the valley of stability. In the last decades,

due also to the development of new instrumentations and exotic beams, the interest has

enlarged towards the neutron and proton drip lines.

The acceleration of ions at energies above the Coulomb barrier offered the possibility

of bringing together two complex systems. In the collision process they might exchange

several quanta, of energy and angular momentum and of mass and charge, or they could

fuse giving rise to a compound system. At energies close to the Coulomb barrier, transfer

reactions represent an important part of the total reaction cross section. They play

an essential role in the study of the structure of nuclei. With light ions they provided

important inputs for the construction of the shell model and they helped to establish the

properties of nucleon-nucleon correlation in nuclear medium. With heavy ions multiple

transfer of nucleons becomes available in the reaction giving the possibility to study the

relative role of single particle and pair transfer modes.

As mentioned above, the pair transfers in multinucleon transfer reactions (MNT) are

a suitable probe for the study of correlations. Possible effects of neutron-neutron (nn)

and proton-proton (pp) correlation have been recently discussed in topical review article

[1] and references therein. It has been reported that the neutron pick-up channels drop

by almost a constant factor for each transferred neutron, as an independent particle

mechanism would suggest. The pure proton cross sections behave differently, with the

population of the (−2p) channel as strong as the (−1p). This suggests the contribution

of processes involving the transfer of proton pairs in addition to the successive transfer

of single protons. This apparent proton and neutron asymmetric behaviour, present in

all reactions studied so far, is attributed to the almost order of magnitude larger cross
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section of the one neutron transfer channel compared with the proton transfer channels.

In this way the contribution of the pair transfer mode is masked in the neutron sector.

In this context, it is also important to investigate the role played by neutron-proton

(np) correlations. Nuclear models point out that such correlation is expected to be

strongest in the N ∼ Z nuclei, where protons and neutrons occupy the same shell model

orbitals. Since transfer process is governed by optimum Q-value consideration and nuclear

structure properties, with stable beams only neutron pick-up and proton stripping chan-

nels are dominantly populated. It is particularly important to study the (+np) channel

since it can be populated via a direct mechanism, while the (−np) channel is of complex

nature and can be strongly affected by the neutron evaporation mechanism. To reach this

goal one can use neutron-rich beams that populate (±nn), (±pp) and (±np) channels

with similar strength and give a possibility of their direct comparison.

For multinucleon transfer reaction studies magnetic spectrometer is an ideal tool be-

cause it is possible to measure at the same time mass and charge yields, differential and

total cross sections, and total kinetic energy loss distribution of different channels pro-

duced in the reaction and when coupled with gamma array, coincident gamma transitions

for each isotope. PRISMA is a large solid angle magnetic spectrometer of new genera-

tion based on the event-by-event reconstruction of ion trajectories inside the magnetic

elements. It offers charge and mass identification of reaction products. Its main char-

acteristic is the large solid angle of ∼80 msr. Mass range of accepted ions is between

A=20-200, well suited for the beams and energies of Legnaro National Laboratories Tan-

dem accelerator complex.

The understanding of the reaction mechanism depends strongly on the determination

of the absolute cross sections and for this reason the response function of the spectrometer

has to be carefully evaluated. This study is based on a Monte Carlo simulation of the ion

trajectories, on the basis of a ray-tracing method, where the kinematics of the reactions

and the geometry of the magnetic elements and detectors are taken into account. The

response of the spectrometer depends in a complex way on the entrance angles and the

momenta of the reaction products. The major corrections for the channels studied so far

are found, as expected, at the edge of the angular acceptance with large differences in

absolute values depending on the kinetic energy of the ion.

In this thesis the main focus will be on the 40Ar+208Pb reaction. The 40Ar beam at
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260 MeV energy has been accelerated on 208Pb target. Projectile-like fragments have been

identified with PRISMA positioned at three different angles covering more than 20 degrees

of angular range (most of the transfer flux). The described procedure of correction for the

ion transport allowed us to match angular distributions measured with different PRISMA

angular settings, which is obtained for the first time with large solid angle magnetic

spectrometers. Coincident gamma rays were detected with the CLARA array. Results

concerning the structure of the Ar and Cl isotopic chains were published in Refs. [2] and

[3]. In this thesis we concentrate on the differential and total cross sections of the strongest

transfer channels. The results for different channels will be important for theoretical

models to see which degrees of freedom play role in the description of the measured

cross sections and that the effect of possible (nn), (pp) and (np) correlations can be

evaluated. The comparison was made with the GRAZING code that is relevant for heavy-

ion reactions and contains structure informations, so possible influence of nucleon-nucleon

correlations may be deduced. These inclusive data are corroborated by complementary

analysis of γ spectra.

This thesis discusses main aspects of the 40Ar+208Pb multinucleon transfer reaction

and new experimental informations on the (np) correlations will be presented. Through

the direct comparison of the extracted differential and total cross sections an additional

information on the (nn) and (pp) correlations can be obtained. These correlations may

play an important role in ongoing research with radioactive beams.
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1 Heavy-ion reactions and
nuclear correlations

In this Chapter we will concentrate on the main findings of the collisions of heavy ions

(A> 20) at energies close to the Coulomb barrier (around 5 MeV/A).

1.1 Heavy-ion reactions

Nuclear reaction is a very complex quantum mechanical process which depends on both

nuclear structure and mechanism of reaction. Although the boundaries between various

processes are not sharp, one can still distinguish them, depending on the reaction impact

parameter, transferred angular momentum, energy and so on [7–9]. It is generally accepted

that with increasing impact parameter the interaction evolves from fusion reactions, which

require a substantial overlap of the two nuclei, through deep inelastic processes, to quasi-

elastic reactions, which are associated with the most grazing-type collisions [10]. At even

larger impact parameter nuclei feel only Coulomb force, and only Coulomb excitation is

observed.

1.1.1 Multinucleon transfer reactions

Processes in which nucleons are transferred between the target and projectile play con-

siderable role in heavy-ion collisions, and both pick-up and stripping reactions occur. In

particular, for energies close to the Coulomb barrier transfer reactions play important role

in the loss of flux from the elastic channel.

The experimental study of transfer reactions have always been of great importance in

the understanding of nuclear structure and nuclear reaction mechanism. The nuclear shell

model and the studies of particle-particle correlations in the nuclear medium have in fact
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Chapter 1. Heavy-ion reactions and nuclear correlations

received a great benefit from transfer reactions using light ions. With heavy ions, transfer

reactions played a very important role for the definition of the reaction mechanism that

describes the evolution of the reaction from the quasi-elastic regime to the more complex

deep inelastic and fusion [1]. In a single collision it is possible to transfer several nucleons

from one nucleus to the other. This gives the possibility to study the relative role of

single particle and pair transfer modes. In this way one can investigate the component

responsible for the nucleon correlations, pairing in particular, but it is only when several

nucleons get transferred that one has a better view on how the mechanism evolves.

In the last decade, the renewed interest in transfer reactions has been mainly due

to the realization that multinucleon transfer reactions could be used to populate nuclei

moderately rich in neutrons with cross sections large enough to study their structure

[11, 12]. This renewed interest benefited from the construction of the new generation large

solid angle spectrometers based on trajectory reconstruction, with which one could gain

more than an order of magnitude in overall efficiency still keeping a good identification

of reaction products [1].

In heavy-ion experiments near the Coulomb barrier one has been able to identify a

characteristic type of reaction products where the projectile has lost only a moderate

amount of energy and has exchanged only few nucleons with the target nucleus. These

reactions are called quasi-elastic reactions and are assumed to correspond to collisions

in which the surfaces of the two ions have just been in grazing contact, and they essentially

keep their identity [8]. This is a type of direct reactions that includes the true elastic

scattering. The term direct implies that the reaction is completed in the time required

for the incident particle to transverse the target nucleus, so that it interacts only with the

surface or with some individual constituents of the nuclei. Quasi-elastic reactions populate

well defined quantum states, usually of rather low excitation energy and of the (relatively)

high spins with a high degree of selectivity. Angular distributions often exhibit a single

peak at the grazing angle. Domination of quasi-elastic reactions is especially emphasized

at energies close to the Coulomb barrier, and it makes dominant reaction mode in the low

energy region.

When we examine the distribution of masses and kinetic energies of the products of a

heavy-ion collision, we may see a broad distribution of outgoing nuclei, in which an appre-

ciable fraction of the incident kinetic energy has been converted into internal excitation
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energy. These are called deep inelastic reactions or strongly damped collisions. The

primary products are also found to be essentially binary. They result from the two heavy

nuclei sticking together for a longer time than one would associate with direct reactions,

but not long enough for the two systems to fuse into a compound nucleus [7]. Short

collision time and large energy losses suggest that in the evolution of the reaction the

excitation of surface modes plays an important role being the low-lying modes the main

source for the formation of the large deformations [1]. This surface dynamics, governed

by the low-lying modes, allows the two ions to stay in close contact for longer time, i.e. to

build up the "neck" between the two colliding partners. There tends to be a large loss of

kinetic energy in such collisions, but the system still retains memory of how it was formed

by showing, for example, a forward-peaked angular distribution. They are characterized

by a massive exchange of nucleons, towards the charge equilibration (i.e. N/Z ratio of

compound nucleus).

The contribution of quasi-elastic or deep inelastic component in a reaction depends

mainly (given a certain mass asymmetry in the entrance channel) on the projectile energy.

The height of the Coulomb barrier, by using the two point charges expression, can be

written as:

EB =
ZaZAe

2

rC
(1.1)

where Zi are nuclear charges and rC is the interaction distance. For the nuclear part of the

nucleus-nucleus potential one can use the Akyüz-Winther parametrization that describes

quite well elastic scattering data for several projectile and target combinations:

UN =
−V0

1 + e(r−Ra−RA)/a
(1.2)

with the potential depth V0, the diffusion parameter a and nuclear radii Ri = (1.2A1/3
i −

0.09) fm [1].

1.1.2 Form factors and optimum Q-value

The transfer processes are mainly governed by form factors (spectroscopic informations of

colliding nuclei and dynamics) and optimum Q-value considerations (balance of the inter-

nal and binding energy in the phase space of colliding nuclei). Due to the characteristic

behaviour of the binding energy in the nuclear chart, the process is essentially governed
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by the lighter partner of the reaction. In general, the use of lighter stable projectiles on

heavy targets results in population of only proton stripping and neutron pick-up channels

[13].

The form factor is a matrix element between initial and final states in the transfer

process and reflects nuclear structure properties of the donor and acceptor. It weights the

relative importance of different channels. The form factor is equal to:

fβγ(~κ,~r) = 〈ωβ|(Vγ −Uγ)|ψγ〉 (1.3)

where ~κ is the momentum transfer and ~r = 1
2(~rβ + ~rγ) represents the centre of mass

distances, |ωγ〉 constitute a dual base obtained from the overlap matrix, U is the nuclear

potential and V is the coupling interaction. At large distances, for the particle transfer

form factor one can write:

fβγ(0, r) ∼ 1
κa′

1
r
e

−κ
a′

1
r
. (1.4)

The asymptotic behaviour of the form factor is governed by the coefficient κa′

1
that con-

tains the binding energy of the single particle state a′
1 entering in the transition. For

single particle states close to the Fermi energy the decay length of the one particle trans-

fer form factor is of the order of 1.2 fm, thus at large distances the transfer form factor

prevails over the nuclear component of the inelastic form factor [1]. In analogy with the

macroscopic description of the inelastic scattering, the form factor for transfer can be

formulated as the r-derivative of the potential:

fλ = βλ
∂U(r)
∂r

(1.5)

where βλ is the deformation parameter related to the collectivity of the state and U(r) is

the average potential of the entrance and exit channels. This macroscopic form factor has

been used for example in the recent analysis of 40Ca,58Ni+208Pb that will be discussed in

Chapter 7.

The probability for the transition from the entrance channel α to the channel β in a

direct process where the two nuclei barely overlap, and only the tail of the form factor is
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relevant, may be written [1]:

Pβα =

√

√

√

√

1

16πh̄2|r̈0|κa′

1

|fβα(0, r0)|2g(Qβα) (1.6)

where r̈0 is the radial acceleration at the distance of closest approach for the grazing

partial wave. Thus the probability for a given transfer is proportional to the square of the

form factor times the adiabatic cut-off function that depends on the optimum Q-value of

the reaction. The adiabatic cut-off function g(Q) is defined as:

g(Q) = e

(

−
(Q−Qopt)2

h̄2 r̈0κ
a′

1

)

. (1.7)

The optimum Q-value is:

Qopt =

(

Zd

ZA
− Zd

Zb

)

EB +

(

md

mb
− md

mA

)

(E−EB) +
mdr̈0

ma +mA
(RAmb −RaMB) (1.8)

with EB Coulomb barrier, Zd and md charge and mass of the transferred particle. Op-

timum Q-value for charge particle transfer is both system and energy dependant. The

adiabatic cut-off function g(Q) defines the actual value of the transition probability whose

maximum is at the optimum Q-value. This derives from the requirement that the tra-

jectory of entrance and exit channels matches smoothly close to the turning point where

the contribution of the form factor peaks [14]. The bombarding energy dependence of the

cut-off function is contained in the r̈0 term that defines its width (inversely proportional

to the collision time).

Figure 1.1 shows the adiabatic cut-off function g(Q) for all one- and two-nucleon

transfer channels for the 58Ni+208Pb reaction. Horizontal lines represent, for all channels,

the location of all possible transitions (the ground-to-ground state Q-value). Since only

the channels whose Q-values lie below the bell-shaped curve can actually occur, it is

clear that the only allowed transfers are neutron pick-up and proton stripping. All the

other channels are hindered by optimum Q-value consideration. One can also notice that

for some channels, in particular the two proton stripping and two neutron pick-up, the

reaction mechanism favours transitions leading to high excitation energies. Q-matching

conditions constrain the population to states located in a certain Q-value window.
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Chapter 1. Heavy-ion reactions and nuclear correlations

Figure 1.1: Adiabatic cut-off functions for one- and two-neutron and proton transfer channels.
Q-value is in MeV. The horizontal line represents the location of all possible transitions [1].

This situation holds for most of the projectile-target combinations available with stable

beams, it is only by employing unstable beams that all four kinds of basic transitions

become available. Reason for this lies in characteristics of reaction Q-value. In a collision

process involving light projectile and a heavy target, the balance of Q-values for the

transition to Z ± ∆Z, N ± ∆N is mostly controlled by the lighter partner. Since the

contours of binding energy in the NZ plane in the vicinity of the light stable nuclei

are roughly symmetric around N = Z, a cut for a given element (Z=const.) yields a

steeper energy gain toward the lighter isotopes than toward heavier, thus favouring the

acquisition of neutrons. If one takes heavier isotopes of a given projectile a transition

toward the opposite situation should happen [12]. With neutron-rich projectiles, proton

pick-up and neutron stripping channels also open up, leading to the population of the

neutron-rich heavy fragments.

Lowering the bombarding energy increases collision time and squeezes Q-value window

thus reducing average number of transferred neutrons. On the other side, by increasing

the bombarding energy the grazing distance is decreased, thus leading to more intimate

collision in the grazing region.
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1.1. Heavy-ion reactions

1.1.3 The GRAZING model

The large mass of heavy ions means the associated wavelength is shorter than the one for

light ones with the same energy. In many cases the wavelength is short enough to use

classical concepts to describe a collision, so one can speak of the ion following a classical

trajectory. From the theoretical point of view, a semi-classical approximation has been

developed giving the possibility of treating multinucleon transfer reactions both in the

quasi-elastic and in the deep inelastic regimes. These calculations are able to predict how

the total reaction cross section is shared among the different reaction channels.

The semi-classical model GRAZING was developed by A. Winther and Copenhagen

group [1, 4–6] and was proven to reproduce accurately variety of experimental data. The

two nuclei are described as an ensemble of independent nucleons that can vibrate around

their spherical equilibrium shapes, the basic degrees of freedom being surface vibrations

and single particle transfer. The two ions interact via a Coulomb plus nuclear interac-

tion. The Coulomb potential is described by a two point charge expression, while for the

nuclear potential a Wood-Saxon parametrisation is used. The exchange of many nucleons

proceeds via a multi-step mechanism of single nucleons. In particular, the basic degrees of

freedom consist of single particle and surface vibrations around the spherical equilibrium

shape, including the lowest 2+ and 3− states and the associated giant resonances. For

the excitation of the surface modes the model employs the macroscopic approximation

whose form factors are proportional to the r-derivative of the ion-ion potential and whose

strength are given by the experimental B(Eλ). The exchange of nucleons is governed

by microscopic form factors that take into account the single particle properties of the

projectile and target and an average single particle level density. Thus, the approxima-

tions in the treatment of particle transfer are the use of representative form factors for

the transfer and the substitution of the actual distribution of single particle states with a

density function.

The predictions from the GRAZING model have been successfully compared to a

number of experimental data, including the 58Ni+124Sn reaction (Fig. 1.2) which has

been studied in great detail both experimentally and theoretically by the Argonne group

[1, 15, 16]. This reaction is one of rare examples where for different bombarding energies,

most of the channels have been measured in great detail, from elastic scattering, transfer

reactions to evaporation residue, deep inelastic and fission products.
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Chapter 1. Heavy-ion reactions and nuclear correlations

Figure 1.2: Center-of-mass angular distributions for elastic plus inelastic, one-neutron pick-up,
one-proton stripping and some multineutron transfer channels calculated with GRAZING for the
58Ni+124Sn reaction. The label in each frame indicates the center-of-mass bombarding energy
in MeV [1].

Figure 1.3: For the indicated reactions and bombarding energies the angular distribution of in-
clusive one-particle transfer reactions calculated with GRAZING (dash) are shown in comparison
with those calculated in the CWKB approximation (full line) [1].

The comparison of the GRAZING and CWKB for the 40Ca+208Pb reaction is on Fig.

1.3. The DWBA calculations were done by employing all bound single particle states

above the Fermi energy and a full shell below. These calculations have been done by using

one-particle transfer form factors constructed from the single particle wave functions of the

states involved in the transition and by using the WKB approximation for the distorted

waves describing the relative motion. Since the WKB approximation has to be employed
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in a complex potential, this calculation was named CWKB.

Figure 1.4: Charge, mass and energy distribution of reaction fragments in collisions of 86Kr with
166Er at Ecm = 464 MeV. The histograms indicate the calculations performed within the model
based on the Langevin-type dynamical equations of motion and curves show the GRAZING
calculations [17].

The total cross sections of the multinucleon transfer reactions have been recently also

studied within the model based on the Langevin-type dynamical equations of motion [18]

and time-dependent Hartree-Fock theory [19–21]. The results of the Langevin based model

(that includes deep inelastic components) for 86Kr+166Er are plotted in Fig. 1.4 together

with results from the GRAZING model (that includes informations about structure of

nuclei) [17].

1.2 Nucleon-nucleon correlations

The importance of nucleon pairing in nuclear structure has been established in the early

stages of nuclear physics by the determination of the binding energies of nuclei, and the

observation of their characteristic odd–even staggering. A. Bohr, B.R. Mottelson and D.

Pines recognized the analogy between the excitation spectra of nuclei and of the super-

conducting metallic state [22]. They noticed, that in addition to the average shell model

potential, also acts relatively short-range residual nucleon-nucleon force. For nuclei one

may distinguish superconductivity in connection with dynamical aspects (as experienced

in transfer of nucleon pairs), and superfluidity for the static properties of nuclei. The
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pairing energy, although small compared to the total binding energy, is comparable to the

typical energy of the lowest nuclear excitations, and thus controls almost every feature of

nuclei close to the ground state. The pairing in nuclei is connected, as in solids, to the

correlation of nucleons on time reversed orbits in well defined configurations [23, 24].

The transfer of pair of nucleons can happen in two ways, sequentially where nucleons

are transferred one after the other, or simultaneously, in one-step, where a correlated pair

of nucleons is exchanged. So far, with heavy ions, it has been found that the sequential

transfer dominates over the simultaneous ones, and that in both processes the transferred

nucleons display equivalent pairing correlation which is a consequence of the fact that

correlated pairs are weakly bound and highly extended objects [25].

Nucleon-nucleon correlation have been studied with several methods. Most important

experimental techniques that have been used are radiochemical methods, magnetic spec-

trometers and particle-γ coincidences giving the possibility to study two-neutron transfer

between well selected states [23]. We will concentrate on correlation studies with magnetic

spectrometers.

Light ion induced one and two-particle transfer reactions were exploited for decades to

study correlations. They are highly selective in energy and angular momentum transfer.

Very good energy resolution was obtained which offered the possibility to study specific

exited states and to probe single particle properties like spectroscopic factors and shell

structure [26–28].

Heavy-ion transfer reactions allow simultaneous comparisons of observables for (nn),

(pp) and (np) pairs and hence are an ideal tool for the study of the residual interaction

in nuclei. Difficult theoretical interpretation and limited energy resolution of available

instrumentation slowed the progress in the past. Interpretation is more complex due to

absorption, since inelastic excitation causes the directness to be obscured by multi-step

process [29].

Today, large solid angle spectrometers allow detection of large number of transferred

nucleons at the same time. Good A and Z identification is usually obtained, however

energy resolution is limited to around 1 MeV which is mostly not sufficient to separate

low-lying excitations. To disentangle the correlation from other processes present, the

knowledge of dynamics and the evolution from quasi-elastic to deep inelastic processes

becomes important.
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1.2. Nucleon-nucleon correlations

Two possible approaches were used to study correlation with transfer reactions: an-

gular distribution at fixed bombarding energy (near the Coulomb barrier) and excitation

function at fixed angles (from near to deep below the Coulomb barrier). So far this

approach was used to gain knowledge about (nn) and (pp) correlation.

Reactions around the barrier

The correlations and their role in the transfer process have been studied in collisions of

nuclei with closed or near-closed shells at energies near the Coulomb barrier in several

systems, for instance 40Ca+208Pb and 58Ni+208Pb [30–32]. It was observed that the

cross sections for the neutron pick-up channels drop by almost a constant factor for

each transferred neutron, as an independent particle mechanism would suggest. The

population of the (−2p) channel is as strong as the (−1p), which suggests the contribution

of processes involving the transfer of proton pairs in addition to the successive transfer of

single protons. The fact that the same behaviour was not observed in the neutron channels

was attributed to much larger cross section, thus the contribution of a pair-transfer mode

is masked by the successive mechanism.

Reactions below the barrier

Measurements of inclusive cross sections at and above Coulomb barrier have very com-

plex reaction mechanism and hence difficult theoretical interpretation due to the presence

of many competing processes. Below the barrier number of open channels is smaller

and hence mechanism is less complex, but measurement itself is very difficult. The

cross sections are small, and this demands detectors with high efficiency. Significant

progress was made by using reactions in inverse kinematics, where ions are forward fo-

cused (which means high detection efficiency) and with high kinetic energy (for energy

and therefore mass resolution). The closed shell 96Zr+40Ca system [33] and "superfluid"

116Sn+60Ni system [34] were recently measured. The microscopic theory, that incor-

porated nucleon-nucleon correlations, essential for the population pattern of the single

particle levels around the Fermi energy, for the first time very well reproduced the exper-

imental data, and in particular the transfer probability in slope and absolute value for

two neutrons, in all energy range, in the 116Sn+60Ni system [34] with very well Q-value

matched transition for (+2n) channel.
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1.2.1 Neutron-proton correlations

The role played by (np) correlations is still a very challenging issue. The enhancement of

deuteron transfer reactions by (np) pairing was for example addressed by P. Fröbrich who

predicted an increase of 2.44 in the cross section over the single particle estimate for light

ion induced reaction [35]. Nuclear models point out that such correlation is expected to

be strongest in N ∼ Z nuclei where neutrons and protons occupy the same orbitals. As

one moves out of the N ∼ Z nuclei, (nn) and (pp) pairs are favoured.

Whether strong deuteron-like isoscalar (T = 0) correlations exist remains an open

question. The reason is that in order for a nucleon pair to exploit the short-range nuclear

force and form a correlated pair, the constituent nucleons must occupy orbits within the

same valence shell. Such "normal" pairing couples the nucleons in pairs with opposite

spins and occupying orbits which are symmetric with respect to time inversion. This

is called isovector pairing (T = 1) with zero total angular momentum for each pair of

nucleons (S = 0) [36].

Several methods have been adopted to probe (np) correlations:

• very precise measurements of binding energies and comparison with theory, which

showed a strong evidence for the presence of isovector (np) pairing [37]

• gamma spectroscopy was used to identify spin-aligned, isoscalar neutron-proton

pair; for example in 92Pd three new γ-ray transitions have been ordered into a

ground-state band and shell model calculations were made predicting the appearance

of ground-state and low-lying yrast structures based on spin-aligned systems of (np)

pairs [38]

• knock-out reactions where a spatially correlated (np) pair is knocked-out; for exam-

ple in the 12C projectile at high energy (np) pair was knocked-out by the 12C target

and comparison of yields corresponding to (np), (pp) and (nn) channels was made

[39].

The addition or removal of a (np) pair from even-even nuclei should be an important

additional tool to study these correlations. In this thesis we will present results from

heavy-ion multinucleon transfer reactions and the study of nucleon-nucleon correlations, in

particular neutron-proton correlations. As this method was not used for (np) correlation

study in the past, available informations are scarce. Thus, results should provide new

valuable informations for future experiments. The population of (−np) channel is often
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1.3. Recent advances in reaction mechanism

marred by complex secondary processes, therefore one should look at the (+np) channel,

which can be populated via a direct mechanism. On the other hand this channel is quite

difficult to reach and one must deal with reactions that, besides proton stripping and

neutron pick-up channels, also populate proton pick-up channels. The comparison of the

experimental cross section for the (+np) channel with those of the individual (+1n) and

(+1p) channels may provide information on the (np) correlation. The comparison with

theoretical models for (±nn), (±pp) and (±np) channels will be important to see which

degrees of freedom play role in the description of the measured differential cross sections

and that the effect of possible correlations can be evaluated. In this context, similarly to

previous studies, two measurements were performed.

The 40Ar+208Pb experiment

The 40Ar+208Pb system was measured at Elab = 260 MeV with the PRISMA spectrometer,

coupled to the CLARA array. Angular distributions were measured for the first time with

large solid angle spectrometer by taking into account response function in order to study

correlations. The use of magnetic spectrometer in combination with γ arrays allows to

study the population strength of the excited states. In this way important complementary

information can be obtained. This is particularly important in the view of the population

of states where protons and neutrons occupy similar orbitals, in this case in N >Z nuclei.

The 92Mo+54Fe experiment

These results can be compared, as a second step, with sub-barrier measurement of the

excitation function for the 92Mo+54Fe reaction. System was measured with PRISMA

from the Coulomb barrier to ∼20% below where good ion identification was obtained.

In this system one gets as close as possible to N = Z = 27 region. The comparison of

enhancement factors in light and heavy-ion induced reactions in that region may strongly

help in the understanding of the pair transfer degrees of freedom.

1.3 Recent advances in reaction mechanism

Significant advances have been achieved in the last years in the field of multinucleon

transfer reactions at energies from near to below the Coulomb barrier. Traditionally, with
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Chapter 1. Heavy-ion reactions and nuclear correlations

multinucleon transfer reactions at Coulomb barrier energies one can investigate which de-

grees of freedom are relevant for reaction dynamics. Multinucleon reactions allow transfer

of several nuclei at the same time and valuable information on nucleon-nucleon correlations

were derived, especially from measurements performed below the Coulomb barrier. Also,

other aspects of reaction mechanism, like heavy-ion fusion with electrostatic deflector, are

currently investigated [40–44].

The coupling of PRISMA [45] with large γ arrays, CLARA [46] and AGATA demon-

strator [47], allowed to perform γ-particle coincidences, thus studying not only reaction

mechanism, but also nuclear structure of populated transfer products [11, 48–51]. In this

way one can detect the transfer strength to the lowest excited levels of binary products

and perform γ spectroscopy for nuclei moderately far from stability, especially in the

neutron-rich region, for masses from Ne to Xe. In many cases, the new γ transitions

have been uniquely attributed to the specific isotopes identified by the spectrometer. It

was also possible to investigate at once chains of isotopes populated in the same reaction

[2, 3]. Thus, poorly known (neutron-rich) isotopes could be more easily compared with

better known ones, making the attribution of level properties more reliable. Here, in the

recognition of the character of the lowest populated states the main characteristic of the

multinucleon transfer reaction mechanism helps in the attribution of the spins of the new

transitions [52]. These nuclear structure studies will continue with planned large γ-array

GALILEO [53].

The transfer mechanism provides a tool to build-up a high degree of alignment. On

this basis, exploiting the granularity of the γ arrays, measurements of γ-ray angular

distributions and linear polarizations have been shown to be a powerful tool to determine

the multipolarity and electromagnetic character of the transitions [54, 55].

A novel powerful technique has been successfully developed to measure lifetimes of

excited states populated in binary reactions, by exploiting the different intensities of the

Doppler shifted γ rays emitted before and after a degrader placed close to the target and

has been used for a variety of nuclei [56–59].

Besides the "light" partner products, the "heavy" partners are presently also studied.

The direct detection of the heavy products (A ∼ 150 − 200) is notoriously very difficult.

Significant progress can be made by using reactions in inverse kinematics, where ions

are forward focused and with high kinetic energy [52]. The second time-of-flight system
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has been constructed and detected (with low Z and A resolution) the coincident heavy

fragments produced in binary reactions in kinematic coincidence with PRISMA. In this

way transfer induced fission and evaporative processes, which may strongly affect the

final yield distribution, can be studied. These processes are essential for understanding

the population pattern in the heavy regions (like those around Pb), where emphasis is

presently on measuring nuclear properties for astrophysical interest, like r-process [60].

High resolution kinematic coincidence measurement would be very welcomed and would

bring important new information on these processes.

Ongoing studies are of primary importance for future reactions with radioactive ion

beams where multinucleon transfer is a competitive tool for the study of neutron-rich

nuclei, at least for certain regions of the nuclear chart, that can be hardly accessed by

fragmentation or fission reactions [52].

1.4 Reactions with radioactive beams

The history of extending the nuclear chart is closely connected to the technical advances

of radioactive beams. However, most of the present-day knowledge of the structure of

the atomic nucleus is still based on the properties of nuclei close to the line of β-stability

where the proton-to-neutron ratio is similar to that of stable nuclei. Extrapolating this

to the region far from stability is quite dangerous and already it is now clear that some

of the "basic truths" of nuclear physics have to be revisited [61]. For instance, theoretical

predictions and experimental results have indicated that well-known magic numbers for Z

and N seem to be dependent on the N/Z ratio, thus implying a more local applicability,

and significant changes of the shell structure are predicted for neutron-rich nuclei. The

exact location of the next spherical shell closures beyond Z = 82, N = 126 is still an

open question (they are predicted at Z ∼ 114 and N ∼ 184). Due to the bending of the

stability line toward the neutron axis, traditionally used fusion reactions of stable nuclei

may produce only proton-rich isotopes of heavy elements [17].

One of the promising tool for the production of the new neutron-rich heavy (and su-

perheavy) nuclei is the use of the multinucleon transfer reactions at energies close to the

Coulomb barrier. These reactions can be used for the production of new neutron-rich

nuclei located along the closed neutron shell N = 126 which is an area of the nuclear map
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Chapter 1. Heavy-ion reactions and nuclear correlations

that has the largest impact on the r-process [62]. The origin of heavy elements from iron

to uranium remains one of the great unanswered questions of modern physics. Informa-

tions about neutron-rich nuclei are crucial to advance current understanding of nuclear

interaction, and will have an important effect on the understanding of astrophysical phe-

nomena [13]. Furthermore, nucleon correlations and clustering seem to play a much more

important role in nuclear binding than anticipated. The dependence of the nuclear inter-

action on this specific degree of freedom, the N/Z ratio, is believed to shed a new and

elucidating light on a number of aspects of the nuclear interaction and dynamics [61].

The creation and study of unstable nuclei has been pursued for many years using stable

beams on stable or long-lived targets. To enlarge the scientific scope and test existing

knowledge far from the line of stability, the radioactive ion beam facilities become crucial.

Reactions induced by radioactive beams have attracted a great deal of interest, because of

particular phenomena observed in reactions with these weakly bound projectiles. Major

facilities proposing a large variety of beams exist in the world today. New big upgrades

and new major large scientific facilities include FAIR at the GSI, Germany, SPIRAL2 at

GANIL, France, HIE-ISOLDE at CERN, Switzerland, and SPES at LNL-INFN, Italy.

The two main RIB facilities in North America, the FRIB at MSU and TRIUMF in

Vancouver, Canada are also going through major upgrades [63]. Thus, radioactive beams

will be important tool for future studies.

The understanding of nucleon-nucleon correlations is becoming more important in

research with radioactive beams, with both neutron-rich and proton-rich nuclei. The

pairing force is expected to be significantly modified with the change of the N/Z ratio

[60]. On the proton-rich side, mainly along the heavy N ∼ Z line, the neutron-proton

pairing will be the main issue, as compared to the very neutron-rich region (but still not

at the drip-line), characterized by the occurrence of a pure neutron skin [23]. Interesting

question also is whether and to what extent the form factors and matrix elements used

with stable beams need to be modified in nuclei with large neutron/proton excess. The

comparison of data with microscopic calculations and cross comparison between reactions

performed with stable and radioactive beams should then evidence new peculiar effects

of the pairing interaction and address new ideas on how it should be modified.
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2 Experimental apparatus

F. W. Aston built in 1919. the first functional mass spectrometer based on focusing of

charged particles with electric and magnetic fields [64]. With that spectrometer he showed

the first evidence for existence of naturally occurring isotopes and subsequently identified

around 210 of them. Ever since then magnetic spectrometers have been one of the most

versatile and powerful tools for measurements in nuclear physics.

Magnetic spectrometers have always played an important role in the study of transfer

reactions, as they not only provide a complete identification of the reaction products, but

also allow the extraction of differential and total cross sections. A significant improvement

has been achieved in the last decade with the advent of a new generation of large accep-

tance magnetic spectrometers (PRISMA [45], VAMOS [65] and MAGNEX [66]), with solid

angle as large as ∼100 msr. Unlike conventional spectrometers, here the identification of

the reaction products depends on software reconstruction of the ion trajectories. When

they are coupled to modern γ arrays it is possible to investigate structure properties of

nuclei relatively far from stability that are weakly populated in nuclear reaction. This is

the case of the PRISMA-CLARA/AGATA setup, at INFN Legnaro National Laboratories

(Italy) and of the VAMOS-EXOGAM/AGATA setup, at GANIL Laboratory (France).

The PRISMA-CLARA/AGATA experimental set-up, combining a large acceptance

magnetic spectrometer with a γ-detector array, allows to fully identify a particular reac-

tion product and to investigate its excitation energy spectrum and the associated γ-ray

spectra. Mass distribution is obtained from position measurements together with time

of flight information, that are measured with refined high-resolution detectors [1]. The

spectrometer’s characteristics make it suitable for experiments in the field of reaction

dynamics at low energies as well as for nuclear structure studies, when coupled with a

modern array of γ detectors. Description of set-up follows in next sections.
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2.1 Development of magnetic spectrometers

The development of magnetic spectrographs emerged in the past from the need to dis-

tinguish excited states populated in light ion transfer reactions. This was achieved by

combining magnetic elements of different complexity to focus momenta at definite posi-

tions on the focal plane. Q3D or split pole devices have been extensively used for studies

of one and two nucleon transfer reactions and Q3D with an improved energy resolution (10

keV) are still employed for detailed spectroscopic studies [Ref. 1, and references therein].

Q3D as name says consists of one quadrupole that is focusing ions to focal plane and three

dipoles that separate ions with different p/q ratios. In this way aberrations of second and

higher order could be corrected and solid angle could reach 5-10 msr.

Time-of-flight (TOF) spectrometers have been designed with magnetic quadrupole

elements which focus ions of different atomic charge states to a relatively small focal

plane. A good A and Z resolution for medium mass ions could be preserved, although

with lower energy resolution that is of the order of a few MeV. Measurement of TOF

and energy allows good resolution of mass thanks to the large path of the ions (several

meters). The example is PISOLO time-of-flight spectrometer in INFN-LNL, Italy with

solid angle of ∼3 msr.

Due to large energy dynamic range of transfer products in heavy-ion reaction, it is

difficult to attain a good resolution and sufficient detection efficiency at the same time.

Early magnetic spectrometers have been designed with good resolving power explicitly

for heavier ions, but with the drawback of having a very small entrance solid angle. A

reasonably large solid angle could be obtained by adding focusing quadrupole elements in

the ion optical system. New magnetic spectrometers that are based on simple magnetic

elements need to use ray-tracking methods for complete ion identification in nuclear charge

and mass due to the ion optical aberrations [67, 68].

2.2 The PRISMA spectrometer

The large solid angle spectrometer PRISMA [1, 45] has been designed for the identification

of nuclei produced in heavy-ion binary reactions at energies Elab=5-20 MeV/A that are

produced with ALPI-TANDEM accelerator complex in Legnaro National Laboratories,
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2.2. The PRISMA spectrometer

Italy. Main design characteristics of PRISMA are:

• large solid angle of 80 msr, which corresponds to acceptance of ∆θ = 12◦ in the

dispersion (horizontal) plane and ∆φ= 22◦ in the vertical plane

• wide momentum (±10%) and energy (±20%) acceptance

• maximum Bρ=1.2 Tm

• dispersion ∆p/p≈ 4cm/%

• resolving power p/∆p≈ 2000

• energy resolution up to 1/1000 (via TOF)

• nuclear charge (Z) resolution ≈1/60

• mass (A) resolution ≈1/300 obtained with TOF measurement

• capability of rotation around the target in a wide angular range from -30◦ to +130◦

• rate capability up to 100 kHz.

The spectrometer has following components:

• two optical elements:

– a quadrupole singlet

– a dipole magnet

• the entrance and focal-plane detectors:

– a Micro-Channel Plate (MCP) entrance detector that provides bi-dimensional

position and the time of flight (TOF) information [69]

– a Multi-Wire Parallel Plate Avalanche Counter (MWPPAC) focal plane de-

tector for bi-dimensional position and the time of flight (TOF) information

[70]

– an Ionization Chamber (IC) for energy loss and total energy measurements.

Figure 2.1: Photograph of the PRISMA spectrometer coupled to the CLARA array [71].
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The time of flight information comes from the timing signals of the MCP and the

MWPPAC detectors. Since the focal plane detector is at a large distance (∼6 m) from the

entrance detector, the time of flight is typically quite large (200 - 400 ns). A photograph

of the magnetic spectrometer PRISMA is shown in Fig. 2.1, while schematic view is given

in Fig. 2.2.

MCP

(x, y, TOF)

Quadrupole

Dipole

MWPPAC

(x, y, TOF)

IC

E, E

Target

Figure 2.2: Schematic layout of the magnetic spectrometer PRISMA.

Trajectories are different for various products with different p/q ratio and by choosing

appropriate magnetic fields it is possible to adjust the system to record a specific range of

nuclear products. We will now present the detection system of PRISMA in more details.

2.2.1 Micro Channel Plate (MCP)

Micro Channel Plate (MCP), the entrance detector for the PRISMA spectrometer, pro-

vides time and position information in both X (along the dispersion plane) and Y direc-

tion. The detecting surface is based on a large area Micro-Channel Plates (MCP) that

are basically a network of electron multipliers. The active area of the MCP is 80×100

mm2 and covers the whole solid angle of PRISMA at a distance of 25 cm from the target.

A photograph of the detector is shown in Fig. 2.3A, while schematic layout is given in

Fig. 2.3B.

A 20 µg/cm2 thin Carbon foil is passed by the particles at an angle of 135◦ (with

respect to the optical axis of the spectrometer) generating secondary electrons. These

backward emitted secondary electrons are accelerated towards the MCP by an electrostatic

field and guided by a parallel magnetic field produced by an external coil (120 Gauss).

This limits the spread of the electron cloud, preserving the particle position information.

The accelerated electrons reach the MCP pair surface and undergo multiplication. The
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2.2. The PRISMA spectrometer

(A) Photograph of the MCP detector.
(B) Schematic view from above of the MCP de-
tector.

Figure 2.3: The MCP detector [69].

produced charge is collected by the position-sensitive anode. Position resolution is about

1 mm which corresponds to angular resolution smaller than 0.5◦.

The intrinsic time resolution of the MCP detector was measured to be 250-350 ps, and

its efficiency with the heavy ions is near 100%. The detector can withstand high counting

rate (100 kHz) which allowed it to be installed so close to the target.

2.2.2 Ion optical elements

The optical system of the spectrometer consists of a quadrupole singlet, used to focus the

ions on the vertical axis down to the dispersion plane, and a dipole magnet, used to bend

the trajectories of the ions travelling to the focal plane detectors depending on their p/q

ratio.

The quadrupole singlet is mounted 50 cm away from the target, and its main

purpose is collection efficiency. This magnet focuses in the vertical (Y) direction and

defocuses in the horizontal (X) direction.

The dipole magnet is placed 60 cm from the exit window of the quadrupole. It

is of the uniform field type and has a bending angle of 60◦ for the central trajectory.

The bending radius (i.e. radius of curvature) corresponding to a trajectory laying on the

optical axis is 1.2 m and the maximum magnetic field is 1 T, which corresponds to a

maximum rigidity of Bρ = 1.2 Tm.

The fringing fields are small enough compared to the inner field of magnets since

the ratio length over diameter is slightly below the limit for the fringing field domina-

tion. After dipole, ions follow straight trajectory and ∼6 meters after MCP enter into
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MWPPAC.

2.2.3 Multiwire Parallel-Plate Avalanche Counters (MWPPAC)

The focal plane detector consists of an array of Multiwire Parallel-Plate Avalanche Coun-

ters (MWPPAC) providing X, Y and timing signals, followed by a multi-parametric trans-

verse field Ionization Chamber array (IC) providing multiple ∆E signals. The focal plane

detectors fulfil the following requirements:

• good nuclear charge resolution for ions up to Z∼60 and at energies 2-10 MeV/A

• energy resolution ≤ 2%

• fast timing (∼300-400 ps)

• position resolution around 1 and 2 mm for X and Y position, respectively

• very large area to fully exploit the acceptance and dispersion of PRISMA

• counting rates as high as 100 kHz.

(A) Photograph of the MWPPAC detector.
(B) Schematic layout of the MPWPPAC detec-
tor.

Figure 2.4: The MWPPAC detector [70].

A photograph of the detector is shown in Fig. 2.4A, while schematic layout is given

in Fig. 2.4B. The MWPPAC array consists of 10 equal sections on the horizontal axis

for a total active focal plane surface of 100×13 cm2. The detector has a three electrode

structure: a central cathode (polarized at high voltage) for timing, and X and Y wire

planes for the position, symmetrically placed, at ground potential, with respect to the

cathode and at a distance of 2.4 mm. On the horizontal axis each section has 100 wires

distributed on 100 mm with a step of 1 mm. The vertical axis is made of one section over

entire length (1 m) with a 1 mm wire step, to preserve the electric field symmetry. As

the Y direction is not so crucial in the trajectory reconstruction, the wires are connected
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in groups of two with a 2 mm position resolution. The position signals are derived with

the delay-line method, hence one has two signals from each section, one on each side,

whose relative delay is proportional to the position of the incoming ion. Each wire is an

independent counter. The avalanche produced by the impinging particle is well localized

in space; due to the narrow spacing between the detector planes the charge is induced

mainly on a single wire and therefore the xP P AC and yP P AC resolutions are determined

by their steps.

The TOF signal in PRISMA is determined by the time difference between the cathodes

of the MWPPAC (start) and the MCP time signal (delayed timing signal stop) with analog

TAC units. As a consequence, horizontal position, cathode number events and TOF are

registered for each of 10 sections, while vertical position is common for all sections. The

OR of the cathode signals is used as a master trigger for the data acquisition system.

2.2.4 Ionization Chamber (IC)

The focal plane MWPPAC detector is followed by an Ionization Chamber, IC, which is

used to measure the kinetic energy of the ions as well as their energy loss in the gas.

The array of IC is 72 cm downstream of the MWPPAC with an active full size volume of

120×13×100 cm3 (width×height×depth, respectively). It is divided in ten equal sections

on the horizontal axis (as is MWPPAC) and in four equal sections (of 10×25 cm2) in

depth. Figure 2.5 shows an expanded view of the IC. It consists of 40 anode pads, a

common Frisch grid and a common cathode.

Figure 2.5: Schematic layout of the IC detector [72].

The IC is operated with methane CH4 or freon CF4. The best results have been

obtained with methane (99.99% purity) which is a relatively fast gas (has a high elec-

tron drift velocity), thus allowing to preserve good energy resolution even with the high

counting rates needed in the experiments. CF4, with a higher stopping power, is used for
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more energetic heavy ions. Number of electron-ion pairs created in the gas is separated

by electric field, and is proportional to the particle’s energy.

The segmentation in depth allows different combinations of ∆E−E, being ∆E the

energy loss in the first section, or first two sections, and E the sum of the energy loss in all

four sections. Additional sections are placed on both sides of the chamber (side sections)

and they act as veto to eliminate from the data the ions with highly bent trajectories that

are going partially outside the IC active volume and for which the Etot is not correctly

measured.

The large dimension of the IC, possibility to differently combine subsections, selection

of gas and gas pressure adjustment allow identification of ions that differ by more than

20% in kinetic energy. Through the optimization of all these parameters, beside a good

Z resolution, an energy resolution of ∼1-2 MeV has been achieved.

2.3 The CLARA array

The obtained energy resolution of magnetic spectrometers cannot yet compete with the

excellent energy resolution achieved by the use of high purity germanium (HPGe) gamma

detectors. Excited state discrimination can be performed only in suitable nuclei where

levels are sufficiently separated [73]. On the other hand, large γ arrays are known to

be very powerful tools for nuclear spectroscopy studies of nuclei produced in transfer

reactions, especially for very heavy nuclei. For heavy-ion collisions at energies near or

slightly above the Coulomb barrier reaction dynamics and nuclear structure influence

each other to a large extent and informations obtained with γ arrays give important

complementary informations also for reaction studies.

Figure 2.6: Scheme of the CLARA array is on the left panel. Scheme of the clover detector is
on the right panel [72].
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The CLARA array [46], shown in Fig. 2.6, is a γ-detector array with 25 HPGe clover-

type detectors [74] that was associated to PRISMA in numerous experiments performed

at LNL. Each clover detector is composed of four HPGe crystals, each with a diameter of

≈50 mm, mounted in a single cryostat. The detector is surrounded by BGO scintillators

acting as anti-Compton shields, namely rejecting events which have triggered both the

Ge and the BGO detectors as a consequence of a Compton scattering interaction. In this

way a large reduction of the Compton background can be achieved resulting in a peak to

total ratio of 50%. The total photopeak efficiency of CLARA is of the order of 3% for

Eγ=1.33 MeV. As a thin target (≤1 mg/cm2) is used and γ rays are emitted in flight,

it is mandatory to perform Doppler correction. This is done from the knowledge of the

reconstructed velocity vector in PRISMA. Typical γ-ray energy resolution obtained after

Doppler correction is 0.6% to 0.9% over the whole velocity distribution of the projectile-

like products detected in PRISMA.

Figure 2.7: Coupling of the PRISMA spectrometer and the CLARA array [72].

The CLARA array was positioned in a hemisphere near the target position and oppo-

site to PRISMA, with most of the Ge crystals placed at large azimuthal angles, between

100◦ and 180◦, with respect to the entrance direction of the spectrometer. This configu-

ration can be seen in Fig. 2.7. More details about the CLARA configuration are given in

Appendix B.
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3 The experiment and data
analysis

This Chapter will present general procedure for PRISMA and CLARA data analysis, with

the 40Ar+208Pb reaction as an example.

3.1 The 40Ar+208Pb experiment

Multinucleon transfer reaction 40Ar+208Pb was studied by using the most neutron-rich

stable argon isotope, 40Ar, to populate both proton and neutron stripping and pick-up

channels. Projectile-like fragments have been identified with the PRISMA spectrometer,

while the coincident γ rays were detected with the CLARA array. In this way mass and

charge yields, differential and total cross sections, and total kinetic energy loss distri-

butions of different multinucleon transfer channels produced in the 40Ar+208Pb reaction

were measured together with coincident electromagnetic transitions that can be assigned

to specific isotopes. Characteristics of reaction are summarized in Table 3.1.

Table 3.1: Characteristics of the 40Ar+208Pb multinucleon transfer reaction.

Reaction 40Ar+208Pb

Projectile 40Ar at Elab= 260 MeV

PRISMA angles 46◦, 54◦ (≈ grazing angle) and 59◦

Beam current ≈7 pnA

Target 208Pb (99.9 % isotopically enriched, 2 mm strip)

Target thickness 300 µg/cm2 with 15 µg/cm2 carbon backing

The 40Ar beam has been extracted from the ECR ion source of PIAVE, pre-accelerated

and injected into the superconductive Linac ALPI with final energy of Elab= 260 MeV
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(6.5 MeV/A), which is ≈30% above the nominal Bass barrier (193 MeV) [9].

The 40Ar+208Pb reaction has been measured at three different PRISMA angles θlab=46◦,

54◦ and 59◦ to cover most of the transfer flux. The coincident γ rays were measured for

a longer time at the grazing angle, 54◦, to achieve sufficient statistics for detailed studies

of the transfer strength distribution over the final excited states.

3.2 Data Analysis

A magnetic spectrometer provides the momentum over the atomic charge state ratio (p/q).

An additional parameter is needed to obtain mass, and a commonly used one is the time

of flight. The mass identification of the reaction products with PRISMA can only be

obtained with an event-by-event reconstruction of the ion trajectories inside the magnetic

elements. For the reconstruction a fast algorithm has been employed using measured

parameters:

• entrance detector positions xMCP , yMCP

• focal plane positions xP P AC , yP P AC

• time of flight TOF

• energy loss ∆E and total energy E.

Results of trajectory reconstruction are:

• the curvature radius inside the dipole magnet ρ

• path length L

• total energy E (via TOF)

• mean path of ions R in IC (range).

The analysis requires several important steps [72]:

• the atomic number Z is selected by plotting the range or the energy loss in the IC

versus the total energy

• the ratio A/q is obtained from the position of the ion at the focal plane

• the absolute value of the velocity is equal to the ratio of the length of the trajectory

of the ion and TOF

• the direction of the velocity is obtained from the position of the ion on the MCP

start detector.

In following section data analysis will be discussed in more details.
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3.2.1 The PRISMA data analysis

First step in the analysis is calibration of the raw data in order to obtain physical in-

formations event-by-event. General procedure for analysis of PRISMA data, valid for all

experiments, will be presented. Detail explanation of calibration procedure for PRISMA

detectors is given in Appendix A and only main characteristics will be given in this sub-

section.

MCP position calibration

Figure 3.1A shows the raw data of the xMCP and yMCP signals without and Fig. 3.1B

the same spectra with coincidence with the focal plane detector MWPPAC. The large

difference in statistics and event distributions is clearly visible. Due to the proximity of

the MCP to the target, the MCP surface may be triggered not only by reaction products,

but also by many undesired events, such as electrons, scattered beam and so on. These

undesired events are rejected by requiring the coincidence of the MCP and MWPPAC.

(A) Raw data. (B) Data in coincidence with the MWPPAC.

Figure 3.1: The xMCP and yMCP entrance positions measured with the MCP.

The cross visible in Fig. 3.1B is the projection of a mask placed about 1 cm downstream

of the Carbon foil that is used for calibration of xMCP and yMCP positions. The metallic

cross stops the ions and creates a shadow when the coincidence with the focal plane is

required, and becomes very clear.

Figure 3.2A shows the MCP surface after the calibration of channels to millimetres.

Spatial coordinates after calibration are used to find the exact direction of ions entering the
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spectrometer. Conversion from spatial coordinates to angular ones can be easily calculated

since the center of the cross matches the angle on which PRISMA was placed. All these

informations allow to calculate the entrance angles (θlab, φlab) of the ions, shown in Fig.

3.2B, in the laboratory system. Angular acceptance is ∆θlab = ±6◦ and ∆φlab = ±11◦.

The exact procedure of the transformation from the (xMCP , yMCP ) to (θlab, φlab) is given

in Ref. [72], Appendix A.1.2.

(A) The xMCP and yMCP position. (B) The θlab and φlab angles.

Figure 3.2: The calibrated position in millimetres and the entrance angles in cylindrical coordi-
nates of the ions in the MCP.

MWPPAC position calibration

As already discussed, MWPPAC consist of 10 sections and each of them gives six raw

signals:

• two signals for the horizontal position (left and right)

• two signals for the vertical position, common to all sections (up and down)

• one signal from the cathode

• one timing signal for the time of flight (TOF) construction.

For each section, position information is obtained from the difference between signals

from the left and right side of the delay lines:

xP P AC = right− left. (3.1)
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3.2. Data Analysis

The position on the focal plane, xP P AC , is then calibrated to millimetres and result

is shown in Fig. 3.3. Peaks correspond to different atomic charge states of 40Ar. To

maximise the transport in the magnetic spectrometer, the magnetic fields have been set

in order to have the most intense atomic charge state in the central position of the focal

plane detector.

Vertical position is used to check the planarity of the ion trajectories, to assure the

proper working of the quadrupole magnet and to check the quality of beam focusing on

the target.
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Figure 3.3: The calibrated focal plane position xP P AC . Distributions correspond to different
atomic charge states of 40Ar, most intense ones are 16+ and 17+.

TOF calibration and alignment

TOF is measured between the MWPPAC cathode signals and the entrance detector time

signal that is suitably delayed. First step is to calibrate TOF signals in nanoseconds and

for this one applies off-line calibration coefficients. All ten sections then have to be aligned

with respect to each other.

The crucial step is to define absolute (global) offset. This can be adjusted as a first

step on the basis of TOF estimates and can be checked with the energy of the strong

electromagnetic transitions, whose Doppler correction can be well tuned. By applying

Doppler correction to the γ spectra one can check whether main lines have correct energy

and width. This is an iterative procedure that ends when the proper offset of the TOF

is found, i.e. when the main peaks have both the correct position in energy and width as

small as possible. Final calibrated and projected (for all 10 sections) TOF spectrum is

shown in Fig. 3.4B.

35



Chapter 3. The experiment and data analysis

(A) Position on the focal plane versus cali-
brated and aligned TOF.
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value at 184 ns.

Figure 3.4: Calibrated TOF spectrum.

The structures that are visible on Fig. 3.4A are related to different A/q ratios that

are reaching the focal plane. Ions with higher magnetic rigidity Bρ (higher momentum)

will deflect less than ions with lower magnetic rigidity. This leads to the relation between

Bρ and the position on the focal plane: Bρ ∼ xP P AC . It is also related to the atomic

charge states q. Different q will be deflected by magnetic fields to different positions on

the focal plane, according to the inverse of q (xP P AC ∼ 1/q). That means that higher q

are more deflected and they will appear on the right side of focal plane. Usually, in most

experiments performed with PRISMA, intensity of magnetic fields is adjusted in such a

way that most intense q is placed in the central part of the focal plane.

IC energy alignment

Figure 3.5: Trajectories in the IC, the ones ending in sections A and B are discarded.
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Figure 3.6: Energy deposited in all 4 sections in depth, a is the nearest one to the MWPPAC
(see Fig. 3.5).

Anode in the IC is divided in 40 pads, 10 in the X axis correspond to the ones in

the MWPPAC and each of them is divided in 4 sections in depth, as shown in Fig. 3.5.

Each pad behaves as independent ∆E section. Figure 3.6 shows energy deposited in all

4 sections in depth for the 40Ar+208Pb reaction measured at 54◦. The gas pressure is

adjusted not only to stop ions, but to optimize the Z resolution. This is seen from the

energy released in different sections where "c" is the location of the Bragg peak.

The alignment of the signals in each IC section is done through the off-line calibra-

tion by using a charge integration device and thus gain matching of different sections is

obtained. In order to use total IC, resolution has to be preserved even after summation

of different sections.

Gas pressure is adjusted in such a way that reaction products are fully stopped. The

highly bent trajectories which cross the side sections (A and B columns in Fig. 3.5) are

discarded since the total energy of these ions is not correctly measured.

3.2.2 Trajectory reconstruction

Identification of ions in atomic charge and mass is based on trajectory reconstruction

which uses equations of motion in magnetic elements and informations measured with

PRISMA (calibrated like presented in subsection 3.2.1). Trajectories are in the first

approximation planar in the PRISMA plane (the xy plane in the PRISMA frame of

reference in Fig. 3.7) and magnetic elements are considered to be ideal. In the Chapter 4

study of the PRISMA response function will be presented and this subject will be further

discussed.

37



Chapter 3. The experiment and data analysis

Figure 3.7: Frame of reference in the PRISMA system [72].

Motion of ions in magnetic fields

From the distances between different elements of the spectrometer and the knowledge of

forces acting on ions inside magnets, equation of motion of ions can be found.

Motion in the quadrupole magnetic field. The entrance position in the

quadrupole is completely determined by the coordinates of the nuclei given by the start

detector. The quadrupole magnetic field is given by ~B = ~∇Um, with Um = Bmax
ρ yz, and

the force acting on a charged particle is obtained from the Lorentz equation ~F = q~v× ~B.

Resulting magnetic force on an ion moving in the quadrupole has two components:

Fx ≃ qvzbx and Fy ≃ −qvzby. The ion motion inside the quadrupole is a hyperbolic

defocusing motion on the horizontal plane and sinusoidal focusing on the vertical plane

whose main purpose is collection efficiency. Since the length of the quadrupole is known,

it is possible to calculate the coordinates of the reaction products leaving the quadrupole.

From the quadrupole to the dipole, as the magnetic fields are considered to be ideal, the

trajectories follow a straight line [72].

Motion in the dipole magnetic field. Following the previous equation of motion

in the quadrupole field, the entrance coordinates of the ions in the dipole can be found.

The dipole magnetic field bends the trajectories because of the Lorentz force acting on a

charged particle and motion becomes circular with a radius ρ. Since the radial velocity
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of the ions is negligible, it’s possible to consider v as the total velocity of the reaction

products inside the dipole. An important quantity is the bending radius ρ, which can be

written:

ρ=
mv

qB
. (3.2)

A more usual quantity used to describe the motion of a charged particle in a dipole

magnetic field is the magnetic rigidity:

Bρ=
mv

q
. (3.3)

At the exit of the dipole, the ions are no more subjected to the magnetic force and their

trajectories are considered to be straight lines up to the MWPPAC detector.

Ion trajectory reconstruction

Ion trajectory reconstruction takes input experimental parameters, then, event-by-event,

calculates the trajectory of the ions up to the focal plane. Input parameters are entrance

and focal plane positions, time of flight and energy losses in different sections of the IC.

The parameters related to the spectrometer, such as its central angle and the magnetic

field intensities, are set before starting the analysis.

By taking advantage of the very large longitudinal dimension of PRISMA (∼6 m)

with respect to the transversal one (0.2 m) and considering that the fringing fields can be

neglected because of the large dimensions of the magnetic elements, it may be assumed

that the trajectories are planar after the quadrupole, i. e. all trajectories are in horizontal

plane. The trajectories are uniquely determined by two parameters: the bending radius

in the dipole and the ratio of the quadrupole and dipole magnetic fields. Because the

magnetic fields are known, the bending radius ρ remains the only parameter to be searched

for [73].

The procedure starts with the guess value ρ= 120 cm which corresponds to the central

trajectory. If the calculated point in the focal plane lies within a millimetre from the

experimentally measured point, the iteration ends, otherwise it continues with slightly

different ρ. The tracking algorithm searches for parameters that match the experimental

data, among all possible trajectories reaching the focal plane, in the position xP P AC ,

yP P AC with time of flight TOF. Results of trajectory reconstructions are the length of
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the trajectories of the ions L and curvature radius ρ. In addition, by taking into account

the energy loss in different sections of the IC, the range of ions in the IC, R, and the total

energy, E via TOF, can be compared with the total energy measured.

Total path length L of ions in the magnetic spectrometer is obtained by summing

different paths:

L= LMCP +LQ +LQ−D +LD +LP P AC (3.4)

where:

• LMCP is a straight line from the target to the quadrupole entrance

• LQ is a hyperbolic path inside the quadrupole magnet

• LQ−D is a straight line between the quadrupole and the dipole entrance

• LD is a circular trajectory in the dipole magnet in the horizontal dispersion plane

• LP P AC is a straight line in the dispersion plane from the exit of the dipole up to

the focal plane.

The reconstruction of the range of ions R in the IC is performed only after the re-

construction of the trajectory in PRISMA is completed. Since the IC is segmented, the

treatment is the following:

• all the events with the path in the IC not compatible with the reconstructed trajec-

tory in PRISMA are rejected by looking at the sections that fired

• the total energy E is obtained by summing energy losses ∆Ei of each of the sections

E =
∑9

i=0 ∆Ei

• a weighted distance Lw between MWPPAC and each IC section is constructed by

using the ∆Ei as weight. An estimate of the range R of the ions is obtained from

the weighted distance by subtracting the MWPPAC-IC distance, LP P AC−IC :

R = Lw −LP P AC−IC =
∑

iLi∆Ei

E
−LP P AC−IC . (3.5)

3.2.3 Ion identification

Identification of nuclear charge Z

The identification of nuclear charge Z is obtained through the measurement of energy

loss ∆E in the IC, which also provides the total energy E. IC operates in proportional

regime where the integrated charge is proportional to energy loss. The rate of energy loss
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of a charged particle passing through a medium is described by the Bethe-Bloch formula:

− dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[

ln(
2meγ

2v2Wmax

I2
−2β2)

]

(3.6)

with re classical electron radius (2.817 ·10−13 cm), me electron mass (9.11 ·10−31 kg), Na

Avogadro’s number (6.022 ·1023 1/mol), I mean excitation potential, Z nuclear charge of

absorbing material, A relative atomic mass of absorbing material, ρ density of absorbing

material, z charge of incident particle in units of e, β = v/c velocity of the incident particle,

γ = 1/
√

1 −β2 and Wmax maximum energy transfer in a single collision. Formula can be

approximated for the non-relativistic particles and for the same absorbing material:

dE

dx
∼
MZ2

eff

E
(3.7)

where M is atomic mass, Zeff effective nuclear charge of an ion and E energy. ∆E, E

and R obtained with PRISMA correspond to dE, E and dx in Bethe-Bloch equations.

Ar

Cl
S

KCa

Figure 3.8: The matrix of range versus energy which is used for the Z identification. Figure
shows this matrix for 40Ar+208Pb reaction at Elab = 260 MeV at 54◦. The most intense line
corresponds to the Ar ions scattered by the target. Proton pick-up and stripping channels are
seen above and below, respectively, from (+4p) Ti to (−6p) Mg.

Ions reach the IC with a broad range of kinetic energies and directions. To get the

desired Z resolution for all reaction products reaching the IC, one has to properly take

into account the direction followed by the different ions. One can estimate the path

(range) from the signal of each subsection and the position information as explained in

the subsection 3.2.2. Since range is result of trajectory reconstruction obtained by taking
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into account the direction of ions, we decided to present range versus energy matrix in

Fig. 3.8. Generally with this matrix the bent ("tilted") trajectories are better recovered.

Separation between different Z is clearly visible. The most intense line corresponds to

the Ar ions (with the highest cross section of the 40Ar elastically scattered). The other

isotopic chains are identified according to the Bethe-Bloch equation. For a fixed total

energy E, the atomic number increases with ∆E, while it decreases with R, thus proton

pick-up and stripping channels appear above and below the Ar line, respectively.

Identification of atomic charge states q

The individual atomic charge states can be separated in the two dimensional matrix ρβ

versus energy E. By combining different relations one can identify atomic charge states.

By taking into account influence of Lorenz force on the ion trajectory, that is, magnetic

rigidity Bρ:
Av2

ρ
= qvB (3.8)

Bρ=
p

q
=
Av

q
(3.9)

and expression for kinetic energy of ion:

E =
1
2
Av2 (3.10)

one gets:

q =
2
B

E

vρ
. (3.11)

In fact, by taking into account Eq. 3.11, the different distributions seen in Fig. 3.9 are

associated to different charge states, which can then be selected by specific gates. Value

of charge states increases with E for a fixed ρβ. Both, curvature radius and velocity

(obtained from the ratio of length and TOF), are reconstructed event-by-event to account

for optical aberrations.

The atomic charge states are identified by comparison with the calculated charge state

distribution. The average equilibrium charge state distribution of heavy ions for a beam

of ions of nuclear charge Z and energy E expressed in MeV and atomic mass A according
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18

17 16+
15+

14+

Figure 3.9: ρβ versus energy matrix used to identify different atomic charge states for the Ar
ions. In the studied reaction most intense charge state was 16+.

to Shima [75] is following empirical formula:

q/Z1 =
[

1 −e−1.25X+0.32X2−0.11X3
]

[

1 −0.0019(Z2 −6)
√
X+ 0.00001(Z2 −6)2X

]

(3.12)

where Z1 and Z2 are the ion and target foil atomic numbers, while X is the reduced ion

velocity equal to X = v/(v′ ·Zn
1 ) = v/[3.6 × 108(cm/s)Z0.45

1 ]. The distribution of charge

states is given in Table 3.2. The good agreement between calculated and theoretical

distribution for the 40Ar ions is represented in Fig. 3.10.

Table 3.2: Charge state distribution for 40Ar calculated according to Eq. 3.12.

q 14 15 16 17 18

% 3.9 19.8 41.1 29.2 5.6

From Lorenz force (Eq. 3.8) we obtain the quantity BρTOF/L which is proportional

to the ratio A/q. Since velocity of ions is around v/c = 10%, by taking into account

relativistic formula TOF = TOF
√

1 −β2 one obtains:

A

q
=Bρ

TOF
√

1 −β2

L
. (3.13)

By plotting this quantity as a function of the xP P AC position, as shown in Fig. 3.11A for

Ar (Z = 18), a clear discrimination with characteristic repetitive pattern of the different
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Figure 3.10: The experimental (red) and calculated (grey) atomic charge state distribution for
the 40Ar ions.

A/q is obtained. The large acceptance of the spectrometer is reflected in the fact that

different atomic charge states cover several sections in the focal plane, which are all joined

together in the figure.

(A) The xP P AC position on the focal plane ver-
sus A/q.
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(B) Projected A/q spectrum.

Figure 3.11: A/q for the Ar isotopes.

Selection (extraction) of charge states depends strongly on the energy resolution of

the IC, which is more critical for heavy ions and low kinetic energies. Without the

unambiguous identification of q, spurious mass peaks are produced which contribute to

the background in the mass spectra. The good identification of atomic charge states in

the present case resulted in clear mass spectra.
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Figure 3.12: Masses versus the focal plane position for the Ar isotopes.

Reconstruction of the mass A

After the identification in atomic number Z and atomic charge state q, mass numbers

can be assigned by multiplying A/q values with q (A = qBρ/v). This procedure is then

repeated for every atomic number. The example shown in Fig. 3.12 for the Ar isotopes

demonstrates background clear spectra and good resolution achieved.

To assure the exact mass numbers in atomic mass units, one has to check A/q ratio.

For example, for the most intense mass, 40Ar, with q calculated as in Table 3.2, the exper-

imental value A/q has to match the calculated one, thus A/q axis has to be recalibrated

until exact value is obtained. Any error in the q assignment would produce a strong shift

in a mass spectra that can be easily noticed.

Final mass spectra for observed isotopes are plotted separately for all three measured

angles in Fig. 3.13. A resolution of ∆A/A≈ 150 for every Z has been reached. Also, not

only proton stripping but also proton pick-up channels are visible.

3.2.4 The CLARA data analysis

Each of 25 Ge clover detectors of the CLARA array gives following signals:

• energy deposited in each of the four crystals (on 4 and 20 MeV scale)

• time signals for each of the four crystals

• total energy deposited in BGO shield.

In the 40Ar+208Pb experiment 22 clovers were active.

After the alignment of energy and time signals, the energy signals were calibrated

crystal by crystal with 152Eu radioactive source. Linear calibration curve relating energy
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Figure 3.13: Mass spectra for three measured angles. Channels from (+4p) to (−5p) have been
identified.

to channel number is derived for all crystals being the degree of non-linearity quite small.

Figure 3.14 shows γ spectrum of 152Eu source obtained as a sum of all calibrated Ge

crystals.
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Figure 3.14: The γ spectrum of the 152Eu radioactive source obtained as a sum of all calibrated
Ge crystals.

Figure 3.15: Scheme of a nuclear collision a + A −→ b + B.

While γ transitions from radioactive sources are emitted in rest, those from reaction

products are emitted while they are moving. Energy of emitted radiation is due to Doppler

effect shifted as compared to the real, tabulated value and needs to be corrected. Non-

relativistic relation connecting the real energy Eγ0 and detected one Eγ is:

Eγ = Eγ0

(

1 +
vb

c
cosθ

)

(3.14)

where θ is the angle formed by the velocity vector vb of the nucleus and axis of the

detector. Difference between Eγ0 and Eγ has its maximum at 0◦ and minimum at 180◦.

The direction of the moving ion and its velocity is measured with PRISMA. Angular

position of each Ge detector in the CLARA array is known (see Table B.1 in Apendix B).

With this it is possible to make event-by-event Doppler shift correction of γ rays emitted

by the projectile-like products that are identified in PRISMA.
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Figure 3.16: Gamma spectrum for 40Ar without any Doppler correction and the same spectrum
Doppler corrected for 40Ar and 208Pb.

Assuming a binary collision between a projectile a impinging on a target nucleus A

at rest, a+A−→ b+B, absolute velocity and direction of partner-like ions B, vB and θB

in Fig. 3.15, can be identified from laws of conservations and kinematics. In this case

vB and θB of the binary partner can be calculated and applied for Doppler correction of

γ rays of heavy (not detected) partner on event-by-event basis. Average velocity in this

reaction for the projectile-like nuclei is v/c= 10% and for the partner-like is v/c= 2%.

Figure 3.16 shows γ spectrum detected in coincidence with 40Ar without any Doppler

correction and the same spectrum Doppler corrected for 40Ar and 208Pb. Only after

Doppler correction has been applied 2+ → 0+ transition in 40Ar can be recognized. In

that panel broad peaks correspond to 208Pb not Doppler corrected.

Dominant characteristic of HPGe detectors is their excellent energy resolution. Res-

olution is normally determined by three factors: the inherent statistical spread in the

number of charge carriers, variations in the charge collection efficiency and contribution

of electronic noise [76]. Which of these factors dominate depends on the radiation and the

size and quality of detector. Resolution obtained for the CLARA array with the 152Eu

radioactive source as a function of energy, together with the resolution of the most in-
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Figure 3.17: Resolution obtained for the CLARA array with the 152Eu radioactive source (red
points) and most intense γ rays from the Ar isotopes (blue points).

tense γ rays from the Ar isotopes, is given in Fig. 3.17. The width of the peaks generally

worsens when one applies Doppler corrections and sums over many Ge detectors, taking

into account the Doppler broadening due to the finite opening angle of detectors.

Coincidence requirement with PRISMA and background reduction

By selecting a specific nucleus in PRISMA, the γ spectrum belonging to that particular

channel is obtained. Random coincidences can be reduced by time of flight coincidence

requirements. Figure 3.18 shows the coincidence time spectrum between PRISMA and

CLARA. Background that is seen belongs to random events recorded in CLARA. By

selecting only events in the peak, the level of background can be significantly lowered as

demonstrated in Fig. 3.19.
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Figure 3.18: Ge-PRISMA coincidence time spectrum for θP RISMA = 54◦.
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Figure 3.19: Reduction of background with condition on the Ge-PRISMA coincidence time
spectrum (M0 gate corresponds to red surface in Fig. 3.18). 40Ar γ spectrum without (black)
and with (red) condition on.

Ge detectors of CLARA are surrounded by BGO scintillators large enough to inter-

cept most of the photons escaping from Ge detector and with a good efficiency for their

detection. In this way all events that release part of the energy in BGO are rejected.
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Figure 3.20: The γ spectrum for 40Ar considering the contribution from each crystal separately
(black line) and in add-back mode (red line). Add-back procedure further lowers background
contribution and increases photopeak intensity.

In the clover detectors the energy signals from 4 crystals are acquired independently,

and since one γ ray can interact with more than one crystal, add-back algorithms are used

to determine the γ-ray energy. This also improves the efficiency for relatively high energies.
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The effect of the add-back method can be seen in Fig. 3.20. This method improves the

photopeak efficiency and helps in reducing background from Compton scattering.

CLARA efficiency
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Figure 3.21: The relative efficiency of the CLARA array (red dots). Add-back procedure has been
previously applied. Experimental data have been fitted with the expression ǫ = exp(−714.9 +
573.9ln(x) − 182.0(ln(x))2 + 28.8(ln(x))3 − 2.3(ln(x))4 + 0.072(ln(x))5) and result is presented
with black line.

Measurement of absolute intensity of γ rays requires knowledge of the detection effi-

ciency. Detection efficiency is defined as the ratio K/N between the number K of detected

photons over the number N of emitted photons. Again the 152Eu source has been used

to construct an empirical efficiency versus energy curve as in Fig. 3.21.
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4 Study of the transmission of
the PRISMA spectrometer

The understanding of the reaction mechanism depends strongly on the determination of

the absolute cross sections. This implies understanding of the ion transmission which for

large solid angle spectrometers depends in a complex way on the entrance positions and

momenta of the reaction products. Therefore, to determine the transmission one needs a

Monte Carlo simulation of ion trajectories, where the kinematics of the reaction and the

geometry of the magnetic elements and detectors are taken into account. In this Chapter

a study of the response function of the large acceptance magnetic spectrometer PRISMA

for transport of ions detected in the 40Ar+208Pb reaction is presented.

4.1 The response function of the PRISMA spectrom-

eter

The aim of the transport study in PRISMA is to find a response function which allows to

correct the angular distributions, and subsequently the total cross sections, from biases

or cuts arising from ion transport effects. The study is performed in several steps:

• creating a uniform distribution of input events

• tuning of the magnetic fields

• transport of the uniform input distribution event-by-event

• definition of the response function.

4.1.1 Monte Carlo simulation code

The response function study is based on a Monte Carlo simulation code. The ion positions

at the focal plane and their trajectories are calculated event-by-event on the basis of
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detailed knowledge of magnetic (with fringing) fields, together with geometry of detectors.

The energy losses in the different mylar windows of the MWPPAC and IC detectors of

PRISMA are taken into account and the energy loss in the IC is treated in the conventional

approximation of the motion of a charged particle in a gas.

The Monte Carlo method is a numerical technique for calculating probabilities and

related quantities by using sequences of random numbers [77]. As a first step one uses

event generator program that generates values of the velocity and energy of particles. The

output of the event generator, i.e. velocity vectors and energy of the generated particles,

is then used as an input for a detector simulation program.

The procedure employs a ray-tracing code, which uses numerical integrators to deter-

mine the trajectories of individual rays through the electromagnetic fields, the latter are

being calculated by means of the Finite Element Method. For this reason, the reliability of

the simulation depends on a correct calculation of the magnetic fields and corresponding

fringing fields [72, 78]. Finally, a data file containing all the parameters measured with

PRISMA is produced with a simulation code and the file can be analysed with the same

code used to analyse experimental data.

4.1.2 Magnetic fields

Ion identification in the PRISMA spectrometer is based on ion trajectory reconstruction

procedure that is using informations measured with refined detectors which, besides en-

ergy loss and timing, give necessary position information along ion trajectory. As the

reconstruction relies on precise determination of the magnetic and fringing fields, the

tuning of the magnetic fields used in the simulation procedure is a crucial point in the

response function study. Thus, the first step is to calculate magnetic fields and to esti-

mate the force that acts on the ion that is moving through the spectrometer. To adjust

the value of the magnetic fields, a simple procedure has been used, based on the assump-

tion that, under the same physical conditions, the charge state deflection is the same in

simulation and in the experiment.

The tuning of the magnetic fields needs to proceed in two steps, one magnet (i.e.

quadrupole or dipole) at a time. First a small number of events following isotropic dis-

tribution is created with fixed kinetic energy. The same ion with the same kinetic energy

is also considered in the experiment, so a direct comparison of the two distributions can
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4.1. The response function of the PRISMA spectrometer
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(B) Simulated distribution.

Figure 4.1: Charge state distributions of 40Ar with Ekin = 222 MeV as a function of positions
at xMCP and xP P AC .

be made at the focal plane. This comparison is illustrated in Fig. 4.1A (experimental

charge state distribution) and Fig. 4.1B (simulated one) for 40Ar with fixed kinetic en-

ergy as a function of the horizontal coordinates xMCP and xP P AC . The quadrupole field

vanishes along the optical axis of PRISMA, so by comparing projections of the simulated

and experimental distributions around xMCP = 0 mm, one focuses on the dipole field

effects only. It is found that small adjustment of the dipole field, of the order of 3% with

respect to the set value, is needed to match the simulated charge state distribution with

the experimental one (see Fig. 4.2A for 40Ar and Fig. 4.2B for 41Ar).

The same procedure is then applied outside optical axis in order to tune the value of

the quadrupole field (see Figs. 4.3A and 4.3B). However, adjustment of the order of 10%

is needed to match the experimental distribution. This is due to a combined effect of not

optimal calibration between the values of the currents and the magnetic quadrupole field,

and a rather schematic reconstruction of the trajectory in the spectrometer [72]. Final

values of dipole and quadrupole fields used in the simulation are listed in Table 4.1.

Table 4.1: The experimentally set and simulated values of the dipole and quadrupole magnetic
fields.

40Ar+208Pb DIPOLE QUADRUPOLE

Angle Bset Bsim (∆B)/Bset [%] Bset Bsim (∆B)/Bset [%]

46◦ 636700 655000 2.9 561800 505600 -10.0

54◦ 619900 642000 3.6 546969 497000 -9.1

59◦ 612800 636000 3.8 540700 488000 -9.7
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Figure 4.2: The comparison of dipole fields along optical axis. Top panels display the experi-
mental projection of charge states on the focal plane, while the bottom panels show the same
projection in the case of simulated events. A good agreement is obtained in the position of the
dominant atomic charge states in the focal plane, as well as in their relative strength, especially
for 41Ar.
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Figure 4.3: The comparison of the quadrupole field strengths, where the trajectory outside
optical axis is chosen. See Fig. 4.2 for more details.

4.1.3 The transport of the uniform distribution

After magnetic fields have been tuned to match the experimental conditions, two million

events of 40Ar ions have been randomly generated with uniform kinetic energy distribution

and isotropic angular distribution, from a point-like source placed at the target position
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4.1. The response function of the PRISMA spectrometer

in the laboratory frame. The kinetic energy Ekin has been varied in the interval 100 -

250 MeV, corresponding to the momentum acceptance of the spectrometer for 40Ar ions.

Events have been generated with spherical geometry, with the angular range slightly larger

than the acceptance of the PRISMA spectrometer, which is defined by the entrance area of

the quadrupole magnet. θlab and φlab are the azimuthal and polar angle in the laboratory

frame with respect to the beam axis. To remind, PRISMA has geometrical acceptance

of θlab = ±6◦ and φlab = ±11◦. At the entrance of quadrupole, the ions follow the charge

states distribution according to the semi-empirical formula of Shima (Eq. 3.12) [75].

This distribution is then transported by the ray-tracing code up to the focal plane of the

spectrometer.
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Figure 4.4: The 40Ar distribution in θlab and φlab of events before and after the transport through
PRISMA. Input distribution consists of two million events with kinetic energy between 100 and
250 MeV. For comparison see the experimental matrix in Chapter 3, Fig. 3.2B.

Figure 4.4A shows incoming distribution of ions on the MCP detector, while Fig.

4.4B represents the same distribution after the transport to the focal plane. It is clearly

visible that the spectrometer mostly affects the transport at the border of the acceptance

region. It is important to notice how the distributions are symmetric in φlab. Also, it

can be noticed that the active area of the MCP detector is larger than the acceptance of

the spectrometer, i.e. the quadrupole entrance window. Due to this, a number of ions

reaching the focal plane is less than half of the incident ions. This once again points to

the importance of the precise determination of the response function of the spectrometer

in order to have correct estimate of both the absolute number of events and the angular
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Chapter 4. Study of the transmission of the PRISMA spectrometer

distribution of every reaction channel under study.
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Figure 4.5: Transported kinetic energy Ekin as the function of dispersion angle θlab for different
charge states labelled in panels for 40Ar ions.

The study of the transport of the specific charge states can provide further informations

about the response of the spectrometer. Figure 4.5 shows transported kinetic energy Ekin

as a function of dispersion angle θlab for different atomic charge states of 40Ar ions. For

each charge state a non uniform distribution is obtained at the focal plane. The upper

cut is due to the momentum acceptance of the spectrometer which defines the maximum

values of the transported kinetic energies, while the lower diagonal cut is related to the

minimum momentum acceptance. This minimum value depends on dispersion angle θlab

which may be connected with the transport of different energies (momenta) in dipole.

Figure 4.6 shows angular distributions after transport through PRISMA for different

charge states, while Fig. 4.7 for different kinetic energies for the charge state 17+. A

strong dependence on the kinetic energy (momentum) of the incident ions and on charge

states is clearly visible.
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Figure 4.6: Transported θlab − φlab matrices for different atomic charge states.
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Figure 4.7: Transported θlab −φlab matrices for different kinetic energy cuts for charge state 17+.
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Chapter 4. Study of the transmission of the PRISMA spectrometer

4.1.4 The response function

The response function of PRISMA has been defined as the ratio between the output

distribution of events detected on the focal plane No and the input distribution Ni, both

given as functions of (Ekin, θlab,φlab): R(Ekin, θ,φ) = No
Ni

. Due to the symmetry, R can be

integrated over φlab. Inverse of this matrix is the correction matrix, f(Ekin, θlab), that is

applied to the data detected at the focal plane. This function provides event distributions

corrected by the response of the spectrometer and is used to obtain cross section in the

following way:
d2σ

dEkindθlab
=

(

d2σ

dEkindθlab

)

exp

×f(Ekin, θlab). (4.1)
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Figure 4.8 shows correction matrix obtained considering the entire charge state dis-

tribution of 40Ar ions. Projections of θlab for different kinetic energy intervals are shown
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4.1. The response function of the PRISMA spectrometer

in Fig. 4.9. As expected, in all three cases the largest corrections are at the borders

of the angular acceptance, with large differences in absolute values depending on the ki-

netic energy of the incoming ion. It is important to notice that corrections are made on

bi-dimensional matrices, and correction factors maybe be large both in θlab and energy.
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Figure 4.10: The uniform distribution of 40Ar. Black line represents input distribution, before
the transport, blue open points represent transported distribution and the red full points are
distribution corrected for the transmission of PRISMA.

To demonstrate the correctness of the described procedure we plotted in Fig. 4.10

projection of the uniform distribution before and after the transport, together with the

transport corrected one. The borders (especially the largest angle) are not perfectly

reproduced due to the trajectories which are not entering into the spectrometer since the

input distribution is slightly larger than the quadrupole entrance.

Error induced by the response function can be estimated if one builds, for each of the

studied channels, several response functions. This can be done by calculating the average

value of nearby cells with different smoothing procedures, thus obtaining different response

functions starting from the original one. Then the comparison of these different response

functions is used to estimate the error. The average value depends on the technique and

the size of the average bin. Two techniques are used:

1. Gaussian smoothing, which is a smoothing procedure that is using a Gaussian

function to calculate the average value of the neighbouring cells in the matrix.

2. Moving average, is a calculation which analyses data points by creating a series

of averages of different subsets of the full data set.

Finally, 5 different values of the correction factor for each response function cell are

obtained:
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Chapter 4. Study of the transmission of the PRISMA spectrometer

• the original correction factor

• 2 moving average values (3 and 5 channel boxes)

• 2 Gaussian smoothing values (3 and 5 channel boxes).

The average of this 5 values gives the final correction factor. The total error is this one

in quadratic sum with the statistical error of experimental data.

The same procedure has been applied for the construction of the response functions

for different ions (Ca, K, Ar, Cl, S isotopes). The largest total correction factor (the ratio

of the integral of transported corrected events and transported events) is obtained for

proton pick-up and neutron stripping channels, since these channels are mostly affected

by transport in PRISMA. Result is shown in Fig. 4.11. The difference is partly coming

from different kinetic energies of the ions, together with magnetic fields that were adjusted

for Ar isotopes (to remind it was adjusted to have the most intense charge state 16+ of

40Ar in the center of the focal plane). The transport of ions in magnetic fields depends

on p/q (or A/q) and the transport of proton pick-up channels is affected more than the

stripping ones, since the calculated charge state distribution (and the A/q ratio) deviates

more from the 40Ar channel.
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Figure 4.11: The total correction factors obtained for different channels.

A 100% intrinsic detection efficiency is assumed over the whole PRISMA angular

range, which is quite reasonable for medium-mass systems.
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4.2. The response function test

4.2 The response function test

The response function R has been tested with the input distributions calculated with

the semi-classical model GRAZING [4–6]. As it has been demonstrated [1] this model

well reproduces the multinucleon transfer reactions in absolute values of cross sections,

shapes of angular distributions and total kinetic energy loss distributions. In particular,

one nucleon transfer channels, (+1n) and (−1p), are very well reproduced. Thus as a first

check of the response function we constructed the input events calculated by GRAZING,

with energy and angular distributions similar to the experimental ones.
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Figure 4.12: Input GRAZING distribution and distribution after the transport for (+1n) and
(−1p) channels.

One million events have been produced with a Monte Carlo code for (+1n) and (−1p)

channels according to (Ekin, θlab) calculated with GRAZING and transported with the ray-

tracing code to the focal plane of PRISMA. Two-dimensional matrices showing input and

transported distribution are shown in Fig. 4.12. The projections on the θlab axis (left) and

the Ekin axis (right) are displayed in Fig. 4.13. In each panel the solid lines are the input

distributions calculated with GRAZING, the blue points correspond to the transported
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Figure 4.13: Projections of the dispersion angle θlab and the kinetic energy Ekin with errorbars
for (+1n) and (−1p) channels before (black solid line) and after the transport (blue points), and
also corrected with the response function (red points).

distributions at the focal plane and the red points are events after the correction function

has been applied. The excellent agreement between the original input calculations and

the corrected distributions of events demonstrate the validity of the response function,

and of the applied procedure.
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5 Experimental results

This Chapter presents main experimental results from the 40Ar+208Pb multinucleon trans-

fer reaction performed with PRISMA-CLARA set-up: elastic cross section, angular dis-

tribution and total kinetic energy loss distribution of different transfer channels, together

with energy and angle integrated cross sections. The results have been compared with

the GRAZING calculations [4–6], and this comparison will be discussed in Chapter 7.

5.1 Yields
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Figure 5.1: Energy and angle integrated yields for different channels produced in the 40Ar+208Pb
multinucleon reaction. Only channels with significant statistics are presented. The strongest
channels, from two proton pick-up to two proton stripping, will be further discussed.

Energy and angle integrated yields for different channels produced in the 40Ar+208Pb

multinucleon reaction are shown in Fig. 5.1. The 40Ar+208Pb reaction shows quite sym-
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Chapter 5. Experimental results

metric distribution around the projectile nuclei in the sense that not only the favoured

neutron pick-up and proton stripping channels, but also the neutron stripping and proton

pick-up channels are populated. This can be understood from the simple Q-value consid-

erations which are essentially dominated by the properties of the lighter projectile [12].

Since 40Ar is on the right side of the stability line, toward neutron-rich nuclei, also proton

pick-up and neutron stripping channels start to be open, being still the proton stripping

and neutron pick-up channels stronger.
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Figure 5.2: Energy and angle integrated yields for different neutron pick-up (left panel) and
neutron stripping (right panel) channels as a function of number of transferred protons.

The same yields are plotted in Fig. 5.2 separately for neutron pick-up and stripping

channels as a function of number of transferred protons. Channels presented on the left

panel show regular behaviour especially when the proton stripping channels are involved,

i.e. for channels (−xp+yn). The crossing starts for the neutron pick-up channels in the

proton pick-up side being the most pronounced in the point where (+1p) crosses with

(+1p+ 1n) and (+1p+ 2n) channels. The same irregular, but even more pronounced,

behaviour can be seen on the right panel, especially for channels where three or more

neutrons are transferred together with the large number of protons. These crossings of

different lines can indicate the importance of secondary processes like evaporation. The

evaporation is expected to contribute more in this region since yield can be severely

affected with even a small contribution of nearby more neutron-rich channel with larger

cross section.

The same was observed for the 40Ca+208Pb reaction [30] where the regular pattern

observed for proton stripping and neutron pick-up was compatible with a successive mech-

anism where neutrons and protons acted independently. The irregular pattern that was
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5.2. The TKEL distributions

observed for neutron stripping channels indicated neutron evaporation process that influ-

enced the final isotopic distribution especially for massive proton transfers (∆Z > 3).

The behaviour observed on the left panel, for (+xp+ yn) channels, may arise from

significantly different energy distribution which may be attributed to the presence of

different mechanism, like deep inelastic collision, or some additional degrees of freedom

like correlations. The effect of different mechanisms can be studied with the total kinetic

energy loss distributions (TKEL). It would be interesting to see if these channels that

show irregular behaviour also have different TKEL. Thus, as a second step we looked

more closely at the TKEL distributions of different channels.

5.2 The TKEL distributions

In a binary reaction a+A → b+B, where a is the projectile nucleus that impinges on

the target nucleus A that is at rest, the target-like and the projectile-like nuclei, B and b

respectively, are produced. Total kinetic energy before and after the collision is Ki =Ka

and Kf =KB +Kb, so the reaction total kinetic energy loss can be defined as:

TKEL=Ki −Kf =Ka − (Kb +KB) (5.1)

where kinetic energy of the projectile nucleus Ka is known, kinetic energy of the projectile-

like nucleus Kb is measured in PRISMA, and kinetic energy of the target-like KB is

reconstructed. Q-value is defined as:

TKEL= −Q. (5.2)

For a binary process, and taking into account the conservation of energy, one gets:

mac
2 +mAc

2 +Ka =mbc
2 +mBc

2 +Kb +KB +E∗
b +E∗

B (5.3)

−Q=Ki −Kf = (mb +mB −ma −mA)c2 +E∗
b +E∗

B = −Qgs +E∗
b +E∗

B (5.4)
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where E∗
b and E∗

B are excitation energies of two nuclei produced after the collision. The

quantity Qgs, which is the ground-to-ground state Q-value, is then well defined as:

− (mb +mB −ma −mA)c2 =Qgs (5.5)

and corresponds to the TKEL of a reaction leading to the nuclei b and B in their ground

states. The calculated values are plotted in Fig. 5.3.
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Figure 5.3: The ground-to-ground state Q-value. The arrow indicates the position of the opti-
mum Q-value.

Table 5.1: The Q-optimum values calculated with Eq. 1.8 in Chapter 1.

Channel Q-optimum [MeV] Channel Q-optimum [MeV]

(−2n) -0.67 (−2p) -16.95

(−1n) -0.34 (−1p) -7.89

(+1n) 0.36 (+1p) 6.90

(+2n) 0.72 (+2p) 12.95

The matching between incident and outgoing channels, where heavy-ion induced direct

transfers have the largest cross section, is characterized by the optimum Q-value. In the
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5.2. The TKEL distributions

first approximation it can be expressed as:

Qopt ≈ Ecm

[

ZbZB

ZaZA
−1

]

(5.6)

and it is plotted in Fig. 5.3 with arrows. The optimum Q-value is also calculated with

Eq. 1.8 for some channels and these are listed in Tab. 5.1. Notice that for (−1p) and

(+1n) transfer channels Qgs and Qopt are better matched.

The Q-value or TKEL distributions thus define the excitation energies of the two

nuclei produced in the reaction. Figures 5.4, 5.5 and 5.6 show as black histograms TKEL

distributions for all three PRISMA angular settings for different reaction channels. Figure

5.5 with PRISMA at 54◦ (the grazing angle) shows also GRAZING calculations which

will be discussed in Chapter 7. The ground-to-ground state Q-value is labelled with red

line for all channels. The optimum Q-value is labelled with blue arrow. To remind,

one detects secondary fragments and the TKEL spectra are constructed assuming binary

reactions. The excitation energies of both light and heavy fragments, as well as their

mutual excitation, are embedded into these TKEL distributions.

One can clearly follow the evolution pattern as a function of number of transferred

neutrons and protons. It can be seen that the distributions for pure neutron transfer

channels have major contribution close to the optimum Q-value (which is ≈0 MeV) with

an increasing strength of large energy loss components as more and more neutrons are

transferred. The trend is similar for channels including transfer of protons, with a faster

growth of large TKEL components. As more nucleons are transferred, TKEL is changing

and moving away from the ground-to-ground state value to higher losses. Even more, for

massive transfer channels, especially in the proton pick-up region, the TKEL distributions

look quite similar, with the shape which is almost channel independent, and can be

described with the wide distribution centred at large energy losses. Of course, in these

cases, in the interpretation of the spectra one should keep in mind the possible effects of

the spectrometer, especially its energy acceptance.

Looking at Figs. 5.4, 5.5 and 5.6 one can follow how the TKEL distributions evolve

while going from forward to more backward angles. To better follow these changes, we

separated the TKEL distributions for selected channels in Fig. 5.7. One can notice two

kinds of events. One is with the pronounced peak at small TKEL, which will be labelled

as quasi-elastic (QE). The other is characterized by large TKEL, forming a long tail in
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Figure 5.7: TKEL distribution of selected channels for all three PRISMA angular settings. It is
important to notice that excitation energy of both light and heavy partner is embedded into the
TKEL distribution. Red vertical line indicates position of the ground-to-ground state Q-value,
Qgs.

the distribution. Since incident energy is ≈30% above the Coulomb barrier, it is assumed

that these large TKEL are associated with strongly deformed configurations and they will

be labelled as deep inelastic collision (DIC). This assumption will be tested later.

A pure quasi-elastic scattering is recognized by a well defined peak in TKEL. This

situation is present here in the neutron transfer channels. The deep inelastic collisions

usually have large transfer of energy with a broad distribution since a large amount of

kinetic energy is dissipated into internal excitation energies of two emerging fragments

[79]. This kind of behaviour can be responsible for the formation of long tails, or additional

peak-like structure. Even if generally there is a difference in the mean energy loss values

of these two cases, it is difficult to disentangle them since their overlap may be significant.

However, it is expected that DIC contributes more at more forward angles which will

be discussed in more details in next section. One can notice, for example, that in the

case of (−1n) channel, the second wide peak is better separated from the narrow peak at

small TKEL at the most forward measured angle, while for the most backward measured

angle the overlap of these two structures is much stronger. In addition, the large energy

loss component becomes more pronounced as more particles are transferred, especially at

forward angles (see for example (−1p−1n) channel in Fig. 5.7 or Ca isotopes in Fig. 5.4).
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Chapter 5. Experimental results

5.3 Quasi-elastic and deep inelastic components

To better discuss the structure of these two components seen in the TKEL distributions,

we construct the differential and total cross sections trying to separate them. Large dy-

namic range of the PRISMA spectrometer allowed, to some extent, to detect and study

both components, QE and DIC, with the same magnetic field settings. As already dis-

cussed, a clear distinction between quasi-elastic and deep inelastic reactions on the basis

of the amount of energy or mass transfer is not easy to make since there is a smooth tran-

sition between them (i.e. no sharp separation) [10]. This type of study was performed

in Refs. [79] and [80] where the 48Ti+208Pb, 64Ni+208Pb and 80Se+208Pb reactions were

measured at energies slightly above the Coulomb barrier also at forward angles.
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Figure 5.8: Wilczynski plots (i.e. Ekin versus θlab) for the indicated transfer channels. The
contours are drawn in all the frames, every 200 µb/sr/MeV starting from 50 µb/sr/MeV.

Wilczynski plots (i.e. Ekin versus θlab) for the indicated channels are displayed in

Fig. 5.8 and show the two-dimensional evolution of transfer process. For few-particle

transfer, and especially for neutron transfers, the bulk of the distribution is concentrated

within ∼10 MeV at energies closer to the beam energy, and the peak moves very smoothly
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5.3. Quasi-elastic and deep inelastic components

from the backward towards forward angles. Qualitatively this fact supports the idea that

neutrons behave as independent particles in the transfer process. As the reaction proceeds

with a larger number of transferred nucleons, events spread in energy. A shift of the

distribution is seen in energies from backward to forward angle towards lower values that

indicates that deep inelastic events with large losses of energy contribute in multinucleon

transfer.

The two components present in the TKEL spectra were separated for each scattering

angle with Q-value cuts in the TKEL-A matrix. The peak below TKEL ∼20 MeV was

labelled as QE, and the one above as DIC. This limit was adjusted according to the

ground-to-ground state Q-value, in order to cover ∼20 MeV range. This method has been

tested by varying different approaches for the separation of two distributions. We tried

to separate these two components in the two dimensional TKEL-A matrix, and with the

fitting procedure by using two Gaussian distributions in the TKEL spectra, as well as

with a sharp cut in the same spectra. Results of different approaches are very similar.
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Figure 5.9: The mass distributions of three dominant channels for entire TKEL (left panel), for
the low energy losses (central panel) and for the large energy losses (right panel).

Figure 5.9 shows mass distribution for entire TKEL range (left panel), and for small

(middle) and large (right) energy losses separately. For these few nucleon transfer chan-

nels, looking at the low TKEL components, one sees asymmetric mass distribution typical

for QE processes, with a tendency to become Gaussian-like as more and more nucleons are
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transferred. This tendency becomes more marked for large TKEL. For large energy losses

the shape of the mass distribution is different, much broader, more Gaussian-like. Such

distribution is expected in DIC, where shape is built up from the convolution of the true

distribution and the spectrometer’s selection. One can notice that the strongest channels

in low and high TKEL cuts are quite different. For example, the strongest channel for

potassium isotopes for low energy cut (see Fig. 5.9) corresponds to the pure one proton

pick-up channel, 41K, while for the high energy cut it is shifted to (+1p+ 2n), 43K.

The ratio of the energy integrated yields for low and entire TKEL as a function of

the scattering angle can be seen in Fig. 5.10. At the most forward angle the contribution

of the low TKEL component in the total yield decreases for some channels down to

≈20%. One can also notice that few nucleon transfer channels are mostly associated with

small energy losses. This is especially obvious for (±n) channels. The large energy loss

component becomes more dominant in more complex multiparticle transfers, especially

when protons are involved.
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5.4 The elastic scattering

In elastic scattering the reactants preserve their mass and charge and its investigation

is usually the first important step in any reaction mechanism study [8]. It provides in-

formation on the (outer part of) interaction potential between colliding nuclei and the
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5.4. The elastic scattering

knowledge of its size and shape is the basis of the description of entire scattering pro-

cess. Because of the Coulomb excitation and of the nuclear reactions which take place

at the distance where the ion-ion potential is felt, one has also to take into account the

depopulation of the elastic channel which is accounted for by an absorption [81]. This

is usually done for heavy-ion reactions through the imaginary potential [82] or coupled

channel calculations.

With the PRISMA energy resolution of ∼ 1% it is possible to discriminate between

individual states only in specific cases, for example when closed shell nuclei are involved

[30]. The use of γ arrays may provide a much better energy resolution, but we are missing

the possibility to measure the ground-to-ground state transitions [29]. The coupling of the

PRISMA spectrometer to the large γ-array CLARA was successfully used to extract also

the elastic scattering in heavy-ion collisions through the method illustrated in [72, 73, 83].

Utilization of two particle devices (i.e. PRISMA and a small Si detector), one of

which is at forward angles to monitor the Rutherford scattered ions, eliminates the need

of target thickness and beam intensity information. If we are in proper experimental

conditions (PRISMA set at a proper angle) we can determine the effective solid angle of

PRISMA and its overall detectors efficiency by comparing the measured elastic scattering

and Rutherford calculated one. This solid angle ∆ΩP (θ) is then used to obtain the

absolute cross section for other transfer channels which is equal to:

(

dσ

dΩ

)

ch

=
NP

Nmon

dΩmon

dΩP

(

dσ

dΩ

)R

mon

(5.7)

where NP is number of counts in PRISMA, Nmon number of counts in monitor, dΩP and

dΩmon solid angles of PRISMA and monitor, and
(

dσ
dΩ

)R

mon
is the Rutherford cross section.

Another approach is to use true elastic counts for the normalization purpose. This

procedure, with PRISMA and CLARA, has been tested in Refs. [73] and [83] and it was

adopted here. Such procedure should be reliable, provided that the shape of the spectrum

in coincidence with γ rays is weakly dependant on the γ multiplicity. This fact is fulfilled

for nuclei having low level density close to the ground state.

In the studied case, for each θlab, total kinetic energy loss spectra with PRISMA

alone and PRISMA in coincidence with CLARA have been constructed as shown in Fig.

5.11. The first histogram presented with black line was built with the only requirement
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Figure 5.11: TKEL spectra for 40Ar at three different PRISMA angular settings (angles 46◦, 54◦

and 59◦ are shown in left, middle and right panels, respectively). Black lines (a) correspond to
TKEL spectrum without coincidence with γ rays (PRISMA alone), while the red one (b) is with
additional request of at least one γ ray detected in CLARA. The later have been normalized in
the inelastic tail above 6 MeV. The red shaded area is the subtraction of the two spectra (a)-(b)
and represents the elastically scattered 40Ar on a 208Pb target. The procedure of subtraction
is performed in steps of one degree over the entire entrance angular range. The counts in the
peak, at the most forward angles, are considered to be mainly due to pure elastic scattering.

of detecting the 40Ar ion in PRISMA. The TKEL of PRISMA alone is characterized by

the dominant narrow distribution centred around the Qgs = 0, shown in Fig. 5.11 as

a dotted grey line, with the tails going towards the large energy losses. The dominant

narrow distribution weakens when moving to backward angles, for PRISMA positioned at

angle 59◦, and due to this tails appear to be more prominent in the TKEL distribution.

The second histogram, presented with red line, was obtained requiring at least one γ ray

measured by CLARA. These two spectra are normalized in the tail region (above 6 MeV)

and finally the difference spectrum is obtained by their subtraction (red shaded peaks).
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5.4. The elastic scattering

The elastic peak obtained in such way is centred at TKEL=0 and its width is ∼3-

4 MeV. The left side of the histogram in Fig. 5.11 reflects only the resolution of the

spectrometer. These widths are consistent with the experimental energy resolution which

is determined by the combination of the uncertainty of the energy loss in the target, the

beam energy spread and the intrinsic resolution of the PRISMA spectrometer.

Full width at half maximum is between 3-4 MeV, determined mostly by the spectrom-

eter’s response. First excited state in 40Ar is 2+ at 1.46 MeV, and for the 208Pb is 3−

at 2.61 MeV. This means that the first excited state may even be incorporated in the

peak, but if the subtraction of TKEL in coincidence with CLARA is done properly it is

expected that this doesn’t affect counts in the elastic peak.
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Figure 5.12: Examples of fitting procedure for two different angles.

The number of events are obtained by fitting the red shaded peak in Fig. 5.11 with

the Gaussian distribution or the sum of two Gaussian distributions where it was necessary

to remove the remnant of the tail of the inelastic events, as illustrated in Fig. 5.12. In

this way an elastic differential cross section has been constructed.

In order to ascertain the number of counts, additional analysis was performed. It

was noticed that the lower part of the MCP detector had an inefficient surface segment.

Thus the elastic scattering was constructed by using only the upper part of the MCP.

The number of events was also corrected for shadows of the quadrupole mechanical nail

structures. The fact that the distribution of events has to be symmetric in φlab was used

to correct for the number of lost events. This procedure significantly lowered waiving

behaviour of the angular distributions.

After that the correction factors for the transport of ions through the spectrometer,
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Chapter 5. Experimental results

Table 5.2: Transmission correction factors f(θlab,Ekin) used for elastic scattering as a function
of θlab. These factors were used to correct the experimental intensity of the elastic peak angle
by angle.

θlab [deg] f(θlab,Ekin) θlab [deg] f(θlab,Ekin) θlab [deg] f(θlab,Ekin)

41 2.65 ± 0.07 49 2.93 ± 0.08 54 3.32 ± 0.05

42 2.24 ± 0.02 50 2.46 ± 0.03 55 2.78 ± 0.02

43 1.91 ± 0.01 51 2.12 ± 0.01 56 2.28 ± 0.01

44 1.67 ± 0.01 52 1.81 ± 0.01 57 1.94 ± 0.01

45 1.49 ± 0.01 53 1.60 ± 0.01 58 1.69 ± 0.01

46 1.32 ± 0.01 54 1.43 ± 0.01 59 1.55 ± 0.01

47 1.26 ± 0.01 55 1.35 ± 0.01 60 1.48 ± 0.01

48 1.25 ± 0.01 56 1.32 ± 0.00 61 1.46 ± 0.01

49 1.23 ± 0.01 57 1.32 ± 0.01 62 1.50 ± 0.01
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Figure 5.13: The ratio of elastic cross section σ(θ) and the Rutherford cross section σRuth. The
solid black line is GRAZING calculation. Points are experimental values normalized for all three
PRISMA settings separately.

given in Table 5.2, were applied. The elastic cross section extracted in this way is shown

in Fig. 5.13 as ratio to the Rutherford cross section (points) in comparison with the

results of GRAZING calculations (black line). At more forward angles the elastic cross

section is well approximated by the Rutherford scattering thus obtaining the absolute

normalization factor (in mb/sr) for all other reaction channels. The pronounced falloff of

the elastic cross section for large angles points to the onset of absorption. The discrepancy

of the experimental cross section and the calculated one at most forward angles in Fig.
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5.5. Differential cross sections

5.13 is ascribed to the inefficient part of the MCP. This behaviour was also observed in

the last set of angles, but the effect was reduced by using the angular overlap region.

In this way a conversion of cross sections from [counts] to [mb/sr] can be obtained for

each of the PRISMA settings separately. The value of these normalization factors reflects

also the duration of measurement at each of the PRISMA angular settings. Normalization

factors are for PRISMA at 46◦: 1 [mb/sr] = 1322 ± 24 [counts] and for PRISMA at 54◦:

1 [mb/sr] = 3139 ± 33 [counts]. Since the last angle, 59◦, is in the angular range where

absorption becomes more and more important, normalization factor was obtained from

the matching with the previous two and the factor was estimated to be 2000 [counts]. In

this way beside the determination of the absolute cross sections for other channels, the

described procedure allowed us to match for the first time angular distributions obtained

with different PRISMA angular settings.

5.5 Differential cross sections

The experimental differential cross sections corrected for the transmission through PRISMA

for (+1n) 41Ar and (−1p) 39Cl channels are shown, as selected examples, in Fig. 5.14

together with results from the GRAZING calculation. This was achieved after the trans-

mission factors through PRISMA have been applied as a correction to each experimental

differential cross section separately. The absolute differential cross section has been ex-

tracted in the following way:

dσ

dΩ
=
N(Ekin, θlab)

C
×f(Ekin, θlab) (5.8)

where N(Ekin, θlab) are experimental data, f(Ekin, θlab) is correction matrix for that chan-

nel and C conversion factor from [counts] to [mb/sr] for that angular setting. Experimen-

tal angular distributions that are presented in Fig. 5.14 with blue points show how

spectrometer mostly affects the borders of the angular range. Only after the distribution

was corrected for the transmission one obtained smooth differential cross section.

The (+1n) and (−1p) channels are known to be well reproduced by GRAZING calcu-

lations [1]. These one-nucleon transfer channels constitute the building blocks over which

are based the calculations for the more complex multinucleon transfer channels. Note-

worthy is the fact that good agreement between experiment and theory, both in shape
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Chapter 5. Experimental results

and magnitude especially at forward angles and near the grazing one, has been achieved.

The experimental angular distributions are bell shaped in a narrow angular range centred

at the grazing angle. For large scattering angles, larger than quarter points (see also

Fig. 5.13), where absorption, due to the reaction channels not explicitly included into

calculation, starts to be important, the GRAZING calculations under-predict the data.

The similar situation have been observed in previously measured systems, see for example

Fig. 6 and 8 of Ref. [30].
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Figure 5.14: Experimental angular distributions for (+1n) and (−1p) for all three PRISMA
settings joined together. Experimental angular distributions that are presented with blue points
have statistical errors, while corrected distributions presented with red points have quadratic
sum of statistical errors and errors induced by the response function. Black line is GRAZING
calculation.

The same procedure was repeated for all analysed channels. Figure 5.15 shows these

angular distributions for different reaction channels populated in the 40Ar+208Pb reaction.

The experimental differential cross sections (the full TKEL range integrated) are presented

with black points together with results from GRAZING calculations (black solid line).

Comparison with GRAZING calculation will be discussed in Chapter 7. From the grazing
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Figure 5.15: The differential cross sections for different reaction channels populated in the
40Ar+208Pb reaction (label in each panel). The experimental, energy integrated, angular distri-
butions are presented with points, while GRAZING calculation is shown with black solid line.
Notice that for some channels the GRAZING calculation is much lower than the experimental
differential cross sections and is outside the scale.

character of these reactions we know that most of the yield in the different transfer

channels is concentrated in a narrow angular range close to the grazing angle with shape

of the angular distribution weakly dependant on the isotope. All one nucleon transfer

channels show such shape centred at the grazing angle typical for quasi-elastic processes.

As more protons are transferred the distribution becomes flatter (see for example Ca

isotopes) and starts to lose bell-shape characteristic of QE. With the increase of proton

transfers forward part in the angular distribution becomes more and more pronounced

and the distribution becomes broader, especially for proton pick-up channels.

In the case of the one proton stripping channels (Cl), the strongest channel corresponds

to the pure proton stripping channel (39Cl) as expected from the optimum Q-value con-

siderations, while in the case of the one proton pick-up channels (K), (+1p), (+1p+ 1n)

and (+1p+ 2n) channels are of similar strength (see Fig. 5.16). This may indicate the

importance of additional degrees of freedom. One of such degrees of freedom can be a

transfer of a correlated neutron-proton pair. Of course, the influence of other reaction

mechanism can affect the cross section. Thus special care has been taken in detailed
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Chapter 5. Experimental results

analysis of total kinetic energy losses for these channels (see sections 5.2 and 5.3) and two

angular distributions have been separated.
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Figure 5.16: The differential cross sections for different reaction channels (label in each panel):
integrated over entire TKEL (black points), integrated over lower TKEL part (red points) and
integrated over higher TKEL (blue points).

Angular distribution for different reaction channels populated in the 40Ar+208Pb re-

action integrated over entire TKEL (presented with black points), integrated over lower

TKEL (red points) and over higher TKEL part (blue points) are presented together in Fig.

5.16. It is important to notice that differential cross sections represented with red points

have bell shaped angular distributions typical for QE processes with maximum around

grazing angle. Also the matching of three different PRISMA settings is much better in

this case, in the sense that there is less "waiving". The angular distributions connected

with the large TKEL are much flatter, the bell-shape is lost and the fluctuations are more

pronounced. This is due to DIC, where these fluctuations result from energy cuts of the

spectrometer since the energy acceptance is ≈ ±20%.
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5.6 Total cross sections
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Figure 5.17: Angular distribution integrated over entire energy range (black points) and QE
component (red points). The Gaussian fit used to extract total cross section of both is shown
with lines.

The angular distributions span the angular range larger than ∆θ = 20◦. This range

covers most of the transfer strength and thus the total cross section can be extracted for

different reaction channels. The total cross sections have been obtained by integrating

angular distributions. The example of such integration with the Gaussian fit is shown in

Fig. 5.17 with the total cross section obtained as:

σ =
∫

(

dσ

dΩ

)

dΩ = 2π
∫

(

dσ

dΩ

)

sinθdθ. (5.9)

Figure 5.18 shows experimental total cross sections for indicated channels obtained by

integration over entire TKEL (grey histogram) and by integration of the low TKEL part

(red histogram). The cross sections are also listed in Table 5.3.

Neutron pick-up channels follow the smooth trend observed also in other experiments,
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Chapter 5. Experimental results

with similar average decrease for each transferred nucleon [1]. The (+1n) channel is the

strongest channel observed and it is followed by (−1p). It may be interesting to notice that

the strength of the (−1p) channel is very similar to the strength of the (+2n) (observed

also in numerous previous experiments). Notice also that the total cross section is not

symmetric around the projectile nucleus, the (+1n) channel is ∼5 times stronger than the

(−1n) channel, and the (−1p) is ∼6 times stronger than the (+1p) channel.

For two proton stripping channels one observes a drift toward lower masses which

in part can be attributed to neutron evaporation. On the other side, for the two proton

pick-up channels the shift is on the neutron pick-up side, a fact which cannot be explained

through the neutron evaporation process.

Total cross sections obtained in this way will be compared with the semi-classical

model GRAZING in Chapter 7 in order to better understand presented results.
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Figure 5.18: The inclusive total cross sections integrated over total energy loss (grey histogram).
For some channels, the integration over the QE part of TKEL is added (red histogram). Errors
are statistical, and also include transmission factors and conversion factor errors. See also Table
5.3.

The ratio of QE component of cross section and total cross section for several repre-

sentative channels is shown in Fig. 5.19. The contribution of QE component in total cross

section is, as expected, larger for neutron transfers. It is seen that the ratio drops as we

move further away from the projectile nuclei, particularly for proton transfers. The con-

tribution of QE process for both one proton pick-up and one proton stripping is the same,

and around ∼60%, which may be an indication of correct extraction of QE component.
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5.6. Total cross sections

Table 5.3: Angle and energy integrated experimental cross section, σexp, and cross section
integrated over low energy, σexpQE, for different (Z,A) channels. The cross sections have been
obtained for all PRISMA settings joined together and integrated. Errors are statistical, and also
include transmission factors and conversion factor errors.

Z A σexp [mb] σexpQE [mb]

16 34 1.40 ± 0.09
35 6.2 ± 0.4
36 20.8 ± 0.5
37 18.6 ± 0.7
38 20.7 ± 0.8 9.6 ± 0.4
39 5.9 ± 0.4
40 1.1 ± 0.1

17 36 1.82 ± 0.07
37 13.9 ± 0.5
38 27.4 ± 0.8 10.4 ± 0.4
39 57 ± 2 34 ± 1
40 23.8 ± 0.6 11.7 ± 0.3
41 8.3 ± 0.2
42 1.08 ± 0.04

18 38 7.0 ± 0.3 4.1 ± 0.3
39 53 ± 2 39 ± 1
40
41 253 ± 8 212 ± 6
42 50 ± 1 32.9 ± 0.7
43 6.7 ± 0.3

19 40 1.0 ± 0.1 0.43 ± 0.03
41 9.3 ± 0.4 5.5 ± 0.2
42 12.0 ± 0.3 4.8 ± 0.2
43 13.8 ± 0.5 4.2 ± 0.1
44 7.7 ± 0.3
45 3.7 ± 0.2
46 0.91 ± 0.06

20 42 0.38 ± 0.08 0.135 ± 0.007
43 1.12 ± 0.06
44 3.9 ± 0.3
45 4.4 ± 0.2
46 3.9 ± 0.2
47 2.2 ± 0.3
48 0.62 ± 0.05
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6 The PRISMA spectrometer
coupled to the CLARA array

The coupling of the PRISMA spectrometer with the CLARA array allowed to fully identify

reaction products and to attribute to each of them its characteristic γ-ray spectra. This

gives the possibility to identify individual transitions and excited states, their population

pattern and decay modes. Gamma spectra and level schemes of channels relevant for this

work, with emphasis on the (np) correlations, will be presented in this Chapter.

6.1 Fragment-γ coincidences

The constituents of the heavy-ion collision may exchange many nucleons, thus providing

information on the contribution of single particle and correlated particle transfer, and also

on the contribution of surface vibrations (bosons) and their coupling with single particles

(fermions). The analysis and interpretation of results of heavy-ion transfer reactions can

be quite complex because the informations about correlations are often hidden in the

inclusive character of the extracted cross sections. One of the possibilities to distinguish

excited states is the coincident detection of γ rays. It has been demonstrated that grazing

reactions favour a certain degree of selective population of states associated with specific

excitation energy, angular momenta or with specific structural properties [84]. The pop-

ulation pattern of these individual states provides important complementary information

for the reaction mechanism studies and in particular for correlation studies, as the short-

range pairing interaction redistributes the transfer strength over the different final states.

We will study in more details if the transfer flux will enhance some specific states, and we

will try to connect the underlying structure of such states with the transfer mechanism.

The γ rays detected in coincidence with the relevant transfer channels studied in the

40Ar+208Pb reaction should provide quantitative information to establish possible decay
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Chapter 6. The PRISMA spectrometer coupled to the CLARA array

modes related to the population of specific nuclear states. In this section we will search

for this selective population and concentrate on the distribution of transfer flux over dif-

ferent populated states in several channels relevant for (np) correlations. In particular we

will present spectra of the (+1n), (+1p), (+1p+ 1n) and (+1p+ 2n) channels. We will

concentrate on the strongest transitions whose structure is relevant for reaction mech-

anism study. Similar structure is expected in similar transfer channels (i.e one or two

nucleon transfer channels) and, where possible, comparison will be made with shell model

calculations.

The shell model calculations have been performed using the most recent sd−pf resid-

ual interaction (SDPF-U) [85]. The valence space for the protons includes the full sd

shell, covering from Z = 8 to Z = 20, while for the neutrons it includes the full sd and pf

shell, from N = 8 to N = 40. We remind that below N = 20 these calculations reduce to

the pure sd shell. Thus, the shell model calculations are unrestricted in the full sd shell

for protons and the full pf shell for neutrons.

In addition, the analysis of Doppler corrected γ transitions of the heavy partners

associated to each A and Z detected in PRISMA will help to evaluate the contribution

of evaporation processes.

6.1.1 The (+1n) channel, 41Ar

Figure 6.1: The 41Ar γ spectrum. The strongest transitions are labelled with spin and parity of
initial and final states.

The γ spectrum of 41Ar, the one-neutron pick-up channel, is presented in Fig. 6.1.

Experimentally observed levels and intensities of the observed transitions are listed in
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6.1. Fragment-γ coincidences

Table 6.1: Experimentally observed levels and intensities of the populated excited states, IEXP ,
for 41Ar. The intensities have been obtained by subtractions of the feeding from above in
agreement with the level scheme presented in Fig. 6.2.

Isotope Elevel [keV] Jπ
i IEXP [%]

41Ar 516 3/2− 21
1035 3/2+ 20
1354 3/2−

2 100
1505 9/2− 7
1630 11/2− 27
1870 1/2+ 7
2398 1/2− 7

Tab. 6.1. The level scheme of 41Ar is displayed in Fig. 6.2. The strongest populated

state is the negative parity low-lying 3/2−
2 state at 1.35 MeV. When compared with the

shell model wave functions this state turned out to have a pronounced single-particle

character. We constructed strength functions in the framework of shell model by using

Lanczos method and pivot states that corresponds to the creation of neutron in p1/2, p3/2,

f7/2 and f5/2 on the 0+ ground state of 40Ar [86, 87]. These strength functions clearly

display a concentration of single-particle strength in 3/2−
2 state of 41Ar [2]. The large

part of the 0+ ⊗f7/2 strength is in the 41Ar ground state, while the 0+ ⊗f5/2 component

is in the 5/2− states with excitation energies of ∼5-6 MeV. Thus, the strongest excited

low-lying state is the state with the pronounced single-particle character.

In addition to the adopted γ transitions of the low-lying states, a strong line at

1629.7(3) keV was observed and attributed to the population of the yet unknown 11/2−

state [2]. As already mentioned, the 7/2− ground state of 41Ar can be understood as

0+ ⊗ f7/2. By coupling this particle state with the 2+ of 40Ar, one expects a multiplet

of states (3/2−, ..., 11/2−). The reaction mechanism does not populate the components

of the multiplet uniformly but favours the high-spin stretched configuration. At low

bombarding energies, where the relative velocity of the two ions is much smaller than the

intrinsic velocity of the transferred nucleon, the transfer process maximizes the transferred

angular momentum to allow a good matching between the orbital angular momentum of

the involved states. Thus the transition at 1629.7 keV was interpreted as the decay from

the 11/2− to the ground state. We populate significantly the 11/2− state, with about

one-third of the strength of the strongest populated single-particle state. As discussed

before, for the 11/2− state the shell model strength function calculations point to a large
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Figure 6.2: The experimental level scheme of 41Ar, populated via the (+1n) channel. Relative
γ-ray intensities are indicated by the width of the arrows. Only γ transitions observed in our
measurement are plotted. The energy, spin and parity of levels, their branching ratios and energy
of transitions, if known, are as in Nuclear Data Sheets [88]. The intensity of each transition was
corrected for the efficiency of CLARA.

concentration of 2+ of 40Ar coupled to the valence neutron in f7/2.

The negative parity states take about 86% of the total flux, while the positive parity

states have about 14% of the total flux. It can be noticed that the negative parity low-

lying 3/2−
2 state at 1.35 MeV, with a pronounced single-particle character, is strongly

populated. In fact, about 53% of the total flux is in this state. Also, one observes strong

population of states that can be explain as coupling of single-particle degrees of freedom

to nuclear vibration quanta, which is essential for the description of many basic states in

the vicinity of closed shells [2].

6.1.2 The (+1p) channel, 41K

Mass spectra for potassium isotopes are shown in Fig. 6.3 for PRISMA alone and in

coincidence with the γ-array CLARA. The main difference is exactly in the (+1p) channel

which is more pronounced in the PRISMA alone distribution, showing the importance

of the ground-to-ground state population in this channel. This agrees with the TKEL

spectra shown in Fig. 6.4, which clearly displays that for the (+1p) channel the most

of the transfer flux is concentrated close to the ground-to-ground state. As one adds

92



6.1. Fragment-γ coincidences

 0

 5000

 10000

 15000

 20000

 25000

 30000

38 40 42 44 46 48

C
ou

nt
s 

[a
rb

. u
ni

t]

A [a.m.u]

K (+1p) PRISMA

 0

 500

 1000

 1500

 2000

38 40 42 44 46 48

A [a.m.u]

PRISMA-CLARA
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Figure 6.4: Experimental TKEL distribution for K isotopes for PRISMA positioned at 54◦. Red
vertical line indicates position of the ground-to-ground state Q-value, Qgs, while blue arrow is
the optimum Q-value. The shaded grey area is TKEL distribution calculated by GRAZING.

more neutrons, TKEL spectra display large contribution of DIC components and the

relative yields of these more neutron-rich potassium isotopes do not depend strongly on

coincidence with γ rays. The γ spectra for odd-even and odd-odd isotopes are given in

Fig. 6.5.

First we will look at the pure one proton pick-up channel leading to 41K (Z = 19,N =

22). Experimentally observed levels and intensities of the populated excited states are

listed in Tab. 6.2. The level scheme is displayed in Fig. 6.6. What can be seen is

that about 52% of the total flux goes to the negative parity states, while 48% goes to the

positive (natural parity states). The strongest observed populated state is the 11/2− state

at 2.8 MeV. In principle, this spin and parity can be formed as 2+ in 40Ar (Z = 18,N = 22)

coupled to the proton promoted in the f7/2 orbital (stretched configuration), similar to

11/2− in 41Ar with the coupling to the neutron in f7/2.

Concerning the positive (natural parity) states, the strongly populated states 3/2+,
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(A) Odd-even K isotopes. (B) Odd-odd K isotopes.

Figure 6.5: Gamma spectra for different K isotopes.

Table 6.2: Experimentally observed levels and intensities of the populated excited states, IEXP ,
for 41K. The intensities have been obtained by subtractions of the feeding from above in agree-
ment with the level scheme presented in Fig. 6.6. The intensity of each transition was normalized
to the strongest transition.

Isotope Elevel [keV] Jπ
i IEXP [%]

41K 1560 3/2+ 43
1677 7/2+ 2
2144 5/2+ 24
2495 9/2+ 60
2528 11/2+ 23
2774 13/2+ 61
1582 3/2− 96
2317 5/2− 35
2762 11/2− 100

5/2+, 9/2+, 11/2+ and 13/2+ have one dominant component in the SM wave function

(∼80%) π(d5/2)6(s1/2)2(d3/2)3 ⊗ ν(f7/2)2. The only state of this yrast sequence, with

similar wave functions, which we didn’t directly populate, is 7/2+. Thus, we observed

strong excitation of natural parity yrast states. In addition, half of the total flux is in the

negative parity states, of which the strongest one is 11/2−.
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Figure 6.6: The experimental level scheme with positive and negative parity level scheme of 41K,
populated via (+1p) channel. Relative γ-ray intensities are indicated by the width of the arrows.
Only transitions observed in our measurement are plotted. The energy, spin and parity of levels,
their branching ratios and energy of transitions, if known, are as in Nuclear Data Sheets [88].
The intensity of each transition was corrected for the efficiency of CLARA.

6.1.3 The (+1p+ 1n) channel, 42K

The γ spectrum of the (+1p+ 1n) channel leading to 42K is shown in Fig. 6.5B. The

odd-odd nucleus 42K (Z = 19,N = 23) has a rather high level density which makes the

study of the properties of these levels rather difficult. The corresponding experimental

level scheme is presented in Fig. 6.7. Experimental intensities of the strongly populated

excited states, IEXP , are listed in Tab. 6.3.

About 61% of the total flux goes to the negative (natural) parity states, while 39%

goes to the positive parity states. Low-lying negative parity states, 3− at 0.6 MeV and

5− at 0.7 MeV, are strongly populated. The dominant component (∼70%) of the wave

function of these low-lying negative parity states is: π(d5/2)6(s1/2)2(d3/2)3 ⊗ν(f7/2)3.

In the positive parity band the strongest populated state is 7+ state at 2 MeV with

about 74% (or about 16% of the total flux). The structure of 7+ state according to Ref.

[89] can be viewed as stretched configuration of a proton and a neutron in the f7/2 orbital.
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Chapter 6. The PRISMA spectrometer coupled to the CLARA array

Table 6.3: Experimentally observed levels and intensities of the populated excited states, IEXP ,
for 42K. The intensities have been obtained by subtractions of the feeding from above in agree-
ment with the level scheme presented in Fig. 6.7. The intensity of each transition was normalized
to the strongest transition.

Isotope Elevel [keV] Jπ
i IEXP [%]

42K 258 4− 20
639 3− 100
699 5− 90
841 3− 28
1144 4+ 32
1947 7+ 74

The corresponding Eγ = 572 keV depopulating the 7+ state can be seen in Fig. 6.5B.
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380
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2 0

3 107
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258

5 699

6 1376

7 1947

4
1144

3
639

3 842

Figure 6.7: The experimental level scheme of 42K, populated via (+1p + 1n) channel, showing
most intense transitions. Relative γ-ray intensities are indicated by the width of the arrows.
Only levels of significant strength are shown. The intensity of each transition was corrected for
the efficiency of the γ-array.

We can conclude that the γ spectrum of 42K shows the population of the low-lying

negative parity states and the population of the higher-lying positive parity states. The

structure of low-lying negative parity states can be viewed as a multiplet arising from the

coupling of the unpaired proton in the d3/2 and the unpaired neutron in the f7/2 orbital.

Positive parity states can be explained as the excitation of the proton to the f7/2 orbital

and its coupling to the unpaired neutron in the same orbital. This strong population of

the state with such structure may be important for neutron-proton correlation.

We will profit from the weak-coupling method calculation performed in the framework

of the Bansal-French-Zamick. This model is based on the calculation of the binding

energies of the particle-hole states and taking into account the known excitation energies
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Figure 6.8: Populated levels of 42K, with weak-coupling calculations (left) for the degenerate
multiplet 2−, 3−, 4− and 5− and 6+ and 7+ states.

of the relevant states. In more details, the 6+ and 7+ configurations are considered as the

promotion of a proton from the d3/2 to the f7/2, and (stretched) coupling to an uncoupled

neutron in f7/2. The energy differences between the 6+ and 7+ states in 42K and 44Sc

isotons thus have to be the same. By taking the experimental excitation energies for

38Ar(0+), 44Sc(6+) and 44Sc(7+) together with the empirical fit to a number of particle-

hole states in the 40Ca region, the binding energy of 7+ turned out to be -14.83 MeV.

The natural parity quadruplet π(d5/2)6(s1/2)2(d3/2)3 ⊗ ν(f7/2)3 with 2−, 3−, 4− and 5−

is degenerate in this weak-coupling model and is calculated at -16.74 MeV with respect

to 40Ca ground state. Considering the experimentally averaged excitation energy of the

2−, 3−, 4− and 5− levels, the 7+ state is placed at 1.91 MeV excitation energy [90]. The

corresponding levels are plotted in Fig. 6.8 and show good agreement with experimental

ones.

The obtained results can be compared with the 42K observed in the 40Ca+96Zr reaction

via stripping of one proton and pick-up of three neutrons. The comparison presented

in Fig. 6.9 shows that all strong γ lines are observed in both measurements. However,

relative strength of these γ lines is significantly different. The Eγ = 572 keV depopulating

the 7+ state is much more enhanced in the 40Ar+208Pb system (top panel of Fig. 6.9).

The comparison of strength of states populated in 42K for both reactions is given in

Fig. 6.10. All values are normalized to the lowest lying 151 keV γ-ray depopulating the 4−

level, that has a similar strength in both experiments. While for the (−1p+ 3n) channel

in 40Ca+96Zr a similar strength of all populated states is observed, in the (+1p+ 1n)
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Figure 6.9: Comparison for 42K measured in 40Ca+96Zr and 40Ar+208Pb.

channel in 40Ar+208Pb a more selective population has been evidenced.

Results were compared in the same way with 4He+40Ar leading to 42K (see Fig. 6.10

bottom panel). In this deuteron transfer reaction the strong population of 7+ has been

observed [91]. This reaction is very selective and 7+ is by far the strongest populated

state.

A comparison of the TKEL spectra for the K isotopes obtained in three different

reactions, 40Ar+208Pb, 40Ca+96Zr and 40Ca+208Pb, is shown in Fig. 6.11. They are

plotted as E∗ = TKEL+Qgs, i.e. the ground-to-ground state Qgs was taken into account

for the easier direct comparison of systems. The energy for the 40Ca+96Zr system was

about 10% above the Coulomb barrier, while in other system, 40Ar+208Pb, was about

∼30%. In the case of 40Ca+96Zr, the K isotopes were reached via (−1p±xn) channels,

while for the 40Ar+208Pb via (+1p±xn). For TKEL measured in the 40Ca+96Zr system,

only the TKEL of the pure (−1p) channel has a pronounced low-energy peak, centred at

the ground-to-ground state equivalent. Other channels, when neutrons are added, have
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Figure 6.10: Comparison of the intensity of the populated excited states i.e. the experimental
strength functions (SF) of the states populated in 42K measured in 40Ar+208Pb (top panel),
40Ca+96Zr (middle) and 4He+40Ar (bottom). They were obtained from the intensity of γ
transitions corrected by the efficiency of CLARA for that energy. In the construction of these
strengths all γ transitions depopulating a certain state are taken into account together with
the feeding from above in agreement with the level schemes. Values in first two panels are
normalized to the lowest-lying 151 keV γ-ray depopulating the 4− level, that has a similar
strength in both experiments. Feeding from above to the 7+ state was not taken into account
in strength function construction. Even if we take into account also this transition, the main
conclusion of the population of 7+ state will remain.

similar shape with centroids located at larger energy losses. In the case of 40Ar+208Pb,

due to the higher energy, the TKEL extended to large energy losses, but still kept the

low-energy peak close to the ground-to-ground state transitions. The peak-like structure

centred at large losses agrees better with the centroids in the TKEL obtained in the

40Ca+96Zr reactions. In general, such shapes of TKEL agree well with the observation of

the dominant states populated in the, for example, 42K. In the reaction where the centroid

of the TKEL is at the larger energy losses, the strength of the populated states is more or

less equal, without some preferred population of the state of the specific structure (beside
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Chapter 6. The PRISMA spectrometer coupled to the CLARA array

Figure 6.11: Comparison of the TKEL spectra for the K isotopes obtained in three different
reactions, 40Ar+208Pb, 40Ca+96Zr and 40Ca+208Pb.

the preference for large angular momentum transfer). Such behaviour can be connected

with the DIC-like reactions. In the case of the 40Ar+208Pb reaction, the distribution

of the strength over the excited states is not uniform (as, in fact, one would expect

form the "direct quasi-elastic" reaction). The last set of panels on the right present

energy distribution for 40Ca+208Pb measured close to the barrier, which is included for

completeness. Although, the statistic for these channels is quite low, behaviour is similar

to the 40Ca+96Zr system.

6.1.4 The (+1p+ 2n) channel, 43K

Experimentally observed levels and intensities of the populated states of 43K (Z = 19,N =

24) are listed in Tab. 6.4 and displayed in Fig. 6.12. The positive (natural) parity

states take about ∼59% of the total flux, while ∼41% goes to negative parity states.

What can be seen is that the most intense state is 7/2+. It is followed by a strongest
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Table 6.4: Experimentally observed levels and intensities of the populated excited states, IEXP ,
for 43K. The intensities have been obtained by subtractions of the feeding from above in agree-
ment with the level scheme presented in Fig. 6.12. The intensity of each transition was normal-
ized to the strongest transition.

Isotope Elevel [keV] Jπ
i IEXP [%]

43K 561 1/2+ 22
738 7/2− 34
975 3/2− 19
1027 5/2+ or 7/2+ 34
1510 7/2+ 100
1550 5/2+ or 3/2+ 52
1850 11/2− 50
2048 9/2+ 45
3115 15/2− 32
4928 19/2− 43
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Figure 6.12: The experimental level scheme of 43K, populated via (+1p+2n) channel. Relative
γ-ray intensities are indicated by the width of the arrows. Only γ transitions observed in our
measurement are plotted. The energy, spin and parity of levels, their branching ratios and
energy of transitions, if known, are as in Nuclear Data Sheets. The intensity of each transition
was corrected for the efficiency of the γ-array.

populated negative parity state, 11/2− with ∼50%, which is the strongest populated state

in 41K. Other higher-lying negative parity states, 15/2− and 19/2−, are also observed with
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significant strength. This is characteristic of heavy-ion induced transfer reactions where

large angular momentum can be transferred. The transfer processes at energies near

the barrier maximize transferred angular momentum to allow a good matching between

orbital angular momenta of the involved states. This is reflected as a strong population

of yrast states [1, 92].

It can be seen that many high-spin negative parity states are populated, about half

of the total flux. These are non-natural parity states, and probably their configurations

involve excitation of protons above Z = 20.

To conclude, in presented channels one observes a strong population of states with

pronounced single-particle character. Both natural and non-natural parity states are

populated. In addition, high spin states were also strongly populated which is one of

the characteristics of heavy-ion induced transfer reactions since large angular momenta

can be transferred. In particular, 7+ state in 42K is strongly populated, which was the

strongest populated state in deuteron transfer reaction. It is interesting also to consider

the position of such 7+ states in other nuclei in the vicinity and we searched for the

population of such states in other K isotopes. Unfortunately, the statistic in 40K channel

is to low for any conclusion about the population of the 7+ state. Although 44K channel

has slightly larger statistic, it is relatively unknown nuclei. Very few levels are known and

even less with attributed spin and parity, especially of high spin states. However, some

new γ transitions are observed, but clear indication that one of these states belong to the

7+ state has not been found.

6.2 Evaporation effect

In previous sections it was shown that beside direct transfer process, other mechanisms

are present in defining the final distribution. In fact, secondary processes like evaporation

can significantly modify the final yield. In the transfer process large amount of energy is

exchanged between projectile and target, and part of this excitation energy is dissipated

by evaporation, particularly the neutron evaporation. In this process a transfer product

with primary mass A after evaporation feeds mass A−x, therefore the mass distribution

of secondary products is affected mainly towards the lighter mass regions of a specific Z.

The 58Ni+208Pb multinucleon reaction was previously studied close to the Coulomb
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barrier [31], and light and heavy fragments were identified in coincidence. For channels

involving the stripping of few protons the isotopic distributions extend mainly along the

neutron pick-up chain. As more protons are transferred the neutron flux tends to shift

in the stripping direction. This trend was attributed, at least partly, to the effect of

neutron evaporation from the primary fragments. Only after the effect of the evaporation

was included in the calculations, the proton transfer channels were well reproduced. The

same calculations were also performed for the heavy transfer products in order to obtain

their survival probabilities against fission, which, averaged over neutron number, were

from ∼100% for (0p) to (−2p) transfers, down to ∼50% for (−6p) transfer. The inclusion

of the evaporation mechanism in the calculations was also crucial in the description of the

40Ca+208Pb system that has similar mass and projectile-target asymmetry as our case.
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Figure 6.13: Doppler corrected γ spectrum of 42K (top panel) and of heavy partner (bottom
panel) where 206Tl labels primary binary partner. γ rays belonging to nuclei after evaporation
takes place are identified and labelled on the spectrum.

In the 40Ar+208Pb reaction we can directly observe these evaporation processes in the

fragment-γ coincidence measurement. The method has been already used to evaluate the

evaporation by looking at the γ-spectrum of the heavy partner [73]. The velocity vector

of the undetected heavy partner can be evaluated and applied for the Doppler correction

of its corresponding γ rays. Evaporation can be seen in the heavier partner since, after

the light partner is selected, not only γ rays belonging to the primary binary partner are

present, but also γ rays belonging to nuclei after evaporation takes place can be identified.
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Figure 6.14: Doppler corrected γ spectrum of 43K (top panel) and of heavy partner (bottom
panel) where 205Tl labels primary binary partner.

The effect is shown for the (+1p+1n) and (+1p+2n) channels in Figs. 6.13 and 6.14. The

plot for (+1p+1n) shows that strongest transitions, in fact, come from the primary heavy

partner. However, a lot of transitions are coming also from 205Tl, after the evaporation of

one neutron takes place. This is even more pronounced in the case of (+1p+2n) channel.

Transitions belonging to 203Tl, after the evaporation of two neutrons takes place, are very

intense.

Figure 6.15 shows TKEL distribution of 42K (top panel) and conditions that are put to

construct γ-ray spectra in the bottom panels. Since neutron separation energy is Sn = 7.5

MeV, first gate is put at 8 MeV (gate A). γ rays after evaporation takes place are not

visible in the corresponding γ spectrum. For higher energy gates γ rays from lighter Tl

isotopes become stronger.

Evaporation is more relevant for nuclei far from the entrance channel, where it can

significantly modify the final yield distribution. The TKEL spectra for neutron transfer

channels show that major contribution is close to the ground-to-ground state Q-value.

For proton transfer channels one observes higher TKEL values and one, thus, expects

that the neutron evaporation has a stronger effect on the final mass distribution.

104



6.2. Evaporation effect

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0  20  40  60  80  100

C
ou

nt
s 

[a
rb

. u
ni

t]

TKEL [MeV]

42KA B C

0
40
80

120

C
ou

nt
s 

[a
rb

. u
ni

t]

206Tl

20
5 T

l

(2
-  -

 0
- )

(1
-  -

 0
- )

(2
-  -

 2
- )

20
5 T

l

20
5 T

l

20
5 T

l

a)

0

20

40 Ab)

0

20

40 Bc)

0

20

40

200 400 600 800 1000
Eγ [keV]

Cd)
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7 Discussion

7.1 Selected results of previous studies

When two-nucleon transfer takes place, the second nucleon follows the first one profiting

from the nucleon-nucleon correlations. Due to weak binding, the correlation length of a

pair is larger than nuclear dimension which allows the two members of a pair to move

between target and projectile, essentially as a whole, also in the case of successive transfer.

To study correlations in the nuclear medium, prediction of absolute cross sections, mak-

ing use of nuclear structure spectroscopic factors informations, becomes necessary, since

they are sole quantities which can be directly compared with experimental observables

[25]. Experimental observables should be compared with calculations taking into account

reaction dynamics and all important elementary degrees of freedom (single particles and

phonons). In this way the effects of the additional degrees of freedom (as correlation)

may be deduced.

The semi-classical models proved to properly reproduce a variety of experimental

results with heavy ions. In the semi-classical approach the relative motion of the centre

of mass of the two ions is treated classically. This is due to the fact that the wave length

associated with the relative motion is much smaller than the interaction region (sum of

the two nuclear radii) [1]. The transfer process is treated quantum mechanically.

Heavy-ion reactions are, in principle, an ideal tool for the study of the residual in-

teraction in nuclei, in particular the components responsible for the couplings between

the phonon degrees of freedom and those of the single particles (particle-vibration cou-

pling), and via multinucleon transfer reactions the components responsible for particle

correlations such as the pairing interaction [73]. Here we will briefly outline the main
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(A) The 58Ni+208Pb reaction. The dotted lines
are the results of CWKB calculations using se-
quential transfer only, whereas the dashed lines
also include pair-transfer modes. The solid line
includes also the effect of evaporation [31].

(B) The 40Ca+208Pb reaction. The dashed lines
are the results of CWKB calculations using se-
quential transfer only, whereas the solid lines
also include pair-transfer modes [30].

Figure 7.1: Experimental (points) and theoretical (lines) angle and Q-value integrated cross
sections for pure proton stripping and pure neutron pick-up channels of the 58Ni+208Pb reaction
measured at Elab = 328 MeV and the 40Ca+208Pb reaction measured at Elab = 235 and 249 MeV
as a function of number of transferred nucleons.

findings from previous transfer reaction studies mainly illustrated through measurements

performed at INFN - LNL, Italy [30, 31, 73, 93–95].

Two-nucleon transfer reactions have been investigated in order to obtain informations

about correlated pair transfer. Because of the higher binding energy for protons and the

associated steeper falloff of the wave functions at large distances, a larger overlap of the

two interacting nuclei is required to exchange charged particles. Q-matching conditions

and mostly negative ground-state Q-values favour proton stripping reactions. Proton

pick-up reactions occur (with smaller yields) in systems involving neutron-rich projectiles

[10]. In his review article [10], K.E. Rehm also noted that the ratio between the energy

and angle integrated yields for one- and two-proton transfer reactions for a given ground

state Q-value was only about 2, while it was 4-5 for the neutron transfer reactions.

In their review article [23], W. von Oertzen and A. Vitturi discuss transfer in terms

of enhancement for pairs of both neutrons and protons in different systems (for instance
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112Sn+120Sn, 86Kr+54Fe, 40,48Ca+124S). They discuss that the observed enhancement

arises not only from the coherent successive transfer of two single nucleons, but also from

the possible direct transfer of one spatially correlated pair. The interplay of these two

processes is one of the key points in the understanding of pairing correlations in nuclei

[23].

Figure 7.2: Comparison of calculated differential cross sections in a first-plus-second Born ap-
proximation and experimental data of 208Pb(16O,18O)206Pb ground state transition. The dashed
lines give the result of the one-step calculation, and the solid lines the result of the one-step plus
two-step calculation [96].

First full quantum mechanical calculation for one and two-neutron transfer performed

by B.F. Bayman and J. Chen showed that the contribution of a process in which the two

neutrons are transferred successively dominates over the simultaneous term, as illustrated

in Fig. 7.2 for the two-neutron transfer reaction in the 16O+208Pb system measured near

the Coulomb barrier. One-step plus two-step calculation gives a rather good representa-

tion of the absolute magnitude of the differential cross section over the entire measured

angular range [96].

The second-order distorted wave Born approximation implementation of two-particle

transfer direct reactions which includes simultaneous and successive transfer, properly

corrected by non-orthogonality effects, was recently further improved and excellent agree-
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ment with light-ion induced reactions and the mentioned 16O+208Pb reaction was ob-

tained [25, 97–100].

Multinucleon transfer reactions 58Ni+208Pb [31] and 40Ca+208Pb [30] were studied at

the time-of-flight spectrometer PISOLO at incident energies slightly above the Coulomb

barrier. The total cross sections were obtained by integrating angular and Q-value dis-

tributions for each isotope and compared with semi-classical calculations (CWKB and

GRAZING) (see Figs. 7.1A and 7.1B). The cross sections for neutron pick-up drop by

almost a constant factor for each transferred nucleon, as an independent particle mech-

anism would suggest. A good agreement between data and theory is obtained for the

pure neutron pick-up transfer and for channels involving the stripping of one proton. The

pure proton stripping cross sections behave differently, and the population of the (−2p)

is almost as strong as the (−1p) channel. This was explained by processes which involve

the transfer of correlated protons in addition to the successive transfer of single protons.

These findings were fortified with calculations which explicitly included pair-transfer

modes, both for proton stripping and neutron pick-up channels, with the same strength of

macroscopic form factors. The treatment of the transfer degrees of freedom is based on the

assumption that in a heavy-ion collision the exchange of a nucleon may proceed via many

open channels that are all quite week, so that they may be treated as independent particles.

The multinucleon transfer channels were estimated from the multi-step mechanism. The

probability for the transfer of pair of nucleons is estimated by using the form factor for

the transfer of two nucleons that is calculated from the macroscopic prescription [101].

The pair transfer couplings have following form:

fP (r) ∼ βλ
∂U(r)
∂r

(7.1)

where U(r) is optical potential and the pair-deformation parameter βλ gives the measure

of the correlation strength. The full range of Q-value has been fulfilled by the inclusion

of all transitions between the single-particle levels of projectile and target of a full shell

below the Fermi surface and all single-particle levels above. Only one pair-transfer mode

for (−2p) and (+2n) channels located at the optimum Q-value was used. The strength

of these form factors was kept the same for protons and neutrons, and was fitted to the

inclusive cross section of the (−2p) channel.

The inclusion of the pair-transfer mode was essential for the description of the proton
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channels, and didn’t alter the good results for the neutron channels. Also, once the

cross section of (−2p) channel is reproduced, the predictions for the other charge transfer

channels are much better, indicating the importance of the proton pair mode. Proton

and neutron apparent asymmetry was present in all reactions studied so far. Nuclear

structure calculations have shown that the pairing interaction has the same strength for

both of them. Being the one-neutron transfer cross section almost one order of magnitude

larger than the one-proton transfer, the contribution of a pair transfer mode is masked by

the successive mechanism. The very short-range pairing interactions does not contribute

directly to the transfer process but redistributes the strength around the pure particle-

particle and hole-hole configurations of projectile and target. It is thus very difficult to

deduce the effect of pairing correlations from inclusive cross sections only and separation

of the individual states yields is very welcome.

The excitation functions, corroborated from the knowledge of the excitation spectra

and the results of reaction and shell model calculations, provided valuable information

in this respect for the 40Ca+208Pb system. By looking at the final population of the

single-particle levels it was concluded that the maxima for the (+2n) and (+4n) chan-

nels are essentially due to two and four neutrons in the p3/2 orbital. From the nuclear

structure and reaction dynamics studies one expects that the p3/2 orbital gives a much

larger contribution to the two-nucleon transfer cross section than the f7/2 orbital, which

dominates the ground-state wave function. This fact, together with the known low-energy

spectra of 42,44Ca, suggest that these maxima correspond to the excited 0+ states that

were identified with the pair mode [102]. These experimental results (see Fig. 7.3) point

to a selective feeding of 0+ states dominated by a pair of neutrons in the p3/2 orbital.

The 42Ca was also populated in the 40Ca+96Zr reaction that was measured with

PRISMA-CLARA set-up at energy 152 MeV, close to the Coulomb barrier. As in pre-

vious measurement, the TKEL spectra of 42Ca shows that most of the cross section is

concentrated in a pronounced peak at an energy that is compatible with the excitation

of a group of 0+ states at ∼6 MeV where a pairing-vibrational state should be located.

The set-up allowed the observation of the decay pattern of the populated 0+ state; and a

γ transition at 4340 keV, which is consistent with a decay from a 0+ level at 5.8 MeV to

the 2+
1 state, was observed.

Fully microscopic framework of the time-dependent Hartree-Fock (TDHF) theory have
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Figure 7.3: Experimental (histograms) and theoretical (curves) TKEL distributions of the (+2n)
channel in the 40Ca+208Pb reaction at the indicated energies. The arrows correspond to the
energies of 0+ states with an excitation energy lower than 7 MeV [30].
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Figure 7.4: Transfer cross sections for the 40Ca+208Pb reactions at Elab=235 and 249 MeV. Red
filled triangles (green open circles) denote measured cross sections at Elab= 235 (249) MeV. Red
solid (green dotted) lines denote results of the TDHF calculations [21].
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been recently applied for different systems [19–21, 103]. An example for the 40Ca+208Pb

reaction at Elab=235 and 249 MeV is shown in Fig. 7.4. Theory describes the transfer

cross sections of a few nucleons reasonably and as the number of transferred nucleons

increases, the agreement becomes less accurate. Results give qualitatively similar results

to those of the semi-classical models [21]. In this comparison TDHF theory doesn’t

include correlations, but later it will be shown how they were incorporated in macroscopic

approach.

An alternative way to probe correlations are measurements well below the Coulomb

barrier. Theoretical interpretation of inclusive cross sections at and above Coulomb bar-

rier is very complex due to the presence of many competing processes that depopulate

channel of interest. At energies well below the Coulomb barrier, the interacting nuclei

are at large distances so that they interact through the tail of their density distribution

and are only slightly influenced by the nuclear potential [104]. When dealing with ener-

gies for which the colliding nuclei cannot overcome the Coulomb barrier, they are kept

apart making negligible the formation of compound nuclei and ensuring that the transfer

process is a direct one. Reaction products are excited in a restricted energy region (few

MeV). Thus one needs to take into account few populated excited states which simpli-

fies coupled channel calculations and quantitative information may be extracted on the

nucleon-nucleon correlations. The main advantage, however, is that in the calculations

of the transfer probabilities one needs only the overlap of the tails of the intrinsic wave

functions that are involved in the transfer process, and these asymptotic behaviours are

well known at least for single particle transfer [33]. The distortion of the Coulomb elastic

waves by the nuclear attraction is very small and may easily be accounted for.

Measurements below the barrier are very complex and one encounters several prob-

lems. The transfer probability at large distances corresponds to forward angles where

overwhelming yield of elastically scattered particles often prevents good identification

of ions close to the projectile. Angular distributions are backward peaked reaching the

maximum at θcm = 180◦. They are featureless with a behaviour that is independent on

the transferred angular momentum l and grow monotonically. Also in direct kinematics

projectile-like fragments have low kinetic energy. A complete identification of final reac-

tion products in A, Z and Q-value thus becomes difficult. Cross sections are very small

and this demands detectors with high efficiency.
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Significant progress was made by using reactions in inverse kinematics to detect the

lighter target-like outgoing recoils at forward angles. The ions are forward focused (high

detection efficiency) and with high kinetic energy (for energy and therefore mass reso-

lution). This method was first used to study the 124Sn+58Ni reaction with split-pole

spectrometer [15, 16]. Due to low cross section, sub-barrier transfer reactions are difficult

to measure and recently with the large solid angle and acceptance spectrometer PRISMA

several systems were investigated with good ion identification also at very low bombarding

energies [52].

In low energy collision the cross section for transfer products is proportional to the

elastic one:
dσ

dΩ tr
= Ptr

dσ

dΩel+inel
(7.2)

thus it is convenient to represent them in terms of the transfer probability. The transfer

probability Ptr, defined for the measured angle as the ratio of the transfer cross section

to the elastic cross section:

Ptr =
dσtr

dσRuth
(7.3)

is plotted as a function of the distance of closest approach (D) for a Coulomb trajectory.

The distance of closest approach is related to the center-of-mass scattering angle θcm and

the energy Ecm:

D =
ZaZAe

2

2Ecm

(

1 +
1

sin(θcm/2)

)

. (7.4)

This is very attractive representation of the data since the angular distributions obtained

at different bombarding energies will all be superimposed.

First the 96Zr+40Ca (closed shell nuclei) reaction has been measured in inverse kine-

matics where target recoils have been detected with PRISMA. Results of the measurement

are presented in Fig. 7.5A, together with the semi-classical microscopic calculations for

(+1n) and (+2n) neutron transfer channels that incorporated nucleon-nucleon correla-

tions [33, 82, 106, 107]. The computed total transfer probability (full line) for (+1n)

channel was obtained by summing over all possible transitions that can be constructed

from the single particle states in projectile and target. The set of single particle states

covers a full shell below the Fermi level for the 96Zr and a full shell above for the 40Ca.

One sees how calculations reproduce well the experimental slope as well as the absolute

values of the transfer probabilities for the one neutron channel.
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(A) The full line represents the inclusive trans-
fer probability for (+1n) transfer, the dotted
line the ground-to-ground state transition for
the (+2n) transfer, and the dashed line the
transition to the 0+ excited state at 5.76 MeV
in 42Ca [33].
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(B) The experimental data (same as in 7.5A)
are represented by full circles for (+2n) and
crosses for (+1n). The TDHF+BCS results
are displayed by red solid line for the prob-
ability to transfer one neutron and by or-
ange dashed line for the probability to transfer
two neutrons. The results shown by squares
and triangles are theoretical results shown in
Fig. 7.5A. The open circles correspond to the
(+2n) transfer where also ground state to 0+

excited state transfer is accounted for [105].

Figure 7.5: Transfer probability as a function of distance of closest approach for (+1n) and (+2n)
in the 96Zr+40Ca reaction, measurement (points) is shown in comparison with the theoretical
calculations (lines).

The ground state wave function for the 94Zr was obtained from a BCS calculation

by adopting a state independent pairing interaction, while for the description of 42Ca

the total Hamiltonian was diagonalized with a model space containing only two-particle

configuration coupled to 0+ (i.e. transfer of a J = 0+ pair). The calculated probability

for the ground-to-ground state transition is shown with a dotted line in Fig. 7.5A. The

probability corresponding to the transition to the 0+ state at 5.8 MeV in 42Ca (dashed

line) was much larger than the ground state one [33]. The role played by the single

particle states f7/2 and p3/2 was already identified and discussed previously. The data

are inclusive and the calculation includes only the transfer to 0+ states, so a factor is still

missing for the description of the total transfer cross section. The enhancement factor of

∼3 was ascribed to the fact that the two-nucleon transfer reaction does not populate only

0+ states but it is much richer, and more complicated two-particle correlations have to be

taken into account. The flattening of both probabilities at small internuclear distances,

corresponding to large bombarding energies, is related to the increase of the absorption,

and can be easily accounted for.
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These transfer probabilities have been recently compared to the time-dependent Hartree-

Fock + BCS (TDHF+BCS) theory where correlations are included in the approximative

way via BCS (Fig. 7.5B) [20].

Figure 7.6: Transfer probability as a function of distance of closest approach, for (+1n) and
(+2n) in 116Sn+60Ni reaction. Points represent the experimental values, solid lines are theoret-
ical calculations [34].

The transfer probabilities for one- and two-neutron transfer channels in the 116Sn+60Ni

system [34] were recently measured up to very large distances of closest approach. In

this system the ground-to-ground state Q-values for neutron transfers are close to zero,

matching the optimum Q-value (∼0 MeV). The same microscopic theory as for 96Zr+40Ca

was applied and results are shown in Fig. 7.6. The result supports a mechanism in

which a correlated pair is exchanged between the ground states of the interacting Sn

and Ni nuclei. For the first time in a heavy-ion collision, a consistent description of

one and two-neutron transfer reactions was obtained, both in shape and magnitude, by

incorporating, in the reaction mechanism, all known structure information of entrance

and exit channels nuclei. For the calculation of the two-neutron transfer channel, the

formalism incorporates the contribution from both the simultaneous and successive terms.

In particular, there is no need to introduce any enhancement factor for the description of

two-neutron transfer, of course very important are the correlations induced by the pairing

interaction. This achievement has been possible only because the chosen system is very
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well Q-value matched so that the reaction is dominated by the ground-to-ground state

transition.

7.2 Comparison with theoretical predictions for 40Ar

+ 208Pb
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Figure 7.7: Total cross section (black symbols) and cross section of QE component (red symbols)
for the pure proton and neutron transfer channels.

Now we will look how these findings apply to the 40Ar+208Pb system. Comparison of

the total experimental cross sections for the pure neutron and proton transfer channels

with the GRAZING calculations is shown in Fig. 7.7. Angle and TKEL integrated total

cross sections are shown with black points, while the cross sections integrated over low

TKEL part (QE component) are shown with red points (as explained in Section 5.3).

The behaviour of the neutron pick-up side indicates that neutrons are transferred

independently and for each transfer step the cross section drops by a factor ∼6. Theory

well reproduces the data, especially the QE cross section. In particular, the (±1n) and

(±1p) channels are well reproduced by the GRAZING calculations. However, the pure

proton stripping cross sections behave differently from neutron ones, since the population

of the (−2p) channel is only 2 times lower than the (−1p) channel. The GRAZING

calculations clearly underestimate the corresponding cross sections for (−2p) channel,

suggesting that processes involving the transfer of correlated proton pairs in addition to

the successive transfer of independent protons may contribute, which is consistent with
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previous results. The fact that pure proton stripping and neutron pick-up are well Q-

value matched can be seen in figure, since they are stronger than the pure proton pick-up

and neutron stripping channels. The (−2n) and (+2p) channels, in comparison with the

calculations, behave similarly as (+2n) and (−2p) channels. The trend of both, the total

and QE cross sections, is similar, being the QE cross section in better agreement with the

GRAZING calculations.
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Figure 7.8: Inclusive total cross section (top) and QE cross section (bottom panel). Points
are experimental values, the black histograms are GRAZING calculations and the grey dotted
histograms are the GRAZING calculations with included evaporation (see Table 5.3).

We will look the (np) channels in more details. The total cross sections, experimental

and calculated, for all representative channels are shown in Fig. 7.8. The (+1p+ 1n)

transfer channel leading to 42K is under-predicted by GRAZING calculations (bottom

panel) by a factor 2.7. The (−1p− 1n) channel is also under-predicted by calculations

(top panel). On the other hand, this channel is difficult to interpret because one expects

stronger contribution of the neutron evaporation mechanism. In fact, it can be seen from

Fig. 7.8 that this channel, especially in the bottom panel, is better reproduced after

evaporation was included in GRAZING calculations (dashed lines). Effect of neutron

evaporation from the primary fragments affects more more massive transfer channels

where one observes a larger drift of the data towards the neutron stripping side. The pure

proton stripping channels become less favoured as more protons are transferred, with the

centroids of the mass distributions shifting to lower values.
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TKEL part. Black lines are the GRAZING calculations. The elastic cross section is given as
ratio to Rutherford cross section.

Differential cross sections provide valuable informations and are shown in Fig. 7.9

for several selected channels. Black points are differential cross sections integrated over

entire TKEL range, while red points are integrated over low TKEL part (QE compo-

nent). Black curves are GRAZING calculations. Single particle transfers are dominated

by QE component and corresponding angular distributions are very similar to the ones

integrated over entire TKEL range (black symbols). As more nucleons are transferred the

difference between the total and QE angular distributions is more apparent, particularly

at forward angles. It can be noticed that GRAZING describes all single-particle transfers

well, especially when considering only QE component and neutron transfer channels. The

(+2n) channel is also very well described both in shape and magnitude. Neutron striping

transfer channels are well described in magnitude, however they are shifted in angle with
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respect to GRAZING calculations, especially when more neutrons are transferred, which

may be attributed to Q-value mismatch for these channels, at variance with the matching

for neutron pick-up ones. The experimental selection of a weaker (−2n) channel was dif-

ficult, and clear separation of charge states from the strong elastic channel was probably

the source of forward angle rising. As expected, and in agreement with previous findings,

the GRAZING calculations under-predict the (±2p) channels. In our case, the (+2p)

channel is rather weak and strongly influenced by DIC, thus it is difficult to draw a clear

conclusion.

Again proton and neutron asymmetric behaviour can be due to the fact that the

one-neutron transfer cross section is almost one order of magnitude larger than the one-

proton transfer. Thus, the contribution of a pair-transfer mode in the neutron sector may

be masked by the successive mechanism.
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Figure 7.10: Angular distributions integrated over total energy losses (empty points), integrated
over small energy losses (red points) and over large energy losses (blue points). Black lines are
GRAZING calculation. Total kinetic energy loss distributions for all three PRISMA angular
settings are represented in top panels where red line indicated a TKEL cut used to separate QE
and DIC component.

The angular distribution integrated over entire TKEL range of (+1p+ 1n) is under-

predicted (factor ∼5) by the GRAZING calculations, which indicates that some additional

degrees of freedom have to be considered for that channel. Thus, we displayed in Fig. 7.10

in top panels the integrating regions (red line) in total kinetic energy loss distributions for

(+1n), (+1p) and (+1p+1n) for all three PRISMA angular settings used to separate QE
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component. Bottom panel displays integrated differential cross sections that have been

extracted by integrating the full TKEL range (black points) and by integrating only the

low part of the TKEL, corresponding to QE component (red) and DIC component (blue).

Black curves are GRAZING calculations.

As mentioned, one particle transfers, both (+1n) and (+1p), are very well reproduced

by GRAZING calculation both in shape and magnitude. The better Q-value matched

channel (+1n) is better reproduced, while (+1p) channel is reasonably well reproduced

in shape, and very well in magnitude.

The angular distribution of the (+1p+ 1n) channel is broader than the calculated

one, especially at forward angles, which indicates a possible influence of deep inelastic

scattering in this channel which is why the TKEL distributions were studied in more

details. As already concluded, the differential cross section of QE processes has bell

shaped angular distribution typical for these processes with maximum around grazing

angle. In addition, in this QE case the matching of three different PRISMA settings is

much better. These QE angular distributions are shown in Fig. 7.11. It is clear that the

QE angular distribution for (+1p+ 1n) channel is still under-predicted (factor ∼2.5) by

the GRAZING calculations, even when only QE contribution is considered.
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Figure 7.11: Experimental QE angular distributions (points) and the GRAZING calculated ones
(lines). For (+1p) and (+1p + 1n) channel the GRAZING calculated angular distribution was
shifted by +3◦.

With the ability to measure individual transitions, one may get a deeper insight into

correlations and by looking at the population of individual states and their dominant un-

derlying structure a step further can be made. It is known that the very short-range pair-

ing interaction redistributes the strength around the pure particle-particle and hole-hole

configurations, thus the yield distribution over the individual states provides important
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complementary informations [84].

Looking at the population of the final states in 42K it was demonstrated in Chapter

6 that beside the population of the low-lying negative parity states, a strong excitation

of the 7+ state has been observed. From an analysis of the strength distribution, the

population of this state turns out to account for ∼16% of the total yield. The dominant

structure of the low-lying negative parity state can be viewed as a multiplet arising from

the coupling of the unpaired proton in the d3/2 and the unpaired neutron in the f7/2

orbital. Such low-lying states of natural parity are usually strongly excited in the transfer

reactions.

On the other hand, a structure of the 7+ state involves the promotion of a proton to

the pf shell. It can be viewed in the simple picture as the coupling of the f7/2 neutron to

the f7/2 proton in the stretched configuration. The Bansal-French-Zamick weak-coupling

model supports this simple picture. It is very interesting that this state was by far the

strongest populated state in the (very selective) deuteron transfer 4He+40Ar reaction [91].

The comparison of the strength distributions of the populated states in 42K observed in

the 40Ca+96Zr and in the 40Ar+208Pb reactions, reveals that in the case of the 40Ca+96Zr

reaction, where 42K was reached via stripping of one proton and pick-up of three neutrons,

no selective population of specific states was observed. In fact, a similar strength of all

populated states was observed.

It is clear that two-nucleon transfer plays a special role in the study of pairing in nuclei,

and they can be viewed as the specific probe of nuclear pairing correlations. It is still an

open question whether pair correlations can be probed in heavy-ion collisions. The search

for their signatures has been attempted via the measurement of two-particle transfer

channels. In the first step, the actual cross section is compared to the predictions of

models using uncorrelated states. The obtained enhancement factor, in principle, provides

a direct measurement of the correlation of the populated states. In our case the measured

cross section of the (+1p+ 1n) channel is enhanced in comparison with the prediction of

the GRAZING calculation.

By using heavy-ion reactions, unfortunately one has to deal with the reaction mecha-

nism complicated by the interplay between nuclear and Coulomb trajectories. This is why

we studied very carefully the behaviour of the TKEL, and the excited state population.

The measured absolute differential cross section of the relevant channels (see Fig. 7.11)
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is the main observable which relates experiment and theory. In fact, the strength and

presence of the correlation will emerge from a direct comparison of the measured and

the microscopically calculated cross sections, where all essential ingredients for accurate

description of the nuclear structure and dynamics are employed.

It is important to pursue further studies with different nuclear structure. These studies

will be of particular relevance in the near future due to the advent of radioactive beams

where these problematics are of top priority to understand some of the basic properties

of very weakly bound nuclei. In this context, and especially considering the transfer

reactions, it is extremely important to extend the microscopic formalism in such a way to

calculate the transfer of pairs with large angular momentum.

7.3 Outlook: the 92Mo+54Fe reaction

In order to study into more detail the (np) correlations, a measurement of the excitation

function from above to deep below the Coulomb barrier has been performed. The "proton-

rich" 92Mo+54Fe system was studied by exploiting the large acceptance of the PRISMA

spectrometer. In order to detect Fe-like target recoils, PRISMA was positioned at θlab =

20◦, corresponding to θcm = 140◦. Proton transfer channels are in general more difficult

to obtained far below the barrier since they drop off more rapidly than neutron channels,

thus so far experimental data were rare.

Analysis of PRISMA data was already presented in Chapter 3 and will not be repeated

here, only main result will be presented. The preliminary results of transfer probability

Ptr plotted as a function of the distance of closest approach D are presented in Fig.

7.12. Transfer probability represented in this way exhibits exponentiation fall. This is

proportional to the square root of binding energy EB of the transferred particle:

dσ

dΩ
∼ e−2

√
−2µN EBD (7.5)

where µN is reduced mass of transferred particle. Within a simple phenomenological

interpretation of the data, a fit of the transfer probability for the (+1n) and (+1p) channel

can be made. If one neutron and one proton are transferred independently (black and

blue lines in Fig. 7.12 are fits), the (+1p+1n) channel should have a transfer probability

equal to P1n ∗P1p (dotted line in Fig. 7.12). The enhancement with respect to sequential,
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Chapter 7. Discussion

independent transfer is observed (see red and dotted grey lines) which indicates some

additional degrees of freedom and possible transfer of a neutron-proton correlated pair.

In addition, the slope of expected P1n ∗P1p transfer differs strongly in comparison with

the measured one. These results are still preliminary and more careful analysis is needed,

as well as the comparison with theoretical calculations.
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Figure 7.12: Preliminary results of transfer probability as a function of distance of closest
approach, for (+1n), (+1p) and (+1p+1n) channels in the 92Mo+54Fe reaction (points). Black,
blue and red lines are fits, while the grey dotted line corresponds to probability for sequential
transfer P1n ∗P1p.
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Conclusion

The 40Ar+208Pb multinucleon transfer reaction was measured near the Coulomb barrier

with the large solid angle magnetic spectrometer PRISMA coupled to the CLARA HPGe

array. The measurement was performed on three different spectrometer’s angular settings

covering more than 20◦, which allowed to extract total cross section for different reactions

channels. Analysis was performed for each of the (A,Z) channels separately. Careful

evaluation of the response function of the spectrometer allowed to match different angu-

lar distributions for the first time and to obtain absolute cross sections for the transfer

channels. The analysis of the elastic scattering enabled the extraction of the absolute

normalization values of the data. With the coupling of the two detectors it has been pos-

sible to perform coincidences between the ions detected with the magnetic spectrometer

and their associated gamma rays, measured with the CLARA array. This thesis provides

a complete study of the many channels open in the multinucleon transfer reaction and

focuses on the investigation of the reaction properties, in terms of differential and total

cross sections and total kinetic energy loss distributions.

The transfer of several nucleons gives the possibility to study the relative role of single

nucleon and pair transfer modes. Through the simultaneous study of the absolute cross

sections for all channels populated via transfer of nucleon pairs (±nn), (±pp) and (±np),
and their comparison with the theoretical predictions that include only the transfer of

independent particles, we tried to explore the contribution of nucleon-nucleon correlation.

We also explored the contribution of the deep inelastic component to the reaction cross

section, which was possible thanks to the very wide energy acceptance of the PRISMA

spectrometer.

The employed semi-classical theory, at the basis of the GRAZING model, well re-

produces the data, especially the quasi-elastic cross sections, for the (±xn) and (±1p)

transfer channels. The behaviour of neutron transfer channels suggests that neutrons are
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Conclusion

transferred independently. The pure proton stripping channels behave differently. The

yield of the (−2p) channel is only two times smaller than that of the (−1p) one and it

is clearly underestimated by the calculations. It is important to notice that when only

the quasi-elastic part of the cross section was considered, the (±2p) channels were still

under-predicted by GRAZING calculations. The same holds for the (+1p+ 1n) channel.

The comparison with the GRAZING model can be taken as a first step in the theoretical

interpretation. The fact that one-particle transfer channels, both for neutrons and pro-

tons, are well reproduced indicates the correct treatment of the dynamical and structural

properties in the model.

In comparison with the same semi-classical model, where correlations are not incor-

porated, the cross section of (+1p+ 1n) channel turns out to be enhanced. This result

was corroborated with the population strength of the excited states for the same channel,

extracted via γ-particle coincidences. In this way important complementary information

could be obtained, since it is known that the very short-range pairing interaction redis-

tributes the transfer strength over different final states. We observed, besides the expected

population of the low-lying states, a strong excitation of the 7+ state, emerging from the

coupling of a neutron and a proton in the f7/2 orbital. The same state was by far the

strongest populated state also in the deuteron transfer reaction in the 4He+40Ar system.

It is clear that two-nucleon transfer plays a special role in the study of pairing in nuclei,

and they can be viewed as a specific probe of nuclear pairing correlations. The presented

findings have to be complemented with other measurements, one of which is the study

of the behaviour of transfer channels below the Coulomb barrier, where the excitation

energies of the final reaction products are expected to be much smaller. Our findings,

the presence of the enhancement in the (+1p+1n) channel in comparison with the model

where correlations are not incorporated, and the main strength observed in a state where

the proton and neutron of the same orbital are coupled in the stretched configuration,

need to be compared with a microscopic theory, where all essential ingredients for accurate

description of the nuclear structure and dynamics are employed. It would be important

to extend the microscopic formalism in such a way to calculate the transfer of pairs with

large angular momentum. This kind of studies are of particular relevance for future studies

with radioactive beams, where correlations are expected to be significantly modified.
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A Calibration of PRISMA
detectors

A.1 MCP position calibration

(A) Data in coincidence with the MWP-
PAC.

(B) Scheme of the mask used for the cali-
bration of the MCP detector. The centre
of the cross and the reference points on its
branches have to be placed in the coordi-
nates given in Table A.1.

Figure A.1: xMCP and yMCP entrance positions.

The cross visible in the Fig. A.1A is the projection of a mask placed about 1 cm

downstream of the Carbon foil and it is used for calibration of xMCP and yMCP positions.

The metallic cross stops the ions and creates a clear shadow when the coincidence with

the focal plane is required, while it’s faded when there is no coincidence. This mask,

shown in Fig. A.1B, has four arms intersecting in a point which is almost coincident

with the center of the MCP, namely the point where the central trajectory of PRISMA

crosses the Carbon foil. Two lines that are visible on the right side of the MPC matrix

are shadows of nails that were put inside the quadrupole. When the mask is mounted
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Appendix A. Calibration of PRISMA detectors

Table A.1: Coordinates in channels of the four reference points used to calibrate the MCP
detector.

Point xMCP [channel] yMCP [channel]

center 1000 1000
1 570 1530
2 1430 1530
3 1430 470
4 570 470

it is usually rotated 2-3◦. This has to be corrected during the analysis and the MCP

matrix is rotated until these two lines are again vertical. The position is then calibrated,

since distance of four reference points that are visible on the cross arms is fixed at 4 cm

from the centre. Table A.1 shows correspondence between pairs of coordinates in units

of channels with respect to a known reference system. For a proper calibration the MCP

has to be mirrored with respect to the vertical axis and the shadows of the nails will be

on the left side of the MCP matrix. Calibration is done with the polynomial function of

first degree that is calculated in order to fit all reference points [67, 72].

The elliptic shape of the MCP matrix can be understood considering the geometry

of PRISMA: since the detecting surface of the MCP is placed between the target and

the quadrupole entrance, the fraction of the reaction products emitted at the target’s

position, that the spectrometer transmits toward the focal plane, is approximately a cone

crossing the MCP and entering the quadrupole. The ellipse raises from the intersection

between this cone and the detecting surface of the MCP [67].

A.2 MWPPAC position calibration

Polygonal gate can be put on the matrix right+left vs. cathode, shown in Fig. A.2A, to

select only "good" events and decrease background signals.

For each section position information is obtained from the difference between signals

from the left and right side of the delay lines:

xP P AC = right− left. (A.1)

Since position on the focal plane is obtained with delay line method it may happen that
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A.3. TOF calibration and alignment

(A) Plot of the left+right (x axis) vs. cath-

ode (y axis) signals that is used to suppress
the background.

(B) Plot used for correction of incomplete
events.

Figure A.2: Plots used to obtained MWPPAC position information.

a signal is detected on one side, while the signal on the opposite side is missing. In

order not to loose these events and to recover statistics, they can be reconstructed by

using the cathode signal. In this case cathode is substituting the signal that is missing.

For example if right is missing, expression A.1 becomes xP P AC = left− cathode. The

procedure requires a calibration between the coordinates xP P AC and cathode signal in

order to get the right reconstruction of the position for the incomplete events. Figure

A.2B is used to find the slope and the offset of the lines in the histogram describing the

relation between xP P AC and xP P AC = left−cathode in case of missing right signal. The

three signals can be then combined to determine xP P AC . Position on the focal plane,

xP P AC , is then calibrated to millimetres.

A.3 TOF calibration and alignment

TOF is measured between MWPPAC cathode signals and entrance detector time signal

that is suitably delayed. Figure A.3A shows horizontal position on the focal plane xP P AC

versus TOF where ten sections of MWPPAC are visible. First step is to calibrate TOF

signals in nanoseconds and for this one applies off-line calibration coefficients. Calibrated

spectrum is shown in Fig. A.3B clearly showing different TOF offsets in different sections.

All ten sections then have to be aligned with respect to each other.

The crucial step is to define absolute (global) offset. As a first step this can be adjusted
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Appendix A. Calibration of PRISMA detectors

(A) TOF not calibrated and not aligned. (B) TOF calibrated but not aligned.

Figure A.3: Non aligned xP P AC - TOF spectra.

Figure A.4: Position on the focal plane versus calibrated and aligned TOF.

on the basis of TOF estimates. Length of the trajectory of 40Ar is equal to distance

between MCP and MWPPAC which is roughly 6 m. Considering the loss of energy in

the target, one can estimate the velocity of 40Ar from the beam energy. Velocity can be

further checked with the energy of electromagnetic transitions measured with CLARA,

which are very sensitive to the Doppler correction. By applying Doppler correction to the

γ spectra one can check whether main lines have correct energy and width. This is an

iterative procedure that ends when the proper offset of the TOF is found, i.e. when the

main peaks have both the correct position in energy and width as small as possible. The

structures that are visible on Fig. A.4 are related to different A/q ratios that are reaching

the focal plane.
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B CLARA configuration table

Figure B.1: Schematic view of the three rings of CLARA (red circles), correspondent to three
different angular positions (with respect to the θ coordinate) [72].
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Appendix B. CLARA configuration table

Table B.1: CLARA detectors angular positions. #D is clover and #c Ge crystal number. θ and
φ are angles of the crystals measured in the PRISMA frame of reference.

#D #c θ φ #D #c θ φ #D #c θ φ

00 002 171.1 225.0 09 038 131.4 355.8 18 074 103.8 146.9

003 171.1 315.0 039 124.5 356.2 075 97.8 146.9

000 171.1 45.0 036 124.5 4.8 072 97.8 154.1

001 171.1 135.0 037 131.4 5.2 073 103.8 154.1

01 006 157.9 351.4 10 042 131.4 85.8 19 078 103.8 176.9

007 150.5 353.3 043 124.5 86.2 079 97.8 176.9

004 150.5 7.7 040 124.5 94.8 076 97.8 184.1

005 157.9 9.6 041 131.4 95.2 077 103.8 184.1

02 010 157.9 81.4 11 046 131.4 175.8 20 082 103.8 206.9

011 150.5 83.3 047 124.5 176.2 083 97.8 206.9

008 150.5 97.7 044 124.5 184.8 080 97.8 214.1

009 157.9 99.6 045 131.4 185.2 081 103.8 214.1

03 014 157.9 171.4 12 050 131.4 265.8 21 086 103.8 236.9

015 150.5 173.3 051 124.5 266.2 087 97.8 236.9

012 150.5 187.7 048 124.5 274.8 084 97.8 244.1

013 157.9 189.6 049 131.4 275.2 085 103.8 244.1

04 018 157.9 261.4 13 054 103.8 356.9 22 090 103.8 266.9

019 150.5 263.3 055 97.8 356.9 091 97.8 266.9

016 150.5 277.7 052 97.8 4.1 088 97.8 274.1

017 157.9 279.8 053 103.8 4.1 089 103.8 274.1

05 021 135.1 45.4 14 058 103.8 26.9 23 094 103.8 296.9

022 137.5 36.7 059 97.8 26.9 095 97.8 296.9

023 132.7 32.0 056 97.8 34.1 092 97.8 304.1

020 129.3 40.1 057 103.8 34.1 093 103.8 304.1

06 026 129.3 140.9 15 062 103.8 56.9 24 098 103.8 329.9

027 132.7 149.1 063 97.8 56.9 099 97.8 329.9

024 137.5 144.4 060 97.8 64.1 096 97.8 334.1

025 135.1 135.7 061 103.8 64.1 097 103.8 334.1

07 028 135.1 225.5 16 066 103.8 86.9

029 137.5 216.7 067 97.8 86.9

030 132.7 212.1 064 97.8 94.1

031 129.3 220.2 065 103.8 94.1

08 034 129.3 321.0 17 070 103.8 116.9

035 132.7 329.2 071 97.8 116.9

032 137.5 324.4 068 97.8 124.1

033 135.1 315.7 069 103.8 124.1
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C Error induced by the
response function

Error induced by the response function can be estimated if one builds, for each of the

studied channels, several response functions. This can be done by calculating the average

value of nearby cells with different smoothing procedures, thus obtaining different response

functions starting from the original one. Their comparison is then used to estimate the

error.
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(B) Set of data made out of ran-
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(C) The smoothed version of
the original data.

Figure C.1: Example of Gaussian smoothing on one dimensional random values. The "kernel" for
smoothing defines the shape of the function that is used to take the average of the neighbouring
points. In Gaussian smoothing we use a kernel with the shape of a Gaussian (normal distribution)
curve. Here on panel (A) is a standard discrete Gaussian, with a mean of 10 and a sigma of 1.
Set of data made out of random numbers is shown on panel (B). If we start from point 10, we
first multiply the Gaussian values by the values of the data, and sum the results to get the new
smoothed value for point 10. Thus, the new value for point 10 is ...+0.054×2.3+0.242×1.2+
0.399×0.8+0.242×1.7+0.054×2.0+ ... = 1.266. This new smoothed value is stored for future
use, and we move on, to the next point, and repeat the process, with the Gaussian kernel now
centred over 11. This process is done for each point, starting from the beginning, to eventually
obtain the smoothed version of the original data shown on panel (C).

The average value depends on the technique and the size of the average bin. Two

techniques are used:

1. Gaussian smoothing, which is a smoothing procedure that is using a Gaussian

function to calculate the average value of the neighbouring cells in the matrix. In
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Appendix C. Error induced by the response function

two-dimensional case it is simply the product of two Gaussian distributions, one in

each dimension, and smoothing can be performed in two directions separately [108].

The procedure goes through the matrix point by point. For each point a new value

that is a Gaussian function of the original value at that point and the surrounding

data points is generated. In practice, the procedure starts by moving Gaussian shape

with some standard deviation to the center of the first point (cell). In order not to

do an overall scaling of the values after the smoothing, the values in the Gaussian

curve are divided by the total area under the curve, so that the values add to 1.

Finally a discrete Gaussian is obtained. Then the Gaussian values are multiplied

by the values of the data. The results are summed to get the new smoothed value

for that point. The new value is stored and procedure continues on the next point.

Each cell’s new value is set to a weighted average of that cell’s neighbourhood, with

the average weighted more towards the value of the central cell (having the highest

Gaussian value).

2. Moving average, is a calculation to analyse data points by creating a series of

averages of the value itself and the neighbouring points. When calculating successive

values, a new value comes into the sum and an old value drops out, so a central

moving average is computed. Data equally spaced on either side of the value are

used, which requires using an odd number of points in the sample window [109].
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