Slunjski, Robert

Doctoral thesis / Disertacija

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:331387

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Robert Slunjski

TRANSPORTNA SVOJSTVA POLUVODIČKIH NANOSTRUKTURA

DOKTORSKI RAD

UNIVERSITY OF ZAGREB FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

Robert Slunjski

TRANSPORT PROPERTIES OF SEMICONDUCTOR NANOSTRUCTURES

DOCTORAL THESIS

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Robert Slunjski

TRANSPORTNA SVOJSTVA POLUVODIČKIH NANOSTRUKTURA

DOKTORSKI RAD

Mentor: dr.sc. Branko Pivac

UNIVERSITY OF ZAGREB FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

Robert Slunjski

TRANSPORT PROPERTIES OF SEMICONDUCTOR NANOSTRUCTURES

DOCTORAL THESIS

Supervisor: dr.sc. Branko Pivac

Informacije o mentoru

Ime i Prezime: dr.sc Branko Pivac

Zaposlenje: Znanstveni savjetnik u trajnom zvanju, Instituta Ruđer Bošković Voditelj je recentnih projekata:

- Nanomaterials and nanotechnology for advanced PhotoVoltaics NanoPV (EC-FP7-NMP-2009-SMALL-3)
- Temeljna svojstva nanostruktura i defekata u poluvodičima i diektricima (MZOŠ-098-0982886-2866)
- Study of oxygen precipitation and structural defects in single crystal silicon (Bilateralni hrvatsko-kineski projekt)

B. Pivac je do sada vodio 7 diplomskih radova, 3 magistarska rada i 3 doktorska rada i do sada je objavio 122 CC rada.

Zadnji najznačajniji radovi:

- B. Pivac, P. Dubček, I. Capan, I. Zulim, T. Betti, H. Zorc, S. Bernstorff, Nano Si Superlattices for the Next Generation Solar Cells, J. Nanosci. Nanotechnol., 9, 3853-3857 (2009).
- M. Buljan, J. Grenzer, V. Holy, N. Radić, T. Mišić-Radić, S. Levichev, S. Bernstorff, B.Pivac, I. Capan, Structural and charge trapping properties of two bilayer (Ge+SiO2)/SiO2 films deposited on rippled substrate, Appl. Phys. Lett. 97, 163117-163117 (2010).
- R. Slunjski, I. Capan, B. Pivac, A. Le Donne, S. Binetti, Effects of low-temperature annealing on polycrystalline silicon for solar cells, Sol. Energy Mater. Sol. Cells, 95, 559-563 (2011).
- L. Xiang, D. Li, L. Jin, B. Pivac, D. Yang, The origin of 0.78 eV line of the dislocation related luminescence in silicon, J. Appl. Phys. 112, 063528-1 -4 (2012).
- B. Pivac, P. Dubček, I. Capan, H. Zorc, J. Dasović, S. Bernstorff, M. Wu, B. Vlahovic, GISAXS study of Si nano structures in SiO2 matrix for solar cell applications, Phys. Status Solidi A, 210, 755-759 (2013).
- G. Kovačević, B. Pivac, Structure, defects, and strain in silicon-silicon oxide interfaces, J. Appl. Phys., 115, 043531-1-11 (2014).

Sažetak

Poluvodičke nanostrukture su u znanstvenoj zajednici vrlo aktivno područje istraživanja jer omogućuju dizajn materijala s točno određenim električnim svojstvima i kao takve imaju veliku mogućnost primjene kao novi poluvodički elementi, senzori, fotovoltaici i sl. Unatoč višegodišnjim istraživanjima i velikom broju objavljenih znanstvenih radova i dalje je veliki izazov kako na pouzdan i ekonomičan način proizvesti nanostrukture točno određenih dimenzija i s malim brojem defekata.

U ovom doktoratu proučavana je upotreba tehnike magnetronskog rasprašenja kao jednog od mogućih načina proizvodnje poluvodičkih nanostruktura Si i Ge u različitim okolinama SiO₂ (oksida), Si₃N₄ (nitrida) i SiC (karbida). Pronađeno je da temperaturni tretman na 700°C za Ge i temperaturni tretman na 1050°C za Si u trajanju od 1h u atmosferi N₂ predstavlja idealni uvjet za stvaranje nanokristaliničnog materijala u oksidnoj matrici. Tehnikom rendgenske difrakcije pokazana je kristaliničnost proizvedenog nano materijala, a fotoluminiscencijom pokazan je uhvat fotona u nanočestici pojavom luminiscencije u vidljivom dijelu spektra.

Proučavanje električnih transportnih svojstava napravljeno je korištenjem MOS strukture u kojoj se sloj s poluvodičkim nanomaterijalom nalazio u oksidnoj, nitridnoj i karbidnoj matrici. MOS struktura u smislu defekata na površini između podloge i matrica pokazala je dobru kvalitetu napravljenih uzoraka sa srednjom gustoćom stanja defekata $D_{it} \sim 10^{12} \text{cm}^{-2} \text{eV}^{-1}$ ili manje. Kapacitivno naponskim mjerenjima nađeno je da nanostrukture djeluju kao mjesta uhvata nosioca naboja i uhvat naboja najizraženiji je za uzorak s nanočesticama Ge promjera 2.5 nm u višeslojnoj oksidnoj matrici.

Najdominatniji način vođenja struje kroz matricu s nanočesticama u propusno polariziranoj MOS strukturi je pri većim naponima prostornim nabojem ograničena struja (SCLC), a pri manjim naponima je ohmski tip vodljivosti. U nepropusnoj polarizaciji MOS strukture za deblje uzorke dominantni način vodljivosti je ohmskog tipa, a za tanje uzorke dominantan način vodljivosti je SCLC tipa bez obzira za naponsko područje. U prisutnosti svjetlosne pobude očekivano konačna struja kroz MOS strukturu raste i u smislu karaktera vodljivosti nema promjene u odnosnu na mjerenja u tami, osim što se za neke uzorke promijenila raspodjela gustoće stanja defekata. U smislu upotrebe poluvodičkih nanostruktura kao fotovoltaika uzorak u kojem su bile nanočestice Si u SiO₂ pokazao je postojanje napona otvorenog kruga pri pobudi svjetlom.

Jezik Izvornika:	Hrvatski
Ključne riječi:	Kvantne točke, Nanokristalinični Si i Ge, MOS struktura
	SCLC struja, Magnetronsko rasprašenje
Mentor:	dr.sc. Branko Pivac
Povjerenstvo za obranu:	prof.dr.sc. Amir Hamzić
	dr.sc. Branko Pivac
	doc.dr.sc. Vito Despoja

Abstract

In the scientific community semiconductor nano structures are very active field of research because of the possibility to design materials with specific electrical properties. Such structures have a great potential for the use as new semiconductor devices, sensors, photovoltaics etc. Despite many years of active research and many published papers it is still a big challenge to produce nano structures in a reliable and economical manner with exact size and small number of defects.

In this doctoral thesis we applied magnetron sputtering technique to produce semiconductor nano structures of Si and Ge in different environments of SiO₂, Si₃N₄ and SiC. It was found that the temperature annealing process at 1050°C for Si and 700°C for Ge during 1h in the atmosphere of N₂ is ideal for creating the nano crystalline Si and Ge. X-ray diffraction reveals the crystallinity of produced nano material and with the luminescence in the visible range the capture of photons in nano crystals is demostrated.

The electrical transport properties are studied using MOS structures in which the oxide layer is made with the semiconductor nano material of Si and Ge. The interface defect density of MOS structures shows, a quality of samples with $D_{it} \sim 10^{12} \text{cm}^{-2} \text{eV}^{-1}$. The charge capture in nano crystals is shown with capacitive techniques and is most pronounced for a samples with nano crystals of Ge size of 2.5 nm embedded in multilayer oxide structure.

The most dominant way of current transfer through matrix with nano crystals when MOS structure is forward polarised is the space charge limited current (SCLC) for high voltages and the ohmic current for low voltages. For thicker samples the ohmic current is dominant way of charge transfer and for thinner samples the SCLC current is the dominant way of charge transfer in any voltage regime. Measurement under light excitation showed us that the current is getting bigger and the type of conductivity didn't change except for some samples in which the change of density of defect states was noticed. The samples with nano-structure of Si in SiO₂ showed the photovoltaic effect after excitation by light source which is interesting for using nano-structures for photovoltaic applications.

Thesis language:	Croatian
Keywords:	Quantum dots, Nanocrystalline Si i Ge, MOS structure
	SCLC current, Magnetron sputtering, Raman
Supervisor:	dr.sc. Branko Pivac
Thesis committee:	prof.dr.sc. Amir Hamzić
	dr.sc. Branko Pivac
	doc.dr.sc. Vito Despoja

Zahvale

Zahvalio bih se mnogim osobama koje su doprinjele završetku ovog rada. Najprije bih se zahvalio mojem mentoru dr.sc. Branku Pivac koji mi je nakon diplomskog rada koji sam također završio pod njegovim mentorstvom omogućio upis poslijediplomskog studija i izradu doktorata.

Zahvaljujem se i brojnim drugim djelatnicima Zavoda za fiziku materijala kao i općenito djelatnicima Instituta Ruđer Bošković na suradnji i korisnom druženju tokom mojeg rada na Institutu.

Na kraju bih se zahvalio mojoj obitelji i prijateljima na njihovoj strpljivosti i podršci.

Ovaj doktorski rad izrađen je većim dijelom na Institutu Ruđer Bošković u Zavodu za fiziku materijala gdje su napravljeni uzorci, Ramanova spektroskopija, fotoluminiscencija i strujno-naponska mjerenja. Kapacitivno naponska mjerenja napravljena su dijelom na Sveučilištu u Münsteru Njemačka i dijelom u laboratoriju ICUBE u Strasbourgu Francuska. Rendgenska difrakcija pod malim kutem napravljena je u sinhotronu Elettra u Trstu Italija.

Cjelokupni rad financiran je sredstvima MZOŠ i FP7 projekta nanoPV.

Sadržaj

Nano	struktu	ire		3
1.1	Kvant	na točka		3
	1.1.1	Gustoća	stanja	4
		1.1.1.1	Kristal	4
		1.1.1.2	Kvantna jama	6
		1.1.1.3	Kvantna žica	7
		1.1.1.4	Kvantna točka	8
1.2	Superi	rešetka i l	Kronig-Penney potencijal	9
	1.2.1	Valne fu	nkcije	9
	1.2.2	Rubni u	vjeti	10
	1.2.3	Numerià	ki izračun Kronig-Penney potencijala za 1D slučaj	11
	1.2.4	2D i 3D	slučaj Kronig-Penney potencijala	13
	1.2.5	Rezultat	ti Kronig-Penney potencijala za strukture u ovom radu	15
		1.2.5.1	Ge nanočestice u SiO ₂ matrici	17
		1.2.5.2	Si nanočestice u Si_3N_4 matrici	18
		1.2.5.3	Si nanočestice u SiO ₂ matrici $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	18
		1.2.5.4	Si nanočestice u SiC matrici	19
1.3	MOS s	struktura		20
	1.3.1	Uvod .		20
	1.3.2	Idealna	MOS struktura	22
		1.3.2.1	Zakrivljenje pojaseva energija i površinski potencijal	23
		1.3.2.2	C-V karakteristike	28
	1.3.3	Ne ideal	na MOS struktura	29
		1.3.3.1	Naboji zatočeni na sučelju Q_{it}	30
		1.3.3.2	Stalni naboji u dielektriku Q_f	32
		1.3.3.3	Mobilni naboji u dielektriku \mathbf{Q}_m	32
		1.3.3.4	Naboji zatočeni u dielektriku Q_{ot}	32
		1.3.3.5	Transport naboja kroz MOS strukturu	33

Eksper	imenta	alne metode	36
2.1	Ramar	10va spektroskopija	36
	2.1.1	Uvod	36
	2.1.2	Eksperimentalni postav	38
	2.1.3	Model zatočenja fonona	39
		2.1.3.1 Parametri za određivanje veličine nanočestica	42
2.2	Rendg	enska difrakcija pod malim kutem	
	GIXRI	D	42
	2.2.1	Uvod	42
	2.2.2	Scherreova formula	42
2.3	Fotolu	miniscencija	44
	2.3.1	Uvod	44
	2.3.2	Vrste fotoluminiscencije	44
	2.3.3	Fotoluminiscencija i poluvodiči	45
2.4	Kapac	itivno-naponska C-V mjerenja	46
	2.4.1	Uvod	46
	2.4.2	Određivanje Q_f, Q_{ot}	47
	2.4.3	Termanova metoda za određivanje D_{it}	47
2.5	Strujn	o-naponska (I-V) mjerenja	48
2.6	Magne	etronsko rasprašenje	49
2.7	Uzorci		50
Fleenor	imonto	alni rozultati i diskusija	52
2 1	Rozult	ati Ramanova spoktroskopija	53
0.1	2 1 1	C_{0} nanočestice u SiQ, matrici	53
	0.1.1	3 1 1 1 Uzerak s jednim slojem Co obergéoner SiO	53 53
		3.1.1.2 Uzorak s Jednini Slojeni Ge-obogaćenog SiO	55
	219	Si nanočestice u Si N. matrici	58
	3.1.2 3.1.3	Si nanocestice u Si $_3$ N $_4$ matrici	50 60
	3.1.3 3.1.4	Si nanočestice u Si O_2 matrici	62
	3.1.4 3.1.5	Borultati Bamanovo spoktroskopijo	64
30	Bozult	ati CIXBD mioronia	65
0.4	2 9 1	Compresention SiO matrice	65
	0.2.1	3.2.1.1 Uzerak s jednim slojem Co obergéoner SiO-	65
		3.2.1.2 Uzorak s 20 slojova Co oboraćonog SiO	66
	299	Si nanožostico u Si-N, matrici	68
	3.2.2	U_{2} Uzorak s 20 slojova Si obogaćonog SiO-	68
	3.2.0	Si panočostico u SiC matrici	$\frac{00}{70}$
	0.⊿.4 395	Bezultati CIXRD mieronia	70
2 2	5.2.5 Fotolur	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 79
0.0	331	Ge nanočestice u Si Ω_2 matrici	$\frac{14}{79}$
	0.0.1	$\bigcirc \text{ hand} (0) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$	14

		3.3.1.1 Uzorak s jednim slojem Ge-obogaćenog SiO ₂	72
		3.3.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO_2	75
	3.3.2	Si nanočestice u Si_3N_4 matrici	76
	3.3.3	Si nanočestice u SiO ₂ matrici $\ldots \ldots \ldots$	77
	3.3.4	Si nanočestice u SiC matrici	78
	3.3.5	Rezultati fotoluminiscencije	79
3.4	Sumar	ni prikaz strukturnih mjerenja	79
3.5	Rezult	ati C-V mjerenja	81
	3.5.1	Gustoća defekata na sučelju Q_{it}	81
	3.5.2	Ge nanočestice u SiO ₂ matrici \ldots \ldots \ldots \ldots \ldots \ldots	82
		3.5.2.1 Uzorak s jednim slojem Ge-obogaćenog SiO_2	82
		3.5.2.2 Uzorak s 20 slojeva Ge-obogaćenog SiO_2	83
	3.5.3	Si nanočestice u Si_3N_4 matrici	85
	3.5.4	Uzorak sa 20 slojeva Si-obogaćenog SiO_2	87
	3.5.5	Si nanočestice u SiC matrici	88
	3.5.6	Rezultati C-V mjerenja	89
3.6	I-V mj	erenja	91
	3.6.1	Ge nanočestice u SiO ₂ matrici \ldots \ldots \ldots \ldots \ldots \ldots	92
		3.6.1.1 Uzorak s jednim slojem Ge-obogaćenog SiO ₂	92
		3.6.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO ₂ \ldots \ldots	96
	3.6.2	Si nanočestice u Si $_{3}N_{4}$ matrici	99
	3.6.3	Si nanočestice u Si O_2 matrici	102
	3.6.4	Si nanočestice u SiC matrici	105
	365	Rezultati I-V mierenia	108
	0.0.0		100
Zaključak 1		110	

Literatura

113

Uvod

U mikroelektroničkoj industriji silicij (Si) je već dugo vremena dominantan materijal za primjene, ali sljedeći trendovi razvoja industrije koji idu u smjeru sve veće minijaturizacije osnovih logičkih sklopova i integraciji optike i elektronike (optoelektronika) zahtjevaju materijale drugačijih električnih i optičkih svojstava [1, 2]. Silicij ima indirektni zabranjeni pojas energija u infracrvenom području što ga čini lošim apsorberom vidljive svjetlosti i lošim emiterom luminiscentnog zračenja na energiji zabranjenog pojasa [3] što je posebno bitno za primjene u industriji fotovoltaika i fotodetektora. Što se električnih svojstava tiče silicij u odnosu na druge poluvodiče ima relativno lošu mobilnost elektrona i šupljina što ga čini problematičnim u smislu disipacije topline pri većoj gustoći i minijaturizaciji osnovnih gradivnih elemenata integriranih krugova [1].

Kao rješenje spomenutih problema pojavljuju se materijali temeljeni na drugim vrstama poluvodiča, kao spojevi III-V valentnih materijala (GaAs,InP...) ili upotreba germanija (Ge) ili dijamanta [4]. Za industrijske primjene, idealno bi bilo nastaviti koristiti silicij jer je zbog svoje raširenosti i dostupnost najprikladniji materijal za masovnu upotrebu i nije toksičan, a infrastruktura razvijena oko proizvodnje i iskorištavanja silicija na vrlo visokom je stupanju zrelosti i pouzdanosti. U tom smislu postoji velik interes da se na neki način negativne karakteristike silicija poboljšaju.

Svojstva materijala počinju se mijenjati kada de Broigleova valna duljina nosioca naboja postane usporediva s varijacijama u potencijalnom krajoliku materijala zbog čega se počinje mijenjati elektronska struktura vrpci i tehnički postaje moguće ovisno o fizičkim dimenzijama stvaranje materijala koji ima točno određena elektronska svojstva [5, 6]. Za silicij i germanij varijacije veličine moraju biti reda veličine nanometra i u laboratorijskim uvjetima postoje brojne tehnike koje omogućavaju stvaranje takvih *nano-strukturiranih* materijala.

Metoda korištena u ovom radu za proizvodnju nanokristalnog silicija i germanija u različitim okolinama zove se magnetronsko rasprašenje (magnetron sputtering) gdje se ioni plemenitog plina (tlak~mbar) pod visokim naponom ubrzavaju prema meti gdje sudarom uzrokuju rasprašenje atoma mete koji se onda deponiraju (rasprašuju) na određenoj podlozi. U magnetronu je moguće kombinirati više meta istovremeno i brzina depozicije je relativno visoka (~ 0.5 nm/s ili više). Mnogi eksperimenti iz područja proizvodnje nanokristaliničnog Si ili Ge koriste ovu metodu za proizvodnju nanostruktura [8, 9, 10].

Druge tehnike pomoću kojih je također moguća proizvodnja nanostruktura su kemijska depozicija iz pare pomoću plazme (*Plasma enhanced chemical vapour deposition*). To je niskotemperaturna tehnika koja daje velike brzine rasta slojeva gdje se molekule pri vakuumu $\leq 10^{-3}$ Pa pomoću plazme deponiraju na neku podlogu (za dobivanje višeslojnog Si i SiO₂ koriste se plinovi TEOS ili silan [11, 12]). Tehnika ugradnje iona (*Ion implantation*) koristi ione koji se ubrzavaju energijama reda veličine 1 MeV i ugrađuju se u drugi materijal [13, 14], ova metoda nije depozicijske prirode kao prethodno spomenute pa nije pogodna za stvaranje nanostrukturiranih materijala na velikim površinama i također pri implantaciji se stvara dosta defekata što za nanostrukture nije dobro.

Nanostrukture se mogu karakterizirati raznim spektroskopskim, morfološkim i električnim metodama. U spektroskopsku karakterizaciju ulaze metode: fotoluminiscencija (PL), vremenski razlučiva fotolumiscencija (TRPL), Ramanova spektroskopija, elektrolumiscencija (EL)[16, 17]. Morfološka istraživanja rade se pomoću elektronske mikroskopije (TEM, HRTEM), raspršenja x-zraka pod malim kutem (GIXRD), mikroskopom atomskih sila (AFM)[2, 17]. U električna mjerenja ubrajaju se mjerenja strujno naponskih karakteristike (I-V) i kapacitivno-naponskih karakteristika (C-V) [2, 15].

Postoje razni teorijski modeli koji opisuju optička i električna svojstva takvih materijala i svi se temelje na postavljanju odgovarajućeg modela potencijala u koji su uključene početne aproksimacije, a Schrödingerova jednadžba (SE) rješava se metodom konačnih diferencija [18]. Općenito se teorijska razmatranja razlikuju u sofisticiranosti uključenih aproksimacija [19, 20]. Kako fokus ovog rada nije teorijski opis nanostruktura nego eksperimentalno mjerenje strukturnih i električnih svojstava za osnovno teorijsko modeliranje korišten je relativno jednostavan, ali poučan model Kronig-Penney potencijala [21, 22].

Svrha ovog rada je pokazati perspektivu za daljne istraživanje poluvodičkih nanostruktura i pokazati pravac u kojem smjeru treba ići daljnje istraživanje takvih struktura imajući u vidu veliki potencijal primjene.

Ovaj rad strukturno je podijeljen u četiri poglavlja. Prvo poglavlje zamišljeno je kao uvod u tematiku gdje su prikazani osnovni pojmovi koji su se koristili u ovom radu poput kvantnih točaka i MOS strukture. U drugom poglavlju opisane su eksperimentalne metode, način proizvodnje i tretman uzoraka. U trećem poglavlju prikazani su eksperimentalni rezultati i diskusija. U četvrtom poglavlju dan je zaključak.

Nano strukture

U ovom poglavlju opisani su temeljni pojmovi koji su se koristili u ovom radu. Jedan od najvažnijih pojmova pri nanostrukturiranim materijalima je pojam kvantne točke koji podrazumijeva strukturu koja može ograničiti gibanje naboja u sve tri dimenzije i tako djelovati kao mjesto uhvata ili zamka za pojedinačni naboj ili ako su kvantne točke dovoljno blizu može se stvoriti superrereštka koja se u prvoj aproksimaciji može opisati Kronig-Penney potencijalom.

U ovom radu kvantne točke silicija i germanija ugrađene su u dielektrične materijale odnosno matrice oksida (SiO₂), nitrida (Si₃N₄) i karbida (SiC) i proučavana su njihova morfološka i električna svojstva. Za razliku od morfoloških svojstava, električna mjerenja zahtjevaju posebnu električnu strukturu koja se zove MOS struktura.

1.1 Kvantna točka

Za stvaranje potupno novih materijala ili mijenjanja svojstava postojećih materijala potrebni su novi "atomi". Takvi "atomi" se u kontekstu nanostruktura zovu kvantne točke. Kvantna točka općenito nastaje kada se gibanje nosioca naboja ograniči u sve tri dimenzije i ovisno o fizičkoj veličini kvantne točke i udaljenosti između njih mogu se stvarati materijali točno određenih elektronskih svojstava. Kada se ograničenje ili zatočenje dogodi samo u jedno dimenziji nastaju kvantne jame, a kada se gibanje ograniči na dvije dimenzije nastaju kvantne žice.

U prvoj aproksimaciji razmotrimo jednostavan slučaj konačne 1D kvantne jame prikazanu na slici 1.1 u kojoj položaji kvantnih stanja ovise o širini kvantne jame a i visini

Slika 1.1: Shematski prikaz kvantne jame širine a i visine barijere V_0 .

potencijalne barijere V_0 . Energije kvantnih stanja određena su preko formule

$$E_n = \frac{2\hbar^2 v_n^2}{m \cdot a^2} \sim \frac{v_n^2}{a^2}$$

gdje je v_n bezdimenzionalna varijabla povezana sa visinom barijere i položajem kvantnog stanja [31].

Iz formule vidimo da se varijacijom visine barijere i širine kvantne jame može određivati položaj energijskih stanja unutar kvantne jame.

1.1.1 Gustoća stanja.

Gustoća stanja g(E) govori nam koliko ima dostupnih stanja ΔN za neku širinu intervala ΔE u kvantnom sustavu po jedinici volumena.

$$g(E) = \frac{1}{V} \frac{\Delta N}{\Delta E} = \frac{1}{V} \frac{dN}{dE}$$
(1.1)

Gustoća stanja pomnožena s vjerojatnošću f(E) kojom se neko stanje može popuniti daje broj nosioca naboja u jedinici volumena koji se nalaze u intervalu energija (E,E+ Δ E).

$$N = \int_{E}^{E + \Delta E} g(E) f(E) dE$$

1.1.1.1 Kristal

Za pronalaženje gustoće stanja u nanostrukturama krenimo od gustoće stanja za makroskopski (bulk) kristal čija se gustoća stanja može odrediti rješavanjem Schrödingerove jednadžbe. Za x-os kristala Schrödingerova jednadžba je

$$-\frac{\hbar^2}{2m^*}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

gdje je m* efektivna masa. Uz pretpostavku da su nosioci naboja slobodni V(x) = 0, i da vrijede sljedeći rubni uvjeti na rubovima kristala

$$\psi(x=0) = 0, \ \psi(x=L_x) = 0$$

rješenje Schrödingerove jednadžbe su vlastite vrijednosti

$$E_{n_x} = \frac{\hbar^2 k_x^2}{2m^*}$$

i valne funkcije

$$\psi(x) = \operatorname{Asin}(k_x x) + \operatorname{Bcos}(k_x x)$$

gdje su A i B konstante, $k_{n_x} = n_x \frac{\pi}{L_x}, n_x = 1, 2, 3...$ je valni vektor. Slična analiza može se napraviti u y i z smjeru, i tada je ukupna energija stanja u kristalu

$$E_{\vec{k}} = \frac{\hbar^2 \vec{k}^2}{2m^*} \tag{1.2}$$

gdje je $\vec{k} = k_{n_x}\hat{x} + k_{n_y}\hat{y} + k_{n_z}\hat{z}$, a najmanja vrijednost volumena koju ima neko stanje u prostoru valnih vektora za makroskopski kristal je:

$$\frac{\pi}{L_x}\frac{\pi}{L_y}\frac{\pi}{L_z} = \frac{\pi^3}{V} \tag{1.3}$$

Gustoća stanja u nekom intervalu (E,E+dE) u prostoru valnih vektora svodi se na nalaženje broja stanja u intervalu ($|\vec{k}|, |\vec{k}|$ +dk) podijeljenih sa najmanjim volumenom koji zauzima jedno stanje (1.3). Za neki kristal porast broja stanja dN_{3D} za neki dk odgovara porastu volumena sfere ~ $4\pi k^2 dk$ (za neki radijus $|\vec{k}|$) što iznosi

$$dN_{3D} = \frac{2}{8} \frac{4\pi k^2}{\frac{\pi^3}{V}} dk \tag{1.4}$$

gdje faktor 2 dolazi zbog spina elektrona i faktor 1/8 zbog toga jer se sfera može podijeliti

na 8 jednakih dijelova. Gustoća stanja odredi se konačno koristeći formule ((1.1)) (1.2) i (1.4) i iznosi

$$g_{3D}(E) = \frac{\sqrt{2}m^{*3/2}}{\pi^2\hbar^3}\sqrt{E}$$
(1.5)

1.1.1.2 Kvantna jama

Kada se gibanje naboja ograniči u jednom smjeru (z-os), a u druga dva smjera naboj se slobodno giba nastaje struktura koja se zove kvantna jama. Shematski je kvantna jama prikazana na slici 1.2 i eksperimentalno je realizirana u obliku poluvodičkih heterostruktura GaAs i AlGaAs [23].

Slika 1.2: Kvantna jama. Nosioci naboja ograničeni u z smjeru, slobodni u x i y smjeru.

Energija nosioca naboja u kvantnoj jami dana je sa

$$E_{n_z \vec{k}_{xy}} = E_{n_z} + \frac{\hbar^2}{2m^*} (k_{n_x}{}^2 + k_{n_y}{}^2)$$
(1.6)

a porast broja stanja dN_{2D} za neku energiju \mathbf{E}_{n_z} i d
k odgovarati će porastu površine kružnice ~ 2π kdk radijusa k (odnosno
 $|\vec{k_{xy}}|$)

$$dN_{2D} = \frac{2}{4} \frac{2\pi k}{\frac{\pi^2}{L_x L_y}} dk$$
(1.7)

gdje faktor 2 dolazi od spina elektrona i faktor 1/4 dolazi zbog jer se kružnica može podijeliti na 4 jednaka dijela. Gustoća stanja za kvantnu jamu na nekoj energiji E_{n_z} određuje se preko formule (1.1), (1.6) i (1.7) i konstantna je u energiji.

$$g(E) = \frac{m^*}{\pi\hbar^2}$$

6

Kako u z-smjeru imamo mnoštvo diskretnih kvantnih stanja opisanih kvantnim brojem n_z ukupna gustoća stanja će biti suma po svim energijama E_{n_z} .

$$g_{2D}(E) = \frac{m^*}{\pi\hbar^2} \sum_{E_{n_z}} \Theta(E - E_{n_z})$$
(1.8)

1.1.1.3 Kvantna žica

Na slici 1.3. prikazano je shematski ograničenje gibanje naboja u y i z smjeru i slobodno gibanje naboja u x smjeru prostora. Takva struktura zove se kvantna žica i realizirana je kao Si nanožica s rubom od SiO₂ [24]. Energija nosioca naboja dana je s

Slika 1.3: Kvantna žica. Nosioci naboja ograničeni u y i z smjeru, slobodni u x smjeru.

$$E_{n_y n_z k_x} = E_{n_x n_y} + \frac{\hbar^2 k_x^2}{2m^*}$$
(1.9)

gdje je $E_{n_xn_y} = E_{n_x} + E_{n_y}$ i porast broj stanja dN_{1D} pri nekoj energiji $E_{n_yn_z}$ za neki dk biti će

$$dN_{1D} = \frac{2}{2}dk\tag{1.10}$$

gdje faktor 2 dolazi zbog spina elektrona, a faktor 1/2 dolazi zato jer su kvadrati pozitivnih i negativnih vrijednosti k_x jednaki. Gustoća stanja za kvantnu žicu dobije se na sličan način kao i za makroskopski kristal koristeći (1.1), (1.10) i zbrajanjem po svim energijama. $E_{n_yn_z}$

$$g(E) = \frac{1}{\pi} \frac{\sqrt{2m^*}}{\hbar} \sum_{E_{ny}, E_{nz}} \frac{1}{\sqrt{E - E_{nyn_z}}} \Theta(E - E_{n_yn_z})$$

1.1.1.4 Kvantna točka

Na slici 1.4 shematski je prikazana kvantna točka u kojoj je gibanje naboja ograničeno u sva tri smjera prostora. Ovakve strukture napravljene su u ovom radu, kao kvantne točke silicija i germanija u matricama oksida (SiO₂), nitrida (Si₃N₄) i karbida (SiC). Energija

Slika 1.4: Kvantna točka. Nosioci naboja ograničeni u sva tri smjera prostora.

nosioca naboja dana je s $E_{n_xn_yn_z}=E_x+E_y+E_z$ i gustoća stanja je delta funkcija u energiji

$$g_{0D} = 2\sum_{E_x + E_y + E_z} \delta(E - E_{n_x n_y n_z})$$

gdje faktor 2 dolazi zbog spina elektrona.

Na slici 1.5. sumarno su prikazane gustoće stanja za makroskopski kristal, kvantnu jamu, kvantnu žicu i kvantnu točku.

Slika 1.5: Gustoće stanja za makroskopski kristal, kvantnu jamu, kvantnu žicu i kvantnu točku.

1.2 Superrešetka i Kronig-Penney potencijal

Kvantne točke pod određenim uvjetima (matrica u kojoj se nalaze) i geometriji (međusobni raspored i veličina) mogu zajednički djelovati kao materijal s potpuno novim svojstvima. U prvoj aproksimaciji potencijal koji aproksimira takvu situaciju je Kronig-Penneyev potencijal prikazan u 1D na slici 1.6. Potencijal se sastoji od serije uzastopnih (beskonačnih) ponavljanja "čelija" širine L = a + b koje se sastoje od područja "**II**" širine *b* gdje je potencijalni zid visine V_0 i područja "**I**" širine *a* u kojem je naboj slobodan. Visinu potencijalne barijere određuje okruženje u kojoj se nalazi kvantna jama odnosno kvantna točka. Fizikalno takvi sustavi u jednom su smjeru realizirani u ovom radu i biti će opisani kasnije.

Slika 1.6: Kronig-Penney potencijal.

1.2.1 Valne funkcije

Za rješavanje Kronig-Penney potencijala koriste se sljedeće valne funkcije. U području "I" valna funkcija je oscilatorna

$$\psi_I(x) = A \cdot e^{i\alpha x} + B \cdot e^{-i\alpha x} \tag{1.11}$$

$$\alpha = \sqrt{\frac{2m^* \cdot E}{\hbar^2}} \tag{1.12}$$

gdje je m^* efektivna masa elektrona i E je energija elektrona. U području "II" valna funkcija je eksponencijalna:

$$\psi_{II}(x) = C \cdot e^{\beta x} + D \cdot e^{-\beta x} \tag{1.13}$$

$$\beta = \sqrt{\frac{2m^*(V_0 - E)}{\hbar^2}}$$
(1.14)

9

1.2.2 Rubni uvjeti

Valne funkcije (1.11) i (1.13) moraju u granicama područja "I" i "II" zadovoljavati sljedeće rubne uvjete kontinuiranosti

$$\psi_I(0) = \psi_{II}(0) \tag{1.15}$$

$$\psi_{II}(b) = e^{ik \cdot a} \psi_{II}(-a) \tag{1.16}$$

i neprekidnosti derivacija:

$$\left(\frac{\psi_I(x)}{dx}\right)_{x=0} = \left(\frac{\psi_{II}(x)}{dx}\right)_{x=0}$$
(1.17)

$$\left(\frac{\psi_{II}(x)}{dx}\right)_{x=b} = e^{ik \cdot a} \left(\frac{\psi_{I}(x)}{dx}\right)_{x=-a}$$
(1.18)

Rubni uvjeti (1.16 i 1.18) dolaze iz Blochovog teorema. Uvrštenje valnih funkcija u rubne uvjete daje sljedeće jednadžbe

$$A + B = C + D$$
$$De^{-b\beta} + Ce^{b\beta} = e^{ikL} \left(Ae^{-ia\alpha} + Be^{ia\alpha} \right)$$
$$iA\alpha - iB\alpha = C\beta - D\beta$$
$$-De^{-b\beta}\beta + Ce^{b\beta}\beta = e^{ikL} \left(iAe^{-ia\alpha}\alpha - iBe^{ia\alpha}\alpha \right)$$

koje, da bi sustav imao netrivijalno rješenje mora vrijediti

$$det \begin{bmatrix} 1 & 1 & -1 & -1 \\ I\alpha & -I\alpha & -\beta & \beta \\ e^{-i(a\alpha-kL)} & e^{i(a\alpha+kL)} & -e^{b\beta} & -e^{-b\beta} \\ ie^{-i(a\alpha-kL)}\alpha & -ie^{i(a\alpha+kL)}\alpha & -e^{b\beta}\beta & e^{-b\beta}\beta \end{bmatrix} = 0$$
(1.19)

iz koje se dobije konfiguracijska jednadžba.

$$\frac{\beta^2 - \alpha^2}{\alpha\beta} \sinh(\beta \cdot b) \sin(\alpha \cdot a) + \cosh(\beta \cdot b) \cos(\alpha \cdot a) = \cos(k \cdot L)$$
(1.20)

10

Rješenje konfiguracijske jednadžbe daje disperzijsku relaciju i pokazuje tipično pojavljivanje vrpci energija i zabranjenih stanja. Spomenuta jednadžba ne može se riješiti analitički osim uz neke aproksimacije pa je napravljeno numeričko rješenje u programskom paketu Mathematica 8.0. gdje se za svaku vrijednost parametra k trazi odgovarajuća energija iz konfiguracijske jednadžbe. Izvorni kod Mathematica programa nalazi se u **Dodatku A**.

1.2.3 Numerički izračun Kronig-Penney potencijala za 1D slučaj

Uobičajena numerička provjera rezultata radi se tako da se numerički izračun napravi za slučaj kada se zna rješenje problema. Na primjer kada je $V_0=0$ očekujemo da disperzija ima oblik kao za slobodni elektron bez stvaranja zabranjenih područja, što je prikazano na slici 1.7.

 $E(k) = \frac{\hbar^2 k^2}{2m^*}$ (1.21)

Slika 1.7: Disperzijska relacija uz parametre: $V_0 = 0$ eV, a = 5.1Å, b = 1.4Å. Ekstrem slobodnih elektrona $V_0 << 1$.

Drugi ekstrem u kojem se može nalaziti 1D Kronig-Penney potencijal predstavlja slučaj kada je visina potencijalnog zida vrlo visoka $V_0 >> 1$, tada disperzija više neće imati oblik parabolične krivulje nego će kvantna stanja biti lokalizirana na mjestu atoma i disperzijska relacija će biti konstantna za neki energijski nivo. U prvoj aproksimaciji disperzija za takav slučaj može biti dana s sljedećom formulom.

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2m^* a^2}$$

$$k = \frac{\sqrt{2m^* \cdot E}}{\hbar} = \frac{n \cdot \pi}{a}$$
(1.22)

Kako energijska stanja rastu u potencijalnoj jami tako će za više nivoe rasti vjerojatnost tuneliranja kroz barijeru budući da je barijera za to stanje manja (1.14) i elektroni u tim stanima će imati više delokalizirani karakter nego elektroni u nižim stanjima.

Na slici 1.8 može se vidjeti opisana situacija gdje se za relativno visoku energiju barijere od 20 eV prvi nivo nalazi na oko 3.2 eV i konstantan je u ovisnosti o k dok je drugi nivo na energiji od 12.5 eV i nešto je "zakrivljeniji" što upućuje da je degeneracija za to stanje smanjena i karakter elektrona postaje više delokaliziran. Na slici 1.9. prikazan je za

Slika 1.8: Disperzijska relacija uz parametre: $V_0 = 20$ eV, a = 2.5Å, b = 2.5Å. Ekstrem lokaliziranih elektrona $V_0 >> 1$.

ilustraciju numerički izračun energijske strukture za vrijednosti parametara koje se nalaze između opisanih ekstrema.

Na slici 1.10. prikazana je gustoća stanja za dvije najniže vrpce sa slike 1.9 dobivena numeričkim zbrajanjem broja stanja k za neku energiju E na kojoj se vide Van Hooveovi singulariteti na rubovima vrpci.

Slika 1.9: Disperzijska relacija uz parametre: $V_0 = 4.8 \text{eV}, a = 2.5 \text{\AA}, b = 2.5 \text{\AA}.$

Slika 1.10: Gustoća stanja za dva najniža vrpce sa slike 1.9.

1.2.4 2D i 3D slučaj Kronig-Penney potencijala

Kronig-Penneyev potencijal može se lako poopćiti na 2D ili 3D slučaj. Za 2D slučaj potencijal je sličan kao i za 1D prikazan na slici 1.6, samo se parametri "a" i "b" kao za slučaj 1D potencijala prebace na y-os i tada imamo 4 parametra " a_x, a_y, b_x, b_y " koji opisuju 2D slučaj

Za 3D slučaj potencijalu se još dodaju prostorni parametri z-osi " a_z, b_z ". Na slikama 1.11 i 1.12 za ilustraciju redom su prikazani 2-D i 3-D slučajevi Kronig-Penney potencijala.

Konfiguracijska jednadžba u ovom slučaju ne razlikuje se previše od konfiguracijske

Slika 1.11: 2D Kronig-Penney potencijal.

Slika 1.12: 3D Kronig-Penney potencijal.

jednadžbe za 1D slučaj, i sada se pojavljuju dvije ili tri (ovisno o dimenziji) konfiguracijske jednadžbe koje su međusobno nevezane i koje se daju odvojeno numerički rješavati.

$$\frac{\beta_i^2 - \alpha_i^2}{\alpha_i \beta_i} \sinh(\beta_i \cdot b_i) \sin(\alpha_i \cdot a_i) + \cosh(\beta_i \cdot b_i) \cos(\alpha_i \cdot a_i) = \cos(k_i \cdot L) \quad (1.23)$$

$$\alpha_i = \sqrt{\frac{2m^* \cdot E_i}{\hbar^2}} \tag{1.24}$$

$$\beta_i = \sqrt{\frac{2m^*(V_0 - E_i)}{\hbar^2}}$$

$$i = x, y, z$$
(1.25)

Ukupna energija sada je zbroj.

$$E_{n_x,n_y,n_z} = E_{n_x} + E_{n_y} + E_{n_z}$$

Na slici 1.13. prikazane su točke simetrije i inverzni vektori $\vec{b_i}$,i={1,2,3} za ortorombsku rešetku koje će trebati kasnije za prikaz vrpci u 3D slučaju Kronig-Penney potencijala.

Slika 1.13: Točke simetrije u 1. Brillouenovoj zoni za kubičnu rešetku i inverzni vektori $\vec{b_i}$,i={1,2,3}.

1.2.5 Rezultati Kronig-Penney potencijala za strukture u ovom radu

Na slici 1.14 prikazane su strukture slične strukturama koje su se koristile u ovom radu. Kvantne točke odnosno nanočestice silicija i germanija ugrađene su u dielektrik (matricu) i mogu biti neuređene po veličini i položaju u jednoslojnoj strukturi uzorka (slika 1.14a), ali mogu biti uređene po položaju i veličini u višeslojnoj strukturi uzorka (slika 1.14b). U oba slučaja naboj pri prolasku kroz takvu strukturu u prvoj aproksimaciji vidi potencijal sličan Kronig-Penneyevom potencijalu.

Matrice u kojima će se nalaziti nanočestice biti će matrice karbida (SiC), nitrida (Si_3N_4) i oksida (SiO_2) , pri čemu će dolaziti do varijacije potencijalne barijere V_0 između nanočestica i matrice kao što je to prikazano za primjer nanočestice silicija u raznima matricama na slici 1.15.

1.2 Superrešetka i Kronig-Penney potencijal

Slika 1.14: Shematski prikaz mogućih putanja elektrona kroz sustav kvantnih točaka ugrađenih u dielektrik (crvena strelica). a) Kvantne točke nisu uređene ni u veličini ni položaju. b) Kvantne točke uređene su u veličini i položaju. Elektron u svojoj putanji "vidi" potencijal sličan Kronig-Penneyevom u oba slučaja.

Na sljedećim slikama biti će pokazani rezultati simulacija za Kronig-Penney potencijal sustava sličnih kao što su proučavali u ovom radu. Svi slučajevi računani su u 3D s odgovarajućim literaturnim podacima za efektivne mase elektrona u poluvodičima i dielektricima [21, 32]. Izvorni kod za računanje nalazi se u **Dodatku B** i traženje vrpci kreće od odgovarajućih početnih pokušaja preko kojih program iterativno pronalazi najbolje rješenje ako ono postoji.

Slika 1.15: Shematski prikaz potencijalnih barijera između vodljive i valentne vrpce silicija i raznih matrica a) karbida (SiC), b) nitrida (Si₃N₄), c) oksida (SiO₂).

1.2.5.1 Ge nanočestice u SiO_2 matrici

Za SiO₂ matricu potencijalna barijera između vodljive vrpce germanija i vodljive vrpce SiO₂ [32] iznosi V₀=3.05 eV. Nanočestice germanija veličine su oko 2.5 nm i međusobno su razmaknute za 2.5 nm, odnosno $a_i=b_i=2.5$ nm $i=\{x,y,z\}$.

Na slici 1.16 prikazane su neke vrpce¹ koje su nađene rješavanjem konfiguracijske jednadžbe (1.20) za kvantne točke germanija u SiO₂ matrici. Iz slike vidimo da su vrpce

Slika 1.16: Vrpce za slučaj nanočestica Ge u SiO₂ matrici dobiveno rješavanjem 3D Kronig-Penney potencijala sa parametrima: $a_i=b_i=2.5$ nm, $i=\{x,y,z\}$, $V_0=3.05$ eV.

¹Numerička rješenja jednadžbe (1.20) ovise o početnim vrijednostima od kojih kreće iterativni postupak traženja rješenja tako da je moguće da neke vrpce nisu pronađene, ali za nas je ionako bilo bitnije vidjeti kakav je kakakter vrpci (lokaliziran ili delokaliziran), nego koliko vrpci ima.

vrlo uske što znači da su nosioci naboja lokalizirani u kvantnim točkama i da nema preklapanja valnih funkcija između dvije kvantne točke. Naboj jednom kad se jednom nađe u kvantnoj točci ostaje izoliran sve dok ga drugi procesi poput termalne emisije ili električnog polja ne izbace iz kvantne točke.

1.2.5.2 Si nanočestice u Si_3N_4 matrici

Za Si₃N₄ matricu potencijalna barijera između vodljive vrpce silicija i vodljive vrpce Si₃N₄ [32] iznosi V₀=1.9 eV. Nanočestice silicija u ovom slučaju su veličine oko 4 nm i međusobno su razmaknute oko 4 nm, odnosno $a_i=b_i=4$ nm $i=\{x,y,z\}$.

Na slici 1.17 prikazana su neka rješenja konfiguracijske jednadžbe (1.20) za kvantne točke silicija u Si_3N_4 matrici. Iz slike također vidimo da su pronađene vrpce vrlo uske i

Slika 1.17: Vrpce za slučaj nanočestice Si u Si₃N₄ matrici dobiveno rješavanjem 3D Kronig-Penney potencijala sa parametrima: $a_i=b_i=4$ nm, $i=\{x,y,z\}$, $V_0=1.9$ eV.

da su stanja u kvantnim točkama lokalizirana slično kao za slučaj nanočestica Ge u ${\rm SiO}_2$ matrici.

1.2.5.3 Si nanočestice u SiO₂ matrici

Za SiO₂ matricu potencijalna barijera između vodljive vrpce silicija i vodljive vrpce SiO₂ [32] iznosi V₀= 3.1 eV. Nanočestice silicija veličine su oko 4.5 nm i međusobno su razmaknute za oko 2.5 nm, odnosno $a_i = 4.5$ nm i $b_i = 2.5$ nm $i = \{x,y,z\}$.

Na slici 1.18 prikazane su neke vrpce odnosno rješenja konfiguracijske jednadžbe (1.20) za kvantne točke silicija u SiO₂ matrici. Kao i u prethodna dva slučaja pronađene vrpce

Slika 1.18: Vrpce za slučaj Si nanočestica u SiO₂ matrici dobiveno rješavanjem 3D Kronig-Penney potencijala sa parametrima: $a_i=4.5$ nm, $b_i=2.5$ nm, $i=\{x,y,z\}, V_0=3.1$ eV.

su vrlo uske što znači da su stanja vrlo lokalizirana i da nema preklapanja valnih funkcija između kvantnih točaka.

1.2.5.4 Si nanočestice u SiC matrici

Za SiC₂ matricu potencijalna barijera između vodljive vrpce silicija i vodljive vrpce SiC₂ [32] iznosi V₀=0.4eV. Nanočestice silicija veličine su oko 3.5 nm i međusobno su razmaknute za oko 3.5nm, odnosno $a_i=b_i=3.5$ nm $i=\{x,y,z\}$.

Na slici 1.19 prikazane su neke vrpce odnosno rješenja konfiguracijske jednadžbe (1.20) za slučaj kvantnih točaka Si u SiC matrici. Kao i u prethodna tri slučaja pronađene vrpce

Slika 1.19: Vrpce za slučaj Si nanočestica u SiC matrici dobivene rješavanjem 3D Kronig-Penney potencijala sa parametrima: $a_i=b_i=3.5$ nm, $i=\{x,y,z\}$, $V_0=0.4$ eV.

su vrlo uske što znači da su stanja vrlo lokalizirana i da opet nema preklapanja valnih

1.3 MOS struktura

funkcija između kvantnih točaka unatoč relativno maloj potencijalnoj barijeri od $V_0=0.4$ eV između vodljive vrpce Si i SiC (slika 1.15a).

U kontekstu naših istraživanja nanostruktura načinjenih od kvantnih točaka možemo reći da će kvantne točke u ovom radu djelovati kao mjesta uhvata naboja ili kao zamke za naboj koji se nalazi u blizini kvantne točke. Jednom uhvaćen naboj sjest će na svoje diskretno mjesto u kvantnoj točci i tu će biti "zarobljen" dok ga neki drugi proces (termalno ili električno polje) ne izbaci iz nje.

Za istraživanje poslužiti će nam MOS struktura gdje se ovisno o naponu na elektrodama može injektirati naboj u prostor gdje se nalaze kvantne točke i tako se mogu proučavati svojstva uhvata i svojstva gibanja naboja kroz sustav načinjen od kvantnih točaka (Si, Ge) u različitim okolinama (oksida, nitrida i karbida).

1.3 MOS struktura

1.3.1 Uvod

Za potrebe električnih mjerenja nužno je imati strukturu koja ima dobre kontakte sa uzorcima i koja može kontrolirano injektirati naboje u područje interesa gdje nas zanimaju transportna svojstva. Takva struktura zove se MOS struktura i podrazumijeva strukturu načinjenu od metala (*metal*), dielektrika ili izolatora (*oxide*²) i poluvodiča (*semiconductor*) [33] u konfiguraciji kao što je prikazano na slici 1.20. Metal na površini izolatora služi kao gornji električni kontakt i zove se *gate* elektroda, i napon koji se dovodi na tu elektrodu označava se s V_g. U novije vrijeme umjesto metala kao gornji električni kontakt koristi se degenerirano dopiran polikristalinični silicij.

Sloj dielektrika između metalnog kontakta i poluvodičke podloge može biti debljine od nekoliko do nekoliko stotina nm i njegova svojstva najviše će utjecati na na električko ponašanje MOS strukture i ovisno o tome možemo govoriti o **idealnoj** ili **ne idealnoj** MOS strukturi o čemu će više biti rečeno u sljedećim poglavljima.

MOS struktura sama za sebe prvi put je predložena kao varistor (promjenjivi kondenzator) [32], [33] i u današnje vrijeme najčešće se pojavljuje u kompliciranijoj strukturi

 $^{^{2}}$ Oksid SiO₂ je bio prvi materijal koji se koristio za izradu MOS struktura pa je tako ime oksida ostalo u skračenici MOS. U novije vrijeme u kontekstu MOS struktura pojam oksida podrazumijeva bilo kakav izolatorski odnosno dielektrični medij (nitrid, karbid) između poluvodiča i metalnog kontakta.

1.3 MOS struktura

Slika 1.20: Shematski prikaz MOS strukture.

MOSFET tranzistora koji nije dio ovog rada te se više neće spominjati. Samostalne MOS strukture tipične su prototipne strukture u kojoj se istražuju električka svojstva različitih vrsta dielektričnih materijala za upotrebu u elektronici te su kao takve sasvim prirodno dio ove teze u kojoj istražujemo električna svojstva nanočestica ugrađenih u različite vrste dielektrika (matrica).

Na slici 1.21. prikazani su pojmovi koji su bitni pri analizi MOS strukture. Najvažniji parametari su Fermijevi nivoi u poluvodiču i metalu gdje njihova razlika u idealnoj MOS strukturi određuje napon V_{fb} (*flat band*) na gate elektrodi pri kojem dolazi do poravnanja energijskih pojaseva (slika 1.21).

$$V_{fb} = \frac{1}{q} (E_W - E_F)$$
(1.26)

gdje je q naboj elektrona, E_W je izlazni rad u metalu i E_F je Fermijev nivo u poluvodiču. Fermijev nivo u poluvodiču ovisi o dopiranju i dan je formulom

$$E_F - E_V = \frac{k_B T}{q} \ln(\frac{N_A}{n_i})$$

gdje je k $_B$ Boltzmannova konstanta, T je apsolutna temperatura, E_V je valentni nivo u

Slika 1.21: Primjer MOS strukture za p-Si podlogu, dielektrik SiO₂ i metalni kontakt od aluminija. $V_g = V_{fb}$

poluvodiču, N_A je koncentracija akceptorskih primjesa i n_i je intrinsična koncentracija elektrona i šupljina u poluvodiču.

1.3.2 Idealna MOS struktura

Idealna MOS struktura napravljena je sa slojem dielektrika koji nema defekata i električki je idealni izolator. Kroz takav materijal ne prolazi struja i cijeli sklop se ovisno o naponu na gate elektrodi V_g ponaša kao naponski promjenjivi kondenzator.

Kada je napon $V_g = 0$ (slika 1.22) dolazi do izjednačavanja Fermijevih nivoa između metala i poluvodiča prelaskom elektrona iz metala u poluvodič u kojem se događa lokalizacija elektrona na atomima primjese³ što dovodi do stvaranja negativnog prostornog naboja na strani poluvodiča i zakrivljenja pojaseva energija za qV_{fb}.

Ovisno o naponu V_g tako imamo različite situacije u kojima se u poluvodičkoj podlozi događaju različite uspostave naboja i koje se u kontekstu MOS struktura zovu akumulacija, osiromašenje i inverzija o čemu će više riječi biti kasnije napisano.

³Primjese su akceptorskog tipa jer je poluvodič p-tipa.

Slika 1.22: a) MOS struktura V_g = 0. b) Energijski dijagram MOS strukture za V_g=0.

1.3.2.1 Zakrivljenje pojaseva energija i površinski potencijal

Zakrivljenje pojaseva energija događa se zbog uspostave naboja na površini između poluvodiča i dielektrika i može se parametrizirati funkcijom, odnosno potencijalom $\phi_P(\mathbf{x})$ (slika 1.23.)

$$\phi_P(x) = -\frac{[E_i(x) - E_i(\infty)]}{q}$$
(1.27)

gdje je $E_i(\infty)$ položaj Fermijevog nivoa u intrinsičnom poluvodiču.

Slika 1.23: Parametrizacija zakrivljenja vrpci potencijalom $\phi_P(\mathbf{x})$.
Koncentracije slobodnih nosioca naboja u područjima gdje se je $\phi_P(x) \neq 0$ dane su s sljedećim formulama [32]

$$n_P(x) = n_{po} \mathrm{e}^{\phi_P(x)\beta} \tag{1.28}$$

$$p_P(x) = p_{po} \mathrm{e}^{-\phi_P(x)\beta} \tag{1.29}$$

gdje je $\beta = \frac{q}{k_B T}$, a n_{po} i p_{po} su ravnotežne koncentracije elektrona i šupljina u p-tipu Si. Potencijal $\phi_P(x)$ može se dobiti rješavanjem Poissonove jednadžbe

$$\frac{d^2\phi_P(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_s} \tag{1.30}$$

gdje je ϵ_s dielektrična konstanta poluvodiča i gustoća naboja $\rho(x)$ je dana s

$$\rho(x) = q(N_D^+ - N_A^- + p_p(x) - n_p(x))$$
(1.31)

gdje su N_D^+ i N_A^- gustoće ioniziranih donorskih i akceptorskih atoma. Za $x \to \infty$ zbog neutralnosti naboja mora biti $N_D^+ \cdot N_A^- = n_{po} \cdot p_{po}$ pa se jednadžba (1.31) može napisati kao:

$$\frac{d^2\phi_P(x)}{dx^2} = -\frac{Q}{\epsilon_s} \{ p_{po}[\mathrm{e}^{-\beta\phi_s} - 1] - n_{po}[\mathrm{e}^{\beta\phi_s} - 1] \}$$
(1.32)

Rješenje jednadžbe (1.32) kreće od supstitucije $\mathscr{E} = -\frac{d\phi_s}{dx}$ i integracije iz čega se dobije električno polje (za detalje vidi [32])

$$\mathscr{E}(x) = \pm \frac{\sqrt{2}}{\beta L_D} F(\beta \phi_P(x), \frac{n_{Po}}{p_{Po}})$$

$$F(\beta \phi_P(x), \frac{n_{Po}}{p_{Po}}) \equiv \sqrt{\left[e^{-\beta \phi_P(x)} + \beta \phi_P(x) - 1\right] + \frac{n_{Po}}{p_{Po}} \left[e^{\beta \phi_P(x)} - \beta \phi_P(x) - 1\right]}$$

$$(1.33)$$

gdje predzaci ovise o predznaku potencijala ϕ_P i \mathcal{L}_D je ekstrinsična Debyeva dužina za šupljine.

$$L_D = \sqrt{\frac{\epsilon_s}{qp_{po}\beta}}$$

Gustoća plošnog naboja Q_S pri samoj površini (x=0) između poluvodiča i dielektrika je

$$Q_S = -\epsilon_s \mathscr{E}(x=0) \tag{1.34}$$

a napon V_q se troši na

$$V_g = V_{FB} + V_{OX} + q\phi_s \tag{1.35}$$

gdje je V_{fb} već spomenuti *flat band* napon, V_{OX} je pad napona u dielektriku i $\phi_s \equiv \phi_P(\mathbf{x}=0)$ je **površinski potencijal**.

Pad napona u dielektriku V_{OX} dobije se preko Gaussovog zakona i površinskog naboja Q_S (1.34).

$$V_{OX} = \mathscr{E}_{OX} d_{OX} = \frac{|Q_S| d_{OX}}{\epsilon_{OX}} = \frac{|Q_S|}{C_{OX}}$$
(1.36)

gdje je ϵ_{OX} dielektrična konstanta, d_{OX} je debljina i C_{OX} je kapacitet dielektrika po poprečnom presjeku.

Na slici 1.24 prikazano je rješenje jednadžbe (1.32) i izračunan je površinski naboj Q_S kao funkcija površinskog potencijala ϕ_S za primjer poluvodičke podloge Si dopirane s $N_A=1\cdot10^{15}$ atoma/cm³. Iz slike se mogu razlikovati tri karakteristična područja u kojima dolazi do znatne promjene površinskog naboja Q_S za neku vrijednost površinskog potencijala ϕ_S . Spomenute situacije redom se zovu **akumulacija**, **osiromašenje ili slaba inverzija**, i **jaka inverzija**.

Slika 1.24: Površinski naboj Q_S kao funkcija površinskog potencijala ϕ_S . Primjer za podlogu p-tipa Si dopiranu s $N_A = 1 \cdot 10^{15}$ atoma/cm³.

Akumulacija

Akumulacija je dobila ime od akumuliranja većinskih nosioca naboja kada je $\phi_S < 0$ i tada je koncentracija većinskih nosioca naboja na površini tada znatno veća nego u ravnotežnom

slučaju (1.29). Akumulacija se postiže naponom $V_g < V_{fb} < 0$ i takva situacija prikazana je na slici 1.25.

Slika 1.25: a) MOS struktura za V $_g <\!\!\mathrm{V}_{fb} <\!\!0.$ b) Energijski dijagram MOS strukture u akumulaciji.

Osiromašenje i slaba inverzija

U osiromašenju i slaboj inverziji dolazi do promjene koncentracije i vrste površinskog naboja te pojava prostornog naboja na strani poluvodiča. Kada površinski potencijal ϕ_S raste od 0 do vrijednosti ϕ_B ⁴ tada koncentracija većinskih nosioca naboja p_p počinje padati, a manjinskih nosioca naboja n_p počinje rasti prema formulama (1.29) i (1.28). Kada $\phi_S = \phi_B$ dogoditi će se izjednačenje koncentracija manjinskih i većinskih nosioca naboja na intrinsičnu vrijednost p_p(0)=n_p(0)=n_i što za posljedicu ima smanjenje (osiromašenje) većinske koncentracije nosioca naboja na intrinsičnu vrijednost koja je za više redova veličine manja nego prije.

Kada je $\phi_B < \phi_S < 2\phi_B$ koncentracija manjinskih nosioca naboja povećava se naspram većinske i počinje se pojavljivati područje u kojem postoji prostorni naboj W_D lokalizacijom elektrona na primjesama. Područje prostornog naboja širiti će se do neke svoje maksimalne širine W_{Dm} pri kojoj nastupati jaka inverzija. Osiromašenje i blaga inverzija postiže se naponom $(V_g V_{fb}) > 0$ i takva situacija prikazana je na slici 1.26. **Jaka inverzija**

 $^{{}^4\}phi_B = \mathbf{E}_i - \mathbf{E}_F$, gdje je \mathbf{E}_i položaj intrinsičnog energijskog nivoa u poluvodiču i \mathbf{E}_F je položaj Fermijevog nivoa u poluvodiču.

Slika 1.26: a) MOS struktura V_g-V_{FB} > 0. b) Energijski dijagram MOS strukture u osiromašenju i blagoj inverziji.

U jakoj inverziji koncentracija manjinskih nosioca naboja postaje veća od koncentracije primjesa u poluvodiču i područje prostornog naboja dostiže svoj vrhunac, a svaki se višak elektrona akumulira na površini poluvodiča. Jaka inverzija postiže se naponom V_g kojim se postiže vrijednost površinskog potencijala $\phi_S > 2\phi_B$ (slika 1.27).

Slika 1.27: a) MOS struktura V $_g > \mathrm{V}_t > 0.$ b) Energijski dijagram MOS strukture u jakoj inverziji.

1.3.2.2 C-V karakteristike

Ukupan kapacitet MOS strukture biti će serijski spoj kapaciteta dielektričnog sloja C_{OX} i kapaciteta osiromašenog područja C_D .

$$\frac{1}{C(V_g)} = \frac{1}{C_{OX}} + \frac{1}{C_D(V_g)}$$
(1.37)

Za neku debljinu dielektrika d_{OX} vrijednost C_{OX} će biti konstantna (1.36) i odgovarati će maksimalnom kapacitetu MOS strukture. C_D će ovisiti o V_g , odnosno ϕ_S i frekvenciji mjerenja.

Što se frekvencije mjerenja tiče razlikujemo dva specifična slučaja. Slučaj niske frekvencije LF (low frequency) i slučaj visoke frekvencije HF (high frequency). Najveća razlika u spomenutim slučajevima događa se u jakoj inverziji gdje se manjinski nosioci naboja ne mogu dovoljno brzo generirati pri HF slučaju zbog toga jer su izvori tih nosioca naboja termalne fluktuacije koje se događaju na *ms* skali.

LF C-V

C-V ovisnost pri niskoj frekvenciji dobije se preko formule (1.37) i diferenciranjem induciranog naboja Q_S (1.34) na poluvodičkoj strani MOS strukture po ϕ_S .

$$C_D \equiv \frac{dQ_S}{d\phi_S}$$

$$C_D^{LF}(\phi_S) = \frac{\epsilon_S}{\sqrt{2}L_D} \frac{1 - e^{-\beta\phi_S} + \frac{n_{PO}}{P_{PO}} [e^{\beta\phi_S} - 1]}{F(\beta\phi_S, \frac{n_{PO}}{p_{PO}})}$$
(1.38)

HF C-V

CV ovisnost pri visokoj frekvenciji preko [34] dana je s sljedećim formulama.

$$C_D^{HF}(\phi_S) = \frac{\epsilon_S}{\sqrt{2}L_D} \frac{1 - e^{-\beta\phi_S} + \frac{n_{PO}}{P_{PO}} [e^{\beta\phi_S} - 1] \frac{\Delta}{1+\Delta} + \frac{n_{PO}}{P_{PO}} \beta\phi_S \frac{1}{1+\Delta}}{F(\beta\phi_S, \frac{n_{PO}}{p_{PO}})}$$
(1.39)
$$\Delta \approx \frac{F(\beta\phi_S, \frac{n_{PO}}{p_{PO}})}{e^{\beta\phi_S} - 1} \beta [\int_0^{\beta\phi_S} d\phi_S (\frac{e^{\beta\phi_S} - e^{-\beta\phi_S} - 2\beta\phi_S}{F(\beta\phi_S, \frac{n_{PO}}{p_{PO}})^3}) - 1]$$

Na slici 1.28 prikazane su simulacije za LF i HF slučaj, također na slici je prikazan napon pri kojem dolazi do poravnjanja pojaseva energija V_{fb} i napon pri kojemu se pojavljuje inverzija V_T . C_{FB} označava kapacitet pri ravnim vrpcama i C_{MIN} označava minimalni kapacitet MOS strukure. Izvorni kod za simulaciju LF i HF slučaja napisan je u Mathematici 8.0. i nalazi se u **Dodatku C**.

Slika 1.28: Simulacija LF i HF C-V karakteristika MOS strukture s parametrima $d_{OX} = 200$ nm, $N_A = 1 \cdot 10^{15} \text{cm}^{-3}$, $V_{fb} = 0.88$ V na površini kontakta $A = 0.001^2 \pi [m^2]$.

1.3.3 Ne idealna MOS struktura

Idealne MOS strukture vrlo rijetko se pojavljuju u praksi budući da realni sustavi uvijek imaju određene defekte i nesavršenosti ugrađene u strukturu. Pogotovo se to odnosi na MOS sustave gdje je upravno najkritičniji dio sučelje između podloge i dielektrika koje je tipično debljine 3-4 nm i gdje se zbog nepodudaranja atomskih mjesta između kristalne podloge i dielektričnog sloja pojavljuju defekti. MOS struktura sa velikim brojem takvih defekata je neupotrebljjiva za daljnja razmatranja i koncentracija tih defekata ovisi o tehnici proizvodnje, temperaturi grijanja, kristalnoj orijentaciji podloge, čistoći kemijskih tekućina i sl. Općenito se koncentracija defekata može samo smanjiti ali nikako ne i u potpunosti eliminirati iz sustava. Sustavi nanočestica u dielektricima koje smo mi proučavali također pripadaju u ne idealnu MOS strukturu

Na slici 1.29 shematski su prikazani mogući defekti u MOS strukturi i opisani su u sljedećim podpoglavljima.

Slika 1.29: Shematski prikaz ne idealne MOS strukture i mogućih defekata u dielektričnom sloju. Pokazan je primjer za SiO_2 .

1.3.3.1 Naboji zatočeni na sučelju Q_{it}

Prilikom depozicije dielektrika na kristalnu površinu poluvodiča nastaju defekti koji su lokalizirani unutar 1 nm od površine i uglavnom se radi o defektima koji nastaju zbog različite simetrije površine poluvodiča (100 silicij) i različite simetrije ili strukture dielektričnog sloja (oksida, nitrida i karbida). Spomenuti defekti električki su neutralni i nalaze se u zabranjenom području te mogu poslužiti kao zamke za uhvat elektrona i šupljina čime postaju pozitivno ili negativno nabijeni defekti. Za slučaj oksidnog dielektrika najčešće se tu radi o defektima tri-valentnog Si [33] i ne-povezanog atoma kisika (*non bridging oxygen center* NBOC) [33],[36]. Na slikama 1.30. i 1.31. shematski su prikazani tri-valentni i NBOC defekti.

Koncentracija Q_{it} defekata može se smanjiti zagrijavanjem 30-60 min. na 450°C u atmosferi H₂ koja pasivizira viseće veze. Plošna gustoća naboja i gustoća stanja defekata na sučelju može se odrediti raznim metodama. U ovom radu za to je korištena Termanova metoda [35] koja će biti objašnjena u poglavlju eksperimentalnih metoda. Efekt odnosno simulacija Q_{it} defekata na idealnu HF C-V karakteristiku prikazana je na slici 1.32. Iz slike se vidi da Q_{it} "rasteže" C-V karakteristiku u odnosu na idealnu. Točnije za $V_G < V_{fb}$,

Slika 1.30: Shematski prikaz tri-valentnog Si defekta. U početku neutralni defekt uhvati šupljinu i postane pozitivno nabijen defekt.

Slika 1.31: Shematski prikaz NBOC defekta. U početku neutralni NBOC defekt uhvati elektron i postane negativno nabijen defekt.

 Q_{it} se pune šupljinama i postaju pozitivno nabijeni defekti, a za $V_G > V_{fb}$, Q_{it} se pune elektronima i postaju negativno nabijeni defekti što ustvari uzrokuje rastezanje C-V krivulje u odnosu na krivulju bez defekata.

Slika 1.32: Simulacija HF C-V karakteristike s i bez $Q_{it}=1.10^{12} \text{ cm}^{-2}$.

1.3.3.2 Stalni naboji u dielektriku Q_f

Stalni naboji u dielektriku lokalizirani su oko 3-4 nm od površine poluvodiča. Ti su defekti nabijeni (uglavnom pozitivno) i ne ovise o debljini sloja dielektrika već samo o uvjetima oksidacije i zagrijavanja. Pretpostavlja se da ti defekti nastaju od različitih kompleksa visećih veza u kojima je naboj zarobljen. Utjecaj tih defekata na C-V karakteristiku modelira se s pozitivno ili negativno nabijenim plošnim nabojem umetnutim u oksid koji ima za efekt pomak C-V karakteristike oko "ishodišta" za napon ΔV_f .

$$\Delta V_f = -\frac{Q_f}{C_{OX}}$$

1.3.3.3 Mobilni naboji u dielektriku \mathbf{Q}_m

Mobilni ioni pod utjecajem napona mogu se gibati naprijed, nazad u dielektriku i taj efekt je to značajniji što je temperatura veća. Koncentracija mobilnih iona može se držati pod kontrolom korištenjem vrlo "čistih" kemikalija, plinova i sl. Mobilni ioni također pomiču C-V krivulju za neki napon ΔV_m .

$$\Delta V_m = -\frac{Q_m}{C_{OX}}$$

1.3.3.4 Naboji zatočeni u dielektriku Q_{ot}

Naboji zatočeni u dielektriku Q_{ot} povezani su s defektima koji se nalaze duboko u njima i uglavnom se tu radi o E-centru za slučaj SiO₂ matrice, K⁰ centru za slučaj Si₃N₄ matrice [64] i kompleksima visećih veza za SiC matricu. Spomenuti defekti shematski izgledaju vrlo slično kao što se to vidi na slici 1.33. Takvi defekti sami za sebe su električki neutralni, ali mogu poslužiti kao zamke za elektrone i šupljine kada uhvatom istih postaju pozitivno ili negativno nabijeni defekti. Pomak C-V krivulje zbog Q_{ot} može se modelirati definicijom gustoće defekata $\rho(\mathbf{x})$, čiji efekt je pomak C-V krivulje za napon ΔV_{ot} .

$$\Delta V_{ot} = -\frac{1}{C_{OX}} \frac{1}{d_{OX}} \int_0^{d_{OX}} x \rho(x) dx$$

1.3 MOS struktura

Slika 1.33: Shematski prikaz neutralnih centara u matricama SiO₂ i Si₃N₄. a) E-centar. b) K⁰ centar. c) Viseća veza u SiC matrici. Viseće veze u spomenutim defektima mogu poslužiti kao zamke za elektrone ili šupljine.

1.3.3.5 Transport naboja kroz MOS strukturu

U ne idealnoj MOS strukturi moguć je prolaz struje kroz izolator odnosno dielektrik kada je električno polje kroz njega dovoljno visoko

$$\mathscr{E}_{OX} = \frac{V_{OX}}{d_{OX}}$$

gdje je V_{OX} pad napona u dielektriku, a d_{OX} je debljina dielektričnog sloja. Postoje razni mehanizmi transporta kroz dielektričnu strukturu, a neki su prikazani na slici 1.34. Svaki od mehanizama transporta je dominantan na nekom od naponskih ili temperaturnih područja.

Slika 1.34: Shematski prikaz mogućih načina transporta kroz MOS strukturu. a) Direktno tuneliranje, b) Fowler-Nordheim tuneliranje, c) termionska emisija, d) Frenkel-Pool emisija.

Direktno tuneliranje i Fowler-Nordheim [32] tuneliranje je kvantnomehanički efekt pri kojem valna funkcija ima određenu vjerojatnost tuneliranja kroz "nepropusnu" barijeru. Tuneliranje najviše ovisi o električnom polju u dielektriku i temperaturno je neovisno te je dano s sljedećim formulama.

$$J_{DIR.}(V_g) = A^* \frac{V_g}{d_{OX}^2 \beta} C \cdot e^{-\frac{B(1-(1-q\frac{V_{OX}}{E_B})^{1.5}}{\mathscr{E}_{OX}}}$$
(1.40)

$$J_{FN}(V_g) \propto \mathscr{E}_{OX}^2 \cdot \mathrm{e}^{-\frac{B}{\mathscr{E}_{OX}}}$$
(1.41)

Gdje je A^{*} efektivna Richardsonova konstanta, E_B je visina barijere između Fermijevog nivoa u metalu i oksida, C i B su neke konstante.

Termionska emisija je slabo ovisna o naponu i jako ovisna o temperaturi. Opisana je formulom.

$$J_{term.}(V_g) = A^* T^2 \cdot e^{-\beta (E_B - \sqrt{q \mathscr{E}_{OX}/4\pi \epsilon_{OX}})}$$
(1.42)

Frenkel-Pool emisija shematski prikazana na slici 1.34 d). i odnosi se na naboje koji su lokalizirani na nekim od defekata u oksidu. Po karakteristikama Frenkel-Pool emisija slična je termionskoj emisiji s time da je visina barijere jednaka energiji zamke u dielektriku i više je naponski ovisna nego temperaturno.

$$J_{FP}(V_g) = A\mathscr{E}_{OX} \cdot e^{-\beta(E_B - \sqrt{q\mathscr{E}_{OX}/\pi\epsilon_{OX}})}$$
(1.43)

Gdje je A proporcionalan broju zatočenih naboja.

Na niskim naponima i visokim temperaturama struju vode termalno pobuđeni elektroni skačući od jednog mjesta do drugog i takav oblik vođenja je omskog tipa i opisan je sljedećom fomulom [32]

$$J_{ohmic}(V_g) \propto \mathscr{E}_{OX} \cdot e^{-\frac{\Delta E_a}{k_B T}}$$
(1.44)

gdje je ΔE_a aktivacijska energija elektrona.

Transport strujom ograničenom prostornim nabojem (*space charge limited current* SCLC) nastaje kada se nosioci naboja injektiraju u izolator gdje ne postoje kompezirajući naboji, odnosno novopridošli naboji ugrađuju se u zamke i djeluju odbojno za svaki novopridošli naboj ako je brzina pražnjenja spomenutih zamki manja nego brzina pritjecanja novih naboja. Takav način transporta ovisi isključivo o prostornim karakteristikama

izolatora i odavde nosi ime. Ovisnost struje o naponu ovisiti će o gustoći stanja zamki u zabranjenom području izolatora. Pod pretpostavkom da je raspodjela gustoće stanja zamki dana eksponencijalnom raspodjelom

$$h(E) = \frac{H}{k_B T_c} e^{-\frac{E}{k_B T_c}}$$

gdje je k_B Boltzmanova konstanta, H je gustoća zamki, E je energija zamke i T_C je karakteristična temperatura raspodjele (koja je veća od temeprature T na kojoj se mjeri strujno naponska karakteristika) sljedeća formula opisuje SCLC struju [37],[38],[39].

$$J_{SCLC}(V_g) \propto \frac{V_g^{l+1}}{d^{2l+1}} \tag{1.45}$$

gdje je $l = \frac{T_C}{T}$ broj uvijek veći od 1 i govori o tome kakva je raspodjela gustoće stanja zamki, d je udaljenost između elektroda.

Eksperimentalne metode

Eksperimentalne metode u ovom radu mogu se podijeliti u dvije skupine. Prvu skupinu čine spektroskopske i optičke metode pomoću kojih je određena dimenzija i struktura poluvodičkih nanostruktura. U tu grupu metoda spada Ramanova spektroskopija, difrakcija rendgenskih zraka pod malim kutem (GIXRD) i fotoluminiscencija (PL).

Drugu skupinu metoda čine tzv. električne metode koje su poslužile za mjerenje transportnih i drugih električnih svojstava sustava poluvodičkih nanostruktura. Radi se o kapacitivno-naponskim (C-V) i strujno naponskim (I-V) mjerenjima.

2.1 Ramanova spektroskopija

2.1.1 Uvod

Ramanova spektroskopija je tehnika u kojoj se mogu promatrati razna nisko-frekventna pobuđenja u fizikalnim sustavima, a temelji se na neeleastičnom raspršenju fotona na vibracijskim, rotacijskim i sl. modovima titranja nekog materijala ili molekule. Kada foton nalijeće na neki sustav mogu nastati sljedeće situacije koje su shematski prikazane na slici 2.1. Najvjerojatni događaj pri fotonskom raspršenju je da ulazni foton energije $\hbar\omega_{\gamma}$ pobudi sustav u neko virtualno stanje energije $E_n + \hbar\omega_{\gamma}$ i vrati se nakon nekog vremena u početno stanje E_n s emisijom fotona energije $\hbar\omega_{\gamma}$. Takav proces opisuje elastično raspršenje fotona na nekom sustavu i to je poznato Raleightovo raspršenje koje je proporcionalo s λ^{-4} pa tako valovi kraćih valnih duljina imaju znatno veće raspršenje nego valovi dužih valnih duljina (razlog zašto nebo djeluje plavo).

Pri pobuđenju sustava fotonima može nastati i neelastično raspršenje koje se dogodi kada foton energije $\hbar\omega_{\gamma}$ pobudi stanje sustava u virtualno stanje $E_n + \hbar\omega_{\gamma}$, ali sada se

Slika 2.1: Shematski prikaz mogućih procesa pri interakciji fotona i niskofrekventhih modova materijala. Debljina strelice odgovara otprilike vjerojatnošću pojednog procesa raspršenja.

sustav vraća u više stanje E_{n+1} emisijom fotona energije

$$\hbar\omega_{\gamma} - \Delta E_n$$

gdje je $\Delta E = E_{n+1} - E_n$, $(E_{n+1} > E_n)$. Takvo raspršenje događa se otprilike jednom u 10⁷ elastičnih raspršenja [40] i zove se Stokes-Ramanovo raspršenje.

Sljedeći mogući neelastični događaj dogodi se kada foton energije $\hbar \omega_{\gamma}$ pobudi stanje E_{n+1} u virtualno stanje $E_{n+1} + \hbar \omega_{\gamma}$ koje se onda relaksira u niže stanje stanje E_n emisijom fotona energije

$$\hbar\omega_{\gamma} + \Delta E_n$$

takvo raspršenje zove se Anti-Stokes-Ramanovo raspršenje i ono je rijeđe od Stokesovog-Ramanovog raspršenja budući da je u termodinamičkoj ravnoteži populacija popunjenja viših nivoa energije manja nego nižih nivoa u skladu s vjerojatnošću danom preko ~ $e^{-\frac{E_{n+1}}{kT}}$.

Da bi se dogodilo Ramanovo raspršenje moraju biti zadovoljena dva uvjeta.

Prvi uvjet je trivijalan i kaže da sustav koji promatramo uopće mora imati niskofrekvencijske modove titranja, a drugi uvjet dolazi iz činjenice da fotonski ravni val frekvencije ω_{γ} može uzrokovati znatne promjene u raspodjeli gustoće naboja sustava inducirajući dipolni moment frekvencije ω_{γ} , s druge strane sustav ima svoje vlastite modove titranja ω_0 . Interakcija između spomenutih induciranih i vlastitih titranja može biti značajna ako je promjena polarizabilnosti α pri promjeni generalizirane koordinate Q_k u trenutku prolaza kroz položaj ravnoteže različita od nule [40].

$$\left(\frac{\partial \alpha}{\partial Q_k}\right)_{Q_0} \neq 0 \tag{2.1}$$

Kao primjer spomenutog pravila možemo promotriti dvoatomnu molekulu koja ima samo jedan vibracioni stupanj slobode i pripadajuću generaliziranu koordinatu koja je definirana kao razmak između centara atoma. Kako molekula titra vlastitom frekvencijom ω_0 tako se događa približavanje i udaljavanje centara atoma i dolazi do promjene polarizabilnosti molekule od manje vrijednosti prema većoj pa je u trenutku prolaza kroz ravnotežni položaj Q_0 ispunjen uvjet (2.1) i za molekulu se tada kaže da ima Raman aktivan mod titranja.

O tome dali neki sustav ima Raman aktivni mod ovisi o simetrijama sustava. Jednako tako sustavi koji se daju lako polarizirati i svi molekulski sustavi koji imaju puno delokaliziranih elektrona su Raman aktivni.

2.1.2 Eksperimentalni postav

Moderni Ramanov spektrometar shematski je prikazan na slici 2.2. Za pobuđenje sustava u virtualne nivoe koristi se laserska svjetlost. Mikroskop služi za pozicioniranje lasera na točno određeno mjesto uzorka gdje se želi promatrati Ramanovo raspršenje. Svjetlost s uzorka se preko razdjeljnika zrake vodi na objektiv i filtar koji filtrira elastično Rayelightovo raspršenje. Filtriran spektar koji sada ima samo Ramanovo raspršenje razlaže se u spektrometru i očitava preko CCD kamere.

Sve zajedno spojeno je na računalo koji služi kao kontrolna jedinica i jedinica za prikupljanje podataka.

Slika 2.2: Shematski prikaz Ramanova spektrometra.

2.1.3 Model zatočenja fonona

U kontekstu ovog rada Ramanova spektroskopija koristila se za određivanje veličine nanočestica u pojedinom uzorku. Teorija na kojoj se temelji određivanje veličine nanočestica zove se model zatočenja fonona (Phonon Confinement Theory)[41] i polazi od činjenice da je Ramanov spektar makroskopskog materijala (*bulk* material) drugačiji od Ramanovog spektra nanočestičnog materijala jer u nanočestičnom materijalu vrijede drugačiji uvjeti raspršenja fotona (ovise o veličini nanočestice) nego u makroskopskom materijalu.

U makroskopskom materijalu Si ili Ge poznato je da postoji snažan signal Ramanovog spektra na 520 cm⁻¹ (Si) i 300 cm⁻¹ (Ge) koji dolazi od raspršenja fotona na trostruko degeneriranom TO fononu valnog vektora $\vec{q} = \vec{0}$ [42]. Da bi se dogodilo Ramanovo raspršenje osim što mora vrijediti zakon očuvanja energije mora vrijediti i zakon očuvanja impulsa zbog čega se foton može raspršiti samo na fononu valnog vektora $\vec{q} = \vec{0}$ budući da je u prvoj Brillouenovoj zoni tipična skala međuatomskog razmaka (~ 0.5 nm), a valna duljina fotona vidljive svjetlosti je oko 1000 puta veća pa se u prvoj aproksimaciji uzima samo raspršenje na spomenutom fononu "beskonačne" valne duljine $\vec{q} = \vec{0}$.

U makroskopskom materijalu valna funkcija koja opisuje titranje rešetke opisana je preko Blochove funkcije

$$\phi(\vec{q_o}, \vec{r}) = u(\vec{q_o}, \vec{r}) e^{-i\vec{q_o}\cdot\vec{r}}$$
(2.2)

gdje $u(\vec{q_o}, \vec{r})$ ima periodičnost rešetke i $\vec{q_0}$ je valni vektor. U nanokristaliničnom materijalu također će postojati modovi titranja ali oni će biti ograničeni volumenom nanočestice. U teoriji zatočenja fonona za opisivanje titranja u nanočesticama promjera L koriste se valne funkcije makroskopskog materijala (2.2) modulirane s nekom funkcijom zatočenja $Z(\vec{r}, L)$ [41].

$$\Psi(\vec{q}, \vec{r}, L) = Z(\vec{r}, L)\phi(\vec{q_o}, \vec{r})$$

$$= Z(\vec{r}, L)u(\vec{q_o}, \vec{r})e^{-i\vec{q_o}\cdot\vec{r}}$$

$$= \phi'(\vec{q_o}, \vec{r}, L)u(\vec{q_o}, \vec{r})$$
(2.3)

Funkcija $\phi'(\vec{q_o}, \vec{r})$ može se napisati kao Fourijerov transformat

$$\phi'(\vec{q_o}, \vec{r}, Z) = \int d\vec{q} C(\vec{q_o}, \vec{q}, L) \mathrm{e}^{i\vec{q}\vec{r}}$$
(2.4)

odnosno

$$C(\vec{q_o}, \vec{q}, L) = \frac{1}{(2\pi)^3} \int d\vec{r} \phi'(\vec{q_o}, \vec{r}, L) e^{-i\vec{q}\vec{r}}$$
(2.5)

gdje $C(\vec{q_0}, \vec{q}, L)$ pokazuje koji modovi osim $\vec{q_0}$ moda sudjeluju u Ramanovom raspršenju jer ako promotrimo matrični element interakcije fotona $\vec{q_0}$ i fonona \vec{q} između operatora interakcije \hat{O}

$$|\langle \vec{q_0} | \hat{O} | \vec{q} \rangle|^2 = |\langle \vec{q_0} | \hat{O} | \vec{q_0} \rangle|^2 C(\vec{g_0}, \vec{q}, L)^2$$
(2.6)

vidimo da $C(\vec{g_0}, \vec{q}, L)$ određuje koliko koji mod titranja osim $\vec{q_0}$ sudjeluje u raspršenju. Time je pokazano da u nanočestičnim materijalima kada definiramo zatočenje više ne vrijedi obavezno uvjet raspršenje na $\vec{q} = \vec{0}$ fononu već je moguće raspršenje i na drugim fononima za koje $\vec{q} \neq \vec{0}$.

Ramanov signal za neku frekvenciju ω i veličinu nanočestica Lće biti dan s formulom

$$I(\omega, L) = A[n(\omega) + 1] \int d\vec{q} |C(\vec{q_0}, \vec{q}, L)|^2 L(\omega, q)$$
(2.7)

gdje je A neka konstanta, $n(\omega)$ je Bose-Einstein faktor, a $L(\omega, \vec{q})$ opisuje širinu energijskog

stanja.

$$L(\omega, \vec{q}) = \frac{\Gamma/\pi}{\left[\omega - \omega(\vec{q})\right]^2 - \left(\frac{\Gamma}{2}\right)^2}$$

ako pretpostavimo da veličina nanočestica također ima neku raspodjelu onda je ukupni Ramanov signal dan sa

$$I(\omega) = \int I(\omega, L)N(L)dL$$
(2.8)

gdje N(L) predstavlja neku raspodjelu veličina nanočestica [41, 46]. Teorija zatočenja fonona kroz vrijeme dobila je nekoliko poboljšanja. Prvo poboljšanje određuje realniju ili drugačiju funkciju zatočenja gdje se Gaussijan kao u [41]

$$Z(r,L) = A e^{-2\frac{r^2}{L^2}}$$
(2.9)

zamjenjuje s sinc funkcijom [45]

$$Z(r,L) = A \frac{\sin(rL)}{L}$$
(2.10)

ili se radi sumiranjem stojih valova u nanočestici [47].

$$Z(r,L) = \sum_{n} \frac{\sin(k_{n}r)}{k_{n}r}$$

$$k_{n} = n\frac{\pi}{D}, n = 2, 4, 6, 8...$$
(2.11)

Drugo poboljšanje ide u boljem određivanju funkcije $\omega(\vec{q})$ koja se obično uzima kao prilagodba na eksperimentalne podatke iz mjerenja neelastičnog neutronskog raspršenja [46, 47] ili se uzima Broutova suma [43, 49] fononskih modova.

Jedan od glavnih pokazatelja zatočenja fonona je pomak vrha i povećanje širine Ramanovog signala u odnosu na položaj vrha i širinu vrha Ramanovog vrha makroskopskog materijala [46, 50]. Postoje formule preko kojih se može izračunati veličina nanočestica kao funkcija pomaka $\Delta \omega$ u cm⁻¹

$$\Delta\omega = -138 \left(\frac{a}{L}\right)^{1.44} \tag{2.12}$$

ili kao funkcija proširenja linije $\Delta\Gamma$ ako je $\Delta\omega$ teško ili neprecizno određen

$$\Delta\Gamma = -323 \left(\frac{a}{L}\right)^{1.75} \tag{2.13}$$

gdje je a konstanta rešetke makroskopskog materijala u nanometrima.

2.1.3.1 Parametri za određivanje veličine nanočestica

Za određivanje veličine nanočestica u sklopu teorije zatočenja fonona koristili su se sljedeći parametri. Funkcija zatočenja je bila Gaussova funkcija (2.9). Za raspodjelu veličine nanočestica koristila se Gaussova raspodjela. Disperzijska relacija $\omega(\vec{g})$ uzeta je kao prilagodba na TO fonon iz [47, 46].

2.2 Rendgenska difrakcija pod malim kutem GIXRD

2.2.1 Uvod

Difrakcija rendgenskih zraka pod malim kutem (GIXRD) jedna je od najupotrebljavanijih metoda za proučavanje tankih filmova. Upad rendgenskog zračenja pod malim kutem u odnosu na (slika 2.3.) površinu omogućuje prodiranje zračenja do samo određene dubine filma integrirajući tako signal koji dolazi samo od dijelova tankog filma. Dubina prodiranja zračenja određena je kompleksnim indeksom loma materijala n i ovisi o upadnom kutu ω kao što je prikazano na slici 2.4 [52]. Difrakcijski vrhovi koji tako nastaju mjere se detektorom u kut 2 Θ . Iz položaja Braggovog vrha tako se može odrediti koja kristalna ravnina doprinosi signalu i kolika je poluširina na poluvisini (FWHM) vrha. FWHM povezan je s veličinom kristalita koji doprinosi difrakciji i preko Scherreove formule može se izračunati njegova veličina.

2.2.2 Scherreova formula

Preko Scherreove formule može se otprilike odrediti veličina kristalita koji sudjeluje u difrakciji. Scherrerova formula određuje veličinu kristalita prema FWHM Braggovog vrha. Što je kristalit manji to je Braggov vrh širi i obrnuto. Izvod formule kreće od zbrajanja

2.2 Rendgenska difrakcija pod malim kutem GIXRD

Slika 2.3: Shematski prikaz GIXRD.

Slika 2.4: Ovisnost dubine ulaska rendgenskog zračenja kao funkcija upadnog kuta $\omega~(\omega_C$ je kritični kut).

ravnih valova čiji su izvori razmaknuti za međuatomski razmak i konačna sumacija odnosno intezitet određuje se uzimajući u obzir male pomake optičkog puta između svakog od atoma. Više detalja može se naći u [53]. Scherreova formula za veličinu (promjer) d kristalita konačno je

$$d = \frac{4}{3} \frac{K \cdot \lambda}{\Delta 2\Theta \cdot \cos(\Theta)} \tag{2.14}$$

gdje je K strukturni faktor koji se obično uzima da iznosi 0.9 [55], λ je valna duljina rendgenskog zračenja, $\Delta 2\Theta$ je FWHM Braggovog vrha koji odgovara određenoj kristalnoj ravnini i Θ kut pod kojim se pojavljuje Braggov vrh. Faktor 4/3 dolazi od pretpostvke da je kristalit sferičnog oblika [54].

2.3 Fotoluminiscencija

2.3.1 Uvod

Fotoluminiscencijska (*Photoluminescence*) spektroskopija (PL) je bezkontaktna i nedestruktivna metoda koja daje uvid u elektronsku strukturu sustava. PL se temelji na pobuđivanju sustava unosom energije i mjerenjem odziva sustava pri relaksaciji u osnovno stanje.

Foto-pobuda uzrokuje da se elektroni unutar materijala pobuđuju u viša stanja, a pri povratku u osnovno stanje energija se relaksira emisijom fotona (radijativni proces) ili nekim drugim neradijativnim procesom (fononi). Energija emitiranog fotona pri radijativnom procesu odgovara razlici u energiji između pobuđenog i osnovnog stanja i specifična je za svaki materijal posebno (slika 2.5).

Na slici 2.6 prikazana je shema eksperimentalnog postava za mjerenja PL. Laser valne duljine 408 nm (2.6 eV) pobuđuje uzorak čije luminiscencijsko zračenje se fokusira pomoću leće i filtrira prije nego uđe u spektrometar.

2.3.2 Vrste fotoluminiscencije

Postoje tri vrste fotoluminiscencije. **Rezonantno zračenje** je proces u kojem apsorbirani i emitirani foton imaju jednaku energiju i on se na vremenskoj skali događa relativno brzo \sim ns. Taj proces nas ne zanima jer se nemogu razlikovati ulazi i izlazni fotoni zbog toga je i stavljen filtar na ulazu u spektrometar koji filtrira sve takve doprinose.

Pri **fluorescenciji** emitirani foton ima manju energiju nego apsorbirani foton jer se dio energije izgubi u nekim drugim neradijatvinim procesima. Vremenska skala tih procesa je 10^{-8} - 10^{-4} s. Treći proces je **fosforoscencija** koja je u principu sličan fluoroscenciji, ali su vremenske skale na kojima se događa red veličina manje 10^{-4} - 10^{-2} s.

Slika 2.5: Shematski prikaz procesa pri PL.

Slika 2.6: Shematski prikaz eksperimentalnog postava za PL.

2.3.3 Fotoluminiscencija i poluvodiči

PL je kao tehnika posebno pogodna za istraživanje elektronske strukture poluvodiča. Pri relaksaciji elektrona u poluvodičima emitirani foton će sigurno imati energiju procjepa koji je vrlo važan parametar, a također u kontekstu nanomaterijala i poluvodičkih kvantnih

točaka energija procjepa ovisiti će i o veličini kvantne točke pa PL može polužiti i kao brza metoda za određivanje veličine kvantnih točaka preko formule općenitog izraza [62]

$$E(D) = E_{gap}(\infty) + \frac{A}{D^2} eV/nm^2$$
(2.15)

gdje je $E_{gap}(\infty)$ energija zabranjenog procjepa za "beskonačni" kristal, D je promjer nanočestice i A je parametar koji određuje vrstu zatočenja i koje može biti slabo, srednje i jako, i što ovisi o relativnoj veličini nanočestice i Bohrovog radijusa eksitona e-š određenog preko formule

$$a_{e(h)(X)} = \frac{4\pi\epsilon\hbar}{m_{e(h)(X)}q^2}$$

gdje je $m_{e(h)(X)}$ efektivna masa elektrona i šupljine, ϵ je dielektrična konstanta i q je naboj elektrona.

Drugi značajan doprinos PL u istraživanju poluvodiča je istraživanje defekata, jer osim što će emitirani fotoni imati energiju procjepa također će se i na defektima događati rekombinacija i emisija fotona preko čije se energije može identificirati vrsta defekta.

2.4 Kapacitivno-naponska C-V mjerenja

2.4.1 Uvod

U istraživanjima MOS struktura C-V mjerenja su jedna od najznačajnijih metoda za karakterizaciju sustava koji se proučava. C-V metoda je nedestruktivna i brza metoda za dobivanje bitnih parametara MOS strukure poput:

- Debljine oksida d_{OX}
- Naboja zatočenih u oksidu Q_{ot}
- Plošna gustoća stanja defekata na sučelju oksida i poluvodiča \mathbf{D}_{it}
- Plošne gustoća stalnih naboja u oksidu Q_f

Za MOS strukture čiji kapacitet varira ovisno o naponu na gate elektrodi V_G za dobivanje kapaciteta na V_G dodaje se mali naponski signal V_{ac} amplitude (10-30 mV)

frekvencije f.

$$dV = V_G + dV_{ac}$$

Frekvencija određuje dali će se raditi viskofrekvencijska mjerenja HF ili niskofrekvencijska mjerenja LF. U ovom radu sva su mjerenja bila HF frekvencije 10-100 kHz. Kao što je spomenuto u poglavlju 1.3. Najveća razlika između spomenutih modova mjerenja LF i HF događa se kada je MOS struktura u inverziji gdje postaje bitno dali ima dovoljno manjinskih nosioca naboja u području osiromašenja.

2.4.2 Određivanje $\mathbf{Q}_f, \mathbf{Q}_{ot}$

 \mathbf{Q}_f i \mathbf{Q}_{ot} se određuje preko ukupnog pomaka C-V karakteristike u odnosu na položaj C-V krivulje kada nema defekata . Pomak C-V krivulje $\Delta \mathbf{V}_{FB}$ određen je sa.

$$\Delta V_{FB} = \Delta V_{FB}^{ideal} - \frac{Q_f}{C_{OX}} - \frac{1}{C_{OX}d_{OX}} \int_0^{d_{OX}} x \rho_{ot}(x) dx$$
(2.16)

gdje je ΔV_{FB}^{ideal} razlika Fermijevih nivoa u metalnoj i poluvodičkoj strani MOS strukture. U pronalaženju Q_{ot} pretpostavljeno je također da je gustoća naboja kroz tijelo oksida uniformna.

2.4.3 Termanova metoda za određivanje D_{it}

Termanova metoda [33],[35] omogućuje određivanje gustoće defekata na površini između poluvodiča i oksida D_{it} preko HF C-V mjerenja. Na slici 2.7. prikazano je kako se u Termanovoj metodi određuje ovisnost ϕ_S o V_G koja je potrebna za određivanje D_{it} . Termanova metoda temelji se na mogućnost da se može izračunati teorijska HF C-V krivulja bez defekata na sučelju (formule (1.36) i (1.39)), a za odstupanja C-V krivulje od idealne odgovorni su defekti na sučelju. Proučavajući razliku između idealnog i izmjerenog može se naći ovisnost ϕ_S o V_G rezolucije koliko ima točaka mjerenja. Preostale vrijednosti koji su između točaka mjerenja mogu se bez velikog gubitka u točnosti naći linearnom interpolacijom.

Nakon što se odredi ovisnost ϕ_S o V_G napravi se numerička derivacija koja je potrebna u formuli iz koje se konačno određuje D_{it} kao funkcija ϕ_S . Izvod te formule opisan je u

Slika 2.7: Shema prikaz kako se u Termanovoj metodi pronalazi ovisnost ϕ_S o $\mathbf{V}_G.$

[32] i [33].

$$D_{it} = \frac{C_{OX}}{q^2} \left[\left(\frac{d\phi_S}{dV_G} \right)^{-1} - 1 \right] - \frac{C_D^{HF}}{q^2}$$
(2.17)

Izvorni kod za numeričku proceduru opisanu maloprije napravljen je u programu Mathematica 8.0. i nalazi se u **Dodatku C** i preko njega je određen D_{it} u uzorcima koji su se proučavali u ovom radu.

2.5 Strujno-naponska (I-V) mjerenja

Strujno naponska (I-V) mjerenja jedna su od najjednostavnijih i najvažnijih metoda za proučavanje transportnih svojstava u poluvodičkim materijalima, budući da napon na gate elektrodi mijenja potencijalnu sliku kroz koju prolaze nosioci naboja pa se ovisno o naponu mogu proučavati različite situacije u kojima se nalazi MOS struktura kao recimo slučaj propusne polarizacije (akumulacija) ili nepropusne polarizacije (inverzija) gdje različite vrste i različite količine nosioca naboja sudjeluju u struji kroz dielektrični odnosno u kontekstu nanočestica matrični medij. Također ako matrica ima mjesta uhvata nosioca naboja na defektima ili nanokristaliničnom materijalu tada se ovisno o karakteru struje može vidjeti dali je prolazak struje kroz matricu odgovoran neki od modela transporta struje opisanih u (1.3.3.5) i [32, 37].

Na slici 2.8. shematski je prikazan eksperimentalni postav za mjerenja I-V karakteristika MOS struktura u ovom radu. Eksperimentalni postav sastoji se od Keitley 6487 uređaja koji je istovremeno naponski izvor i pikoampermetar spojen preko HI-LO izlaza sa MOS strukturom.

Slika 2.8: Shematski prikaz postava za mjerenje I-V mjerenja.

2.6 Magnetronsko rasprašenje

Uzorci u ovom radu napravljeni su tehnikom magnetronskog raspršenja koja služi za stvaranje vrlo tankih slojeva nekog materijala na određenim podlogama. Tipični uređaj za magnetronsko rasprašenje prikazan je shematski na slici 2.9 i općenito se sastoji od tri dijela. Jedan dio čini *meta*, odnosno materijal koji se rasprašuje, drugi dio čini *podloga* odnosno materijal na koji se nanosi rasprašeni materijal i treći dio čini *radni plin* (Ar, Ar + $N_2 \dots$).

U magnetronskoj komori koja je evakuirana i pod niskim tlakom (\sim mTorr) nalazi se radni plin čiji su neki atomi ionizirani. Između podloge i mete nalazi se visoki napon (\sim 5 kV) u kojem se ionizirani atomi radnog plina ubrzavaju prema meti i sudaraju s materijalom mete. Rezultat tih sudara je izbacivanje ili rasprašenje atoma mete i stvaranje plazme u kojoj se nalaze elektroni i ionizirani atomi radnog plina i mete. Plazma je pri podlozi zarobljena jakim magnetskim poljem (magnetron) i jedino neutralne čestice mogu

Slika 2.9: Shema uređaja za magnetronsko rasprašenje.

izlaziti iz plazme (ionizirani atom mete neutraliziraju se s elektronima plazme). Tako je moguće dobiti kontrolirani tok atoma mete prema podlozi mijenjajući napon, tlak radnog plina (Ar + 10%N₂ za sve uzorke), temperaturu podloge i dr.

Uređaj za magnetronsko rasprašenje koji je korišten u ovom radu je bio komercijalni K. J. Lesker sistem koji je imao mogućnost rasprašenja više meta naizmjenično što je otvorilo nove mogućnosti pri proizvodnji uzoraka kao recimo stvaranje višeslojnih uzorka različitih vrsta materijala.

2.7 Uzorci

Na slici 2.10 shematski je prikazan jednoslojni i višeslojni uzorak nanostruktura napravljen tehnikom magnetronskog rasprašenja. Za sve uzorke rasprašenje (depozicija) atoma mete napravljena je na (površini) (100) p-tipa monokristalnog silicija otpornosti 5-10 Ω cm. Prije same depozicije površina siicija prošla je tretman čišćenja površine, odnosno silicij se oko 2 min. nalazio u metanolu i ultrazvučnoj kadi nakog čega se 10% otopinom HF izvršilo jetkanje nativnog oksida.

U tablici 2.1 prikazani su uzorci i tehnički detalji (broj meta, materijali mete, snaga mete, temperatura podloge i sl.) uzoraka koji su se napravili za potrebe ovog rada. Uzorci su se nakon depozicije grijali 1h u atmosferi N_2 na raznim temperaturama za potrebe stvaranja nanočestične faze (poluvodičkih kvantnih točaka) što je shematski prikazano na slici 2.11.

Slika 2.10: Shematski prikaz uzoraka napravljenih tehnikom magnetronskog rasprašenja. a) Jednoslojni uzorak. b) Višeslojni uzorak.

Tablica 2.1: Popis uzoraka i tehnički parametri pri magnetronskom rasprašenjuza uzorke u ovom radu.

R.B.	Oznaka	Matrica	Broj	Meta1/Meta2	Temperatura	Debljina
			slojeva	250 W/150 W	podloge	(nm)
1	s-Ge	SiO_2	1	$\mathrm{SiO}_2/(\mathrm{SiO}_2+\mathrm{Ge})$	500°	200
2	m-Ge	SiO_2	20	$\mathrm{SiO}_2/(\mathrm{SiO}_2+\mathrm{Ge})$	500°	80
3	m-Si-N	$\mathrm{Si}_3\mathrm{N}_4$	10	$\mathrm{Si}_3\mathrm{N}_4/(\mathrm{Si}{+}\mathrm{Si}_3\mathrm{N}_4)$	RT	80
4	m-Si	SiO_2	20	$\rm SiO_2/(Si+SiO_2)$	RT	120
5	s-Si-C	SiC	1	SiC+Si	RT	200

Na uzorcima koji su nakon termalnog tretmana pokazali da su se u njima stvorile kvantne točke za potrebe električnih mjerenja napravljene su MOS strukture termalnom evaporacijom aluminija kroz maske 2.12a. Na prednjoj strani uzorka (strana gdje su deponirani slojevi) napravljena su 4 kružna kontakta polumjera 1 mm, a na stražnjoj strani uzorka napravljen je jedan kružni kontakt polumjera 5 mm. Debljine spomenutih kontakata su bile oko 200 nm. Na slici 2.12b prikazana je prednja strana tipičnog uzorka na kojem se vidi podloga od Si, kontakti od Al, tinjac za izolaciju i žica za stražnji kontakt.

Također paralelno uz napisan proces napravljena je jos jedna serija uzoraka u kojima je odjetkan gornji sloja oksida u 0.01% otopini HF za koji je eksperimentom utvrđeno da je brzina jetkanja oko 0.5 nm/s. U spomenutoj otopini skinuto je gornjih 20 nm oksida

Slika 2.11: Termalni tretman uzrokuje stvaranje kvantnih točaka. Redni brojevi na slici odgovaraju rednim brojevima u tablici 2.1.

Slika 2.12: a) Shematski prikaz MOS strukture jednog od uzoraka. b) Uzorak spreman za električna mjerenja.

i pokušano je ponovno stvaranje možda kvalitetnijeg završnog oksida SiO_2 metodom evaporacije elektronskim snopom, ali spomenuti uzorci pokazali su se lošim pri električnim mjerenjima i odbačeni su iz daljneg razmatranja.

Eksperimentalni rezultati i diskusija

U ovom poglavlju će biti prikazani eksperimentalni rezultati i diskusija za uzorke prikazanih u tablici 2.1. Optimalna temperatura na kojoj nastaju nanočestice silicija i germanija u raznima matricama najprije je određena preko Ramanove spektroskopije koji na relativno brzi način daje podatke o pojavi nanočestica i njihovoj veličini. Uzorci koji su se pokazali najbolji u smislu stvaranja nanočestica zatim su dodatno analizirani upotrebom rendgenske difrakcije pod malim kutem (GIXRD) u kojoj je potvrđena kristaliničnosti i veličina nastalih nanočestica. Preko fotoluminscencije potvrđena je mogućnost nanočestica da djeluju kao mjesta uhvata fotona i posljedično stvaraju parove elektron-šupljina.

Nakon spomenutih struturnih metoda na uzorcima su napravljeni kontakti od aluminija pri čemu je napravljena MOS struktura preko koje su napravljena kapacitivno-naponska i strujno-naponska mjerenja bitna za određivanje transportnih i drugih električnih svojstava poluvodičkih nanočestica u raznim matricama.

3.1 Rezultati Ramanove spektroskopije

Ramanova spektroskopija napravljena je na Institutu Ruđer Bošković u Zavodu za fiziku materijala na Horiba/Jobin-Yvon T64000 Ramanovom spektrometru koristeći laser valne duljine 532 nm u mikro Raman konfiguraciji.

3.1.1 Ge nanočestice u SiO_2 matrici

3.1.1.1 Uzorak s jednim slojem Ge-obogaćenog SiO₂

Na slici 3.1 prikazani su svi Ramanovi spektri uzorka napravljenog s jednim slojem Geobogaćenog oksida SiO₂ debljine 200 nm i grijanog 1h u atmosferi N₂ na temperaturama od 600°C do 900°C u koracima po 100°C. Iz spektara se može vidjeti kako se Ramanov

3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

signal općenito sastoji od dva vrha. Uzak vrh na 520 cm⁻¹ i širine 5.5 cm⁻¹ dolazi od makroskopskog Si koji je poslužio kao podloga za film i on nije interesantan. Drugi signal dolazi od amorfnog Ge (a-Ge) rasprašenog u filmu i njegov vrh je u tek napravljenom uzorku (as deposited) na 265 cm⁻¹ i širine 101 cm⁻¹ (slika 3.2a).

Slika 3.1: Ramanove spektri uzorka u kojem je jedan sloj Ge-obogaćenog oksida grijan 1h u atmosferi N₂ na raznim temperaturama. Također na slici su prikazni položaji gdje se inače nalaze Raman aktivni signal makroskopskog (bulk) Ge (300 cm⁻¹) i Si (521 cm⁻¹).

Promatrajući evoluciju signala a-Ge kroz korake grijanja vidimo da se širina signala smanjuje, a vrh raste sve do 700°C, nakon čega signal naglo pada i nestaje na 900°C. Smanjivanje širine signala a-Ge pri povećavanju temperature grijanja upućuje na to da se amorfna faza Ge polako pretvara u kristaliničnu fazu budući da amorfni materijali nemaju prostorno uređenje i svi su vibracijski modovi lokalizirani pa Ramanov signal za takve materijale izgleda *široko*, dok Ramanov signal za kristalinične materijale dolazi samo od trostruko degeneriranog $\vec{q} = \vec{0}$ TO fonona [51] pa je signal uzak i za kristalinični Ge nalazi se na oko 300 cm⁻¹ širine oko 5 cm⁻¹.

Na slici 3.2b za analizu pobliže je prikazan signal koji dolazi od a-Ge grijanog na 700° i njegova prilagodba na tri Gaussove krivulje. Jedna Gaussova krivulja dolazi od a-Ge i na istom je položaju i širine kao i signal a-Ge na tek napravljenom uzorku samo je amplituda

Slika 3.2: Raman spektar: (a) tek napravljenog (as-dep.) uzorka u kojem je jedan sloj Ge-obogaćenog oksida i prilagoda mjerenja na signal a-Ge i kristalinične podloge Si, (b) područje signala a-Ge nakon grijanja 1h na 700°C i prilagodbe na signale a-Ge i nanokristaliničnog Ge.

signala manja što upućuje na to da termalnim tretmanom ne kristalizira sav a-Ge u filmu.

Druge dvije Gaussove krivulje dolaze od nanokristaliničnog materijala i redom su dimenzija preko formule (2.13) $D_1=2.7$ nm i $D_2=5.7$ nm iz čega se dobije srednja veličina nanočestica preko formule

$$\overline{D} = \frac{D_1 S_1 + D_2 S_2}{S_1 + S_2} \tag{3.1}$$

gdje su S₁ i S₂ površine Gaussovih krivulja u prilagodbi na Raman spektar. Srednja veličina nanočestica je $\overline{D} = (4.5 \pm 0.5)$ nm gdje je greška procijenjena budući da mjerenja nisu savršeno točna, kao što i teorija zatočenja fonona nije potpuno egzaktna.

3.1.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO₂

Na slici 3.3 prikazani su svi Ramanovi spektri uzorka napravljenog naizmjenično s 20 slojeva Ge-obogaćenog SiO₂ i SiO₂ svaki debljine 2 nm i grijanog 1h u atmosferi N₂ na temperaturama od 600°C do 900°C u koracima po 100°C plus jedan spektar na 725°C zbog boljeg uvida u promjenu na 700°C. Iz spektara se može vidjeti kako se Ramanov signal općenito sastoji od dva vrha. Uzak vrh na 520 cm⁻¹ i širine 5.5 cm⁻¹ dolazi od

3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

makroskopskog Si koji je poslužio kao podloga za film i on nije interesantan. Drugi signal dolazi od amorfnog Ge (a-Ge) rasprašenog u filmu i njegov vrh je u tek napravljenom uzorku (as deposited) na 268 cm⁻¹ i širine 103 cm⁻¹ (slika 3.4a).

Slika 3.3: Ramanovi spektri uzorka napravljenog naizmjenično s 20 slojeva Ge-obogaćenog SiO₂ i SiO₂ svaki debljine 2 nm nakon grijanja 1h u atmosferi N₂. Također na slici su prikazni položaji gdje se inače nalaze Raman aktivni signal makroskopskog (bulk) Ge (300 cm⁻¹) i Si (521 cm⁻¹).

Kako je u višeslojnom uzorku debljina sloja u kojem je rasprašen Ge ograničena na 2 nm, tako se i grijanjem očekuje stvaranje nanočestica približno tih dimenzija [29]. Promatrajući evoluciju signala a-Ge kroz korake grijanja vidimo da se širina a-Ge signala smanjuje i na 700°C pojavljuje se uzak vrh koji je na položaju 300 cm⁻¹, spomenuti vrh postaje još izraženiji grijanjem na 725°C i 800°C, a na 900°C nestaje cjelokupni signal.

Rastavljanje signala na tri Gaussijana pokazalo je da signali na 725°C i 800°C imaju prejako izražen signal od nanokristaliničnog materijala dimenzija nekoliko puta većih od 2 nm što nije dobro u kontekstu dobivanja nanočestica dimenzija 2 nm, zato je za daljnje razmatranje uzet uzorak grijan na 700°C koji je pokazao znatno izraženiji signal od nanočestica veličine 2 nm u odnosu na nekoliko puta veće nanočestice.

Pobliža analiza uzorka grijanog na 700°C prikazana je na slici 3.4b iz koje se vidi da je ukupan Ramanov signal na toj temperaturi zbroj Gaussove krivulje amorfne faze (a-Ge),

Slika 3.4: Raman spektar: (a) tek napravljenog (as-dep.) uzorka napravljenog naizmjenično s 20 slojeva Ge-obogaćenog SiO₂ i SiO₂ svaki debljine 2 nm i prilagoda spektra na amorfni Ge (a-Ge) i kristaliničnu podlogu Si, (b) područje signala a-Ge nakon grijanja 1h na 700°C u atmosferi N₂ i prilagodba na signale amorfnog Ge (a-Ge), većih nanočestica Ge (nc-Ge-veci) i nanočestica Ge (nc-Ge).

nanokristalinične faze većih čestica (nc-Ge-veci) i nanokristalinične faze manjih čestica (nc-Ge).

Gaussova krivulja a-Ge za uzorak grijan na 700 cm° nalazi se na položaju 232 cm⁻¹ širine 80 cm⁻¹ i u odnosu na a-Ge signal iz tek napravljenog uzorku (slika 3.4a) došlo je do promjene u položaju i širini a-Ge signala, što očekivano ukazuje da je grijanjem došlo do određenih promjena u strukturi nasumičnih veza, ali i dalje relativno velika širina (modovi titranja su lokalizirani i svi su Raman aktivni) tog signala ukazuje da je amorfni karakter materijala ostao sačuvan.

Gaussova krivulja većih nanočestica nc-Ge-veci očekivano ima vrh vrlo blizu 300 cm⁻¹ koji inaće dolazi od raspršenja na trostruko degeneriranom TO $\vec{q} = \vec{0}$ fononu (kao i za makroskopski Ge), ali širina signala od 8.3 cm⁻¹ šira je od širine signala makroskopskog Ge pa je prema (2.13) izračunato da veličina tih većih nanočestica iznosi oko 10 nm.

Nanokristalinična faza manjih nanočestica nc-Ge ima svoj vrh na položaju od 284 cm⁻¹ širine 39 cm⁻¹ što preko (2.13) daje prosječnu veličinu nanočestica Ge od $\overline{D} = (2.4 \pm 0.5)$ nm. Greška u veličini nanočestica procijenjena je budući da mjerenja nisu savršeno točna, kao što i teorija zatočenja fonona nije potpuno egzaktna.

3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

Grijanje na temperaturama većim od 700°C smanjuje udio nanočestica veličine 2 nm prema nanočesticama veličine 10 nm budući da na većim temperaturama dolazi do srastanja manjih nanočestica u veće i općenito se počinje gubiti slojevita struktura filma. Za višeslojni uzorak Ge-obogaćenog SiO₂ pronađeno je da je 700°C idealna temperatura za dobivanje nanočestica čija je veličina 2 nm.

3.1.2 Si nanočestice u Si_3N_4 matrici

Na slici 3.5 prikazani su svi Ramanovi spektri uzorka napravljenog naizmjenično s 10 slojeva Si i Si₃N₄ svaki debljine 4 nm i grijanog 1h u atmosferi N₂ na temperaturama od 800°C, 1000°C i 1050°C. Iz spektara se vidi evolucija Ramanovog signala krenuvši od tek napravljenog uzorka (as deposited) do temperature gdje se očekuje stvaranje Si nanočestica [8, 9]. Uzak vrh na 520 cm⁻¹ širine 5.5 cm⁻¹ koji se pojavljuje na svim temperaturama dolazi od Ramanovog raspršenja na trostruko degeneriranom TO ($\vec{q} = \vec{0}$) fononu makroskopskog (bulk-Si) Si koji je poslužio kao podloga za rasprašeni film.

Slika 3.5: Ramanovi spektri uzorka napravljenog naizmjenično s 10 slojeva Si i Si₃N₄svaki debljine 4 nm nakon grijanja 1h u atmosferi N₂. Također na slici je prikazan položaj gdje se inače nalaze Raman aktivni signal makroskopskog (bulk) Si (520 cm⁻¹).

Slika 3.6: Raman spektar: (a) tek napravljenog (as-dep.) uzorka napravljenog naizmjenično s 10 slojeva Si i Si₃N₄ svaki debljine 4 nm i prilagoda spektra na amorfni Si (a-Si) i kristaliničnu podlogu Si, (b) područje signala oko 520 cm⁻¹ nakon grijanja 1h na 1050°C i prilagodba na signal amorfnog Si (a-Si), nanokristaliničnog Si (nc-Si) i makroskopskog Si (bulk-Si).

Spomenuti vrh makroskopskog Si uvijek je dobro definiran u smislu položaja i širine tako da je lako moguće raspoznati Ramanove signale iz filma koji dolaze od amorfnog Si (a-Si) i nanokristaliničnog Si (nc-Si) budući da su njihovi Ramanovi signali pomaknuti i širi u odnosu na položaj i širinu makroskopskog Si.

U tek napravljenom uzorku očekivano vidimo (slika 3.6a) da je ukupan Ramanov signal, zbroj signala a-Si rasprašenog u filmu i podloge (bulk-Si). Signal a-Si nalazi se na položaju 480 cm^{-1} širine 170 cm⁻¹.

Grijanje uzorka na visoku temperaturu 1050°C očekuje se pojavljivanje nanokristalinične faze u filmu i smanjivanje signala a-Si što je zbog lakše analize pobliže prikazano na slici 3.6b gdje je prikazana i prilagodba Ramanovog signala na tri Gaussove krivulje od čega Gaussova krivulja koja dolazi od podloge nije interesantna.

Gaussova krivulja koja dolazi od signala a-Si grijanjem je neznatno promjenila položaj signala a-Si u odnosu na tek napravljeni uzorak samo se širina signala smanjila na 146 cm⁻¹ što ukazuje da je grijanjem došlo do određenih promjena u nasumičnim vezama a-Si, ali općenito karakter amorfnog dijela koji nije kristalizirao ostao je jednak kao i prije. Gaussova krivulja koja dolazi od nanokristalinične faze (nc-Si) poslužila je za određivanje
3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

veličine nanočestica preko širine vrha signala u odnosu na širinu signala makroskopskog Si preko 2.13. Tako je određena prosječna veličina nanočestica $\overline{D} = (4 \pm 0.5)$ nm gdje je greška procijenjena budući da mjerenja nisu savršeno točna, kao što i teorija zatočenja fonona nije potpuno egzaktna. Dobivena veličina nanočestica Si u skladu je s očekivanom veličinom nanočestica od 4 nm što je u višeslojnoj strukturi određeno debljinom sloja u kojem je rasprašen Si.

3.1.3 Si nanočestice u SiO₂ matrici

Na slici 3.7 prikazani su svi Ramanovi spektri uzorka napravljenog naizmjenično na temperaturama od 600°C, 700°C, 800°C i 1050°C. Iz spektara se vidi evolucija Ramanovog signala krenuvši od tek napravljenog uzorka (as deposited) do temperature gdje se očekuje stvaranje Si nanočestica [8, 9]. Uzak vrh na 520 cm⁻¹ širine 5.5 cm⁻¹ koji se pojavljuje na svim temperaturama dolazi od Ramanovog raspršenja na trostruko degeneriranom TO ($\vec{q} = \vec{0}$) fononu makroskopskog (bulk-Si) Si koji je poslužio kao podloga za rasprašeni film.

Slika 3.7: Ramanovi spektri uzorka napravljenog naizmjenično s 20 slojeva Si-obogaćenog SiO₂ i SiO₂ debljine redom 4 nm i 2 nm nakon grijanja 1h u atmosferi N₂. Također na slici je prikazan položaj gdje se inače nalaze Raman aktivni signal makroskopskog (bulk) Si (520 cm⁻¹).

3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

Slika 3.8: Raman spektar: (a) tek napravljenog (as-dep.) uzorka napravljenog naizmjenično s 20 slojeva Si-obogaćenog SiO₂ i SiO₂ debljine redom 4nm i 2nm, i prilagodba na amorfni Si (a-Si) i kristaliničnu podlogu, (b) područje signala oko 520 cm⁻¹ nakon grijanja 1h na 1050°C i prilagodba na signale amorfnog Si (a-Si), nanokristaliničnog Si (nc-Si), nanokristaliničnog Si većih dimenzija (nc-Si-veci) i makroskopskog Si (bulk-Si).

Spomenuti vrh makroskopskog Si uvijek je dobro definiran u smislu položaja i širine tako da je lako moguće raspoznati Ramanove signale iz filma koji dolaze od amorfnog Si (a-Si) i nanokristaliničnog Si (nc-Si) budući da su njihovi Ramanovi signali pomaknuti i širi u odnosu na položaj i širinu makroskopskog Si. U tek napravljenom uzorku očekivano vidimo (slika 3.8a) da je ukupan Ramanov signal, zbroj signala a-Si rasprašenog u filmu i podloge (bulk-Si). Signal a-Si nalazi se na položaju 475 cm⁻¹ i relativno je širok 187 cm⁻¹ (amorfni materijali nemaju dugodosežno uređenje pa su svi modovi titranja lokalizirani i Raman aktivni). Grijanje uzorka na visoku temperaturu 1050°C omogućuje prelazak amorfne faze u nanokristaliničnu fazu Si tako je na slici 3.8b pobliže pokazan Raman spektar i njegova prilagodba na četiri Gaussove krivulje od čega Gaussova krivulja koja dolazi od podloge nije bila zanimljiva.

Gaussova krivulja koja dolazi od signala a-Si grijanjem na 1050° C je u odnosu na tek napravljeni uzorak promjenila položaj signala a-Si na 475 cm⁻¹ i smanjila širinu na 130 cm⁻¹ što ukazuje da je grijanjem došlo do određenih promjena u nasumičnim vezama a-Si odnosno povećanje uređenosti, ali općenito karakter materijala je ostao amorfan. Druge

3.1 Rezultati Ramanove spektroskopije Eksperimentalni rezultati i diskusija

dvije Gaussove krivulje dolaze od nanokristaliničnih faza Si (nc-Si i nc-Si-veci) i preko širine vrha signala u odnosu na širinu vrh signala makroskopskog Si (2.13) određena je njihova prosječna veličina. Za nc-Si dobije se da je srednji promjer $\overline{D} = (4.5 \pm 1.5)$ nm, a za nc-Si-veci srednji promjer je $\overline{D} = (10 \pm 2)$ nm. Dobivena veličina nc-Si u skladu je s očekivanom veličinom nanočestica od 4 nm što je u višeslojnoj strukturi materijala određeno debljinom sloja u kojem je rasprašen Si. Raspodjela i stvaranje većih nc-Si-veci vjerojatno dolazi od srastanja manjih nanočestica gubljenjem slojevite strukture filma.

3.1.4 Si nanočestice u SiC matrici

Na slici 3.9 prikazani su svi Ramanovi spektri uzorka napravljenog sa jednim slojem Si-obogaćenog SiC debljine 200 nm grijanog 1h u atmosferi N₂ na temperaturi od 1050°C i grijanog 2h u atmosferi N₂ na temperaturi 1063°C. Uzak vrh na 520 cm⁻¹ širine 5.5 cm⁻¹ koji se pojavljuje na svim temperaturama dolazi od Ramanovog raspršenja na trostruko degeneriranom TO ($\vec{q} = \vec{0}$) fononu od makroskopskog (bulk-Si) Si koji je poslužio kao podloga za rasprašeni film.

Slika 3.9: Ramanove spektri uzorka u kojem je jedan sloj Si-obogaćenog SiC grijan 1h u atmosferi N₂ na raznim temperaturama. Također na slici je prikazan položaj gdje se inače nalazi Raman aktivni signal makroskopskog (bulk) Si (521 cm^{-1}).

Spomenuti vrh makroskopskog Si uvijek je dobro definiran u smislu položaja i širine

wavenumber (cm⁻¹)

(b)

wavenumber (cm⁻¹)

Slika 3.10: Raman spektar: (a) tek napravljenog (as-dep.) uzorka u kojem je jedan sloj Si-obogaćenog SiC i prilagodba na signal a-Si i makroskopski signal podloge Si, (b) područjje signala oko 520 cm⁻¹ nakon grijanja 1h na 1050°C i prilagodba na signal amorfnog Si (a-Si), nanokristaliničnog Si (nc-Si) i makroskopskog Si (bulk-Si).

tako da je lako moguće raspoznati Ramanove signale iz filma koji dolaze od amorfnog Si (a-Si) i nanokristaliničnog Si (nc-Si) budući da su njihovi Ramanovi signali pomaknuti i širi u odnosu na položaj i širinu makroskopskog Si.

Na tek napravljenom uzorku očekivano vidimo (slika 3.10a) da je ukupan Ramanov signal, zbroj signala a-Si rasprašenog u filmu i podloge (bulk-Si). Signal a-Si nalazi se na položaju 473 cm⁻¹ i širok je 140 cm⁻¹. Amorfni materijali nemaju dugodosežno uređenje pa su svi modovi titranja lokalizirani i Raman aktivni što daje širok signal.

Grijanjem uzoraka na visokim temperaturama očekuje se pojavljivanje nanokristalinične faze u sloju gdje se nalazi Si-obogaćeni SiC. Za analizu veličine nanočestica uzeti je Ramanov spektra pobliže prikazan na slici 3.10b gdje je napravljena njegova prilagodba na tri Gaussove krivulje od čega Gaussova krivulja koja dolazi od podloge nije interesantna.

Gaussova krivulja koja dolazi od signala a-Si sada je položaju 484 cm⁻¹ širine 85 cm⁻¹ što ukazuje da je grijanjem došlo do određenih promjena u nasumičnim vezama u odnosu na tek napravljeni a-Si, ali općenito karakter materijala je ostao amorfan. Gaussova krivulja koja dolazi od nanokristalinične faze (nc-Si) poslužila je za određivanje veličine nanokristala preko pomaka vrha signala u odnosu na vrh signala makroskopskog Si preko

2.13. Tako je određena prosječna veličina nanokristala $\overline{D} = (3.0 \pm 0.5)$ nm gdje je greška procijenjena.

3.1.5 Rezultati Ramanove spektroskopije

U tablici 3.1 prikazani su rezultati Ramanove spektroskopije uzoraka proučavanih u ovom radu i u njoj su prikazane vrste, veličine nanočestica i optimalne temperature na kojima se one formiraju.

R.B.	Oznaka	Matrica	Vrsta	Veličina	Temp.
			nanočestice	(nm)	(C^{o})
1	s-Ge	SiO_2	Ge	4.5 ± 1	700
2	m-Ge	SiO_2	Ge	2.6 ± 0.5	700
		SiO_2	Ge	10 ± 2	700
3	m-Si-N	$\mathrm{Si}_3\mathrm{N}_4$	Si	4.0 ± 1	1050
4	m-Si	SiO_2	Si	4.5 ± 1	1050
		SiO_2	Si	10 ± 3	1050
5	s-Si-C	SiC	Si	3.0 ± 0.5	1050

Tablica 3.1: Pregled rezultata Ramanove spektroskopije. Prikazana je konačna veličina nanokristala i optimalna temperatura na kojoj se dogodilo stvaranje nanočestica.

3.2 Rezultati GIXRD mjerenja

Rendgenska difrakcija pod malim kutem GIXRD napravljena je na sinhotronu Elettra u Trstu. Valna duljina zračenja je bila 0.154 nm.

3.2.1 Ge nanočestice u SiO_2 matrici

3.2.1.1 Uzorak s jednim slojem Ge-obogaćenog SiO₂

Na slici 3.11. prikazano je GIXRD mjerenje tankog sloja Ge-obogaćenog SiO₂ debljine oko 200 nm prije i nakon grijanja 1h na 700° u atmosferi N₂. Iz slike se vidi da prije grijanja

Slika 3.11: GIXRD mjerenja prije grijanja, nakon grijanja i prilagodba na odgovarajuće Braggove vrhove za uzorak s jednim slojem Ge obogaćenog SiO₂ u kojem su se formirale nanočestice Ge (nc-Ge) srednje veličine oko 4.5 nm u SiO₂ matrici.

uzorak ne pokazuje znakove postojanja kristaliničnosti, dok se nakon grijanja pojavljuju tri Braggova vrha redom od ravnina (111), (220) i (311) na kutevima oko 26°, 44° i 52° što je u skladu s već poznatim vrijednostima GIXRD mjerenja nc-Ge [55],[56].

Preko Scherreove formule (2.14) izračunata je veličina nanočestica nastalih nakon termalnog tretmana koristeći Braggov vrh na (111) ravnini prikazan pobliže na slici 3.12 gdje se vidi da se taj Braggov vrh sastoji ustvari od dva doprinosa centriranih na 26.23° i

26.46° iz čijih su se FWHM izračunale veličine nanočestica Ge od 3 nm i 7 nm. Spomenuti rezultati slični su rezultatima Ramanove spektroskopije gdje je također dobivena slična raspodjela veličina nanočestica Ge.

Slika 3.12: Braggov vrh za (111) ravnine sastoji se od dva doprinosa. Jedan doprinos centriran je na 26.23°, a drugi na 26.46°.

3.2.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO_2

Na slici 3.13. prikazano je GIXRD mjerenje 20 slojeva Ge-obogaćenog SiO₂ i SiO₂ debljine redom 2 nm i 2 nm prije i nakon grijanja 1h na 1050°C u atmosferi N₂. Iz slike se vidi da prije grijanja uzorak ne pokazuje znakove postojanja kristaliničnosti, dok se nakon grijanja pojavljuju tri Braggova vrha redom od ravnina (111), (220) i (311) očekivano na sličnim kutevima kao u prijašnjem slučaju na oko 26°, 43° i 52° što je također u skladu s već poznatim vrijednostima GIXRD mjerenja nc-Ge [55],[56].

Preko Scherreove formule (2.14) izračunata je veličina nanočestica nastalih nakon termalnog tretmana koristeći Braggov vrh na (111) ravnini prikazan pobliže na slici 3.14 gdje se vidi da se taj Braggov vrh na 26° sastoji ustvari od dva doprinosa centriranih na 25.84° i 25.9° iz čijih su se FWHM izračunale veličine nanočestica Ge od 3 nm i 9 nm.

Slika 3.13: GIXRD mjerenja prije grijanja, nakon grijanja i prilagodba na odgovarajuće Braggove vrhove za uzorak s 20 slojeva Ge-obogaćenog SiO₂ i SiO₂ debljine redom 2 nm i 2 nm.

Slika 3.14: Braggov vrh za (111) ravnine sastoji se od dva doprinosa. Jedan doprinos centriran je na 25.84°, a drugi na 25.9°.

3.2.2 Si nanočestice u Si_3N_4 matrici

Na slici 3.15. prikazano je GIXRD mjerenje 10 slojeva Si-obogaćenog Si₃N₄ i Si₃N₄ debljina redom 4 nm i 4 nm nakon grijanja 1h na 1050°C u atmosferi N₂. Za postojeći uzorak

Slika 3.15: GIXRD mjerenje nakon grijanja za uzorak sa 10 slojeva Siobogaćenog Si $_3N_4$ i Si $_3N_4$ debljina redom 4 nm i 4 nm.

iz tehničkih problema nije bilo moguće izmjeriti GIXRD na negrijanom uzorku tako da je na spomenutoj slici prikazano samo mjerenje grijanog uzorka. Grijani uzorak nije pokazao značajnu kristaliničnost kao što se očekivalo nakon grijanja. Potoje tek naznake (111) i (311) ravnina, ali signali su preslabi da bi se odredila neka ozbiljnija analiza. Iz navedenog se može samo utvrditi da je gustoća nc-Si u matrici Si₃N₄ relativno niska kao što naznačuje Ramanova spektroskopija i da u području zahvaćanja rendgenskog zračenja nema nanočestica koji bi doprinosile Braggovim vrhovima ili da su nanočestice amorfne.

3.2.3 Uzorak s 20 slojeva Si-obogaćenog SiO₂

Na slici 3.16. prikazano je GIXRD mjerenje 20 slojeva Si-obogaćenog SiO₂ i SiO₂ debljine redom 4 nm i 2 nm prije i nakon grijanja 1h na 1050°C u atmosferi N₂. Iz slike se vidi da prije grijanja uzorak ne pokazuje znakove postojanja kristaliničnosti osim u smjeru (311)

Slika 3.16: GIXRD mjerenja prije grijanja, nakon grijanja i prilagodba na odgovarajuće Braggove vrhove za uzorak s 20 slojeva Si-obogaćenog SiO₂ i SiO₂ debljine redom 4 nm i 2 nm.

ravnine što ukazuje da je pri samoj proizvodnji uzorka magnetronskim raspršavanjem u tom smjeru postojalno određeno uređivanje atoma Si. Nakon grijanja pojavljuju se tri Braggova vrha redom od ravnina (111), (220) i (311) nanočestica Si na sličnim kutevima kao i za nanočestice Ge na oko 27°, 46° i 53°. Sličnost u položajima Braggovih vrhova potjeće od istovjetne kristalne strukture Si i Ge s razlikom da Ge ima za 0.19 Åveću konstantu rešetke [55].

Preko Scherreove formule (2.14) izračunata je veličina nanočestica nastalih nakon termalnog tretmana koristeći Braggov vrh na (111) ravnini prikazan pobliže na slici 3.17 gdje se vidi da se taj Braggov vrh sastoji ustvari od dva doprinosa centriranih na 26.9° i 28° iz čijih se su FWHM izračunate veličine nanočestica Si od 4.5 nm i 9 nm. Spomenuti rezultati slični su rezultatima Ramanove spektroskopije gdje je također dobivena slična raspodjela veličina nanočestica Si.

Slika 3.17: Braggov vrh za (111) ravnine sastoji se od dva doprinosa. Jedan doprinos centriran je na 26.9°, a drugi na 28°.

3.2.4 Si nanočestice u SiC matrici

Na slici 3.18. prikazano je GIXRD mjerenje Si-obogaćenog SiC debljine 200 nm nakon grijanja 1h na 1050°C u atmosferi N₂. Iz slike se vidi postojanje Braggovih vrhova koji dolaze od nanočestica Si redom od ravnina (111), (220) i (311) na kutevima 27°, 46° i 53°. Novost je pojava Bragovih vrhova od nanočestičnog SiC koji dolazi od kristalnih ravnina (111) i (220) na kutevima 34.3° i 58° [55].

Preko Scherreove formule (2.14) izračunata je veličina nanočestica nastalih nakon termalnog tretmana koristeći Braggove vrhove na (111) ravninama. Na slici 3.19 prikazan je Braggov vrh nanočestica Si i Braggov vrh nanočestica SiC iz čijih se su FWHM izračunale veličine nanočestica Si od 4 nm i SiC od 6 nm. Spomenut rezultat veličina nanočestica Si sličan je rezultatu dobivenom iz Ramanove spektroskopije dok nanočestice SiC nisu bile vidljive u Ramanovim mjerenjima.

Slika 3.18: GIXRD mjerenja nakon grijanja i prilagodba na odgovarajuće Braggove vrhove za uzorak Si-obogaćenog SiC debljine 200 nm.

Slika 3.19: Braggov vrh za (111) ravnine nanočestica Si nalazi se na kutu 27.3°, a za nanočestice SiC nalazi se na kutu 34.6°.

3.2.5 Rezultati GIXRD mjerenja

U tablici 3.2 prikazani su rezultati GIXRD mjerenja uzoraka proučavanih u ovom radu. Pogreška mjerenja je procijenjena da iznosi oko 1-2 nm za sve veličine nanočestica

R.B.	Oznaka	Matrica	Vrsta	Veličina
			nanočestice	(nm)
1	s-Ge	SiO_2	Ge	3.0 ± 1
		SiO_2	Ge	7.0 ± 2
2	m-Ge	SiO_2	Ge	3 ± 1
		SiO_2	Ge	9 ± 2
3	m-Si-N	$\mathrm{Si}_3\mathrm{N}_4$	-	-
4	m-Si	SiO_2	Si	4.5 ± 1
		SiO_2	Si	9 ± 2
5	s-Si-C	SiC	Si	4.0 ± 1
		SiC	SiC	6 ± 2

Tablica 3.2: Pregled rezultata GIXRD mjerenja.

3.3 Fotoluminiscencija PL

Fotoluminiscencija (PL) u vidljivom području rađena je na Institutu Ruđer Bošković u Zavodu za fiziku materijala gdje se za pobudu fotoluminscencije koristio laser valne duljine 408 nm.

3.3.1 Ge nanočestice u SiO₂ matrici

3.3.1.1 Uzorak s jednim slojem Ge-obogaćenog SiO_2

Na slici 3.20 i slici 3.21 prikazani su PL spektri redom u vidljivom i IR području valnih duljina jednog sloja Ge-obogaćenog SiO₂ nakon grijanja 1h na 700°C u atmosferi N₂. Iz spektara se može vidjeti (kada se rastave na više vrhova) da kada izuzmemo spektar koji dolazi od defekata u SiO₂ i koji se pojavljuje na oko 500 nm [57],[60] (slika 3.20.) preostali dio spektra sastoji se od dva vrha.

Jedan vrh dolazi od indirektnog prijelaza na najnižoj energiji zabranjenog područja $E_g = 0.68 \text{ eV}$, a drugi dolazi od direktnog prijelaza na $E_{\Gamma}=0.88 \text{eV}$ (slika 3.22).

Slika 3.20: PL spektar u vidljivom području za nanočestice Ge u SiO₂ matrici nakon grijanja uzorka s jednom slojem Ge obogaćenog SiO₂ i grijanog 1h na 700°C u atmosferi N₂.

Iz položaja vrhova koji se pojavljuju u spektrima može se izračunata veličina nanočestica [62] preko formule

$$E_g(D) = Eg(\infty) + \frac{A}{D^2}eV \cdot nm^2$$
(3.2)

gdje je E_g energija fotona emitiranog pri PL (određeno iz položaja vrha), $E(\infty)$ je energija koju neko pobuđenje (direktno ili indirektno) ima u makroskopskom materijalu (slika 3.22.), D je promjer nanočestice i A je konstanta koja ovisi o vrsti zatočenja (jako, srednje ili slabo) odnosno o tome koliko je Bohrov radijus para elektron-šupljina veći, usporediv ili manji od nanočestica. Za ovaj slučaj je zbog relativno velikog Bohrovog radijusa (oko 18 nm) para elektron-šupljina u Ge uzeto da vrijedi jako zatočenje (A=7.88), budući da je očekivana vrijednost veličine nanočestica (iz Ramana recimo) reda veličine 2-5 nm.

PL mjerenjima smo pokazali vrlo dobro slaganje u veličini nanočestica Ge kako je bilo dobiveno u poglavlju gdje se koristila Ramanova spektroskopija. Srednu veličinu nanočestica preko formule (3.1) nije bilo moguće odrediti jer je PL spektrokospija u

Slika 3.21: PL spektar u IR području za nanočestice Ge u SiO₂ matrici nakon grijanja uzorka s jednom slojem Ge obogaćenog SiO₂ i grijanog 1h na 700°C u atmosferi N₂.

Slika 3.22: Dio energijske strukture makroskopskog Ge na kojoj se vide najniža pobuđenja. Indirektni prijelaz na energiji zabranjenog područja Eg i direktni prijelaz na E_{Γ} .

vidljivom i IR području rađena na fizički različitim mjestima pa se površine signala nemogu direktno uspoređivati. PL rezultat nam u ovom slučaju samo potvrđuje mjerenja koja su dobivena Ramanovom spektroskopijom o postojanju dvije Gaussijanske distribucije nanočestica Ge veličina oko 2.3 nm i 5.7 nm.

3.3.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO₂

Na slici 3.23 prikazan je PL spektar u vidljivom području valnih duljina 20 slojeva Ge-obogaćenog SiO₂ debljine 2 nm nakon grijanja 1h na 700°C u atmosferi N₂.

Slika 3.23: PL spektar u vidljvom području za nanočestica Ge u SiO₂ matrici nakon grijanja uzorka s 20 slojeva Ge obogaćenog SiO₂ i grijanog 1h na 700°C u atmosferi N₂.

Rastavom spektra vidi se slično kao i kod uzorka s jednim slojem Ge-obogaćenog SiO₂ postojanje signala koji dolazi od defekata i nalazi se na oko 500 nm, a druga dva vrha odgovaraju veličini nanočestica Ge od 2.5 nm izračunato preko formule (3.2), gdje se sada zbog kvantnog zatočenja para elektron-šupljina vrh $E_{\Gamma}=0.88$ eV nalazi na oko 550 nm, a vrh koji dolazi od indirektnog prijelaza na energiji zabranjenog područja $E_g = 0.68$ eV nalazi na oko 650 nm.

Očekivana veličina nanočestica od oko 2.5 nm u suglasnosti je s Ramanovim mjerenjima istog uzorka i potvrđuje činjenicu da se višeslojnim uzorkom može modelirati veličina nanočestica manipulacijom debljine uzorka Ge-obogaćenog SiO_2 koji je u ovom slučaju bio oko 2 nm.

3.3.2 Si nanočestice u Si_3N_4 matrici

Na slici 3.24 prikazan je PL spektar u vidljivom području valnih duljina 10 slojeva Siobogaćenog Si₃N₄ debljine oko 4 nm i grijanog 1h u atmosferi N₂ na temperaturi od 1050° C.

Slika 3.24: PL spektar u vidljivom području za nanočestice Si u Si₃N₄ matrici nakon grijanja uzorka s 10 slojeva Si obogaćenog SiN₄ i grijanog 1h na 1050°C u atmosferi N₂.

Rastavom spektra vidi se slično kao i kod uzorka s matricom SiO_2 pojava vrha koji dolazi od K⁰ centra na 518 nm [64],[65] i vrh koji dolazi od nanočestice veličine oko 3.6 nm izračunate preko formule (3.2) gdje je sada parametar zatočenja A=11.8 [66].

Očekivana veličina nanokristala od oko 3.6 nm u suglasnosti je s Ramanovim mjerenjima istog uzorka i potvrđuje činjenicu da se s višeslojnim uzorkom može modelirati veličina konačne nanočestice i za nitridnu matricu.

3.3.3 Si nanočestice u SiO₂ matrici

Na slici 3.25 prikazan je PL spektar u vidljivom području valnih duljina 20 slojeva Si-obogaćenog SiO₂ debljine 4 nm nakon grijanja 1h na 1050°C u atmosferi N₂.

Slika 3.25: PL spektar u vidljvom području za nanočestice Si u SiO₂ matrici uzorka s 20 slojeva Si obogaćenog SiO₂ i grijanog 1h na 1050°C u atmosferi N₂.

Rastavom spektra vidi se postojanje vrhova koji dolaze od defekata na položajima 520 nm, 730 nm i 760 nm. Vrhovi na 520 nm i 730 nm dolaze od defekata u SiO₂ matrici poput E' centara ili NBOHC (non briging oxygen hole center) [58], [59], [63]. Vrh na 760 nm dolazi od defekata koji nastaju na granici između SiO₂ matrice i nanočestice [61]. Vrhovi koji dolaze od nanočestica Si veličine su 4.4 nm i 4.9 nm izračunati su preko formule (3.2) u režimu jakog zatočenja (A = 2.78) elektron-šupljina para u nanočestici Si. Srednja vrijednost veličine nanočestica iznosi oko 4.4 nm.

U ovom slučaju nije se mjerio signal od nanočestica veličine 9-10 nm koji je vidljiv u Ramanovoj spektroskopiji i GIXRD mjerenjima jer se lumiscencija za tu veličinu ne razlikuje previše od lumiscencije koji bi pokazivao makroskopski Si od čega je napravljena podloga.

3.3.4 Si nanočestice u SiC matrici

Na slici 3.25 prikazan je PL spektar u vidljivom području valnih duljina Si-obogaćenog SiC debljine 200 nm nakon grijanja 1h na 1050° C u atmosferi N₂.

Slika 3.26: PL spektar u vidljvom području za nanočestice Si u SiC matrici uzorka Si obogaćenog SiC grijanog 1h na 1050°C u atmosferi $\rm N_2.$

Rastavom spektra vidi se postojanje vrhova na 550 nm i na 680 nm. Vrh na 550 nm dolazi od defekata u SiC matrici i povezan je sa postojanjem nezasićenih veza između atoma u amorfnoj matrici [67],[68].

Vrh na 680 nm dolazi od Si nanočestica i njihova veličina izračunata je preko formule (3.2) u režimu jakog zatočenja (A = 2.78) para elektron-šupljina. Moguće postojanje fotolumiscencije zbog nanočestica SiC vidljivih u GIXRD nije bilo moguće vidjeti budući da je energija zabranjenog pojasa SiC 2.4 eV (190 nm) što je izvan vidljivog područja 400-800 nm koje može zahvatiti naš senzor.

3.3.5 Rezultati fotoluminiscencije

U tablici 3.3 sumarno su prikazani rezultati mjerenja PL spektroskopije iz kojih je dobivena srednja veličina naočestica koje sudjeluju u uhvatu fotona i generiranju e-š parova. Pogreška je procijenjena da iznosi oko 0.5-1 nm.

R.B.	Oznaka	Matrica	Vrsta	Veličina
			nanočestice	(nm)
1	s-Ge	SiO_2	Ge	2.3 ± 0.5
		SiO_2	Ge	5.7 ± 1
2	m-Ge	SiO_2	Ge	2.5 ± 0.5
3	m-Si-N	$\mathrm{Si}_3\mathrm{N}_4$	Si	3.6 ± 0.5
4	m-Si	SiO_2	Si	4.4 ± 1
5	s-Si-C	SiC	Si	4.0 ± 1

Tablica 3.3: Pregled rezultata mjerenja fotolumiscencije.

3.4 Sumarni prikaz strukturnih mjerenja

U ovom poglavlju pokazan je presjek rezultata mjerenja strukturnih metoda Ramanove spektoskopije, rendgenskog raspršenja pod malim kutem GIXRD i fotolumiscencije (PL). Sumarni rezultati prikazani su u tablici 3.4 i u njoj su pokazane srednje veličine nanočestica u pojedinačnom uzorku, vrste nanočestica, vrste matrice u kojima su nanočestice i temperatura na kojoj se pojavljuju nanočestice grijanjem uzoraka. Iz podataka iz tablice možemo uočiti da se kod višeslojnih uzoraka sa 40 slojeva (2x20=40) kao uzorci označeni sa m-Ge i m-Si pojavljuje još jedna distribucija nanočestica uz već očekivane veličine nanočestica koje su određene debljinom sloja u kojem je Si ili Ge obogaćen materijal (SiO₂ u ovom slučaju). Spomenute distribucije nanočestica uglavnom su dimenzija oko 10 nm i one dolaze zbog toga jer su gornji slojevi u višeslojnim uzorcima lošije definirani pa dolazi do srastanja pojedinih slojeva i stvaranja nakupina nanočestica koje su nekoliko puta veće od nanočestica koje smo očekivali dobiti.

Uzorak u kojem nije uočeno srastanje slojeva je bio višeslojni uzorak u kojem su se formirale nanočestice silicija u nitridnoj matrici (oznaka m-Si-N), ali koncentracija tih nanočestica je bilo vrlo mala.

3.4 Sumarni prikaz strukturnih mjerenja Eksperimentalni rezultati i diskusija

R.B.	Oznaka	Matrica	Vrsta	Veličina	Temp.
			nanočestice	(nm)	(C^{o})
1	s-Ge	SiO_2	Ge	4.5 ± 1	700
2	m-Ge	SiO_2	Ge	2.5 ± 1	700
		SiO_2	Ge	10 ± 2	700
3	m-Si-N	$\mathrm{Si}_3\mathrm{N}_4$	Si	4.0 ± 1	1050
4	m-Si	SiO_2	Si	4.5 ± 1	1050
		SiO_2	Si	10 ± 3	1050
5	s-Si-C	SiC	Si	3.5 ± 0.5	1050
		SiC	SiC	6.0 ± 1	1050

Tablica 3.4: Sumarni presjek rezultata dobivenih preko strukturnih metodaRamanove spektroskopije, GIXRD i PL.

Što se tiće jednoslojnih uzoraka označenih sa s-Ge i s-Si-C tu nije bilo iznenađenja osim što su se u matrici karbida gdje su se očekivano pojavile nanočestice Si pojavile i nanočestice SiC. Srednja vrijednost veličine nanočestica u jednoslojnim uzorcima varirala je oko 3-5 nm i u tim matricama nije bilo uređenja u prostoru kao za slučaj višeslojnih uzoraka.

Na slici 3.27 prikazano je shematski kakvi su bili uzorci prije grijanja i kakve smo nanostrukture nakon grijanja očekivali dobiti u idealnom slučaju te konačno kakve smo nanostrukture realno i dobili.

3.5 Rezultati C-V mjerenja

Eksperimentalni rezultati i diskusija

Slika 3.27: Shematski prikaz uzoraka prije grijanja i prikaz nanostruktura kakve su se idealno očekivale, odnosno kakve su se nanostrukture realno i dobile nakon grijanja.

3.5 Rezultati C-V mjerenja

U sljedećim poglavljima prikazani su rezultati C-V karakteristika uzoraka odnosno MOS struktura koje su se proučavale u ovom radu. Za mjerenje C-V karakteristika korišten je Helwet-Packard HPIB 17 impendacijski analizator koji može raditi u frekvencijskom području 5Hz-13MHz.

3.5.1 Gustoća defekata na sučelju \mathbf{Q}_{it}

Defekti na sučelju kao što je spomenuto ranije nastaju zbog različitih simetrija između površine (100) silicija i dielektrika u kojem se nalaze kvantne točke. U takvom sustavu postoje mnoga atomska mjesta koja imaju nesparene elektrone (viseće veze) i koja djeluju kao zamke za nosioce naboja. Da bi se površinska koncentracija visećih veza smanjila uzroci se zagrijavaju u vremenu od 30 min na temperaturi 450°C u atmosferi vodika i dušika (*forming plin*) pri čemu se vodik iz plina veže na elektrone i događa se neutralizacija odnosno pasivizacija visećih veza. Tako smo dobili da se gustoća defekata između podloge i dielektrika u koji su ugrađene kvantne točke smanjila na prihvatljivih $\sim 10^{12} \text{cm}^{-1} \text{eV}^{-1}$ ili manje [71].

3.5.2 Ge nanočestice u SiO_2 matrici

3.5.2.1 Uzorak s jednim slojem Ge-obogaćenog SiO₂

Na slici 3.28 prikazano je HF C-V mjerenje MOS strukture u kojoj je matrica oksid SiO₂ s nanočesticama Ge veličine 2 i 5 nm. Također na istoj slici prikazani su teorijski izračuni HF C-V za idealnu MOS strukturu (CV+ ϕ_{ms}) i neidealnu MOS strukturu koja ima naboje zatočene u oksidu i defekte na sučelju (CV+ ϕ_{ms} +V_{FB}+D_{it}). Sa slike vidimo relativno

Slika 3.28: HF C-V MOS strukture za nanočestice Ge u SiO₂ matrici. Prikazani su eksperimentalni rezultati te teorijski izračun idealne (CV+ ϕ_{ms}) i neidealne MOS strukture (CV+ ϕ_{ms} +V_{FB}+D_{it}) za oksid s jednim slojem Ge-obogaćenog SiO₂.

dobro slaganje teorijske krivulje i eksperimentalnih podataka iz kojih su dobiveni sljedeći rezultati:

- $d_{OX} = 220 \text{ nm}$
- $\Delta V_{FB} = 1 V$
- $Q_{ot} = 1 \cdot 10^{11} cm^{-2}$
- $\overline{D}_{it} = 1.9 \cdot 10^{12} \text{cm}^{-2} \text{eV}^{-1}$

•
$$Q_f = 7.2 \cdot 10^{10} \text{cm}^{-2}$$

Iz rezultata vidimo da je debljina oksida u skladu s pretpostavljenom debljinom filma koja je oko 200 nm. Srednja gustoća stanja defekata na sučelju D_{it} je relativno niska budući da je plošna gustoća monokristalne površine Si reda veličine 10^{15} cm⁻² iz čega se vidi da jedan defekt od sučelja dolazi na otprilike svakih 1000 atoma površine Si što je posljedica grijanja uzorka u *forming gas-u*.

Na slici 3.29. prikazana je plošna gustoća stanja defekata na sučelju kao funkcija ϕ_S iz koje vidimo da unutar zabranjenog područja nema velike varijacije gustoće stanja osim na rubovima što je očekivano.

Slika 3.29: Plošna gustoća stanja defekata na sučelju D_{it} za oksid s jednim slojem Ge-obogaćenog SiO₂.

3.5.2.2 Uzorak s 20 slojeva Ge-obogaćenog SiO_2

Na slici 3.30 prikazano je HF C-V mjerenje MOS strukture u kojoj je matrica napravljena s 20 slojeva Ge-obogaćenog SiO₂ u kojem su se nakon grijanja formirale nanočestice Ge veličine oko 2 nm. Također na istoj slici prikazani su teorijski izračuni HF C-V za idealnu MOS strukturu (CV+ ϕ_{ms}) i neidealnu MOS strukturu koja ima naboje zatočene u oksidu i defekte na sučelju (CV+ ϕ_{ms} +V_{FB}+D_{it}). Sa slike vidimo relativno dobro slaganje teorijske krivulje i eksperimentalnih podataka iz kojih su dobiveni sljedeći rezultati:

•
$$d_{OX} = 85 \text{ nm}$$

Slika 3.30: HF C-V MOS strukture za nanočestice Ge u SiO₂ matrici. Prikazani su eksperimentalni rezultati te teorijski izračun idealne (CV+ ϕ_{ms}) i neidealne MOS strukture (CV+ ϕ_{ms} +V_{FB}+D_{it}) za oksid s 20 slojeva Ge-obogaćenog SiO₂.

- $\Delta V_{FB} = 7 V$
- $Q_{ot} = 1.8 \cdot 10^{12} \text{cm}^{-2}$
- $\overline{D}_{it} = 2.6 \cdot 10^{12} \text{cm}^{-2} \text{eV}^{-1}$
- $Q_f = 8.4 \cdot 10^{11} \text{cm}^{-2}$

Iz rezultata vidimo da je debljina oksida u skladu s pretpostavljenom debljinom filma koja je oko 80 nm. Srednja gustoća stanja defekata na sučelju \overline{D}_{it} je relativno niska i reda veličine slična kao i za uzorak s jednim slojem Ge-obogaćenog SiO₂ pa možemo govoriti o uzorcima jednakih kvaliteta. Osim gustoće stanja defekata na sučelju, također se iz dobivenih rezultata vidi i sličan red veličine Q_{ot} i Q_f što upućuje na vrlo slična svojstva uzoraka s nc-Ge u SiO₂ bez obzira radilo se o jednoslojnom ili višeslojnom uzorku.

Na slici 3.31. prikazana je plošna gustoća stanja defekata na sučelju kao funkcija ϕ_s .

Slika 3.31: Plošna gustoća stanja defekata na sučelju D_{it} za oksid s 20 slojeva Ge-obogaćenog SiO₂.

3.5.3 Si nanočestice u Si_3N_4 matrici

Na slici 3.32 prikazano je HF C-V mjerenje MOS strukture u kojoj je matrica nitrida napravljena sa 10 slojeva Si-obogaćenog Si₃N₄ u kojem su se nakon grijanja formirale nanočestice Si veličine oko 4 nm. Također na istoj slici prikazani su teorijski izračuni HF C-V za idealnu MOS strukturu (CV+ ϕ_{ms}) i neidealnu MOS strukturu koja ima naboje zatočene u oksidu i defekte na sučelju (CV+ ϕ_{ms} +V_{FB}+D_{it}). Sa slike vidimo relativno

Slika 3.32: HF C-V MOS strukture za nanočestice Si u Si₃N₄ matrici. Prikazani su eksperimantalni rezultati te teorijski izračun idealne (CV+ ϕ_{ms}) i neidealne MOS strukture (CV+ ϕ_{ms} +V_{FB}+D_{it}) za oksid sa 10 slojeva Si-obogaćenog Si₃N₄.

dobro slaganje teorijske krivulje i eksperimentalnih podataka iz kojih su dobiveni sljedeći rezultati:

- $d_{nitrid} = 115 \text{ nm}$
- $\Delta V_{FB} = 0.3 \text{ V}$
- $Q_{ot} = 1.1 \cdot 10^{11} cm^{-2}$
- $\overline{D}_{it} = 7.5 \cdot 10^{12} \text{cm}^{-2} \text{eV}^{-1}$
- $Q_f = 1.2 \cdot 10^{12} \text{cm}^{-2}$

Iz rezultata vidimo da je debljina oksida nešto veća nego pretpostavljena debljina filma od oko 80 nm, ali dimenzije su i dalje unutar očekivanih vrijednosti. Srednja gustoća stanja defekata na sučelju \overline{D}_{it} je relativno niska i reda veličine slična kao i za uzorke sa nanočesticama Ge u SiO₂ matrici. Isto vrijedi i za Q_f.

S druge strane Q_{ot} je za red veličine manji u Si₃N₄ matrici nego u SiO₂ matrici što upućuje na manju koncentraciju mjesta gdje se naboj može zatočiti u oksidu odnosno upućuje na manju koncentraciju nanočestica Si što je bilo vidljivo iz GIXRD mjerenja i Ramanove spektroskopije.

Na slici 3.33. prikazana je plošna gustoća stanja defekata na sučelju kao funkcija ϕ_S iz koje vidimo da unutar zabranjenog područja nema velike varijacije gustoće stanja.

Slika 3.33: Plošna gustoća stanja defekata na sučelju D $_{it}$ za oksid sa 10 slojeva Si-obogaćenog Si $_3\mathrm{N}_4.$

3.5.4 Uzorak sa 20 slojeva Si-obogaćenog SiO₂

Na slici 3.34 prikazano je HF C-V mjerenje MOS strukture u kojoj je oksid napravljen sa 20 slojeva Si-obogaćenog SiO₂ u kojem su se nakon grijanja formirale nanočestice Si veličine oko 4 nm. Također su na istoj slici prikazani teorijski izračuni HF C-V za idealnu MOS strukturu (CV+ ϕ_{ms}) i neidealnu MOS strukturu koja ima naboje zatočene u oksidu i defekte na sučelju (CV+ ϕ_{ms} +V_{FB}+D_{it}). Iz C-V karakteristike izvučeni su sljedeći

Slika 3.34: HF C-V MOS strukture za nanočestice Si u SiO₂ matrici. Prikazani su eksperimentalni rezultati te teorijski izračun idealne (CV+ ϕ_{ms}) i neidealne MOS strukture (CV+ ϕ_{ms} +V_{FB}+D_{it}) za oksid sa 20 slojeva Si-obogaćenog SiO₂.

parametri:

- $d_{OX} = 230 \text{ nm}$
- $\Delta V_{FB} = 6.6 V$
- $Q_{ot} = 6.2 \cdot 10^{11} \text{cm}^{-2}$
- $\overline{D}_{it} = 1 \cdot 10^{11} \text{cm}^{-2} \text{eV}^{-1}$
- $Q_f = 2.4 \cdot 10^{11} \text{cm}^{-2}$

Iz rezultata vidimo da je debljina oksida veća nego ona pretpostavljena debljinom filma od oko 180 nm, ali dimenzije su uzevši u obzir greške mjerenja unutar očekivanih vrijednosti. Srednja gustoća stanja defekata na sučelju \overline{D}_{it} je za red veličine manja nego za uzorke sa nanočesticama Ge u SiO₂ i Si nanokristale u Si₃N₄ matrici.

3.5 Rezultati C-V mjerenja

 Q_{ot} je u uzorku sa 20 slojeva Si-obogaćenog SiO₂ usporediv sa rezultatima dobivenih za Ge-nanočestice također u SiO₂ matrici što upućuje da SiO₂ matrica ima slična svojstva zatočenja naboja bez obzira radilo se o nanočesticama Si ili Ge uključenih u matricu.

Na slici 3.35. prikazana je plošna gustoća stanja defekata na sučelju kao funkcija ϕ_s .

Slika 3.35: Plošna gustoća stanja defekata na sučelju D_{it} za oksid sa 20 slojeva Si-obogaćenog SiO₂.

3.5.5 Si nanočestice u SiC matrici

Na slici 3.36 prikazano je HF C-V mjerenje MOS strukture u kojoj je matrica napravljena od 200 nm debelog sloja Si-obogaćenog SiC i gdje su se nakon grijanja formirale nanočestice Si veličine oko 3.5 nm i nanočestice SiC veličine oko 6 nm. Također na istoj slici prikazani su teorijski izračuni HF C-V za idealnu MOS strukturu i neidealnu MOS strukturu.

Sa slike vidimo relativno dobro slaganje teorijske krivulje i eksperimentalnih podataka iz kojih su dobiveni sljedeći rezultati:

- $d_{karbid} = 220 \text{ nm}$
- $\Delta V_{FB} = 0.3 V$
- $Q_{ot} = 6.8 \cdot 10^{11} \text{cm}^{-2}$
- $\overline{D}_{it} = 0.7 \cdot 10^{11} \text{cm}^{-2} \text{eV}^{-1}$

Slika 3.36: HF C-V MOS strukture za nanočestice Si u SiC matrici. Prikazani su eksperimentalni rezultati te teorijski izračun idealne ($CV+\phi_{ms}$) i neidealne MOS strukture ($CV+\phi_{ms}+V_{FB}+D_{it}$).

• $Q_f = 2.6 \cdot 10^{11} \text{cm}^{-2}$

Iz rezultata vidimo da je debljina karbidne matrice u skladu se pretpostavljenom debljina filma od oko 200 nm. Srednja gustoća stanja defekata na sučelju \overline{D}_{it} je najniža od svih do sada promatranih uzoraka i reda veličine je manja nego za uzorke nanočestica Ge u oksidu i nanočestica Si u nitridu, ali je usporediva sa slučajem nanočestica Si u oksidnoj matrici. Spomenuti rezultat vjerojatno je posljedica drugačije strukture SiC matrice čija atomska mjesta bolje pokrivaju površinu podloge (100) silicija i tako ostavljaju manje mogućih praznina koje djeluju kao moguća mjesta uhvata naboja.

Broj naboja zatočenih u SiC matrici Q_{ot} je za red veličine manji nego u uzorcima sa SiO₂ matricama što upućuje na manju koncentraciju koncentraciju nanočestica Si i SiC u matrici.

Na slici 3.37. prikazana je plošna gustoća stanja defekata na sučelju kao funkcija ϕ_S iz koje vidimo da unutar zabranjenog područja nema velike varijacije gustoće stanja.

3.5.6 Rezultati C-V mjerenja

U tablici 3.5 sumarno su prikazane vrijednosti za MOS strukture dobivene HF C-V mjerenjima na kojima je prikazana gustoća naboja zatočenih u matrici Q_{ot} , gustoća stanja defekata na sučelju D_{it} i gustoća stalnih naboja u matrici Q_f . Najveću sposobnost uhvata naboja pokazali su uzorci u kojima su bile nanočestice Ge. Što se tiče gustoće stanja

Slika 3.37: Plošna gustoća stanja defekata na sučelju \mathbf{D}_{it} za SiC matricu.

defekata na sučelju najmanji broj defekata pokazao je uzorak u kojem su bile nanočestice Si u SiC. Gustoća stalnih naboja u matrici slična je bila za sve uzorke.

R.B.	Oznaka	Q_{ot}	D_{it}	Q_{f}
		$[10^{12} \mathrm{cm}^{-2})]$	$[(10^{12} \mathrm{cm}^{-2} \mathrm{eV}^{-1})]$	$[10^{11} \mathrm{cm}^{-2}]$
1	s-Ge	0.1	1.5	1.0
2	m-Ge	1.8	2.6	8.4
3	m-Si-N	0.11	7.5	12
4	m-Si	0.6	0.1	2.4
5	s-Si-C	0.68	0.07	2.6

Tablica 3.5: Pregled karakterističnih parametara MOS strukture dobivenih
 HF C-V metodom.

3.6 I-V mjerenja

U ovom poglavlju biti će pokazani rezultati mjerenja I-V karakteristika MOS struktura koje su se proučavale u ovom radu. Kako je već ranije spomenuto idealna MOS struktura ne vodi struju dok ne idealna MOS struktura može voditi struju kroz defekte i nanokristalinične strukture termalnim pobuđenjima i tuneliranjem sa mjesta na mjesto (defekti ili nanočestični materijal) u matrici.

I-V mjerenja rađena su na način da se na MOS strukturu u početku stavi napon V_g koji MOS strukturu dovodi u akumulaciju nakon čega se isti napon jednakom brzinom vraća u nulu i kreće prema rastućim vrijednostima negativnog napona dovodeći MOS strukturu u režim inverzije nakon čega se napon jednakom brzinom vraća u početnu točku.

Takvim načinom mjerenja I-V karakteristike postiže se u **akumulaciji** (slika 3.38a) nabijanje matrice u kojoj nanočestice i defekti djeluju kao mjesta uhvata naboja. Suprotan

Slika 3.38: Shematski prikaz a) MOS struktura u akumulaciji i b) MOS struktura i inverziji. U "oksidnom" sloju odnosno matrici prikazana su mjesta uhvata nanočestica.

proces od akumulacije matrice je proces izbijanje matrice koja se događa kada je MOS struktura dovedena u **inverziju** pri čemu nema značajne količine nosioca naboja koji bi se injektirali u matricu sve do pojave sloja invertiranog naboja (za p-tip to su elektroni, za n-tip to su šupljine) (slika 3.38b).

Cilj mjerenja je vidjeti kako različite matrice oksida, nitrida i karbida u kojima su ugrađene nanočestice Si i Ge utjeću na transport naboja, budući da nabijanje matrice zatvara određene putanje gibanja naboja kroz matricu. Mjerenja struje rađena su općenito u dvije situacije. Prva kada je uzorak bio u mraku i druga kada je uzorak pod svjetlom (S).

3.6.1 Ge nanočestice u SiO_2 matrici

3.6.1.1 Uzorak s jednim slojem Ge-obogaćenog Si O_2

Na slici 3.39. prikazano je I-V mjerenje MOS strukture u kojoj je izolator matrica oksida SiO_2 debljine oko 200 nm s nanočesticama Ge (nc-Ge) promjera 4.5 nm.

Slika 3.39: I-V mjerenja uzorka s jednim slojem Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 4.5 nm u SiO₂ matrici. Prikazano je mjerenje u svjetlu (S) i u mraku.

Iz slike se vidi da je u akumulaciji i inverziji za sva naponska područja struja veća pri uvjetima svjetla nego mraka, što je i očekivano imajući u vidu činjenicu da svjetlo stvara dodatne parove e-š koji doprinose struji. Na oko 1-3V u akumulaciji se pojavljuje histereza koja je više izražena kada je uzorak bio na svjetlu nego u mraku. U područuju inverzije histereza se ne pojavljuje. Pojavljivanje histereze ukazuje na to da je došlo do određenog

Slika 3.40: I-V mjerenja u mraku i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s jednim slojem Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 4.5 nm u SiO₂ matrici.

uhvata naboja u oksidnom sloju i taj naboj onda zatvara određene putanje gibanja kroz matricu što pri istom naponu daje veću ili manju struju kroz oksid.

Na slici 3.40 u log-log grafu prikazano je I-V mjerenje u mraku i akumulaciji. Iz slike se jasno vide dva karakteristična područja u kojima struja mijenja svoj karakter. Za opis takve struje pokušani su razni modeli opisani u poglavlju (1.3.3.5) ovog rada. U prvom području 0-1V pronađeno je da struja ima tipičan ohmski karakter koji je karakterističan za male napone i nastaje kada je gustoća termalno aktiviranih elektrona i šupljina veća nego injekcija naboja s elektroda MOS strukture. Termalno generirani naboji skokovima prelaze s mjesta na mjesto, ti skokovi u ovom slučaju mogu biti s defekta na defekt, defekta na nc-Ge ili nc-Ge na nc-Ge i u ovoj konfiguraciji oni se nemogu razlikovati budući da bi za takvo istraživanje morali imati daleko bolju kontrolu nad defektima u oksidu i bolju mogućnost kontrole i koncentracije nc-Ge. Pri takvom načinu vođenja struje vodljivosti je proporcionalna naponu i odavde ime ohmska vodljivost (1.44).

U drugom području za napone >1V pojavljuje se novi oblik vođenja struje za koji je utvrđeno da dolazi zbog struje ograničene prostornim nabojem (SCLC) (1.45) s parametrom l=2.7. Takav oblik struje tipičan je za medije u kojima nema slobodnih nosioca naboja što je u ovom slučaju SiO₂ matrica u koju su ugrađene nanočestice Ge. SCLC način vođenja struje počinje predvladavati kada je gustoća injektiranih nosioca naboja s elektrode u oksid veća nego gustoća termalno generiranih nosioca naboja u oksidu i dostupne zamke u oksidu postaju nabijene i utjeću na daljnja gibanja naboja kroz medij pogotovo u slučaju kada je brzina pritjecanja novih nosioca naboja u zamke veća nego brzina pražnjenja (tuneliranjem, termalnom emisijom) istih, u tom slučaju će gustoća stanja zamki utjecati na naponsku ovisnost struje (1.45) gdje parametar l opisuje raspodjelu gustoće stanja zamki.

Što se tiče drugih modela vođenja struje promotrena je Frenkel-Poole (FP) emisija koja opisuje prijenos naboja kroz oksidni medij skokovima s zamke na zamku gdje barijera za skok odnosno emisiju naboja postaje manja kako električno polje odnosno napon raste [32]. Iz slike 3.40 vidimo da na cijelom naponskom području FP emisija ne opisuje dobro izmjerene vrijednosti struje osim pri "visokom" naponu od 5V gdje postaje tek usporediva s SCLC strujom zbog čega se FP emisija kao moguć model vođenja struje kroz matricu s nc-Ge neće razmatrati.

Na slici 3.41 prikazano je u obliku log-log grafa I-V mjerenje u svjetlu i akumulacji pri čemu očekujemo da nc-Ge djeluju kao mjesta uhvata fotona gdje se stvaraju e-š parovi koji onda doprinose struji. Spomenuti efekt je vidljiv na slici 3.39 u kojoj je struja pod svjetlom uvijek veća od struje pod mrakom.

Slika 3.41: I-V mjerenja u svjetlu i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s jednim slojem Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 4.5 nm u SiO₂ matrici.

Promatrajući I-V mjerenja u kontekstu transportnih svojstava vidimo da imamo slično kao i u mraku dva karakteristična naponska područja vođenja struje kroz MOS strukturu. Naponsko područje do 1V je ohmskog tipa dok je za napone veće od toga SCLC oblik struje. Teorijskom prilagodbom na formulu (1.45) pronađeno je da kada MOS struktura ide u akumulaciju SCLC struja ima parametar l=2, a kada se vraća iz akumulacije ima parametar l=3 što ukazuje da je došlo do određene promjene gustoće stanja zamki prilikom nabijanja oksida u uvjetima svjetla.

Na slici 3.42 prikazan je log-log graf IV mjerenja u mraku i na svjetlu kada MOS struktura ide prema inverziji. Slučaj inverzije je zanimljiv iz razloga što tada nema velike količine nosioca naboja koji bi se mogli injektirati u oksid i u tom slučaju događa se pražnjenje zamki u oksidu. Očekivano kada u nekom mediju nema slobodnih nosioca naboja i kada injekcija naboja s elektroda nije veća nego termalna generacija naboja u mediju tada nastaje ohmski tip vodljivosti opisan maloprije. Na spomenutoj slici to se jasno vidi u obliku prilagodbe na ohmski model (1.44).

Slika 3.42: I-V mjerenja u mraku i svjetlu u inverziji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s jednim slojem Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 4.5 nm u SiO₂ matrici.

Na svjetlu u inverziji imamo značajan skok struje koja je za nekoliko redova veličine veća nego u slučaju kada nema svjetla. Invertirana MOS struktura ima značajnu količinu prostornog naboja na strani Si (područje osiromašenja) unutar kojeg uhvatom fotona nastaju e-š parovi koji se u električnom polju razdvajaju na elektrone i šupljine i doprinose struji (fotostruja). Također fotoni na nc-Ge u matrici mogu generirati e-š parove i doprinositi struji, ali taj proces se nažalost u ovoj konfiguraciji nemože razdvojiti od generacije naboja u osiromašenom području jer se ta dva procesa događaju istovremeno.

Formula koja najbolje opisuje takvu situaciju je identična formuli za diodu pod svjetlom
(fotodetektor)

$$I(V_G) = I_o(e^{V_G/nk_BT} - 1) - I_{ph}$$
(3.3)

gdje je I_o struja saturacije, n je faktor idealnosti, k_B je Boltzmannova konstanta i I_{ph} je fotogenerirana struja. Iz prilagodbe dobiveni su sljedeći parametri.

- $I_o = 2.5 \text{mA}$
- n=38
- $I_{ph} = 0.2 \text{mA}$

Relativno velik faktor idealanosti n=38 pojavljuje se u sličnim strukturama [69] i pokazuje da je naša struktura daleko od idealne diode što je i očekivano budući da je u idealnoj diodi sloj SiO2 izolator, a ovdje su u njega ugrađene nanočestice Ge koje djeluju kao zamke za naboje i sudjeluju u procesu vođenja struje kroz inaće izolatorski medij.

3.6.1.2 Uzorak s 20 slojeva Ge-obogaćenog SiO₂

Na slici 3.43. prikazano je I-V mjerenje višeslojnog uzorka SiO_2 u koji su ugrađene nanočestice Ge (nc-Ge) promjera 2.5 nm.

Slika 3.43: I-V mjerenja za uzorak s 20 slojeva Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 2.5 nm u SiO₂ matrici. Prikazano je mjerenje u mraku i svjetlu.

Iz slike se vidi slično ponašanje I-V karakteristika kao i za jednoslojni uzorak što je i očekivano budući da se radi o matrici SiO_2 u koju su ugrađene nc-Ge, ali ovaj put manjih

veličina i u višeslojnoj konfiguraciji. Iz slike vidimo da je struja pod svjetlom uvijek veća od struje u mraku i u inverziji ona je za nekoliko redova veličine veća. Također u akumulaciji se opet pojavljuje histereza, ali ona je ovaj put samo izražena u mraku i nalazi se u naponskom području 0-1V. Pojava histereze na relativno niskom naponu (0-1V) dolazi zbog toga što se nabijanje oksidnog sloja događa lakše odnosno naboji s elektroda lakše prelaze u oksidni sloj gdje se ugrađuju u mjesta uhvata (defekti ili nc-Ge) i djeluju odbojno za druge naboje pa struja na istom naponu nije više jednaka tj. pojavljuje se histereza.

Ključan parametar za lakše nabijanje oksidnog sloja je udaljenost mjesta uhvata u oksidnom sloju od elektroda koje su izvori naboja [70]. U ovom slučaju to se postiglo upotrebe višeslojne strukture oksida pomoću koje osim što se može modulirati veličina nc-Ge debljinom sloja može se i određivati udaljenost *prvih* slojeva nc-Ge od elektroda položajem prvog sloja pri depoziciji uzorka.

Na slici 3.44 prikazano je u log-log grafu kako se ponaša I-V karakteristika u mraku i u akumulaciji. Iz slike se kao i prije mogu razlučiti karakteristična područja vođenja struje kroz MOS strukturu.

Slika 3.44: I-V mjerenja u mraku i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 20 slojeva Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 2.5 nm u SiO₂ matrici.

Utvrđeno je da karakteristično područje pri malim naponima pripada kao i za jednoslojni uzorak ohmskom tipu vodljivosti s razlikom da se u ovom slučaju ohmsko područje prekida na naponu 0.5 V, a ne kao za jednoslojni uzorak na naponu 1 V. Nakon ohmskog područja struja poraste s nA do mA u naponskom području od samo 0.5-1V nakon čega ulazimo u SCLC način vođenja struje opisane parametrom l=2.2 koji ostaje nepromijenjen sve do povratka napona na 0V. U usporedbi s jednoslojnim uzorkom vrijednost parametra l je manja što ukazuje da je gustoća raspodjele stanja mjesta uhvata u oksidu promijenjena zbog drugačije veličine nc-Ge i drugačije raspodjele nc-Ge unutar oksidnih slojeva što je posljedica višeslojne strukture uzorka.

Na slici 3.45 prikazano je mjerenje I-V karakteristike u uvjetima svjetla. Iz slike se vidi slično kao i na svim uzorcima do sada pojavljivanje dva karakteristična područja vođenja struje gdje jedno odgovara ohmskoj vodljivosti a drugo SCLC načinu vođenja struje s parametrom l=3 što je ista vrijednost koja je bila i za jednoslojni uzorak. Pod uvjetima

Slika 3.45: I-V mjerenja u svjetlu i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 20 slojeva Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 2.5 nm u SiO₂ matrici.

svjetla tako raspodjela veličina nc-Ge u kontekstu SLCL struje ne igra neku veliku ulogu jer se parametar l nije promijenio.

Na slici 3.46 prikazan je log-log graf IV mjerenja u mraku i na svjetlu kada MOS struktura ide prema inverziji. Utvrđeno je da u mraku i inverziji nakon napona od 0.5 V SCLC struja s parametrom l=1 određuje način vođenja struje oksidni višeslojni uzorak što je različito u odnosu na jednoslojni uzorak u kojem je ohmski način vođenja struje predvladavao na cijelom naponskom području. Spomenuto se može objasniti time da je na spomenutom naponskom području injektirana gustoća nosioca naboja veća nego gustoća termalno generiranih nosioca naboja što je vjerojatno posljedica višeslojne strukture uzorka koja na nekoj temperaturi daje manju gustoću termalno generiranih nosioca naboja u

Slika 3.46: I-V mjerenja u mraku i svjetlu u inverziji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 20 slojeva Ge obogaćenog SiO₂ u kojem su se formirale nc-Ge promjera 2.5 nm u SiO₂ matrici.

odnosu na jednoslojni uzorak.

U inverziji pri svjetlu imamo značajan skok struje koji je za nekoliko redova veličine veća nego u slučaju kada nema svjetla. Slično kao i prije invertirana MOS struktura ima značajnu količinu prostornog naboja na strani Si, pa unutar tog prostornog naboja i nc-Ge uhvatom fotona nastaje struja koja ima oblik fotostruje (3.3) s parametrima prilagodbe.

- $I_o = 0.4 \text{mA}$
- n=10
- $I_{ph} = 0.05 mA$

Te su vrijednosti niže nego za jednoslojni uzorak i parametar n=10 ukazuje da je i ovaj put struktura koju promatramo različita od idealne diode po čijem je modelu rađena prilagodba.

3.6.2 Si nanočestice u Si_3N_4 matrici

Na slici 3.47 prikazano je I-V mjerenje MOS strukture u kojoj je matrica nitrida napravljen s 10 slojeva Si-obogaćenog Si_3N_4 s nanočesticama silicija (nc-Si) promjera 4 nm.

Iz slike je vidljivo da se za razliku od nc-Ge u SiO_2 matrici sada ne pojavljuje histereza u akumulaciji i inverziji u slučaju mraka ili svjetla. Spomenuto ukazuje na to da nitridni

Slika 3.47: I-V mjerenja za uzorak s 10 slojeva Si obogaćenog Si $_3N_4$ u kojem su se formirale nc-Si promjera 4 nm u Si $_3N_4$ matrici. Prikazano je mjerenje u svjetlu (S) i u mraku.

sloj s ugrađenim nc-Si u ovom slučaju nema veliku mogućnost uhvata naboja što je već bilo vidljivo i iz strukturnih mjerenja koje su pokazale relativno slabe signale koji dolaze od nc-Si i iz C-V mjerenja gdje je izmjeren relativno malen pomak C-V krivulje od samo $DeltaV_{fb} = 0.3$ V.

Transportna svojstva u mraku i akumulaciji prikazana su na slici 3.48. Na slici su prikazani razni modeli vođenja struje koje bi mogli opisati izmjerenu I-V karakteristiku. Iz slike se iznenađujuće vidi da ohmski model ne opisuje dobro I-V karakteristike u području malih napona kada se očekuje mala injekcija nosioca naboja sa elektroda MOS strukture. Također model FP emisije ne opisuje dobro mjerenja što je već viđeno za uzorke u kojima su nc-Ge bili ugrađeni u oksidne slojeve i čija transportna svojstva su opisana maloprije. SCLC oblik struje s parametrom l=1 najbolje opisuje I-V karakteristiku na području 0-2V što znači da je gustoća termalno generiranih e-š u nitridnom sloju toliko mala da se čak i u slučaju slabe injekcije naboja na malim naponima ni ne događa ohmska vodljivost nego nitridni sloj odmah prelazi u SCLC oblik vodljivosti struje.

Transportna svojstva u svjetlu i akumulaciji prikazana su na slici 3.49 iz koje se vidi slično kao i u mraku gotovo jednake karakteristike vođenja struje opisane s SCLC modelom parametra l=1. Po apsolutnoj vrijedosti struja je nešto veća, ali što se prirode vođenja struje tiče nema razlike između svjetla i mraka.

Slika 3.48: I-V mjerenja u mraku i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 10 slojeva Si obogaćenog Si₃N₄ u kojem su se formirale nc-Si promjera 4 nm u Si₃N₄ matrici.

Slika 3.49: I-V mjerenja u svjetlu i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 10 slojeva Si obogaćenog Si₃N₄ u kojem su se formirale nc-Si promjera 4 nm u Si₃N₄ matrici.

Na slici 3.50 prikazana je I-V karakteristika mjerenja u inverziji pri uvjetima svjetla i mraka. Na slici se vidi da u mraku SCLC struja s parametrom l=1 najbolje opisuje mjerenja struje, dok je model fotodiode za uvjete pri svjetlu (3.3) dobar samo za napone veće od 0.5 V s parametrima prilagodbe:

•
$$I_o = 5.5 \mu A$$

Slika 3.50: I-V mjerenja u mraku i svjetlu u inverziji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 10 slojeva Si obogaćenog Si₃N₄ u kojem su se formirale nc-Si promjera 4 nm u Si₃N₄ matrici.

- n=2
- $I_{ph} = 100 \mu A$

3.6.3 Si nanočestice u SiO₂ matrici

Na slici 3.51 prikazano je I-V mjerenje MOS strukture u kojoj je izolator matrica napravljena s 20 slojeva Si-obogaćenog SiO₂ u kojem su se nakon grijanja formirale Si nanočestice promjera 4 nm. Iz slike se vidi relativno velika razlika u odnosu na mjerenja sličnih višeslojnih struktura poput nc-Ge u oksidnoj matrici i nc-Si u nitridnoj matrici. Mjerenja u svjetlu pokazuju znatno veće struje nego mjerenja u mraku i po prvi put je dobiven fotovoltaični efekt koji pri naponu od 0V u uvjetima svjetla daje struju od 20 mA. Također imamo slično kao i prije pojavu histereze u procesu ulaska i izlaska iz akumulacije pri naponima od 1.5-3V čime je pokazano (slično kao i kod C-V mjerenja) uhvat naboja u oksidnom sloju. Spomenuti uhvat naboja događa se i na defektima unutar oksida i na nc-Si. Histereza se u ovom slučaju također pojavljuje u inverziji MOS strukture što znači da i u inverziji postoji određen uhvat naboja koji onda djeluje odbojno za prolaz struje kroz oksidnu matricu.

Na slici 3.52 u log-log grafu prikazane su I-V karakteristike u mraku i akumulaciji iz kojih su se utvrdila sljedeća transportna svojstva. U akumulaciji i mraku do napona 1V

Slika 3.51: I-V mjerenja za uzorak s 20 slojeva Si obogaćenog SiO₂ u kojem su se formirale nc-Si promjera 4 nm u SiO₂ matrici. Prikazano je mjerenje u svjetlu (S) i u mraku.

vođenje struje možemo opisati pomoću ohmske vodljivosti što je slično kao i za jednoslojni uzorak nc-Ge u oksidnoj matrici. Pri naponima većim od 1V gustoća struje injektiranih nosioca naboja postaje veća od gustoće termalno generiranih nosioca naboja u oksidnoj matrici i dolazi do popunjavanja stanja koja djeluju kao zamke za nosioce naboja (defekti, nc-Si) pri čemu nastaje SCLC oblik struje s parametrom raspodjele gustoće stanja mjesta uhvata l=2. Na slici je također prikazana i FP (Frenkel-Poole) emisija kao jedan od mogućih načina vođenja struje koji opisuje prijenos naboja s mjesta uhvata na mjesto uhvata u oksidu pod djelovanjem električnog polja, ali prilagodba na mjerenja nije dala zadovoljavajuće rezultate, što potvrđuje da je dinamika punjenja i pražnjenja zamki složenija i najbolje je opisana SCLC oblikom struje.

Na slici 3.53 prikazan je log-log graf mjerenja I-V karakteristika u svjetlu i akumulaciji. Iz slike se vide dva karakteristična područja vođenja struje gdje kao i prije jedno područje pripada ohmskom načinu vođenja struje, a drugo pripada SCLC struji s parametrom l=1. Parametar l=1 može značiti dvije stvari. Prvo da u izolatorkom mediju nema mjesta uhvata zamki (što je malo vjerojatno, budući da je u svih dosadašnjim mjerenjima potvrđeno postojanje nc-Si i uhvat naboja) ili drugo da su sve zamke popunjenje pri uvjetu svjetla i da posljedično nabijena mjesta djeluju odbojno na svaki novopridošli naboj dajući SCLC struju sa spomenutim parametrom [38, 39].

Slika 3.52: I-V mjerenja u mraku i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođenja struje struje za uzorak s 20 slojeva Si obogaćenog SiO₂ u kojem su se formirale nc-Si promjera 4 nm u SiO₂ matrici.

Slika 3.53: I-V mjerenja u svjetlu i akumulaciji te teorijske prilagodbe na odgovarajuće modele vođrnjs struje za uzorak s 20 slojeva Si obogaćenog SiO₂ u kojem su se formirale nc-Si promjera 4 nm u SiO₂ matrici.

Transportna svojstva u inverziji pod uvjetima mraka i svjetla prikazana su na slici 3.54 iz koje vidimo da je ohmski način vođenja struje dominantan u mraku počevši od napona 0.4V, dok je na svjetlu preko formule za fotodiodu (3.3) dobiveno.

•
$$I_o = 25\mu A$$

Slika 3.54: I-V mjerenja u mraku i svjetlu u inverziji te teorijske prilagodbe na odgovarajuće modele vođenja struje za uzorak s 20 slojeva Si obogaćenog SiO_2 u kojem su se formirale nc-Si promjera 4 nm u SiO_2 matrici.

- n=9
- $I_{ph} = 20 \mu A$

3.6.4 Si nanočestice u SiC matrici

Na slici 3.55 prikazano je I-V mjerenje MOS strukture u kojoj je matrica SiC debljine 200 nm s nanočesticama silicija (nc-Si) veličine 3.5 nm i s nanočesticama SiC (nc-SiC) veličine 6 nm.

Iz slike je vidljivo da se za razliku od nc-Ge i nc-Si u SiO₂ matrici ne pojavljuje histereza u akumulaciji i inverziji u slučaju mraka ili svjetla. Ne pojavljivanje histereze u spomenutim slučajevima znači da nema značajne koncentracije mjesta uhvata naboja u matrici (nanočestice ili defekti) ili da su jednom uhvaćeni naboji skloni vrlo lako napustiti mjesta uhvata termalnim eksitacijama ili tuneliranjem pa nema efekta da uhvaćeni naboji elektrostatski zatvaraju određene putanje za nosioce naboja pri prolazu kroz matricu pri čemu se pojavljuje histereza.

Transportna svojstva u mraku i akumulaciji prikazana su na slici 3.56. Na slici se jasno vidi da je najbolji model za opis vođenja struje kroz karbidnu matricu sa nc-Si i nc-SiC ohmski model gdje termalno generirani nosioci naboja idu sa mjesta na mjesto u matrici (defekti ili nanočestice) i takav način vođenja struje proporcionalan je naponu odnosno

Slika 3.55: I-V mjerenja za uzorak Si-obogaćenog SiC u kojem su se formirale nc-Si veličine 3.5 nm i nc-SiC veličine 6 nm u SiC. Prikazano je mjerenje u svjetlu (S) i u mraku.

električnom polju u matrici. U karbidnoj matrici za razliku od do sada promatranih slučajeva nanočestica Ge i Si u oksidnoj i nitridnoj matrici ne događa se pojava struje ograničene prostornim nabojem (SCLC) što znači da se u matrici ne događa proces u kojem je brzina punjenja mjesta uhvata veća od brzine pražnjenja istih što je inače glavni proces koji stvara SCLC struju. Razlozi takvom ponšanju u punjenju i pražnjenju zamki leži u činjenici da je potencijalna barijera između Si i SiC samo 0.4 eV (između Si i SiO₂ je 3.1 eV) (vidi sliku 1.15) pa je nosiocima naboja puno lakše termalnom energijom ili tuneliranjem izaći iz zamke i nastaviti gibanje do drugog mjesta doprinoseći tako ohmskom načinu vođenja struje.

Transportna svojstva u svjetlu i akumulaciji prikazana su na slici 3.57 iz koje se vidi da vođenje struje kroz matricu najbolje opisuje ohmski način vođenja struje i da pojava svjetla povećava struju zbog toga jer (vidi akumulaciju na slici 3.55) se e-š parovi generiraju uhvatom fotona na nanočesticama Si i doprinose ohmskom načinu vođenja struje. Nanočestice SiC ne sudjeluju u procesima uhvata fotona jer je energija procjepa SiC (2.4 eV) u ultraljubičastom području, a izvor svjetla koji smo koristili je u vidljivom području.

Na slici 3.58 prikazana je I-V karakteristika mjerenja u slučaju inverzije i pri uvjetima svjetla i mraka. Prilagodba na formulu (3.3) ovaj nije uspjela i vidljivo je na spomenutoj slici da ohmski model najbolje opisuje transport struje kroz matricu, što znači da je i u

Slika 3.56: I-V mjerenja u mraku i akumulaciji te teorijska prilagodba na ohmski model vođenja struje za uzorak Si-obogaćenog SiC u kojem su se formirale nc-Si veličine 3.5 nm i nc-SiC veličine 6 nm.

Slika 3.57: I-V mjerenja u svjetlu i akumulaciji te teorijska prilagodba na ohmski model vođenja struje za uzorak Si-obogaćenog SiC u kojem su se formirale nc-Si veličine 3.5 nm i nc-SiC veličine 6 nm.

slučaju matrica lako propusna za injektirane naboje pri čemu generacija e-š parova ne povećava znatno količinu naboja koji sudjeluju u struju koja je zadržala ohmski karakter vođenja struje.

Slika 3.58: I-V mjerenja u svjetlu i inverziji te teorijska prilagodba na ohmski model vođenja struje za uzorak Si-obogaćenog SiC u kojem su se formirale nc-Si veličine 3.5 nm i nc-SiC veličine 6 nm.

3.6.5 Rezultati I-V mjerenja

U tablici 3.6 prikazani su rezultati I-V mjerenja u kojima se vidi da se makroskopski opis transporta struje kroz različite matrice oksida, karbida i nitrida u kojima su ugrađene nanočestice silicija i germanija može opisati ohmskim načinom transporta struje i strujom ograničenom prostornim nabojem (SCLC).

U uvjetima svjetla svi uzorci pokazuju postojanje fotostruje, a samo je jedan uzorak oznake m-Si pokazao postojanje fotovoltaičnog efekta, odnosno postojanje struje pri naponu od 0V.

n	itridnoj i karbidnoj matrici.	

Tablica 3.6: Pregled modela vođenja struje kroz uzorke nanočestica u oksidnoj,

R.B.	Oznaka	Model	Model	Model	Model	Histereza
		akum.(mrak)	inv.(mrak)	akum.(svjetlo)	inv.(svjetlo)	u akum.
1	s-Ge	Ohmski	Ohmski	Ohmski	Fotostruja	Da
		SCLC (2.7)		SCLC $(2,3)$		
2	m-Ge	Ohmski	SCLC (1)	Ohmski	Fotostruja	Da
		SCLC (2.2)		SCLC (3)		
3	m-Si-N	Ohmski	SCLC (1)	Ohmski	Fotostruja	Ne
		SCLC(1)		SCLC (1)		
4	m-Si	Ohmski	Ohmski	Ohmski	Fotostruja	Da
		SCLC(2)		SCLC (1)	Fotovoltaik	
5	s-Si-C	Ohmski	Ohmski	Ohmski	Ohmski	Ne

Zaključak

Zaključak ovog rada može se promatrati u dvije glavne točke.

U prvoj točci u pogledu laboratorijskih uvjeta proizvodnje nanostruktura nc-Si i nc-Ge pronađeni su optimalni uvjeti u kojima se postiže optimalno stvaranje nanočestica. Pronađeno je da se grijanjem 1h na temperaturi od 700°C u atmosferi N₂ stvaraju nanočestice Ge (nc-Ge) u Ge-bogatom debelom sloju SiO₂ i da je odabir temperature grijanja u ovom slučaju kritičan budući da 50°C veća temperatura uzrokuje isplinjavanje Ge iz filma, a za isti iznos manja temperatura ne uzrokuje stvaranje nanočestica. U slučaju Si-bogatog SiO₂ (oksida), Si-bogatog Si₃N₄ (nitrida) i Si-bogatog SiC (karbida) grijanjem 1h na temperaturi oko 1050°C u atmosferi N₂ stvaraju se nanočestice Si (nc-Si), ali u ovom slučaju temperatura odgrijavanja nije toliko kritična odnosno 100°C veća ili manja temperatura neće uzrokovati isplinjavanje Si iz filma i razlika u kristaliničnosti će biti znatno manje izražena. Također je pokazano da se za višeslojne uzorke debljinom sloja koji sadrži Si(Ge)-obogaćeni oksid ili nitrid možemo vrlo dobro određivati konačnu veličinu nanočestica nakon termalnog tretmana.

Uz istraživanje Si(Ge) nanočestica u oksidnoj matrici otišli smo i korak dalje te smo istražili stvaranje nanočestica u matricama koje imaju znatno veću relativnu dielektričnu konstantu od oksida (SiO₂) koja iznosi 3.9. Tako smo istraživali matricu SiC koja ima relativnu dielektričnu konstantu oko 10 kao i nitridnu matricu koja ima relativnu dielektričnu konstantu 7.5. U karbidnoj matrici su se nakon grijanja uz nanočestice Si pojavile i nanočestice SiC. Uloga ovih neželjenih nanočestica još uvijek nije do kraja razjašnjena. U nitridnoj matrici je uočeno da se stvara relativno mala gustoća nc-Si pri jednakim parametrima depozicije kao i za oksidne matrice, što postavlja zahtjev za daljnjim dubljim poznavanjem dinamike ovih procesa. U smislu primjene nanočestica možemo zaključiti da je veći potencijal nc-Ge budući da je manja temperatura grijanja pri kojoj se stvaraju nanočestice, što smanjuje ukupni termalni buđet tako dizajniranog procesa,

Zaključak

te daje značajnu prednost nc-Ge u odnosu na nc-Si. Uz to efekti kvantnog zatočenja u nc-Ge se javljaju kod većih čestica nego kod nc-Si pa je time znatno olakšan dizajn procesa dobivanja sklopova temeljenih na nc-Ge.

U drugoj točci zaključka vezanoj za električna svojstva nanočestičnih struktura, napravljene su MOS strukture s relativno niskim gustoćama stanja defekta na površini između matrice i podloge Si, koje su bile reda veličine 10^{12} cm⁻²eV⁻¹ ili manje što je vrlo dobar rezultat u smislu kvalitete MOS strukture. Uočeno je također da je sposobnost spremanja naboja najviše izražena kod uzorka sa nc-Ge u oksidnoj matrici.

Sto se transportnih svojstava tiče zbog debljine filma vidljivo je da Fowler-Nordheim ili direktno tuneliranje nemaju dominantan utjecaj na gibanje naboja kroz cijeli film, no postoji mogućnost tuneliranja ili skakanja s mjesta na mjesto (defekti ili nc-Si(Ge)) u matrici. Frenkel-Poole (FP) tip vodljivosti koji opisuje upravo takvo skakanje s mjesta na mjesto nije bio u mogućnosti dovoljno dobro opisati eksperimentalna mjerenja. Konačno je pronađeno da najbolji opis za transport naboja u ovako kompleksnim materijalima daje model struje ograničene prostornim nabojem (SCLC), koji je za oksidne filmove i za veće napone u akumulaciji (veće od 0.5-1 V) bio dominatni način prijenosa naboja kroz MOS strukturu. Što se parametra l tiče, koji određuje energijsku distribuciju mjesta uhvata (veći parametar l govori da je energijska distribucija mjesta uhvata uniformnija), uočeno je da se za nc-Si i nc-Ge u oksidnim matricama parametar l kreće između 2 i 3 u mraku i akumulaciji. Pri uvjetu svjetla i akumulaciji za spomenute uzorke dolazi do promjene parametra l što ukazuje da svjetlom generirani e-š mijenjaju energijsku distribuciju mjesta uhvata. Za nitridnu matricu smo pronašli da nema pojave ohmske vodljivosti nego da je struja od najnižih napona opisana SCLC modelom s parametrom l=1 što je važan podatak koji govori da je nitridna matrica uz već spomenutu malu gustoću nanočestičnog materijala ustvari propusnija za transport naboja, a što je nepovoljno za neke aplikacije (recimo spremanje naboja pri memorijskim čipovima). Za uzorak sa karbidnom matricu ohmski način transporta naboja najbolje opisuje prolazak struje za sve slučajeve (inverzija, akumulacija, svjetlo...), što je očekivano imajući u vidu malu energiju barijere između vodljive vrpce Si i vodljive vrpce SiC koja iznosi 0.4 eV.

U kontekstu primjene nanostrukturiranih materijala za fotovoltaične i fotodetektorske aplikacije, očekivano u inverziji svi uzorci pokazuju pojavu fotostruje budući da se u području osiromašenja kao i u nanočesticama događa pretvorba fotona u e-š parove koji daju doprinos fotostruji. No međutim samo je jedan uzorak pokazao postojanje značajnije struje pri naponu od 0V i to je bio uzorak s nc-Si u matrici SiO_2 pa sa stanovišta fotovoltaičnih aplikacija ovakvi materijali predstavljaju potencijal za daljnja istraživanja.

Literatura

- [1] International Technology Roadmap for Semiconductors 2011, http://www.itrs.net
- [2] L. Pavesi, J. Phys.: Condens. Matter 15 (2003) R1169–R1196
- [3] 2 C. Eisele, M. Berger, M. Nerding, H.P. Strunk, C.E. Nebel, M. Stutzmann, Thin Solid Films 427 (2003) 176–180.
- [4] R. Pillarisetty, Academic and industry research progress in germanium nanodevices, Nature 479, 324–328 (2011).
- [5] N. Tit, M.W.C. Dharma-wardana, Solid State Commun. 106 (1998) 121–126.
- [6] J. H. Jefferson, W. Häusler, Quantum Dots and Artificial Atoms, arXiv:condmat/9705012
- [7] Z.H. Lu, D.J. Lockwood, J.M. Baribeau, Solid State Electron. 40 (1999) 197–201.
- [8] G.G. Qin, S.Y. Ma, Z.C. Ma, W.H. Zong, Y. Li-Ping, Solid State Commun. 106 (1998) 329–333.
- [9] C. Ternon, F. Gourbilleau, X. Portier, P. Voivenel, C. Dufour, Thin Solid Films 419 (2002) 5–10.
- [10] M. Modreanua, M. Gartnerb, E. Aperathitisc, N. Tomozeiud, M. Androulidakic, D. Cristeae, P. Hurleya, Physica E 16 (2003) 461–466.
- [11] Z. Ma, L. Wang, K. Chen, W. Li, L. Zhang, Y. Bao, X. Wang, J. Xu, X. Huang, D. Feng, J. Non-Cryst. Solids 302 (2002) 648–652.
- [12] A.M. Mahajan, L.S. Patil, J.P. Bange, D.K. Gautam, Surf. Coat. Technol. 183 (2004) 295–300.
- [13] H.Z. Song, X.M. Bao, Phys. Rev. B 55 6988–93 (1997)
- [14] S. Cheylan, R.G. Elliman, Appl. Phys. Lett. 78 1912–14 (2001)

- [15] L. Heikkilä, T. Kuusela, H.P. Hedman, J. Appl. Phys. 89, 2179 (2001)
- [16] D. J. Lockwood, L. Tsybeskovb, Journal of Nanophotonics, Vol. 2, 022501 (2008)
- [17] T. Zheng, Z. Li, Superlattices and Microstructures 37 (2005) 227–247
- [18] Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press (2007)
- [19] J. P. Sun, G. I. Haddad, P. Mazumder, J. N. Schulman, Proceedings of the IEEE, vol. 86, no. 4, april 1998
- [20] C. Jirauschek, IEEE J. Quantum Electron. 45, 1059-1067 (2009)
- [21] C. Jiang, M. A. Green, J. Appl. Phys., 99, 114902 (2006)
- [22] 0. L. Lazarenkova, A. A. Balandin, J. Appl. Phys., Vol. 09, No. 10, 15 May 2001
- [23] H. Ehrenreich, D. Turnbull, Semiconductor Heterostructures and Nanostructures, Academic Press, Inc. (1991)
- [24] J.L. Liu, Y. Shi, F. Wang, Y. Lu, R. Zhang, S.L. Gu, P. Han, L.Q. Hu, Y.D. Zheng, Appl. Phys. A 63, 371-375 (1996)
- [25] Kingon, A.I., Maria, J.-P., and Streiffer, S.K. (2000) Nature, 406, 1032–1038.
- [26] Lo, S.-H., Buchanan, D. A., Taur, Y. Wang, W. Quantum-mechanical modelling of electron tunnelling current from the inversion layer of ultra-thin-oxide nMOSFETs. IEEE Electron Device Lett. 18, 209–211 (1997).
- [27] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996)
- [28] L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998)
- [29] D.J.Lockwood, L. Tsybeskov, Optical properties of nanocrystal superlattices, Journal of Nanophotonics, 2, 022501, (2008)
- [30] L. Pavesi, J. Phys.:Condens. Matter 15 (2003) R1169-R1196
- [31] http://en.wikipedia.org/wiki/Finite_potential_wellPhysicsosSemiconductorDevices, S.M.Sze, K.Ng 0471143235

- [33] MOS (Metal Oxide Semiconductor) Physics and Technology, E. H. Nicollian, J. R. Brews, Wiley Classic Library, ISBN: 978-0-471-43079-7
- [34] J.R. Brews, J. Appl. Phys., Vol. 45, 3 (1974)
- [35] L.M. Terman, Solid State Electronics, Vol 5. pp. 285-299, (1962)
- [36] Roushdey Salh (2011). Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-Ray Analysis, Infrared Spectroscopy Studies, Crystalline Silicon -Properties and Uses, Prof. Sukumar Basu (Ed.)
- [37] Electrical Transport in Solids, K.C. Kao, W. Hwang, Pergamon Press, ISBN: 0080239730
- [38] A. Rose, Phys. Rev. Vol.97, No. 6, (1955)
- [39] P. Mark, W. Helfrich, J. Appl. Phys., Vol.11, No. 1, (1962)
- [40] The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, Derek A. Long, 2002 John Wiley & Sons Ltd., ISBNs: 0-471-49028-8 (Hardback); 0-470-84576-7 (Electronic)
- [41] H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Communications, Vo1.39 (1981) pp.625-629.
- [42] J.H. Parker, D.W. Feldman, M. Ashkin, Raman scattering by Silicon and Germanium, Phys. Rev., Vol.155, 3, (1967)
- [43] V. Paillard, P. Puech, M. A. Laguna, R. Carles, J. App. Phys. 86 4 (1999)
- [44] Ch. Ossadnik, S. Veprek, I. Gregora, Thin Solid Films 337 (1999)
- [45] G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S. La Rosa, Phys. Rev. B 73, 033307 2006
- [46] Y.Jie, A.T.S. Wee, C.H.A. Huan, Z.X. Shen, W.K. Choi, J. App. Phys. 109, 033107 (2011)
- [47] Y. Sasaki, C.Horie, Phys. Rev. B 47 7 1993
- [48] J.S. Lannin, N. Maley, S.T. Kshirsagar, Solid State Commun., Vol., 53, 11 (1985) 939–942. International Technology Roadmap for Semiconductors 2011, http://www.itrs.net
- [49] R.Brout, Phys. Rev. 113, 43 (1959)
- [50] J.Zi, K. Zhang, X. Xie, Phys. Rev. B 55,9263 (1997)
- [51] P. Alfaro-Calderon, M. Cruz-Irisson, C. Wang-Chen, Nanoscale Res. Lett. (2008) 3:55–59

- [52] http://www.sladecek.org/programs/javascript/pendepth2/pendepth.htm
- [53] M. Abdullah, Journal Nanosains Nanoteknologi, Vol. 1, No. 1, 2008
- [54] K. Surana, H. Lepage, J.M. Lebrun, B. Doisneau, D. Bellet, L. Vandroux, G. Le Carval, M. Baudrit, P. Thony, P. Mur, Nanotechnology 23 (2012), 105401
- [55] P. Caldelas, A.G. Rolo, M.J.M. Gomes, E. Alves, A.R. Ramos, O. Conde, S. Yerci, R. Turan, Vacuum 82 (2008) 1466-1469
- [56] M. Buljan, U.V. Desnica, N. Radic, G. Drazic, Z. Matej, V. Vales, V. Holy J. Appl. Cryst. (2009). 42, 660–672
- [57] T.V. Torchynska, A. Vivas Hernandez, Y. Goldstein, J. Jedrzejewskii, S. Jimenez Sandoval, Journal of Non-Crystalline Solids 352 (2006) 1152-1155
- [58] T.S. Iwayama, K. Fujita, S. Nakao, K. Saitoh, T.Fujita, N. Itoh, J. Appl. Phys. 75 12 (1994)
- S.T. Pantelides, Z.-Y. Lua, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, Journal of Non-Crystalline Solids 354 (2008) 217–223 Physica B, 340–342 (2003), p. 1119
- [60] S.Munekuni, T. Yamanaka, Y. Shimogaici, R.Tohmon, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 68 3 (1990)
- [61] T.V. Torchynska, F.G. Bacarril-Espinoza, Y. Goldstein, E. Savir, J. Jedrzejewskii, L.Yu. Khomenkova, N. Korsunska, V. Yukhimchuk, Physica B, 340–342 (2003), p. 1119
- [62] E.G. Bargagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, J. Appl. Phys., 111 034307 (2012)
- [63] A.J. Kenyon, P.F.Trwoga, C.W. Pitt, G. Rehm, J. Appl. Phys., 79 12 (1996)
- [64] W.L. Warren, C.H. Seager, J. Kanicki, M.S. Crowder, E. Sigari, J. Appl. Phys. 77 11 (1995)
- [65] S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, J. Appl. Phys., 77 12 (1995)
- [66] T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sung, Y.W. Ok, T.Y. Seong, C.J. Choi, Appl. Phys. Lett. 85, 53 (2004)
- [67] J.P. Doyle, M.K. Linnarsson, P. Pellegrino, N. Keskitalo, B.G. Svensson, A Schöner, N. Nordell, J.L. Lindström, J. Appl. Phys., 84 3, (1988)
- [68] Z. Xia, S. Huang, Solid State Commun. 150 (2010) 914–918.

- [69] T.A. Burr, A.A. Seraphin, E. Werwa, K.D. Kolenbrander, Phys. Rev. B, 56 8 (1997)
- [70] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan, IEEE Int. Electronic Devices Meeting Tech. Digest, 1995, pp.521-524
- [71] Capan, Ivana; Pivac, Branko; Slunjski, Robert. Electrical characterisation of Si-SiO2 structures. Physica status solidi. C, Current topics in solid state physics. 8 (2011), 3; 816-818
- [72] A.S. Grove, E.H. Snow, B.E. Deal, C.T. Sah, J. Appl. Phys., 33, 2458, (1964)
- [73] J.L. Brews, Solid-State Electron., 20, 5355-5357 (1977)

Dodatak

A. Kronig-Penney potencijal 1D

2 KronigPenneyModel-1.nb

(*Kronig-Penney potencijal shematski*)
KP = If[0 < Sin[x] < 3, 1, 0];
Plot[KP, {x, -9, 10}, Filling → Axis,
FillingStyle → Orange]</pre>


```
(*Definija funkcija i njihovih
derivacija*)
psil[x_] := A Exp[I \alpha x] + B Exp[-I \alpha x]
psi2[x_] := C Exp[ \beta x] + D Exp[-\beta x]
Dpsi1[x_] := -i B e^{-ix\alpha} \alpha + i A e^{ix\alpha} \alpha
Dpsi2[x_] := -D e^{-x\beta} \beta + C e^{x\beta} \beta
(*Rubni uvjeti*)
psi1[0] == psi2[0]
Dpsi1[0] == Dpsi2[0]
psi2[b] == Exp[I k L] psi1[-a]
Dpsi2[b] == Exp[I k L] Dpsi1[-a]
A+B=C+D
iA\alpha-iB\alpha=C\beta-D\beta
De^{-b\beta}+C e^{b\beta} = e^{ikL} (Ae^{-i\alpha\alpha}+Be^{i\alpha\alpha})
```

 $-D e^{-b\beta}\beta + C e^{b\beta}\beta = e^{ikL} (iA e^{-ia\alpha}\alpha - iB e^{ia\alpha}\alpha)$

	(1	1	-
Matrica =	iα	-i.α	-
	e ^{-i (aα-kL)}	e ^{i (aα+kL)}	- @
	iαe ^{-i (aα-kL)}	-iαe ^{i (αα+kL)}	-e'

(*Konfiguracijska jedandžba*) FullSimplify[Det[Matrica]]

$$\begin{split} & \left\{ \{1, 1, -1, -1\}, \left\{ i\alpha, -i\alpha, -\beta, \beta \right\}, \\ & \left\{ e^{-i (-k L + a\alpha)}, e^{i (k L + a\alpha)}, -e^{b\beta}, -e^{-b\beta} \right\}, \\ & \left\{ i e^{-i (-k L + a\alpha)} \alpha, -i e^{i (k L + a\alpha)} \alpha, -e^{b\beta} \beta, e^{-b\beta} \beta \right\} \right\} \end{split}$$

 $\begin{array}{l} 4 \hspace{0.1cm} i \hspace{0.1cm} e^{i \hspace{0.1cm} k \hspace{0.1cm} L} \hspace{0.1cm} (2 \hspace{0.1cm} \alpha \hspace{0.1cm} \beta \hspace{0.1cm} (\cos \hspace{0.1cm} [\hspace{0.1cm} k \hspace{0.1cm} L \hspace{0.1cm}] \hspace{0.1cm} - \hspace{0.1cm} \cos \hspace{0.1cm} [\hspace{0.1cm} \alpha \hspace{0.1cm}] \hspace{0.1cm} \operatorname{Cosh} \hspace{0.1cm} [\hspace{0.1cm} b \hspace{0.1cm} \beta \hspace{0.1cm}] \hspace{0.1cm}) \hspace{0.1cm} + \hspace{0.1cm} \beta \hspace{0.1cm}) \hspace{0.1cm} (\alpha \hspace{0.1cm} + \hspace{0.1cm} \beta \hspace{0.1cm}) \hspace{0.1cm} \sin \hspace{0.1cm} \alpha \hspace{0.1cm}] \hspace{0.1cm} \operatorname{Sinh} \hspace{0.1cm} [\hspace{0.1cm} b \hspace{0.1cm} \beta \hspace{0.1cm}] \hspace{0.1cm}) \hspace{0.1cm} + \hspace{0.1cm} \beta \hspace{0.1cm}) \hspace{0.1cm} \end{array}$

 $hbar = 1.05457 * 10^{-34};$

KronigPenneyModel-1.nb 3

4 KronigPenneyModel-1.nb

```
(*plankova konstanta /2Pi *)
echarge = 1.602 * 10^ - 19;
(*naboj elektrona *)
emass = 9.109 * 10^ - 31;
(* masa elektrona Kg *)
\alpha[E_] := \sqrt{\left(\frac{2 \text{ emass } E}{\text{hbar}^2}\right)};
\beta[E_{, v0_{]}} := \sqrt{\left(\frac{2 \text{ emass } (v0 - E)}{\text{hbar}^2}\right)};
(* "b" je širina zida,
"a" je udaljenost između zidova*)
bandfunc[b_, a_, Energy_, v0_] :=
  Module[{factor, tracev, aev, bev},
    v = v0 * echarge;
    bA = b + 10^{-10};
    aA = a * 10^{-10};
    (* konfiguracijska jednadžba*)
    factor = If[Energy == v, Null,
       (\beta [Energy, v]^2 - \alpha [Energy]^2) /
        (2 \alpha [Energy] \beta [Energy, v])];
    trace =
     Cos[\alpha[Energy] * aA] *
        Cosh[\beta[Energy, v] * bA] +
       factor * Sin[a[Energy] * aA] *
        Sinh[ß[Energy, v] * bA];
    If[Abs[trace] < 1.</pre>
     result = ArcCos[trace], result = Null];
    Return[result];
  1;
```

(* crtanje pojaseva preko tablice za vrijednosti {energija, plotband(energija)}*)

```
plotband[{d_, s_, v0_, estart_, eend_,
     estep_}] := Module [{bandp, bandn},
   bandp =
     Table \left[ \left\{ bandfunc [d, s, energy, v0] \right\} \right]
        energy
}, {energy, estart, eend,
       echarge
       estep} ;
   (* za crtanje n-
       strane dovoljno je imati samo p-
       stranu→simetričnost E(k)=E(-k)*)
   negK[{a_, b_}] := {-a, b};
   bandn = Map[negK, bandp];
   Labeled[ListLinePlot[{bandp, bandn},
      Ticks \rightarrow {{-Pi, -Pi/2, 0, Pi/2, Pi},
        Automatic},
      PlotRange \rightarrow
       {{-Pi, Pi}, {0, eend / echarge}},
      AxesLabel → "Energija (eV)",
      PlotStyle \rightarrow Thick],
    Text
      Row[{"valni vektor ",
        Style["(k L)", Italic]}]];
```

KronigPenneyModel-1.nb 5

6 KronigPenneyModel-1.nb

```
bandp1 =
  Table [{bandfunc[2.5, 2.5, energy, 6],
      energy
}, {energy, 0.1*echarge,
      echarge
     15 * echarge, 0.1 * echarge};
(* za crtanje n-
   strane dovoljno je imati samo p-stranu→
  simetričnost E(k)=E(-k)*)
negK[{a_, b_}] := {-a, b};
bandn1 = Map[negK, bandp1];
bandp1 // MatrixForm;
Labeled[ListLinePlot[{bandp1, bandn1},
  \texttt{Ticks} \rightarrow \{\{\texttt{-Pi}, \texttt{-Pi}/\texttt{2}, \texttt{0}, \texttt{Pi}/\texttt{2}, \texttt{Pi}\},\
     Automatic},
  PlotRange \rightarrow
   {{-Pi, Pi}, {0, eend / echarge}},
  AxesLabel \rightarrow "Energija (eV)",
  PlotStyle \rightarrow Thick],
 Text
  Row[{"valni vektor ",
     Style["(k L)", Italic]}]]
```


KronigPenneyModel-1.nb 7

8 KronigPenneyModel-1.nb

Manipulate[

(*interaktivni izbornik*) If[estart > eend, estart = eend]; plotband[{b, a, v0, estart * echarge, eend * echarge, 0.01 * echarge}], {{**v**0, 6, "Visina potencijalne barijere (eV)" }, 1, 20, 0.1, Appearance \rightarrow "Labeled"}, {{a, 2.5, "Širina između dva zida (Angstremi)"}, 1, 10, 0.1, Appearance \rightarrow "Labeled"}, {{b, 2.5, "Širina potencijalnog zida"}, 1, 10, 0.1, Appearance \rightarrow "Labeled" $\}$, {{estart, 0.1, "Početna energija (eV)"},
0.1, eend, 0.1, ControlPlacement → Bottom, Appearance → "Labeled"}, {{end, 15, "Makismalna energija (eV)"}, 1, 40, 0.1, ControlPlacement \rightarrow Bottom, Appearance → "Labeled"},

```
SaveDefinitions \rightarrow True, Alignment \rightarrow Center]
```


plotband1[2.5, 2.5, 6, 0.1 * echarge, 15 * echarge, 0.01 * echarge]

plotband1 [2.5, 2.5, 6, 1.602×10^{-20} , 2.403 × 10⁻¹⁸, 1.602×10^{-21}]

bandp1

bandp1

B. Kronig-Penney potencijal 3D

Kronig Penne¥ 3D*) Ouit hbar = 1.05457 * 10^-34; (*plankova konstanta /2Pi *) echarge = 1.69±9/*10 -3•;(*plankova Konstanta /2F1 *)
echarge = 1.602 *10^-19; (*naboj elektrona *)
m0 = 9.109 *10^-31; (* masa elektrona [Kg] *)
emassL = 1.64 *m0;(* y,z, masa elektrona u QD [Kg] *)
emassT = 0.082 *m0; (* x, efektivna masa elektrona u QD [Kg] *) emassD = 0.4 * m0; (*efektivna masa elektrona u dielektiku [Kg] *) Module { {vA, aAX, bAX, aAY, bAY, bAZ, aAZ, kkX, kkY, kkZ, GuessAX, GuessAY, GuessAZ}, vA = v0 * echarge; bAX = bX * 10^-9; aAX = aX + 10^ - 9; $bAY = bY * 10^{-9};$ $aAY = aY * 10^{-9};$ $bAZ = bZ * 10^{-9};$ aAZ = aZ * 10^ - 9; kkX = kX;kkY = kY;kkZ = kZ; GuessAX = GuessX * echarge; GuessAY = GuessY * echarge; GuessAZ = GuessZ * echarge; (* 3D konfiguracijska jednadžba*) $\label{eq:factorX} \text{factorX} = \frac{\sqrt{\left(\frac{2 \text{ emassD} \left(\forall h - (\text{EngX}) \right)}{\text{hbar}^2} \right)^2} - \sqrt{\left(\frac{2 \text{ emassT} \left(\text{ EngX} \right)}{\text{hbar}^2} \right)^2}}{\sqrt{\left(\frac{2 \text{ emassT} \left(\text{ KngX} \right)}{\text{hbar}^2} \right)} \sqrt{\left(\frac{2 \text{ emassD} \left(\forall h - (\text{EngX}) \right)}{\text{hbar}^2} \right)} \text{,}}$ $factorY = \frac{\sqrt{\left(\frac{2 \operatorname{emassD}(v\lambda - (\operatorname{Eng}Y))}{\operatorname{hbar}^2}\right)^2} - \sqrt{\left(\frac{2 \operatorname{emassL}(\operatorname{Eng}Y)}{\operatorname{hbar}^2}\right)^2}}{\sqrt{\left(\frac{2 \operatorname{emassL}(\operatorname{Eng}Y)}{\operatorname{hbar}^2}\right)\sqrt{\left(\frac{2 \operatorname{emassL}(\operatorname{Eng}Y)}{\operatorname{hbar}^2}\right)}};$ $factor Z = \frac{\sqrt{\left(\frac{2 \text{ emass} J \left(\sqrt{h} - \left(\frac{E \log 2}{2}\right)}{hbar^2}\right)^2} - \sqrt{\left(\frac{2 \text{ emass} J \left(\frac{E \log 2}{2}\right)}{hbar^2}\right)^2}}{\sqrt{\left(\frac{2 \text{ emass} J \left(\frac{E \log 2}{2}\right)}{hbar^2}\right)} \sqrt{\left(\frac{2 \text{ emass} J \left(\sqrt{h} - \left(\frac{E \log 2}{2}\right)}{hbar^2}\right)} ;$

$$\begin{split} & \text{indRoot} \Big[\\ & \left\{ \left(\text{Cos} \left[\sqrt{\left(\frac{2 * \text{emassT} * \text{EngX}}{\text{hbar}^2} \right) * \text{aAX} \right] * \\ & \text{Cosh} \left[\sqrt{\left(\frac{2 * \text{emassT} * \text{EngX}}{\text{hbar}^2} \right) * \text{bAX} \right] * \\ & \text{factorX} * \text{Sin} \left[\sqrt{\left(\frac{2 * \text{emassT} * \text{EngX}}{\text{hbar}^2} \right) * \text{aAX} \right] * \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassD} * (\text{vA} - \text{EngX})}{\text{hbar}^2} \right) * \text{bAX} \right] } \Big] = \\ & \text{Cos} \left[\text{kkX} \right], \\ & \left(\text{Cos} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngY}}{\text{hbar}^2} \right) * \text{aAX} \right] * \\ & \text{Cosh} \left[\sqrt{\left(\frac{2 * \text{emassD} * (\text{vA} - \text{EngY})}{\text{hbar}^2} \right) * \text{bAY} \right] * \\ & \text{factorY} * \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassD} * (\text{vA} - \text{EngY})}{\text{hbar}^2} \right) * \text{aAY} \right] * \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngY}}{\text{hbar}^2} \right) * \text{aAY} \right] * \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngY}}{\text{hbar}^2} \right) * \text{bAY} \right] = \\ & \text{Cos} \left[\text{kY} \right], \\ & \left(\text{Cos} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngY}}{\text{hbar}^2} \right) * \text{aAZ} \right] * \\ & \text{Cosh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngY}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{factorZ} * \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{factorZ} * \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{factorZ} * \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] + \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] \right\} = \\ & \text{Cos} \left[\text{kZ} \right] \right\} , \quad & \text{EngX}, \quad & \text{GuessAX} \right\}, \quad & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right) * \text{bAZ} \right] \right\} = \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right] * \text{bAZ} \right] \right\} = \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right] * \text{bAZ} \right] \right\} = \\ & \text{Sinh} \left[\sqrt{\left(\frac{2 * \text{emassL} * \text{EngZ}}{\text{hbar}^2} \right] \right] = \\ & \text{$$

plot3-ml-mo-SiO2-Ge-2.5-2.5-2.5.nb 3

```
4 | plot3-ml-mo-SiO2-Ge-2.5-2.5-2.5.nb
```

1

DijeljenjaK = 19; dijeljenja temeljnog intervala k *) BrojK = DijeljenjaK + 1; (* Broj redaka za izračun *) GroundK = Table $\left[N \left[\frac{\pi}{\text{DijeljenjaK}} j \right] \right]$ {j, 0, DijeljenjaK, 1}; (*Sve moguće kombinacije k-ova za 3D slučaj... nije trivijalno*) $\texttt{PTableKX2} = \texttt{Table[j, \{j, 1, (BrojK)^3, 1\}];}$ **PTableKY2** = Table $[j, \{j, 1, (BrojK)^3, 1\}];$ **PTableKZ2** = Table $[j, \{j, 1, (BrojK)^3, 1\}];$ $For[j = 1, j \le BrojK, j++,$ For[i = 0, i < BrojK², i++, PTableKX2[[j + BrojK * i]] = GroundK[[j]]]] z = 0; For[j = 1, j ≤ BrojK * (BrojK), j++, For[i = 1, i ≤ BrojK, i++, {z = z + 1; PTableKY2[[z]] = PTableKX2[[j]]}]] z = 0; For $[j = 1, j \le BrojK, j++,$ $For[i = 1, i \leq BrojK^2, i++,$ $\{z = z + 1; PTableKZ2[[z]] = GroundK[[j]]\}$]

(*Tablice za 3D*)


```
(*Simetrija*)
map1[\{a_{, b_{, c_{, d_{}}}\}] := \{-a, b, c, d\};
map1[[c_, b_, c_, c_, c_,]] = ( c, c, c, c, ,,
s3D1 = Map[map1, Ptab3Ds1];
map2[{a_, b_, c_, d_}] := {a, -b, c, d};
s3D2 = Map[map2, Ptab3Ds1];
map3[{a_, b_, c_, d_}] := {a, b, -c, d};
s3D3 = Map[map3, Ptab3Ds1];
map4[{a_, b_, c_, d_}] := {-a, -b, c, d};
s3D4 = Map[map4, Ptab3Ds1];
map5[{a_, b_, c_, d_}] := {-a, b, -c, d};
s3D5 = Map[map5, Ptab3Ds1];
map6[{a_, b_, c_, d_}] := {a, -b, -c, d};
s3D6 = Map[map6, Ptab3Ds1];
map7[{a_, b_, c_, d_}] := {-a, -b, -c, d};
s3D7 = Map[map7, Ptab3Ds1];
FinalTab = Join[Ptab3Ds1, s3D7, s3D6, s3D5, s3D4,
s3D3, s3D2, s3D1;
DOS2 = Join[Ptab3Ds1, s3D7, s3D6, s3D5, s3D4, s3D3,
     s3D2, s3D1];
(*Biranje za crtanje određenih linija iz 3D plota
(Rezanje u 100) *)
(tab3Ds1X = Table[{j, j}, {j, 1, (BrojK), 1}];
(*Definicija odredišne tablice*)
(*Uzimanje takvih točaka u x za koje vrijedi
  uvjet zadovoljavanja Odaberi¥ i OdaberiZ*)
i = 1;
For [j = 1, j \le (BrojK)^3, j++,
       If[0 == FinalTab[[j, 2]] && 0 == FinalTab[[j, 3]], {
                          tab3Ds1X[[i, 1]] = FinalTab[[j, 1]],
                          tab3Ds1X[[i, 2]] = FinalTab[[j, 4]],
                         i = i + 1
                         }
         ]
   1
(*Biranje za crtanje određenih linija iz 3D plota
(Rezanje u 110) *)
tab3Ds1M = Table[{j, j}, {j, 1, (BrojK), 1}];
(*Definicija odredišne tablice*)
(* X i Y su sada jednaki*)
```

F

plot3-ml-mo-SiO2-Ge-2.5-2.5-2.5.nb

8 plot3-ml-mo-SiO2-Ge-2.5-2.5-2.5.nb

Show[slikal, Ticks → {{{-√3 Pi, R}, {0.2, "T"}, {Pi, K}, {2π, M}}, {{0.6442826, 644.283}, {0.6442832, 644.284}}, PlotRange → Automatic] Export["Si02-25-25-25-20-00-Ge.pdf", %] E(meV) 644.284 644.283 K M k Si02-25-25-25-000-Ge.pdf

SetDirectory[NotebookDirectory[]]
/home/roberto/Dropbox/Phd/Hrvatski/Uvod/Pic

plot3-ml-mo-SiO2-Ge-2.5-2.5-2.5.nb

SiO2-25-25-25-001-010-Ge.pdf

C. Termanova metoda

2 | 6-2-100k.nb

6-2-100k.nb 3

idealne krivulje kapaciteta CHF*) $HFidealData = Table \left[\left\{ \frac{Cox CDHFf[\psi s]}{Cox + CDHFf[\psi s]} \right] \frac{A}{10^{-9}}, \psi s \right\},$ {\sqrt{s}, -0.91, 2.47, 1/47}]; HFidealfunc = Interpolation[HFidealData]; (* ψ s VS Vg za Termanovu metodu*) φsVgdata = (*Ideal bez oxid i interface VgHFideal[us_, uF_, uQ_] := $-\psi FB + us + Sign[us] \frac{Abs[ChargesHF[us \beta, uF \beta, uQ \beta]]/\beta}{bs[ChargesHF[us \beta, uF \beta, uQ \beta]]/\beta}$ (*oxid*) VgHF[us_, uF_, uQ_] := -ψFB - 1.49 + us + Sign[us] $\frac{Abs[ChargesHF[us\beta, uF\beta, uQ\beta]]/\beta}{}$ Sign[us] Cox (*Vg(\u03c6/s) za crtanje krivulje, ali tek kad se sazna Dit, Qit=Cit(\u03c6/s)\u03c6/s, Cit=q²Dit u "F/m²"*) Qit = $q^2 (1.5 \times 10^{12}) * \frac{10\,000}{(*\,^{10000})}$ za prelazak u m⁻²J⁻¹*) q q VgHFQit[us_, uF_, uQ_] := -ψFB - 1.49 + us + $\texttt{Sign}[us] \xrightarrow{\texttt{Abs}[\texttt{ChargesHF}[us\beta,\psi B\beta,\psi B\beta]]} + \underbrace{\texttt{Qit}\,us}{\texttt{us}}$ **Cox** β Cox (*LFideal= $\texttt{ListPlot} \Big[\texttt{Table} \Big[\Big\{ \texttt{Vg} \left[\psi \texttt{s} \right], \frac{\texttt{Cox} \texttt{CDD} \left[\psi \texttt{s} \right]}{\texttt{Cox+CDD} \left[\psi \texttt{s} \right]} \frac{\texttt{A}}{\texttt{10}^{-9}} \Big\},$ {\u03c64s,-0.2881,0.88,0.0031}],Frame→True, Joined \rightarrow False, FrameLabel \rightarrow {"Vg (V)", "C (nF)"}, PlotLabel→"LF C-V ideal curve"];*) HFideal = ListPlot

.

dataLR,

4 | 6-2-100k.nb

$$\begin{split} & \text{Table} \Big[\Big\{ \text{VgHFideal}[\psi \text{s}, \psi \text{B}, \psi \text{B}], \frac{\text{Cox CDHFf}[\psi \text{s}]}{\text{Cox} + \text{CDHFf}[\psi \text{s}]} \frac{\text{A}}{10^{-9}} \Big\}, \\ & \{\psi \text{s}, -1.0 \ \psi \text{B}, 2.95 \ \psi \text{B}, 0.031\} \Big], \end{split}$$

dataRL,

$$\begin{split} & \mathtt{Table} \Big[\Big\{ \mathtt{VgHFQit}[\psi_{\mathtt{S}},\psi_{\mathtt{B}},\psi_{\mathtt{B}}], \frac{\mathtt{Cox}\,\mathtt{CDHFf}[\psi_{\mathtt{S}}]}{\mathtt{Cox}+\mathtt{CDHFf}[\psi_{\mathtt{S}}]} \frac{\mathtt{A}}{\mathtt{10^{-9}}} \Big\}, \\ & \{\psi_{\mathtt{S}},-0.9\,\psi_{\mathtt{B}},2.3\,\psi_{\mathtt{B}},0.031\} \Big] \end{split}$$

},

 $\begin{array}{l} \mbox{Frame} \rightarrow \mbox{True, Joined} \rightarrow \{\mbox{False, False, True, True}\}, \\ \mbox{BaseStyle} \rightarrow \{\mbox{FontSize} \rightarrow 12\}, \\ \mbox{PlotStyle} \rightarrow \{ & \{\mbox{Black, Thick}\}, \\ & \{\mbox{Red, Thick}\}, \\ & \mbox{Directive}[Blue, Thick, \\ \mbox{RGBColor}[0, 0.7, 1.4]], \\ & \mbox{Directive}[Blue, Thick] \\ \mbox{FrameLabel} \rightarrow \{\mbox{"Vo}_{\mathbb{C}} (\mathbb{V})\mbox{", "C } (nF)\mbox{"}\}, \\ \mbox{FrameLabel} \rightarrow \{\mbox{"True, True, True, True}, \\ & \mbox{}\}, \\ \mbox{FrameTicks} \rightarrow \{ \\ \mbox{All}, \\ \mbox{All}, \\ \end{array}$

 $\left\{ \left\{ Cox \frac{A}{10^{-9}}, \ "C_{0x}", \ \{1.00, \ 0.05\}, \right. \right. \\ Directive [Red, Thick, Dashed] \right\},$

 $\left\{ \frac{\text{Cox CFB}}{\text{Cox + CFB}} \xrightarrow{A} , \text{"C}_{\text{FB}}\text{", } \{1.00, 0.05\}, \right. \\ \text{Directive[Red, Thick, Dashed]} \left. \right\},$

 $\sqrt{\left(\left(\mathrm{e}^{-\beta\,\psi}+\beta\,\psi-1\right)+\frac{\mathrm{ni}^{2}}{\mathrm{Ppo}^{2}}\,\left(\mathrm{e}^{\beta\,\psi}-\beta\,\psi-1\right)\right)\right]}$

CHARGES $[\psi s_{-}] := -\epsilon s$ EFIELD $[\psi s_{-}];$ CD $[\psi s_{-}] := -D$ [CHARGES $[x], x] / . x \rightarrow \psi s;$

 $\mathbf{EFIELD}\left[\psi s_{}\right] := \frac{\sqrt{2}}{\beta \, \mathrm{LD}} \, \mathbf{F}\left[\psi s\right]$

 $\mathbf{F}\left[\psi_{-}\right] := \mathbf{If}\left[\psi \leq \mathbf{0}, -\sqrt{\left(\left(\mathbf{e}^{-\beta \,\psi} + \beta \,\psi - 1\right) + \frac{\mathbf{ni}^{2}}{\mathbf{Ppo}^{2}} \left(\mathbf{e}^{\beta \,\psi} - \beta \,\psi - 1\right)\right)},$

(results the second seco

Needs["PlotLegends`"]
(*CV ideal*)
(*Parametri*)

6-2-100k.nb 5

6 | 6-2-100k.nb

$$\begin{split} & \text{Directive[Red, Thick, Dashed]} \} \} \\ & \\ & \\ \rangle, \\ & \text{FrameLabel} \rightarrow \left\{ "\psi_{\mathbb{S}}\left(\mathbb{V} \right) ", "D_{1\text{E}} \ \left(\operatorname{cm}^{-2} \mathrm{eV}^{-1} \right) " \right\}, \\ & \text{PlotStyle} \rightarrow \left\{ \text{Black, Thickness[0.01]} \right\}, \end{split}$$

PlotRange → All, BaseStyle → {FontSize → 12}]
Export["Dit-CV-HF-6-2-100k.pdf", %];

6-2-100k.nb 7

8 | 6-2-100k.nb

 $(*VOTT_{PB} \text{ mora bit}]$ $VOT_{PB} = \frac{q}{Cox} \frac{1}{dox} \int_{0}^{dox}$ $Q_{OT} = 2.115 \times 10^{23} \times dox$ 0.42883 0.426683

0.426683 4.653×10¹²

(*Traženje pomkanutih napona*) (*Interpolacija exp. podataka*) LR = Interpolation[dataLR, InterpolationOrder → 1]; RL = Interpolation[dataRL, InterpolationOrder → 1]; CVIDEAL = Interpolation $Table \left[\left\{ VgHFideal[\psi s, \psi B, \psi B], \frac{Cox CDHFf[\psi s]}{Cox + CDHFf[\psi s]}, \frac{A}{10^{-9}} \right\},$ $\{\psi s, -1.1 \psi B, 3.0 \psi B, 0.031\}$]; $\begin{array}{l} (* \mbox{Presjek između LR RL IdealCV i CFB*}) \\ \mbox{FindRoot} \begin{bmatrix} LR[x] - \frac{Cox CFB}{Cox + CFB} & A \\ 10^{-9} = 0, \{x, -2.8\} \end{bmatrix}; \end{array}$ VL_{FB} = x / . % $\operatorname{FindRoot}\left[\operatorname{RL}[x] - \frac{\operatorname{Cox CFB}}{\operatorname{Cox} + \operatorname{CFB}} \frac{A}{10^{-9}} = 0, \{x, -1\}\right];$
$$\label{eq:response} \begin{split} & VR_{FB} = x \ / \ & \\ & \\ & \text{FindRoot} \left[\text{CVIDEAL} \left[x \right] - \frac{\text{Cox CFB}}{\text{Cox + CFB}} \ \frac{A}{10^{-9}} = 0 \ , \ \{x, \ -1.0\} \right] \ ; \end{split}$$
 $VR_{FB} = x / . \%$ VCV_{FB} = x /. % (*Pomak za Qfixed charge je*) $VFO_{FB} = \frac{Abs[VL_{FB}] + Abs[VR_{FB}]}{Abs[VCV_{FB}]} - Abs[VCV_{FB}]$ 2 (*Broj Q_{fo}=*) $\underline{Q_{fo}} = \frac{\text{VFO}_{FB} \star \text{Cox}}{q} / \text{ 10 000} (\star \text{cm}^{-2} \star)$

q / 1.01277×10¹¹

Životopis

Robert Slunjski rođen je u Varaždinu 1978. godine. Diplomirao je inžinjerski smjer fizike na Prirodoslovno-matematičkom fakultetu u Zagrebu 2007. godine sa temom diplomskog rada pod nazivom *Proučavanje radijacijskih defekata u polikristaliničnom siliciju* pod mentorstvom dr.sc. Branka Pivca sa Instituta Ruđer Bošković. Od 2007 zaposlen je na Institutu Ruđer Bošković u Zavodu za fiziku materijala. Od 2008 godine radio je kao asistent u nastavi na Fakultetu elektrotehnike i računalstva. Objavio je 5 znanstvenih radova u znastvenoj bazi CC. Sudjelovao je 9 znastvenih skupova i na 5 znanstvenih radionica. Aktivno je sudjelovao na nekoliko skupova i projekta čiji je cilj bio popularizacija znanosti. Aktivan je član u Vijeću asistenata Instituta Ruđer Bošković čiji je predsjednik bio od 2009. do 2011. godine.

Popis objavljenih CC radova

- 1. Slunjski, Robert; Pivac, Branko; Capan, Ivana; Plodinec, Milivoj; Dubček, Pavo; A, Ulyashin; Physica status solidi A (2013)....submitted....
- Capan, Ivana; Pivac, Branko; Slunjski, Robert. Electrical characterisation of Si-SiO2 structures. Physica status solidi. C, Current topics in solid state physics. 8 (2011), 3; 816-818
- 3. Slunjski, Robert; Capan, Ivana; Pivac, Branko; Le Donne, Alessia; Binetti, Simona. Effects of low-temperature annealing on polycrystalline silicon for solar cells. Solar energy materials and solar cells. 95 (2011), 2; 559-563
- 4. Novoselnik, Branimir; Pilipovic, Marko; Jaćimović, Radojko; Pivac, Branko; Slunjski, Robert; Capan, Ivana. Capacitance changes in neutron irradiated n-type silicon: The flux effect. Nuclear Instruments Methods in Physics Research. 268 (2010), 15; 2400-2402
- Grozdanić, Danijela; Slunjski, Robert; Rakvin, Boris; Dubček, Pavo; Pivac, Branko; Radić, Nikola; Bernstorff, Sigrid. Structural analysis of amorphous Si films prepared by magnetron sputtering. Vacuum. 84 (2009), 1; 126-129