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1 INTRODUCTION    

Throughout history, big cities were built in close proximity to rivers and lakes since ancient as 

well as modern communities have always depended on fresh water systems to survive, so 

people started trying to control them. Control of streams and rivers has been vital to 

technological innovation and human population growth. However, there have always been 

concurrent negative tendencies of water demand growth.  (Smith 1971, World Commission on 

Dams - WCD 2000). 

Nowadays it has been estimated that an average person spends 50 litres of water per day for 

basic human water requirements, such as drinking, sanitation, bathing and food preparation. 

Therefore, around 3800 km3 of fresh water is withdrawn from the world’s lakes, rivers and 

aquifers every year. The volume extracted has dubled from 50 years ago (World Commission 

on Dams - WCD 2000). 

After humans had found their way to tailor water for their basic needs, irrigation and creating 

drinking water reservoirs, the next step was harnessing the power of moving water for 

commerce and industry. This has resulted from population growth and lifestyle changes, which 

have increased our demand for energy and its production, contributing to development of 

storage hydropower plants. At that point, the influence they would have on the environment 

was neglected. Changes in the natural flow regime caused by plant discharge have showed 

negative tendencies and therefore require careful consideration.  

1.1 HYDROPEAKING  

1.1.1 What is hydropeaking 

 

In order to meet peak electricity demand, some hydropower stations alter their discharge several 

times a day. Those alterations in discharge are called hydropeaking. Hydropeaking is 

sometimes defined just as a sudden increase in discharge of hypolimnic water from hydropower 

plants, which raises water depth, water velocity and shear stress (Ward and Stanford, 1979; 

Cushman, 1985; Bratrich et al., 2004; Bruno et al., 2013). Shear stress is defined as the force 

of moving water against the channel bed.  
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Hydropeaking is a complex phenomenon because several variables are associated with sudden 

changes in flow characteristics: bottom shear stress, depth, cross-section width, velocity, 

amount and composition of suspended matter, water temperature and quality (Ward and 

Stanford, 1979; Cushman, 1985; Moog, 1993; Webb and Walling, 1993; Fette et al., 2007; 

Olden and Naiman, 2010; Bruno et al., 2013).  

 

1.1.2 Changes in flow regimes 

 

Streamflow quantity and timing are critical components of water supply, water quality, and 

ecological integrity of river systems. Streamflow is the key driving variable for downstream 

aquatic ecosystems. The natural flow regime depends on geomorphological, climatic and 

environmental characteristics of a river. It is defined by five critical components: magnitude of 

discharge, frequency of flow occurrence, duration of high or low flow conditions, flow timing 

or predictability, and flow change rate (Poff et al. 1997). In case of naturally occurring floods 

as well as in hydropeaking events, timing, duration and frequency are all critical for the survival 

of stable communities of plants and animals living downstream. River flow patterns are 

influenced by seasonal contrasts in rainfall or melt-water contributions. Storage hydropower 

peaking plants can disrupt the whole flow regime by altering the hydrological characteristics of 

downstream flow, including magnitude, duration, timing, rate of change (upramping and 

downramping rate) as well as frequency of changes in flow (Céréghino and Lavandier, 1998, 

Marty et al., 2009). They can influence seasonal and daily fluctuations to differ greatly from 

natural flow levels (Poff, 1997; WCD, 2000).  

 

1.1.3 Abiotic and biotic effects of hydropeaking 

 

Hydropeaking causes physical and chemical changes in the receiving stream (Cushman, 1985). 

These heavy fluctuations of the water level mostly alter the shoreline by rapid and repeating 

flooding and drying of these zones (Cushman, 1985; Moog, 1993; Schmutz et al., 2013). This 

often leads to stranding of animals.  

Another occurrence connected to discharge from hydropower plants is thermopeaking. 

Thermopeaking is the change of thermal conditions, most commonly caused by the release of 

hypolimnic water from the bottom of reservoirs. It decreases water temperature in summer and 
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increases it in winter (Hilsenhoff, 1971; Ward and Stanford, 1979; Raddum, 1985; Moog, 1993 

Maiolini et al. 2007; Carolli et al., 2012; Bruno et al. 2013). Thermal wave usually occurs 

shortly after the increase of discharge (Toffolon et al., 2010), which is an additional stressor for 

river biota (Bruno et al., 2013).  

There have been separate experiments on the effects of hydropeaking on macroinvertebrates, 

as well as thermopeaking. Finally, the effects of hydro- and thermopeaking were observed 

simultaneously, showing the greatest impact as a result. This combination is also the only one 

in natural field situations, where hydropower plants are present (Bruno et al., 2013). 

In addition, modified water qualities (temperature, oxygen and nutrients, loss of system 

dynamics, and loss of the ability to maintain continuity of an ecosystem) result in ecologically 

modified river systems. Modifying the ecosystem also changes the biochemical cycle in the 

natural riverine system. 

1.1.4 General effects on stream biota 

 

Fluctuations in discharge and the corresponding potential changes in flow forces can have 

dramatic effects on lotic organisms and community structure (Welcomme, 1985), especially 

during spates.  

Hydropeaking can affect macroinvertebrates directly by inducing faunal drift (Troelstrup and 

Hergenrader, 1990). It also influences them indirectly by modifying available food resources 

(Bohle, 1978; Anderson and Cummins, 1979; Moog and Janecek, 1991) and making changes 

in species composition, density, biomass and migration patterns (Moog, 1993; Blinn et al., 

1995; Céréghino and Lavandier, 1998; Céréghino, 2002; Bruno et al., 2010). 

1.2 DRIFT  
 

Drift is the downstream transport of aquatic organisms in the current. It was discovered 

accidentally by investigating the drift of terrestrial insects that had fallen into a stream 

(Needham, 1928). Drifting is only a temporary event in the life of numerous members of  

bottom fauna (Waters, 1972), but the cause and timing of drifting events differ. Even though it 

is a normal everyday occurrence in lotic systems, it is usually connected to floods. Drift varies 

daily as well as sesonally. 
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Invertebrate drift often exhibits a distinct diel periodicity (Tanaka, 1960; Müller, 1963; Waters, 

1972). From observations that many species exhibit drift periodicity throughout their life cycle, 

it would seem most likely that foraging is the main factor in periodic behaviour. It is not certain 

that circadian rhythms and some other external factors affect periodicity, but it seems likely that 

endogenous locomotory rhythms are present to some degree. They are also connected to some 

environmental agents like light intensity (Waters, 1972). Most of the animals found in drift are 

active at night. Those nocturnal drifters show a distinctive pattern. The most common one 

consists of two peaks: one just after sunset, and a smaller one just before sunrise (Müller 1965). 

This latter pattern was documented in Baetis, Simuliidae, Turbellaria and Chironomidae 

(Waters, 1972; Cowell and Carew, 1976). Many species simply show an unorganized drift 

increase at night, without a well-defined pattern (Brittain and Eikland, 1988). In the presence 

of fish chemicals, some animals are active only at night, for example Rhyacophila, whereas no 

periodicity was detected without the presence of fish chemicals (Huhta et al, 1999).  

Regarding seasonal varieties, in temperate regions drift is usually the lowest in winter (McLay, 

1968; Clifford, 1972a). In tropical and sub-tropical streams, annual variations are less apparent 

or even non-existent (Hynes, 1975). In mountain regions, drift is similar during most months, 

showing a slight increase towards the end of the rainy season (Turcotte and Harper, 1982).  

In addition to daily and seasonal changes, different densities in drift have been documented 

throughout a life cycle or different size classes of invertebrates (Waters, 1972; Statzner, 1984; 

Cellot, 1989). Moreover, drift rate changes among taxa (Elliot, 1967 and 1971; Statzner and 

Holm, 1982; Brittain and Eikland, 1988; Waringer, 1989; Oldmeadow et al., 2010). Particular 

taxa, for example some Ephemeroptera, Plecoptera, Trichoptera, Chironomidae and Simuliidae, 

due to their frequent drifting represent common drift features (Bishop and Hynes 1969; Brittain 

and Eikeland 1988; Imbert and Perry, 2000). 

Another division of drift is based on its cause, grouping it into behavioural or active, constant 

or passive and catastrophic drift (Waters, 1972). Firstly, behavioural drift is the drift that occurs 

at night, or some other consistent period of the day, resulting from a behaviour pattern 

characteristic for certain species (Waters, 1972). It is a voluntary drift (Huhta, Muotka and 

Tikkanen, 2000; Miyasaka and Nakano, 2001) and it happens indirectly as a result of animal 

activity, such as avoiding predators (Müller, 1974). Constant drift is defined as the continuous 

stream of representatives of all species in low numbers and occurring at all times (Waters, 

1972). It is also called background drift, and it happens due to accidental dislodgement from 
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the substrate. Catastrophic drift results from the physical disturbance of the bottom fauna, 

usually by flood events and consequent bottom scouring, but also by other factors such as 

drought, high temperature, anchor ice, pollution, and insecticides (Waters, 1972). It is 

involuntary and accidental, with high and low discharge variations that are often caused by 

man-made water regulations (Minshall and Winger, 1968; Gore, 1977). Gibbins et al. (2007) 

argue that without information on the survival or fecundity of animals entrained and carried 

downstream, it is not possible to say whether a given episode of drift is actually catastrophic 

for invertebrate populations. Thus, defining catastrophic drift simply as a marked change from 

the background rate, triggered by bed instability, does not deal with the ecological 

consequences of displacement. Until the population consequences of drift are fully understood, 

the term ‘mass drift’ is suggested to be used to describe large increases in drift associated with 

periods of increased discharge (hydropeaking). 

Furthermore, certain authors mention another classification with distributional drift as a method 

of dispersal, distribution and an inherent part of the life cycle of numerous species (Müller, 

1973; Minshall and Petersen 1985; Moser and Minshall, 1996; Matthaei et al., 1997). 

It is seldom possible to categorize drift precisely into all these types. There are numerous 

classifications, as well as frequently contradicting views on how to divide and distinguish 

different types of drift (Elliot, 1967; Bogatov, 1988; Poff et al., 1991; Gibbins et al., 2007). 

Nevertheless, it is clear that macroinvertebrates drift not only naturally, but also as a result of 

humans and man-made influences like hydropeaking. 

1.3 HYDROPEAKING AND DRIFT 

1.3.1 Adaptations and species-specific traits  

 

A common anthropogenic cause of increased drift is hydropeaking. Hydropeaking does not 

necessarily reduce species diversity (Moog, 1993; Céréghino, 2002) since some species are 

adapted to high flow velocities. A trait is defined as a characteristic that reflects a specie’s 

adaptation to its environment. (Menezes, 2010) Traits are usually divided into two categories: 

biological traits (for example life cycle or physiological and behavioural characteristics such as 

maximum body size, lifespan, feeding and reproductive strategies, mobility, etc.) and 

ecological traits (related to habitat preferences, like pH and temperature tolerances, tolerance 

to organic pollution, biogeographic distribution, etc.) (Menezes, 2010). 
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A clear example of morphological adaptation is Ephemerellidae and Heptageniidae with their 

robust forms and flat or cylindrical body shapes (Moog, 1993; Céréghino, 2002). Another 

example is Rhyacophila, which has claws to grab onto the sediment (Céréghino, 2002). A 

representative case of biological adaptation is the high fecundity of stream invertebrates. For 

example, mayflies have 500 to 3000 eggs (Brittain, 1982) and Baetis rhodani up to 4,500 eggs 

(Elliott and Humpesch, 1980). Furthermore, there is an upstream movement of female imagoes 

to lay eggs, compensating the downstream drift in aquatic stages, which is called the 

colonization cycle (Müller, 1954, 1982). Moreover, it has been reported that the drift of Baetis 

nymphs decreases with increasing current velocities (Corkum et al., 1977; Bird and Hynes, 

1981). This can be explained by finding protection from the current within the substrate 

(Lehmkuhl and Andersen, 1972). Leptophlebiidae and Leuctridae (Moog, 1993) represent 

another example of behavioural adaptation. Nymphs of the stonefly Peltoperla maria leave the 

leaf packs and enter the inorganic substrate during increasing flows, which makes them less 

vulnerable to catastrophic drift (Elwood and Cushman, 1975). This might also account for their 

rapid recolonization after floods.  

Although hydropeaking is caused by human influence, different macroinvertebrates have 

developed various traits in order to adapt to the challenges of high flow velocity. Substrate 

preference plays an important role in this adaptation as well. 

1.4 SUBSTRATE  

1.4.1 Substrate preference of macroinvertebrates 

 

Invertebrate density and taxonomic richness both increase as substrate size increases from sand 

to cobbles (Minshall 1984; Jowett and Richardson 1990). Current velocity required to disturb 

a substrate particle increases with particle diameter above the silt-sand range (Carson and 

Griffiths 1987; Ashworth and Ferguson 1989). Hence, larger particles provide a more stable 

habitat for invertebrates. Smaller interstitial spaces of gravel beds are expected to retain finer 

paniculate organic matter (Parker 1989), which may account for the greatest abundance of 

detrital-feeding oligochaetes. Simultaneously increased water turbulence and bed roughness are 

expected to reduce the thickness of boundary layer. This is a low-velocity region that exists just 

above stone surfaces (Smith 1975; Davis 1986). It increases the exchange of dissolved gases, 

nutrients, and organic matter between bulk flow, stone surfaces and interstitial water 

influencing invertebrates (Statzner 1981). Thus, at a given current velocity, coarser substrates 
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are expected to provide a more suitable habitat for invertebrates with high oxygen requirements, 

such as some Plecoptera, Ephemeroptera, and Trichoptera (Nebeker 1972; Wiley and Kohler 

1980).  

On the one hand, areas of larger substrates have a greater bed stability and exchange of water 

between the bed and water column, so it is expected that filter-feeding invertebrates will favour 

these habitats. On the other hand, rougher substrates cause greater small-scale variability in 

stone-surface current velocities (Davis 1986), whereas gravel-boulder-sized beds provide a 

more complex three-dimensional habitat than silty, sandy or bedrock areas (Minshall 1984). 

Both result in a greater range of microhabitats and more refuges from predation by other 

invertebrates, fish (Brusven and Rose 1981), and from scouring during high flows (Williams 

and Hynes 1974; Cowie 1980). Habitat diversity and the presence of refuges are expected to 

contribute to greater taxonomic richness, invertebrate biomass and densities in rivers with 

gravel when compared to cobble/boulder dominated beds (John M. Quinn and Christopher W. 

Hickey 1990).  

In a nutshell, different macroinvertebrates express their preferences of substrate size depending 

on their feeding mode, water quality requirements, as well as biotic interactions.  

1.4.2 Sediment roughness 

 

Bed roughness develops due to stream surface relief at the base of a flowing fluid, exerting a 

frictional effect on the flow in the stream. Bed roughness can be described as smooth or rough, 

depending on whether sediment particles go through the viscous sublayer at the base of the flow 

or not. Roughness generally increases with increasing particle size. Grain roughness refers to 

the shear forces created by sediment particles at the flow boundary. Grain roughness can be the 

dominant component of the bed roughness when streambeds consist of gravel or cobbles (Singh 

et al, 2011). 

Bed roughness influences properties of average flow, turbulence, flow resistance and bed 

particle motion. In addition, the effect of bed roughness is one of the key problems in 

understanding near-bed processes important for benthic organisms (Nikora et al, 1998). 

Benthic macroinvertebrates use sheltered locations under rocks and in the interstitium to avoid 

extreme hydraulic conditions (Lancaster and Hildrew, 1993; Boulton et al., 1998; Matthaei, 

Peacock and Townsend, 1999) and predators (Hildrew and Townsend, 1977). Even though 

substratum can provide refuge from hydraulic stress, near-bed flow forces still determine the 
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presence or absence of invertebrates in a specific hydraulic environment. They have to leave 

refuge in order to feed, which makes them subjected to stronger hydraulic forces (Statzner, 

1981).  

Near-bed hydraulic parameters that are important for benthic macroinvertebrates can be 

calculated from a combination of substratum roughness, mean velocity, depth and kinematic 

viscosity. These parameters can also be measured directly from shear stress and velocity, 

substrate particle size or heterogeneity. They are good predictors of benthic invertebrate 

distribution (Statzner et al., 1988). Therefore, any hydrological change (like hydropeaking) that 

leads to an increase in shear stress or other parameters, potentially reduces the availability of 

suitable microhabitat for some species, but can also increase it for other species (Gore, 2001). 

1.4.3 Shear stress and the channel bed  

 

Various studies have shown that shear stress is one of the major factors that influence micro 

distribution patterns of benthic invertebrates (Statzner et al., 1988; Peckarsky et al., 1990; 

Lancaster and Hildrew, 1993; Möbes Hansen and Waringer, 1998). Energy required by 

macroinvertebrates to withstand flow and resist detachment from the bed is more related to the 

shearing forces of water than its velocity (Statzner and Borchardt, 1994).  

Shear stress starts bed-load movement and sediment transport. When the drag force of flowing 

water against a rock is greater than the gravitational force holding it in its place, the rock begins 

to move. Lavelle and Mofjeld (1987) claim that the range of bed shear stresses for weak particle 

motion is indefinitely wide, and that because of that there is a conceptual flaw in the assumption 

that a definite threshold condition can be defined. It is true that the weaker the flow, the smaller 

the number of bed particles that are moved by the flow, per unit time and per unit area of the 

bed, but the lower limit for any particle motion is indefinite (Lavelle and Mofjeld, 1987; John 

Southard, 2006). It has been observed that the critical shear stress for initiation of particle 

movement on a rippled bed is greater than for that on a plane bed, although the mean velocity 

of flow is lower This can be explained by the fact that ripples create form resistance, which 

contributes to most of the measured average bottom shear stress (John Southard, 2006). 

Bed characteristics depend on main flow variables like depth, velocity and sediment size. These 

hydraulic variables are, however, in turn strongly dependent on bed configuration and its 

roughness (Leo van Rijn, 2017). Coarse sediments can withstand higher shear stress than finer 

sediments before being moved downstream. (Table 1).  
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Table 1. Critical shear stress by particle-size classification for determining approximate 

condition for sediment mobility at 20 ℃. (Modified from Berenbrock, C., & Tranmer, A.W., 

(2008). Simulation of flow, sediment transport, and sediment mobility of the Lower Coeur 

d’Alene River, Idaho. U.S. Geological Survey Scientific Investigations Report 2008–5093, 

43.).  

Particle 

classification 

name 

Ranges of particle 

diameters in mm 

Critical bed 

shear stress 

(N/m2 ) 

Coarse cobble 128 – 256 112 – 223 

Fine cobble 64 – 128 53.8 – 112 

Very coarse gravel 32 – 64 25.9 – 53.8 

Coarse gravel 16 – 32 12.2 – 25.9 

 

Both near-bottom flow forces, expressed as shear stress, and the physical characteristics of the 

habitat, in terms of refugial space, are of great importance during periods of hydraulic 

disturbance (Borchardt, 1993). Increased abundance of refugial space reduced the amount of 

loss in populations of tested species and resulted in mitigated impacts of critical flow forces.  

1.4.4 Hydropeaking induced drift depending on sediment roughness 

 

By changing the water depth and velocity, hydropeaking changes the shear stress (Statzner et 

all., 1988). Vertical changes in water velocity produce shear forces that are parallel to the bed. 

These shear forces acting on the bed of a channel generate shear stress, which initiates bed load 

movement. 

Once the entrainment threshold for small material is reached, any larger material present is 

being agitated while still not experiencing downstream motion (Schumm and Stevens, 1973; 

Carling, Kelsey and Glaister, 1992; Garcia et al., 2007). This agitation may result in 

invertebrates losing their hold and being thrown into the water column. In these circumstances, 
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drift may result from a combination of sediment transport (finer material) and agitation (larger 

material).  

Even though mass sediment movement is an obvious mechanism that could trigger catastrophic 

drift, there are no published field data relating the rates of sediment loss from specific places 

on the streambed to drift losses from these locations. It thus remains unclear precisely how 

much sediment loss is needed before the drift becomes catastrophic, or whether the sheer 

agitation of the sediment is sufficient to start it. 

Borchardt (1993) states that in lowland rivers with little refugial space 'catastrophic drift' events 

caused by hydraulic disturbance can be expected before significant substrate movement begins.  

In general, substrate roughness elements disrupt flow causing turbulence, eddy formation, and 

lowered velocities. In some microhabitats, areas behind and between roughness elements can 

experience a considerable reduction in velocities, depending upon both height and spacing of 

the roughness elements. Additionally, roughness elements can cause an overall reduction in 

shearing forces which may establish favorable microhabitats for organisms requiring velocity 

refuges (Way, 1995). In rivers or streams with a bottom of coarse inorganic material, interstitial 

spaces within the stream bed serve as important refugia during such critical hydraulic periods 

(Schwoerbel,1964; Tilzer, 1968), even under sudden changes of discharge (Borchardt and 

Statzner, 1990). However, in lowland running waters the stream bed often consists of fine 

inorganic material with very narrow interstices within the substrata. Therefore, this habitat 

offers little refugial space to most benthic macroinvertebrates while other habitat structures, 

such as woody debris, fulfil this function (Borchardt, 1993). 

1.5 KNOWLEDGE DEFICIENCIES AS THE RATIONALE FOR THIS THESIS 
 

In the beginning of 20th century, research was focused more on the physics than biology of 

stream invertebrates. Fluid mechanics along with technological innovations helped to integrate 

all the above elements in stream ecology with the aim to stress that flow adaptations are much 

more complicated than previously thought. Even though stream ecologists have been 

addressing this issue for over a century now, they are still far from understanding how stream 

invertebrates are adapted to the many different flow conditions they face during their life. The 

near-bottom flows they withstand are extremely complex and create such diverse constraints 

that the adaptation to all of them is physically impossible (Statzner and Holm, 1989; Statzner, 

2008). Nevertheless, scientists are still trying to collect all the data they have on different 
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adaptations and traits, and implement them to biomonitoring and environmental protection 

(Poff et al., 2010; Menezes, 2010; Culp et al., 2011).  

Despite the fact that we know how fish react to hydropeaking and what measures we can take 

to protect them, it still has not been clarified how macroinvertebrates respond to it. Therefore, 

a better understanding of changes in interconnected parameters is needed. Moreover, aiming to 

protect macroinvertebrates first would prove to be a better approach, since it would shelter the 

entire ecosystem (Gore, 2001). In order to explain community composition, it is very important 

to understand how invertebrate species respond to near-bed hydraulic conditions. In the last few 

decades, a lot of attention has been given to complex hydraulic interactions near substratum 

and how they influence benthic invertebrates (Statzner et al., 1988; Quinn and Hickey, 1994; 

Statzner and Borchardt, 1994; Collier et al., 1995; Lancaster and Mole, 1999). However, 

roughness of substratum represents an area that still calls for more detailed research (Mérigoux 

and Dolédec, 2004).  

1.6 STUDY AIMS 
 

The aim of this study was to test hydropeaking as a stressor and sediment roughness as the 

factor that might influence the effects of the assessed stressor. 

Research question 1: Is the hydropeaking-induced drift influenced by the different roughness 

of the bottom? 

Research question 2: Are there species-specific drift patterns related to bottom roughness? 

Research question 3: Does bottom roughness affect size classes of drifted organisms? 

Based on the literature research the following hypotheses have been proposed: 

Hypothesis 1 

Drift will be lower in coarse substrates because animals will find shelter easier there, and shear 

stress will be lower. 

 Hypothesis 2 

Drifted taxa will differ on different sediment types because they live on different substrata and 

in diverse conditions, so they have developed different adaptations as well.  

Hypothesis 3 
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We will find mostly smaller sizes of different taxa in the drift, because smaller specimens can 

hide in the interstitium more easily. However, they are more numerous than larger specimens 

are, so it is expected they could enter the drift purely by chance. Furthermore, they might drift 

on purpose as a way of dispersal and colonization of new habitats. 
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2 MATERIALS AND METHODS 

2.1 STUDY AREA 
 

The experiments were conducted at a recently established facility called HyTEC 

(Hydromorphological and Temperature Experimental Channels). The experimental facility is 

located in Lunz am See in Lower Austria, approximately 600 m downstream of Lake Lunz 

beside the stream Unterer Lunzer Seebach, which is a natural drain of the lake. HyTEC consists 

of two large channels (40 m length, 6 m width) fed with nutrient-poor lake water taken at 

different depths to vary water temperature (Fig. 1). 

 

Figure 1. Schematic view of the HYTEC experimental channels, Lunz am See, lower Austria; 

(1.) experimental channels, (2.) mixing basins, (3.) measuring station, (4.) pipelines, (5.) intake 

surface water, (6.) intake deep water, (7.) mesocosms, (A) flow homogenisation area, (B) 

experiment area, (C) sediment, (D) exchangeable drift net. 

One pipeline transports water from the depth of 10 meters and the other pipeline from the upper 

layer of the lake at 0.75-meter depth. The water from these channels is discharged into the 

stream Unterer Lunzer Seebach. Peak flows of up to 600 l/s can be produced several times a 

day in order to mimic hydropeaking and extreme floods. Water temperature variations of 

approximately 4-7°C between base flow and peak flow can be achieved. Time, duration and 
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intensity of a peak can be controlled manually or automatically by programming a fixed 

experimental setup. Furthermore, the amount of water taken from the upper or lower pipe can 

be chosen, which allows controlling the temperature in the experiments to a certain extent. 

To measure drift of macroinvertebrates, experimental boxes called mesocosms were installed 

at the inflow of the flumes. Each mesocosm has a test area of 0.25 m². An additional start-up 

length of approximately 150 cm was installed to homogenize flow conditions (Fig. 1). At the 

end of each mesocosm, a buffer of 50 cm was installed to lower the flow on the outlet. The 

mesocosms were filled with sediments up to 15 cm. Three mesocosms were put in each channel. 

An exchangeable drift net was installed at the end of the experimental unit to catch drifted 

individuals.  

2.2 SAMPLING OF DONOR POPULATIONS 
 

Benthic invertebrates for the experiments were sampled from the nearby stream Bodingbach. 

The sediment extracted from the stream Ybbs was first cleaned of specimens and used to fill 

the mesocosms. This proved to be an advantage enabling a quick transport and storage of the 

animals and the sediment.  

The water temperature of the stream Bodingbach was measured 8.9°C and the water during the 

experiments was measured to be between 8.6 and 9.3°C, so the animals did not have to deal 

with major temperature changes when being inoculated into mesocosms. The stream is a 

second-order stream (Strahler order) and it is 750 m to 1000 m above sea level. Its mean yearly 

area precipitation is 1.765 mm (Hydrologischer Atlas Österreichs, 2007). 

For each mesocosm, four samples were taken with a 25×25 cm hand net, whereas two samples 

were placed near the shore, and two in-stream. The samples were stored in buckets and carefully 

transferred into the test zone of the mesocosms. It would have been too time-consuming to 

count or sort the taxa in advance, and therefore the samples used for the experiments vary in 

taxa abundances. 

 

2.3 EXPERIMENTAL SETUP 
 

Both experimental channels (with three mesocosms per channel) were used for each 

experimental arrangement, whereas one channel served as the treatment and the other as the 
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control channel. Each experimental arrangement was repeated twice and the control and the 

treatment channel were exchanged randomly. This way 6 treatment and 6 control replicates 

were gained for each experimental setup. The thing that varied in the arrangements was the 

sediment composition and there were three different variations. The first one was a mixture of 

akal (0.2 – 2 cm) and microlithal (2 – 6.3 cm), the second one had akal and microlithal, and the 

last one was a mixture of microlithal and mesolithal (6.3 – 20 cm). 

 

Figure 2. Grain size distribution 

Table 2. Sediment mixtures used in the experiment, shown in percentages 

 Akal Microlithal Mesolithal type 

SEDIMENT 1 39% 61% 0% Medium 

SEDIMENT 2 0% 34% 66% Coarse 

SEDIMENT 3 67% 33% 0% Fine 

 

Each experiment consisted of six phases (Fig. 3). First the sampled animals were taken out of 

the buckets and put into the mesocosms filled with sediement. After inoculation of the animals, 

they were left for 60-minutes to adapt (AT) at a base flow of 2 L per mesocosm. That particular 

discharge was chosen due to preliminary tests and observations. Preliminary tests also showed 

that initial drift is high in the first 10 minutes and stabilizes after 20 minutes. After the 

adaptation time, the base flow was elevated to 20 L/s for each mesocosm by an up ramping 

phase (UR) with a water level rise of 1cm/min (total 5.6 min.). The peak flow lasted for 20 

minutes. The drift net was changed after 10 minutes (P1) and then after 20 minutes (P2), 
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followed by a down ramping phase (DR) of 5, 6 min where the base flow dropped from 20 L 

to 2 L per mesocosm. After the discharge had returned to base flow, the experiment was 

finished. The remaining (not drifted) animals were removed from the mesocosms by increasing 

the discharge again, and by swirling the sediment to flush the animals out. The control channel 

was always running with 6 L (2 L per mesocosm) and was fed with water from both the upper 

and lower pipe, 50% of each. After each phase, the drift net was exchanged and the animals 

were stored in separate, labelled containers with formalin, waiting to be identified in the 

laboratory.  

 

 

 

 

Figure 3. Discharge [l/s] curve during the phases (AT: adaptation time, UR: 

upramping, P: peak flow, DR: down ramping) at treatment and control settings  
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2.4 LEVEL OF IDENTIFICATION OF MACROINVERTEBRATES 
 

Due to the three different setups that were each conducted twice, with 6 treatment and 6 control 

mesocosms containing 6 phases each, there were 216 samples all together in the end (3 × 2 × 6 

× 6 = 216). The samples were isolated and the taxa identified. They were identified to genus, 

or where possible to species level. Some taxa from the Diptera like Chironomidae, was 

identified only to family level. In addition, Oligochaeta and Turbellaria were left at that higher 

level of identification. The taxa were also categorized into four size classes (Table 3.) based on 

data from prior experiments at the HyTEC facility. After that, the data was organized in Excel 

for statistical analysis. 

Table 3. Size classes of the macroinvertebrates  

Size class A 0 – 2 mm 

Size class B 2 – 5 mm 

Size class C 5 – 8 mm 

Size class D 8 + mm 

  

2.5 STATISTICAL ANALYSES 
 

Since not all experimental units had the same number of macroinvertebrates, drift rates were 

used for better comparison. The drift rate was calculated for each taxon by dividing the sum of 

all the drifted individuals (sum UR, P1, P2 and DR) by the overall sum of all the individuals 

that had participated in the experiment (sum UR, P1, P2, DR and REST). The drift rate was 

calculated on taxon, genus, family and order level, as well as for the different size classes and 

phases of the experiment. Since not all the animals were identified to species level, the overall 

comparisons were done at family level drift rates. All the families that were not present in at 

least three experimental units (mesocosms) and with the abundance ≥10 were excluded from 

further analysis. Families Baetidae, Chironomidae, Elmidae, Ephemerellidae, Heptageniidae, 

Leptophlebiidae, Leuctridae and Nemouridae fulfilled those conditions. To determine whether 

hydropeaking had influence on drift rate, Mann-Whitney U-test was used to compare control 

and treatment in each sediment type. A Kruskal-Wallis test was used to determine differences 



18 
 

in control or treatment samples in different sediments. Multiple comparisons of mean ranks for 

all groups was used as a post-hoc test to determine between which sediments was the difference 

more significant. Those tests were done in Statistica 13.1 software.  

A general comparison of all the drifted and non-drifted individuals from all taxa combined 

resulted in only one drift rate for control and one for treatment, drift rates for all six replicates 

of control and treatment had to be calculated separately in order to be able to compare the drift 

rates in Statistica. 

3 RESULTS 

3.1 INITIAL RESULTS 
 

After the whole isolation and identification of the samples, the total number of individuals that 

had participated in this experiment in all the phases (AT, UR, P1, P2, DR and REST) amounted 

to 45,474 (23,332 in control, 22,142 in treatment). 29,013 macroinvertebrate individuals 

(14,075 in control and 14,938 in treatment) participated in the analysis, because all the 

individuals from phase AT (16,461) had been excluded. The purpose of this whole phase was 

for the animals to adapt to the new environment (mesocosm) before the hydropeaking began. 

In the end, a total of 12 orders, 54 families, 86 genera, and 107 taxa were found.  

In all the units, Diptera, Ephemeroptera and Plecoptera were the most numerous orders (Fig. 

4). The percentages of orders in control and treatment in one sediment are quite similar, whereas 

the comparison of different sediment types shows distinct discrepancy. Therefore, to get more 

accurate results, drift rates were used for the comparison instead of the absolute drift numbers.  
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Figure 4. Macroinvertebrate assemblage composition in all 216 samples, from controls and 

treatments in three different sediment types (1, 2, 3 – as described in Table 1) 

3.2 DIFFERENCES BETWEEN CONTROL AND TREATMENT  

3.2.1 General level 

 

Firstly, to determine whether hydropeaking increased the drift in treatment, compared to control 

that had only base flow, differences between these conditions were tested by making a general 

comparison of all the drifted and non-drifted individuals from all taxa combined. (Fig. 5.) Test 

results showed a significant difference (p = 0.000). The difference of drift rates in control and 

treatment units is visible from Fig 6.   
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Figure 5. Comparison of control and treatment ratio of drifted and non-drifted individuals based 

on total macroinvertebrate individuals  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of control and treatment based on drift rates calculated from six replicates 

of each from the total of macroinvertebrate individuals  
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Drift rates from the six replicates were also tested for differences between control and treatment 

in each sediment type. They were all significant; sediment 1 and 3 had the same p-value (p = 

0.013), and sediment 2 had the lowest p-value (p = 0.005).  

3.2.2 Effect of hydropeaking on drift of selected taxa 

 

In addition to finding the differences at general level, we wanted to test if hydropeaking 

increased drift of specific taxa in treatment units. For this, we did not use actual numbers of 

drifted individuals but drift rates since the drift rates show a more accurate state of the effects 

of hydropeaking. 

3.2.2.1 Order level 

First, the testing was done at order level, since most orders were present in all experimental 

units in abundances over 10 so those orders were included in the analysis and therefore the 

results should show a more exact picture of hydropeaking effects (Fig 7).  

The only order that showed significant differences between control and treatment in every 

sediment type was Diptera. Coleoptera and Crustacea had the significant p value in sediment 3 

and Ephemeroptera in sediments 2 and 3. (Table 4). 

Table 4. Mann-Whitney U Test results - comparing control and treatment in each sediment type 

separately using order level drift rates   

 

 

 

 

Order 

 

Sediment 1 Sediment 2 Sediment 3 

p-value 
 

p-value 
 

p-value 
 

Coleoptera 0.936 0.378 0.016 

Crustacea 0.936 0.689 0.037 

Diptera 0.031 0.031 0.031 

Ephemeroptera 0.298 0.008 0.045 

Plecoptera 0.471 0.093 0.575 
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Trichoptera 0.810 0.109 0.200 

 

Figure 7. Comparison of drift rates between control and treatment at order level  

Table 5. Number of cases in which an order had a drift rate – maximumm possible 6 × 3 = 18 

(participated in the analyses – see materials and methods) 

Order Setting Number of cases 

Coleoptera 
Control 14 

Treatment 18 

Crustacea 
Control 8 

Treatment 10 

Diptera 
Control 18 

Treatment 18 

Ephemeroptera 
Control 17 

Treatment 18 

Plecoptera 
Control 17 

Treatment 18 

Trichoptera 
Control 11 

Treatment 15 

 

To find out which genera are responsible for the differences in drift at order level, the relations 

of macroinvertebrates in drifted fraction and non-drifted fraction were displayed in figure 8. 
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The ones with abundance under 10 individuals have been left out. The displayed graphs show 

that in order Coleoptera, genera from the family Elmidae are the most abundant ones. In order 

Diptera the most abundant one is definitely Chironomidae. Plecoptera has high numbers of 

genus Leuctra and family Nemouridae. Order Ephemeroptera has the biggest abundance mainly 

of genera Baetis and Serratella. In order Trichoptera the most abundant genus is Allogamus, 

although the abundances in the entire order are not high.  
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a)

 

b) 

 

Figure 8. Ratio of drifted and non-drifted individuals in most numerous genera in selected 

orders: a) Coleoptera b) Crustacea  
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                 c) 

 

d) 

 

Figure 8. Ratio of drifted and non-drifted individuals in most numerous genera in selected orders:  

               c) Diptera d) Ephemeropter  

296
782 0 2 0 1

20 8

4119
4824

31
27

12 20

15 6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

control treatment control treatment control treatment control treatment

Chironomidae Dicranota Ibisia Simuliidae

DRIFT NO DRIFT

73
94

0

3

2
13

0
1

11

29

0 0 0 4

2 2

5 14 132
287

0

3

1190
881

13

9

230
242

14
16

13

10

25 24 254 272

14 11

455 334 2953
2641

22

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C T C T C T C T C T C T C T C T C T C T C T

Baetis Caenis Ecdyonurus Ephemera Ephemerella Habroleptoides Habrophlebia Heptageniidae Rhithrogena Serratella Torleya

DRIFT NO DRIFT



26 
 

e)

 

f) 

 

Figure 8. Ratio of drifted and non-drifted individuals in most numerous genera in selected 

orders: e) Plecoptera f) Tricjoptera  
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3.2.2.2 Family level 

Secondly, the testing was done at family level, because it was expected that lower taxonomic 

levels would show more specific hydropeaking effects. Macroinvertebrate families that did not 

occur in at least three units in one sediment, with abundance per unit of under 10 individuals, 

were excluded from further analysis. Finally, only 11 families were left over from the initial 54. 

The drift rates of those families are shown in figure 9. to see the difference between control and 

treatment.  

The only family that showed a significant difference between control and treatment in all three 

sediments was Chironomidae. Nemouridae had the significant difference in sediment 1, 

Ephemerellidae and Leucride in sediment 2 and the families Elmidae, Ephemerellidae and 

Heptageniidae in sediment 3 (Table 6.). The other families from table 6 did not show a 

significant difference between control and treatment in any of the sediment types.  

Table 6. Mann-Whitney U Test results - comparing control and treatment in each sediment type 

separately using family level drift rates   

 

 

 

 

 

Family 

 

Sediment 1 Sediment 2 Sediment 3 

p-value p-value p-value 

Baetidae 
 

0.575 0.810 0.093 

Chironomidae 
 

0.031 0.031 0.031 

Elmidae 
 

0.689 0.200 0.020 

Ephemerellidae 
 

0.936 0.013 0.045 

Heptageniidae 
 

0.093 0.128 0.045 

Leptophlebiidae 
 

0.936 0.378 0.378 

Leuctirdae 
 

0.689 0.020 0.873 

Nemouridae 
 

0.031 0.298 0.128 
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Figure 9. Comparison of control and treatment drift rates of selected families 

 

Table 7. Number of cases in which a family had a drift rate (participated in the analyses – see 

materials and methods) 

Family setting Number of cases 

Baetidae 
Control 16 

Treatment 18 

Chironomidae 
Control 18 

Treatment 18 

Elmidae 
Control 14 

Treatment 18 

Ephemerellidae 
Control 16 

Treatment 18 

Heptageniidae 
Control 15 

Treatment 17 

Leptophlebiidae 
Control 9 

Treatment 11 

Leuctridae 
Control 16 

Treatment 18 

Nemouridae 
Control 13 

Treatment 9 
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3.3 DIFFERENCES BETWEEN SEDIMENTS 
 

3.3.1 General level 

 

Since some taxa have different preferences to sediment types and different adaptations to 

staying in those sediments (not drifting away), differences in drift rates were expected on 

different sediments. As there were three different substrate compositions tested, in order to 

determine which sediment would show higher or lower drift rates for each taxon, their drift 

rates were tested separately in order to find out if there were any differences among controls as 

well as in treatments in those sediment types. If any differences occurred, this could show some 

new taxa sediment preferences or confirm some already reported.  

The comparison of drift rates from six replicates indeed showed a significant difference when 

comparing controls in different sediment types (p = 0.028), whereas the treatments in different 

sediment types had borderline significant difference (p = 0.051). The post-hoc test showed a 

significant difference between sediments 1 and 3 in control (p = 0.033) and all the other p values 

were not significant. The graphical display of the drift rate differences is shown in Fig. 11.  

 

Figure 10. Comparison of drifted and non-drifted ratio of total abundance numbers in each of 

the sediment types in control and in treatment 
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Figure 11. Comparison of control and treatment drift rates in different sediment types using 

total abundance numbers  

 

 

3.3.2 Effect on selected taxa  

 

To determine if the same differences as at general level would be found at lower taxonomic 

levels, drift rates were tested in control on different sediment types as well as the treatment on 

those sediments. The tests were made on order and family level for the same reasons already 

stated in 4.2.1 

3.3.2.1 Order level 

Diptera had significant differences between sediment types in control and treatment, as well as 

Coleoptera and Plecoptera. Ephemeroptera had a p-value under 0.05 when testing the 

differences between controls (Table 8). The post-hoc test revealed that in control, the difference 

between sediments 1 and 2 was the significant one in Coleoptera and between 1 and 3 in 

Diptera. The treatments show a significant difference between sediment 2 and 3 in Coleoptera, 

Plecoptera- For Diptera the difference is significant again between sediments 1 and 3 (Table 8).  
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Table 8. Kruskal-Wallis test and post hoc test – comparing differences in drift rates on order level between sediments for control and treatment 

separately  

 

 

Order 

Control 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Coleoptera 0.028 0.026 0.237 1.000 

Crustacea 0.587 1.000 1.000 1.000 

Diptera 0.001 0.155 0.223 0.001 

Ephemeroptera 0.047 0.060 0.175 1.000 

Plecoptera 0.045 0.198 0.052 0.198 

Trichoptera 0.583 1.000 0.991 1.000 

 

 

Order 

Treatment 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Coleoptera 0.029 0.838 0.024 0.351 

Crustacea 0.088 1.000 0.136 0.351 

Diptera 0.015 0.198 0.913 0.012 

Ephemeroptera 0.150 0.991 0.155 0.991 

Plecoptera 0.025 1.000 0.045 0.069 

Trichoptera 0.346 1.000 1.000 0.456 
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3.3.2.2 Family level 

When testing the difference in control between sediment types, Ephemerellidae had a p-value 

≤0.05 and Nemouridae was borderline. Elmidae, Ephemerellidae and Nemouridae had a 

significant difference in treatments between different sediments. All the other combinations of 

families and sediment types had a p-value larger than 0.05 (Table 9). The post-hoc test shows 

that in control, the significant difference in Ephemerellidae was between sediments 1 and 2 and 

in Chironomidae between sediments 1 and 3. In treatment the significant difference between 

sediments 2 and 3 was in Elmidae and Nemouridae and between sediments 1 and 3 in 

Chironomidae (Table 9). 
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Table 9.  Kruskal-Wallis test and post hoc test – comparing differences in drift rates on family level between sediments for control and treatment 

separately  

 

 

 

 

Family 

Control 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Baetidae 
 

0.777 1.000 1.000 1.000 

Chironomidae 
 

0.001 0.155 0.223 0.001 

Elmidae 
 

0.129 0.136 1.000 0.641 

Ephemerellidae 
 

0.007 0.005 0.351 0.351 

Heptageniidae 
 

0.762 1.000 1.000 1.000 

Leptophlebiidae 
 

1.000 1.000 1.000 1.000 

Leuctridae 
 

0.521 1.000 0.768 1.000 

Nemouridae 
 

0.058 1.000 0.120 0.136 

 

 

.

 

 

Family 

Treatment 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Baetidae 
 

0.291 1.000 0.351 1.000 

Chironomidae 
 

0.015 0.198 0.913 0.012 

Elmidae 
 

0.045 0.838 0.039 0.479 

Ephemerellidae 
 

0.032 0.069 0.069 1.000 

Heptageniidae 
 

0.483 1.000 0.703 1.000 

Leptophlebiidae 
 

0.291 1.000 1.000 0.838 

Leuctridae 
 

0.153 0.370 1.000 0.223 

Nemouridae 
 

0.005 0.069 0.006 1.000 
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a)                                                                                       b) 

   

               c)                                                                                            d) 

   

             e)                                                                                              f) 

   

Figure 12. Relationships of control and treatment in different sediment types in each of the 11 families that had 

participated in statistical analysis: a) Baetidae b) Chironomidae c) Elmidae d) Ephemerellidae e) Heptageniidae 

f) Leptophlebiidae 
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 g)                                                                                                h) 

   

Figure 12. Relationships of control and treatment in different sediment types in each of the 11 families that had 

participated in statistical analysis: g) Leuctridae h) Nemouridae 
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a)                                                                                            b)  

    

c)                                                                                        d) 
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e)

 

f)
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g)                            

h)

Figure 13. Drifted and non-drifted ratio of families in selected orders: a) Coleoptera control b) 

Coleoptera treatment c) Diptera control d) Diptera treatment e) Ephemeroptera control f) 

Ephemeroptera treatment g) Plecoptera control h) Plecoptera treatment 
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3.4 EFFECT OF HYDROPEAKING ON SIZE CLASSES IN DRIFT  

3.4.1 Differences between control and treatment 

To see if hydropeaking had any effect on size classes of a taxon in drift. drift rates of different 

size classes at order level were tested, since lower taxonomic levels were not abundant enough. 

Those drift rates are shown in Fig 15 and table 9 show that none of the differences between 

control and treatment in any size class are significant. Moreover, even in some orders, the 

abundance of certain size classes was too small in some experimental units, and therefore they 

are not shown in Figure 14 (a, b). Only a few differences between control and treatment in each 

sediment were significant: Coleoptera in size class B in the sediment type 3, Diptera in size 

class B in all sediment types as well as in size class C in sediment 1 and 3, and finally 

Ephemeroptera in size class C in sediment type 3 (Table 11). 

 

Figure 15. Comparison of control and treatment drift rates on order level size classes of total 

macroinvertebrate individuals (A = 0 – 2 cm; B = 2 – 5 cm; C = 5 – 8 cm; D = 8+ cm ) 
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Table 10. Mann-Whitney U Test – comparing control and treatment units on drift rates of total 

abundance of each size class of macroinvertebrates (A = 0 – 2 cm; B = 2 – 5 cm; C = 5 – 8 cm; 

D = 8+ cm ) 

Size class p-value 

 

A 

 

0.318 

B 

 

0.270 

C 

 

0.103 

D 

 

0.563 
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a)  

 

b) 

 

Figure 15. Drifted and non-drifted ratio in each size class (A = 0 – 2 cm; B = 2 – 5 cm; C = 5 – 

8 cm; D = 8+ cm) of selected orders of macroinvertebrates in a) control b) treatment 
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Table 11. Mann-Whitney U Test results - comparing control and treatment in each sediment             

type separately using order level drift rates of each size class 

 

 

Order 

 

Sediment 

1 

Sediment 

2 

Sediment 

3 

p-value 
 

p-value p-value 

Coleoptera a 
 

0.936 0.927 0.200 

Coleoptera b 
 

0.810 0.927 0.020 

Coleoptera c 
 

0.936 0.689 0.936 

Coleoptera d 
 

0.689 0.337 0.936 

Crustacea a 
 

0.689 0.173 0.689 

Crustacea b 
 

1.000 0.810 0.066 

Crustacea c 
 

1.000 0.936 0.689 

Crustacea d 
 

0.689 0.936 0.689 

Diptera a 
 

0.873 0.298 0.378 

Diptera b 
 

0.031 0.045 0.013 

Diptera c 
 

0.008 0.078 0.031 

Diptera d 
 

0.378 0.689 0.378 

Ephemeroptera a 
 

0.936 0.093 0.093 

Ephemeroptera b 
 

0.230 0.093 0.173 

Ephemeroptera c 
 

0.873 0.093 0.008 

Ephemeroptera d 
 

0.378 0.378 0.378 

Plecoptera a 
 

0.689 0.689 0.128 

Plecoptera b 
 

0.337 0.575 0.575 

Plecoptera c 
 

0.173 0.378 0.689 

Plecoptera d 
 

0,810 1.000 0.689 

Trichoptera a 
 

0.936 0.378 0.936 

Trichoptera b 
 

1.000 1.000 0.262 

Trichoptera c 
 

0.378 0.173 1.000 

Trichoptera d 
 

0.749 0.689 0.631 
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3.4.2 Differences between sediments  

When testing the differences between sediments, Coleoptera in size class A, Diptera in size 

class B, Ephemeroptera in size class A and Trichoptera in size class C were significantly 

different in control units. Diptera and Plecoptera in size classes B were significant in treatment 

units along with Coleoptera size class B and Ephemeroptera and Plecoptera size class A, which 

were borderline significant (Table 12). 

The post-hoc test showed that in control  the difference between sediment 1 and 2 was 

significant in Coleoptera and Ephemeroptera in size class A and between sediment 1 and 3 in 

Dipera B. In treatment, the difference between size class 1 and 3 was significant in Diptera and 

Plecoptera of the size class B (Table 12).  

When testing for differences between sediment types in control and treatment of each size class 

the p-value was not signifficant (p = 0.367 for all), even though Fig. 16 suggests otherwise. 
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Table 12. Kruskal-Wallis test and post hoc test - comparing differences in drift rates on order level for each size class between sediments for control and treatment 

separately  

 

 

 

 

 

Order 

Treatment 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Coleoptera a 0.071 0.086 0.266 1.000 

Coleoptera b 0.054 1.000 0.052 0.390 

Coleoptera c 0.368 1.000 1.000 1.000 

Coleoptera d 1.000 1.000 1.000 1.000 

Crustacea a 0.368 1.000 1.000 1.000 

Crustacea b 0.070 1.000 0.433 0.155 

Crustacea c 0.986 1.000 1.000 1.000 

Crustacea d 0.588 1.000 1.000 1.000 

Diptera a 0.130 0.136 1.000 0.735 

Diptera b 0.016 0.281 0.703 0.012 

Diptera c 0.716 1.000 1.000 1.000 

Diptera d 0.694 1.000 1.000 1.000 

Ephemeroptera a 0.050 0.080 0.136 1.000 

Ephemeroptera b 0.423 1.000 0.768 0.768 

Ephemeroptera c 0.222 1.000 0.583 0.314 

Ephemeroptera d 0.291 1.000 1.000 0.838 

Plecoptera a 0.055 1.000 0.175 0.237 

Plecoptera b 0.031 1.000 0.105 0.045 

Plecoptera c 0.967 1.000 1.000 1.000 

Plecoptera d 0.804 1.000 1.000 1.000 

Trichoptera a 0.119 0.991 0.991 1.000 

Trichoptera b 0.205 1.000 0.703 0.641 

Trichoptera c 0.668 1.000 1.000 1.000 

Trichoptera d 0.528 0.838 1.000 1.000 

 

 

Order 

Control 

Kruskal-

Wallis 
Post-hoc 

p-value 1-2 2-3 1-3 

Coleoptera a 0.022 0.028 1.000 0.105 

Coleoptera b 0.581 0.913 1.000 1.000 

Coleoptera c 1.000 1.000 1.000 1.000 

Coleoptera d 0.368 1.000 1.000 1.000 

Crustacea a 0.368 1.000 1.000 1.000 

Crustacea b 0.586 1.000 1.000 1.000 

Crustacea c 0.368 1.000 1.000 1.000 

Crustacea d 1.000 1.000 1.000 1.000 

Diptera a 0.076 1.000 0.390 0.080 

Diptera b 0.002 0.155 0.314 0.001 

Diptera c 0.840 1.000 1.000 1.000 

Diptera d 1.000 1.000 1.000 1.000 

Ephemeroptera a 0.007 0.005 0.351 0.351 

Ephemeroptera b 0.473 1.000 0.803 0.951 

Ephemeroptera c 0.272 0.479 1.000 1.000 

Ephemeroptera d 0.120 1.000 0.991 0.991 

Plecoptera a 0.120 1.000 0.991 0.991 

Plecoptera b 0.113 1.000 0.120 0.529 

Plecoptera c 0.291 1.000 1.000 0.838 

Plecoptera d 0.586 1.000 1.000 1.000 

Trichoptera a 1.000 1.000 1.000 1.000 

Trichoptera b 0.986 1.000 1.000 1.000 

Trichoptera c 0.035 1.000 0.433 0.433 

Trichoptera d 0.954 1.000 1.000 1.000 
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a) 

 

b) 

 

Figure 16. Ratio of drifted and non-drifted individuals of different size classes on different 

sediment types: a) control b) treatment 
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4 DISCUSSION  

4.1 INITIAL RESULTS 

Despite the fact that four samples were taken from several locations on the river Bodingbach 

for each experimental unit, it seems that the sampling locations were not similar enough. The 

assumption was that those locations would have a similar taxa composition and abundance since 

two samples were taken near the shore, and two in-stream so if the microhabitat was similar so 

should the taxa. However, this did not prove to be the case. That was also the reason why the 

abundances were transformed into drift rate to begin with, in order to make the data comparable. 

Nevertheless, the macroinvertebrate distribution in experimental units must have affected the 

results but it still remains unknown to which proportion.  

4.2 DIFFERENCES BETWEEN CONTROL AND TREATMENT BOTH TOGETHER AND 

IN DIFFERENT SEDIMENT TYPES 

4.2.1 General level 

 

Since control and treatment samples showed a significant difference in drift rates within every 

sediment type, it could be that the hydropeaking increases the drift rates regardless of sediment 

type. 

Expectations that the treatments would differ on different sediment types and the controls would 

not because there was no hydropeaking were not proved. There was no need for an increased 

drift in controls, no matter what the sediment type was, since there was no hydropeaking. The 

controls have a lower p-value so their difference among sediment types is higher than among 

treatments. Significant difference between medium and fine substrate in control might indicate 

a habitat preference of drifted animals since no increased flow could have made them drift. 
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4.2.2 Effects on selected taxa 

 

Within order Coleoptera, the family Elmidae with all of its genera was the only one abundant 

enough to account for the differences in sediment types. Since both order and family only 

showed a significant difference in sediment with fine particles, we would assume they prefer 

finer substrate particles. Nevertheless, the differences in order were significant in both control 

and treatment. It is consequently rather difficult to estimate the impact of hydropeaking. Order 

Diptera with family Chironomidae displayed the same differences. The order as well as the 

family showed a significant difference in all sediment types, as well as in control and treatment 

alike. Therefore, we would connect all the differences to the family itself. 

Crustacea only had two families, Asselidae and Gammaridae. Since Asselidae were the most 

abundant in coarse substrate and Gammaridae in fine substrate, the assumption is Gammaridae 

were the ones that made the differences shown in order Crustacea. Gammarid crustaceans 

commonly occur in small stream benthos, and are often observed to exhibit high drift rates 

along with stream insects. It has been assumed that they swim upstream to compensate for drift. 

They have been observed to undertake significant up-stream movements after being displaced 

by floods (Minekley, 1964; Waters, 1972). Since Crustacea show a significant difference only 

on sediment type 3., the assumption is they prefer habitats with lower particle sizes. This is also 

supported by Rees’s findings (1972), namely that in the field Gammarus the preferred substrates 

are those with a particle size of 1.6-3.2 cm. It should also be considered that neither Asselidae 

nor Gammaridae had had high enough abundances in every experimental unit so it could have 

altered the Crustacea results.  

Ephemeroptera larvae are found in a variety of locations including lakes, wetlands, streams, 

and rivers, but they are most common and diverse in lotic habitats (Bouchard, 2004). 

Ephemeroptera was the most abundant order, but it did not have any significant differences 

between sediments in treatment. Interestingly enough, in control they did. Since they did not 

show a significant difference in sediment with medium particles, this sediment could suit them 

so much that they do not even feel the effects of hydropeaking.  

Plecoptera exhibited differences between sediment types in treatment as well as in control, so 

we cannot conclude that hydropeaking had increased the drift, sice they also drifted a lot in 

control with base flow. None of the sediment types showed a significant difference between 

control and treatment, which is not a surprise considering their usual habitats are rocky, stony 

or gravel substrata. Leuctridae and Nemouridae were the most abundant families in that order.  
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Trichoptera exploit a diversity of microhabitats thanks to the many ways silk is used to construct 

retreats, nets, and cases. Their silk probably accounts for the success of the order as a whole 

(Mackay and Wiggins 1979, Wiggins 1996). Even though not all members have this adaptation 

to increased flow, it might explain why they had no significant differences in any of the analysis.  

Some families are known to be good swimmers like Baetidae (Hefti et al. 1989, Weninger 

1968), so the hydropeaking flow might not have been strong enough to make them drift more. 

Baetis, the most frequent genus in the family Baetidae in this experiment, is usually very 

abundant in drift. They are also very good swimmers and they have a streamlined body (Poff, 

2006), so they might not have entered the drift in higher numbers when the hydropeaking 

occurred. Therefore, they showed no significant difference in any of the analyses.  

Family Chironomidae is described as the most susceptible of all drifting invertebrate groups to 

spate (Anderson and Lehmkuhl 1968; Jones 1951; Richardson 1928), since the larvae, once 

dislodged and in the water column, are incapable of a rapid return to the substrate (Elliott 1971b; 

Elliott and Bagenal1972). Expectations that they would be present in drift in high numbers were 

confirmed. Poff (2006) claims they are abundant, if not dominant in drift samples. Even though 

they form a large proportion of the drift, their numbers are usually small in comparison with 

the numbers left in sediments (Davies, 1976), which corresponds to the number of not drifted 

Chironomides in this experiment. Nevertheless, drift is usually not a big problem for the 

Chironomidae, because larvae compensate for downstream drift by means of non-random 

positive directed behaviour against a current called rheotaxis (Bishop and Hynes 1969b; Elliot 

1971c). 

Members of the family Elmidae are usually common in drift, maybe because they cannot swim. 

Moreover, they are not streamlined and are smaller than 9mm in size (Poff, 2006). Adults can 

be found crawling on stones and wooden debris in the riffle zones of freshwater streams. Some 

occur in the depositional zones of streams, on softer sediments, and some are amphibious and 

feed along the streams banks. Larvae are strictly aquatic, but otherwise share the same habitats 

as adult ones. (Brown, 1991; McCafferty, 1983; White and Brigham, 1996). This might explain 

why they drifted more in sediment with fine particles; which might not have been fine enough 

for Elmidae, especially combined with increased flow. The significant difference in treatment 

units proves that hydropeaking caused the increased drift of the family. 

Even though family Ephemerellidae is found in all sizes of flowing streams on different types 

of substrates where there is reduced flow, the only sediment they did not show significant 
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difference on was the substrate with medium size particles. Therefore, we could conclude that 

the mixture of sediment particles did not suit the family members, possibly due to the fact they 

are often found on leaf packs, and the smaller particles might not have held the leaves in place.  

Some Heptageniidae larvae are poor swimmers, so they should have been present in drift in 

greater numbers in hydropeaking treatments. However, they have an adaptation to high flow 

with their flattened bodies, which allow them to cling to rocks (Macadam, 2004). Mayflies of 

the family Heptageniidae are widespread in streams with abundant firm substrate, often found 

on cobbles, submersed vegetation or logs and leaf packs. Since they only showed a significant 

difference on finer substrate, the assumption would be that this sediment type does not suite 

them because it is not firm enough, or that in this experiment something yet unknown had made 

them drift more on this sediment mixture with increased flow.  

Leptophlebiidae larvae occur in a variety of habitats including lakes, ponds, and swift and slow 

flowing streams alike. They are found on rocks and gravel, leaf packs, and submerged roots 

(Bouchard, 2004). Since they did not show a significant difference in any of the sediment types, 

or even when comparing control and treatment units, we assume they tolerate a wide range of 

particle substrate sizes, or have developed some very effective adaptations to hydropeaking 

(Bouchard, 2004). 

Leuctridae are vulnerable to dislodgement. A relative abundance decrease occurs in patches of 

high mean flow while their typical microhabitats are low-flow microenvironments. They have 

a gill- less, long thin body shape, which makes them well adapted to life in interstitial spaces 

between stones, where they feed on fine particles of detritus and algae (Lancaster and Waldron, 

2001). They probably rarely encounter high shear stress (Lancaster and Belyea, 2006). 

Nevertheless, they showed a significant difference only on coarser substrate. Since they tend to 

hide from increased flow in the substrate, we assume the interstitium in treatment units of that 

sediment type was accidentally clogged with algae or fine sediment from the lake, which made 

them drift more on that sediment. 

Nemouridae are most frequently encountered in leaf packs and in riparian debris in fast water 

with a coarse substrate (Key to Aquatic Macroinvertebrates in Utah, n.d.) so the fact that they 

showed a significant difference in medium sized substrate could be explained by that sediment 

being too fine for them. They also displayed a significant difference when comparing treatments 

between sediment types, so the conclusion would be that the hydropeaking made them drift 

differently on different substrates even though they live in fast waters.  
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4.3 EFFECT OF HYDROPEAKING ON SIZE CLASSES IN DRIFT 
 

It was not able to detect clear effects of hydropeaking on size classes in drift. Animals in some 

size classes were just not abundant enough even at order level, which could have altered the 

final results. Some species never outgrow some size classes, so they do not occur in other size 

classes like for example Caenidae that grow up to 8mm, so they do not occur in size class D 

(Bouchard, 2004). Some belong to a different size class only during some seasons (life cycles) 

and therefore not all size classes of a taxon were present when sampled. Not all size classes of 

an order were present in the same abundance. That is why it would be hard to make any 

assumptions and draw any conclusions from the results of the size class analysis, even though 

there have been reports from the field that specific size distributions in relationship to flow are 

caused more or less directly by flow forces (Statzner 1981, 1989; Statzner and Bittner 1983).  

4.4 EXPERIMENT IMPERFECTIONS 
There is an infinite number of factors and possible problems that need to be considered when 

conducting any experiment. They cannot all be addressed. This experiment certainly had some 

imperfections. However, it showed some shortcomings that could be prevented in future 

experiments, like higher abundance per experimental unit as well as more experimental units 

to get more confident results. Another improvement would be a more homogenous sampling in 

order for the data to be more comparable. The algae that came with the water from the lake 

could also have been a factor that increased or decreased the drift by clogging the interstitium 

or by tangling individuals. This could be solved using bars or nets that would stop the strings 

of algae before they reach the mesocosms. Due to all these reasons, it is hard to draw definite 

conclusions. Nevertheless, our experiments have shown some results with significant 

differences so those can be a starting point for new experiments.   

To summarise:  

Research question 1: Is the hydropeaking-induced drift influenced by the different roughness 

of the bottom? Hypothesis that the drift will be lower in coarse substrates because animals will 

find shelter easier there, and the shear stress will be lower proved to be true. 

Research question 2: Are there species-specific drift patterns related to bottom roughness? 

Hypothesis that the drifted taxa will differ on different sediment types because they live on 

different substrata and in diverse conditions, so they have developed different adaptations as 

well, also proved to be true. To what extent and the reasons why still have to be explained.  
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Research question 3: Does bottom roughness affect size classes of drifted organisms? 

Hypothesis that we will find mostly smaller sizes of different taxa in the drift, because smaller 

specimens can hide in the interstitium more easily. However, the fact that they are more 

numerous than larger specimens, it is expected they could enter the drift purely by chance, was 

also taken into consideration. Furthermore, the fact that they might drift on purpose as a way of 

dispersal and colonization of new habitats was also considered. This hypothesis could not be 

confirmed or rejected because only a few orders showed a significant difference in some size 

classes.  
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5 CONCLUSION  

• Significant differences have been found between control and treatment experimental 

units when testing total drift numbers, which shows that hydropeaking increases drift 

regardless of sediment type. 

• Significant differences have also been found between control and treatment units in 

different sediment types, which shows that substrate roughness affects drift rates. 

• Some taxa exhibited significant differences in drift rates on different sediment types but 

the reasons for those differences are still not determined.  

• The differences between sediment types when testing different size classes have not 

been found neither in control nor treatment units. 

• Other factors were tested in similar experiments in this facility. Some of them, like 

temperature, showed a greater impact on drift. Therefore, we would conclude that the 

sediment type has a minor effect on the drift in comparison with other factors. More 

studies are required in order to test the connections between sediment types and 

increased drift resulting from hydropeaking.  
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