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1. Introduction 
 

1.1. Parkinson’s disease and current therapies 
 

Parkinson’s disease is a chronic neurodegenerative age-associated disorder (de Rijk et al., 2000). 

It was first medically described as a neurological syndrome in 1817 in a detailed medical essay 

entitled "An Essay on the Shaking Palsy" published by London doctor James Parkinson to whom 

it owes its name (Goetz, 2011). There are six cardinal symptoms of Parkinson’s disease, all related 

to motor behavior: tremor at rest, rigidity (increased resistance to passive movement of a 

patient's limbs), akinesia (absence of normal unconscious movements), bradykinesia (slowness 

of movement), hypokinesia (reduction in movement amplitude), postural instability. Commonly 

cognitive symptoms are also present, e.g. dementia, depression (Jankovic, 2008). The lifetime 

risk of developing Parkinson’s disease is relatively high at 1.5%, however, though life-expectancy 

is reduced compared to healthy subjects, it’s not considered a fatal disease (Ishihara et al., 2007). 

As is commonly known, the main neuropathological features of Parkinson’s disease are twofold:  

motor-symptoms arise from the progressive loss of dopaminergic neurons of the ventral 

midbrain structure substantia nigra pars compacta (SNpc) which may correlate with the 

increased susceptibility to oxidative stress, and evolving processes of development of Lewy 

bodies and neurites, corresponding with the protein misfolding, polymerization, and abnormal 

proteostasis at the cellular level (Jankovic 2008).  

Although more than a century passed before the central pathological feature of Parkinson's 

disease (PD) was found to be the loss of neurons in the substantia nigra pars compacta (SNpc), 

the pace of discovery accelerated following Arvid Carlsson's 1958 discovery of dopamine (DA) in 

the mammalian brain. SNpc neurons were then found to form the nigrostriatal dopaminergic 

pathway, and this line of research culminated with key discoveries. One of them being that the 

loss of SNpc neurons leads to striatal DA deficiency, which is responsible for the major symptoms 

of PD (Dauer and Przedborski, 2003; Kandel et al., 2003; Smith et al. 2004). The dopaminergic 

neurons in the midbrain are located in three cell groups: nucleus A8 cells in the retrorubral field, 
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nucleus A9 cells in the substantia nigra, and nucleus A10 cells in the ventral tegmental area and 

related nuclei (Berger et al, 1991; Porrino and Goldman-Rakic 1982; Williams and Goldman-Rakic, 

1998). Parkinson’s disease involves the chronic and selective depletion of mesencephalic 

dopaminergic neurons (DAns) of the A9 subgroup localized in the SNpc, projecting to the striatum 

(Mendez et al, 2005; Martinez-Serrano et al., 2011; Thompson et al., 2005). 

 Under normal conditions, dopaminergic neurons of the SNpc project to the striatum, where 

terminally released dopamine (DA) activates excitatory D1 as well as inhibitory D2 metabotropic 

dopamine receptors on subsets of striatal γ-Amino Butyric Acid (GABA) signaling medium spiny 

projection neurons (MSNs) (Onn et al., 1994.). As the MSNs expressing D1 and D2 receptors 

project to different primary targets within the basal ganglia, the DA depletion causes hyper 

activity in the D2-regulated pathway through lack of inhibition, and hypo activity in the D1-

regulated pathway through lack of activation (Bolam et al., 2000). The consequential signaling 

imbalance is manifested throughout the basal ganglia and results in a reduced overall input to 

the motor cortex, causing the before mentioned motor symptoms. Environmental factors are 

considered to increase the risk of developing the pathogenesis of PD. They range from behavioral 

features, lifestyle (coffee and cigarette consumption), chronic exposure to pesticides and metals, 

to the hormonal status, ethnicity, gender and age (Litvan et al., 2007). MPTP (1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine) and its hydroxylated derivatives, a particular nigrostriatal 

neurotoxin, has provided powerful evidence to support the theory of environmental risks, which 

develops a relatively selective destruction of DAn in the substantia nigra and causes similar 

symptoms with PD in both animals and humans. In the last decades, new discoveries in the 

neurogenetics of PD have suggested that genetic factors may play equally important roles in the 

ethiology of PD. Several studies have demonstrated that major familial PD results from mutations 

in certain single genes and monogenic forms, including autosomal dominant and recessive 

disorders, which may account for around 5–10% of all PD cases (the rest being of unknown origin, 

the so called idiopathic PD). The G2019s mutation in the Leucine-Rich Repeat Kinase 

(LRRK2/PARK8 locus) and mutations in the alpha-synuclein (SNCA/PARK1 locus) gene, which 

generate intraneuronal inclusions containing α-synuclein protein known as Lewy bodies and 

carry progressive degeneration of the neuron in the substantia nigra and then trigger clinical 
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motor symptom, are two of the most common autosomal dominant missense genes. Lewy bodies 

are abnormal aggregates of protein that develop inside nerve cells. They are identified under the 

microscope when histology is performed on the brain. They appear as spherical masses that 

displace other cell components. There are two morphological types: classical (brain stem) Lewy 

bodies and cortical Lewy bodies. A classical Lewy body is an eosinophilic cytoplasmic inclusion 

that consists of a dense core surrounded by a halo of 10-nm wide radiating fibrils, the primary 

structural component of which is alpha-synuclein. In contrast, a cortical Lewy body is less well-

defined and lacks the halo. Nonetheless, it is still made up of alpha-synuclein fibrils. A Lewy body 

is composed of the protein alpha-synuclein associated with other proteins such as ubiquitin, 

neurofilament protein, and alpha B crystallin. It is believed that Lewy bodies represent an 

aggresomal response in the cell (Popescu, et al., 2004; Ishizawa et al., 2003).Other autosomal 

dominant mutations, including PAPK3, PAPK13, UCH-L1, among others, are relatively rare. 

Autosomal recessive mutations in genes PTEN-induced putative kinase 1 (PINK1), Parkin, DJ-1 

(Daisuke-Junko-1), ATP13A2, PLA2G6, FBXO7, DNAJC6, and SYNJ1 usually cause early onset and 

lesser clinical manifestation. For example, PD patients with a Parkin/PAPK2 mutation generally 

present with early-onset Parkinsonism, slow disease progression, and a better response to L-

DOPA. In addition, the majority of PD cases are sporadic (over 90%), known as idiopathic PD, 

possibly caused by a complex interaction among genetically susceptibility variants and 

environmental factors, which some geneticists and epidemiologists have explored as the G × E 

model in the pathogenesis of sporadic PD. A large proportion of these sporadic forms have been 

identified in the monogenic form linked to familial PD. In other words, those genes responsible 

for monogenic aberrations are also susceptibility factors, such as polymorphism variants in 

Mendelian genes, such as α-synuclein (SNCA), LRRK2, Parkin, PINK1, and DJ-1, and heterozygous 

mutations in susceptibility genes, such as microtubule-associated protein tau and 

glucocerebrosidase beta acid (GBA), identified by genome-wide association studies (GWAS) 

(Klein et al., 2006).  
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Figure 1. Neuropathology of Parkinson's Disease 

(A)The schematic shows a normal nigrostriatal pathway (in red), while the photograph 

demonstrates the normal pigmentation of the substantia nigra pars compacta (SNpc; see 

arrows), produced by neuromelanin within the dopaminergic neurons. The nigrostriatal 

pathway consists of dopaminergic neurons whose cell bodies are located in the SNpc. These 

neurons project (thick solid red lines) to the basal ganglia and synapse in the striatum. (B) The 

illustration shows the diseased nigrostriatal pathway (in red), and the photograph 

demonstrates depigmentation (i.e., loss of dark-brown pigment neuromelanin; arrows) of the 

SNpc due to the marked loss of dopaminergic neurons. In Parkinson's disease, the nigrostriatal 

pathway degenerates. There is a marked loss of dopaminergic neurons that project to the 

putamen (dashed line) and a much more modest loss of those that project to the caudate (thin 

red solid line). (C) Immunohistochemical images of Lewy bodies, in a SNpc dopaminergic 

neuron. Immunostaining with an antibody against α-synuclein reveals a Lewy body with an 

intensely immunoreactive central zone surrounded by a faintly immunoreactive peripheral 

zone (left photograph). Conversely, immunostaining with an antibody against ubiquitin yeilds 

more diffuse immunoreactivity within the Lewy body (right photograph). (Dauer and 

Przedborski, 2003) 
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In PD, the progressive depletion of dopaminergic neurons results in deficient levels of dopamine, 

an endogenous neurotransmitter belonging to the catecholamine family. Its synthesis starts from 

L-Phenylalanine an amino acid which is converted into L-tyrosine by the enzyme phenylalanine 

hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is 

converted into L-DOPA by the enzyme tyrosine hydroxylase (TH), with tetrahydrobiopterin, O2, 

and iron (Fe2+) as cofactors. This step is considered to be the limiting one and thus, TH is used as 

a marker for dopaminergic neurons (DAns). The L-DOPA is converted into dopamine by the 

enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with 

pyridoxal phosphate as the cofactor (Musacchio, 2013). After synthesis, dopamine is transported 

from the cytosol into synaptic vesicles by a solute carrier—a vesicular monoamine transporter, 

VMAT2 (Eiden et al., 2004).Dopamine is stored in these vesicles until it is released into the 

synaptic cleft. In most cases, the release of dopamine occurs through a process called exocytosis 

which is caused by action potentials, but it can also be caused by the activity of an intracellular 

trace amine-associated receptor, TAAR1 (Grandy et al., 2016). This mechanism is necessary in 

order to prevent dopamine from being metabolized by Monoamine oxidase (MAO) or by 

Catechol-O-methyltransferase (COMT, before having fulfilled its task as a neurotransmitter 

(Daubner et al., 2011; Meiser et al., 2013). 

 

Figure 2. Conversion of phenylalanine and tyrosine to its biologically important derivatives. 

(https://en.wikipedia.org/wiki/Tyrosine) 
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Current clinical therapies for Parkinson’s disease offer strictly symptomatic relief, aiming at 

maintaining motor functionality of patients as dopaminergic neurodegeneration progresses. 

From the late 1960’s up until today the dopamine precursor L-3,4-dihydroxy-phenyl-alanine, 

levodopa, remains the most potent drug for controlling PD symptoms. Levodopa is metabolized 

and released by surviving dopaminergic neurons, thereby increasing the quantitative release per 

cell, compensating for the degenerated dopaminergic neurons (Melamed et al., 1982.) The 

addition of carbidopa, a peripheral dopa decarboxylase inhibitor, enhances the therapeutic 

benefits of levodopa. In patients who are particularly sensitive to peripheral side effects such as 

nausea and vomiting, additional carbidopa (Lodosyn®) may be added to the conventional 

carbidopa/levodopa preparation. A majority of patients treated with levodopa experience motor 

fluctuations, dyskinesias or other complications after 5 years of treatment (Jankovic, 2005). Since 

motor fluctuations and dyskinesias are primarily related to the dose and duration of levodopa 

treatment (Schrag and Quinn, 2000), most parkinsologists advocate therapeutic strategies 

designed to delay the onset of levodopa therapy in order to delay the onset of levodopa-related 

motor complications (Jankovic 2002). There are three strategies designed to improve levodopa-

induced dyskinesias: 1) reduce the dosage of levodopa, 2) use drugs known to ameliorate 

dyskinesias, and 3) surgery. Several drugs, including amantadine, have been reported to improve 

levodopa-induced dyskinesias without necessitating the reduction in levodopa dosage (Verhagen 

Metman et al., 1999). The addition of a COMT inhibitor, MAO-I inhibitor or a dopamine agonist 

inhibitor may be used in the management of levodopa-induced motor complications (Jankovic et 

al., 2007). Other drugs with antidyskinetic effect include clozapine, fluoxetine, propranolol, the 

cannabinoid receptor agonist nabilone, and fipamezole. Some of the new antiepileptic drugs are 

being investigated as potential therapies for levodopa-induced dyskinesias. For example, 

levetiracetam (Keppra®) was found to significantly reduce levodopa-induced dyskinesias in 

MPTP-lesioned marmosets (Hill et al., 2003). In patients with severe motor fluctuations, 

subcutaneous apomorphine, a dopamine agonist, may be used as rescue therapy (Pietz et al., 

1998). 
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In the adult brain, two areas are recognized to harbor populations of dividing neural stem cells, 

giving rise to new neurons throughout life. One area is the sub-granular zone of the dentate gyrus 

of the hippocampus, where newly formed neurons migrate only shortly and integrate in the 

immediately overlaying granule cell layer (Alvarez-Buylla and Lim, 2004). The other region is the 

sub-ventricular zone of the striatum, where newly formed neurons migrate to integrate in the 

olfactory bulb (Merkle et al., 2004). Despite this ability of the adult brain to produce new neurons 

throughout life, the potential of the brain to repair itself is highly limited (Thored et al., 2006). 

This means that once neurons are lost in other regions than the olfactory bulb or the granule cell 

layer, they’re generally not replaced. It is the aim of the neural stem cell field to design and 

produce stem cells in the laboratory, which can be transplanted into the brain to replace or 

support compromised neurons in disease states (Lindvall et al., 2004).  By introducing genes of 

interest in stem cells prior to transplantation, the therapeutic potential of the cells can be 

increased, either by enhancing existing properties of the cells, or by introducing new ones.  

 

1.2. PD animal models 
 

To date, the animal model of PD has progressively matured, and includes the 6-hydroxydopamine 

(6-OHDA) stereotaxic injection model and the 1-methyl-4-phenyl-1,2,5,6- tetrahydropyridine 

(MPTP) intraperitoneal injection model, providing gross specimen models to mimic DAn loss in 

SNpc and striatal dopamine depletion. However, these gross experimental PD models cannot 

recapitulate the intrinsic neuropathological features of PD, since they do not replicate the special 

vulnerability to neurodegeneration of DAn and the natural process of Lewy bodies and Lewy 

neurites (Dauer and Przedborski , 2003).  

Currently, the most common model of PD replicated in the animal adult brain involves the 

intraperitoneal injection of MPTP and the stereotactic injection of 6-OHDA. The administration 

of these neurotoxins could induce specific damage of DAn to study pathophysiology, clinical 

features, and pathogenesis of PD (Langston et al., 1983; Rodriguez et al., 2001). For MPTP, its 

metabolic product 1-methyl-4-phenylpyridinium ion (MPP+) in vivo, which can enter DAn 

through the dopamine transporter (DAT) and then block mitochondrial complex I activity, deplete 
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intracellular ATP, and enhance oxidative stress, induces the specific neurotoxicity of DAn in SNpc 

(Nicklas et al., 1985). For 6-OHDA, which can contribute to the accumulation of ROS in the 

mitochondria and the inhibition of the mitochondrial respiratory enzymes, this leads to gradual 

neuron death and selective degeneration of DAn. 

 

1.3. Neural stem cells  
  

A stem cell is a non-specialized cell with the capacity to give rise to more stem cells, self-renewal, 

for an extensive period of time and produce progeny that in the end will terminally differentiate 

into major cell types of tissue of origin, a property known as multipotency (Seaberg and van der 

Kooy, 2003). Stem cells can be arranged in a hierarchy depending on their self-renewal and 

differentiation capacity. Totipotent stem cells can give rise to all cells that will make up an 

embryo, for example the fertilized egg. Pluripotent stem cells can be found in the inner cell mass 

of the blastocyst and can generate all cells of the three germ cell layers which will give rise to all 

tissues in the body. Stem cells obtained from this source are called embryonic stem (ES) cells. 

Multipotent stem cells can give rise to all mayor mature cell types in the tissue from which they 

were originally obtained (Gage, 2000). Stem cells divide, symmetrically, producing daughter cells 

that either are two identical stem cells or two progenitor cells, or asymmetrically, producing one 

stem cell and one progenitor cell. The progenitor cell is frequently defined to be more lineage 

restricted, and can be bipotent or even unipotent. It has less self-renewal capacity than the stem 

cell. The progenitor cells will eventually generate more specialized cells that are committed 

towards a particular lineage, and, in the case for neural progenitor cells, eventually give rise to 

neurons and glia. Precursor cells is a term collectively used for both stem and progenitor cells 

and defines unspecifically a cell earlier in development than the progeny it gives rise to (McKay, 

1997).  

Neural stem cells (NCSs) have attracted major research and public interest during recent years. 

One explanation is the potential use of NSCs in treating or reducing the impairment for patients 

suffering from various neurodegenerative diseases such as Parkinson’s disease, Huntington’s 
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disease, Alzheimer’s disease and stroke (Lindvall and Kokaia, 2006). NCSs generally refer to stem 

cells derived from the central nervous system (CNS) or from the inner cell mass of the blastocyst, 

which maintain the capacity for self-renewal, and can generate neurons, astrocytes and 

oligodendrocytes (Temple, 2001). There are three main sources of human NSCs for in vitro 

culture expansion. Pluripotent ES cells derived from the inner cell mass of the blastocyst and 

multipotent somatic stem cells that can be generated from either the developing fetal or mature 

adult CNS. 

Cellular plasticity is a major focus of investigation in developmental biology. The major 

breakthrough came in 2006 when Takahashi and Yamanaka introduced the concept of induced 

pluripotent stem cells (iPSCs) by generating stem cells with qualities remarkably similar to 

embryonic stem cells. iPSCs were generated by using a combination of 4 reprogramming factors, 

including Oct4 (Octamer binding transcription factor-4), Sox2 (Sex determining region Y)-box 2, 

Klf4 (Kruppel Like Factor-4), and c-Myc and were demonstrated both self-renewing and 

differentiating like ESCs, and thus, could be used as an alternative for hESCs in various 

clinics/research (Singh et al., 2015). 

The recent discovery that induced neuronal (iN) cells can be generated from mouse and human 

fibroblasts by expression of defined transcription factors suggested that cell fate plasticity is 

much wider than previously anticipated, also indicating that direct lineage conversions are 

possible between very distantly related cell types (Vierbuchen and Wernig, 2011). Importantly, 

iN cells can also be derived from defined endodermal cells. The reprogramming process both 

induces neuronal properties and extinguishes prior donor cell identity, and therefore represents 

a complete and functional lineage switch as opposed to generation of a chimeric phenotype. The 

examples of direct reprogramming may very well become important tools for both basic biology 

and regenerative medicine (Gaspard et al., 2009). It remains to be seen whether in direct somatic 

lineage conversions the reprogramming is truly complete, or whether any epigenetic memory of 

the previous cell fate remains, as has been seen with nuclear transfer (Ng and Gurdon, 2005).and 

induced pluripotent stem cells (Kim et al., 2010) . 

 



  

10 
 

1.4. Cell replacement therapy 
 

Experimental therapies, based on the cell replacement of the loss of substantia nigra pars 

compacta (SNpc) DAn using neural stem cells (NSCs) from fetal brain tissues, human embryonic 

stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons 

(iDA neurons) have been touted as the future of regenerative medicine, with a heavy burden of 

promise and expectation placed upon them to deliver an unprecedented number of cell-based 

therapies (Han et al., 2015). According to the studies carried out, each potential source of 

dopaminergic neurons has to comply with some essential characteristics for a correct cell 

replacement therapy (Martinez- Serrano et al., 2011). A number of crucial issues that need to be 

addressed in preclinical studies before these cells can be considered for clinical use are; firstly, it 

is important to verify that their functional efficacy is robust, reproducible, and stable over 

significant time periods; secondly, that the transplanted cells have the capacity to grow axons 

and reinnervate the DA-denervated host striatum over distances that are relevant for the size of 

the human brain; and finally, that they function with equal potency to human fetal VM DA 

neurons that have previously been used in clinical trials (Barker, 2014). 

There are two limitations of cell transplantation therapy. The first is that traditional 

reprogrammed dopamine neurons (i.e. from iPSCs, or as iNs) are usually achieved by transfecting 

the transcription factors, which result in transgene integration, spontaneous insertional 

mutagenesis, (Datta et al., 1995) and resultant tumorigenesis (Hu K., 2014). The second is that 

the transplanted patient-derived dopamine neurons may carry transcriptomic or epigenetic 

parental disease-causing memory, and the graft cells will show this tendency to the original 

disease phenotypes. New advances in stem-cell technology herald the dawn of solutions for 

these problems. 

Initially, the use of human fetal ventral mesencephalic (VM) tissue provided proof of principle of 

a therapeutic effect of the transplants on a long term basis (Mendez et al., 2008). However, in 

addition to ethical problems related to fetal tissue procurement, practical limitations were found, 

like the need for large amounts of VM tissue, including immunological rejection, limited cell 

sources, verified complications, and the elevated cell death rate of the transplanted cells. There 
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are therefore many reasons to explore better cell sources (Martinez-Morales and Liste, 2012). 

Another stem cell source, the human embryonic stem cells (hESCs), required long and difficult 

differentiation protocols as well as neuronal and DAn progenitor selection to obtain high 

amounts of DAn, also the problems were: the phenotypic stability of hESC-derived dopamine 

neurons after transplantation, and the worry about residual undifferentiated hESCs within the 

large numbers of cells that need to be injected for human therapy (Lindvall et al., 2009). The 

residual undifferentiated hESCs might lead to tumor formation even if this is not observed 

anymore in rodent experiments. In addition, some ethical concerns and problems of immune 

rejection also limited the clinical applications of hESCs. As an alternative, induced pluripotent 

stem cells (iPSCs), derived in the Yamanaka lab using the human orthologs of four transcription 

factors (OCT4, SOX2, c-MYC, KLF4), were tested. Several aspects of iPSCs need to be resolved 

before they go to clinical use. These include low yields of DA neurons, genetic and epigenetic 

abnormalities, and the safety of iPSC-derived cells (Kim K et al. 2010; Lister R et al. 2011; Han et 

al., 2015). Also, human neural stem cells (hNSCs) derived from the developing and adult central 

nervous system were used, but they were inefficient for DAn generation, since the cultures 

proliferated poorly and rapidly entered senescence producing some DAn at early passages but 

mostly glia at later ones (Christophersen et al., 2006; Martinez- Serrano et al., 2011). Previous 

transplantation studies established that the generation of functional SNpc DAn in vivo was highly 

dependent on the regional tissue origin, the VM being the optimal region (Kim et al., 2007), and 

that only DAn with SNpc properties (meaning adequate patterning, transcription factor, and 

differentiated protein profile) were able to reinervate the striatum and induce a therapeutic 

effect (Thompson et al., 2005).  

Much effort has been put into identifying human and mouse precursors of VM DAn and into 

understanding the genetic cues and cascades controlling their development. These 

understandings improved the capacity to generate and engineer correctly differentiated human 

A9-Dan in vitro from their stem cells (Ungerstedt et al., 1974). The key discovery that nigral 

dopaminergic neurons were in fact uniquely of floor plate origin, allowed for effective 

differentiation protocols to be developed, heralding the generation of genuine A9 dopaminergic 

nigral neurons that expressed floor plate markers. This recognition of the floor plate origin of 
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mesencephalic dopaminergic neurons was a crucial step toward the development of dopamine-

producing neurons that could potentially be used in clinical trials (Lindvall et al., 2009). With this 

new insight, the differentiation process was refined, and dopamine-producing neurons could 

now be generated from both human ES cells and iPSCs with high efficiency, and increased graft 

survival and functionality compared with the neuroepithelial-patterned cells that had originally 

been described. The derived dopaminergic neurons conveyed comparable function to fetal 

dopaminergic neurons, and the potential for tumorigenesis also seemed to have been 

circumvented, meaning stem cell-derived neurons had become the leading candidates for future 

clinical trials (Barker, 2014). 

 

Figure 3. Different cell sources currently being developed for clinical use. 

(http://www.acnr.co.uk/2014/09/cell-therapies-for-parkinsons-disease/) 

 

http://www.acnr.co.uk/2014/09/cell-therapies-for-parkinsons-disease/
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The doctor Martinez- Serrano laboratory dedicated it’s work to this topic and produced a 

generation of a stable cell line of human neural stem cells derived from ventral mesencephalon 

(hVM1) based on v-myc immortalization. The avian retroviral v-myc oncogene is a viral homolog 

of c-myc transduced by several acute transforming retroviruses, many of which encode this gene 

as a Gag-Myc fusion protein (Lee and Reddy, 1999). The hVM1 cells express neural stem cell and 

radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After 

withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced 

and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a 

high number of dopaminergic neurons (about 11% of total cells are TH+) after differentiation, 

which also produce dopamine (Martinez-Serrano et al., 2016). In addition to proneural genes 

(NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic 

dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, 

indicating that they retain their regional identity (Tønnesen, 2010). Also the cells are functional 

in terms of calcium handling, electrophysiology, and DA synthesis and release (Martinez- Serrano 

et al., 2011). 

Also, the ReNeuron Group plc, a biotech company that specializes in using human somatic stem 

cells for therapeutics developed a similar cell line, and named it ReNcell VM.  ReNcell VM is an 

immortalized human neural progenitor cell line with the ability to readily differentiate into 

neurons and glial cells. ReNcell VM was derived from the ventral mesencephalon region of human 

fetal brain. Immortalized by retroviral transduction with the v-myc oncogene, this cell line grows 

rapidly as a monolayer on laminin with a doubling time of 20-30 hours (Donato et al., 2007). 

Karyotype analyses indicate that the ReNcell VM retains a normal diploid karyotype in culture 

even after prolonged passage (>45 passages). In experiments performed by the ReNeuron Group 

plc, ReNcell VM can be differentiated in vitro to a high level of human dopaminergic neurons. 

Neurons differentiated from ReNcell VM have furthermore been shown to be 

electophysiologically active. ReNcell VM may be used for a variety of research applications such 

as studies of neurotoxicity, neurogenesis, electrophysiology, neurotransmitter and receptor 

functions (Marchetto et al., 2009).  
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As already noted, hNSCs of VM origin generally show a poor capacity to generate DAn, and 

consistently loose this potential with passaging. This phenomenon also affects the immortalized 

VM NSCs (including hVM1 and ReNcell cell lines) as well as the primary ones. There have been 

various attempts to increase the neurogenic potential o NSCs, mostly through the expression of 

developmental transcription factors (Martinez- Serrano et al., 2011). The Bcl-XL gene was found 

to be the most successful with that objective. Bcl-XL (basal cell lymphoma-extra large) belongs to 

the Bcl-2 (B-cell lymphoma 2) protein family, playing an important antiapoptotic role in mammals 

(Boise et al., 1993), particularly during central nervous system development (González-García et 

al., 1995), but also modulating neuronal differentiation (Shim et al., 2004; Ko et al., 2009). The 

results of a research demonstrate that Bcl-XL enhances the maintenance of the neuronal and 

dopaminergic competence in long term expanded cultures and protects the cells from apoptotic 

cell death during differentiation. Bcl-XL modulates fate decisions, increasing neuronal and 

dopaminergic differentiation by a dose-dependent mechanism, in parallel with a decrease in glial 

cell generation (Liste et al., 2007). Also, the hVM1-derived cell lines survive transplantation in a 

rat model of PD, differentiating into neurons and glia and generating mature DAn, and that Bcl-

XL enhances functional recovery of Parkinsonian rats. In spite of its relevant contribution to the 

phenotypic stability of the cells, the overexpression of Bcl-XL represents a problem for the 

translation to the clinic being a proto-oncogene. In addition to classical anti-apoptotic actions, it 

is known that Bcl-XL acts directly on neuronal differentiation through non-canonical pathways 

(Garcia-Garcia et al., 2012). For this reason it is important to determine the mediators of the 

neurogenic effect of Bcl-XL, with the ultimate goal of finding a substitute gene capable of 

promoting neuronal differentiation, but without being associated with any component that 

would endanger the biosecurity of the therapy. With studies of microarray analysis (Seiz, 2010) 

some potential Bcl-XL effectors were identified (namely; INSM1, NHLH1, GADD45G, GFRA1, 

ELAVL3, ST18, CDKN1C) that were previously not linked to dopaminergic neurogenesis. Their 

expression in hVM1 differentiated cells decreases with time in culture, but when Bcl-XL is 

overexpressed, this decrease is prevented (Seiza et al., 2012). Thus, the forced overexpression of 

Bcl-XL prevents the decay of the expression of a certain set of genes and at the same time blocks 

the decline of dopaminergic neurogenesis. Therefore those genes may be implicated in 
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neurogenesis and for that reason were included in a selection of genes of interest (GOIs) that 

were determined as potential effectors of Bcl-XL. Special attention was given to the following 

genes: 

GADD45G (Growth arrest and DNA-damage-inducible protein gamma; Beadling et al., 1993; 

_Zhang et al., 1999). It can interact with different proteins in the processes of control of the cell 

cycle, apoptosis, senescence in response to cell stress, in tumor suppression and recently it was 

observed that it also has an effect on the development of the nervous system (Kaufmann et al., 

2011; McLean et al., 2011; Sultan and Sweatt, 2013). 

INSM1 (Insulinoma-associated 1), zinc-finger transcriptional factor, able to bind the DNA. It plays 

a key role in neurogenesis and in the differentiation of neuroendocrine cells during the 

embryonic and fetal development (Lan and Breslin, 2009). Its overexpression together with 

NHLH1 was identified as new target in the Hedgehog signaling pathway of medulloblastoma (De 

Smaele et al., 2008). 

CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C (P57, Kip2)) is a tumor suppressor human gene 

on chromosome 11 (11p15) and belongs to the cip/kip gene family. The encoded protein is a 

tight-binding, strong inhibitor of several G1 cyclin/Cdk complexes and a negative regulator of cell 

proliferation. Thus p57KIP2 causes arrest of the cell cycle in G1 phase. Here we show that p57Kip2 

is expressed in postmitotic differentiating midbrain dopamine cells. Induction of p57Kip2 

expression depends on Nurr1, an orphan nuclear receptor that is essential for dopamine neuron 

development. Moreover, analyses of p57Kip2 gene-targeted mice revealed that p57Kip2 is 

required for the maturation of midbrain dopamine neuronal cells (Bertrand et al., 2003). 

The GFRA1 gene encodes the GDNF family receptor alpha-1 (GFRα1), also known as the GDNF 

receptor. Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two 

structurally related, potent neurotrophic factors that play key roles in the control of neuron 

survival and differentiation. This receptor is a glycosylphosphatidylinositol (GPI)-linked cell 

surface receptor for both GDNF and NTN, and mediates activation of the RET tyrosine kinase 

receptor (Gorodinsky et al. 1998; Angrist et al. 1998). 
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The NHLH1 gene encodes a helix-loop-helix protein 1 in humans. The helix-loop-helix (HLH) 

proteins are a family of putative transcription factors, some of which have been shown to play 

an important role in growth and development of a wide variety of tissues and species (Begley et 

al. 1992). Basic-helix-loop-helix transcription factors regulate neurogenesis and neuronal 

differentiation by as yet unknown mechanisms. It is also known that embryonic neuronal-specific 

basic-helix-loop-helix protein, NHLH, interacts with 'LIM only' proteins (Bao et al. 2000), 

controlling the transition from proliferation to differentiation of progenitor cells (De Smaele et 

al., 2008). 
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2. Aim of the study 
 

The basic idea is that the increase in the neurogenic potential doesn’t occur only because of Bcl-

XL, but also thanks to the action of series of genes which lay downstream, whose expression is 

enhanced by Bcl-XL. By managing to detect these downstream genes, it is possible to work on 

them avoiding the use of Bcl-XL. For these reasons, the Dr. Martinez Serrano research group has 

carried a number of experiments through massive analysis of the gene expression by using 

microarray of DNA and comparing hVM1 and Bcl-XL-hVM1 low and high passage cell lines 

(Courtois, E. T. et al. 2010) which were later validated through qPCR. At the end, according to the 

results of the research, a small group of genes was selected which are linked to dopaminergic 

neurogenesis.  

The purpose of the present work was to characterize and analyze the capacity of hVM1 and 

ReNcell cells to promote a generation of dopaminergic neurons in different media settings, and 

furthermore to examine and measure the ability of hVM1 cells transfected with different genes 

of interest to elevate dopaminergic neuron production. 

The objectives of the study to examine the above hypothesis are: 

•Optimization of the cell culture conditions for NSC regarding media supplements B-27, N-2, 

SCM005 and evaluation of their influence 

• Study of the effect of each of the candidate genes, CDKN1C, GADD45G, GFRA1, INSM1 and 

NHLH1, on the ability to generate NSC dopaminergic neurons.  
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3. Materials and Methods 
 

3.1. Media supplements  
 

B-27 Supplement is an optimized serum-free supplement used to support the low or high 

density growth and short or long-term viability of hippocampal and other CNS neurons (Chen et 

al., 2008).  

N-2 Supplement is a chemically defined, serum-free media supplement based on Bottenstein’s 

N-1 formulation formulated to provide optimal growth conditions for neural stem cell 

expansion. N-2 Supplement is recommended for growth and survival of neuroblastomas as well 

as post-mitotic neurons in primary cultures from both the peripheral nervous system (PNS) and 

the central nervous system (CNS). N-2 is composed of Bovine Insulin, Human Transferrin, 

Putrescine, Selenite, and Progesterone (https://www.thermofisher.com).  

SCM005 media or ReNcell NSC Maintenance Medium is a defined serum-free, growth factor-

free medium that has been optimized for the growth and in vitro differentiation of ReNcell 

immortalized human neural progenitor cells. When used in conjunction with FGF and EGF, the 

maintenance medium will allow for the proliferation of ReNcell immortalized VM and CX neural 

stem cells (https://www.merckmillipore.com).  

 

3.2. Cell culture 
 

This study focuses on the polyclonal hVM1 cell line. Its isolation and immortalization were 

discussed previously in (Villa et al., 2009, Courtois et al., 2010). Briefly, cells were isolated from 

the ventral mesencephalic region of a 10- week old aborted human fetus at the Lund University 

Hospital (Sweden), in accordance with the principles set in the Declaration of Helsinki and with 

the ethical guidelines of the European Network of Transplantation (NECTAR). Procedures were 

approved by the Lund University Hospital Ethical Committee, and was in conform by Spanish 

law 35/1988 on Assisted Reproduction.  After the acquisitions of the cells, they were 
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immortalized by the infection with a retroviral vector coding for v-myc (LTR-vmyc-SV40p-Neo-

LTR; as reported in Villa et al., 2000). 

  Cultures of this line are maintained at 37 ° C, with 95% humidity in an atmosphere of low 

oxygen pressure (5% O2) and 5% CO2. This cell line is maintained in proliferation in HSC 

medium (Human Stem Cells), characterized by (Villa et al., 2000). It is a serum free defined 

medium consisting of DMEM: F12 (1: 1) (Gibco) with Glutamax I (Gibco), 20% Albumax (Gibco), 

5nM Hepes (Gibco), 30% Glucose (Sigma), 1x supplement N2 (Gibco), B27 (Gibco) or SCM005 

(Gibco), 1x non-essential amino acids, a mixture of antibiotics penicillin / streptomycin (100μg / 

mL), supplemented with hr-EGF (human recombinant Epidermal Growth Factor, R&D Systems 

#236-EG) and hr-bFGF (human recombinant basic Fibroblast Growth Factor, R & D Systems # 

233-FB) (20ng / ml each). These adherent cells are expanded by seeding them at a density of 

4x10 4 cells / cm 2 in plates pretreated with 10μg / mL poly-L-lysine (Sigma # 1274). 

Proliferating cells are passaged by trypsinization every 3-4 days, when the number of cells has 

been multiplied by about 4 (reaching a density of about 1.6 × 10 4 cells / cm 2). 

Cell differentiation is induced by removing the growth factors (hr-EGF and hr-bFGF) from the 

culture medium and adding 2 ng / mL hr-GDNF (human recombinant Glial Derived Neurotrophic 

Factor, Peprotech # 450-10) and 1mM dibutyryl-cAMP (Sigma # 1274) (Lotharius et al., 2002). 

To differentiate them, 2x104 cells / cm2 are seeded on pre-treated plates with 10μg / mL poly-

L-lysine or on glass coverslips coated with 30μg / mL poly-L-lysine. They are maintained 24h in 

proliferation medium before making a complete change to differentiation medium (day 0). 24h 

after (day1) another complete change of medium is made, after which 2/5 of medium is 

replaced every 72h. 

 

 

3.3. Plasmid DNA Transfection 
 

To transfect the cells with the genes of interest we used the Lipofectamine® 2000 which increases 

the transfection efficiency of RNA (including mRNA and siRNA) or plasmid DNA into in vitro cell 



  

20 
 

cultures by lipofection for protein expression, gene silencing, and functional assays. 

Lipofectamine reagent contains lipid molecules that can form liposomes in an aqueous 

environment, which entrap the transfection content, i.e. DNA plasmids (Invitrogen, 2012). 

To start off, 24.5µl of OptiMEM was mixed with 0.5µg of DNA in an eppendorf to a total of 25µl. 

Also, 24µl of OptiMEM and 1µl of Lipofectamine 2000 were combined in another eppendorf and 

the mixture was left to incubate for 5 minutes at room temperature. Afterwards, both 

eppendorfs were mixed, making a mixture of Lipofectamine2000+OptiMEM: DNA at a ratio of 

1μg: 2μL / 1μg: 3μL, and were left to incubate for 20 minutes following the manufacturer's 

instructions. During the 20 minutes the medium from the cells was removed, and the cells were 

washed twice with PBS and OptiMEM (6,4 ml) was added.  After 20 minutes, the mixture coming 

from OptiMEM+DNA and OptiMEM+Lipofectamine, was introduced drop by drop onto the cells. 

The composite was left to incubate for 4 hours. Finally, the medium was removed and fresh 

growing medium was added. At 48 h they are analyzed by microscopy and flow cytometry. 

  

Figure 4. Mechanism of cationic lipid-mediated delivery (https://www.thermofisher.com) 

 

3.4. Immunocytochemistry (ICC) 
 

Immunocytochemistry is a technique used to assess the presence of a specific protein or antigen 

in cells by use of a specific antibody that binds to it. The antibody allows visualization of the 

protein under a microscope. Immunocytochemistry is a valuable tool to study the presence and 

sub-cellular localization of proteins. 
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Cultured cells were fixed on 12mm diameter glass coverslips with parafomaldehyde (PFA) 4% for 

20 minutes at room temperature and stored at 4°C in PBS until use. The coverslips with cultured 

cells were washed three (3) times with PBS; 5 minutes each time. While removing solutions from 

the cells, we were careful that suction does not dry out the cells. Also, we were always sure to 

have the next solution on hand to add to cells before removing the solution that coats them so 

cells are not left to dry. The cells must be treated with a blocking agent to prevent non-specific 

binding of the antibody. Either goat (GS) or horse serum (HS) was used as a blocking agent 

depending on the host in which the secondary antibody was raised. If the antigen of interest is 

inside the cell, the cell membrane must be made permeable to allow entry of the antibody. To 

permeabilize cells, we used 0.3 % Triton X-100 solution in TBS1X. The blocking solution is made 

by dissolving 3% goat or horse serum into 0.3 % Triton X-100 solution in TBS1X. It should be 

pipetted slowly because Triton is viscous, and it should be made sure that the detergent and 

antibodies are completely dissolved in PBS before adding to cells. The cells were blocked in 3% 

GS or HS/TBS-tx0.3% solution for 1 hour at room temperature. Afterwards, the primary antibody 

(which is specific for the protein of interest) was diluted to a pre-determined concentration in 

1% GS or HS/TBS-Tx 0.3%, and the coverslip with fixed cells were picked up, such that the cells 

face up, and were laid on a glass plate filled with filter papers soaked in distilled water covered 

with parafilm (humidity box). Finally, diluted primary antibody (50 µl per coverslip) was placed 

over the coverslip so that the cells are in contact with the antibody, and were incubated at 4°C 

overnight. 

https://www.jove.com/science-education/5030/making-solutions-in-the-laboratory
https://www.jove.com/science-education/5026/understanding-concentration-and-measuring-volumes
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Figure 5. Protocol for the fluorescent ICC staining of cultured cells on coverslips. 

 

The second day we began by carefully collecting the primary antibodies off the coverslip and 

washing the cells 3 times with TBS1X, 5 minutes each time. We choose a secondary antibody 

that will detect the primary antibody, for example, if the primary antibody was made in a 

rabbit, the secondary antibody should recognize rabbit IgG. If using multiple primary 

antibodies, we made sure they are from different species, and plan to detect with different 
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fluorochromes attached to the secondary antibodies. For example, an anti-rabbit secondary 

coupled to a red fluorophore with an anti-mouse secondary coupled to a green fluorophore 

was used. We incubated cells in the secondary antibody solution diluted to an appropriate 

concentration in 1% GS or HS/TBS-Tx 0.3% for 2 hours in the dark at room temperature, using 

the same technique as for primary antibody. Because we were using fluorescent molecules 

to visualize the secondary antibody, the sample needs to be protected from light once the 

secondary antibody has been added, so we incubated it in the dark in a foil covered plate. 

Next, cells were washed 2 times with TBS-TX 0.3%, 5 minutes each time, followed by a 5 

minute wash in TBS1X. The coverslips were mounted on a slide with mounting medium for 

visualization on a microscope. In cases in which a fluorescent molecule is used for 

visualization of the secondary antibody, the mounting medium should contain agents to 

minimize photobleaching. Mowiol, a solution of polyvinyl alcohol, was used as mounting 

medium for fluorescence. An appropriate size drop of Mowiol was placed on a microscope 

slide. We carefully picked up the coverslip, dabbed off excess water on a paper towel, and 

laid on the drop of Mowiol with cells facing down. Finally, we placed the coverslip on at an 

angle and allow to descend slowly to avoid trapping air bubbles. The slide was labeled with 

the date and any sample information. Slides mounted with coverslips were placed in the dark, 

and were allowed to dry.  

Visualization of ICC was done with an inverted fluorescence microscope (Leica DM-IRB) 

combined with a CCD camera (Chare Coupled Device). Images were taken at the highest 

resolution possible and then analyzed with Image J, using plugins for cell counting and merge. 

 

 

 

 

 

https://www.jove.com/science-education/5040/introduction-to-fluorescence-microscopy
https://www.jove.com/science-education/5040/introduction-to-fluorescence-microscopy
https://www.jove.com/science-education/5041/introduction-to-light-microscopy
https://www.jove.com/science-education/5041/introduction-to-light-microscopy
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Table 1. Antibodies used for Immunocytochemistry analysis 

 

 

3.5. ICC data quantification   
 

Using the data of immunocytochemistry, useful information about cell density and percentage 

were obtained. I calculated the cell density (cells/mm2) by counting the cells stained with DAPI 

(4',6-diamidino-2-phenylindole) a nuclear and chromosome counterstain which emits blue 

fluorescence upon binding to A-T regions of DNA. The total number of cells was determined 

with photos of representative areas of the coverslip using ImageJ. Then the average is 

calculated using the ratio of total cells per area and the cell density of each transfection.  
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3.6. Western blot 
 

3.6.1. Sample preparation 
 

To prepare samples for running on gel, cells and tissues need to be lysed to release the proteins 

of interest. This solubilizes the proteins so they can migrate individually through a separating gel. 

RIPA buffer (RadioImmunoPrecipitation Assay buffer) is useful for whole cell extracts and 

membrane-bound proteins, as well as for extracting nuclear proteins. It will disrupt protein-

protein interactions and may therefore be problematic for immunoprecipitations/pull down 

assays. 

RIPA Buffer was added to the cell pellet, using 1mL of RIPA buffer for 40mg of wet cell pellet. 

Then the mixture was pipetted up and down to suspend the pellet. To increase yields, we 

sonicated the pellet in pulse mode at low frequency, 4 pulses of 1 second. Afterwards, we 

centrifuged the mixture at ~14,000 × g for 15 minutes in the cold room (4˚C) to pellet the cell 

debris. Finally, the supernatant was transferred to a new tube for further analysis. The cells were 

kept on ice during the whole process. 

 

3.6.2. Bradford assay 
 

The Bradford protein assay is used to measure the concentration of total protein in a sample. The 

principle of this assay is that the binding of protein molecules to Coomassie dye under acidic 

conditions results in a color change from brown to blue. This method actually measures the 

presence of the basic amino acid residues, arginine, lysine and histidine, which contributes to 

formation of the protein-dye complex. A set of standards is created from a stock of protein whose 

concentration is known, in our case we used bovine serum albumin (BSA- Albumin Standard, 

Pierce #23209). The Bradford values obtained for the standard are then used to construct a 

standard curve to which the unknown values obtained can be compared to determine their 

concentration. The linear concentration range we set is 800-0 μg/ml of protein, using BSA as the 

standard protein. 
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Using a P96 well plate, the standard curve 0-800 μg/ml was set up using 2 mg/ml BSA in the 

following order: 

S1: 40 μl standard + 60 μl water (800 μg/ml) 

S2: 30 μl standard + 70 μl water (600 μg/ml) 

S3: 20 μl standard + 80 μl water (400 μg/ml) 

S4: 50 μl of S3 + 50 μl water (200 μg/ml) 

S5: 50 μl of S4 + 50 μl water (100 μg/ml) 

S6: 50 μl of S5 + 50 μl water (50 μg/ml) 

S7: 50 μl of S6 + 50 μl water (25 μg/ml) 

S8: 100 μl water (0 μg/ml) 

 

The Bradford reagent (Bio-Rad Protein Assay reagent concentrated, BioRad #500-0006) was 

diluted using 4 ml water and 1 ml Bradford reagent. Next, we diluted the samples in H2O Milli-Q, 

using only 5 μl of sample. Then, 10 μl of standards and 10 μl of samples (duplicates) were pipetted 

into new wells. Afterwards, 200 μl of Bradford reagent was added to each well and the plate was 

incubated for 5 minutes on a shaker. To quantify the plate we used a plate reader 

spectrophotometer at 595 nm, making sure all protein absorbance measurements were within 

the standard curve. To prepare the samples for loading into the gels, based on the results from 

the spectrophotometer the volume of protein, H2O Milli-Q and 5X SDS-PAGE sample loading 

buffer (Nzytech #MB11701) were calculated to a final concentration of 0,1 mg/ml. Finally, we 

mixed all the reagents and place them on thermoblock at 95ºC for 5 minutes.  
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3.6.3. Electrophoresis 

 

Western blotting is a technique that identifies specific proteins in a given sample or extract after 

their separation using polyacrylamide gel electrophoresis. The polyacrylamide gel is placed 

adjacent to a membrane, which is typically nitrocellulose or PVDF (polyvinylidene fluoride), and 

the application of an electrical current induces the proteins to migrate from the gel to the 

membrane on which they become immobilized. The membrane is then a replica of the gel protein 

and can subsequently be stained with an antibody. 

 Firstly, we cleaned the gel apparatus and glass plates thoroughly with soap and water, rinsed 

with 100% ethanol and let air dry. Afterwards, we made 4% polyacrylamide stacking and 10% 

separating gels, the gel percentage required is dependent on the size of protein of interest. Then, 

the 10% separating gel was poured with a p1000 pipette into the gel rack. Isopropanol was added 

on top to get rid of bubbles. We waited for gel to set (checking the remaining gel in the tube), so 

we can decant the isopropanol onto a kimwipe and wash the gel three times with H2O Mili-Q. 

The 4% stacking gel was poured on top of mold and a comb was inserted at an angle to ensure 

no bubbles. After casting, the gel was transferred to the tank apparatus with shorter glass facing 

inside, and filled the tank and wells with 1X running buffer. Equal amounts of protein were loaded 

into the wells of the SDS-PAGE gel, along with the NZY Colour molecular weight marker II (15011). 

The loaded sample was 10 μg of total protein from cell lysate. We ran the gel for 1-2 hours at 

120V, until the dye was all the way at end of gel.  

 

3.6.4. Protein Transfer to Nitrocellulose membranes 

 

Fresh transfer buffer was prepared, every time we did the transfer, and let to cool down at 4ºC. 

We soaked the Whatman papers, the Amersham nitrocellulose membrane and the gel 10 

minutes prior to transfer. We soaked the gel because it removes any contaminating 

electrophoresis buffer salts, it allows the gel to shrink to its final size before transfer and it 

prevents the gel and membrane from drying out if you can’t transfer right away. The semi-dry 
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transfer was performed for 30 minutes in the Turbo-Blot-BioRad machine by setting the voltage 

to a constant 25V while the amperes were set to 0.8 A maximum. 

 

3.6.5. Membrane incubation 

 

The membrane incubation is initiated by blocking it in 5% non-fat milk in TBST (Tween20, 0,1%) 

at room temperature for 1 hour, followed by a few quick washes with TBS 1X. Afterwards, we put 

the primary antibody diluted to a proper concentration in 0.05% TBST on the membrane and left 

it to incubate overnight at 4ºC. The next day we started off with three washes, 5 minutes each, 

with 0.05% TBST. Finally, the membrane was incubated with the secondary antibody, diluted in 

0.05% TBST, at room temperature for 1.5 hour. Before developing the membrane it was washed 

with 0.05% TBST 3 times for 5 minutes. After incubating the membrane in the Amersham ECL 

Western Blotting Detection Reagent (RPN2106) for 1 minute, we developed the membrane in 

the ImageQuant™ LAS 4000 mini biomolecular imager. 

ECL normal 

 1 ml Reagent 1: 1 ml Reagent 2 

Normal transfer buffer 

 100 ml 10X Tris Glycine in H2O 

 700 ml ddH2O 

 2 ml 20% SDS 

 200 ml methanol (add last) 

Running buffer 

 1 L 10X Tris Glycine in H2O 

 50 ml 20% SDS 

 Mix and dilute to 1X with ddH2O 
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Table 2. Antibodies used for Western Blot 

 

 

 

 

 

 

 

 

 

 

 

Concentration Company Host Weight

MAP-2 1/500 Sigma M 4403 
Mouse

70 kDa

Synaptofisin 1/500 Millipore MAB332
Mouse

38 kDa

TH 1/1000 Pel-Freez P40101-0
Rabbit

68 kDa

ß-Tubulin III 1/1000 Sigma T2200
Rabbit

55 kDa

b-actin 1/2000 Sigma A5441
Mouse

45 Kda

GAPDH 1/2000 Santa Cruz 32233
Mouse

37 kDa

Nestin 1/500 Millipore AB5922
Rabbit

200 kDa

Neuro D 1/500 Santa Cruz sc-1084 Goat
50 Kda

Musashi 1/500
Millipore 

MABE268 Mouse
39 kDa

Pitx3 1/500 Chemicon AB5722
Rabbit

42 kDa

a- Mouse 1/2000 Vector Horse

a- Goat 1/2000 Sigma Rabbit

a- Rabbit 1/2000 Nordic Inmuno Goat
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4. Results 
 

4.1. Western Blot analysis of hVM1 and ReNcell cells cultivated in different media 
 

Western blot analysis of differentiated hVM1 and ReNcell cells day 7 grown in different media, 

reveal the expression of various neural markers. The markers used to detect dopaminergic 

neurons in the Western blot analysis were the Tyrosine hydroxylase (TH), an enzyme that 

converts L-tyrosine to L-3,4-dihydroxyphelylalanine (L-DOPA) which is a rate limiting step in the 

synthesis of dopamine, as well as Pitx3, a transcription factor expressed selectively in the 

midbrain and that regulates the differentiation and survival of dopaminergic neurons. Beta III 

tubulin antibody was used to detect immature neurons (it detects class of tubulin whose 

expression is limited to neurons) and the marker for NeuroD1, a transcription factor that 

promotes neuronal development, along with the Musashi-1 marker, a neural RNA-binding 

protein putatively expressed in CNS stem cells and neural progenitor cells. Mature neurons I 

marked with the MAP-2 antibody which is a neuron-specific protein that promotes assembly and 

stability of the microtubule network, including the Synaptophysin marker, a synaptic vesicle 

protein that regulates vesicle endocytosis in neurons. Neuroepithelial (NE) cells were labeled for 

Nestin, an intermediate filament protein expressed in NE cells. Its expression persists in radial 

glia until astrocyte development. And finally, GFAP was used to detect astrocytes. It has been 

reported that cells with astrocytic property can serve as an origination of new neurons during 

adult neurogenesis. This proves that cell cultures grown with different media supplements are 

able to differentiate into the desired neuronal type. 

To accurately determine protein expression and interpret Western blot results, it is important to 

use loading controls. A loading control antibody helps determine if samples have been loaded 

equally across all wells and confirms effective protein transfer during the western blot protocol. 

Beta-Actin is commonly chosen as a loading control due to its general expression across all 

eukaryotic cell types. The expression levels of this protein do not vary drastically due to cellular 

treatment, which is another reason the protein makes a suitable control. Results in the loading 

control Beta-Actin indicates little protein in hVM1 samples (Figure 6.). GAPDH is integral for 
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glycolysis and plays many roles in nuclear function; such as transcription regulation and 

apoptosis. The stable and ubiquitous expression of GAPDH also make it a suitable loading control 

for many experiments. When using GAPDH as a loading control, it is important to keep in mind 

that its expression level does vary between tissues. 

 

 

Figure 6. Western blot analysis shows that differentiated hVM1 and ReNcell cell cultures 

grown with different media supplements are able to differentiate into the desired neuronal 

type. 

 

4.2. Study of the generation of dopaminergic neurons (TH +) of hVM1 and ReNcell 

cells cultivated in different media 

 

To verify the correct neuronal differentiation after transfection, we analyze the presence of 

markers of different stages of neural differentiation by ICC, and in the same way examine the 

influence of different media supplements. The percentage of the population expressing different 
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markers is examined and determined for cells transfected with each media supplement and for 

each GOI. We hypothesized that GOIs are downstream effectors of Bcl-XL and we studied if any 

of them is able to induce the expression of dopaminergic neurons the same way Bcl-XL is, as well 

as how different culturing media effects their growth. 

Due to extremely low, or no signal at all on the ICC samples, the SCM005 media supplement could 

not be quantified. The highest number of dopaminergic neurons (TH+) between cells cultivated 

in different media is detected in the case of media supplemented with B27 (Figure 7. A), being 

slightly increased with respect to cells cultivated with other media supplements. The same 

phenomenon was observed for MAP-2 staining at different days of differentiation where the B27 

media supplement generated a slight, but not a statistically significant, increase in the amount of 

MAP-2 positive cells in the hVM1, while the ReNcell cultures showed no significant positive or 

negative effect in either media supplement (Figure 7. B). MAP-2 expression is weak in neuronal 

precursors but it increases during neuron development process. In general, its expression is 

confined to neurons; specifically in the perikarya and dendrites of these cells. Antibodies to MAP2 

are therefore excellent markers on neuronal cells, their perikarya and neuronal dendrites. 

 

 

 

 

 

 

 

 

 

 



  

33 
 

A   

 

B  

 

Figure 7. ICC study of differentiated hVM1 and ReNcell cells at days 3.5, 7 and 10 cultivated 

with different media supplements. A) Percentage of the generation of dopaminergic neurons 

by different culturing media (TH +) and total of cells per coverslip (DAPI+)- day 7. B) 

Percentage of MAP-2 positive cells from the total cell counts (DAPI+) 
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     DAPI       GFAP 

 

           MAP-2       MERGE 

Figure 8. Detail of hVM1 cells differentiated at day 7, cultured with B27 media supplement; 

Scale bar = 15μm. A.) DAPI - nucleic acid stain, preferentially stains dsDNA; B.) GFAP- astrocytic 

marker; C.) MAP-2- marker for a cytoskeletal protein, its expression is confined to perikarya 

and dendrites of cells; D.) Merged picture of a DAPI / GFAP + / MAP-2 + positive cell 
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4.3. Study of the generation of dopaminergic neurons (TH +) of transfected and 

differentiated hVM1 cells 

 

Since neuronal differentiation was better in hVM1, we chose to go for transfections in hVM1. 

Through a more detailed analysis of the cell density of the culture transfected with different 

vectors and differentiated at day 7, there were statistically significant differences in the 

production of dopaminergic neurons for pCAGGS Bcl-XL, GADD45G, INSM1 and GFRA1, relative 

to control with the empty vector. 

The main objective of this work is the study of the generation of dopaminergic neurons (TH + 

cells) by hVM1 cells transfected with the different vectors of gene expression and differentiated 

until day 7. The ICC for TH and GFP performed allows the detection of double positive cells (TH + 

GFP) and single positive cells (GFP + or TH +). In this way, the transfected cells that have (GFP + 

TH +) and TH + cells that were generated from the population of non-transfected cells   (TH + 

GFP-) (Figure 9. A). 

The highest number of dopaminergic neurons between transfected cells (TH + GFP +) is detected 

in the case of pCAGGS Bcl-XL, GADD45G, INSM1 and GFRA1, being statistically significant with 

respect to control cells with the empty vector (Figure 9. B). When TH + cells are obtained from 

non-transfected cells (TH + GFP-), no significant differences are found (not shown); although 

there is a greater tendency for increased expression of TH in the cultures transfected with 

pCAGGS GADD45G, INSM1 and GFRA1. The lowest rates of dopaminergic neurons were obtained 

for cells transfected with CDKN1 and NHLH1 genes. In those samples, the quantity of TH + GFP+ 

cells was very low (Figure 9. B). 
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A 

 
              TH+       GFP+ 

 
                     MERGE (GFP+TH+)      B 

Figure 9. A) Detail of cells viewed with different filters (upper photographs). Detail of a positive double 

cell TH + / GFP +, Scale bar = 15μm (lower photograph). B) Study of the generation of dopaminergic 

neurons by transfected cells (TH + GFP +)  

 

 

 

 

 

 



  

37 
 

5. Discussion 
 

Neuronal cultures are widely used to study neuronal development including neurite and 

synapse formation, neurotransmitter release, subcellular distribution and trafficking of 

neuronal proteins such as neurotransmitter receptors, and homeostasis of electrical signaling. 

Initially those cultures depended on the use of sera for factors that are critical for cell survival 

and growth. Media supplements such as B27, SCM005 and N2 were developed with defined 

components that eliminate the need for supplementation with serum (Chen et al., 2008). Such 

supplements were widely welcomed. In theory the use of defined supplements reduces the 

variability of the culture conditions. It thereby limits the potential for detrimental effects of 

components that could affect the health of cultures. However, a number of laboratories have 

experienced large differences in their neuronal cultures over the last 4-5 years when using 

commercially available supplements (Schluter et al., 2006; Tsui and Malenka, 2006). 

Commercial supplements available earlier supported neuronal cultures of excellent quality 

including neurons derived from hippocampus, retinal ganglia (RGCs), and dorsal root ganglia 

(DRG) cells. 

The ability to manipulate human neural stem cells (hNSCs) in vitro provides a means to 

investigate their utility as cell transplants for therapeutic purposes as well as to explore many 

fundamental processes of human neural development and pathology. Using traditional 

passaging techniques and culture mediums the rate of growth was extremely slow, and only a 

12-fold expansion in total cell number can be achieved (Hall et al., 2008). That’s why 

optimization of culturing conditions is required. To measure the influence of different media 

supplements on the hNSC growth, we established culture conditions using B27 and N2 -

supplemented medium. We found that B27 added to the medium at the time of plating 

resulted in an increase in the number of dopaminergic (TH+) and mature (MAP-2+) neural cells 

compared with N2 over 3.5, 7 or 10 days in both hVM1 and ReNcell cultures. B27 includes a 

range of hormones, anti-oxidants and retinal acetate in addition to the Bottenstien and Sato 

(1985) basic formulation of transferrin, insulin, putrescine, progesterone and sodium selenate 

(Brewer et al. 1993). Attempts were made to isolate which factors in B27 may be responsible 
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for the increased survival of precursor cells, by the addition of retinal acetate, tocopherol, 

catalase and super oxide dismutase to cultures grown in EGF supplemented N2 medium, 

although the exact concentration of each factor within B27 is proprietary information of Gibco. 

None of these factors alone or together appeared to have the dramatic effect of B27 itself, 

suggesting that it may be the combination of all these factors that underlies the enhanced 

survival of precursors found when using this supplement. It is possible that B27 may increase 

the division rate of precursor cells rather than enhance their survival (Svendsen et al, 1995). N-2 

is composed of Bovine Insulin, Human Transferrin, Putrescine, Selenite, and Progesterone. This 

supplement is recommended for the growth and expression of neuroblastomas and for the 

survival and expression of post-mitotic neurons in primary cultures from both the peripheral 

nervous system (PNS) and the central nervous system (CNS) (Bottenstein et al., 1985). 

Addition of B27, a medium supplement that increases neuronal survival in primary CNS cultures, 

resulted in an increase of the number of dopaminergic and mature cells in vitro after 3.5, 7 or 10 

days of differentiation. We conclude from this that the potential of NSC to differentiate into 

dopaminergic and mature neurons is insignificantly higher with the B27 medium than as revealed 

by N2 medium, and therefore both B27 and N2 represent an appropriate choice of medium 

supplement for assays of human NSC behavior and dopaminergic neuron differentiation. B27 

supplement has been shown to increase the differentiation in culture of a range of CNS cell types, 

whereas N2 supplement is sufficient to maintain them. 

Several research groups are currently focused on the search for a universal strategy to obtain a 

source of neural stem cells (NSC) suitable for the development of cell therapies against 

Parkinson's disease. This source must provide a sufficient number of clinically safe cells to restore 

homeostasis or slow the progression of this neurodegenerative disease. The immortalization of 

NSC with v-myc (hVM1 line) allows these cells to expand in culture and to increase their number, 

however, it does not prevent the loss of neurogenic capacity with the passages in culture. This 

limitation has been solved by the forced expression of Bcl-XL (in the line hVM1 high Bcl-XL). So 

far it has been demonstrated, that by overexpressing Bcl-XL it is possible to enhance the 

generation of mature dopaminergic neurons from their precursors, the VM neuronal stem cells 

(Courtois et al. 2010). However, the antiapoptotic activity of the Bcl-XL would endanger the 
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biosecurity of its therapeutic use, so it has been necessary to undertake a search for alternatives 

from a series of genes that would act as its effectors. The ultimate goal is to find a substitute gene 

for Bcl-XL whose overexpression would be feasible for the development of a therapy in the clinic. 

Other authors have previously studied the effect of overexpression of transcription factors, such 

as ASCL1 (Kim et al., 2009) or Lmx1a and Msx1 (Roybon et al., 2008), in neural progenitors derived 

from human ventral midbrain, without much success in terms of generation of dopaminergic 

neurons. Interestingly, and repeatedly in studies with hVM1 cells, the expression of the 

transcription factors FOXA2 and LMX1A was not detected, although they were described as 

necessary requirements in dopaminergic differentiation (Stott et al. 2013.). In spite of this, the 

cells are perfectly capable of differentiating themselves and generating DAns, which might 

suggest that the expression of such genes is not a necessary condition for dopaminergic 

neurogenesis from hNSCs. In the present research the effect of several candidate genes on the 

neurogenic potential of the hVM1 cells has been evaluated, as well as the effect of different 

culturing media on hVM1 and ReNcell development. Previous laboratory studies gave rise to a 

selection of genes whose expression was lost in hVM1 cells that lost neurogenic capacity with 

the passages in culture. However this did not happen when the cells overexpressed Bcl-XL, 

considering as possible effectors of this. Candidate genes were proven to promote dopaminergic 

commitment and DAn generation while the neurogenic potential is preserved. 

Cells derived from VM lose ability of dopaminergic differentiation in its expansion in culture (Kim 

et al. 2007). In the case of hVM1 cells this happens in a drastic manner when reaching the passage 

20, seriously affecting the survival of cell cultures. However in previous passages the 

dopaminergic potential is still preserved and the growing conditions are more favorable, making 

it possible to study the effect of GOI's. Therefore, at 3.5 day of differentiation the candidate genes 

are already capable of promoting the dopaminergic compromise of neural precursors, inducing 

the expression of genes responsible for the dopaminergic specification in embryonic 

development. Although at day 3.5 of differentiation is when the first wave of expression of pro-

dopaminergic genes takes place, it takes at least 7 days to be able to define the cells as DAns. At 

this moment they acquire characteristic of the cellular type as the TH expression. These results 
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on early differentiation are consistent with those described in the past for Bcl-XL (Curtois et al. 

2010).  

To determine if any of the genes of interest promotes the generation of dopaminergic neurons 

in the hVM1 line, as Bcl-XL did, we analyzed the percentage of GFP and TH positive cells generated 

in the transfected and differentiated cultures. Studies conducted by Dr. Martinez- Serrano 

research group proved that the pCAGGS expression vector is functional for the transfection of 

the genes of interest to the hVM1 cell line, as evidenced by detection of the GFP reporter gene, 

hence it was used for the transfection. With the first results, we found significant data differences 

for pCAGGS Bcl-XL, GFRA1, INSM1 and GADD45G, regarding the empty vector. The positive effect 

of Bcl-XL was already known within the hVM1 high Bcl-XL line. Therefore, these data would be 

suggesting that GFRA1, INSM1 and GADD45G also have a positive effect on the generation of 

dopaminergic neurons of the hVM1 line (Figure 8). We do not rule out that in addition to acting 

on the transfected cells themselves the genes could be exerting a paracrine effect on cells 

neighboring the culture and could thus also increase the number of total dopaminergic neurons. 

This paracrine effect could be due to multiple factors, one of them being the mere fact of 

increasing the population of dopaminergic neurons in the culture. It is also possible that the 

transfected cells may be secreting into the medium some protein and / or signaling molecule that 

could have a positive action. This would require a detailed proteomic study of mixed and pure 

cultures. 

Further study of the effect of these genes on the neurogenic ability of the hVM1 line should be 

further investigated to verify these preliminary results. To do this, the number of biological and 

technical replicates of the experiments must be increased to achieve sufficient statistical power. 

In addition, GFP + and GFP-cell populations of the transfected cultures have been isolated by flow 

cytometry under proliferation conditions and after 7 days of differentiation. In this way, gene 

expression (q-RT-PCR) and protein (western-blot, ICC) analyzes can be performed in the 

populations of interest. Thus, one could definitively conclude whether candidate genes promote 

the expression of genes involved in the commitment and differentiation of NSCs to dopaminergic 

neurons. 



  

41 
 

To conclude, the lack of an effective alternative to regain homeostasis or prevent the progression 

of Parkinson's disease makes efforts to focus on options away from traditional pharmacological 

treatments. Experimental therapy with fetal tissue has shown encouraging results, however, 

there are many problems related to the use of fetal tissue, both ethical and technical. Through 

the use of gene therapy, we propose a shift in the approach of cell therapy to Parkinson's disease, 

minimizing ethical - reducing the number of donors needed when working with an immortalized 

line - and technical issues - less variability and greater efficiency in the generation of mature 

phenotypes of interest. 
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6. Conclusions 
 

The studied media supplements showed no differences in promoting the dopaminergic 

commitment of hVM1 and ReNcell cells during their early differentiation. Both, B27 and N2 

media supplements were shown to be equally good media for NSC culturing.  

Similarly to Bcl-XL, candidate genes INSM1, GFRA1 and GADD45G increased cell density in 

culture with respect to the control. 

The INSM1, GFRA1 and GADD45G genes promote greater differentiation of NSCs into 

dopaminergic neurons in terms of positive tyrosine hydroxylase cells and could be good 

candidates for replacing Bcl-XL in the present strategy. 
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