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Advisor

Prof. Dr. Zvjezdana B. Klaić
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Abstract

In this dissertation, the local similarity scaling approach was examined based

on the multi-level measurements of atmospheric turbulence in the wintertime (De-

cember 2008 – February 2009) stable atmospheric boundary layer (SBL) established

over a heterogeneous surface influenced by mixed agricultural, industrial and forest

surfaces. The 62 m tower (levels 20, 32, 40, 55 and 62 m above ground) was situated

in the middle of some 120 m × 480 m area of hc = 18 m high walnut trees. The het-

erogeneity of the surface was characterized by spatial variability of both roughness

and topography.

In a first step local similarity theory in terms of flux-variance and flux-gradient

relationships was investigated. Nieuwstadt’s local scaling approach was found to be

suitable for the representation of all three wind velocity components. The roughness

sublayer (RSL) influenced wind variances, and consequently the turbulent kinetic

energy (TKE) and correlation coefficients at the lowest measurement level, but not

the wind shear profile. After removing data points associated with the flux Richard-

son number (Rf) greater than 0.25, the observations support the classical linear

expressions for the dimensionless wind shear (φm) even over inhomogeneous terrain.

Leveling-off of φm at higher values of stability parameter was found to be a result

of the large number of data characterized by small-scale turbulence (Rf > 0.25).

Deviations from linear expressions were shown to be mainly due to small-scale tur-

bulence rather than due to the surface heterogeneities, supporting the universality of

the linear relationship. Additionally, the flux-gradient dependence on stability did

not show different behavior for different wind regimes, indicating that the stability

parameter is a sufficient predictor for flux-gradient relationships. Data followed the

local z-less scaling for φm when the prerequisite Rf ≤ 0.25 was imposed.

Further investigations focused on the combined influence of the RSL found

above tall vegetation and the internal boundary layer (IBL) on the turbulence spec-

tral characteristics and TKE budget. The traditional surface layer scaling was tested

against the canopy scaling, which is generally valid for the RSL. It was found that

canopy scaling can be successfully applied even within the transition layer. For

the present complex site local isotropy was not found. Vertical velocity spectra

were smaller than horizontal spectra. Similarly, dissipation rates (ε) determined

v
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only from vertical spectra were smaller than ε estimates based on horizontal com-

ponents. Therefore, it was necessary to normalize vertical wind speed spectra with

φεw in order to get good correspondence with the Kansas spectral models. Extend-

ing the analysis to the Olesen approach, applied for the first time to the SBL over

heterogeneous terrain, normalized spectra collapsed to one single curve.

Finally, analyzing the budget terms of the TKE equation, non-equilibrium con-

ditions were found. The non-local dynamics are considered to be the main reason

for the observed imbalance of TKE in the transition layer as well as for the observed

breakdown of z-less regime in the strongly stable conditions above heterogeneous

surface. In the RSL, the turbulent transport of TKE above vegetated canopies is

considered to be the main cause of the observed TKE imbalance in the neutral con-

ditions. A less systematic behavior of the residual term was observed indicating

that the advection term has more pronounced influence on the RSL than the upper

levels.

Key words: Stable boundary layer; Local scaling; Forest canopy; Roughness

sublayer; Turbulent kinetic energy; Spectral models; TKE budget
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Chapter 1

Introduction

1.1 Motivation

Stable atmospheric boundary layers (SBLs) are influenced by many independent

forcings, such as, (sub)mesoscale motions, which act on a variety of time and space

scales, net radiative cooling, temperature advection, surface roughness and surface

heterogeneity (e.g. Mahrt 2014), enhancing the complexities and posing challenges

in the study of the SBL. The fate of pollutants in the boundary layer (BL) is strongly

affected by turbulence which is extremely complicated over complex terrain. More-

over, due to weak turbulence the SBL is generally favorable for the establishment

of air pollution episodes. Therefore, investigations of its characteristics are of the

great importance.

In the scientific community substantial effort was made to address Monin-

Obukhov similarity theory (MOST) in different conditions. Most of observational

studies are based on measurements from a single tower, and sometimes they result

in inconsistent conclusions on the applicability of similarity theory. These inconsis-

tencies are mostly found for studies of MOST in complex terrain (e.g. de Franceschi

et al. 2009; Martins et al. 2009; Nadeau et al. 2013; Kral et al. 2014) or for small

scale turbulence for which z-less scaling regime should apply (e.g. Forrer and Rotach

1997; Pahlow et al. 2001; Cheng and Brutsaert 2005; Basu et al. 2006; Grachev et al.

2013). Most of atmospheric dispersion models, used for the air quality studies, as

well as high-resolution regional climate models use similarity scaling to model flow

characteristics and dispersion in such environments.

While many studies of turbulence characteristics within the roughness sublayer

(RSL) over homogeneous tall forest canopies can be found in the literature, obser-

vational studies of turbulence above heterogeneous and patchy vegetation canopies

are very scarce. Results of such field observations can be used for the validation of

large eddy simulations (LES), which enable studies of transitions across changes in

1



2 1.2 State of Research

land cover and influence on turbulent fluxes (Mammarella et al. 2008).

The relative importance of physical processes that govern turbulent fluid mo-

tions is illustrated in the turbulence kinetic energy (TKE) budget. The presence

of a plant canopy will modify the BL near surface in a unique fashion by imposing

aerodynamic drag on the flow and by creating turbulent motions in wakes of a plant

element which adds further dimension to the balance of TKE (Dwyer et al. 1997).

The overall goal of this thesis is to contribute to better understanding of still not

completely explained turbulence characteristics over heterogeneous surface.

1.2 State of Research

1.2.1 Similarity Theory

Monin-Obukhov similarity theory (Obukhov 1946; Monin and Obukhov 1954)

relates surface turbulent fluxes to vertical gradients, variances and scaling parame-

ters. The assumptions underlying MOST include stationary atmospheric turbulence,

surface homogeneity and the existence of an inertial sublayer (that is, surface layer,

SL). Relations between these parameters (Businger et al. 1971; Dyer 1974) are based

on several experimental campaigns conducted over horizontally homogeneous and

flat (HHF) surfaces (e.g. Kaimal and Wyngaard 1990), where the original assump-

tions are considered to be met. Originally, MOST was based on surface fluxes, which

were assumed to be constant with height, and equal to surface values within the SL

(also referred to as constant-flux layer). In the unstable boundary layer, MOST has

been extensively studied and proven useful in relating turbulent fluxes to profiles

(Businger et al. 1971; Wyngaard and Coté 1972; Dyer 1974). However, the applica-

bility of MOST in the stable SL (e.g. Mahrt 1998; Cheng et al. 2005; Trini Castelli

and Falabino 2013) and over complex (e.g. Nadeau et al. 2013; Stiperski and Rotach

2016; Babić et al. 2016b) and heterogeneous surfaces is still an open issue due to

many difficulties when applying traditional scaling rules since MOST assumptions

may not be fulfilled.

Nieuwstadt (1984) extended Monin-Obukhov similarity in terms of a local scal-

ing approach. This regime represents the extension of MOST above the SL. Accord-

ingly, all MOST variables are based on the local fluxes at a certain height z instead

of using surface values. As MOST should be valid over flat and homogeneous ter-

rain, studies of the SBL in terms of SL and local scaling approaches were made over

areas characterized by long and uniform fetch conditions, such as, Greenland, Arctic

pack ice and Antarctica (e.g. Forrer and Rotach 1997; Grachev et al. 2007, 2013;

Sanz Rodrigo and Anderson 2013). Forrer and Rotach (1997) concluded that local

scaling is superior over SL scaling. This was mainly due to the fact that SL over
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an ice sheet, with continuously stable stratification, can be very shallow (< 10 m).

Moreover, for cases of strong stability, non-dimensional similarity functions for mo-

mentum and heat were in agreement with the results obtained from the local scaling

approach. Grachev et al. (2013) examined limits of applicability of local similarity

theory in the SBL by revisiting the concept of a critical Richardson number.

Although the above mentioned complexities make the attempt to classify the

SBL incomplete, many different classification schemes for different types of SBL

have been proposed (e.g. Holtslag and Nieuwstadt 1986; Mahrt 1998; Cheng and

Brutsaert 2005; Grachev et al. 2005; Sorbjan and Grachev 2010; Mahrt 2014; Liang

et al. 2014). The most commonly used are those schemes which distinguish between

weakly and strongly stable regimes and describe changes with increasing stability.

In the weakly stable regime, turbulence is continuous in both space and time due

to atmospheric conditions associated with overcast sky or significant wind shear. If

non-stationarity and heterogeneity effects are excluded, turbulence in this regime

generally follows similarity theory (e.g. Mahrt 2014). On the other hand, the very

stable regime is characterized with weak winds and strong stratification. These lead

to weak, intermittent and sporadic turbulence, and break down of similarity rela-

tionships (e.g. Acevedo et al. 2008; Martins et al. 2009). However, the distinction

between weakly and strongly stable regimes does not consider all complexities of

the SBL, such as, intermittency (Salmond 2005) which is defined in terms of inter-

nal intermittency (resulting from interactions between turbulence and wind shear)

and external intermittency (forced by non-stationary (sub)meso motions, e.g. Mahrt

2014). A variety of non-stationary (sub)meso motions causing intermittent turbu-

lence includes gravity waves (e.g. Cheng et al. 2005), low-level jets (e.g. Cheng et al.

2005; Banta et al. 2006; van de Wiel et al. 2010), density currents (e.g. Sun et al.

2002), wave-like motions (e.g. Fritts et al. 2003; Nappo 2012), Kelvin-Helmholtz

instability (e.g. Cheng et al. 2005) and many others. Majority of the above men-

tioned studies in complex terrain are mainly characterized by homogeneous surface

roughness, while studies over heterogeneous and patchy vegetation are still scarce.

Even modest surface heterogeneity can significantly influence the nocturnal

boundary layer (NBL) and lead to turbulence at higher Richardson numbers in

comparison with homogeneous surfaces (Derbyshire 1995). Since the Earth’s solid

surfaces are mainly heterogeneous, the interest in flow and turbulence characteris-

tics over complex surfaces has increased in recent decades. Moreover, a proper rep-

resentation of turbulence is particularly important for parameterization of surface-

atmosphere exchange processes in atmospheric models, such as dispersion (e.g. Enger

and Koračin 1995), numerical weather prediction (e.g. Horvath et al. 2012) or re-

gional climate models (e.g. Güttler et al. 2014). The turbulence characteristics have

been studied through direct measurements for different complex surfaces including,
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complex forest sites (e.g. Rannik 1998; Dellwik and Jensen 2005; Nakamura and

Mahrt 2001), agricultural fields, such as, apple orchard (de Franceschi et al. 2009)

or rice plantation (Moraes et al. 2005), metre-scale inhomogeneity (e.g. Andreas

et al. 1998), urban areas (e.g. Wood et al. 2010; Fortuniak et al. 2013), and complex

mountainous terrains (e.g. Rotach et al. 2008), addressing to both valley floors (e.g.

Koračin and Enger 1994; Rotach et al. 2004; Moraes et al. 2005; de Franceschi et al.

2009) and steep slopes (Nadeau et al. 2013; Stiperski and Rotach 2016). However,

most of these studies are associated with flows over homogeneous surfaces. In recent

years much effort has been put into simulations of turbulent fluxes over relatively

heterogeneous surfaces using LES. Bou-Zeid et al. (2007) used LES over surfaces

with varying roughness lengths to assess the parameterization for the equivalent

surface roughness and the blending height1 in the neutral boundary layer at re-

gional scales. Large eddy simulations of surface heterogeneity effects on regional

scale fluxes and turbulent mixing in the SBLs were studied by Stoll and Porté-Agel

(2009); Mironov and Sullivan (2010); Miller and Stoll (2013).

The vertical structure of the atmospheric boundary layer (ABL) is traditionally

partitioned into a SL, an outer layer and the entrainment zone (e.g. Mahrt 2000).

The SL, in turn, is subdivided into a canopy layer (CL), a roughness sublayer (RSL)

and inertial sublayer. Over surfaces with small roughness elements the latter, which

corresponds to the true equilibrium layer, is often identified with SL. These con-

cepts are less applicable over heterogeneous surfaces but for the SBL they provide,

nevertheless, a useful starting point. Above very rough surfaces, such as forests or

agricultural crops, the RSL has a non-negligible extension. Due to the influence of

individual roughness elements on the flow within the RSL, MOST is not widely ac-

cepted (e.g. Katul et al. 1999; Finnigan 2000). The existence of large-scale coherent

turbulent structures within the RSL, which are generated at the canopy top through

an inviscid instability mechanism (Raupach et al. 1996), is thought to be a reason

for the failure of standard flux-gradient relationships (Harman and Finnigan 2007).

1.2.2 Spectral characteristics

Besides the mean variables and variances, spectral (and cospectral) character-

istics of turbulence can be described within the framework of similarity theory. A

classical references and most commonly used (co)spectral models in the SL over

ideal HHF terrain are those of Kaimal et al. (1972) and Wyngaard and Coté (1972)

obtained from the Kansas experiment. They found that with appropriate normaliza-

tion, both the spectra and cospectra reduce to a family of curves which collapse to

a single universal curve in the inertial subrange, while at low frequencies they show

1The height at which surface and local disturbances have been blended out (Wieringa 1976;
Bou-Zeid et al. 2004).
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dependence on the stability parameter. These results were based on 15 1-hr runs, 10

of which were unstable and 5 were stable. The universal functions obtained in this

and following experiments over homogeneous and flat surfaces have led to well es-

tablished (co)spectral turbulence characteristics. In some of the early observational

and wind-tunnel studies of spectra and cospectra (Shaw et al. 1974; Raupach 1981;

Anderson et al. 1986; Baldocchi and Meyers 1988; Amiro 1990; Brunet et al. 1994;

Shaw et al. 1995) the emphasis was on comparison of spectra within and above the

canopies. Moreover, the above canopy spectra were not analyzed in the same way

as those over HHF terrain as reported by Kaimal et al. (1972).

In the past two decades, models of Kaimal were applied for other types of sur-

faces such as forest (e.g. Liu et al. 2001; Su et al. 2004; Mammarella et al. 2008)

and urban areas (e.g. Roth 2000; Fortuniak and Pawlak 2015), but such studies

are still sparse. Recent research efforts have focused on investigating departure of

spectra measured in the RSL from the flat terrain shapes and scaling relationships.

Liu et al. (2001) have used sonic anemometer data from two levels, one within and

another above a uniform forest canopy, which covered an area of about 8000 km2

and was composed of conifer and deciduous-mixed forest. They have found that

normalized turbulent spectra have −2/3 slopes within the inertial subrange and the

shapes of spectra were in good agreement with those of Kaimal. However, their

results showed that turbulence was approximately isotropic within the canopy and

anisotropic above the canopy. Additionally, compared to the flat terrain results,

the velocity and temperature spectral peaks were shifted toward higher frequencies

and TKE dissipation rates were much larger inside and above the canopy. They

attributed the distinct features of their results to the dynamic forcing caused by

the rough forest canopy surface. Su et al. (2004) investigated turbulence spec-

tra and cospectra above the forest canopy of two mixed hardwood forest based on

the long-term (nearly 40 000-hr runs) eddy-covariance measurements. They found

different (co)spectral constants and stability functions needed to normalize and col-

lapse (co)spectra in the inertial subrange compared to those of Kaimal et al. (1972).

Opposed to these two studies which presented spectral turbulence characteristics

for different stabilities, Mammarella et al. (2008) studied turbulence spectra of the

near-neutral flow over two deciduous forest sites with short and long fetch sectors.

For the short fetch sectors, turbulence spectra within and above the RSL showed

a good collapse of spectral peaks when scaled by fixed length and velocity scales.

The analysis for the long fetch case revealed that the RSL influence disappeared far

from the canopy top and the traditional SL scaling was found to be valid.

For different types of applications most often used spectral models are those

proposed by Kaimal et al. (1972). However, Olesen et al. (1984) have also proposed

simple spectral models for all three velocity components in the SBL. These models
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use non-dimensional wind shear and TKE dissipation rate similarity functions to

normalize the spectra so that they adhere to one curve only irrespective of static

stability. Their models were based on the Kansas and Minnesota experiments, and

the SL scaling approach. Forrer (1999) extended this regime to the local scaling

and applied it to the data collected over nearly ideal snow-covered surface of the

Greenland ice sheet. Interestingly enough, the validity of these spectral models over

more complex vegetated surfaces has not yet been reported in the literature.

1.2.3 Turbulent Kinetic Energy (TKE) Budget

Within the framework of the similarity theory the TKE budget can be investi-

gated. Indeed, determining stability functions of the TKE budget terms has been

one of the objectives in the field of boundary layer turbulence over the past forty

years (e.g. Businger et al. 1971; Wyngaard and Coté 1971; Högström 1990; Oncley

et al. 1996; Frenzen and Vogel 2001; Li et al. 2008; Duarte et al. 2015). Since the

milestone Kansas 1968 experiment, many field campaigns were conducted which

enabled deeper understanding of the behavior of different terms in TKE budget.

The classical assumption for the SL measurements above HHF surfaces was that

the TKE budget is locally balanced, i.e. the production from shear (and buoyancy

in unstable conditions) will be dissipated locally over all stabilities, while transport

terms are either negligible or they cancel each other (McBean and Elliot 1975; Wyn-

gaard 2010). Wyngaard and Coté (1971) found local imbalance of TKE over wide

range of stabilities, but still suggested local balance under neutral conditions. How-

ever, recent studies have challenged this assumption for all stabilities, showing that

TKE is locally imbalanced and that transport terms are important (e.g. Högström

1990; Oncley et al. 1996; Frenzen and Vogel 2001; Pahlow et al. 2001; Li et al. 2008).

These studies have found either excess or inadequate TKE dissipation, suggesting

TKE gain or loss via transport terms, respectively. Högström (1990) argued that

the excess of TKE dissipation in the neutral SL is connected to the so-called inactive

turbulence which is transported to SL from the upper regions via pressure transport.

Further, Högström et al. (2002) introduced a theory based on ’top-down’ dynamic of

detached eddies in order to explain the excess dissipation in the neutral SL. While

the proposed theories may explain excess TKE dissipation, adequate explanation

for the insufficient local dissipation is still missing. Li et al. (2008) have pointed out

that the reason why results of observational studies regarding TKE balance differ

among each other is still an open question.

This problem is especially emphasized in the SBL, where turbulence is influ-

enced by many other factors such as, low-level jets (LLJs), gravity waves, density

currents or Kelvin-Helmholtz shear instability (e.g. Cheng et al. 2005). The analysis
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of TKE budget terms under the effect of LLJs has shown that the pressure transport

term plays an important role close to the surface, but a consensus on whether the

pressure transport is the source or sink term is still missing (Duarte et al. 2015,

and references therein). A considerable amount of research has been done on TKE

budget studies in the SL over homogeneous surfaces but little research focused on

budgets above heterogeneous and rough surfaces (e.g. Christen et al. 2009). The first

studies of TKE budgets within and above plant canopies were mainly focusing on

turbulence characteristics within the canopy. Leclerc et al. (1990) and Meyers and

Baldocchi (1991) analyzed TKE budgets within and above a deciduous forest canopy,

while Brunet et al. (1994) and Raupach et al. (1996) used wind-tunnel studies to

investigate the air flow within and above plant canopy. Dwyer et al. (1997) used

LES of flow through and above a forest in order to calculate all the terms in the TKE

budget equation with special emphasis on the role of the pressure transport term.

The above mentioned studies have highlighted that turbulent and pressure transport

terms were mostly responsible for the absence of the local equilibrium within the

RSL. Some of the rare studies on TKE budgets above fetch-limited forests, such as

those of Mammarella et al. (2008) and Yang et al. (2006) were focused on statically

neutral conditions. A general missing piece in the literature are the studies of the

TKE budget terms above heterogeneous surfaces in the SBL.

1.3 Research Objectives

The overall objective of this thesis is to address some of the open questions

introduced above by applying local scaling approach when investigating turbulence

characteristics in the SBL above an inhomogeneous surface. Multi-level turbulence

observations were performed over heterogeneous terrain influenced by a mixture of

forest, agricultural and industrial surfaces. These measurements are used to study

applicability of the local similarity theory in the wintertime SBL, as well as spectral

turbulence characteristics and budgets of the TKE. However, prior to investigating

turbulence characteristics, an analysis of scales of motion in the SBL was necessary

in order to adequately determine appropriate averaging time scales for calculation of

turbulent fluctuations and turbulent fluxes. For this purpose, four different methods

were used, two of which are based on Fourier spectral analysis and the other two on

wavelet analysis. The main scientific objectives of this thesis are:

• To examine the applicability of local similarity scaling in terms of

flux-variance and flux-gradient relationships in the NBL over in-

homogeneous surface. Here the analysis is focused on investigating how

heterogeneous surface influences wind variances and mean wind speed gradi-

ent and their stability dependence. The validity of the z-less regime is tested
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for strongly stable conditions. Stability dependence of the dimensionless wind

shear is compared to the respective flux-gradient relationships from the lit-

erature. Turbulence characteristics in the sub- and supercritical regimes are

presented. The vertical extent of the tall canopy to which it influences mea-

surements is determined.

• To investigate turbulence spectral characteristics and TKE dissipa-

tion rate within and above the roughness sublayer. The validity of the

local isotropy hypothesis is tested for measurements above an inhomogeneous

surface. The stability function of the dimensionless TKE dissipation is com-

pared with the most commonly used formulations from the literature and a

modified relationship is proposed. The appropriate scaling parameters needed

to collapse spectra are obtained. Spectra obtained in this study are compared

with the existing models which are valid for HHF terrain.

• To determine the influence of tall canopy and heterogeneous surface

cover on the TKE budget terms. The dimensionless TKE budget terms

are analyzed for the RSL and transition layer separately. For each of the

terms parameterizations are proposed. Different dynamical properties of the

two layers are highlighted.

The reminder of this thesis is structured as follows. In Chapter 2, a short theoretical

background is given. In Chapter 3, experimental set-up and measurement site,

extensive post-processing steps and analysis methods are described, while Chapter

4 presents results of the timescales analysis. In Chapters 5 and 6 the main objectives

are addressed, including the applicability of the local similarity theory, the analysis

of turbulence spectral characteristics and dissipation rates, and the analysis of TKE

budget terms within and above the forest RSL. Summarizing conclusions and general

outlook are drawn in Chapter 7.



Chapter 2

Theoretical Background

2.1 Stable Boundary Layer

The mean and turbulent characteristics of the ABL play an important role in

determining the transportation, storage and dispersion of atmospheric pollutants.

The BL is a part of the atmosphere that responds directly to the flows of mass,

energy and momentum from the Earth’s surface at time scales of an hour or less

(e.g. Stull 1988, Fig. 2.1). The SBL develops when net radiation becomes negative

due to radiative cooling of the layers close to the Earth’s surface. The structure of

the SBL is primarily determined by atmospheric static stability and processes gov-

erning mechanical generation of turbulence, such as, wind shear from synoptic or

terrain induced flows or low-level jets (e.g. Stull 1988). These processes operate at

a variety of different heights and scales within BL and their dominance can vary in

time and space. Thus, equilibrium or steady-state conditions are rare. As a result,

NBL may range from fully turbulent (e.g. Conangla et al. 2008) to intermittently

turbulent (e.g. Mahrt 1998; Sun et al. 2002) or even non-turbulent (e.g. van de Wiel

et al. 2003, 2007). Our current understanding of turbulence in the NBL has been

slowly developing, largely due to the significant challenges associated with study-

ing the NBL from observational, analytical and theoretical perspectives. Although

individual field studies may be considered site specific, a number of authors have

tried to address a research gap by field studies of the SBL, which have yield some

important insights into the structure of processes operating in the NBL.

The classification of NBL regimes is difficult and often impossible due to the

fact that a particular night over the land does not fit into a certain prototype

(Mahrt 1999). Any attempt to classify a complex SBL is necessarily oversimplified.

Therefore, the SBL over land is usually classified according to the strength of the

thermal stratification ranging from weakly to very stable regime (e.g. Mahrt 1998;

Mauritsen et al. 2007; Mauritsen and Svensson 2007). The weakly stable regime (Fig.

9
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Figure 2.1: Schematic representation of the atmospheric boundary layer over land
(adapted from Stull (1988)).

2.2a) occurs in conditions of moderate to strong winds leading to the mechanical

production of relatively strong turbulence and mixing, or in situations with overcast

skies which reduce the radiative cooling of the Earth’s surface. In this regime the

gradient Richardson number (Ri), which is a dynamical measure of the flow stability

and is described in more detail in Section 2.2, is usually below its critical value,

indicating continuous turbulence of moderate intensity which decreases with height.

The weakly stable regime is the usual textbook example of the SBL with a well-

defined top, and has been analyzed in terms of measurements, scaling arguments,

similarity theory, laboratory studies and numerical modelling. In case of light winds

and clear skies (under e.g. anti-cyclonic conditions) or due to warm advection,

the stable stratification increases and allows intense surface radiative cooling and

weaker turbulence. This results in a strongly stable regime (Fig. 2.2b), which is

largely determined by local effects, such as orography or the terrain characteristics

and heterogeneities (Mahrt et al. 2001; Sun et al. 2002; Cuxart et al. 2007). In

the case of very strong stratification, turbulence becomes intermittent, detached

from the surface or even totally suppressed. Ri is usually above the critical value

and turbulence intensity often increases with height indicating that factors which

generate turbulent mixing are acting above the surface layer. This induces downward

turbulent transport and gives rise to the “upside-down” boundary layer (Mahrt 1998,

1999). Consequently, it is difficult to define the SBL height.
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Figure 2.2: A simplified classification of the SBL into (a) weakly and (b) strongly stable
regime (adopted from Mahrt (2014)). Vertical profiles of the wind speed (V ), potential
temperature (θ) and TKE are shown. (a) The vertical structure corresponding to the
well-defined weakly stable regime. The gray arrow indicates the usual direction of the
vertical transport of turbulence energy. (b) One of many different vertical structures of
the very stable BL.

2.2 Similarity theory

The basic assumption of similarity theory is that the structure of the ABL

can be described in terms of some characteristic parameters. Similarity theory is

based on the organization of variables into dimensionless groups (e.g. Stull 1988).

This is done by the dimensional analysis procedure called Buckingham π theorem. A

proper choice of dimensionless groups should allow us to form empirical relationships

between them, and these relationships should be universal, i.e. they will be valid

everywhere all the time for the studied situation. Development of a similarity theory

consists of four key steps:

1. selection of the relevant (key) variables

2. organization of variables into dimensionless groups

3. determination of the values of the dimensionless groups from experimental

data

4. description of the relationship between groups.

This four-step procedure results in an empirical equation or a set of curves which

show the same shape. Since these curves look self similar, therefore the name similar-

ity theory. These empirical equations usually contain unknown coefficients, which
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are obtained by regression against the observations. Finally, these equations are

called similarity relationships. The key variables which usually appear in classes of

similarity problems are called scaling variables for that class. Well-defined classes of

similarity scaling are Monin-Obukhov similarity, mixed-layer similarity, local simi-

larity, local free convection and Rossby-number similarity. Each of these classes is

associated with specific scaling variables.

2.2.1 Local similarity scaling

Holtslag and Nieuwstadt (1986) presented an overview of scaling regimes for

the SBL (Fig. 2.3). Each of the scaling regimes is characterized by different scaling

parameters. The turbulence in the horizontally homogeneous SL can be described

by MOST with surface fluxes of heat and momentum and the height z as scaling

parameters. In this layer the relevant scaling parameter is the Obukhov length L

(Obukhov 1946), given by

L = − u3∗
k g

θv
(w′θ′v)s

, (2.1)

where u∗ = (u′w′
2

s + v′w′
2

s)
1/4 is the surface friction velocity, (w′θ′v)s is the surface

kinematic heat flux, θv is the virtual potential temperature, g is the acceleration due

to the gravity, k ≈ 0.4 is the von Kármán constant. Overbars and primes denote

time averaging and fluctuating quantities, respectively. The SL is commonly defined

as the region where turbulent fluxes and stress vary by less than 10 % of their surface

values (Monin and Obukhov 1954) and it is often referred to as the constant flux

layer. In this layer, z/L is considered a valid stability parameter. The physical

meaning of the Obukhov length is that it represents the height above ground where

an equilibrium condition is reached between the buoyant effects and mechanical

production of turbulence. In the SBL, the buoyant suppression of turbulence is

increasing with increasing stability, thus putting great importance on the shear

production of turbulence to the flow in this layer of decreasing thickness, L. Hence,

for increasing static stability we have a shorter Obukhov length and higher stability

parameter.

Above the SL, the local scaling regime applies, a regime proposed by Nieuw-

stadt (1984). According to Nieuwstad’s local similarity approach, properly scaled

turbulence statistics should solely be a function of the local stability parameter

ζ` = (z − d)/Λ, where z is the measurement height, d is zero-plane displacement

height and Λ is the local Obukhov length. Even if Nieuwstadt (1984) was not refer-

ring to rough surfaces, we have introduced d as we will be concerned with data from

a site where the canopy height is non-negligible. In the local scaling framework, the
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local Obukhov length is based on the local fluxes at height z and varies with height

Λ(z) = − u3∗`
κ g

θv
w′θ′v

, (2.2)

where u∗` indicates local friction velocity and w′θ′v is the local heat flux. Holtslag and

Nieuwstadt (1986) showed that Λ ' L in that part of the SBL which encompasses a

layer between 10 and 50 % of the BL height at neutral stability and is exponentially

decreasing with increasing stability (Fig. 2.3). This indicates that the use of (z −
d)/Λ, which is required by local scaling, is almost equivalent to the SL scaling

parameter (z − d)/L. Therefore, the local scaling approach can be viewed as an

extension of MOST for the entire SBL.

For large values of z/Λ (z/Λ → ∞), the dependence on z disappears because

stable stratification restricts vertical motion thus, causing turbulence vertical scales

to be very small. Wyngaard and Coté (1972) named this limit “local z-less stratifi-

cation” (height-independent). Based on the observations from a tall tower (Cabauw,

the Netherlands), Nieuwstadt (1984) found this limit to be for ζ` > 1.
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Figure 2.3: Schematic representation of scaling regimes in the NBL (adapted from Holt-
slag and Nieuwstadt 1986). The mean height of the turbulent ABL is indicated with h,
z is the height above the ground, L and Λ represent Obukhov and local Obukhov length
scale, respectively.

Evaluation of the second-order moments, especially of wind velocity standard

deviations, provides good understanding of turbulence statistics. According to sim-

ilarity theory, dimensionless quantities should be universal functions of the non-

dimensional stability parameter. In the local scaling framework, standard deviations

of wind speed components σi, where i = (u, v, w) denotes longitudinal, lateral and
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vertical velocity components, respectively, are scaled as

φi =
σi
u∗`

, (2.3)

where φi represents a set of universal similarity functions, different for each velocity

component. In the literature different formulations of the φi functions can be found.

A comprehensive review of various formulations of φi functions suggested by different

studies and for different stabilities is presented by de Franceschi et al. (2009). A

generally accepted form of the flux-variance similarity relationships in the SBL is

φi(ζ`) = ai(1 + biζ`)
ci , (2.4)

where coefficients ai, bi and ci need to be found experimentally. Accordingly, the

non-dimensional wind shear defined as

φm(ζ`) =
k(z − d)

u∗`

∂u

∂z
, (2.5)

where u is the mean wind speed, is also a unique function of static stability. For

neutral conditions (ζ` = 0), φm approaches unity. As the exact forms of the similarity

functions are not predicted by similarity theory and they should be determined from

field experiments, many different formulations have been proposed based on the data

from different experiments (e.g. Dyer 1974; Beljaars and Holtslag 1991; Cheng and

Brutsaert 2005; Grachev et al. 2007; Sorbjan and Grachev 2010). Thus, the results

will first be compared to the linear relationship of Dyer (1974) obtained for the

stable SL

φm(z/L) = 1 + bm
z

L
, (2.6)

where bm = 5. Högström (1988) modified several existing formulas for φm (and

also for the non-dimensional temperature profile, φh), in order to comply with his

assumptions of k = 0.4 and (φh)ζ=0 = 0.95. For Dyer’s expression (2.6), he obtained

a value bm = 4.8. Additionally, the results are compared to the non-linear stability

function of Beljaars and Holtslag (1991)

φm(z/L) = 1 + a
z

L
+ b

z

L
e−d

z
L − bd z

L
(
z

L
− c

d
)e−d

z
L , (2.7)

where a = 1, b = 0.667, c = 5, d = 0.35, as expressions (2.6) and (2.7) are prob-

ably the most often used for parameterization in numerical models. Eq. (2.6) was

proposed for stabilities 0 < z/L ≤ 1 and it represents flux-profile relationship for

the SL. For the explicit form (2.6), data were collected during the summer of 1968

in south-western Kansas, USA above a wheat stubble (∼ 18 cm tall and 2400 m of

uniform fetch, e.g. Businger et al. 1971). This relationship has been shown to fit
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well the experimental data from different studies in the stability range 0 < z/L ≤ 1.

Equation (2.7) was obtained based on the data from a 200-m tall tower in Cabauw

(The Netherlands). This site is located in a flat terrain covered mainly with grass

with no obstacles for 200 m away from the tower. In this relationship the Obukhov

length based on surface values was used. Regarding the range of the stability pa-

rameter, this relationship is valid in the strongly stable conditions up to the value

of z/L ≈ 7. This equation is a modification of the relationship given first by Holt-

slag and de Bruin (1988) and it reduces the overestimation of the non-dimensional

gradients for very stable conditions. The strength of this expression over the linear

was found to be important for the weather forecast models. When linear relation-

ships for the non-dimensional gradients were used in these models, surface tended

to become thermally disconnected from the atmosphere in stable conditions.

Linear equations for φm (Eq. 2.6) for the stable SL together with the relations for

the unstable conditions are traditionally called Businger-Dyer relations (Businger

et al. 1971; Dyer 1974). Similar to the non-dimensional velocity variances we use

the non-dimensional wind shear in its local form (see Eq. 2.5).

Critical Richardson number

Another widely used stability parameter is the flux Richardson number, defined

as the ratio of the buoyancy term to the shear production term in the idealized TKE

budget equation:

Rf =
− g

θv
w′θ′v

u2∗
∂U
∂z

. (2.8)

As already noted, it is a dynamical stability measure, meaning that it takes into

account not just the sign of the buoyancy production/destruction term but also the

strength of the shear production and it is dimensionless. For stable stratification it

is positive and the production of turbulence is larger than damping if Rf < 1. For

values Rf > 1, turbulence can not be maintained even if shear production exists

because it is immediately damped by the stratification. For 0 < Rf < 1 the flow is

statically stable and dynamically unstable, meaning that the turbulence can exist.

However, the definition of Rf does not take into account the TKE dissipation rate

(ε) which contributes to the suppression of turbulence. The “critical” Richardson

number above which suppression of TKE is dominating over production can be

yield by equating the total suppression (buoyancy and dissipation terms) to total

production, i.e. shear production of TKE:

g

θv
w′θ′v − ε
u′w′ ∂U

∂z

= 1, (2.9)
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which gives

Rfcr = 1 +
ε

u′w′ ∂U
∂z

. (2.10)

Since the second term on the right hand side is always negative, the critical number

is reached somewhere between 0 < Rf < 1. Beyond Rfcr turbulence occurs only

sporadically and this state of the SBL is referred to as intermittent.

However, when turbulent fluxes are not available one might use gradient

Richardson number Ri, which is based on the arguments of the K-Theory or eddy

diffusivity theory. This theory relates turbulent correlations to vertical gradients

and this gives the expression for Ri:

Ri =
g

θv

∂θv
∂z(
∂U
∂z

)2 . (2.11)

In literature, a critical Richardson number is usually given in terms of Ri rather

than Rf . However, the existence of a threshold beyond which the turbulence is

suppressed is one of the fundamental problems of the SBL flows. Richardson (1920)

assumed that when Ri exceeds some critical value (Ricr), turbulence would collapse

to laminar flow and he found Ricr = 1. In the past six decades much research

was focused on determining the critical Ri and Rf and a short overview is given

in Grachev et al. (2013). The transition from turbulent to laminar flow (or from

turbulent to non-turbulent flow in the general case) and vice versa still presents an

ongoing issue, since controversial findings have been reported (e.g. Grachev et al.

2013, and references therein). While many different studies based on analytical,

numerical, laboratory and observational studies suggest that Rfcr ≈ 0.20 − 0.25,

Zilitinkevich et al. (2007) and Zilitinkevich et al. (2010) argued that there is no

critical value for Ri.

Based on the observational dataset in the SBL, Grachev et al. (2013) argued that

the upper limit for applicability of the local similarity theory is determined by the

inequalities Ri < Ricr and Rf < Rfcr. They found both critical values to be equal

to Ricr = Rfcr = 0.20− 0.25, with Rfcr = 0.20− 0.25 being the primary threshold.

Since this thesis investigates the applicability of the local scaling approach in the

SBL, their threshold values will be used in the analysis.

z-less scaling

The z-less concept requires that z cancels in the Eqs. (2.4) and (2.6). As a

result, a linear relationship for the non-dimensional function φm is obtained, while
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non-dimensional functions φi asymptotically approach constant values:

φm(ζ`) = bmζ`, (2.12)

φi = bi, (2.13)

where bm and bi are experimentally determined coefficients. For convenience,

throughout this thesis the notation ζ = ζ` will be used as all variables are based on

local values.

2.3 Spectral characteristics of turbulence

Since turbulence energy is contained in whirls (or eddies) of different size, we

can use spectral analysis to describe the content of turbulence energy related to

the eddies of various size, as well as to frequency of fluctuations in measurements.

Through the spectral representation the amount of kinetic energy, variance or eddy

flux is associated with each scale of motion. Spectra are useful because they show

the distribution of energy or variance with respect to frequency. Additionally, esti-

mates in different frequency bands are often statistically independent of each other.

The Fast Fourier Transform (FFT) enables estimates of spectral densities for large

samples (e.g. Panofsky and Dutton 1984).

In the turbulent part of the atmospheric energy spectrum we can distinguish

three major regions: the energy-containing range, the inertial subrange and the dissi-

pation range (e.g. Kaimal and Finnigan 1994). In the energy-containing range TKE

is produced by the mean flow and buoyancy (energy contained in large eddies). It

is characterized by the Eulerian integral length scale λ. When the turbulence spec-

trum is plotted against the wavenumber (Fig. 2.4), maximum energy occurs at this

scale λ ∼ 1/κ, where κ is the length of the wave number vector ~κ. The energy-

containing range is usually followed by the inertial subrange which was theoretically

derived by Kolmogorov (1941) who used dimensional analysis for that. For suffi-

ciently high Reynolds numbers he assumed that the flow is locally homogeneous and

almost isotropic in this range. Isotropic turbulence does not depend on the original

geometry (e.g. Panofsky and Dutton 1984). Production and destruction of energy is

negligible in this region. In a simplified concept for this range, turbulent eddies are

consecutively split up into smaller eddies until the smallest ones release their energy

in dissipation. Thus, in this range of the spectrum, turbulence should uniquely be

determined by the TKE dissipation rate ε and viscosity ν. A characteristic length

scale η for the viscous eddies can then be defined by means of dimensional analysis:

η =

(
ν3

ε

)1/4

, (2.14)
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where η represents the Kolmogorov microscale at which turbulence dissipates into

heat due to the viscosity. This defines the dissipation range.

ln κ 
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Figure 2.4: Schematic representation of the turbulence spectrum E(κ) dependent on the
wave number κ. Ranges of energy production, inertial subrange and dissipation range are
indicated. λ represents Eulerian integral length scale and η is Kolmogorov microscale.
(Adapted from Kaimal and Finnigan (1994).)

Turbulence extracts energy from the mean flow at the low wave number range,

κ ≈ λ−1. Turbulent eddies exhibit the cascade of the TKE from the energy-

containing range down to higher wave numbers. This process of energy cascade

is regulated by the dissipation rate ε. The higher this rate is, the faster the energy

is transported. This rate of energy supply/dissipation, per unit mass of fluid is:

ε =


energy supplied to fluid per unit mass and time

energy cascading from scale to scale, per unit mass and time

energy dissipated by viscosity, per unit mass and time

The dimensions1 of ε are:

ε =
ML2T−2

MT
= L2T−3. (2.15)

The range of length scales much smaller than λ is called the equilibrium range. In

this range the spectrum is nearly isotropic and generally in equilibrium. Therefore,

the energy will depend on the parameters that determine the nature of the small-

scale flow, that is

E = E(κ, ε, ν), κ� λ−1. (2.16)

1L represents length scale in meters, T a time in seconds and M is mass in kg.
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The inertial subrange is that part of the equilibrium range which is not affected

directly by viscosity and we can write:

E = E(κ, ε), η−1 � κ� λ−1. (2.17)

Based on the dimensional analysis Kolmogorov derived the shape of three-

dimensional velocity spectrum (i.e. TKE spectrum) in the inertial subrange

E(κ) = αKε
2/3κ−5/3, (2.18)

where αK represents a universal (Kolmogorov) number within the isotropic iner-

tial subrange ranging between 1.53 and 1.68 (e.g. Stull 1988). According to this,

the spectra exhibit −5/3 slope in the inertial subrange and, thus, Eq. (2.18) is

called Kolmogorov’s κ−5/3 law. While the production of energy at larger scales is

an anisotropic process, turbulence in the inertial subrange is locally isotropic. The

concept of locally isotropic turbulence was first introduced by Kolmogorov (1941)

and his theory relies on the assumption of gradual lost of anisotropy as energy is

transferred to smaller scales. Under the assumption of local isotropy, Kolmogorov

proposed the existence of a range of scales, i.e. inertial subrange, in which ε controls

the dynamics of turbulence. This is also known as Kolmogorov’s similarity hypothe-

sis. Under the local isotropy hypothesis the longitudinal velocity spectrum F1,1(κ1),

lateral F2,2(κ1) and vertical velocity spectrum F3,3(κ1) are derived from Eq. (2.18):

F1,1(κ1) =
18

55
αKε

2/3κ
−5/3
1 , (2.19)

F2,2(κ1) = F3,3(κ1) =
24

55
αKε

2/3κ
−5/3
1 , (2.20)

where κ1 represents the one-dimensional wave number. Therefore, in the inertial

subrange spectral densities of lateral and vertical velocity components are approxi-

mately equal, while that of the longitudinal velocity spectrum is smaller by 1/3:

F2,2(κ1) = F3,3(κ1) =
4

3
F1,1(κ1). (2.21)

Consequently, the spectra for v and w will be placed higher than the u spectrum

in the inertial subrange, and in the log-log representation all three spectra should

fall of as κ
−5/3
1 . An additional consequence of local isotropy is that all correlations

between velocity components and between velocity components and scalars vanish

and therefore no turbulent fluxes in the inertial subrange. Thus, the test for the

existence of the inertial subrange comprises three steps (e.g. Kaimal and Finnigan

1994):
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1. −5/3 power law,

2. 4/3 ratio between transverse and longitudinal velocity spectra,

3. vanishing (or very small) cospectral levels .

2.3.1 Dissipation rate of the turbulent kinetic energy

The dissipation rate of the TKE can be determined based on the Eq. (2.19):

ε =

[
κ
5/3
1 Fi,i(κ1)

αi

]3/2
, (2.22)

where αi (i = u, v, w) represents Kolmogorov constant for each velocity component

corresponding to αu = (18/55)αK and αv,w = (24/55)αK = 4/3αu. For measure-

ments performed in frequency space, we invoke Taylor’s hypothesis to transform

from wavenumber space to frequency scales: κ1 = 2πf/u, where f is natural fre-

quency and u is the mean wind speed. The relationship between power spectra

in wavenumber and frequency space is found based on the consideration of a log-

arithmic spectrum, that is, wavenumber-weighted spectrum, which represents the

variance: ∫ ∞
0

Fi,i(κ1)dκ1 = σ2
u =

∫ ∞
0

Si,i(f)df. (2.23)

It follows:

κ1Fi,i(κ1) = fSi,i(f). (2.24)

Based on Eqs. (2.22) and (2.24) we can determine the dissipation rate ε for mea-

surements done in frequency space:

ε =
2π

u

[
f 5/3Si,i(f)

αi

]3/2
. (2.25)

2.3.2 Surface layer spectral scaling

The concept of scaling provides more insight into the multi-length structure of

the flow when it is applied to spectra (Antonia and Raupach 1993). Since eddies

of different size contribute to spectra, the spectra are assumed to scale with those

scaling parameters at the origin of the eddies (Olesen et al. 1984). For example,

under statically unstable conditions, spectra are influenced by both small scale eddies

originating in the layer close to the ground (i.e. surface layer) and by large-scale

eddies having their origin above the SL (Kaimal et al. 1976). In the SBL, close

to the ground 3-dimensional eddies are damped by the buoyancy effects and the

vicinity of the ground, therefore turbulent spectra are mostly determined by SL
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scaling parameters.

First expressions for the SL velocity spectra were proposed by Kaimal et al.

(1972). These models were based on the experimental data from the Kansas (1968)

experiment and are considered as a classical reference today. Kaimal et al. (1972)

used SL spectral scaling arguments to estimate the form of the turbulence spectra

Su(f), Sv(f) and Sw(f) as functions of the stability parameter z/L.

In the framework of SL similarity scaling, friction velocity u∗ is used to

non-dimensionalize the velocity spectra in the SL. From Eqs. (2.19) and (2.24) the

inertial subrange logarithmic u spectrum normalized with u2∗ has the form

fSu(f)

u2∗
=

αu
(2πk)2/3

(
kzε

u3∗

)2/3(
fz

u

)−2/3
, (2.26)

where αu is a universal Kolmogorov constant for longitudinal wind component

estimated from different experiments to be about 0.5 and k is von Kármán constant.

The non-dimensional dissipation rate of TKE φε is equal to

φε =
kzε

u3∗
, (2.27)

and the non-dimensional frequency is equal to n = fz/u. Thus, the form of

longitudinal wind component spectra in the inertial subrange is expressed as:

fSu(f)

u2∗
=

αu
(2πk)2/3

φ2/3
ε n−2/3 = auφ

2/3
ε n−2/3, (2.28)

where au = αu/(2πk)2/3. Analog forms are valid for lateral and vertical velocity

spectra. According to Högström (1990) the Kolmogorov constant for the longi-

tudinal wind component αu ranges from 0.36 to 0.56. As a consequence of local

isotropy, values of αv and αw should be equal to 4/3αu. φε is a universal function

of the stability parameter ζ. Both αi and φε must be determined empirically from

spectral measurements. Using the value of k = 0.35 obtained from Kansas data

and αu = 0.5, Kaimal et al. (1972) estimated the constants ai = αi/ (2πk)2/3 to be

au = 0.3 and av = aw = 0.4. These estimates were obtained with 10% accuracy and

no clear dependency on stability.

Kaimal et al. (1972) included φ
2/3
ε into the normalization of the velocity

spectra. In this way the dependence on the stability parameter is removed and

consequently all spectra in the inertial subrange collapse to a single straight line

with a −2/3 slope (when plotted on a log-log scale). Additionally, based on the

Kansas hot-wire measurements of ε, Wyngaard et al. (1971) gave the following

interpolation formula for φε for the SBL:

φ2/3
ε = 1 + 2.5|z/L|3/5, 0 ≤ z/L ≤ 2. (2.29)
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In many other studies assuming local equilibrium conditions, φε was found to have

a liner dependence on ζ:

φ2/3
ε (ζ) = (1 + bεζ)2/3 , ζ > 0. (2.30)

The empirically determined parameter bε is estimated as bε = 3.7 (Garratt 1972),

bε = 4.0 (Wyngaard 1975) and bε = 5.0 (Kaimal and Finnigan 1994) .

2.3.3 Models of velocity spectra

Kaimal et al. (1972) derived the relationships which uniquely defined the

behavior of the spectra in the inertial subrange for neutral stabilities. Considerable

similarity in the shape of spectra was observed, with the fall off according to

−2/3 on the high frequency side. Therefore, the empirical formulae have a corre-

sponding form. They presented formulae which fitted best their neutral (z/L = 0,

φε(z/L = 0) = 1) velocity spectra:

fSu(f)

u2∗
=

105n

(1 + 33n)5/3
, (2.31)

fSv(f)

u2∗
=

17n

(1 + 9.5n)5/3
, (2.32)

fSw(f)

u2∗
=

2n

1 + 5.3n5/3
. (2.33)

Therefore, mathematical expressions (2.31) to (2.33) are used to model the

observed turbulence spectra, which enables a comparison with other atmospheric

and laboratory data. These expressions have one of the two following forms:

fS(f)

u2∗
=

An

(1 +Bn)5/3
, (2.34)

fS(f)

u2∗
=

An

1 +Bn5/3
. (2.35)

These two models can be written in a more general form

fS(f)

u2∗
=

Anγ

(1 +Bnα)β
, (2.36)

where A,B, α, β, γ are constants which depend on atmospheric stability. γ represents

a low-frequency slope on a log-log plot, which is very near +1.0. In the high-

frequency range, the spectra are characterized by the slope γ − αβ. The spectra

given by Eq. (2.34) are broader than those given by Eq. (2.35), thus this model is
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called “the blunt model”, while the spectra expressed by Eq. (2.35) are called “the

pointed model”. The position of the spectrum is determined with constants A and

B.

Analytical models given by Eq. (2.36) are used by many authors to describe

spectra obtained during different experiments and different atmospheric stabilities.

In the above mentioned spectral models for stable stratification, the spectral

intensity peak is reduced and shifted to higher frequencies as stability increases.

The spectral maximum represents typical scales of the turbulence. That is, the

wavelength at the spectral peak λm represents the size of eddies with the most

energy:

λm = z/nm, (2.37)

where nm is the frequency of the spectral maximum. Kaimal et al. (1972) found

the following approximations for the locations of the spectral maximum (peak) in

statically stable conditions:

(nm)w ' 5(nm)u ' 2(nm)v. (2.38)

According to Kaimal and Finnigan (1994) the behavior of (λm)w in the stable SL

and the layer immediately above can be expresses as follows:

(λm)w =


z(0.55 + z/L)−1, 0 ≤ z/L ≤ 1

zL(0.45z + 1.1L)−1, 1 ≤ z/L ≤ 2

L, z/L ≥ 2.

(2.39)

Olesen et al. (1984) have constructed spectral models of the velocity spectra for

the SBL. Using their models, spectra can be normalized so that they all coincide

to one curve only, irrespective of static stability. Graphically, this means that all

observed spectra are transported along the frequency axis until the positions of their

maxima coincide, and along the fS(f)/u2∗-axis until their high-frequency asymptotes

coincide. Mathematically, the stable spectra are normalized to adhere to one curve

by defining the factor q, which is a function of stability:

q =
nm

(nm)neutral
. (2.40)

Olesen et al. (1984) assumed nm to be proportional to the dimensionless velocity

gradient φm, thus, q is identical to φm. Based on the Kansas data, they set up a

spectral model for wind velocities in statically stable conditions at low heights:



24 2.4 Budget of TKE

fSu(f)

u2∗
=

79n/φm

1 + 263 (n/φm)5/3

(
φε
φm

)2/3

, (2.41)

fSv(f)

u2∗
=

13n/φm

1 + 32 (n/φm)5/3

(
φε
φm

)2/3

, (2.42)

fSw(f)

u2∗
=

3.5n/φm

1 + 8.6 (n/φm)5/3

(
φε
φm

)2/3

. (2.43)

2.4 Budget of TKE

The TKE is an important variable for BL flows, as it indicates turbulence inten-

sity. In order to get insight into the nature of turbulent production and destruction

in the BL it is useful to examine the terms in the TKE equation. If we choose a

coordinate system2 aligned with the mean wind and neglect subsidence, a simpli-

fied form of the TKE budget equation is (e.g. Stull 1988; Kaimal and Finnigan 1994):

∂e

∂t︸︷︷︸
(I)

= −u∂e
∂x︸ ︷︷ ︸

(II)

−u′w′∂u
∂z︸ ︷︷ ︸

(III)

+
g

θv
w′θ′v︸ ︷︷ ︸
(IV)

− 1

ρ

∂w′p′

∂z︸ ︷︷ ︸
(V)

− ∂w
′e

∂z︸ ︷︷ ︸
(VI)

− ε︸︷︷︸
(VII)

, (2.44)

where e = 1
2
(u′2+v′2+w′2) is TKE/m and p is the atmospheric pressure. Components

of Eq. (2.44) represent physical processes which act as sources or sinks of turbulence.

Term (I) represents local storage of TKE, (II) is the mean advection term, term (III)

represents the shear production, which is almost always positive. The buoyant term

(IV) represents a loss term in the SBL since the heat flux is negative, so we note this

term as buoyancy destruction. The fifth term is the pressure transport term, which

describes how TKE is redistributed by vertical pressure perturbations. It is difficult

to measure, so it is often obtained indirectly as a residual after measurement of all

other terms. This term is often associated with buoyant motions or gravity waves.

Term (VI) represents turbulent transport of TKE. It represents the rate at which

TKE is moved around by velocity fluctuations. The last term represents the viscous

dissipation of TKE, that is the conversion of TKE into internal energy.

According to the MOST framework, the normalized TKE budget is obtained

by multiplying all terms on the right side of Eq. (2.44) by k(z − d)/u3∗`, and for a

stationary flow is equal to

0 = −φa + φm − ζ − φp − φt − φε, (2.45)

2In this coordinate system downward heat flux is negative.
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where φa represents dimensionless advection, φm is shear production, ζ = (z− d)/Λ

is buoyant destruction, φt is turbulent transport, φp is pressure transport and

φε is dimensionless turbulent dissipation. Under the assumption of horizontal

homogeneity φa becomes zero. If the sum of turbulent and pressure transport terms

were negligible (which is a common assumption, e.g. Wyngaard (2010)), then there

should be a local equilibrium, i.e. TKE produced by local shear is destroyed locally

by buoyancy and dissipation over all stabilities

φε ≈ φm − (z − d)/Λ. (2.46)

This relationship suggests the general form of φε to the better known φm (Fortu-

niak and Pawlak 2015). Wyngaard and Coté (1971) suggested local balance under

statically neutral conditions ((z − d)/Λ = 0) with φm = φε = 1 and φt + φp = 0.

However, in recent decades this assumption was challenged by many experimental

studies which presented evidence of local imbalance (e.g. Högström 1990; Frenzen

and Vogel 2001; Li et al. 2008; Duarte et al. 2015). The observed imbalance, show-

ing excess or inadequate TKE dissipation under neutral conditions, underlines the

importance of the transport (and possibly advection) terms to either gain or loss of

TKE, respectively.

The turbulent transport term can be calculated directly from the observations.

Wyngaard and Coté (1971) suggested that non-dimensional turbulent transport

term is small in the stable BL but were not able to find the correlation to the

stability parameter, while Högström (1996) found it to be constant in neutral and

weakly stable conditions. Li et al. (2008) extended the traditional parameterization

for φt used for the unstable conditions

φt = a+ b(z − d)/Λ (2.47)

to the stable conditions as well.

The remaining two terms, the pressure transport and advection terms, are usu-

ally considered as a residual term, due to many difficulties involving their measure-

ments. Spatial measurements of TKE in streamwise direction, needed to calculate

the advection term directly, are not easily performed with tower-based measure-

ments. Also, for calculation of the pressure transport term accurate measurements

of small pressure fluctuations are needed, but these are extremely difficult to mea-

sure with current sensor technology available. Despite this, direct measurements of

the pressure transport term were reported in the literature, e.g., McBean and Elliot

(1975); Cuxart et al. (2002), but these are known to contain much uncertainty.
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Chapter 3

Data and Methods

3.1 Experimental set-up and site description

A 62 m high tower was located in the vicinity of the small industrial town

Kutina, Croatia (tower coordinates: 45o28’32”N, 16o47’44”E). The tower was placed

above a grassy surface and it was surrounded by approximately 18 m high black wal-

nut (Juglans nigra) trees. The closest trees are approximately 20− 25 m away from

the tower and they encompass an area of approximately 120 × 480 m2 (Fig. 3.1).

The tower is situated in a rather heterogeneous surrounding regarding both a larger

spatial scale (Fig. 3.1(a)) and immediate vicinity of the measurement site (on the

order of ∼ 1 km distance, Fig. 3.1(b)). To the east of the tower, crop fields which

extend to the aerial distance of > 1 km are found. South-southeast of the tower,

about 800 m to 1.5 km distant a large petrochemical industry plant is placed. In

a sector that encounters winds from the north-northwest to the northwest, low,

forested hills are located. They are covered with a dense forest, while at lower eleva-

tions, cultivated orchards and vineyards are found. Foots of these hills are roughly

1.3 km away from the measurement site. Thus, due to different surface roughness

features measurements in the SBL at the measuring site may be contaminated by

local advective fluxes, drainage flows and/or orographically-generated gravity waves.

These features are related to (sub)mesoscale motions which do not obey similarity

scaling and are therefore removed from our data by the rigorous data quality con-

trol and post-processing options as described later in the thesis (Section 3.2). Thus,

the focus of this thesis is on the micrometeorologically complex local site charac-

teristics, which may be more typical for “real sites” than the usually investigated

homogeneous reference sites.

Data used in this thesis were collected during wintertime (1 December 2008 −
28 February 2009) and correspond to the nocturnal period from 1800 to 0600 local

time. Turbulence measurements of three-dimensional wind and sonic temperature

27
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Figure 3.1: (a) Topographic map with contour lines each 25 m of the area surrounding
the measurement site (red dot) representing inhomogeneous terrain on a larger spatial
scale. (b) Google Maps image (Image c©2015 DigitalGlobe) of the observational site.
Measurement tower is indicated with a red dot (45o28′32′′ N, 16o47′44′′ E).

were continuously measured using identical WindMaster Pro (Gill Instruments) ul-

trasonic anemometers that sampled at 20 Hz. Data were measured at five levels

above the canopy height, hereafter at level 1 (z1 = 20 m above the surface), level

2 (z2 = 32 m), level 3 (z3 = 40 m), level 4 (z4 = 55 m) and level 5 (z5 = 62 m).

Measurement levels were prescribed prior to the experiment through existing tower

Figure 3.2: Measurement tower.

infrastructure (Fig. 3.2). Given the complicated and spatially inhomogeneous char-

acteristics of the measurement site, an idealized vertical structure is considered as

a zero-order approach in the analysis. An estimate of vertical layers for statically

neutral conditions was done using different models available in the literature and
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serves as a simple model for the interpretation of the results. For stably stratified

conditions these estimates will not be fully appropriate, but will provide the gross

picture.

90 
 
80 
 
70 
 
60 
 
50 
 
40 
 
30 
 
20 
 
10 

H
ei

gh
t (

m
) 

IEL 

Transition layer 

hi 

z01                                                z02 

RSL 

d 

U 
_ 

h* 

he 

Figure 3.3: Conceptual sketch of idealized vertical layers after a step change in surface
roughness for the long fetch case (∼ 400 m) under neutral conditions. The depth of the
IBL (hi), which develops due to the change in roughness conditions, is estimated based on
the model of Cheng and Castro (2002). Above the hi+d the flow is in equilibrium with the
upwind surface. Within the internal equilibrium layer (IEL) the flow is in equilibrium with
the forest. The transition layer indicates the transition zone between upwind and down-
wind equilibrium conditions. The dotted line denotes the height of the RSL, h∗, estimated
based on the relation given by Raupach (1994). The dash-dot line shows the zero-plane
displacement height (d) estimated as 3/4hc (e.g. Stull 1988; Kaimal and Finnigan 1994).
z01 and z02 correspond to upwind and downwind roughness lengths, respectively. The
black arrow denotes the mean wind (U) direction.

Conceptually, when the air flows over changing terrain, the downwind surface

conditions are likely to influence the measurements via internal boundary layers

(IBLs), which grow in height (hi) with downwind distance (Fig. 3.3) (e.g. Cheng

and Castro 2002; Dellwik and Jensen 2005). Only the lowest portion of the IBL (∼
10 % of hi) is in equilibrium with the new surface (internal equilibrium layer, IEL)

while the flow above the IBL is in equilibrium with the upstream surface conditions.

The IEL can, finally, be identified with the inertial sublayer (IS). However, if the

new surface is very rough, its lower part must be considered as a RSL. Within the

upper part of the IEL, i.e. the IS, turbulent fluxes are approximately constant with

height, MOST is valid and the mean wind speed follows the expected logarithmic

profile. Within the RSL, the flow is influenced by the distribution and structure of

canopy elements (Monteith and Unsworth 1990; Rotach and Calanca 2014), with
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momentum and scalars transported by turbulence, wake effects and very weakly by

molecular diffusion (Malhi 1996). Above the height of the IEL (he) stress and fluxes

start to decrease due to the upwind influence. This layer is defined as a transition

layer (Fig. 3.3). Due to the very tall roughness elements we use the zero-plane

displacement height (d) as our reference - hence the IBL is assumed to range from

z = d up to z = hi + d. Ideally, after a long enough flow over the new surface, the

IBL fills the entire boundary layer. Since we are interested in evaluating the degree

to which local scaling applies under inhomogeneous fetch conditions, we map the

idealized SBL structure to the IBL. The transition layer then becomes the outer

part of the inhomogeneously forced SBL.

We have estimated the length scales introduced above as follows: hi is

estimated based on the model of Cheng and Castro (2002)

hi
z02

= 10.56(
x

z02
)0.33, (3.1)

where x is the distance to the roughness change from the position of measurement

(fetch) and z02 is the roughness length of the new surface. Following Cheng and

Castro (2002), he can be determined as

he
z02

= 1.47(
x

z02
)0.37. (3.2)

The depth of the RSL (h∗) depends on different properties, such as canopy density,

roughness length for momentum and tree height. Raupach (1994) estimated the

height of the RSL as

h∗ − d
hc − d

= 2. (3.3)

For the zero-plane displacement we use a straightforward methodology, d = 3/4hc

(e.g. Stull 1988; Kaimal and Finnigan 1994), where hc = 18 m is the average canopy

height, which is estimated through direct measurements. Additionally, for the wal-

nut forest we used z02 ≈ 1 m (the lower value for the roughness length over forest,

z0 = 1 m, according to Foken (2008), his Table 3.1).

The estimated height of the IBL at our site (Tab. 3.1) varied between ∼ 40

and 80 m for short (≈ 55 m) and long (≈ 400 m) fetch conditions, respectively.

Estimated values of he at the location of the tower ranged between 7 and 14 m

according to Cheng and Castro (2002) for short and long fetch cases, respectively.

These estimates indicate that the second measurement level is above the IEL height

(z = d+he) for all wind directions. Also, the height of the RSL at our measurement

site is h∗ = 1.25hc, that is, approximately 23 m. Using the above estimates, we find

that level 1 is situated within the RSL for all wind directions. For cases characterized
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Table 3.1: Height of the equilibrium layer (he) and of the internal boundary layer (hi)
estimated based on the model of the Cheng and Castro (2002) (Eqs. 3.1 and 3.2) for
different fetch (x) values corresponding to particular wind directions (WD). Note that
these heights indicate the height above the displacement height d. In the determination
of the fetch length, holes in the forest or corridors of vegetation other than forest were
disregarded if their size was small enough.

WD (o) 30 60 90 120 150 180 210 240 270 300 330 360
x (m) 92 89 69 56 58 77 391 415 110 84 78 105
he (m) 7.8 7.7 7.0 6.5 6.6 7.3 13.4 13.7 8.3 7.6 7.4 8.2
hi (m) 47 46 43 40 40 44 76 77 50 46 44 49

with the short fetch, the IEL will most likely be within the RSL (he+d < h∗), while

only for wind direction with large fetch conditions (200–250o) the growing IEL will

encompass the RSL and a thin IS will form. Levels 2 and 3 are in the transition layer

for all wind directions, while levels 4 and 5 are even above hi for the short fetches

(105–175o). The highest measurement level reflects the upwind surface conditions for

fetches shorter than 100 m. Hence, a potential RSL influence should be detectable

if level 1 behaves differently. If levels 2− 5 do not show different behavior, this can

be taken as an indication that our crude mapping assumption has some validity.

3.2 Post-processing of the data

3.2.1 Treatment of the raw data

Instruments were mounted 3 m away from the triangular lattice tower (booms

facing to the northeast) to minimize any flow distortion effect by the tower. Con-

siderable loss of data was incurred due to intermittent winter icing or temporary

instrument malfunction (Table 3.2). During this period, light nocturnal winds were

common at the site at the lowest measurement level (Fig. 3.4). We assume that the

sonic temperature Ts = T (1 + 0.51q), where T is the air temperature, is close to the

virtual potential temperature θv and q is the specific humidity. Automated quality

control procedures were not used since they may be too strict for the SBL analysis

of weak turbulence. Raw 20-Hz data were first divided into 30-min intervals. These

intervals were checked for large data gaps, and all 30-min intervals with more than

1% of missing data were omitted from further analyses. After the consistency limits

check, i.e. the data having unrealistically high/low values were removed, spikes (de-

fined as data points within the time series which deviate more than four standard

deviations from the median value of the particular 30-min averaging window) were

also removed. If the number of spikes within the 30-min interval was less than 1%

of the total data, spikes were replaced by linear interpolation from neighboring val-



32 3.2 Post-processing of the data

Level 1

15%

10%

WEST EAST

SOUTH

NORTH

0 − 1
1 − 2
2 − 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 10

Wind speed
   (ms−1) 

Level 2

15%

10%

WEST EAST

SOUTH

NORTH

0 − 1
1 − 2
2 − 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 10

Wind speed
   (ms−1) 

Level 3

20%

10%

WEST EAST

SOUTH

NORTH

0 − 1
1 − 2
2 − 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 10

Wind speed
   (ms−1) 

Level 4

15%

10%

WEST EAST

SOUTH

NORTH

0 − 1
1 − 2
2 − 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 10

Wind speed
   (ms−1) 

Level 5

20%

10%

WEST EAST

SOUTH

NORTH

0 − 1
1 − 2
2 − 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 10

Wind speed
   (ms−1) 

1
Figure 3.4: Wind roses at the measurement site for 30-min averaged data for the analyzed
period (December 2008 - February 2009). Levels 1 to 5 correspond to measurement heights
of 20, 32, 40, 55 and 62 m above the ground, respectively.

ues. The angles of attack were calculated for each measurement and for each flux

averaging period, and flagged it if angles of attack exceeded 15o. The number of 30-

min intervals available for the further post-processing is labeled as “minimum QC”

(Table 3.2). A cross-correlation correction of the time series is already implemented

in the Gill Instruments software.

3.2.2 Coordinate rotation

Although double rotation of the data is the most commonly used to correct

for sonic misalignment, according to Mahrt (2011) and Mahrt et al. (2013) it

should not be applied to SBL data under weak-wind conditions. In the very

SBL direction-dependent mean vertical motions may occur where minor surface

obstacles can significantly perturb the flow. In a setup like ours, characterized

by tall vegetation and/or complex terrain, a non zero 30-min mean vertical wind

component may exist. In such situations, a planar fit (PF) method (Wilczak

et al. 2001) would be better since it is based on an assumption that the vertical

wind component is equal to zero only over longer averaging periods. The mean

streamline plane is defined based on the measurements made during the 88-night

period for each of five levels (Table 3.2). This period is long enough to encompass
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all wind directions and has a sample size that will allow robust averaging. The PF

method performs a multiple linear regression on the 30-min wind components to

obtain the mean streamline plane (Aubinet et al. 2012):

w0 = b0 + b1u0 + b2v0, (3.4)

from which the regression coefficients b0, b1 and b2 are deduced, where u0, v0 and

w0 indicate measured, unrotated 30-min wind components. Coefficient b0 indicates

the instrumental offset in the vertical wind component and must be subtracted from

w0 from further calculations. The coordinate rotations are performed around the z-

axis, the new x-axis and the new y-axis resulting in the yaw αPF , pitch βPF and roll

γPF angles. Since the rotations are not commutative and the regression coefficients

are computed from the components in the sonic anemometer coordinate system, the

pitch and roll rotations must be applied before the yaw rotation. All the rotations

are applied to each individual flux-averaging period. According to Wilczak et al.

(2001) these angles can be obtained as

sin βPF =
−b1√

b21 + b22 + 1
, cos βPF =

√
b22 + 1√

b21 + b22 + 1
, (3.5)

sin γPF =
b2√

1 + b22
, cos γPF =

1√
1 + b22

, (3.6)

αPF = tan−1
(
v2
u2

)
. (3.7)

3.3 Determining turbulence averaging time scale

Basu et al. (2006) have shown that using an averaging window of inappropriate

length can lead to false conclusions concerning the behavior of the turbulence. In

stable flows, use of an averaging time that is too large leads to serious contamination

of the computed flux by incidentally captured mesoscale motions (Howell and Sun

1999; Vickers and Mahrt 2003). Here we distinguish two different averaging scales:

the turbulence averaging scale needed for the definition of the turbulence fluctuations

(τ) and a flux averaging time scale.

3.3.1 Fourier analysis

Continuous time series obtained by tower-mounted sonic anemometers record

atmospheric motion at scales that span over several orders of magnitude. The appli-

cation of the eddy covariance method requires the separation of the instantaneous

signal into the mean and fluctuating parts (e.g. Večenaj et al. 2011, 2012; Babić
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et al. 2012). The implicit assumption that allows us to separate the flow field into

mean and fluctuating parts is that of the existence of mesoscale spectral gap (e.g.

Večenaj et al. 2012).

The concept of Reynolds averaging is used to analyze the boundary layer

turbulence. Reynolds averages are ensemble averages that can be applied only to

statistically stationary processes. Because atmospheric observations are inherently

non-stationary (in a statistical sense), they must be transformed into time series

that are statistically stationary (Section 3.4) so that one may apply Reynolds

decomposition. Since single point measurements in space are functions of time,

we must assume an ergodic hypothesis and replace ensemble averages with time

averages. This action guarantees that the mean of fluctuating components remains

zero, while it does not change the mean value for any given variable. The

assumption of stationarity is never fulfilled because the majority of meteorological

variables show a diurnal cycle. However, quasi-stationary conditions can be

achieved by choosing an appropriate flux averaging interval. According to Kaimal

and Finnigan (1994), a 1-h period is as long as we can extend the averaging

period without accounting for the non-stationarity in the form of diurnal or

large scale variations. However, in the SBL this averaging interval is even smaller.

For a given time series for any function of a single independent variable x(t) we write:

x(t) = x(t) + x′(t). (3.8)

In this way, we separate the slowly varying, almost “passive” large scale changes in

x(t), which we write as x(t), from the rapid, “active” turbulent variations, x′(t),

about x(t). The time average is defined as follows:

x(t) = x =
1

τ

∫ τ

0

x(t)dt. (3.9)

We then remove this mean in the period τ , which represents the size of a moving

average, to define the turbulent perturbation. This averaging interval can be derived

from the spectrum of atmospheric motions, which often show a gap between periods

of 20 min to 1 hour (e.g. Van Gorsel 2003).

One of the ways to perform a spectral analysis is by Fourier analysis. Here,

we estimate turbulence averaging intervals by applying two methods, both based on

Fourier analysis. As already noted, assuming Taylor’s frozen turbulence hypothesis

we can make conversion from space scales (wave number) to the frequency domain.

In this context, spectral analysis is a very useful tool for deriving information on

large-scale to small-scale eddy energy transport. The value of the spectrum at a

specific frequency is equal to the mean energy in that eddy size. For the calculation of

the power spectra and cospectra of the three dimensional wind velocity components
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and sonic temperature a Fast Fourier Technique (FFT) is used.

The Fourier theorem states that function g(t), which is a time series of a

meteorological parameter with turbulent fluctuations (i.e. wind components or

sonic temperature), can be represented by a system of orthogonal sine and cosine

functions with appropriate amplitude and phase:

g(t) =
∞∑

k=−∞

cke
ikt, (3.10)

ck =
1

2π

∫ ∞
−∞

g(t)e−iktdt, eikt = cos(kt) + i sin(kt). (3.11)

The Fourier transform (FT) uses this concept to transform between time and

frequency domains. For the same continuous function g(t), the FT is defined as

Ĝ(f) =

∫ ∞
−∞

g(t)e−i2πftdt, (3.12)

with f being natural frequency. The inverse FT is

g(t) =
1

2π

∫ ∞
−∞

Ĝ(f)e2πftdf. (3.13)

The time integral over the frequency spectrum (3.12) corresponds to the variance.

3.3.2 Ogive functions

The second method based on Fourier analysis used for estimating an appropri-

ate flux averaging time was introduced by Desjardins et al. (1989) and Oncley et al.

(1990) for the investigation of turbulent fluxes. This method uses the cumulative

or running integral of the cospectrum to determine the frequency at which there is

no more contribution to the covariance (e.g. Foken 2008; Babić et al. 2012). This

cumulative integral is an ogive function defined by

Ogxy(f0) =

∫ f0

∞
Coxy(f)df, (3.14)

where Coxy represents the cospectrum of any two variables x and y (e.g. Oncley

et al. 1996; Metzger and Holmes 2008). The integral ranges from a higher frequency

(highest frequency recorded) toward a lower frequency (frequency of interest).

The ogive plots show the cumulative contribution of eddies of increasing period

to the covariance. If the ogive reaches an asymptote at some frequency fc, this

indicates that there is no more flux beyond this frequency (Moncrieff et al. 2004).

The flux averaging time scale is equal to τF = 1/fc. τF denotes the minimum

averaging time necessary to include all flux contributions, that is, the time scale
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which separates local turbulent fluxes that produce surface-layer turbulence from

mesoscale/diurnal fluxes (Foken et al. 2006). The ogive and cospectrum provide

the same information because a point on the ogive curve is equal to the integral

under the cospectral density curve. Another advantage of the ogive plots is that

we can determine whether we have sampled the data for a long enough period

without needing to compare our measurement to some chosen standard that can be

inappropriate for our conditions (Moncrieff et al. 2004).

3.3.3 Multiresolution flux decomposition

The Multiresolution Flux Decomposition (MFD; Howell and Mahrt 1997; Vick-

ers and Mahrt 2003) decomposes variances and/or covariances of physical quantities

locally. Multiresolution (MR) analysis applied to time series orthogonally decom-

poses the record by averaging time series using different averaging lengths (i.e.,

averages on different time scales). Using the MFD method turbulent fluxes can be

analyzed. MR cospectra can be interpreted as fluxes decomposed into values, which

are computed from moving averaging windows of different widths. Therefore, the

location which corresponds to the maximum in MR cospectra in the time scale do-

main depends on the time scale of the fluctuations. Contrary to this, the peak in the

Fourier cospectra depends on the periodicity. Additionally, the MR cospectra satisfy

Reynold’s averaging rules at all scales since each mode of the MFD corresponds to

a simple unweighted (nonoverlaping) moving average.

We first consider a time series xi(t) consisting of i = 1, 2, 3, . . . , 2M points. MR

decomposition divides the data record of length N = 2M into simple averages of

different segments (scales m) of width 2m (m = 0, 1, 2, . . . ,M) consecutive data

points (Fig. 3.5). The first step in the MR decomposition is to calculate the simple

average over the record. This represents the lowest order mode, that is, the largest

averaging timescale and corresponds to m = M . This average is then removed

from the record. In the next step the means of the two half records are calculated

and removed from the corresponding half record. In the third step the averages of

the four subrecords are removed, and so forth. The procedure is applied until the

highest order mode is reached, which corresponds to m = 0 and denotes the shortest

averaging scale.

For example, for a given scale m, the averaging segments are sequenced as

n = 1, 2, 3, . . . , 2M−m, n representing the position of the segment within the series.

The average for the n-th segment at scale m+1 is given by (Vickers and Mahrt 2003)

xn(m) =
1

2m

n2m∑
i=2m(n−1)+1

xri(m), (3.15)
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where 2m is the window averaging length, xri(m) is the residual series with segment

averages for windows of width > 2m points removed. The integer n identifies the

position of the 2(M−m) different averaging windows of 2m points (Fig. 3.5(a)). The

n = 1 averaging window includes the first 2m points of the data record, the n = 2

average includes the points i = 2m, . . . , 2(m+1) − 1, and so forth (Fig. 3.5(b)). The

MR spectra represent the second moment about the mean of the segment averages

and are given by

Dx(m+ 1) =
1

2M−m

2M−m∑
n=1

xn
2(m). (3.16)

In an analog way, MR cospectrum of two time series xi and yi is:

Dxy(m+ 1) =
1

2M−m

2M−m∑
n=1

xn(m)yn(m). (3.17)

The sum of Dxy(m) over averaging scales m = 1, 2, · · · k is exactly the eddy covari-

ance flux calculated using an averaging scale of length 2k points. The maximum in

the MR cospectra (decrease in the magnitude with the increasing scale) is associated

with the turbulence. Based on the MR cospectra, Vickers and Mahrt (2003) defined

a cospectral gap scale (τgap). This gap scale is then used to separate between turbu-

lence and mesoscale motions. The gap scale can be detected if one of the following

criteria is fulfilled: the cospectra changed the sign (zero crossing) or level off at

an averaging time scale longer than the turbulence time scale. The leveling off of

the cospectra is identified with the accumulative flux changes less than 1% with an

increase in the time scale. The accumulative flux can be obtained by summing up

the contributions to the flux starting at the smallest scale.

3.3.4 Wavelet analysis

Wavelet analysis differs from other quantitative analytical tools that are usually

used to analyze turbulent time series (such as Fourier analysis) primarily in that it

is a local transform, and the analysis takes place at a variety of different scales (e.g.

Salmond 2005). This yields information about the temporal location of different

features (characterized by different frequencies) within the data set to be retained.

In this way the wavelet analysis zooms in on a particular feature of the signal

and studies locally with a level of detail corresponding to the scale of the feature.

Therefore, this technique will be used to filter the signal, thus effectively isolating

the turbulent signal from other processes, such as gravity waves or background noise

that contaminate the data set.

In this thesis only basic concepts of wavelet analysis are presented following
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Figure 3.5: (a) Schematic representation of the multiresolution flux decomposition
method representing averaging window basis set and (b) partitioning of the set into 2M−m

averaging windows. Adopted from Howell and Mahrt (1997)

Torrence and Compo (1998). A more detailed description can be found in many

reference works (e.g. Daubechies 1992; Farge 1992; Lau and Weng 1995).

The wavelet transform (WT) is defined for a time series xn consisting of N

measurements with equal time step δt and n = 0, 1, 2, . . . , N − 1. The continuous

WT of a discrete series xn is defined as the convolution of xn with a scaled and

translated version of ψ(η) (Torrence and Compo 1998):

Wn(s) =
N−1∑
n=0

xnΨ
∗
[

(n− n′)δt
s

]
, (3.18)

where Ψ∗ indicates the complex conjugate of the wavelet function ψ(η), n′ is

localized time index and s denotes wavelet scale. The term (n−n′)δt
s

represents

a non-dimensional “time” parameter and we denote it as η. The function ψ(η)

represents normalized function ψ0 and has unit energy:

ψ(η) =

(
δt

s

)1/2

ψ0(η), (3.19)

where ψ0(η) is a wavelet function which has a zero mean and is localized in both

time and frequency space (fulfills the admissibility condition) (Farge 1992). In this

thesis for the wavelet function ψ0(η) the non-orthogonal complex Morlet wavelet
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was chosen:

ψ0(η) = π−1/4eiω0ηe−η
2/2, (3.20)

with ω0 = 6 being the non-dimensional frequency for which the admissibility

condition is satisfied. The Morlet wavelet was found to be suitable for statistical

analysis and for the pattern recognition in turbulence data (e.g. Farge 1992;

Salmond 2005; Cuxart et al. 2002; Terradellas et al. 2005; van den Kroonenberg

and Bange 2007). By varying the wavelet scale s and translating along n, it can

be shown how the amplitude of any feature versus the scale changes with time as

well as how this amplitude changes with time. Equation 3.18 shows a convolution

of xn and Ψ∗ and this convolution should be done N times for each scale s. This

is considerably faster if calculated in Fourier space. The convolution theorem1

allows us to do all N convolutions simultaneously using a discrete Fourier transform

(DFT). Using the convolution theorem and inverse FT, Eq. 3.18 can be rewritten as

Wn(s) =
N−1∑
k=0

x̂kΨ̂
∗(sωk)e

iωknδt, (3.21)

where x̂k is a DFT of xn

x̂k =
1

N

N−1∑
n=0

xne
−2πikn/N . (3.22)

The angular frequency ωk is defined as

ωk =

 2πk
Nδt

, k ≤ N
2

− 2πk
Nδt

, k > N
2

(3.23)

(k = 0, 1, 2, . . . , N − 1). The FT of the function ψ(η) is given by ψ̂(sω)

ψ̂(sωk) =

(
2πs

δt

)1/2

ψ̂0(sωk). (3.24)

The function ψ̂(sωk) is a normalization of ψ̂0(sωk) which ensures that the WTs given

by Eq. (3.21) at each scale s are comparable to each other and to the transforms

of other time series. The WT uses a fully scalable window of changeable width as

the transform is computed at different scales, and therefore it optimizes the time

resolution.

The wavelet power spectrum (WPSn(s)) is defined as squared absolute

amplitude of the complex wavelet coefficients

1The convolution theorem states that the FT of any convolution can be interpreted as the
product of its FTs.



40 3.3 Determining turbulence averaging time scale

WPSn(s) =
Wn(s)W ∗

n(s)

s
=
|Wn(s)|2

s
. (3.25)

The power spectrum is divided by scale it associates in order to correct the bias

observed in favor of large scales or low frequencies (Liu et al. 2007).

A set of scales s (s = sj) used in the WT can be chosen arbitrarily in the case

of non-orthogonal wavelets; in this case a more complete picture can be built up

(Torrence and Compo 1998). The scales sj are defined as follows

sj = s02
jδj, j = 0, 1, . . . , J (3.26)

where s0 describes the smallest resolvable scale, δj is the spacing between the scales

and J is the largest scale

J =
1

δj
log2 (Nδt/s0) . (3.27)

The relationship between equivalent Fourier period (FP) and the wavelet scale s is

given by:

FP =
4πs

ω0 +
√

2 + ω2
0

. (3.28)

For the Morlet wavelet (with ω0 = 6) the wavelet scale is almost equal to the FP.

Thus, s0 = 2δt should be chosen to have the equivalent FP approximately 2δt.

Smaller values of δj will give finer resolution, and a δj of about 0.5 is the largest

value that ensures adequate sampling in scale.

The local wavelet power spectrum is defined as a vertical slice through the

wavelet scales at a certain time. Thus, the time-averaged wavelet spectrum over a

certain period is

W
2

n(s) =
1

na

n2∑
n=n1

|Wn(s)|2, (3.29)

where the new index n indicated the midpoint of n1 and n2 and na = n2 − n1 + 1

represents the number of point averaged over. The global wavelet power spectrum

is the average over all the local wavelet spectra

W
2
(s) =

1

N

N−1∑
n=0

|Wn(s)|2. (3.30)

The results of wavelet analysis applied to our data are presented in Chapter 4,

Section 4.4.
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3.4 Stationarity of the time series

Stationarity of the time series is a fundamental assumption of similarity theory.

Thus, it should be tested prior to evaluation of similarity theory. Večenaj and

De Wekker (2015) performed a comprehensive analysis to detect non-stationarity

based on various tests proposed in the literature. They found that the Foken and

Wichura (1996) test most often detects the largest number of non-stationary time

intervals among all the tests investigated. They concluded that non-stationarity

significantly decreases if detrending or high-pass filtering is applied, since highly

non-stationary (sub)mesoscale motions are removed by filtering. Therefore, while

testing non-stationarity of our datasets, we first removed the linear trend for each

30-min interval and then applied the Foken and Wichura (1996) test to the filtered

time series. The stationarity test of Foken and Wichura (1996) assumes that second

order moments of stationary time series converge to stable values with increasing

averaging time, that is

FW =

∣∣∣∣Qx,y(5min)−Qx,y(30min)

Qx,y(30min)

∣∣∣∣ · 100%, (3.31)

whereQx,y represents any second order moment (variances and covariances) averaged

over 5 and 30 minutes. FW denotes the absolute value of the ratio between the

difference of the flux averaged over six 5-min subrecords and the flux averaged over

the total 30-min interval, to the flux obtained over the total 30-min period. The

observed time series is declared non-stationary if the FW fraction is above the

threshold value of 30%.

The percentage of non-stationary periods for our dataset over heterogeneous

terrain in the SBL varied between 20 and 30 % depending on the level of observa-

tion (Tabe 3.2). This result indicates slightly lower number of stationary intervals

compared to results obtained in recent studies over complex mountainous terrain of

Večenaj and De Wekker (2015) and Stiperski and Rotach (2016).

3.5 Statistical uncertainty

The statistical uncertainty (or sampling error) is inherent to every turbulence

measurement. The assessment of the statistical uncertainty is related to the

averaging period. In order to estimate statistical uncertainty we followed Stiperski

and Rotach (2016). This test was performed on the time intervals which were

declared stationary by the foregoing test. The statistical uncertainty was estimated

for the momentum and heat fluxes, and for the variances:
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a2x =
4(z − d)

Tau

[
(x′)4

(x′)2
2 − 1

]
, (3.32)

a2xy =
z − d
Tau

[
(x′y′)2

u4∗`
− 1

]
, (3.33)

where x′ and y′ represent turbulent fluctuations of any turbulence variable. This

was done for the fixed averaging period Ta= 30 min. Although over ideally flat and

homogeneous surfaces one might choose 20 % as a limit of statistical uncertainty,

we chose the 50 % to assure both, high quality data sets, and a significantly large

amount of input data for the similarity analysis (e.g. Stiperski and Rotach 2016).

Thus, for the subsequent analysis only 30-min intervals associated with statistical

uncertainty below 50 % were chosen. The uncertainty was largest for the kinematic

heat flux while for variances it was on average smaller than 50 %.

Finally, according to the QC recommendations proposed by e.g. Klipp and Mahrt

(2004) and Grachev et al. (2014) the following thresholds were imposed: data with

the local wind speed less than 0.2 ms−1 were omitted, while minimum thresholds for

the kinematic momentum flux, kinematic heat flux, and standard deviation of each

wind speed component were 0.001 m2s−2, 0.001 Kms−1 and 0.04 ms−1, respectively.

Table 3.2: Number of 30-min intervals that satisfy the minimum QC (no large data gaps,
no unrealistic values and no spikes) within the observational period of 88 nights (out of the
total of 2112 intervals). The number of stationary and also the number of time intervals
which are stationary and have uncertainty < 50 % (used for the analysis in this study) is
given.

Criteria Level 1 Level 2 Level 3 Level 4 Level 5
Minimum QC 647 802 1898 564 803
Stationary 482 576 1323 388 649
Stationary & Uncertainty < 50% 342 388 760 225 357

3.6 Estimation of the flux footprint

Footprints are estimated and used in order to facilitate an interpretation of the

results. Recently, Kljun et al. (2015) presented a new parameterization for Flux

Footprint Prediction (FFP) which has improved footprint predictions for elevated

measurement heights in stable stratification. Furthermore, the effect of the z0 has

been implemented into the scaling approach. It is based on the scaling approach of

flux footprint results of a thoroughly tested Lagrangian footprint model. The two-
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dimensional flux footprint model of Kljun et al. (2015) (http://footprint.kljun.

net/) was used to estimate the distance of the surface upwind of the measurement

tower, that defined the fetch (flux footprint function) for the measurements at each

level during statically stable conditions. As input parameters the mean standard

deviations of lateral wind component (σv = 0.40, 0.45, 0.41, 0.46 and 0.46 ms−1 for

levels from 1 to 5, respectively), the mean local Obukhov lengths (Λ = 33, 28, 38, 45

and 39 m), the mean friction velocities (u∗ = 0.23, 0.20, 0.19, 0.22 and 0.21 ms−1)

and correspondingly, mean wind velocity for each measurement height (U = 1.9,

2.9, 3.1, 4.0 and 4.1 ms−1) were used. The height of the SBL was set to 250 m since

the result did not exhibit noticeable sensitivity to its choice. The peak location of

the footprint function, i.e. location of the maximum influence on the measurement,

increases with increasing height and varies between 19 and 405 m from the lowest

to the highest observational level, respectively. Additionally, the distance from the

receptor that includes 90 % of the area influencing the measurement (xR) increases

with height, where xR ≈ 65, 331, 570, 1260 and 1300 m, correspond to levels 1 to

5, respectively.

http://footprint.kljun.net/
http://footprint.kljun.net/
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Chapter 4

Timescales in the nocturnal

boundary layer

The application of the eddy covariance method requires separation of instan-

taneous signal into the mean and fluctuating parts (e.g. Metzger and Holmes 2008;

Večenaj et al. 2011, 2012). The concept of this decomposition has existed for over

a century and was introduced by Osborne Reynolds in, what is now considered, his

classic paper (Reynolds 1895). One of the key features of this approach is the aver-

aging, which defines the mean, variance and covariance and consequently simplifies

the governing equations for turbulent flow (e.g. Stull 1988). The implicit assumption

that allows us to separate the flow field into its mean and fluctuating parts is that

of the mesoscale spectral gap (e.g. Večenaj et al. 2012). The first evidence of this

gap in the horizontal wind speed spectrum was observed by van der Hoven (1957).

In his study, a separation of scales was evident due to the appearance of a large

spectral gap that contained very low energy between the microscale and synoptic

scale peaks. Many numerical atmospheric models use grid spacing that falls within

the spectral gap, which means that large-scale motions can be resolved, while the

small-scale features, such as covariances of momentum, sensible heat, moisture and

concentration, are parameterized in order to close the Reynolds averaged equations

(e.g. Stull 1988).

The application of the Reynolds decomposition requires transformation of non-

stationary atmospheric motions into statistically stationary time series. Turbulent

motions are unsteady by definition (e.g. Agrawal 1997). However, a turbulent flow

can be statistically stationary. According to e.g. Pope (2000), random field u(x, t)

is statistically stationary if all statistics are invariant under a shift in time; in other

words, the statistical properties do not change in time. The transformation into

statistically stationary time series can be performed using a mean removal process

or filter. The mean removal process determines the integral time scale for turbulent

time series, τ . It is important, however, to make a distinction between the averaging
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time T , which is required for the convergence of statistical moments (e.g. Lumley

and Panofsky 1964; Sreenivasan et al. 1978; Lenschow et al. 1994), and the time scale

τ . We require that the averaging time is much longer than the period of fluctuations

in the original time series, τ/T << 1 (Kristensen 1998). In statistically stationary

processes, T ≈ τ (e.g. turbulence generated in laboratory experiment). However,

for non-stationary processes, τ represents the time scale of the slowest energetic

motions, while T represents the averaging time that governs the convergence of

variance (Metzger and Holmes 2008).

In experiments performed during the past several decades, time periods between

10 and 60 min were usually used as the averaging interval T over which to calculate

means and products of turbulence variables regardless of static stability, turbulence

levels or other factors (Oncley et al. 1996). Based on results from the 1968 Kansas

data, Wyngaard (1973) showed that the averaging time increases with the order

of the moment of the statistic and with increasing static instability. For example,

for Reynolds stress components u′w′ and v′w′, τ was predicted to be on the order

of hours for statically unstable conditions and it was larger than times needed for

convergence of scalar covariances and other lower order statistics.

A multitude of papers on methods describing techniques for the mean removal

operation, such as temporal filtering (Moore 1986; McMillen 1988), linear detrend-

ing (Stull 1988; Kaimal and Finnigan 1994) or sliding windows (Rannik and Vesala

1999; Sakai et al. 2001; Večenaj et al. 2010) can be found. Each of these methods,

however, requires a specification of the integral time scale to define the “mean”

quantity. Vickers and Mahrt (2003) propose a multiresolution flux decomposition

method for selecting an appropriate time scale for the mean removal process during

statically stable and near-neutral conditions. It has been shown that different inte-

gral time scales should be used for different conditions of atmospheric stability. For

example, Sozzi and Favaron (1997) found that good averaging time under convective

conditions is 30−60 min, while Metzger and Holmes (2008) found that for the same

conditions over Utah’s western desert, an appropriate mean removal time scale is

between 20 and 27 min. Vickers and Mahrt (2003) have shown that the average time

scale increases with instability because of large convective eddies and decreases with

increasing stability due to the suppression of large eddies by stratification. They

found an average time scale of 9 min for near-neutral conditions, which decreases

sharply with increasing stability to 100 s for strong static stability. Many studies

indicate that an appropriate integral time scale is highly site specific and therefore

should be calculated locally.

This chapter describes the application of two methods based on a Fourier analy-

sis and two methods based on wavelet analysis to estimate characteristic time scales

in statically stable, wintertime, night-time ground-based layer.
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4.1 Fourier analysis

The first of four methods employed to determine an appropriate turbulence

averaging time scale is Fourier spectral analysis. The spectra were calculated by

multiplying the 2-hr periods of u, v, w time series with a Hamming window with 216

data points (approximately 54.5 min) and 50 % overlapping; a FFT algorithm was

used to perform the FT. The FFT was then multiplied by its complex conjugate,

and the real part of this product was maintained.
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Figure 4.1: A log-linear representation of the mean energy spectrum of the velocity
components (top left: longitudinal top right: lateral, lower panel: vertical) at all five
measurement levels. The background gray lines indicate the mean raw spectra.

Figure 4.1 shows a log-linear representation of the frequency weighted average

spectra of all three velocity components at all five measurement levels. This type
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of spectral representation is proportional to the energy since the area under any

portion of the spectral curve is proportional to the variance, i.e. energy (e.g. Stull

1988). Although, the individual spectra are quite scattered (not shown), the mean u

and v spectra show an existence of an energy gap, which is more pronounced for the

lateral wind component since it contains less energy at larger scales compared to the

longitudinal component. The observed energy gap is found between approximately

400 and 100 s and this corresponds to the time scale τ . The vertical velocity com-

ponent has the lowest energy magnitudes compared to the horizontal components,

and its spectra reveal no energy gap. This is expected since the large scale motions

have typically small vertical velocities and consequently low energy levels. The area

under the fSw curve represents the turbulent portion of the spectral energy indi-

cating the largest contribution coming from eddies at time scales between 250 and

1 s.

4.2 Ogive functions

A relevant flux averaging time scale can be determined from the cospectrum

of the kinematic heat flux (e.g. Oncley et al. 1996; Foken et al. 2006; Metzger

and Holmes 2008). As described in Section 3.3, the ogive function is a cumulative

integral of the cospectrum, and thus, when an ogive starts to converge from a certain

frequency, this can be interpreted that there is no more contribution to the flux

beyond this frequency. Therefore, the period corresponding to this frequency can

be considered as the flux averaging period.

Figure 4.2 shows the mean raw and smoothed kinematic heat flux (w′θ′) cospec-

tra as well as the corresponding ogives for all five levels. The cospectra were calcu-

lated using the same technique as described for the velocity components spectra. We

consider corresponding ogives in order to estimate the appropriate averaging time

scale. As pointed out by Foken et al. (2006), in an ideal case, the ogive function

increases during integration from high frequencies to low frequencies until a certain

value is reached and remains more or less constant before a 30 min integration time.

Because of the variability of spectra, deviations of 10 % for the plateau value can

be tolerated. We note that in our case this condition is fulfilled for the mean ogives

at nearly all levels. This means that 30 min is a reliable estimate of the averag-

ing period T for the calculation of turbulent flux, because we can assume that the

whole turbulent spectrum is covered within that interval and that there are only

negligible flux contributions from longer scales (Foken et al. 2006). Additionally, an

appropriate time averaging is needed to reduce the random errors in the turbulent

fluxes. Namely, random errors are defined as the errors due to an insufficient aver-

aging period for which the time mean converges to the ensemble mean as required
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Figure 4.2: The mean raw cospectrum (gray, left y-axis) and ogives (black, right y-axis)
of the kinematic heat flux for all five measurement levels (indicated on the top x-axis).
Colored curves correspond to the smoothed cospectrum, which was obtained by averaging
raw cospectrum within each of 62 frequency bands equally spaced on logarithmic scale.

by the ergodic hypothesis. However, maximum possible averaging times are limited

by the diurnal evolution of the ABL to periods not much longer than 1h in order to

avoid strong influence of non-stationarity effects (e.g. Stull 1988). Thus, we consider

T = 30 min to be an optimal period over which turbulent fluxes were averaged.

4.3 Multiresolution Flux Decomposition

The multiresolution decomposition enables the investigation of scales of motion

responsible for scalar fluxes (e.g. Vercauteren et al. 2016). For this purpose, the



50 4.3 Multiresolution Flux Decomposition

MFD of the heat flux is often used to separate turbulence scales from motions on

larger scales. The first step is, thus, to identify the gap scale in the MR cospec-

tra, which is typically associated with very small MFD flux values. Since the heat

flux in the SBL is nearly always downward, the cospectra show a negative peak at

averaging scales shorter than the gap scale. This peak is followed by a decrease of

flux magnitude towards larger time scales and then followed by a sign change or by

leveling off. This smaller-scale portion is then identified as the turbulent portion of

the flux.

If the gap timescale is employed in the calculation of turbulent fluctuations, contam-

ination by mesoscale motions should be removed. Accordingly, Vickers and Mahrt

(2003) have shown better agreement with similarity relationships when the turbulent

portion of the total flux was isolated, then when considering the total flux calculated

using a fixed averaging time scale. However, the gap region is typically harder to

identify for the more stable cases and the cospectra can be erratic.

Figure 4.3 illustrates the total heat flux distribution across the scales of mo-

tions by showing individual and averaged MR cospectra for each 30-min record at

each level. We note that individual cospectra can vary substantially between the

records and although most of them indicate downward heat flux, some periods with

weak upward heat flux can be observed. As the averaging scale increases, the MR

cospectra start to vary erratically indicating the influence of submeso motions to

the heat flux (e.g. Vercauteren et al. 2016). It is worth noting that a large number

of data is included in this analysis and no filtering is done based on the stability

or stationarity criteria, since these depend on the choice of the appropriate turbu-

lence averaging scale. However, when averaged over many half hour periods, MR

cospectra reveal the average picture of scales of motion for the investigated period.

For each level we note the presence of the negative peak in the cospectra which

is followed by a decrease of the flux magnitude and leveling off of the heat flux.

The corresponding integral times scales inferred from the average spectra appear to

be somewhat smaller than 200 s. Additionally, the submeso motions do not seem

to contribute significantly to the heat flux as they appear to average out to small

value, except for the largest scales (≈ 1000 s). Our average MR cospectra show

similarities with the Cluster 2 cospectra in the study of Vercauteren et al. (2016),

but with somewhat larger turbulent scale. For scales smaller than 200 s, some small

variability between individual cases is observed for levels 2− 4 (shown by the error

bars). For larger scales, the cospectra average to a small value, but the variability

between the records is large.

In this thesis, based on the spectral analysis and MFD method a gap timescale

of 100 s was chosen in order to avoid any contribution from submeso motions for

the statically strongly stable periods. This is shorter than previously found for one



4. Timescales in the nocturnal boundary layer 51

10
−1

10
0

10
1

10
2

10
3

−0.01

−0.005

0

0.005

0.01

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

Level 1

10
−1

10
0

10
1

10
2

10
3

−0.01

−0.005

0

0.005

0.01

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

Level 2

10
−1

10
0

10
1

10
2

10
3

−0.01

−0.005

0

0.005

0.01

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

Level 3

10
−1

10
0

10
1

10
2

10
3

−0.01

−0.005

0

0.005

0.01

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

Level 4

10
−1

10
0

10
1

10
2

10
3

−0.01

−0.005

0

0.005

0.01

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

Level 5

10
−1

10
0

10
1

10
2

10
3

−0.003

−0.002

−0.001

0

0.001

0.002

0.003

Averaging Time Scale (s)

M
R

w
θ (

K
m

s−
1 )

 

 

Level 1
Level 2
Level 3
Level 4
Level 5

Figure 4.3: Multiresolution decomposition (MRD) of the sensible heat flux. Individual
MR cospectra calculated for each 30-min period are shown in gray, while the averages of
individual MR cospectra for each level are shown with corresponding symbol and color.
Error bars show ± one standard deviation of the between-record variability.

night case study (Babić et al. 2012). This timescale is therefore used for a high-pass

filtering of the time series of raw u, v, w and Ts by applying a moving average.

Since averaging over longer time period reduces random flux errors in the case of

relatively stationary turbulence, turbulent variances and covariances in the present

study correspond to 30-min averaged data. The mean wind speed and wind direction

were derived from the sonic anemometer data.
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4.4 Wavelet analysis

As already pointed out, the wavelet method gives a time-frequency representa-

tion of the time series, which provides an opportunity to determine the dominant

modes of the signal as well as their time evolution. A first application of the wavelet

method to study the SBL was given in Terradellas et al. (2001) and Cuxart et al.

(2002). Terradellas et al. (2001) used the wavelet transform to detect and charac-

terize structures in the SBL, while Cuxart et al. (2002) used it to study pressure

perturbations and its vertical structure based on measurements from the CASES-99

field experiment (Poulos et al. 2002). The application of the wavelet method in

their study allowed the estimation of the turbulent pressure fluxes which are usually

difficult to determine directly due to inadequate sampling rate. Consequently, the

contribution of the pressure transport term to the TKE budget equation could be

discussed. Few years later, Terradellas et al. (2005) used the wavelet method to

estimate TKE and turbulent fluxes and found that it performs much better as a

filter than the traditional averaging method. They also analyzed two different co-

herent structures: a density current and a train of internal gravity waves. Salmond

(2005) presented a technique based on the wavelet analysis which objectively isolates

intermittent turbulent bursts within vertical velocity time series allowing the quan-

titative description of global intermittency in the very SBL. This technique was used

to get insight into the complex relationship between the air quality and intermittent

turbulence, showing that the strength and duration of turbulent bursts can play an

important role in determining local surface concentrations. For the verification of

the gap time scales determined by MFD method, van den Kroonenberg and Bange

(2007) used the wavelet transformation. They obtained the identical gap time scale

between turbulent and mesoscale fluxes by both methods. The additional informa-

tion about the homogeneity of the fluxes and the variability of the scales with time

was obtained from the wavelet covariance.

I applied wavelet analysis in order to get an insight into turbulence character-

istics, i.e. its intermittency and time variability of the scales. Figure 4.4 shows a

time-frequency representation of the wavelet power spectrum of the normalized ver-

tical velocity component measured during the night 5–6 December 2008. Wavelet

analysis allows the investigation of how turbulent activity is changing during the

night, and we can observe a period of strong turbulence at scales between 1 and

200 s, but also periods without turbulence. An approximately 2.5 h long period

(between 1930 and 2200 LST), which is especially evident at higher levels far above

the canopy, without almost any turbulent activity was observed. This period was

characterized by small wind speeds (< 4 ms−1 even at the highest 62 m level), weak

heat flux and very weak mixing (not shown). Around 2300 LST a frontal passage
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Figure 4.4: Wavelet power spectrum of the vertical wind speed recorded on the night
5− 6 Dec 2008. On the right a global wavelet spectrum, which is the average of all local
wavelet spectra, is shown. Red horizontal lines indicate the gap time scale observed in the
Fourier spectra while black contours show 95% confidence level.

occurred, which increased turbulent mixing and heat flux, and recorded wind speeds

were > 4 ms−1 at the four upper levels and around 3.5 ms−1 at the 20 m level in

the period between 2300 and 0400 LST (not shown). This can be observed in the

wavelet power spectrum as an increased energy. A defined peak of energy con-
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strained to a relatively narrow range of periods between 9 and 17 min is observed

around 2230 LST in the layer 32–62 m as well as defined structures which corre-

spond to time scales between 17 and 34 min with energy maxima observed around

1800–1900, 2330–0030 and 0200–0300 LST. This indicates that wavelet analysis can

be a powerful tool in investigating coherent structures in the SBL (e.g. Barthlott

et al. 2007). These structures observed in our case study indicate possible occur-

rence of gravity waves since observed periods are not unusual for gravity waves (e.g.

Terradellas et al. 2001). However, this is only a hypothesis and detailed investiga-

tion of coherent structures is out of the scope of this thesis. The global wavelet

spectrum shown for this one night case study, which represents the average over

all local wavelet spectra, shows relatively good corresponence to the choice of the

turbulence averaging time scale for the entire dataset.



Chapter 5

Evaluating Local Similarity

Theory

In Chapter 4 turbulence timescales were analyzed using four different methods

and appropriate averaging time scales for calculation of turbulent fluctuations and

turbulent fluxes were obtained. This chapter addresses the first objective of the

thesis, i.e. the applicability of local similarity scaling in terms of flux-variance and

flux-gradient relationships in the NBL over inhomogeneous surface.

5.1 Flux-variance similarity

Variances of wind velocity components provide important information on turbu-

lence intensity for the modeling of TKE as well as for transport of scalar quantities.

In this section we evaluate similarity of scaled standard deviations of wind velocity

components. Normalized standard deviations of wind components are plotted as a

function of the local stability parameter in Figs. 5.1 and 5.3. Figure 5.1 shows that

scatter of the data (gray symbols) increases with increasing height, where standard

deviations of 0.27, 0.29, 0.41, 0.36 and 0.34 ms−1 correspond to levels from 1 to 5,

respectively. Note that the number of data is the largest at level 3. Moreover, after

applying strict quality control criteria the scatter is substantially reduced (stan-

dard deviations in the range 0.21 – 0.23 ms−1). This is similar to results of Babić

et al. (2016b), and opposed to some other studies in complex terrain, e.g. Wood

et al. (2010); Fortuniak et al. (2013); Nadeau et al. (2013). Stationary data that

exceed uncertainty threshold of 50 % are presented in order to show the influence of

small fluxes (which are difficult to measure and hence uncertain) on the scatter of

σw/u∗` (presented as gray symbols in Fig. 5.1). As seen from Fig. 5.1, this criterion

is crucial for excluding the high values of the scaled vertical wind variance in the

strongly stable regime where z-less scaling should be valid. Without exclusion of

55
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Figure 5.1: Scaled standard deviation of vertical velocity fluctuations as a function of
stability. Black solid line (0 < ζ < 1): φw = 1.25(1 + 0.2ζ) (from Kaimal and Finnigan
1994). Thin dashed line is an extension for 1 < ζ < 10. Individual data at each level
are shown as background symbols (gray symbols represent stationary data which exceed
uncertainty threshold of 50%). Error bars indicate one standard deviation within each
bin. The bin size is determined in a logarithmic scale using fifteen equally spaced bins in
the stability range 0.002 < ζ < 12.5.

highly uncertain data, an incorrect conclusion on the validity of z-less scaling might

be drawn. In the subsequent analysis these data are omitted. Individual data as
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well as bin-averages in all figures correspond to data (namely, wind and temperature

variances and turbulent fluxes) which satisfy an uncertainty limit < 50 %.

To evaluate the similarity of the scaled standard deviations the relationship

form (2.4) was used, where ai, bi and ci (i = u, v, w) are free fitting parameters

(e.g. Wood et al. 2010). The best-fit coefficients were obtained using a robust least-

squares fit of all 30-min data (Table 5.1). We note that values of fitting parameter

ai (neutral limit) for all three non-dimensional velocity variances are smallest at

the lowest measurement level. Also, they are smaller than the canonical values

found for flat and uniform terrain (σu/u∗ = 2.39 ± 0.03, σv/u∗ = 1.92 ± 0.05 and

σw/u∗ = 1.25±0.03, Panofsky and Dutton (1984)), which clearly indicates influence

of the RSL. This justifies estimates of the vertical structure and footprints described

in Chapter 3. Turbulence characteristics and transport of scalar and turbulent

quantities in this layer are determined by the presence of coherent structures which

are generated at the canopy top (e.g. Finnigan and Shaw 2000; Shaw et al. 2006).

These coherent eddies and extra mixing are generated by an inviscid instability

mechanism (Raupach et al. 1996). Values of av,w at levels 2− 5 are larger compared

to the Panofsky and Dutton (1984) values for the neutral range, while the au value

for level 2 is larger. For three other levels values are slightly smaller, Table 5.1.

Values of σw/u∗` larger than 1.25 (value reported for “ideal” flat terrain) are often

observed over non-uniform terrain and may be attributed to horizontal momentum

transport (Katul et al. 1995).

As already mentioned, flux-variance similarity relationships are influenced by

self-correlation. Small values of fitted coefficients bi and/or ci indicate the best-fit

curve which converges to a constant, i.e. ai. Consequently, values of R2
data tend to

converge to small values or even to zero, while 〈R2
rand〉 are usually larger which leads

to negative values of R2
data − 〈R2

rand〉. The same result was obtained by Babić et al.

(2016b) and, as they pointed out, this presents a limitation of the method since it

relies on the linear correlation coefficient and does not allow for a reliable conclusion

about self-correlation in the SBL.

Table 5.1: Fitted relationships for non-dimensional standard deviations of wind com-
ponents. Functional forms (Eq. 2.4) of non-dimensional standard deviations of velocity
components were tested using a robust least-squares method.

Level Height∗ σu/u∗` σv/u∗` σw/u∗`
Level 1 20 m 2.10(1 + 7.27ζ)0.09 1.30(1 + 1506ζ)0.1 0.94(1 + 656ζ)0.06

Level 2 32 m 2.48(1 + 0.57ζ)0.12 2.10(1 + 9ζ)0.1 1.34(1 + 3.39ζ)0.08

Level 3 40 m 2.32(1 + 0.15ζ)0.36 2.00(1 + 1.9ζ)0.1 1.43(1 + 0.18ζ)0.26

Level 4 55 m 2.24(1 + 0.79ζ)0.15 1.70(1 + 6.7ζ)0.1 1.21(1 + 15.94ζ)0.07

Level 5 62 m 2.13(1 + 0.75ζ)0.17 2.00(1 + 0.9ζ)0.2 1.30(1 + 0.59ζ)0.22
∗ above ground level
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Table 5.2 presents a review of σu,v,w/u∗` published in the literature for different

terrain characteristics under neutral conditions. As already noted, dimensionless

velocity variances in the RSL are often lower in comparison with the flat terrain

reference of Kaimal and Finnigan (1994). Present results for σu,v/u∗` at the lowest

measurement level are in the range of values obtained within RSLs over forest (Ran-

nik 1998) and urban (Rotach 1993) areas. For levels 2−5, neutral values are close to

those reported by Moraes et al. (2005) and Wood et al. (2010). Using local scaling

over the city of London (measurements at 190 m above the ground), Wood et al.

(2010) obtained near-neutral limits of σi/u∗` (i = u, v, w), which are in accordance

with those reported for flat and homogeneous terrain where MOST applies. They

concluded that MOST was not affected by many factors, since London is quite flat

and there are consistent building heights across a wide area which produced a longer

upwind fetch causing the London boundary layer likely to be in equilibrium with

the surface. Results for σw/u∗` are consistent with Nieuwstadt (1984) who found it

to be constant (∼ 1.4) in the stability range 0.1 < ζ < 2.

Table 5.2: Comparison of non-dimensional standard deviations of the wind speed values
in statically neutral conditions from different studies. These near-neutral values corre-
spond to the mean value of scaled standard deviations of wind in the range 0 ≤ ζ ≤ 0.05.

Reference Site description σu/u∗` σv/u∗` σw/u∗`
Panofsky and Dutton (1984) Flat (reference) 2.39± 0.03 1.92± 0.05 1.25± 0.03
Rotach (1993) Urban RSL 2.2 1.5 0.94
Rannik (1998) Pine forest RSL 2.25± 0.31 1.82± 0.29 1.33± 0.14
Moraes et al. (2005) Complex (valley) 2.4 2.2 1.2
Wood et al. (2010) Urban BL 2.36 1.92 1.40
This study - Level 1 Heterogeneous 2.13 1.65 1.11
This study - Levels 2− 5 Heterogeneous 2.41 2.08 1.37

5.1.1 Influence of surface inhomogeneity

Due to the fact that measurements were performed in a very heterogeneous

landscape, possible influences of different land-use types on turbulence statistics

were investigated by considering changes for different wind directions. Figure 5.2(a)

shows the normalized standard deviation of the vertical wind component for each

observational level averaged over the entire stability range versus wind direction.

For the wind sector 45 − 90 deg there is no consistent increase of σw/u∗` with

height, possibly due to the fact that this narrow wind sector is characterized by a

sudden change of surface roughness (from agricultural fields to rough forest) and

also by a short fetch (some 70 m). This might indicate a more complex vertical

structure than depicted in Fig. 3.3 with flow which has not reached an equilibrium

yet. In the 300− 360 deg wind sector, the non-dimensional variance of the vertical
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Figure 5.2: (a) Scaled standard deviation of vertical velocity fluctuations asfunction of
wind direction (regardless of stability). Individual data points at each level corresponding
to the particular wind sector are shown as background symbols. Colored filled symbols
correspond to bin averages over the entire stability range at each observational level (see
inlet). Error bars indicate one standard deviation within each bin. (b) Observed dimen-
sionless standard deviation of vertical wind speed relative to the SL similarity prediction
for HHF terrain (Kaimal and Finnigan 1994, denoted “HHF”) for stability 0 < ζ < 1,
plotted versus wind direction. Shaded light gray areas indicate the wind azimuths which
correspond to the undistorted surface conditions. The flow from other wind directions is
considered to be distorted.

wind has lower values at the highest level in comparison with values at levels 2 −
4. I hypothesize that this is due to influence of drainage flows from hills located

north of the measurement site. Drainage flows are thermally-driven and they occur

during the night over sloping terrain often leading to the formation of low level jets.

However, the necessary information to substantiate this hypothesis are lacking. In

the 190− 260 deg sector, σw/u∗` increases with height indicating the flow which has

adjusted to the new surface. This sector has the longest fetch (over 300 m) and

highly rough but uniform underlying surface (Figs. 3.1, 3.3).
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Observed changes of the normalized vertical wind variance with varying wind

direction reflect the influence of the surface inhomogeneity (and possibly topogra-

phy). This influence is seen from the ratio of observed non-dimensional variance

of the vertical wind and corresponding values of commonly used similarity for-

mulas for σw/u∗` in the “ideal” HHF terrain (e.g. Kaimal and Finnigan (1994),

σw/u∗ = 1.25(1 + 0.2ζ)) in the stability range 0 < ζ < 1 (Fig. 5.2(b)). We observe

that ratio of these two similarity functions at the lowest measurement level is typi-

cally < 1, except for the flow from sectors ≈ 200−220 deg and 300−340 deg, which

correspond to the high roughness and long fetch (Fig. 3.1) and high wind speeds

(Fig. 3.4), respectively. At upper levels values of the ratio φw/φw(HHF ) are larger

than unity for wind azimuth ranges 55− 80, 170− 230 and 300− 360 deg (Fig. 5.2).

For these levels, the average φw/φw(HHF ) ratio in Fig. 5.2 varies between 0.96 and

1.33, which is similar to values of Rannik (1998) for the study over a forest, and the

standard deviation for 10 deg wide bins is between 0.08 and 0.22.

Accordingly, I separately analyzed the velocity variances for different wind di-

rections corresponding to undistorted and distorted sectors, respectively. Based on

φw/φw(HHF ) ≈ 1 undistorted wind directions were defined to correspond to wind

directions 20 − 55 deg, 85 − 175 deg and 235 − 295 deg (light gray shaded area in

Fig. 5.2). All other wind directions were considered as distorted. The number of

data within each group was nearly evenly distributed except for the highest level.

Namely, the percentage of data corresponding to the undistorted sectors was 47, 56,

54, 52 and 64 % for levels from 1 to 5, respectively.

Figure 5.3 shows all three non-dimensional standard deviations at the lowest

level and for levels 2 − 5 for undistorted and distorted wind direction sectors sep-

arately. We note that the scatter is larger for horizontal components than for the

vertical wind component. Also, as one might expect, the scatter is larger for the

distorted sectors compared to undistorted. Normalized variances at level 1 show

much less dependence on the wind direction compared to levels 2− 5. This reflects

the rather local RSL impact that determines the statistics. That is, RSL turbulence

appears to be affected by a fetch of less than 100 m from the tower as was estimated

by the flux-footprint model (Section 3.2) rather than by the more distant complex

surface. Differences between distorted and undistorted sectors at this level are only

found in the near-neutral regime with larger magnitudes for the distorted sectors.

For levels 2 − 5 we observe that the overall shape of the curves for the two

sectors is quite similar for all three wind variances. Dimensionless longitudinal and

vertical wind variances show higher values in distorted sectors, while the lateral

wind variance seems to be independent on the wind direction. Similar to level 1,

the lateral wind component shows a more pronounced increase with stability than

the longitudinal and vertical variances. The dimensionless vertical wind variance
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Figure 5.3: Scaled standard deviations of (a) longitudinal, (b) lateral and (c) vertical
velocity fluctuations as functions of stability for level 1 (lower sub-panels) and levels 2− 5
(upper sub-panels) for distorted (pink triangles) and undistorted (gray diamonds) wind
sectors. For further explanation see Fig. 5.1.
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in undistorted sectors can be represented quite well with the similarity relationship

valid for flat and homogeneous terrain (Kaimal and Finnigan 1994) in the stability

range 0.01 < ζ < 1.

Based on modeled footprints particular wind sectors were related to correspond-

ing surface types, accordingly. For undistorted wind directions 20 − 55 deg and

85− 175 deg the underlying surface is associated with agricultural fields, while the

235 − 295 deg sector corresponds to somewhat rougher but quite uniform surface

covered mostly with the forest (Fig. 3.1). This implies that measurements at levels

2−5 associated with undistorted sectors correspond to a layer which is in equilibrium

with the underlying surface of more uniform roughness.

In the strongly stable regime (for ζ > 1) the normalized variances show a

tendency for a leveling-off, thus suggesting that z-less scaling might be appropriate.

This implies that even for highly inhomogeneous terrain local scaling appears to be

appropriate for all three velocity variances and that the local Obukhov length is

relevant length scale. Additionally, in the strong stability limit the z-less scaling

seems to be appropriate for longitudinal and vertical wind variances.

5.1.2 Subcritical and supercritical turbulence regimes

Grachev et al. (2013) showed that the inertial subrange, associated with the

Richardson-Kolmogorov cascade, dies out when both the Ri and Rf exceed a critical

value of approximately 0.20 − 0.25, with Rfcr = 0.20 − 0.25 being the primary

threshold. They argued that a collapse of the inertial subrange is caused by the

collapse of energy-containing/flux-carrying eddies. This leads to the invalidity of

Kaimal’s spectral and cospectral similarity (Kaimal 1973), and consequently, to

violations of flux-profile and flux-variance similarity. Based on these results, Grachev

et al. (2013) classified the traditional SBL into two major regimes: subcritical and

supercritical. In the former (Ri < Ricr and Rf < Rfcr), a well defined inertial

subrange is observed, turbulence statistics can be described by similarity theory and

it is associated with so-called “Kolmogorov turbulence”. The supercritical regime

(Ri > Ricr and Rf > Rfcr) was characterized with the collapse of the inertial

subrange and related to the small-scale, decaying turbulence, which they refer to

as “non-Kolmogorov turbulence”, and strong influence of the Earth’s rotation even

near the surface. Figure 5.4 shows the dependence of Rf (Eq. 2.8) on the local

stability parameter at the measuring site. Dyer’s parameterization (Dyer 1974)

predicts an asymptotic limit to Rfcr = 0.2 (solid black line), but this under-predicts

Rf for higher stabilities for which Rf increases above Rfcr = 0.25 (supercritical

regime). The range of stability available for the analysis of the profile data is 0 <

ζ < 5. For example, at levels 4 and 5, 40 % and 50 % of data points have Rf >
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Rfcr, respectively. Thus, higher levels, which correspond to higher stabilities, are

characterized by small-scale turbulence.
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Figure 5.4: Stability dependence of the flux Richardson number for all five levels. Red
squares and blue circles denote bin averages for the lowest level and for levels 2 − 5,
respectively. Error bars indicate one standard deviation within each bin. Number of data
points inside each bin for the two subsets of the data is also given.
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Figure 5.5: Scaled standard deviation of vertical velocity fluctuations as a function of
stability. Data from the lowermost level (squares) and for levels 2 − 5 (circles) in the
subcritical (green) and supercritical (violet) regime are presented. The dashed line is
equal to 1.4 which is the mean value of all data for levels 2− 5 in the subcritical regime.
The number of data in each regime is indicated with the corresponding color.

Grachev et al. (2013) have found that Rfcr = 0.20 was the primary threshold
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for σw/u∗`. The normalized standard deviation of the vertical wind speed was re-

ported to asymptotically approach to constant in the subcritical regime indicating

consistency with z-less scaling in this regime. In the supercritical regime σw/u∗` was

monotonically increasing with increasing stability. The turbulence characteristics at

present site (exemplified by the vertical velocity variance, Fig. 5.5) do not show a

clear distinction between sub- and supercritical regimes as was found in Grachev

et al. (2013) and for the non-dimensional vertical gradient of mean wind (Fig. 5.9).

In the subcritical regime the number of data points at levels 2 − 5 with ζ > 1 is

equal to 25 and is represented by only two bin averages. While Grachev et al. (2013)

had a much broader range of stability in both regimes (they obtained z/Λ as small

as 0.02 for the supercritical and up to 5 for the subcritical regime, respectively), in

present dataset the results for these two regimes are almost indistinguishable (Fig.

5.5). Additionally, for the supercritical regime Grachev et al. (2013) observed an

increase of σw/u∗` in the range 3 < ζ < 100. For this regime an increasing tendency

for the two highest levels is observed, but this is probably not significant because of

the small number of data and restricted stability range (upper limit is ζ = 5). Note

that the number of data points here is much less compared to Figs. 5.1 and 5.3

because only 100 simultaneous 30-min intervals were available for the calculation of

the Rf . Similar results are found for the horizontal wind variances (not shown).

5.2 Turbulent Kinetic Energy

Estimation of TKE is very important for atmospheric numerical modeling, since

turbulent mixing is often parameterized using TKE. Here the TKE, defined as,

e = 1
2
(u′2 + v′2 + w′2), which represents a TKE per unit mass (e.g. Stull 1988) is

investigated. Fig. 5.6 shows e scaled by the u2∗. In numerical models which use 1.5-

order closure or TKE closure, TKE is predicted with a prognostic energy equation,

and eddy viscosity is specified using the TKE and some length scale. Since TKE

is essentially the sum of variances (divided by 2), according to Kansas values for

neutral conditions (Kaimal and Finnigan 1994), the value of scaled TKE is equal to

5.48 for HHF terrain.

Over HHF terrain in Antarctica, Sanz Rodrigo and Anderson (2013) found

that for neutral to moderate stabilities non-dimensional TKE is roughly constant

up to ζ = 0.5. Above this value, non-dimensional TKE grows until it reaches

ζ = 10 (corresponding to the ABL top), which is followed by an asymptotic value

for stronger stabilities (Fig. 5.6, dashed black line, Eq. 5.1). They proposed a
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simple empirical parameterization:

TKE

u2∗`
(ζ) =

{
1
α0

+ bEζ , ζ ≤ 10
1
α0

+ bE10 , ζ > 10
(5.1)

where α0 = 0.22 is the neutral limit value and bE = 0.5.
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Figure 5.6: Dependence of non-dimensional turbulent kinetic energy on stability. The
black dashed line is an empirical fit (Eq. 5.1). Individual data at each level are shown
in background symbols, while red squares and blue circles represent bin-averages for the
lowest and four higher levels, respectively. Error bars indicate one standard deviation
within each bin. The number of data within each bin for levels 2 − 5 is also indicated.
The orange curve is a fit to present data (for levels 2− 5).

The above linear relation was fitted to present data from levels 2− 5 in the sta-

bility range 0.006 < ζ < 8.30 (Fig. 5.6, orange dashed line) using the least-squares

method. Figure 5.6 shows a clear influence of the RSL on the lowest measurement

level, which does not correspond to the proposed near-linear expression (5.1). The

RSL influence also results in a reduced value of non-dimensional TKE for the neu-

tral range (TKE/u2∗` ≈ 4.25 based on values from Tab. 5.2) in comparison with

the value of 4.5 found by Sanz Rodrigo and Anderson (2013). Their value is smaller

than the reference value of 5.48 for HHF terrain probably due to higher air density

in the Antarctica causing reduced values of TKE/u2∗` compared to mid-latitudes.

We note that the relation of the type given by Eq. 5.1 fits the data for levels 2− 5

quite well (Fig. 5.6, orange dashed curve), but with slightly different coefficients

α0 = 0.16, which corresponds to a neutral value of TKE/u2∗` = 6.1, and bE = 0.8.

The fitted neutral value of dimensionless TKE for levels 2 − 5 is close to the value

of 6.01, which is obtained based on values from Tab. 5.2.

Similar to wind variances, analysis of the TKE with respect to wind direction

shows similar distinction between the distorted and undistorted sectors. While val-

ues of normalized TKE are similar for the two sectors at the lowest level, at levels
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2−5 magnitudes of TKE/u2∗` in the distorted sectors are larger. The dependence of

TKE/u2∗` on the stability parameter can be represented with a linear relationship,

but the best fit coefficients are somewhat changed: α0 = 0.19 and 0.14 and bE =

0.97 and 0.95 for undistorted and distorted sectors, respectively (not shown). The

behavior of the normalized TKE in the sub- and supercritical regime was found to

be consistent with the behavior of the normalized wind variances and no discernible

difference between these two regimes was observed (not shown).

5.3 Correlation coefficients

In order to estimate fluxes from mean wind and temperature as input for disper-

sion models, it is useful to use turbulent correlation coefficients. These coefficients

are a measure of the efficiency of turbulent transfer and are defined as

ruw =
u′w′

σuσw
, (5.2)

−rwT = − w′θ′v
σwσθv

, (5.3)

where ruw and −rwT are correlation coefficients for momentum and heat transfer,

respectively. Figure 5.7 shows momentum and heat flux correlation coefficients

estimated for the lowest and the four higher measurement levels. For strong strati-

fication smaller values of the correlation coefficients for momentum were obtained,

but they increase quite steeply while approaching neutral conditions. This was also

observed in both an urban (e.g. Wood et al. 2010) and a rural dataset (e.g. Conangla

et al. 2008). Additionally, ruw exhibits the same behavior with respect to the sta-

bility when analyzed for different wind azimuths. The magnitude of the momentum

correlation coefficient is larger for the undistorted sector compared to distorted in

the stability range 0 < ζ < 1 in the whole measurement layer (not shown). The

absolute value of stability-averaged momentum flux correlation coefficient values are

between 0.23 and 0.46 at level 1 (Fig. 5.7 (a)) and a similar range was observed for

undistorted (0.22− 0.51) and distorted (0.25− 0.45) wind sectors. These values are

similar to those obtained by Marques Filho et al. (2008). For levels 2−5, the values

of ruw are somewhat smaller compared to level 1 and are in the range 0.14 − 0.34

(Fig. 5.7 (a)), and they are similar to those obtained for the distorted wind sectors:

0.16 − 0.31 (not shown), which is in the range of values observed over generally

rougher urban surfaces (Wood et al. 2010).

The correlation coefficient for heat exhibits larger values for ζ > 0.1 for levels 2−
5, and it decreases while approaching neutral conditions. The correlation coefficient

for heat is between 0.10 and 0.26, which is similar to values reported in other studies
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Figure 5.7: Momentum (a) and heat flux (b) correlation coefficients plotted as a function
of stability. Background symbols represent individual data at each level while red squares
and blue circles show bin-averages for the first level and for levels 2−5, respectively. Error
bars indicate one standard deviation corresponding to the particular bin.

(e.g. Heinemann 2004; Marques Filho et al. 2008; Wood et al. 2010). Additionally,

no discernible dependence on wind direction was found for rwT mostly due to the

large scatter of the data (not shown). Mean values of the momentum and heat flux

correlation coefficients over the entire measurement layer, and for all stabilities, are

equal to 0.26 and 0.24, respectively. Also, no discernible difference in behavior of

the momentum and heat flux correlation coefficients was observed between the sub-

and supercritical regimes (not shown).

5.4 Flux-gradient similarity

I also investigated the relationship between mean vertical gradients and tur-

bulent fluxes, also known as the flux-gradient relationships. Several interpolation

methods were tested in order to determine the mean wind profile, and the second

order polynomial fit was found to best fit the observed data. Thus, the vertical gra-

dient of mean wind speed is obtained by fitting a second order polynomial through
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the 30-min measured profiles

U(z) = p1[ln(
z − d
z0

)]2 + p2ln(
z − d
z0

) + p3 (5.4)

and by evaluating a derivative with respect to z for each measurement level. The

second order polynomial fit is widely used for measurements within the roughness

sublayer (e.g. Rotach 1993; Dellwik and Jensen 2005) as well as within the inertial

sublayer (e.g. Forrer and Rotach 1997; Grachev et al. 2013). Only about one hundred

simultaneous 30-min intervals were available from each measurement level for the

profile analysis. Results of the variance and TKE analyses showed different behavior

of the first level in comparison with all the others. In order to investigate whether

there is a difference in the flux-gradient relationship as well, the data from the first

level and levels 2− 5 are presented separately (Fig. 5.8).
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Figure 5.8: Non-dimensional vertical gradient of the wind speed plotted versus the local
stability parameter. Individual data points for each level are shown by different markers
(as in Fig. 5.1), while data from the lowest level are indicated with red color and from
levels 2 − 5 in blue color. Dashed line corresponds to the linear relationship of Dyer
(1974) (Eq. 2.6) and the solid line is Beljaars and Holtslag (1991) relationship (Eq. 2.7).
Bin averages for the lowest and four higher levels are included for easier interpretation
of trends. Error bars indicate one standard deviation within each bin. Number of data
points in each bin is also shown.

For present dataset no discernible difference of φm between level 1 and levels

25 can be observed. Almost all data at the first measurement level are within the

stability range z/Λ < 5 and φm tends to a constant value of 1 when approaching

near-neutral conditions. Quite diverse results concerning the value of φm in the

RSL in the near-neutral conditions can be found in the literature. While in some

studies of flux-gradient similarity within the forest RSL, m was found to be less

than unity in the near-neutral range (e.g. Högström et al. 1989; Mölder et al. 1999;

Raupach 1979; Thom et al. 1975), other studies indicate that φm is close to unity
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(e.g. Bosveld 1997; Simpson et al. 1998; Dellwik and Jensen 2005; Nakamura and

Mahrt 2001). Bosveld (1997) found that momentum and heat eddy diffusivities

differ in magnitude in neutral conditions. This means that, with increasing canopy

density, heat exchange remains enhanced in the RSL, whereas momentum exchange

approaches surface-layer values. Dellwik and Jensen (2005) observed an increase of

φm in the RSL in neutral conditions over fetch-limited deciduous forest due to the

increased wind gradients directly above the canopy top. In previous studies reporting

φm < 1 and having mostly been conducted over pine forests (which compared to

a closed deciduous forest have less biomass in the top of the canopy) the observed

wind profile close to the three tops was less steep.

The previous sections have revealed clear differences in the flux-variance re-

lationships between level 1 and levels 25 (i.e. the RSL and the transition layer,

respectively) at the present site. In contrast, no significant difference is observed for

the flux-gradient relationship. Similar results were reported by Katul et al. (1995)

who pointed out that inhomogeneity in the RSL impacts variances but not necessar-

ily fluxes. Following this line, results seem to indicate that surface characteristics at

present site are influencing the strength of turbulent mixing and the wind gradient

in the same way. This conclusion is additionally corroborated by the results of the

analysis for different wind sectors as no dependence on the wind direction was found

for the non-dimensional gradient of wind speed (not shown).

According to Fig. 5.8, φm increases more slowly with increasing stability than

predicted by the linear approach (Eq. 2.6, dashed black line) and it appears to

closely follow the Beljaars-Holtslag function (Eq. 2.7). The Beljaars-Holtslag for-

mulation reduces the overestimation of the non-dimensional gradients for very stable

conditions (Fig. 5.8, black solid line). Similar results were also obtained by other

studies. For example, Mahrt (2007) found that φm increases linearly only up to

ζ ≈ 0.6, while in the range 0.6 < ζ < 1.0 it increases more slowly than the lin-

ear prediction. However, according to Grachev et al. (2013) this result brings into

question z-less scaling. Assuming that φm is a linear function of stability, gradients

should tend to constant values for ζ >> 1. Thus, the leveling-off of the φm at strong

stabilities is an evidence for the breakdown of z-less stratification. Grachev et al.

(2013) hypothesized that the leveling-off of φm functions for strong stability may be

due to including data for which local similarity is not applicable.

Following the approach of Grachev et al. (2013), the prerequisite Rf ≤ Rfcr =

0.25 was imposed on all individual data at each level. According to Fig. 5.9, data

with Rf ≤ 0.25 almost perfectly follow the linear dependence on stability (according

to Eq. 2.6) with the best-fit coefficient bm = 3.8 (thin dashed line in Fig. 5.9). This

implies the consistency of the data with the z-less prediction. The behavior of

the non-dimensional gradient of wind speed in the supercritical regime in Fig. 5.9
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exhibits a large deviation from the linear similarity prediction in the entire stability

range. Moreover, supercritical data have a tendency to level-off. This suggests that

the Beljaars-Holtslag non-linear expression (Eq. 2.7, Beljaars and Holtslag 1991), as

well as results from other studies which exhibited leveling-off of similarity functions

(e.g. Forrer and Rotach 1997; Baas et al. 2006; Grachev et al. 2007, 2013), were

most likely affected by a large number of small-scale, non-Kolomogorov turbulence

data.
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Figure 5.9: The non-dimensional vertical gradient of wind speed plotted versus stability
for two different regimes; subcritical (Rf ≤0.25, green) and supercritical (Rf > 0.25,
pink). Error bars indicate one standard deviation within each bin. Thick dashed line
indicates the linear relationship 2.6 (Dyer 1974); the thin dashed line is the best fit to
data for Rf ≤ 0.25 (in the stability range 0.005 < ζ < 2.43), while the bold solid line
corresponds to Eq. 2.7 (Beljaars and Holtslag 1991).

Ha et al. (2007) evaluated surface layer similarity theory for different wind

regimes in the NBL based on the CASES-99 data. They concluded that although the

stability parameter is inversely correlated to the mean wind speed, the speed of the

large-scale flow has an independent role on the flux-gradient relationship. For strong

and intermediate wind classes, they found that φm obeyed existing stability functions

when z/L is < 1, while for weak mean wind and/or strong stability (z/L > 1)

similarity theory broke down. Following on their approach, I evaluated the flux-

gradient relationship separately for different wind regimes, which were classified

based on the mean wind speed at each level similarly as in the study of Ha et al.

(2007), and discriminated between subcritical and supercritical regimes. Strong

wind regime is defined as ui ≥ U + 0.55σ, intermediate regime is U − 0.55σ ≤
ui ≤ U + 0.55σ and weak-wind regime is ui ≤ U − 0.55σ, where U is the mean

wind speed averaged over all 30-min intervals at certain level, ui is the mean wind

speed of individual 30-min interval and σ is the standard deviation. In the weak

wind regime the scatter is the largest, although significant scatter is observed also
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Figure 5.10: Non-dimensional vertical gradient of wind speed for each level plotted versus
local stability parameter for weak-, intermediate- and strong wind regimes, respectively.
Individual data points for each level are shown with the corresponding symbol. Data
points exceeding critical value of Rfcr = 0.25 (supercritical regime) are shown in pink.
Dashed line indicates the linear relationship of Dyer (1974) (Eq. 2.6) and the solid line
corresponds to the relationship 2.7 (Beljaars and Holtslag 1991).

for the intermediate and strong wind. For large ζ most of data points are bellow

the Beljaars-Holtslag curve. These correspond to the small-scale turbulence in the

supercritical regime (pink symbols on Fig. 5.10). Some near-neutral 30-min intervals

occur with weak wind only at the lowest level. The striking difference of the behavior

of φm with stability for different wind classes, which was found in the study of

Ha et al. (2007), cannot be observed in present dataset (Fig. 5.10). In the weak

wind regime the scatter is largest, although we note substantial scatter even for the

intermediate and strong classes, caused by the small scale turbulence, which survived

even in the supercritical regime (pink symbols). If we consider only data for Rf ≤
0.25, they follow Dyer’s linear prediction even for the weak wind regime, indicating

that similarity theory holds in this regime for the whole range of stabilities.

5.4.1 Estimating self-correlation

Monin-Obukhov as well as local similarity theory leads to self-correlation, be-

cause both predicted variables and the predictors are functions of the same input

quantities (Hicks 1978). As an example, prediction of σi/u∗` (i = u, v, w) or φm in

terms of the stability parameter ζ contains self-correlation since both σi/u∗` or φm

and ζ depend on u∗`. To test the role of self-correlation in present dataset, I followed

the approach of Mahrt et al. (2003) as described in Klipp and Mahrt (2004), using

1000 random samples. Random datasets were created by redistributing the values

of σu, σv, σw, u∗`, w′θ′v and dU/dz from the original dataset for each measurement

level. I used threshold values −w′θ′v > 0.001 mKs−1 and dU/dz > 0.001 s−1, as val-
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ues less than these are indistinguishable from zero. Random dataset had as many

data points as the original one. This process was repeated 1000 times and corre-

sponding 1000 random linear-correlation coefficients between σi and ζ and φm and ζ

were calculated. The average of these 1000 random correlation coefficients, 〈Rrand〉,
is a measure of self-correlation because random data no longer have any physical

meaning. The difference between the squared correlation coefficient of the original

dataset R2
data and 〈R2

rand〉 is proposed as a measure of the actual fraction of vari-

ance attributed to the physical process. A very small value of the linear-correlation

coefficient (≤ 0.15) indicates no correlation between compared variables. Mahrt

(2014) stated that physical interpretation of results becomes ambiguous when the

self-correlation is of the same sign as the expected physical correlation. However,

this test does not seem to be appropriate for near-neutral and very stable cases

(z-less limit), since σi/u∗ and φm tend to constant values, resulting in small (or even

negative) correlation coefficients (Babić et al. 2016b).

Table 5.3: Self-correlation analysis. Rdata is a linear correlation coefficient between φm
and ζ for the original data at each level. 〈Rrand〉 is the self-correlation and it is the average
of the correlation coefficients for 1000 random datasets. R2

data − 〈R2
rand〉 is a measure of

the true physical variance explained by the linear model as proposed by Klipp and Mahrt
(2004). Standard deviations are also indicated. N is the number of 30-min intervals.

Subcritical N Rdata 〈Rrand〉 σ(Rrand) R2
data − 〈R2

rand〉 σ(R2
data −R2

rand)
Level 1 93 0.54 0.51 0.14 0.01 0.14
Level 2 83 0.91 0.55 0.11 0.50 0.12
Level 3 78 0.95 0.49 0.11 0.64 0.11
Level 4 60 0.73 0.49 0.13 0.28 0.13
Level 5 52 0.97 0.49 0.14 0.68 0.13
Supercritical
Level 1 7 0.91 0.68 0.22 0.33 0.25
Level 2 17 0.91 0.51 0.18 0.54 0.18
Level 3 22 0.92 0.55 0.18 0.51 0.19
Level 4 39 0.66 0.43 0.15 0.22 0.13
Level 5 48 0.57 0.41 0.14 0.14 0.12

Since the present data exhibit different behavior for the subcritical and super-

critical regimes, the self-correlation analysis was performed separately for each of

these regimes. Linear correlation coefficients between φm and ζ for the original data

and random data sets were calculated for each level. Table 5.3 shows the impact

of self-correlation on the dimensionless wind shear. Generally, results for both the

sub- and supercritical regimes suggest a non-negligible but not decisive impact of

self-correlation. There are, however, two exceptions. At the lowest level, the sub-

critical data mostly reflect the near-neutral range where large scatter of the data

is present resulting in a relatively small correlation coefficient of 0.54. Hence the
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self-correlation test, which is based on linear correlation, produces small correla-

tions of similar magnitudes for both physical and random data. This in turn results

in a very small value of R2
data − 〈R2

rand〉 which means that results of this test are

not very conclusive. At level 5, the correlation coefficient is large in the subcritical

regime and reduced in the supercritical due to the increased scatter of the data for

ζ > 1.5 in this regime. Consequently, the value of R2
data − 〈R2

rand〉 is small. For the

three middle levels, Rdata has similar values in both the subcritical and supercritical

regime, since in both regimes they exhibit a strong positive fit, i.e. φm increases

with increasing stability with the larger scatter observed at level 4 (Fig. 5.9).

Grachev et al. (2013) proposed a new method which is not influenced by self-

correlation and for which z-less scaling should also be valid. This new function

represents a combination of universal functions and is thus a universal function

itself. This new function, φmφ
−1
w = k(z−d)

σw
dU
dz

plotted versus ζ is shown in Fig. 5.11.

Grachev et al. (2013) defined this function as a product of Dyer’s linear expression

for φm and the inverse of φw

φmφ
−1
w = 0.75(1 + 5ζ), (5.5)

where the value of φw = 1.33 corresponded to the median value in the subcritical

regime (Fig. 5.11, gray solid line). For present data, the median φw value for levels

2− 5 was also found to be equal to 1.33 in the subcritical regime.

According to Fig. 5.11(a), the increase of the original data with stability is

slower than the linear prediction (solid and dashed lines, respectively). Due to the

fact that this new similarity function φmφ
−1
w shares no variable with the stability

parameter (except the reference height z − d), the observed decrease below the

linear prediction is not caused by the effects of self-correlation. As seen from Fig.

5.11(b), this deviation from the linear relationship is mainly due to the small scale

turbulence in the supercritical regime (Rf > 0.25). Additionally, this function is

consistent with the z-less scaling when prerequisite Rf ≤ 0.25 is imposed on the

data (Fig. 5.11(b)). As already noted, the RSL shows more pronounced influence

on σw profile compared to the wind shear profile, thus leading to an overestimation

of Eq. 5.5 at level 1 while no systematic deviation can be observed for levels 2− 5

(Fig. 5.11). The scatter in the near-neutral range (at level 1) could be partly due

to the wind direction inhomogeneities (not shown).
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Figure 5.11: (a) The bin-averaged non-dimensional function φmφ
−1
w = k(z−d)

σw
dU
dz , which

is not influenced by self-correlation, plotted versus local stability. Individual data for each
level are shown in the corresponding symbol as in Fig. 5.1. Bin averages for the lowest level
(red squares) and four higher levels (blue circles) are included for easier interpretation of
trends. Error bars indicate one standard deviation within each bin. Gray line corresponds
to the experimental fit according to Grachev et al. (2013) (φmφ

−1
w = 0.75(1 + 5ζ)) and the

dashed black line is the best fit to Kutina data (φmφ
−1
w = 0.75(1+3.8ζ)) in the subcritical

regime. (b) Same as (a) but subject to the condition Rf ≤ 0.25.



Chapter 6

Turbulence spectra, dissipation

rate and budget of TKE

In the previous chapter, flux-variance and flux-gradient similarity was investi-

gated within the framework of local similarity scaling. The results indicated that

local scaling approach can be successfully applied for measurements over inhomo-

geneous surfaces. In this chapter, local similarity scaling is applied to investigate

characteristics of turbulence spectra. Additionally, the dissipation rate and the

budget of TKE within the RSL and transition layer are examined in this chapter.

6.1 Turbulence spectra

Previous results from field experiments, first of which were those of Kaimal

et al. (1972), confirmed the applicability of the similarity laws to turbulence spec-

tral densities. In the SL, spectral forms reduced to a set of universal curves that are

functions only of ζ. Since most commonly used spectral models were derived over

HHF terrain, the applicability of these models to spectra measured over inhomoge-

neous surface is investigated in this chapter. The influence of the RSL and transition

layer on the turbulence spectral characteristics as well as appropriate scaling param-

eters needed to collapse spectra are considered here. Before presenting the results,

the procedure used to calculate spectra and to deduce the dissipation rate of the

TKE (ε) is described.

6.1.1 Spectral calculation

For each 30-min interval a linear trend was removed to avoid spurious amplifica-

tion of lower frequencies. The spectra were calculated for each 30-min block applying

a Fast Fourier Transform (FFT)1 technique using Hamming windows. Each window

1Matlab function pwelch was used.

75
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Figure 6.1: An example of the velocity spectra of the lateral wind component for two
sonic anemometers (at z = 40 and 62 m) for the 30-min night period centered at 1845
LST 6 Feb, 2009. The raw spectra are shown with light gray squares, log averaged spectra
are indicated with white circles, dark gray crosses show block-averaged spectra and black
solid line represents the composite spectra. The red dashed line denotes the −2/3 slope.

contained 215 data points which corresponds to the time period of 27.3 min (raw

spectrum). This raw spectrum (light gray squares in Fig. 6.1) is unsatisfactory for

the estimation of ε, so a log averaged spectrum was obtained by averaging the raw

spectrum within each of 62 frequency bands (white circles in Fig. 6.1). Also, two ad-

ditional spectra were calculated separately over low and high frequency bands. For

the low frequency band, a block-averaged time series was created using a 16-point

block-average to the original time series and the spectral estimate was computed

after applying a 2048-point Hamming window to the block-averaged series (block-

averaged spectrum, dark gray crosses in Fig. 6.1). This block-averaged spectrum
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coincides with or is similar to the raw spectrum in the low-frequency range. For

spectral estimates in the high frequency band, the original time series was divided

into sixteen non-overlapping consecutive blocks. Each block contained 2048 data

points. The spectrum was estimated for each block (using a 2048-point Hamming

window) and finally 16 spectra were averaged to produce the composite spectrum

(black solid line in Fig. 6.1). All these estimates are shown in Fig. 6.1 to illustrate

the consistency of different variants of the same spectrum estimated for the v wind

component.

6.1.2 Local isotropy

For the evaluation of ε the inertial dissipation technique was used. This method

requires the existence of the inertial subrange in the Fourier velocity spectra. In the

inertial subrange local isotropy should be present, in principle. The 4/3 ratio of the

lateral and vertical to longitudinal velocity spectral densities is a stronger affirmation

of local isotropy in the inertial subrange than the −5/3 slope. This ratio is shown

in Fig. 6.2. Spectral ratios for each measurement level correspond to the median

value. We note that the median lateral to longitudinal velocity component spectral

density tends to converge towards a 4/3 value, which is expected from the theory,

while the median Sw/Su ratio is considerably less than 4/3. The ratio Sw/Su smaller

than 4/3 is in agreement with results of previous studies over forests (e.g. Liu et al.

2001; Su et al. 2004) or complex terrain (e.g. Roth et al. 2006; Christen et al. 2009;

Večenaj et al. 2010, 2011), but it differs from those over smooth surface (Kaimal

et al. 1972).
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Figure 6.2: Ratio of the v and w to the u velocity spectral density at five measurement
levels indicating the approach to the 4/3 ratio (dash-dotted line) in the inertial subrange
as required by local isotropy. Gray solid lines indicate ±10 % deviation from 4/3.
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Biltoft (2001) discusses a number of possible reasons for the discrepancy be-

tween the 4/3 velocity spectra ratio expected from theory and measurements. These

include shear and buoyancy induced anisotropy in the inertial subrange which in-

troduce considerable scatter in the lateral to longitudinal ratios of spectra. Another

possible cause could be the consequence of the spectral processing methods. This is

related to the spectral averaging time which is large compared to the inertial sub-

range eddy correlation decay time (which is on the order of a second). Chamecki

and Dias (2004) tested the applicability of the local isotropy hypothesis to surface-

layer measurements. They concluded that currently available sonic anemometers

are unable to resolve the full inertial subrange of the velocity spectra. Thus, for

most of their runs the isotropic values of Sw/Su never reached the inertial subrange.

On the other hand, the Sv/Su ratio was much closer to the isotropic 4/3 value and

the same was found in the present dataset. Due to the fact that Sw/Su ratio in the

present dataset is also lower than 4/3 (and even lower than 1), the dissipation rate

of the TKE is evaluated based only on u and v components.

6.1.3 The dissipation rate of the TKE

Estimation of the TKE dissipation rate

Kolmogorov has shown that the energy spectrum of the velocity components

follows the −5/3 slope in the inertial subrange. In the frequency domain, if the spec-

trum of the streamwise velocity component shows the −5/3 behavior, ε is evaluated

from Eq. 2.25 with the Kolmogorov constant αu assumed to be 0.53 (e.g. Piper

and Lundquist 2004; Večenaj et al. 2011). Taylor’s frozen turbulence hypothesis

was used to transform from wavenumber to frequency space, therefore the validity

of this hypothesis was first tested for each 30-min interval (σu/u < 0.5, Willis and

Deardorff 1976). The dissipation rate was estimated only for those intervals which

satisfied this condition. The retrieval algorithm for the estimation of ε is shown in

a flow chart on Fig. 6.3. As a first step, spectral slopes of all three velocity compo-

nents were calculated. Spectral slopes were calculated in the high frequency domain

(0.776− 3.042 Hz) in a similar way as in Grachev et al. (2013). Within this range,

six individual overlapping slopes have been computed between 42nd and 48th, 43th

and 49th, ... and 47th and 53rd spectral values. Based on the mean of these six

values, taken to be the representative slope, ε was estimated for each of the velocity

components separately. Due to the fact that the expected 4/3 ratio was not at-

tained for Sw/Su, estimated values of ε for the vertical component (εw) were smaller

(underestimated) compared to the ε estimates based on the longitudinal velocity

components (which were aligned along 1 : 1 line when plotting εu vs εv). Only those

30-min intervals for which the spectral slope in the inertial subrange corresponded
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to the theoretical −5/3 (±10% deviation) slope were taken. In a second step, the

ratio Sv/Su was calculated, where a threshold ±10% deviation from the expected

4/3 value was allowed within the specified high frequency range. Finally, ε was

evaluated as the mean value of εu and εv estimates only for those 30-min intervals

which satisfied both criteria. The vertical component spectrum was not used as a

criterion because for almost all of runs the ratio Sw/Su was significantly less than

4/3 ratio predicted by the local isotropy (Fig. 6.2). The number of 30-min intervals

available for the spectral analysis was 164, 183, 334, 99 and 203 for levels 1 to 5,

respectively.

Compute
the slope

within
the high

frequency
range

Su, Sv and Sw spectra

Su, Sv or
Sw slope
is within
a ±10%

threshold
of −5/3Ratio

Sv/Su is
within

a ±10%
threshold

around 4/3

No inertial
subrange
detected

Calculation
of TKE

dissipation
rate

yes
no

yes

no

Figure 6.3: Schematic illustration of the retrieval algorithm used for the estimation of
the TKE dissipation rate within the inertial subrange.

The non-dimensional dissipation rate of the TKE

The dependence of φε on the stability parameter ζ is presented in Fig. 6.4. Gray

symbols are values obtained based on the first criterion, the existence of −5/3 slope

in the high frequency range. Violet symbols are the data points with an additional

criterion imposed, indicating only those 30-min runs for which Sv/Su ratio within

the inertial subrange did not deviate more than 10 % from the theoretical 4/3 ratio.

The 4/3 ratio between Sv(f) and Su(f) is a stronger indicator of isotropy than the

−5/3 Kolmogorov power law, since the −5/3 slope in the velocity spectrum can
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occur even without the local isotropy (e.g. Champagne 1978; Grachev et al. 2014).

With this criterion imposed the scatter is reduced and the data correspond better to

the surface layer φε functions given by Wyngaard and Coté (1971) (dashed curve)

and Kaimal and Finnigan (1994) (solid curve, Fig. 6.4). Although the original data

are scattered, the stability dependence is obvious. Figure 6.4 shows a less rapid

increase of φε close to the canopy top (level 1) than is observed in the stable SL over

less rough surfaces. Near-neutral values of φε are less than one indicating the RSL

influence (Lee 1996). At upper levels, the φε near-neutral values are larger than one,

probably due to the IBL influence.

The functional form of the non-dimensional dissipation rate of the TKE can be

derived on the basis of the dimensionless wind shear function φm. The relation of φε

to φm is obtained through the normalized TKE equation (Eq. 2.45) assuming that

the sum of turbulence and pressure transport terms is negligible. In statically stable

conditions within the SL φm usually has a linear form. Therefore, one might expect

φε to be a linear function of ζ as well (Eq. 2.30, Kaimal and Finnigan 1994), while

Wyngaard and Coté (1971) proposed a non-linear relationship (Eq. 2.29). Results

presented in Chapter 5 show that φm is a linear function of ζ only in the subcritical

regime, while in general, data showed non-linear dependence on stability (Babić

et al. 2016a). Figure 6.4 shows that a linear form of φε can not adequately describe

present data, and that the non-linear relation of Wyngaard and Coté (1971) would

be a better choice. Therefore, the data were tested against the Wyngaard and Coté

(1971) relation along with several modifications of this functional form to account

the imbalance at neutral stability:

φε1 = (1 + aζ3/5)3/2, (6.1)

φε2 = b(1 + cζ3/5)3/2, (6.2)

φε3 = (d+ eζ3/5)3/2. (6.3)

The data were fitted in the stability range 0 < ζ ≤ 2 since the Wyngaard and Coté

(1971) fit was formulated for the same stability range. The best fit coefficient for

each level and for each modified function are given in Table 6.1.

Best fit values for the coefficient a at the lowest level are substantially different

(i.e. smaller) than the flat terrain reference of Wyngaard and Coté (1971), while

upper levels show good correspondence with the values obtained in the surface layer

over HHF surface (Table 6.1). Due to an apparent imbalance at neutral stability,

the modified functions fitted the data better taking into account the deviation from

unity at ζ = 0. Estimated coefficients at neutral stability (i.e. b and d) at the

lowest level are much smaller compared to the coefficients at higher levels. In Table
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Figure 6.4: Non-dimensional dissipation rate of the TKE plotted versus ζ. Individual
data at each level are shown as background symbols. Gray symbols indicate the data for
which the estimated slope of best fit straight line was within ±10 % of the theoretical −5/3
slope, while blue symbols denote data points for which additionally a 4/3 ratio (Sv/Su)
was found. Error bars indicate one standard deviation within each bin. The solid curve
corresponds to the linear function according to Kaimal and Finnigan (1994) and dashed
curve is an empirical fit given by Wyngaard and Coté (1971).

6.1 statistical measures of the best fit forms, namely the root mean square error

(RMSE) and coefficient of determination (R2), are given. These indicate that the

data correspond better to the modified forms φε2 and φε3 since the RMSE were on
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Table 6.1: The best fit coefficients for different modifications of Wyngaard and Cote’s
(1971) function: φε1 = (1 + aζ3/5)3/2, φε2 = b(1 + cζ3/5)3/2 and φε3 = (d+ eζ3/5)3/2. The
root mean square error (RMSE) and coefficient of determination (R2) of the best fit are
also given. Numbers 1, 2 and 3 indicate corresponding φε form.

Level 1 Level 2 Level 3 Level 4 Level 5

a 0.92 2.38 2.42 2.47 2.53
b 0.54 1.40 1.19 1.35 1.85
c 2.40 1.69 2.11 1.90 1.39
d 0.58 1.21 1.19 1.25 1.47
e 1.68 2.09 2.20 2.20 2.06

RMSE1 0.92 2.07 2.34 2.38 2.77
RMSE2 0.83 2.05 2.35 2.37 2.73
RMSE3 0.83 2.06 2.36 2.37 2.73

R2
1 0.37 0.37 0.42 0.43 0.35

R2
2 0.50 0.38 0.42 0.43 0.38

R2
3 0.49 0.38 0.42 0.43 0.37

average smaller than for φε1, while R2 values also show that modified forms will fit

the data slightly better. Additionally, values of RMSE and R2 suggest that φε2 and

φε3 will fit the data equally well and these fits are practically indistinguishable, as

seen in Fig. 6.5 for levels 2− 5.
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Figure 6.5: Non-dimensional dissipation rate of the TKE plotted versus the stability
parameter for levels 2 − 5. The best fit coefficients obtained by fitting φε1, φε2 and φε3
functions to data from levels 2− 5 are: a=2.46, b=1.33, c=1.91, d=1.22 and e=2.21.

Since the non-linear dependence of the φm function on stability was caused

by small-scale turbulence in the supercritical regime (Rf > 0.25), characteristics

of φε in sub- and supercritical regimes were also analyzed (Fig. 6.6). For φε the

deviation from the linear prediction was not caused by turbulence, which survived
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in the supercritical regime, and no systematic difference between these two regimes

is observed for φε.
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Figure 6.6: Non-dimensional dissipation rate of the TKE plotted versus the stability
parameter for levels 2 − 5 for subcritical (green) and supercritical (violet) regimes. Solid
and dashed curves are the same as in Fig. 6.4. The number of data within each been is
also indicated.

When using similarity relations, the self-correlation cannot be avoided (e.g.

Hicks 1978; Klipp and Mahrt 2004; Hartogensis and De Bruin 2005) and this also

applies to φε where its non-linear dependence on stability could be due to self-

correlation since the friction velocity is present in both variables (e.g. Fortuniak

and Pawlak 2015). The estimate of self-correlation for the φm function was done in

Section 5.4.1 using the approach proposed by Klipp and Mahrt (2004). The results

showed that this test is not appropriate for near-neutral and strongly stable cases

where the quantities converge to constant values. Besides that, it was shown for the

φmφ
−1
w function that self-correlation does not determine the shape of the function.

For these reasons the test of self-correlation for φε was not preformed. However,

Hartogensis and De Bruin (2005) found that self-correlation only affects the scatter

of φε and not the shape. They have demonstrated that measured ε values determine

the shape of φε and not the shared u−3∗ term on both axes. However, because of

the self-correlation errors in u∗ affected the scatter in the φε − ζ plots. Errors in

kinematic heat flux affected ζ resulting in scatter along the x-axis. Based on this

discussion the self-correlation is considered as a source of uncertainty.

6.1.4 Characteristics of velocity spectra

According to Kolmogorov’s theory for the inertial subrange, the one-dimensional

velocity spectrum, normalized by the squared friction velocity can be expressed in
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the form (2.28). Spectral densities of velocity components have been multiplied by f

and normalized using only u2∗` (Fig. 6.7, left). The median velocity spectra exhibit

a well-defined inertial subrange, with a −2/3 slope spanning over one decade for

horizontal velocity components. The observed slope for vertical spectra is somewhat

smaller than the expected −2/3 but it is within ±20 % deviation limits from the

theoretical slope (criteria used by e.g. Hartogensis and De Bruin 2005). However,

local scaling above a forest using u∗` and z−d does not work properly (i.e. the curves

do not collapse to a single curve) since the first observational level was placed within

the RSL causing spectral peaks and the inertial subrange not to coincide at all levels

(Fig. 6.7, left). A shift of spectral peaks to higher frequencies is evident as moving

from the lowest to higher measurement levels. This shift of spectral maxima is a

result of increasing stability with increasing height, where the median stability at

level 1 was 0.06, i.e. close to neutral stability, and for levels 2 − 5 is equal to 0.37,

0.49, 0.70 and 0.97, respectively. This is in agreement with results reported so far

for measurements in the SBL, first of which by Kaimal et al. (1972) who showed the

same stability dependence of spectral peaks for Kansas dataset.

Figure 6.7 (right) shows frequency-weighted spectra fSi(f)/σ2
i (i = u, v, w)

plotted against the dimensionless frequency at z/hc = 1.1, 1.8, 2.2, 3.1 and 3.4.

When normalized using canopy scaling (i.e. the wind speed at the canopy top

Uhc = 〈u〉hc using measurements from the lowest level and the canopy height, hc) as

shown in Fig. 6.7(right), the spectra show a good collapse of spectral peaks as well as

of the inertial subrange in the whole measurement layer. At the lowest measurement

level the median spectrum of the u component exhibits a slight deviation from the

−2/3 slope in the inertial subrange (indicated with the solid black line). The fSu(f)

spectral peak is at the normalized frequency of 0.16, v component spectra peak

at normalized frequency of 0.26. The vertical component spectra have the peak

at fhc/Uhc = 0.51. Similar values for u and w velocity components were found

by Mammarella et al. (2008) for two deciduous forests, while they did not present

results for v spectra. The success of the canopy scaling for spectral densities through

the overall vertical measurement layer for the SBL is striking. Namely, the canopy

scaling was reported to give a good collapse of spectral peaks and inertial subrange

within the RSL (e.g. Raupach et al. 1986; Amiro 1990; Brunet et al. 1994). This

is due to the fact that the RSL region is dominated by large coherent eddies which

are generated at the canopy top (e.g. Finnigan and Shaw 2000; Shaw et al. 2006).

These eddies have length scales proportional to hc and are advected downwind with a

velocity proportional to ∼ 1.8Uhc (Finnigan 1979). The fact that the canopy scaling

works very well even within the transition layer suggests that these coherent eddies,

which develop downwind of the forest edge, dominate the turbulence structure up

to a significant height. The same was observed by Mammarella et al. (2008) for
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Figure 6.7: Normalized spectra of all three velocity components at all five levels (me-
dian of all spectra is shown) plotted versus non-dimensional frequency. Left: Frequency
weighted spectra divided by the squared friction velocity. Solid black curve denotes Kansas
neutral spectra (Eqs. 2.31−2.33). Right: Frequency weighted spectra divided by the
squared standard deviation and plotted versus frequency normalized with canopy scaling
(hc and Uhc). Solid black line indicates −2/3 slope.

two different deciduous forest sites. While Mammarella et al. (2008) observed the

influence of coherent eddies up to twice the forest hight, for the present dataset

this influence is seen up to 3.4hc. The main difference from their study, which was
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done for statically near-neutral conditions, is that here the success of the canopy

scaling is obtained for the SBL, which to my knowledge has not been reported so

far. Additionally, spectra examined in more detail showed a good collapse of the

individual spectra from all five levels (in total 983 spectra) and not just of the

median spectra (not shown).

Since it appears that traditional SL scaling variables are not appropriate for

spectral scaling above the forest, frequency weighted spectra normalized by u2∗`
against non-dimensional frequency fhc/Uhc (Fig. 6.8, left) and normalized by σ2

i

(i = u, v, w) against non-dimensional frequency n (Fig. 6.8, right) were examined.

Figure 6.8 shows a good collapse of spectra fSi/u
2
∗` at levels 2 − 5 when plotted

against fhc/Uhc. The spectra fSi/u
2
∗` plotted against non-dimensional frequency

(Fig. 6.8, right) do not show a collapse, thus indicating that the height above the

ground and mean wind speed are not appropriate scaling variables for frequency to

collapse the spectra. Based on these results, it seems that hc and Uhc are appro-

priate scaling variables for the frequency. Figure 6.8 (left) shows a good collapse

of spectra from levels 2 − 5. In the analysis presented so far, it was demonstrated

that measurements within the transition layer bear much similarity with the tradi-

tional IS, thus this last result suggests that the flow has reached equilibrium in this

case. When using local friction velocity and the mean wind speed at the canopy top

the stability dependence of spectral peaks at levels 2 − 5 is removed. Comparison

of Figs. 6.8 (left) and 6.7 (right) shows the different behavior of σu,v,w/u∗ within

the RSL compared to the transition layer, as was shown in Chapter 5. Because

fS(f) plotted against frequency represents distribution of the variance, the veloc-

ity component spectra were observed to collapse to a single curve within the entire

measurement layer when normalized with the appropriate variance.

Comparison with Kansas spectral models

Now we consider the spectra following the approach of Kaimal et al. (1972)

who demonstrated spectral properties of the turbulent flow in the SL over HHF

terrain. The spectra normalized by φε as well as their behavior with respect to sta-

bility is examined. ε, estimated based on the horizontal wind components, is used

in φε, which is then used to normalize horizontal and vertical wind spectra. The

analytical expressions given by Eqs. (2.31)–(2.33) (Kaimal et al. 1972) represent

velocity spectra in the neutral limit (0 < ζ < 0.1) from the stable side and these

are commonly used for comparison between different experimental and laboratory

data. After normalizing each individual spectra with corresponding values of u2∗`
and φ

2/3
ε for the respective run, the spectra from different levels show a good col-

lapse in the inertial subrange for all three components, suggesting a wide credible

inertial subrange (Fig. 6.9, left). Including these estimated φ
2/3
ε values (e.g. Fig.
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Figure 6.8: Normalized spectra of all three velocity components at all five levels (median
of all spectra is plotted) versus frequency normalized with canopy scaling (hc and Uhc).
Left: Frequency weighted spectra divided by squared friction velocity. Solid black line
denotes −2/3 slope. Right: Frequency weighted spectra divided by squared standard
deviation and plotted versus non-dimensional frequency.

6.4) in the normalization of the velocity spectra in Fig. 6.9 (left), the dependence

on the stability parameter compared to Fig. 6.7 (left) is removed in the inertial

subrange and the spectra collapse to a single curve. At the lowest level, horizontal

velocity spectra have larger peaks which are slightly shifted towards higher frequen-
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cies compared to Kansas neutral spectra (Kaimal et al. 1972, Eqs. 2.31–2.33). At

higher levels median spectral peaks are shifted to higher frequencies. This shift

towards higher frequencies with increasing observational height is a consequence of

larger static stability with increasing level (e.g. the median ζ is equal to 0.06, 0.37,

0.49, 0.70 and 0.97 for levels 1 to 5, respectively). The vertical velocity spectra

show reduced magnitudes in the inertial subrange compared to the Kansas neutral

spectra. The observed shift of the w spectra from the best fit curve for the HHF

terrain is due to the normalization with φε which was determined from εu and εv.

Namely, ε estimates from u and v components were larger than those of εw, thus

causing the reduced spectral values when used in the normalization of the vertical

spectra. Besides that, the spectral peak of Sw at first level is shifted towards lower

frequencies implying larger eddies compared to those for the flat terrain conditions.

Table 6.2: Number of 30-min runs (N) used in calculation of the median spectra and
median value of the stability parameter (ζm) within each stability class (SC).

Level 1 Levels 2− 5
SC Stability range N ζm N ζm

s1 0 < ζ ≤ 0.05 75 0.02 30 0.04
s2 0.05 < ζ ≤ 0.15 42 0.08 107 0.10
s3 0.15 < ζ ≤ 0.35 24 0.26 132 0.23
s4 0.35 < ζ ≤ 0.65 10 0.47 197 0.49
s5 0.65 < ζ ≤ 1 5 0.95 124 0.85
s6 1 < ζ ≤ 1.5 2 1.30 114 1.22
s7 ζ ≥ 1.5 6 2.05 115 2.06

Since level 1 is different than levels 2 − 5, the stability dependence of velocity

spectra is thus considered separately. The spectra from different levels within the

transition layer are expected to collapse for a certain stability. The velocity com-

ponents spectra, normalized by u2∗` and φ
2/3
ε are evaluated for 7 stability categories

and the median spectra for each category are plotted in Fig. 6.9, right. The stabil-

ity dependence of the spectra is shown for level 1 and levels 2 − 5 separately. The

number of cases and the median stability parameter for each category are listed in

Table 6.2. These normalized spectra show that −2/3 slope is followed quite closely

for a wide range of frequencies in the inertial subrange for horizontal velocity com-

ponents. For the vertical component, the inertial subrange is observed to be much

narrower, with smaller slope which deviates ±20% from the theoretical −2/3 slope.

The smaller spectral roll-off in the inertial subrange was also observed in some stud-

ies over urban surfaces (e.g. Christen et al. 2009). Roth et al. (2006) attributed

this to the extra physical processes, such as a wake production mechanism, which

controls the conversion of the mean flow to turbulent energy. This produces addi-

tional eddies of different scales, which is related to and depends on the nature of
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Figure 6.9: Left: Frequency weighted spectra of u, v and w divided by friction velocity
and φε (median of all spectra is plotted) for all five levels plotted versus non-dimensional
frequency. Right: Normalized spectra for seven different stability categories (indicated
as s1, s2, . . . , s7) defined as in Table. 6.2 plotted versus non-dimensional frequency. Red
colors indicate median spectra at level 1, while blue colors indicate spectra from levels
2 − 5 (darker colors denote stronger stability). Black solid curves correspond to neutral
Kansas spectra (Kaimal et al. 1972).

the surface morphology. All velocity components show clear separation according

to ζ, i.e. with increasing stability the intensity of the spectral peak is reduced and

shifted to higher frequencies. We note that static stability has an important effect
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on turbulence spectral structure and also on frequencies of spectral peaks (Fig. 6.9,

right). The near-neutral (s1 class) median spectra of horizontal velocity components

at levels 2 − 5 show a good collapse and agreement in magnitude and the position

of the spectral peak with the Kansas neutral spectra, while the same was not found

for level 1.

The vertical velocity spectral magnitudes for most of the stability categories

at level 1 and levels 2 − 5 are about factor of two smaller compared to the Kansas

neutral spectra. We assume this is due to the φε function used for the normalization

of the vertical spectra which was determined based on the horizontal ε estimates.

Note that, Sw/Su was found to be close to 0.85 and not 4/3 as required by strict

local isotropy (Fig. 6.2), which means that Sw is smaller than what it should be

compared to values for ideal surfaces. Therefore, for each individual spectrum εw

was estimated, and consequently φεw , from the vertical spectra in the high-frequency

range where the spectra exhibited −5/3 (± 10 %) slope (Fig. 6.10). Corresponding

individual φεw values were used for normalization of the vertical spectra (Fig 6.11).

εw was estimated using Eq. 2.25 assuming the theoretically expected αw = 4/3αu.
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Figure 6.10: Different estimates of φε plotted versus the stability parameter. Solid and
dashed curves are the same as in Fig. 6.4.

Although for ideal HHF terrain the estimate of ε might not be very sensitive if

estimated based on only u or all three wind components as was observed by Grachev

et al. (2014), this was not the case for this heterogeneous site. As seen from Fig.
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6.10, values of φεw are substantially lower compared to φεu,v , but the two curves have

similar shapes. The reduced spectral power in the vertical component (compared

to horizontal components) is reflected in a smaller dissipation rate, meaning that ε

is not isotropic. The lack of local isotropy in the vertical direction was observed in

other studies over complex forest sites (e.g. Liu et al. 2001; Su et al. 2004), however,

it has not been reported that this will have an influence on different estimates of

ε for different velocity components. Consequently, when using φεw the overall form

and the magnitude of scaled spectral densities are equal to the Kansas curves (Fig.

6.11). Therefore, due to the anisotropy of the flow at this complex site, the ε

obtained from vertical velocity spectra can be used to normalize the spectra and

good correspondence with the Kansas spectral model will be obtained in this case.

This corresponds to Wyngaard’s statement that local isotropy only, in fact, can

be obtained in a truly homogeneous flow field (Wyngaard 2010), which generally

is not the case in the vertical, but certainly less so over an inhomogeneous forest

canopy. The fact that a good correspondence with Kaimal’s spectral model can

be obtained even for inhomogeneous surface has significant importance since the

analytical forms of the spectral model are often used in practical applications, such as

spectral dispersion models, or the flux corrections (Moore 1986). More importantly,

this correspondence is obtained at a price that ε is different for horizontal and

vertical components. This has implications on the corresponding budgets of the

variances as well as for the TKE since in the TKE closure a conservation equation

for ε assumes that it is the same in all three directions.
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Figure 6.11: Vertical velocity spectra normalized by φεw for all five levels (left) and for
seven different stability categories as defined in Table. 6.2 (right) (median of all spectra
is plotted) plotted versus non-dimensional frequency. All the symbols are the same as in
Fig. 6.9.

Analytical spectral models given by Eqs. (2.34) and (2.35) were tested in the
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entire frequency range for the near-neutral data (0 < ζ ≤ 0.05), and the “blunt

model” is found to be more appropriate for each wind component. This model is

fitted to data in the layer above the RSL and the best fit coefficients are obtained

by the least-squares method:

fSu(f)

u2∗`
=

105n

(1 + 35n)5/3
, (6.4)

fSv(f)

u2∗`
=

21n

(1 + 10.6n)5/3
, (6.5)

fSw(f)

u2∗`
=

6.5n

(1 + 5.2n)5/3
. (6.6)

The obtained best-fit coefficient values for levels 2 − 5 are in good agreement with

Kansas values (Eqs. 2.31– 2.33) obtained within SL over HHF terrain. For the most

stable classes the influence of sub-meso motions becomes evident in the spectra at

lower frequencies where spectra have different slope (Fig. 6.9).

As a scaling approach for the SBL spectra, a model proposed by Olesen et al.

(1984) can be used. This model is based on the assumption that the non-dimensional

frequency at the maximum of the spectral curve is a function of ζ; thus, all spectral

maxima should coincide if spectral density is plotted as a function of n/φm. Their

model for the stable SL spectra is represented with Eqs. (2.41) – (2.43). In order

to normalize spectra with φm and φε, Olesen et al. (1984) used parameterizations

proposed by Businger et al. (1971) for φm and Kaimal et al. (1972) for φε. Contrary

to this, the individual values of φm and φε estimated for the present dataset were

used and discussed above instead of parameterizations. This approach can also be

extended to the local scaling regime by using local values of the u∗ and ζ (Forrer

1999). Figures 6.12 and 6.13 show spectral curves (individual and median) of all

three velocity components from each of five measurement levels. Considering the

above findings regarding the vertical velocity spectra, here φεw is used to normalize

w-component spectra.

The individual spectra show the actual scatter of the data and the median

spectra are compared to the Olesen model for HHF terrain (dashed black lines in

Figs. 6.12 and 6.13). Quite good agreement with Olesen model can be observed for

all three velocity components. It is found that, as predicted by the Olesen’s model,

the spectral curves from five different levels on a tower (Figs. 6.12 and 6.13) and

for different stability classes (Fig. 6.14) closely collapse to one curve. Fitting this

model to the data at levels 2− 5 the following expressions (parameterizations) were
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Figure 6.12: Normalized spectra of longitudinal (a) and lateral (b) velocity component
for each measurement level. Gray lines show individual spectra and colored symbols
indicate the median spectrum. The dashed black line corresponds to Eqs. (2.41) and
(2.42) and solid colored lines indicate the best fit for each level.

obtained:

fSu(f)

u2∗`
=

49n/φm

1 + 190 (n/φm)5/3

(
φε
φm

)2/3

, (6.7)

fSv(f)

u2∗`
=

14n/φm

1 + 42 (n/φm)5/3

(
φε
φm

)2/3

, (6.8)

fSw(f)

u2∗`
=

4.6n/φm

1 + 14.5 (n/φm)5/3

(
φε
φm

)2/3

. (6.9)

Results indicate that this model can be successfully applied for the velocity spectra

in the SBL even over inhomogeneous surfaces. As expected, this model is more

appropriate for the representation of the spectra in the SBL over inhomogeneous

surface than Kaimal’s (neutral) model. However, in order to apply Olesen model it

is necessary to know dimensionless functions of the wind shear and TKE dissipation

rate. We note that for horizontal velocity components there is a good correspondence
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Figure 6.13: The same as Fig. 6.12 but for the vertical velocity component.

between spectra for different stability classes (Fig. 6.14) in the high-frequency range

(∼ n/φm = 0.5 − 20), but in the low-frequency part the correspondence vanishes

and the same was also observed for the Kansas model spectra. Additionally, median

spectra exhibit a gap at low frequencies and this is most obvious for the upper four

levels. The existence of such a gap for SBL has been observed by many different

authors (Olesen et al. 1984, and references therein). This gap separates the turbulent

part of the spectrum and the low-frequency part where a steep increase in spectral

energy is observed. This characteristic is usually attributed to the wave activity,

primarily gravity waves, in the SBL.

Overall, for the present stable night-time spectral results from a forested site

with highly inhomogeneous fetch conditions different scaling approaches were con-

sidered. The traditional SL scaling was tested against the canopy scaling, which is

generally valid for the RSL. The results suggest that canopy variables hc and Uhc

are good for normalizing the frequency. When frequency weighted velocity spectral

densities are normalized with local values of corresponding σ2
i (i = u, v, w), the

spectra collapse to a single curve within the whole measurement layer. If frequency
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Figure 6.14: Normalized spectra of all three velocity components for different stability
classes at level 1 (red colors) and levels 2 − 5 (blue) as indicated in Table 6.2. Dashed
black line corresponds to Eqs. 2.41 – 2.43 and solid line indicates the best fit to the data
for levels 2− 5 (Eqs. 6.7 – 6.9).

weighted spectral densities are normalized with u2∗`, a clear difference between RSL

and transition layer can be observed. The fact that canopy scaling can be success-

fully applied even within the transition layer suggests that large coherent eddies,

which are generated at the canopy top, are dominating the turbulence structure up

to a hight which is more than three times the hc. For the present complex site local

isotropy was not found. Namely, the reduced spectral power in the vertical velocity

component was consequently reflected in smaller values of the ε estimated from the

vertical component spectra (εw) compared to the estimates from horizontal compo-

nents (εu,v). These different estimates of ε had a direct influence on the applicability

of spectral models, which are valid for HHF terrain, to the present dataset. Using

φεw to normalize vertical spectra the overall form and magnitude of scaled spectral

densities were found equal to the Kansas curves. Therefore, a good correspondence

with the Kansas spectral models was observed for measurements in the transition

layer when different estimates of φε were used. The same was true for spectral mod-

els of Olesen et al. (1984), which were found appropriate to represent the spectra in



96 6.2 The dimensionless TKE budget

the SBL over inhomogeneous surface.

6.2 The dimensionless TKE budget

So far it has been shown that local similarity scaling can be successfully applied

for different dimensionless stability functions in the SBL over inhomogeneous

surface. In this section the focus is on evaluating the dimensionless budget of TKE

(Eq. 2.45). The dimensionless TKE budget terms were calculated from 30-min

averaged data using local values at measurement height z. Non-dimensional wind

shear and dissipation rate of the TKE were calculated as explained in Sections 5.4

and 6.1.3, respectively. The non-dimensional turbulent transport term (φt) was

calculated on four mid-levels between adjacent tower levels using finite difference

method. This method was found to be more effective than the profile fitting

by polynomials (using second and third order polynomials), since the vertical

flux of the TKE (w′e) showed considerable variability with height. Therefore,

in order to close the TKE budget φm and φε were also calculated at the four

mid-levels using average values between the adjacent levels. The pressure transport

and advection terms were considered to be a residual term2, which was calculated as

R = −φm + ζ + φt + φε. (6.10)

This term includes not only the sum of the pressure transport and advection terms,

but also accumulates errors when calculating the terms on the right-hand side of

Eq. (2.45). Despite these shortcomings, the residual approach has been widely used

to investigate the pressure transport in the BL (under the assumption of horizontal

homogeneity and stationarity of the flow, e.g. Högström 1990; Li et al. 2008; Duarte

et al. 2015; Nilsson et al. 2015). For the budget analysis only those simultaneous

(at all levels at the same time) 30-min intervals for which the inertial subrange was

detected were used. This resulted in a reduced dataset compared to results presented

so far, with final set of 63, 65, 68, 51 and 67 data points at levels 1 to 5, respectively.

6.2.1 The dimensionless shear production

The stability dependence of the dimensionless wind shear is discussed in detail

in Section 5.4, where the validity of the z-less scaling was examined using the ap-

proach of Grachev et al. (2013) who distinguished between subcritical (Rf ≤ 0.25)

and supercritical (Rf > 0.25) turbulence regimes. They have defined the subcritical

regime for data having Rf < 0.25 and it was associated with the existence of a well-

defined inertial subrange, i.e. spectral densities of velocity components and sonic

2The storage term is assumed to be zero by the stationarity test.
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Figure 6.15: (a) The data used in the TKE budget analysis (“Kolmogorov turbulence”)
from the first (red) and four upper levels (blue). The dashed line indicates the linear
relation of Dyer (1974, Eq. 2.6) and the solid black line shows the relationship proposed
by Beljaars and Holtslag (1991, Eq. 2.7). The blue line indicates the best fit of Eq. (2.7)
for levels 2 − 5 with the best fit coefficients obtained using the least squares method:
a = −2.28, b = 0.455, c = 10.87 and d = 0.12. (b) The data from panel (a) divided
into sub- and supercritical regimes. The green line indicates the best fit from Section 5.4:
φm = 1 + 3.8ζ.

temperature had a well-defined −5/3 slope within the high-frequency band. There-

fore, they associated this regime with “Kolmogorov turbulence”. The supercritical

regime was defined for data with Rf > 0.25, for which a collapse of the inertial

subrange was observed. Some small scale turbulence survived in this regime, which

they named as “non-Kolmogorov turbulence” (due to the absence of well defined

−5/3 slope), which also decayed rapidly with increasing stability. Grachev et al.

(2013) argued that the violation of the z-less scaling was mainly associated with the

“non-Kolmogorov turbulence” in the supercritical regime.

In Chapter 5 their critical value of Rf = 0.25 was used and the φm function in

the subcritical regime followed a linear dependence on ζ, indicating adherence to the

z-less limit. While the data presented in Section 5.4 were not tested for the existence
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of the well defined −5/3 slope of velocity spectral densities in the high-frequency

range, in this section only those data for which a well-defined inertial subrange was

found are considered, i.e. only “Kolomogorov turbulence” data.

Figure 6.15(a) shows dimensionless shear production for data with a well-defined

inertial subrange (used in the TKE budget analysis). It was observed that these

data have values of Rf below and above 0.25. The data corresponding to Rf ≤
0.25 (green) and Rf > 0.25 (violet) are indicated in Fig. 6.15(b). We note that

many periods with “Kolmogorov turbulence” (well-defined inertial subrange) were

observed for Rf > 0.25. This is in contrast with findings over ideal homogeneous and

flat surfaces by Grachev et al. (2013). The present data associated with “Kolmogorov

turbulence” show smaller values compared to the linear prediction and a better

correspondence with the relation of Beljaars and Holtslag (1991). This, of course,

suggests a breakdown of the z-less regime. The same was observed by Duarte et al.

(2015) and they concluded that the presence of “Kolmogorov turbulence” is not

a sufficient criterion to guarantee the validity of z-less concept. Additionally, they

hypothesized that an injection of non-local TKE via pressure transport was the main

reason for the observed breakdown of the z-less scaling. Högström (1990) related this

to the concept of ’inactive’ turbulence, a concept introduced by Townsend (1961)

and further elaborated by Bradshaw (1967), which consists of large-scale fluctuations

that lead to increased mixing. Therefore, the decrease of φm below the linear z-less

prediction could be caused by the increased mixing due to the injection of ’inactive’

turbulence via pressure transport which may lead to a decrease in the wind speed

gradient.

6.2.2 The dimensionless turbulent dissipation

In Section 6.1.4 it was shown that φε has different values if estimated only

from horizontal components and from the vertical one. Estimates of φε based on u

and v components were larger compared to φεw . Therefore, the mean φε (φεm) was

calculated for each layer (Fig. 6.16). The mean estimate of φε will give a better

correspondence to respective stability functions valid for HHF terrain, at least in

the transition layer. At the lowest measurement level, due to the RSL influence,

φεm function in neutral regime has lower values than one and in the transition layer

close to one, thus a modified version of Eq. (2.29) was fitted to the data (Table 6.3)

in order to account for the deviation from unity.

Since values of φm at level 1 under neutral conditions obtained by the least

squares fitting are close to one (φm(ζ = 0) = 1.1) and φε(ζ = 0) = 0.31, this

indicates local imbalance of TKE in the RSL under neutral conditions, which is not

unexpected. Note that φm(ζ = 0) obtained in this way is not exactly unity due to
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Figure 6.16: Non-dimensional dissipation rate of the TKE plotted versus the stability
parameter. Solid and dashed curves are the same as in Fig. 6.4.

larger uncertainty when fitting the wind profile within the RSL by using second order

polynomial, which resulted with substantial scatter. Nevertheless, the above result

suggests that under neutral conditions, approximately 30 % of the shear generated

TKE is locally dissipated. The remaining TKE will be transported to higher layer

by turbulent and pressure fluctuations and advection. A slightly different result is

obtained if the actual (not fitted) data for ζ < 0.05 are used where the mean values

for φm and φε are 1.21 and 0.47, respectively. If the stability range up to ζ = 0.1

(often used as upper limit of neutral stability) is considered, then mean values of

φm and φε are equal to 1.31 and 0.56, respectively.

Unfortunately, a very small number of data corresponding to near-neutral con-

ditions (ζ < 0.05) was observed for levels 2 − 5 (only five individual data at level

2). Thus, it was difficult to investigate the local balance of TKE under neutral

conditions. The best fit curves shown in Figs. 6.15 and 6.16, however, indicate

the convergence of φm and φεm to 1 and 0.94 when approaching to neutral limit,

respectively. This implies a locally imbalanced TKE under neutral conditions even

within the transition layer.
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6.2.3 The dimensionless turbulent transport

Due to the substantial variation of the vertical flux of TKE with height (Fig.

6.17), it was not possible to fit the profile of w′e by using the different polynomial

fitting methods. Thus, the non-dimensional turbulent transport term

φt =
k(z − d)

u3∗`

∂(w′e)

∂z
(6.11)

was calculated at four mid-layer heights (z = 26, 36, 47.5 and 58.5 m), using finite

difference method and the average u∗` between the adjacent levels.

Estimated values of φt show considerable scatter in the layer 2− 5 (Fig. 6.18).

Although the scatter was larger for layer 2−5 than for layer 1−2, bin median values

still showed a quite good correspondence between upper levels for a wide range of

stabilities (not shown), indicating that the local scaling approach is also suitable

for estimating turbulent transport. Under neutral conditions turbulent transport is

often assumed to be zero (e.g. Wyngaard and Coté 1972; Högström 1996). However,

for the mid-level at 26 m, estimated values of φt are mainly positive, with the best fit

curve (Eq. 2.47) converging towards 0.30 in neutral limit (Table 6.3). The influence

of the RSL is obvious at this mid-level, causing higher values of φt compared to

layer 2 − 5. Högström (1996) attributed positive values of the turbulent transport

to the aerodynamic properties of the surface, i.e. surface of widely varying roughness

elements of considerable height will cause a non-zero turbulent transport.

Table 6.3: The best fit functions for dimensionless budget terms fitted to data at level 1
and levels 2− 5.

Level φm φεm φt

Level 1 φm = 1.11 + 2.44ζ φεm = 0.31(1 + 3.1ζ3/5)3/2 φt = 0.30 + 0.66ζ

Levels 2-5 ∗ φεm = 0.94(1 + 2.2ζ3/5)3/2 φt = 0.23− 0.33ζ

∗ φm = 1 + aζ + bζe−dζ − bdζ(ζ − c
d
)e−dζ , with a = −2.28, b = 0.46, c = 10.87 and
d = 0.12.

For the three upper mid-levels within the transition layer, φt exhibits large

scatter with more negative values compared to first mid-level, while bin medians

indicate on average small positive values in the stability range 0 < ζ < 1. For the

strongly stable regime mostly negative values and large deviation from zero line are

obtained. These large deviations as well as the large scatter obtained, could be the

result of the finite difference method used to calculate the gradients, introducing

errors in the estimates of φt (e.g. Duarte et al. 2015), especially during more stable

conditions where turbulence is weak and intermittent (e.g. Mahrt 1998; Mauritsen

et al. 2007; Baklanov et al. 2011).

Additionally, following Li et al. (2008) the expression (2.47) was fitted to the
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Figure 6.17: Vertical profiles of the vertical flux of TKE used for the calculation of
the dimensionless turbulent transport term in the TKE budget. Each sub-panel shows
10 individual profiles (100 in total), which are presented with different color, showing
considerable variation with height.

data at the first mid-level and from upper levels up to ζ = 2 (Fig. 6.18 and Table

6.3). We note that these functions represent the data at weakly and moderately

stable conditions quite well, while in strongly stable limit the data deviate from this

linear relationship.
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Figure 6.18: Estimates of the dimensionless turbulent transport as a function of ζ shown
for z=26 m (red) and in the layer 36− 58.5 m (blue) separately. Error bars indicate one
standard deviation within the bin. Violet and blue solid curves indicate the best least
squares fitting for data points up to ζ = 2 for the lower and upper layer, respectively.

6.2.4 Budget of TKE

Figure 6.19 shows estimated dimensionless terms of TKE budget (Eq. 6.10)

within the RSL and the transition layer separately. The residual term accounts for

the pressure transport term and the advection as well as all other terms which can

not be estimated, such as, horizontal derivatives. In the transition layer, as expected

for the SBL, the dominant terms are the mechanical production and dissipation of

TKE (Fig. 6.19). The residual term has comparable magnitudes, but it represents

the sum of all other terms which could not have been estimated. Li et al. (2008)

have defined the dimensionless local imbalance function φLI = −φm + ζ + φε. The

total local losses of TKE, i.e. ζ + φε, exceed the local shear production, resulting in

a positive φLI , which indicates a gain of TKE in the layer. This local imbalance of

TKE over all stabilities has been reported in many different studies (e.g. Högström

1990; Frenzen and Vogel 2001; Li et al. 2008; Duarte et al. 2015). Li et al. (2008)

have argued that non-local dynamics is the main mechanism responsible for the

observed imbalance. Högström (1990) used an inactive turbulence theory to explain

the observed gain of energy in the SL, which is associated mostly with the excess of

dissipation. Assuming HHF terrain and neglecting the advection of TKE, this energy

gain is then attributed to the pressure transport term (Högström 1990; Duarte et al.

2015).

Of course, all these considerations are based on the assumption that we only look

at the vertical gradients (boundary layer approximation) and neglect the terms with

horizontal derivatives. However, at this heterogeneous forested site, which involves

adaptation to the transition after the forest edge, horizontal gradients might have
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non-negligible magnitudes. For example, Yang et al. (2006) used LES to investigate

momentum and TKE budgets across a forest edge. They have found that the most

important processes at the forest edge are production due to the convergence (or

divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced

dissipation by canopy drag.
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Figure 6.19: Normalized TKE budget terms shown separately for measurements within
the RSL (lower panel) and transition layer (upper panel). Individual data are shown as
background symbols while bin medians are shown as filled symbols. Error bars indicate one
standard deviation within each bin. The green, orange, blue and yellow curves represent
the best fits of φm, φε, φt and residual term, respectively (Table 6.3).

Within the RSL, the shear production is larger than buoyant destruction and

dissipation of TKE, resulting in a negative φLI and indicating the loss of energy in

this layer in the stability range up to ζ = 0.1. The pronounced imbalance between

TKE production and dissipation within the RSL under neutral conditions is con-
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sidered to be mainly due to the contribution of TKE turbulent transport above a

vegetated surface (Mammarella et al. 2008, and Fig. 6.19). Figure 6.19 shows that

estimated values of φt are significant within this layer. The negative φLI is balanced

with the positive φt resulting with approximately zero R term in the neutral range.

These results are in agreement with findings of other studies above canopies (e.g.

Raupach et al. 1986; Brunet et al. 1994), where turbulent transport in the RSL close

to the canopy top was found to be a sink of TKE. Mammarella et al. (2008) and

Yang et al. (2006) have investigated vertical profiles of TKE budget terms and found

that values of φt are decreasing with height and the same was observed in present

dataset (Fig. 6.18). Therefore, the contribution of the turbulent transport to the

residual term is reduced in the transition layer compared to the RSL. For higher

stability, the residual term has a positive sign and becomes a gain of TKE in the

RSL.

The residual term shows more systematic behavior within the transition layer

compared to the RSL. Li et al. (2008) argued that a less systematic behavior of the

residual term, i.e. energy gain/loss suggests more dominant mean advection term.

These considerations and present results would imply that the advection term has

more pronounced influence on the RSL than the upper levels. Additionally, the

advection term should have larger influence on the residual term under strongly

stable conditions (Li et al. 2008). However, these are only hypothetical considera-

tions since it is not possible to actually estimate the advection term based on the

available data. Moreover, due to horizontally inhomogeneous site characteristic and

uncertainty in the estimated vertical TKE transport, it is impossible to quantify the

magnitude of the pressure transport term nor any of the terms including horizontal

derivatives which might have non-negligible values at this complex site. Neverthe-

less, as evident from the residual term, the pressure transport will most likely act

as a gain of TKE within the transition layer for the entire range of stabilities (Fig.

6.19). In the literature different results are reported regarding the pressure trans-

port contribution to the TKE budget. For example, in the neutral limit, Högström

(1990) and Duarte et al. (2015) obtained positive values for the pressure term, while

Li et al. (2008) and Nilsson et al. (2015) found negative values of −0.25 and −0.19,

respectively. Additionally, Li et al. (2008) found pressure transport to be small for

0 < ζ < 0.6 and to become a loss of TKE for larger stabilities. In these studies it

was assumed that the residual term represents mostly pressure transport and the

same assumption can not be made for the present site.

Finally, the best fit functions for each of the dimensionless budget terms with

the newly obtained coefficients are presented in Fig. 6.19. For all functions the

best fit coefficients were found only for the data up to ζ = 2, due to the higher

uncertainty at higher stability. A linear function was used to obtain the best fit for
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the φm function within the RSL and yielded φm = 1.19 + 2.71ζ, while non-linear

behavior of this function is observed in the transitions layer and the experimental

relationship proposed by Beljaars and Holtslag (1991) was fitted to the data. The

best fit coefficients obtained are a = 24.9, b = 31.79, c = −1.65 and d = 0.28.

A slightly modified version of the formulation proposed by Wyngaard et al. (1971)

φε = a(1+bζ3/5)3/2, which accounts for the deviation from unity in the neutral limit,

was used to present the dimensionless dissipation in both, the RSL and transition

layer. For the RSL the best fit function is φεm = 0.96(1 + 0.95ζ3/5)3/2, while φεm =

1.0(1 + 0.9ζ3/5)3/2 is the best fit for the data within the transition layer. Since the

residual term showed systematic behavior only within the transition layer, the best

fit function is obtained only for this layer. Based on the above results, the residual

term in the neutral limit must equal to -0.05 in order to close the budget in this

simple model. The non-linear expression R = (−0.05 + 5.2ζ)0.67 was found to best

represent this term.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

Multi-level measurements of atmospheric turbulence carried out over a hetero-

geneous surface in the continental part of Croatia have been used to study tur-

bulence characteristics in the wintertime nocturnal boundary layer. The overall

goal was to contribute to the field of the boundary layer meteorology by describing

how heterogeneous and complex surface characteristics alter turbulence properties

compared to better known results for flat and homogeneous terrain. Measurements

that were obtained from five levels in the layer between 20 and 62 m above the

ground and 2 − 44 m above the local canopy height, provided valuable insight in

the turbulence characteristics within tens of meters above the ground level. This

study focused on evaluating the applicability of local similarity scaling approach, in

terms of flux-variance and flux-gradient similarity, properties of turbulence spectra

and applicability of existing spectral models, and local balance of turbulent kinetic

energy (TKE) over spatially inhomogeneous surface characteristics.

Due to specific local terrain characteristics and distinctive features of the sta-

ble boundary layer (SBL), special attention was given to data quality control and

post-processing options. These included determination of appropriate turbulence

averaging time scale for defining turbulence fluctuations, testing the stationarity of

the data and invoking an uncertainty test. Observations were conducted inside (the

lowest observational level) and above the roughness sublayer (RSL).

After removing highly uncertain data points (uncertainty threshold > 50 %),

when assessing scaling under inhomogeneous fetch conditions in the SBL, flux-

variance similarity relationships were found to behave differently than the flux-

gradient relationships. Concerning the normalized standard deviations, it was found

that vertical velocity shows a tendency to “ideal” behavior, that is, it follows z-less

scaling when approaching large stability. The longitudinal and transversal com-

107
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ponents show dependence on static stability, with the latter exhibiting a more

pronounced linear increase with increasing stability. Consequently, scaled TKE

was found to have a linear dependence on the stability parameter in the range

0.05 ≤ ζ ≤ 10 for levels above the RSL. However, local scaling was found to be

valid for all three variables, which is astonishing given the complex and spatially

inhomogeneous surface characteristics. For neutral conditions, due to the RSL in-

fluence, values of all three non-dimensional velocity variances were found to be

smaller at the lowest measurement level, while these were larger at higher levels

in comparison with values obtained for HHF terrain. The ratio of the observed

dimensionless standard deviation of the vertical wind component and correspond-

ing values of commonly used similarity formulas over horizontally homogeneous and

flat (HHF) terrain showed considerable variation with wind direction, indicating the

influence of surface roughness changes and orography. Therefore, I separately an-

alyzed velocity variances for different wind directions corresponding to undistorted

(φw/φw(HHF ) ≈ 1) and distorted (φw/φw(HHF ) 6= 1) sectors, respectively. Differences

between these sectors at the lowest level were found only in the near-neutral regime

with larger magnitudes for the distorted sectors. At upper levels, dimensionless

longitudinal and vertical wind variances also showed higher values for these wind

directions. However, this did not influence results regarding the relationship with

stability. For non-dimensional velocity variances, and consequently, non-dimensional

TKE and the momentum and heat flux correlation coefficients, no discernible dif-

ference between sub- and supercritical regimes was observed.

Results for the non-dimensional wind shear appear to be less sensitive to in-

homogeneous site characteristics. Despite the largely inhomogeneous surface char-

acteristics at the measuring site, flux-gradient relationship (φm) showed a similar

distinction between sub- and supercritical regimes as found under ideal (HHF) con-

ditions (Grachev et al. 2013). These results support the classical Businger-Dyer

linear expression for the non-dimensional profile of wind speed, with slightly dif-

ferent best-fit coefficient, even over inhomogeneous terrain but only after removing

data which correspond to the flux Richardson number Rf > 0.25. Hence, our data

follow local z-less scaling for the φm function when the condition Rf ≤ 0.25 is im-

posed. Similar to HHF conditions, supercritical (Rf > 0.25) data show a leveling

off for φm at higher stability thus, seemingly supporting the non-linear relationship

of Beljaars and Holtslag (1991). Therefore, it is concluded that the non-dimensional

wind shear over a largely heterogeneous vegetated surface is only weakly, if at all,

affected by the surface inhomogeneity. Thus, when interested in only subcritical,

fully turbulent conditions, the classical linear formulation for φm is appropriate.

Correspondingly, if all turbulence states (regardless of sub- or supercritical) are of

interest, the Beljaars-Holtslag formulation is to be preferred. Finally, it was in-
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vestigated whether the wind magnitude has an impact on the distinction between

turbulence characteristics in sub- and supercritical regimes. The φm dependence on

stability did not show different behavior for different wind regimes, indicating that

the stability parameter is sufficient predictor for flux-gradient relationship.

Further investigations focused on the influence of heterogeneous terrain on tur-

bulence spectral characteristics as well as dissipation rates of TKE (ε). Surface layer

(SL) scaling using local values of u∗ and z−d was not valid above the rough vegeta-

tion canopy. Instead, the canopy scaling (using the mean wind speed from the first

measurement level and the canopy height) was shown to be successful through the

entire measurement layer. Additionally, wind variances were found to be relevant

for collapsing the spectra from all five levels to a single curve. Estimated values

of the non-dimensional TKE dissipation rate (φε) at the lowest measurement level

indicated clear influence of roughness elements, while φε dependence on stability

at higher levels can be approximated with the modified functional form proposed

by Wyngaard et al. (1971) in order to account for the deviation from unity (local

balance) in neutral conditions. The vertical velocity spectra were observed to be

smaller than horizontal spectra and consequently ε determined only from vertical

spectra were smaller in comparison with ε estimates from horizontal components.

Therefore, it was necessary to normalize vertical spectra with φεw to obtain good

correspondence with the Kansas spectral model. The same was observed when the

model of Olesen et al. (1984) was applied. This, in fact, demonstrates that true lo-

cal isotropy is not found at this complex surface site. As pointed out by Wyngaard

(2010) local isotropy can only be found in a truly homogeneous flow field, which is

not found in the vertical direction and even less over inhomogeneous canopies, such

as forest or urban. The spectral model of Olesen et al. (1984) was for the first time

applied to data over heterogeneous plant canopy and was found to be successful.

Influence of sub-meso motions was evident in the spectra of horizontal velocity com-

ponents at lower frequencies due to the fact that only a linear trend was removed

from each 30-min run and no filtering of the data was performed. Based on the

results of MFD analysis, sub-meso motions have time scales above 100 s, which is

also evident in the spectra.

The dimensionless wind shear function associated with “Kolmogorov turbu-

lence” (existence of a well-defined inertial subrange with −5/3 slopes) was found

to depart from linear prediction. Many of individual data corresponding to “Kol-

mogorov turbulence” were observed in the supercritical regime (Rf > 0.25) indicat-

ing survival of turbulence above the inhomogeneous surface at higher Rf in com-

parison to a homogeneous one. This suggest that the stability (Rf) is a stronger

determinant of the φm behavior than the inertial subrange behavior is. The non-

local dynamical processes are possibly the reason for the observed breakdown of the
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z-less regime in the strongly stable conditions above heterogeneous surface.

The local equilibrium between the production and destruction of TKE was found

to be violated indicating that the transport terms and advection are important,

with the vertical TKE transport being more pronounced within the RSL than the

transition layer. In the transition layer, the total local losses of TKE exceeded the

local shear production, resulting in positive residual term corresponding to gain of

TKE in this layer. Within the RSL, the shear production was larger than buoyant

destruction and dissipation of TKE, thus the residual term corresponds to a loss of

energy in this layer in the stability range up to ζ = 0.1. For higher stabilities the

residual term changed sign and became a gain of TKE in the RSL.

7.2 Outlook

Results of this dissertation have demonstrated that classical ABL theories,

which were originally developed for HHF terrain, can be applied even over very

heterogeneous surfaces when the local scaling approach is used, however, the cor-

responding non-dimensional functions do not exhibit the same parameter values as

over HHF terrain. Moreover, these results have also emphasized the need for the

further development of theory, measurements and high-resolution numerical simula-

tions to deal with non-equilibrium effects. In particular, thoughtful field campaigns

should focus on the attempts to measure and analyze local and non-local effects

above inhomogeneous surfaces, such as fetch limited forests. In future studies of

SBL over inhomogeneous terrain long term measurements and high-quality datasets

would be desirable in order to include data covering a wide range of stabilities (from

near-neutral to strongly stable). In future work, research should focus on additional

factors influencing turbulence characteristics such as:

• Influence of coherent structures on turbulent fluxes. This should include anal-

ysis of their occurrence, duration, frequency, vertical extent, contribution to

turbulent fluxes, etc.

• Analysis of classes of (sub)mesoscale structures in the SBL and their role in

determining turbulence structure as well as their interaction with turbulence.

• Testing the local isotropy hypothesis for heterogeneous and complex terrain.

Detailed analysis of its implications on the TKE budget equation.

• Quantifying the effect of non-local dynamics, i.e. the pressure transport term

in the TKE budget. Since the currently available sensor technology does not

allow for direct and accurate calculation of this term, long term measurement
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and numerical modeling studies are needed to help advance the understanding

of pressure transport term.
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Sažetak na hrvatskom jeziku

Poglavlje 1: Uvod

Atmosferski granični sloj (eng. atmospheric boundary layer (ABL)) je onaj dio

atmosfere u kojem su tok mase, energije i impulsa pod direktnim utjecajem zemljine

površine. Tema ovog doktorskog istraživanja je stabilni granični sloj (eng. stable

boundary layer (SBL)). SBL se razvija netom nakon zalaska sunca zbog radijacijskog

ohladivanja slojeva blizu zemljine površine. Struktura noćnog graničnog sloja je

primarno odredena atmosferskom statičkom stabilnošću i procesima koji odreduju

mehaničku produkciju turbulencije, poput smicanja vjetra uzrokovanog trenjem,

sinoptičkim strujanjem ili termalnim cirkulacijama ili pak niskim mlaznim strujama.

SBL iznad kopna obično se klasificira prema jačini termalne stratifikacije te varira

od slabo do vrlo stabilnog režima. Naš napredak u shvaćanju SBL-a je spor zbog

mnogih različitih forsiranja koja se odvijaju na različitim vremenskim i prostornim

skalama.To pridonosi kompleksnosti i postavlja izazove u proučavanju SBL-a.

I najmanja nehomogenost podloge može značajno utjecati na noćni granični

sloj te dovesti do turbulencije pri većem Richardonovom broju u odnosu na ho-

mogenu podlogu. Budući da su kopnene podloge na Zemlji uglavnom nejedno-

like, interes za strujanje i karakteristike turbulencije iznad kompleksnih površina se

povećao zadnjih desetljeća. Poznavanje karakteristika turbulencije je osobito važno

za parametrizaciju procesa izmjene izmedu površine i atmosfere u atmosferskim

modelima disperzije polutanata, numeričkim modelima za prognozu vremena ili re-

gionalnim klimatskim modelima. U tim modelima se za modeliranje karakteristika

strujanja i disperzije koristi teorija sličnosti. Znanstvena zajednica ulaže značajan

napor u ispitivanje primjenjivosti teorije sličnosti za različite uvjete. Većina eksper-

imentalnih studija se temelji na mjerenjima pri čemu su instrumenti postavljeni

na tornjeve, a rezultati studija su ponekad medusobno nekonzistentni. Nekonzis-

tentnost se uglavnom odnosi na studije u izrazito kompleksnom (npr. planinskom)

terenu te studije turbulencije male skale, koja se javlja u jako stabilnim uvjetima

kada sila uzgona ograničava vertikalna gibanja. U takvim slučajevima se gubi ovis-

nost o visini z i za njih vrijedi poseban režim skaliranja (eng. z-less). U ovoj

disertaciji ispitujem primjenjivost lokalnog skaliranja u stabilnom graničnom sloju
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iznad nehomogene podloge.

Poglavlje 2: Teorijska pozadina

Teorija sličnosti je jedna od osnovnih teorija u proučavanju graničnog sloja. Os-

novna pretpostavka teorije sličnosti je da se struktura ABL-a može opisati pomoću

karakterističnih parametara. Temelji se na organiziranju varijabli u bezdimenzion-

alne grupe. Ta procedura dimenzionalne analize proizilazi iz Buckingamovog π teo-

rema. U okviru tog teorema biramo ključne varijable koje će činiti bezdimenzionalne

grupe. Ispravan izbor bezdimenzionalnih grupa omogućava formiranje empiričkih

relacija medu njima. Te relacije bi trebale biti univerzalne, tj. trebale bi vrijediti

svugdje u svakom trenutku za odredenu situaciju. Razvoj teorije sličnosti se sas-

toji od četiri ključna koraka, a to su: (1) odabir relevantnih, tj. ključnih varijabli;

(2) organizacija varijabli u bezdimenzionalne grupe; (3) odredivanje vrijednosti tih

bezdimenzionalnih grupa (varijabli) iz eksperimentalnih podataka; te (4) odredivanje

empirijske relacije koja opisuje vezu izmedu ovih bezdimenzionalnih grupa. Znači, ta

procedura rezultira empirijskom jednadžbom ili skupom krivulja koje imaju isti ob-

lik, tj. izgledaju slično. Otuda naziv teorija sličnosti. Holtslag i Nieuwstadt (1986)

su dali pregled režima skaliranja u SBL-u, gdje je svaki od režima karakteriziran

različitim parametrima skaliranja. Turbulencija u prizemnom sloju se može opisati

Monin-Obukhovljevom teorijom sličnosti (Obukhov, 1946; Monin i Obukhov, 1954)

koristeći prizemne vrijednosti tokova impulsa i topline, te visinu z za parametre

skaliranja. U tom sloju relevantan parametar skaliranja je Obukhovljeva duljina, L.

Taj sloj se još naziva i sloj konstantnih tokova. Iznad prizemnog sloja se primjenjuje

lokalno skaliranje (ili lokalna teorija sličnosti). To je režim kojeg je predložio Nieuw-

stadt (1984) i on predstavlja ekstenziju MOST-a u sloj iznad prizemnog, a razlika je

u tome da se sve varijable računaju iz lokalnih vrijednosti tokova na mjerenoj visini

z. U ovom režimu osnovni parametar je lokalna Obukhovljeva duljina, Λ. z/Λ je

lokalni parametar stabilnosti i za njegove velike vrijednosti gubi se ovisnot o visini z

jer stabilna stratifikacija ograničava vertikalna gibanja, te je stoga skala turbulencije

jako mala. Taj granični slučaj se zove “z-less” stratifikacija, a znači da varijable

ne ovise o visni. Nieuwstadt (1984) je našao da z-less uvjet vrijedi za vrijednosti

parametra stabilnosti veće od jedan.

Poglavlje 3: Podaci i metode

Podaci analizirani u ovom radu su prikupljeni na 62 m visokom tornju u blizini

kutinske Petrokemije. Toranj je smješten unutar male šume oraha. Podaci su

mjereni ultrazvučnim anemometrima frekvencije uzorkovanja od 20 Hz na 5 visina
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iznad približno 18 m visokih stabala oraha. Analizirani podaci dgovaraju zimskim

mjesecima (od prosinca do veljače) i noćnim situacijama (1800 –0600 LST). Stabla

oraha zauzimaju površinu od približno 120 m x 480 m. Nehomogenost podloge se

odražava u miješanom utjecaju šume, agrikulturnih i industrijskih površina koje se

nalaze u blizini mjernog mjesta. Osim varijablnim elementima hrapavosti, neho-

mogenost podloge je karakterizirana i varijabilnom orografijom dalje od tornja.

Kao rezultat specifičnih svojstava tog mjernog mjesta očekujemo da će se formi-

rati različi vertikalni slojevi koji onda utječu na karakteristike turbulencije. Do

formiranja vertikalnih slojeva moe doi kada strujanje zraka nailazi na naglu prom-

jenu u karakteristikama podloge iznad koje struji. Iznad nove podloge dolazi do

formiranja unutarnjeg graničnog sloja (eng. internal boundary layer (IBL)) čija

visina raste s udaljenošću. Samo najnižih 10% ovog sloja je u ravnoteži s novom

podlogom i naziva se unutarnji ravnotežni sloj (IEL), dok je strujanje iznad IBL u

ravnoteži s podlogom koja se nalazi na navjetrinskoj strani. Ukoliko je nova podloga

jako hrapava, kao sto je slučaj kod nas, onda se niži dio unutarnjeg ravnotežnog

sloja naziva podsloj hrapavosti (eng. roughness sublayer (RSL)). Unutar RSL-a,

strujanje je pod utjecajem raspodjele i strukture elemenata hrapavosti. Iznad IEL-

a, napetost i tokovi se smanjuju s visinom zbog utjecaja podloge koja se nalazi na

navjetrinskoj strani i ovaj sloj se naziva prijelazni sloj. Kako bih rezltate analize

mogla tumačiti u okviru podsloja u kojem se nalazi mjerni nivo, procijenila sam

da se najniži mjerni nivo najvjerojatni nalazi unutar podsloja hrapavosti, dok su

vǐsi nivoi unutar tzv. prijelaznog sloja. Prema tome će utjecaj podsloja hrapavosti

biti očigledan u slučaju da se podaci mjereni na prvom nivou razlikuju značajno od

mjerenja na vǐsim nivoima.

Kako bih osigurala skup visoko kvalitetnih podataka na temelju kojeg će se raditi

analiza, provela sam opsežnu i strogu kontrolu kvalitete podataka. Ona je u prvom

koraku uključivala podjelu sirovih 20-Hz podataka u 30-min blokove podataka te su

svi 30-min intervali s vǐse od 1% nedostajućih podataka eliminirani iz daljnje anal-

ize. Isto je napravljeno ukoliko je broj podataka s nerealnim stršećim vrijednostima

(eng. spike) bio veći od 1%. Priprema podataka za anlizu je uklučivala i rotaciju

koordinatnog sustava u smjeru srednjeg vjetra, pri čemu je napravljena prilagodba

na ravninu (eng. planar fit). Za odredivanje prikladnog intervala usrednjavanja

korǐstene su četiri različite metode: Fourierova spektralna analiza, metoda kumula-

tivnog kospektra (eng. ogive), vǐserezolucijska dekompozicija toka i valićna analiza.

Rezultati primjene ovih metoda su prikazani u sljedećem poglavlju. Budući da je

stacionarnost vremenskih nizova osnovna pretpostavka teorije sličnosti, proveden je

test stacionarnosti prema Foken i Wichura (1996) kako bi detektirali nestacionarne

30-min intervale, koji su potom isključeni iz daljnje analize. Za intervale koji su

proglašeni stacionarnima nadalje je napravljena procjena statističke neodredenosti,
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odnosno pogreške uzorkovanja.

Poglavlje 4: Ispitivanje prikladnih vremenskih

skala usrednjavanja u stabilnom graničnom sloju

Kontinuirani vremenski nizovi, koje bilježe ultrasonični anemometri, sadrže

u sebi atmosferska gibanja na svim skalama te stoga obuhvaćaju nekoliko redova

veličina. Da bi se mogla primijeniti metoda kovarijance vrtloga potrebno je razd-

vojiti trenutni signal na srednji dio i fluktuacije. U analizi turbulencije razlikujemo

dvije osnovne skale usrednjavanja. Prva skala usrednjavanja τ (za usrednjavanje u

vremenu) definira turbulenciju, odnosno, razdvaja turbulentna gibanja od onih na

većoj skali. Druga skala usrednjavanja T jest Reynoldsova skala, a koja se koristi za

odredivanje statističkih momenata prvog, drugog i vǐsih redova. Reynoldsova skala

mora biti dovoljno duga kako bi se osigurala konvergencija statističkih momenata.

Implicitna pretpostavka, koja omogućava razdvajanje strujanja u srednji i pertur-

birani dio, jest da postoji mezoskalni spektralni procjep. Prva od primijenjenih

metoda za odredivanje prikladnih turbulentnih vremenskih skala usrednjavanja je

Fourierova spektralna analiza. Slika 4.1 prikazuje srednji spektar snage pomnožen

s frekvencijom f za sve tri komponente brzine vjetra na svih pet mjernih visina u

log-linearnom prikazu. Kad koristimo ovaj tip prikaza površina ispod spektralne

krivulje je proporcionalna varijanci, odnosno, energiji (npr. Stull, 1988). Premda su

individualni spektri dosta raspršeni (nije prikazano), srednji spektri za u i v kompo-

nentu brzine vjetra pokazuju postojanje spektralnog procjepa. Ovaj procjep je čak

izraženiji za lateralnu komponentu strujanja u odnosu na longitudinalnu, budući

da sadrži manje energije na većim skalama. Energijski procjep prisutan u sred-

njim spektrima horizontalnih komponenti brzine vjetra se nalazi na skalama koje

odgovaraju periodima izmedu 400 i 100 s.

Druga metoda za odredivanje prikladnog intervala usrednjavanja koristi kumu-

lativni ili klizni integral kospektra da bi se odredila frekvencija nakon koje vǐse nema

doprinosa kovarijanci (Oncley i sur., 1996; Foken i sur., 2006). Prikazi ovih spektara

(ogive) održavaju kumulativni doprinos vrtloga rastućih perioda ukupnoj kovari-

janci. Ako kumulativni spektar dosegne asimptotsku vrijednost pri nekoj frekvenciji

fc onda to upućuje na to da za frekvencije f > fc nema doprinosa toku (Moncrieff i

sur., 2006). Vremenska skala usrednjavanja je tada jednaka 1/fc. Prema tome, ova

skala usrednjavanja odgovara Reynoldsovoj skali. Srednji sirovi i izgladeni kospek-

tar kinematičkog toka topline te odgovarajući kumulativni integrali kospektra za

svih pet visina su prikazani na slici 4.2. Rezultati ove metode upućuju na to da je

vremenski period od 30 min prikladan za usrednjavanje turbulentnih tokova te da
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nema značajnijeg doprinosa tokovima iznad ovog perioda.

Vǐserezolucijska dekompozicija toka (eng. multiresolution flux decomposition

(MR), Howell i Mahrt (1997); Vickers i Mahrt (2003)) razdvaja varijancu i/ili ko-

varijancu fizikalnih veličina lokalno, odnosno, slično kao i klizni spektar uzima u

obzir evoluciju promatrane varijable u vremenu ili prostoru. Stoga je prednost te

metode u odnosu na Fourierovu spektralnu analizu u tome što je lokacija maksi-

muma u (ko)spektrima u toj metodi odredena skalom duljine fluktuacija. Stoga

nije potrebno imati periodičnost u podacima, dok u Fourierovoj analizi položaj

maksimuma ovisi o periodičnosti. Slika 4.3 prikazuje kako je ukupni tok topline

raspodijeljen medu različitim skalama gibanja tako što su prikazani individualni

30-min MR kospektri te srednji kospektar za svaki mjerni nivo. Uočava se da pojed-

inačni kospektri značajno medusobno variraju. Premda većina kospektara upućuje

na tok topline usmjeren prema tlu, postoje i periodi s uzlaznim tokom topline.

Kako se povećava skala usrednjavanja MR kospektri pokazuju nepravilne varijacije

što upućuje na utjecaj submezoskalnih gibanja na tok topline. Na svakoj od visina

prisutan je negativni maksimum u kospektrima, nakon čega slijedi smanjenje mag-

nitude toka i konvegencija ka konstantnoj vrijednosti ili promjena predznaka toka.

Prema Vickersu i Mahrtu (2006), odgovarajuća turbulentna skala usrednjavanja je

zadnja skala (gledajući uzastopno od malih prema velikim skalama) za koju MR

kospektar ne mijenja predznak. Prema tome, na temelju rezultata za srednji MR

kospektar odgovarajuća skala usrednjavanja bi trebala biti manja od 200 s.

Na temelju dobivenih rezultata u ovoj disertaciji je korǐstena vremenska skala

od 100 s da bi se definirale turbulentne fluktuacije. Na ovaj način je umanjen

mogući utjecaj submezoskalnih gibanja za jako stabilno stratificirane situacije. Vre-

menska skala od 100 s je korǐstena pri primjeni visoko-propusnog filtiranja origi-

nalnih vremenskih nizova komponenti brzine vjetra i sonične temperature. Budući

da usrednjavanje preko dužih vremenskih perioda smanjuje tzv. slučajne pogreške

(eng. random errors) u slučajevima kada vlada relativno stacionarna turbulencija,

turbulentne varijance i kovarijance su odredene korǐstenjem perioda od 30 min.

Valićna analiza se razlikuje od drugih kvantitativnih analitičkih alata koji se

uobičajeno koriste u analizi turbulentnih mjerenja (npr. Fourierova analiza) pre-

venstveno po tome što je to lokalna transformacija te se odvija za mnogo različitih

skala (Salmond, 2005). Ovo omogućava dobivanje informacija o vremenskim lokaci-

jama različitih značajki (koje su karakterizirane različitim frekvencijama) unutar

skupa podataka. Na ovaj način valićna analiza “zumira” odredenu značajku signala

i proučava je lokalno na razini detaljnosti koja odgovara skali te značajke. Valićna

analiza je primijenjena kako bismo dobili uvid u karakteristike turbulencije kao što

su sporadičnost i vremenska varijabilnost dominantnih skala gibanja. Ti rezultati

su prikazani na primjeru jedne cijele noći (slika 5.2).
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Poglavlje 5: Lokalna teorija sličnosti iznad

nehomogene podloge

Slika 5.2 prikazuje utjecaj nehomogene podloge koji se očituje u omjeru bezdi-

menzionalne varijance vertikalne komponente vjetra i odgovarajućih vrijednosti koje

se koriste u relacijama teorije sličnosti za homogenu i ravnu podlogu, a koje su dane

relacijom φw = 1.25(1 + 0.2ζ) (Kaimal i Finnigan, 1994). Varijacije normirane

vertikalne varijance vjetra sa smjerom vjetra odražavaju utjecaj nehomogene pod-

loge. Da su i mjerenja iz Kutine iznad homogene i ravne podloge unutar prizemnog

sloja, njihov omjer bi bio približno jednak jedinici. Umjesto toga, vidimo da je za

većinu smjerova vjetra ovaj omjer manji od jedan za mjerenja na visini od 20 m,

osim za vjetar iz smjerova 200–220 i 300–340 stupnjeva što odgovara podlozi velike

hrapavosti ili pak dugog privjetrǐsta (eng. fetch). Za mjerenja na vǐsim nivoima

omjer je veći od jedan za vjetar iz smjerova 55–80, 170–230 i 300–360 stupnjeva dok

je približno jednak jedan za smjerove označene sivom bojom. Stoga su odvojeno

analizirane varijace komponenti vjetra za različite smjerove vjetra koji odgovaraju

poremećenom i neporemećenom sektoru. Dakle, ukoliko je omjer ovih dviju funkcija

sličnosti približno jednak jedinici, definirani su neporemećeni smjerovi vjetra (20–

55, 85–175 i 235–295 stupnjeva), koji su označeni sivom bojom, dok se strujanje iz

drugih smjerova vjetra smatra poremećenim.

Na slici 5.3 je prikazan rezultat analize za varijance svih triju komponenti vjetra

na najnižem nivou i na visinama 2–5 odvojeno te je prikazana ovisnot o stabilnosti

za poremećene i neporemećene sektore. Normirane varijance sve tri komponente

vjetra na prvom mjerenom nivou manje ovise o smjeru vjetra u odnosu na vǐse vi-

sine. To upućuje na lokalni utjecaj podsloja hrapavosti na mjerenja na toj visini,

koji posljedično odreduje statističke vrijednosti turbulencije. Vidimo da su vrijed-

nosti veće za poremećeni sektor, te da je raspršenje veće na visinama 2–5. Puna

krivulja označava funkciju sličnosti koja vrijedi u slučaju ravne i homogene podloge.

Uočavamo da se mjerenja za neporemećene smjerove u sloju od 32–62 m mogu dobro

opisati ovom funkcijom u rasponu stabilnosti do ζ = 1. U jako stabilnom režimu

kada je ζ > 1, normirane varijance ne pokazuju linearnu ovisnost o stabilnosti već

teže ka konstantnim vrijednostima, te ovo sugerira da bi z-less skaliranje trebalo vri-

jediti u jako stabilnoj situaciji. Ovo takoder ukazuje na to da je lokalno skaliranje

prikladno i za izrazito nehomogenu podlogu, te da je lokalna Obukhovljeva duljina

relevantna skala duljine.

Uzmemo li sumu varijanci komponenti vjetra, dobit ćemo TKE. Proučavat ćemo

njenu ovisnost o paramteru stabilnosti ζ (slika 5.6). Procjena TKE je iznimno

važna za atmosfersko numeričko modeliranje budući da se turbulentno miješanje
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često parametrizira koristeći TKE. Vidimo da postoji linearna ovisnost normirane

TKE o parametru stabilnosti za nivoe 2–5 (narančasta krivulja) dok su koeficijenti

prilagodbe naravno drukčiji od onih za horizontalno homogenu podlogu prikazanu

crnom crtkanom krivuljom. Najniži mjerni nivo je pod utjecajem elemenata hra-

pavosti te se ne može opisati prikazanom linearnom relacijom. To znači da u pod-

sloju hrapavosti teorija sličnosti ne vrijedi. Osim toga, zbog utjecaja stabala u

podsloju hrapavosti bezdimenzionalna TKE ima niže vrijednosti od vrijednosti za

horizontalno homogenu i ravnu podlogu.

Jedna od važnijih funkcija u proučavanju graničnog sloja je funkcija sličnosti

za bezdimenzionalni gradijent brzine vjetra koju označavamo s φm. Budući da su

rezultati za varijance vjetra i normiranu TKE pokazali drukčije ponašanje na pr-

vom mjernom nivou od nivoa 2–5, rezultati za φm su takoder prikazani zasebno

za prvi i vǐse nivoe (slika 5.8). Vidimo da su gotovo svi podaci na prvom nivou

unutar područja stabilnosti od 0 do 0.5 (što odgovara slabo stabilnom sloju). Za

φm ne uočavamo jasne razlike izmedu prvog i vǐsih mjernih nivoa što upućuje na

to da karakteristike podloge utječu na jačinu turbulentnog miješanja i na gradijent

brzine vjetra na podjednak način. Ovaj zaključak je dodatno potvrden analizom za

različite sektore vjetra, te je uočeno da ne postoji ovisnost o smjeru vjetra. Rezul-

tati pokazuju sporiji rast φm funkcije s porastom stabilnosti nego što je predvideno

linearnom relacijom i naši podaci približno odgovaraju nelinearnoj relaciji koju su

predložili Beljaars i Holtslag (1991). Linearna relacija koju je predlozio Dyer (1974) i

nelinearna relacija prema Beljaarsu i Holtslagu se najčešće koriste za parametrizaciju

u numeričkim modelima. Rezultati za φm upućuje na smanjenje bezimenzionalog

gradijenta brzine vjetra za jako stabilno stratificirani sloj. Sličan rezultat je dobiven

i u drugim studijama, medutim, ovaj rezultat dovodi u pitanje primjenjivost z-less

skaliranja u jako stabilnom režimu. Ako je φm linearna funkcija parametra stabil-

nosti, onda gradijent brzine vjetra treba težiti ka konstantnoj vrijednosti za ζ � 1.

Stoga ovo odstupanje od linearnosti upućuje na neadekvatnost z-less skaliranja.

Grachev i sur. (2013) su klasificirali tradicionalni SBL u dva režima: podkritični

i superkritični. Podjela je napravljena na temelju fluks Richardsonovog broja (Rf)

koji predstavlja dinamičku mjeru stabilnosti strujanja i njegova kritična vrijednost

u njihovom radu iznosi 0.25. U podkritičnom režimu turbulencija je kontinuirana,

te teorija sličnosti vrijedi. Nadkritični režim je povezan sa sporadičnom turbulen-

cijom male skale i to je tzv. ne-Kolmogorovljeva turbulencija. Slika 5.4 prikazuje

ovisnost Rf o parametru stabilnosti. Dyerova parametrizacija, prikazana crnom

krivuljom, predvida asimptotsko približavanje k Rf=0.20, ali to značajno podcijen-

juje vrijednosti Rf za jaku stabilnost, gdje one rastu iznad 0.25. Raspon stabilnosti

u analiziranim podacima ide od 0 do 5, te je gotovo 50 % podataka na najvǐsa dva

nivoa imalo vrijednosti Rf -a veće od 0.25. Stoga vidimo da su najvǐsi nivoi, koji
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imaju i najveće stabilnosti, karakterizirani turbulencijom male skale.

Stoga je primijenjena klasifikacija kao u radu Gracheva i sur. (2013) koji su

podijelili tradicionalni SBL u dva režima: subkritični i superkritični. Slijedeći nihov

pristup, podaci sa svakog mjernog nivoa su podijeljeni u dva režima. Vidimo da u

subkritičnom režimu, prikazanom zelenom bojom, φm sad slijedi linearnu ovisnost o

parametru stabilnosti i koeficijent najbolje prilagodbe iznosi 3.8 (slika 5.9). To znači

da z-less skaliranje vrijedi. Vidimo da bezdimenzionalni gradijent brzine vjetra u

superkritičnom režimu pokazuje jako odstupanje od linearnosti u cijelom rasponu

stabilnosti. Ovaj rezultat upućuje na to da je nelinearni izraz prema Beljaarsu i

Holtslagu kao i rezultati drugih studija, koji pokazuju smanjene vrijednosti za jako

stabilnu stratifikaciju, najvjerojatnije bio utjecan velikim brojem podataka koji su

karakterizirani turbulencijom male skale i sporadinom turbulencijom.

Ha i sur. (2007) su ispitivali primjenjivost teorije sličnosti u prizemnom sloju

za različite režime strujanja vjetra. Došli su do zaključka da premda je parametar

stabilnosti inverzno koreliran sa srednjom brzinom vjetra, brzina strujanja na velikoj

skali ima neovisan utjecaj na funkciju sličnosti φm. Pronašli su da za jaki i umjereni

režim strujanja, teorija sličnosti vrijedi ukoliko je ζ << 1, dok za slabi vjetar i

jaku stratifikaciju ne vrijedi, odnosno, φm funkcija se ne može opisati postojećim

funkcijama stabilnosti. Po uzoru na njihov pristup, ispitano je ponašanje φm funkcije

za ova tri režima, s tim da je napravljena podjela i prema iznosu Rf (slika 5.10).

Za kutinske podatke se ne uočava izrazita razlika u ponašanju ovog parametra za

različite režime, a koju su ustanovili Ha i sur. (2007). Primjećujemo da je raspršenje

najveće u slabom režimu strujanja, premda se znatno raspršenje vidi i za druga

dva režima. Vidimo da raspršenje u svim režimima uzrokuje turbulencija male

skale koja je preživjela u superkritičnom režimu. Ako pak gledamo samo podatke

u podkritičnom režimu, oni imaju linearnu ovisnost te čak slijede Dyerovu krivulju.

To znači da teorija sličnosti vrijedi čak i u slučaju slabog vjetra za čitav raspon

stabilnosti.

I za kraj ćemo još vidjeti kakva je ovisnost funkcije φm/φw o parametru stabil-

nosti (slika 5.11). Ova nova funkcija predstavlja kombinaciju univerzalnih funkcija

sličnosti, pa je stoga i sama funkcija sličnosti. Prednost u odnosu na prikazane

funkcije sličnosti je da ona nije pod utjecajem samokorelacije. Do samokorelacije

dolazi kada obje veličine dijele zajedničku varijablu. Kod proučavanja funkcija

sličnosti brzina trenja je zajednička veličina. Vidimo da je rast ove funkcije s

porastom stabilnosti sporiji nego što to predvida linearna ovisnost, a budući da

ova funkcija nema zajedničku varijablu s parametrom stabilnosti, onda možemo

zaključiti da odstupanje od linearnosti nije uzrokovano samokorelacijom. Na slici

5.11(b) su prikazani samo podaci koji odgovaraju podkritičnom režimu, te je i ovdje

odstupanje od linearnosti uzrokovano turbulencijom na maloj skali u superkritičnom
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režimu. Kao što je već istaknuto, i ovdje se jasno uočava da podsloj hrapavosti

značajnije utječe na funkciju sličnosti za varijance vjetra u odnosu na gradijent

brzine vjetra, te stoga dovodi do precjenjivanja na prvom nivou, dok se na vǐsim

nivoima ne uočava nikakvo sustavno odstupanje.

Poglavlje 6: Turbulentni spektri, stopa disipacije i

jednadžba ravnoteže turbulentne kinetičke energije

Spektri triju komponenti brzine vjetra su odredeni primjenom brze Fourierove

transformacije (FFT) na svaki od 30-min intervala kojem je prethodno uklonjen

linearni trend. Stopa dissipacije TKE se odreduje iz spektara primjenom inercijske

disipacijske metode (eng. inertial dissipation technique). Ova metoda zahtijeva pos-

tojanje inercijalnog potpodručja u Fourierovim spektrima komponenti brzine vjetra.

U inercijalnom potpodručju bi barem približno trebala vrijediti lokalna izotropija

(eng. local isotropy). Lokalna izotropija zahtijeva da je omjer spektara lateralne

i vertikalne komponente brzine vjetra u odnosu na longitudinalnu u inercijalnom

području jednak 4/3, te da u ovom području spektri imaju −5/3 nagib. Prvi uvjet

je jači iskaz postojanja lokalne izotropije u inercijalnom potpodručju.

Slika 6.2 prikazuje omjere Sv/Su i Sw/Su (prikazan je medijan svih spektara)

za svaki od mjernih nivoa. Kao što se i očekuje prema teoriji, Sv/Su pokazuje

tenednciju konvergencije prema vrijednosti 4/3, dok je medijan omjera spektara

Sw/Su značajno manji od 4/3. Sličan rezultat za Sw/Su je pronaden i u mnogim

drugim studijama iznad šuma (Liu i sur., 2001; Su i sur., 2004) ili drugih kompleksnih

površina (Roth i sur., 2006; Christen i sur., 2009; Večenaj i sur., 2011). Biltoft

(2001) i Chamecki i Dias (2004) su dali razna objašnjenja za primjećeno odstupanje

od lokalne izotropije.

Algoritam prema kojem je odredena stopa disipacije TKE je prikazan na slici

6.3. Grachev i sur. (2014) su istaknuli da je 4/3 omjer izmedu spektara horizontalnih

komponenti brzine vjetra jači uvjet postojanja lokalne izotropije nego −5/3 nagib u

spektrima, budući da se ovaj nagib može naći i kad ne postoji lokalna izotropija te

je stoga ovaj uvjet korǐsten kod odredivanja bezdimenzionalne funkcije sličnosti za

disipaciju TKE (φε). Slika 6.4 prikazuje ovisnost φε o stabilnosti, te uočavamo sporiji

porast φε blizu vrha stabala (prvi nivo) u odnosu na rezultate dobivne u prizemnom

sloju iznad manje hrapavih podloga. U graničnom slučaju neutralne stabilnosti vri-

jednosti φε < 1, što upućuje ne utjecaj podsloja hrapavosti, dok su na vǐsim nivoima

φε > 1 vjerojatno zbog utjecaja unutranjeg graničnog sloja. Nelinearna relacija koju

su predložili Wyngaard i sur. (1971) bolje opisuje ovisnost φε o stabilnosti, stoga je

njihova funkija zajedno s nekoliko modifikacija prilagodena našim podacima te su
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koeficijenti najbolje prilagodbe prikazani u Tablici 6.1, a krivulje za nivoe 2− 5 su

prikazane na slici 6.5.

Nakon što je odredena stopa disipacije TKE možemo proučavati karakteristike

turbulentnih spektara. Prvo prikazujemo gustoću spektralne energije komponenti

brzine vjetra pomnoženu s f i normiranu koristeći lokalne vrijednosti brzine trenja

u2∗` (slika 6.7, lijevo). Uočavamo da lokalno skaliranje koristeći vrijednosti u∗` i z−d
iznad šume nije prikladno budući da je prvi mjerni nivo očigledno unutral podsloja

hrapavosti te spektralni maksimumi i inercijalno podpodručje ne koincidiraju na

svim nivoima. Medutim, ako spektre normiramo koristeći brzinu vjetra mjerenu

na prvom mjerenom nivou (blizu vrha elemenata hrapavosti) Uhc = 〈u〉hc i visinu

elemenata hrapavosti hc, spektri pokazuju kolabiranje spektralnih maksimuma i in-

ercijalnog podpodručja kroz cijeli sloj mjerenja (slika 6.7, desno). Podsloj hrapavosti

je pod utjecajem velikih koherentnih vrtloga koji nastaju na vrhu elemenata hra-

pavosti (npr. Finnigan i Shaw, 2000; Shaw i sur., 2006). Ti veliki vrtlozi imaju skale

duljine koje su proporcionalne hc. Činjenica da se ovaj tip skaliranja može prim-

ijeniti i za mjerenja unutar prijelaznog sloja upućuje na to da ti veliki koherentni

vrtlozi utječu na strukturu turbulencije do znatne visine.

U idućem koraku je testirana primjenjivost spektralnih modela izvedenih za hor-

izontalno homogen i ravan teren. Kao prvi model testiran je onaj koji su predložili

Kaimal i sur. (1972), a koji prikazuje svojstva turbulentnih spektara u prizemnom

sloju. Spektri komponenti brzine vjetra su normirani koristeći lokalne vrijednosti

brzine trenja i bezdimenzionalne funkcije sličnosti disipacije TKE (slika 6.9). Vrijed-

nosti φε odredene na temelju horizontalnih komponenti brzine vjetra su korǐstene i

za normiranje spektra vertikalne komponente. Norimirani spekri komponenti brzine

vjetra su prikazani i za sedam različitih kategorija stabilnosti (tablica 6.2) te je

prikazan median svih spektara za pojedinu kategoriju. Ovisnost spektara o stabil-

nosti je prikazana odvojeno za mjerenja na prvom nivou i mjerenja s vǐsih nivoa.

Ovi normirani spektri pokazuju da za horizontalne komponente brzine postoji −2/3

nagib za veliki raspon frekvencija unutar inercijalnog potpodručja. Takoder, sve

komponente strujanja pokazuju jasno razdvajanje u ovisnosti o parametru stabil-

nosti: s povećanjem stabilnosti smanjuje se intenzitet spektralnog maksimuma te je

on pomaknut k vǐsim frekvencijama. Primjećeno je da spektri vertikalne komponente

brzine imaju manje vrijednosti u inercijalnom potpodručju u odnosu na neutralne

spektre mjerene u Kansasu. Magnitude vertikalnih spektara su za većinu kategorija

stabilnosti za mjerenja na nivou 1 i nivoima 2 − 5 za faktor 2 manje u odnosu na

vrijednosti dobivene iznad HHF. Pokazalo se da je ovo uzrokovano korǐstenjem φε

funkcije koja je odredena na temelju horizontalnih komponenti brzine, a čije su vri-

jednosti veće nego kad φε procijenimo koristeći samo vertikalne spektre (φεw , slika

6.11). Zaista, ako koristimo φεw u normiranju vertikalnih spektara dobije se dobro
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slaganje ne samo u obliku već i u magnitudi sa spektrima koje su predložili Kaimal

i sur. (1972).

Za modeliranje spektara u SBL-u se može koristiti i model koji su predložili Ole-

sen i sur. (1984) i prikazan je jednadžbama (2.41) – (2.43). Ovaj model se temelji

na pretpostavci da je bezdimenzionalna frekvencija koja odgovara maksimumu spek-

tralne energije funkcija parametra stabilnosti te bi stoga svi spektralni maksimumi

trebali koincidirati ako se spektar energije prikaže kao funcija n/φm. Primjenjujući

ovaj model na naše podatke nadeno je da spektralne krivulje s različitih mjernih

nivoa te za različite klase stabilnosti približno koncidiraju. Relacije najbolje pri-

lagodbe ovog modela na kutinske podatke su dane izrazima (6.7)–(6.9). Rezultati

upućuju na to da se ovaj model može uspješno primijeniti i za spektre brzine u SBL-u

iznad nehomogene podloge. Čini se da je ovaj model prikladniji za spektre u SBL-u

iznad nehomogene podloge od Kaimalovog (neutralnog) modela, medutim, da bi se

ovaj model mogao primijeniti potrebno je poznavati bezdimenzionalne funkcije za

smicanje brzine vjetra i disipaciju TKE.

Za kraj su procijenjeni članovi u jednadžbi ravnoteže TKE. Slika 6.19 prikazuje

procijenjene bezdimenzionalne članove unutar podsloja hrapavosti i prijelaznog

sloja. Za svaki od članova prikazane su i empirijske relacije. Kao što i očekujemo

u SBL-u, dominantni članovi su mehanička produkcija i disipacija TKE. Rezidualni

član ima slične vrijednosti (uglavnom unutar prijelaznog sloja), ali on predstavlja

sumu tri člana: turbulentnog transporta, transoprta tlakom i advekciju. Li i sur.

(2008) su definirali bezimenzionalnu funkciju lokalne neravnoteže φLI = −φm+ζ+φε,

koja u ovom slučaju odgovara rezidualnom članu. U prijalaznom sloju lokalni gu-

bici TKE, ζ + φε, su veći od lokalne produkcije smicanjem, što rezultira pozitivnim

rezidualnim članom koji upućuje na dobitak TKE u ovom sloju. Ova lokalna ner-

avnoteža TKE za cijeli raspon stabilnosti je uočena i u mnogim drugim studijama

(npr. Högström, 1990; Frenzen i Vogel, 2001; Li i sur., 2008; Duarte i sur., 2015).

Li i sur. (2008) su predložili nelokalne dinamičke procese kao glavni mehanizam

koji uzrokuje tu neravnotežu, dok je Högström (1990) predložio teoriju neaktivne

turbulencije kako bi objasnio dobitak TKE u prozemnom sloju, a koji je uglavnom

povezan s vǐskom disipacije. U uvjetima kada je podloga iznad koje se mjeri hori-

zontalno homogena i ravna, gdje se advekcija TKE može zanemariti, ovaj dobitak

TKE se često pripisuje članu prijenosa tlakom (Högström, 1990; Duarte i sur., 2015).

Unutar posloja hrapavosti, produkcija TKE smicanjem je veća nego destrukcija uz-

gonom i disipacijom TKE, što upućuje na gubitak energije u ovom sloju za raspon

stabilnosti do ζ = 0.1. Za veće stabilnosti rezidualni član mijenja predznak i postaje

dobitak TKE u ovom sloju. Turbulentni transport TKE se smatra glavnim uzrokom

naglašene neravnoteže izmedu produkcije i disipacije TKE u podsloju hrapavosti u

neutralnim uvjetima iznad vegetacijom prekrivenih podloga (Mammarella i sur.,
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2008).

Zaključak

Rezultati pokazuju da se lokalna teorija sličnosti može primijeniti i za područja s

izrazito nehomogenom podlogom, ali odgovarajuće bezdimenzionalne funkcije imaju

drugačije vrijednosti u odnosu na one pronadene za horizontalno homogene podloge.

Pronadeno je da funkcije sličnosti za gradijent vjetra i varijance komponenti brzine

vjetra imaju drugačiji odziv zbog nehomogenosti podloge. Utjecaj podsloja hra-

pavosti je jači nego utjecaj nehomogene podloge, dok je ovaj utjecaj najslabiji za

gradijent brzine vjetra. Osim toga, funkcija sličnosti za gradijente vjetra pokazuje

sličnu podjelu turbulencije u pod- i nadkritičnom režimu kao što je opaženo i iz-

nad idealnih homogenih podloga. Za subkritični režim, ali i za sve opažene uvjete,

podaci dosta dobro slijede odgovarajuće funkcije dane u literaturi. U subkritičnom

režimu bezdimenzionalno smicanje vjetra pokazuje linearnu ovisnost o parametru

stabilnosti, što upućuje na to da su odstupanja od linearnosti uglavnom uzrokovana

turbulencijom na maloj skali, a ne nehomogenošću podloge.

Daljnja istraživanja su se fokusirala na utjecaj nehomogene podloge na spek-

tralne karakteristike turbulencije te stopu disipacije TKE (ε) i jedndžbu ravnoteže

TKE. Pronadeno je da lokalno skaliranje za spektre koristeći u∗ i z − d ne vrijedi

iznad hrapave podloge karakterizirane visokom vegetacijom. Umjesto toga, turbu-

lentni spektri snage komponenti brzine normirani odgovarajućim varijancama, te

koristeći brzinu vjetra mjerenu blizu vrha elemenata hrapavosti i njihovu visinu,

tzv. canopy skaliranje (skaliranje pokrova), dovodi do koincidiranja spektara sa

svih visina te se oni mogu prikazati kao jedna krivulja. Činjenica da (canopy) skali-

ranje pokrova u prijelaznom sloju daje bolje rezultate od tradicionalnog skaliranja

koje vrijedi u prizemnom sloju, upućuje na to da veliki koherentni vrtlozi, koji se

stvaraju na vrhovima stabala, dominiraju turbulentnom strukturom sve do značajne

visine koja je i tri puta veća od visine stabala.

Na prvom mjernom nivou bezdimenzionalna funkcija za disipaciju TKE (φε) je

pod značajnim utjecajem elemenata hrapavosti, dok se na vǐsim mjernim nivoima

njena ovisnost o stabilnosti može opisati modificiranim oblikom funkcije koju su

predložili Wyngaard i sur. (1971). Ovaj modificirani oblik se koristi kako bi se uzelo

u obzir odstupanje od lokalne ravnoteže u statički neutralnim uvjetima.

Hipoteza o lokalnoj izotropiji nije zadovoljena za ovo kompleksno mjerno mjesto.

Zbog smanjene spektralne snage za vertikalnu komponentu brzine vjetra u odnosu

na horizontalne komponente brzine, vrijednosti stope disipacije TKE odredene na

temelju mjerenja vertikalne brzine su značajno manje u odnosu na vrijednosti

odredene iz horizontalnih komponenti. Pokazalo se da ovaj rezultat ima značajne
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posljedice na odgovarajuće jednadžbe za budžete varijanci brzine i TKE, te za us-

pješnu primjenu i dobro slaganje s naširoko primjenjivanim spektralnim modelima

na temelju mjerenja u Kansasu, SAD. Stoga je bilo potrebno normirati spektre

vertikalne komponente brzine koristeći φεw da bismo dobili dobro slaganje spek-

tara u obliku i magnitudi s Kaimalovim spektrima. Isto je uočeno i kod primjene

Olesenovog spektralnog modela. Ovo upućuje na to da se lokalna izotropija može

pronaći jedino u istinski homogenom strujanju (Wyngaard, 2010), a to uglavnom

ne vrijedi za strujanja u vertikalnom smjeru, a još manje za strujanje iznad ne-

homogene površine poput šuma ili u urbanom graničnom sloju. Spektralni model

koji su predložili Olesen i sur. (1984) po prvi put je primijenjen na mjerenja iznad

nehomogene podloge i pokazao se uspješnim.

Lokalna ravnoteža izmedu produkcije i destrukcije TKE je narušena, a to

upućuje na činjenicu da je doprinos članova transporta i advekcije u jednadžbi

ravnoteže TKE važan. U prijelaznom sloju ukupni gubitak TKE je veći od produk-

cije TKE smicanjem zbog čega je rezidualni član pozitivan i predstavlja dobitak TKE

u ovom sloju. Unutar podsloja hrapavosti, u rasponu stabilnosti do ζ = 0.1 produk-

cija je veća od uzgonske destrukcije i disipacije TKE te rezidualni član predstavlja

gubitak energije. Za veće stabilnosti rezidualni član mijenja znak i postaje dobitak

TKE u tom sloju. Nelokalni dinamički procesi se smatraju glavnim razlozima ner-

avnoteže TKE u prijelaznom sloju kao i za narušavanje z − less režima u statički

jako stabilnim uvjetima. Turbulentni transport TKE iznad površina pokrivenih vi-

sokom vegetacijom se smatra odgovornim za neravnotežu u podsloju hrapavosti u

neutralnim uvjetima.
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Babić, N., Ž. Večenaj, and S. F. J. De Wekker, 2016b: Flux-variance similarity in complex

terrain and its sensitivity to different methods to treat non-stationarity. Boundary-Layer

Meteorol, 159, 123145, doi:10.1007/s10546-015-0110-0.

127



128 BIBLIOGRAPHY

Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric

planetary boundary layers. Bull Amer Meteorol Soc, 92 (2), 123–128, doi:10.1175/

2010BAMS2797.1.

Baldocchi, D., and T. Meyers, 1988: A spectral and lag-correction analysis of turbulence

in a deciduous forest canopy. Boundary-Layer Meteorol, 45, 31–58.

Banta, R., Y. Pichugina, and W. Brewer, 2006: Turbulent velocity-variance profiles in

the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci, 63,

2700–2719.

Barthlott, C., P. Drobinski, C. Fesquet, T. Dubos, and C. Pietras, 2007: Long-term study

of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol, 125,

1–24, doi:10.1007/s10546-007-9190-9.
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and estimation of the pressure transport terms for the nocturnal stable boundary layer.

Boundary-Layer Meteorol, 105 (2), 305–328.

Daubechies, I., 1992: Ten Lectures on Wavelets. Society for Industrial and Applied Math-

ematics, 357 pp.

de Franceschi, M., D. Zardi, M. Tagliazucca, and F. Tampieri, 2009: Analysis of second-

order moments in surface layer turbulence in an Alpine valley. Q J R Meteorol Soc, 135,

1750–1765, doi:10.1002/qj.506.

Dellwik, E., and O. N. Jensen, 2005: Flux-profile relationships over a fetch limited beech

forest. Boundary-Layer Meteorol, 115 (2), 179–204, doi:10.1007/s10546-004-3808-y.

Derbyshire, H., 1995: Stable boundary layers: Observations, models and variability part I:

Modelling and measurements. Boundary-Layer Meteorol, 74 (1-2), 19–54, doi:10.1007/

BF00715709.



130 BIBLIOGRAPHY

Desjardins, R., J. Macpherson, P. Schuepp, and F. Karanja, 1989: An evaluation of aircraft

flux measurements of CO2, water wapor and sensible heat. Boundary-Layer Meteorol,

47, 55–59.

Duarte, H. F., M. Y. Leclerc, G. Zhang, D. Durden, R. Kurzeja, M. Parker, and D. Werth,

2015: Impact of nocturnal low-level jets on near-surface turbulence kinetic energy.

Boundary-Layer Meteorol, 156, 349–370, doi:10.1007/s10546-015-0030-z.

Dwyer, M. J., E. G. Patton, and R. H. Shaw, 1997: Turbulent kinetic energy budgets from

a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer

Meteorol, 84, 23–43.

Dyer, A. J., 1974: A review of flux-profile relationships. Boundary-Layer Meteorol, 7 (3),

363–372, doi:10.1007/BF00240838.
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Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified

similarity formulation for near neutral conditions. J Atmos Sci, 47, 1949–1972.
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Rannik, Ü., 1998: On the surface layer similarity at a complex forest site. J Geophys Res,

103 (D8), 8685–8697, doi:10.1029/98JD00086.

Rannik, U., and T. Vesala, 1999: Autoregressive filtering versus linear detrending in

estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorol, 91,

256–280.



138 BIBLIOGRAPHY

Raupach, M., 1979: Anomalies in flux-gradient relationships over forest. Boundary-Layer

Meteorol, 16, 467–486.

Raupach, M., 1981: Turbulence in and above plant canopies. Ann Rev Fluid Mech, 13,

97–129.

Raupach, M., 1994: Simplified expressions for vegetation roughness length and zero-plane

displacement as function of canopy height and area index. Boundary-Layer Meteorol,

71 (1), 211–216, doi:10.1007/BF00709229.

Raupach, M., P. Coppin, and B. Legg, 1986: Experiments on scalar dispersion within a

model plant canopy. Part I: the turbulence structure. Boundary-Layer Meteorol, 35,

21–52.

Raupach, M., J. Finnigan, and Y. Brunei, 1996: Coherent eddies and turbulence in veg-

etation canopies: The mixing layer analogy. Boundary-Layer Meteorol., 78, 351–382,

doi:10.1007/BF00120941.

Reynolds, O., 1895: On the dynamical theory of incompressibile viscous fluids and the

determination of the criterion. Phil Trans R Soc Lond A, 186, 123–164.

Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc R

Soc Lond A, 97, 354–373.

Rotach, M. W., 1993: Turbulence colse to a rough urban surface part II: Variances and

gradients. Boundary-Layer Meteorol, 66 (1).

Rotach, M. W., M. Andretta, P. Calanca, A. P. Weigel, and A. Weiss, 2008: Boundary

layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta

Geophys, 56 (1), doi:10.2478/s11600-007-0043-1.

Rotach, M. W., and P. Calanca, 2014: Microclimate, Vol. 1, 258–264. Gerald R. North

(editor-in-chief), John Pyle and Fuqing Zhang (editors), Academic Press.

Rotach, M. W., and Coauthors, 2004: Turbulence structure and exchange processes in

an Alpine valley: The Riviera project. Bull Am Meteorol Soc, 85, 1367–1385, doi:

10.1175/BAMS-85-9-1367.

Roth, M., 2000: Review of atmospheric turbulence over cities. Q J R Meteorol Soc, 126,

941–990.

Roth, M., J. A. Salmond, and A. N. V. Satyanarayana, 2006: Methodological consid-

erations regarding the measurement of turbulent fluxes in the urban roughness sub-

layer: The role of scintillometery. Boundary-Layer Meteorol, 121 (2), 351–375, doi:

10.1007/s10546-006-9074-4.



BIBLIOGRAPHY 139

Sakai, R. K., D. Fitzjerrald, and K. Moore, 2001: Importance of low-frequency contribu-

tions to the eddy fluxes observed over rough surfaces. J Appl Meteorol, 40, 2178–2192.

Salmond, J., 2005: Wavelet analysis of intermittent turbulence in a very stable nocturnal

boundary layer: implications for the vertical mixing of ozone. Boundary-Layer Meteorol,

114, 463–488, doi:10.1007/s10546-004-2422-3.

Sanz Rodrigo, J., and S. P. Anderson, 2013: Investigation of the stable atmospheric

boundary layer at Halley Antarctica. Boundary-Layer Meteorol, 148, 517–539, doi:

10.1007/s10546-013-9831-0.

Shaw, R., Y. Brunet, J. Finnigan, and M. Raupach, 1995: A wind tunnel study of air flow

in waving wheat: Two-point velocity statistics. Boundary-Layer Meteorol, 76, 349–376.

Shaw, R., J. Finnigan, and E. Patton, 2006: Eddy structure near the plant canopy inter-

face. 17th Symposium on Boundary Layers and Turbulence, J2.1.

Shaw, R., R. Silversides, and G. Thurtell, 1974: Some observations of turbulence and

turbulent transport within and above plant canopies. Boundary-Layer Meteorol, 5, 429–

449.

Simpson, I., G. W. Thurtell, H. H. Neumann, G. Den Hartog, and G. C. Edwards, 1998:

The validity of similarity theory in the roughness sublayer above forests. Boundary-

Layer Meteorol, 87, 69–99.

Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux-gradient relationship in

the stable boundary layer. Boundary-Layer Meteorol, 135 (3), 385–405, doi:10.1007/

s10546-010-9482-3.

Sozzi, R., and M. Favaron, 1997: Sonic anemometry and thermometry: Theoretical basis

and data-processing software. Environ Software, 11, 259–270.

Sreenivasan, K., A. Chambers, and R. Antonia, 1978: Accuracy of moments of velocity

and scalar fluctuations in the atmospheric surface layer. Boundary-Layer Meteorol, 14,

341–359.

Stiperski, I., and M. W. Rotach, 2016: On the measurement of turbulence over com-

plex mountainous topography. Boundary-Layer Meteorol, 159, 97121, doi:10.1007/

s10546-015-0103-z.
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Special thanks go to Željko Večenaj and Ivana Stiperski who supported me each in his
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ical conditions on indoor wintertime short-term PM1 levels. Geofizika, 32(2), 237–264.

145



146 Curriculum vitae
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