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FIZIČKI ODSJEK

Tena Dubček
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gas, pointlike interactions, evolution, synthetic Lorentz force, radiation pressure

Many intriguing phenomena in modern physics are rooted in the coupling of electric

charge to magnetic fields. However, it mostly includes quantum many-body systems, which

makes these systems hard to address both experimentally—because of the rather extreme

conditions they usually require, and theoretically—because of the exponential dependence

of the required classical computer memory on the number of quantum system constituents.

The solution is found by following Feynman’s idea of the so-called quantum simulators.

Namely, as new methods for synthetic magnetism are developed, controllable systems

of neutral atoms and photons are governed to realize and simulate various fascinating

phenomena, which are typically emergent only in elusive states of matter.

The contribution of the work presented in this thesis is twofold. The first part focuses on

the role of synthetic magnetism in the research of topological phases [1, 2]. The latter are

nowadays causing a lot of excitement, due to their fascinating emergent behavior, which

opens the way for diverse technological applications. By taking advantage of tunable

synthetic magnetic fields, we point out how topological phases that otherwise rely on

complicated space groups and are thus hardly obtainable, can be realized in simple lattice

geometries. Namely, we show that Weyl points, and all of the related phenomena, can

be experimentally addressed in an experimentally viable ultracold atomic lattice with

laser assisted tunneling [1]. We also consider the realization and detection of a state with

fractional statistic in an ultracold atomic gas. We demonstrate how standard methods
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Summary

and understanding have to be taken with caution when studying topological matter

via quantum simulation and synthetic magnetism. Specifically, we point out that the

momentum distribution, one of the key signatures of quantum states of matter, is not

a proper observable for a system of anyons [2]. As a substitute, we propose to use the

asymptotic single-particle density after expansion of anyons in free space from the state.

The second part of the thesis discusses our proposals of new methods for introduc-

ing synthetic magnetism in atomic and photonic systems [3–7]. We show that drawing

analogies between different physical systems can yield new ideas in synthetic magnetism,

which enables addressing intriguing topological phases and beyond. Namely, we propose a

grating assisted tunneling scheme that introduces tunable synthetic magnetic fields in an

photonic lattice [3], inspired by the laser assisted tunneling method for optical lattices. We

also introduce an approach for the mapping of light propagation in dielectric structures

and ultracold atomic dynamics to intriguing discrete models. By taking advantage of it,

we also confirm the applicability of laser assisted tunneling for a Tonks-Girardeau gas in

a 1D optical lattice [4]. Finally, we extend the concept of simulation to complex classical,

rather than quantum, systems in the presence of magnetism. We propose a method for

creating a synthetic Lorentz force in a classical ultracold atomic gas [5], which was recently

experimentally realized through a collaboration with an experimental group [6, 7].
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Chapter 1

Introduction

“And I’m not happy with all the analyses that go with just the classical theory,

because nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy. Thank you.”

Richard Feynman [8]

The collective behavior of a huge number of quantum particles can yield some of the most

complex and unexpected phenomena in the world around us, such as superconductivity,

superfluidity or Bose-Einstein condensation. Understanding and predicting the behavior

of any strongly interacting many-body system is demanding: even when all single-particle

governing laws are known, the big number of variables required for describing the whole

system makes deducting its properties a formidable mathematical challenge. Luckily, in

many of the cases, today’s access to powerful computational resources allows physicists to

extract relevant information without having to solve the equations analytically. Results

obtained by numerically simulating many-body systems on computers greatly contribute to

everyday’s scientific advances. For a system of quantum particles, however, the number of

degrees of freedom depends exponentially on the number of its constituents. The computer
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Chapter 1. Introduction

memory required to describe and solve such an ensemble thus grows in the same manner,

which is why the numerical approach is limited to a reduced number of particles.

1.0.1 Quantum simulators and synthetic magnetism

Quantum simulators

In 1982, Richard Feynman introduced the idea of using controllable physical systems to

simulate desired quantum phenomena [8]. Based on the universality of quantum mechanics,

he proposed the concept of quantum simulators as a solution for the problem classical

computers face when dealing with quantum many-body systems. Feynman proposed to

use a highly controllable quantum system that is carefully tailored in such a way to fully

mimic (simulate) a target quantum many-body system, and its phenomena that would

otherwise remain hidden and not understood.

Ultracold atomic gases and photonic systems with synthetic magnetism

The flexibility of ultracold atomic gases and photonic systems is remarkable [9–13].

Their effective dimensionality can range from one to three dimensions. Atoms in the dilute

gases [9, 10] can have bosonic or fermionic statistics. Depending on the energy landscape

created by magnetic fields and laser fields in their environment, they can be trapped in

harmonic, periodic or distorted potentials. Interactions between atoms can be changed

by using light scattering resonances. In photonic crystals [11], the photon behavior is

governed by the crystal band structure in the same way as electrons’ behavior in regular

materials. By tailoring the low-loss dielectric structures through which light propagates,

photons can mimic electron in various interesting states.

However, in any of the two systems, either ultracold atomic or photonic, there appear

to be a missing ingredient. Both atoms and photons are electrically neutral particles, and

as such cannot straightforwardly reproduce magnetic phenomena. On the other hand, a

wide range of intriguing phenomena in modern physics, such as the gauge invariance or

the quantum Hall and Aharonov-Bohm effects, find their roots precisely in the coupling

of electromagnetic fields and charged particles. Furthermore, magnetism in general has

historically shown to be an excellent guideline in the search of intriguing topologically

ordered phases [14]. There is thus great excitement about finding solutions and introducing

2



Chapter 1. Introduction

artificial (synthetic) magnetism for the atoms and photons. The main idea consists in

searching for environments in which the neutral atoms and photons are ruled by the

same laws as charged particles in magnetic fields. The strategies for obtaining synthetic

magnetic/gauge fields are closely related to the system at hand. It is diverse systems, and

diverse schemes, that are simultaneously enabling a successful research of new interesting

phases of matter. Every single new system or scheme, however, does it from a slightly

different and new perspective, thus accelerating the research process.

1.0.2 A charge in an electromagnetic �eld

A classical charge in an electromagnetic field

In classical electrodynamics, the behavior of a charge q of mass m in an electromagnetic

field is determined by the spatial and temporal dependence of the electric E(r, t) and

magnetic B(r, t) fields. These fields can be expressed through a scalar φ(r, t) and vector

A(r, t) potential,

E = −∇φ− Ȧ (1.0.1)

B = ∇×A, (1.0.2)

with Ȧ ≡ ∂tA. The choice of the potentials is not unique. Both the fields E and B are

unchanged if a scalar function χ(r, t) is used to simultaneously transform

A→ A +∇χ and (1.0.3)

φ→ φ− χ̇. (1.0.4)

The corresponding Lagrangian

L(r, ṙ) = 1
2mṙ2 − qφ+ qṙ ·A (1.0.5)

leads to an equation of motion that is only dependent on the fields, mr̈ = q(E + v×B).

From the Lagrangian 1.0.5, it also follows that the canonical momentum p differs from

3



Chapter 1. Introduction

the kinetic momentum Π=mṙ,

p = ∇ṙL = Π + qA, (1.0.6)

resulting in the Hamiltonian

H(r,p) = pṙ− L = 1
2m(p− qA)2 + qφ. (1.0.7)

A quantum charge in an electromagnetic field

For a quantum charged particle (q,m), the position r and canonical momentum p are

associated with the operators r̂ and p̂. At the same time, the quantization rule

[r̂j, p̂k] = i~δjk (1.0.8)

has to hold for any j, k ∈ {x, y, z}, which is satisfied for the operator p̂ = −i~∇r. We point

out that, as a consequence of the fact that the kinetic momentum operator differs from

the latter in terms of the vector potential A(r, t), the Fourier analysis of wavefunctions

ψ(r, t) that is typically used for extracting information about the momentum distribution

(when A = 0) will not be applicable here. The wave function ψ(r, t) corresponding to

the Hamiltonian (Eq. 1.0.7) for a quantum particle is also gauge dependent. Specifically,

any gauge transformation of the potentials in Eq. 1.0.3 is accompanied by a gauge

transformation of the wave function

ψ(r, t)→ ψ′(r, t) = ei
q
~χ(r)ψ(r, t). (1.0.9)

Quantum electromagnetism and a geometric phase

Unlike the case for classical charges, where the potentials φ and A have no physical

meaning, in quantum mechanics one can directly measure their presence even for particles

that have never penetrated regions of non-zero field. Namely, the wave function of a

quantum charged particle (q,m) traveling along a path P in a zero magnetic field B =

4



Chapter 1. Introduction

∇×A = 0, but non-zero vector potential A acquires a phase shift

ϕ = q

~

∫
P

A · dr (1.0.10)

that can be observed through interference. This so-called Aharonov-Bohm phase [15] is

only dependent on the geometry of the path, not on the velocity of the particle, and

it thus represents an example of the so called geometric phases, which we additionally

address in Section 2.0.2. First considered in 1959 by Aharonov and Bohm in the context

of a charge moving in the presence of an infinite solenoid [15], this remarkable feature of

quantum mechanics is nowadays of central importance in the studies related to synthetic

magnetism.

Periodic quantum systems and electromagnetism: the Peierls substitution

The consideration of the effects of a gauge potential in free space can be expanded to

systems in which an additional spatially periodic potential is present. This question is

highly motivated by the studies of the effect of magnetism on crystal electrons, which in

condensed-matter physics is solved by the well known Peierls substitution [16]. Specifically,

in a two-dimensional deep periodic potential, the presence of a magnetic field, or vector

potential, can be taken in account by assigning a complex value to the lattice tunneling

matrix elements

−J |j + 1, k〉〈j, k| → −Keiϕj,k→j+1,k |j + 1, k〉〈j, k|. (1.0.11)

The Peierls substitution states that the phase ϕj,k→j+1,k is calculated from the vector

potential

ϕ (rj,k → rj+1,k) = q

~

∫ rj+1,k

rj,k
A(r) · dr. (1.0.12)

Clearly, as in the continuous case, there is a gauge freedom for the spatially discretized

case, leading to infinite possible choices for the non-trivial phases ϕ. Nevertheless, the

phases accumulated by a charge that travels around a lattice cell is gauge invariant, and

corresponds to the magnetic field flux through the plaquette.

5



Chapter 1. Introduction

1.0.3 Synthetic magnetism for atoms: an overview

Historically, the first synthetic magnetic fields were implemented in rapidly rotating

Bose-Einstein condensates, in which Coriolis forces play the role of the Lorentz force [17, 18].

This scheme is suitable for rotationally invariant trapping potentials.

An appealing idea with no symmetry constraints is to place the atomic gas in a specially

tailored laser field that, due to the atomic interactions with light, acts as an artificial

magnetic field for neutral atoms [19]. The mechanism is based on the analogy between

the Aharonov-Bohm phase [15] accumulated when a charged quantum particle undergoes

a closed loop in a magnetic field, and the Berry phase [20] accumulated when an atom

adiabatically traverses a closed loop in the tailored laser field [19, 21]. During such an

evolution, an instantaneous eigenstate |n〉 of the atom |ψn(t)〉 will, in addition to the

standard dynamical phase, accumulate a geometric phase γn—the Berry phase

γn =
∮
C
dr · A(n)(r). (1.0.13)

Here A(n)(r) is a vector-valued function of the path coordinates r that plays the role of

synthetic magnetic vector potential and is given by

An(r) = i〈n, r| ∂
∂r
|n, r〉. (1.0.14)

We present a derivation, as well as the relation of geometric phases with holonomy and

topology, in Section2.0.2. The first implementation of synthetic magnetism by using laser-

atom interactions was with spatially dependent Raman optical coupling between internal

hyperfine atomic states in bulk BECs [22].

In optical lattices, methods of generating synthetic magnetic fields engineer the complex

tunneling matrix elements between lattice sites [23–25]. The nontrivial phases of the

complex tunneling parameters can thus be interpreted as Peierls phases [16] of the atoms

hopping around the lattice. Methods include shaking of the optical lattice [23], laser

assisted tunneling that realized staggered magnetic fields in optical superlattices [26] and

the Harper Hamiltonian in tilted lattices [24, 25], and an all-optical scheme which enables

flux rectification in optical superlattices [27].

6



Chapter 1. Introduction

1.0.4 Synthetic magnetism for photons: an overview

A number of experiments and proposals for the creation of synthetic gauge fields for

photons have also been demonstrated [28–30, 30–40]. Often, they are related to ideas

that have crossed into the optics arena from the matter-wave community, i.e. condensed

matter and atomic systems. Topological phenomena potentially resulting from synthetic

magnetism are, however, likely to be even more attractive: e.g due to the absence of

heating by spontaneous emission, or the possibility to realize unidirectional backscattering

immune states that are robust to imperfections [41–44].

The methods for generating synthetic magnetic fields are determined by the details

of the specific systems. In systems of coupled optical resonators, the strategy is to tune

the phase of the tunneling between coupled cavities [28–31]; e.g. by using link resonators

of different length [28, 31] or time-modulation of the coupling [30]. Topological features,

realized via synthetic gauge fields, were shown to arise in twisted [32, 33] or strained [34, 35]

photonic lattices. Photonic topological insulators were also proposed in superlattices of

metamaterials with strong magneto-electric coupling [36]. By modulating 1D photonic

lattices along the propagation axis, one can choose the sign of the hopping parameter

between neighboring sites [37]. Recently, artificial gauge fields for the photon fluids in

materials with optical nonlinearities were also considered [39].

1.0.5 Tunable synthetic magnetism via periodic driving and
modulation

We want to emphasize the role periodical driving and modulations can have in the

development of synthetic magnetism presented in 1.0.3 and 1.0.4, and for enriching the

physics of various systems, which is additionally confirmed by the work presented in this

thesis (Sections 2.1, 3.1 and 3.2). An important concept in the consideration of periodically

driven systems is the Floquet analysis [45–48]. It is based on the Floquet theorem for

linear systems of differential equations with periodic coefficients [45], whose most known

application in physics is in the Bloch theory of crystal bands. This approach has shown

to be of great interest in various physical systems, from condensed matter to the above

introduced photonic and cold-atomic systems [46].

In a periodically driven quantum system, the wave function |ψ(t)〉 obeys a time-

7



Chapter 1. Introduction

dependent Schrödinger equation

i~∂t|ψ(t)〉=Ĥ(t)|ψ(t)〉 (1.0.15)

with Ĥ(t+2π/ω) = Ĥ(t), where ω is the driving frequency. Floquet analysis shows

that the evolution results from the interplay of two ingredients: a linear phase evolution

combined with micro-motion. Namely, the time-evolution operator describing the evolution

|ψ(t)〉=Û(t, t0)|ψ(t0)〉 takes the form [48]

Û(t, t0) ≡ ÛF (t)e− i
~ (t−t0)ĤF Û †F (t0). (1.0.16)

The operator ÛF (t) describes the time-periodic component of the dynamics, the micro-

motion, and can be expressed as ÛF (t)=e−iK̂(t) in terms of a time-periodic kick operator

K̂(t). On the other hand, the linear phase evolution is described by a time-independent

effective Hamiltonian ĤF [47, 48]. The choice of the time-independent effective Hamilto-

nian, as well its corresponding time-periodic micromotion operator, is not unique, although

always yielding the same stationary Floquet states, i.e. eigenstates of the time-evolution op-

erator [48]. A special choice of the micromotion phase, obtainable by a time-independent

unitary transformation Û = Û †F (t0) of its operator ÛF (t) → ÛF (t)Û = ÛF (t)Û †F (t0) ≡

ÛF (t, t0), yields an effective Hamiltonian that directly generates the stroboscopic evolu-

tion (in steps of the driving period), ĤF → Û †ĤF Û = ÛF (t0)ĤF Û
†
F (t0) ≡ ĤF

t0 . Here Ĥ
F
t0 is

the so called Floquet Hamiltonian, whose corresponding micromotion operator ÛF (t, t0) be-

comes equal to identity once during each driving period. The corresponding time-evolution

operator is given by [48]

Û(t, t0) = ÛF (t, t0)e−
i
~ (t−t0)ĤF

t0 . (1.0.17)

There exists no straightforward procedure for deriving the effective Hamiltonian govern-

ing the linear phase evolution of a Floquet system. However, a systematic approximation is

given by a high-frequency expansion of the two components of the time-evolution operator

Û(t, t0):

ĤF ≈
µcut∑
µ=1

Ĥ
(µ)
F (1.0.18)

8



Chapter 1. Introduction

ÛF (t) ≈ exp
µcut∑
µ=1

Ĝ(µ)(t)
 ,

with
[
Ĝ(µ)(t)

]†
=− Ĝ(µ)(t) [48]. Up to the additional time-independent unitary transfor-

mation Û , it is known as the Floquet-Magnus expansion [46]. The expressions for different

terms Ĥ(µ)
F (t) and Ĝ(µ)(t) are obtained by expanding the spectrum in the powers of the

inverse frequency (1/ω), and incorporating the so-called Magnus expansion [49] into the

Floquet theory. According to Magnus’ theorem [49], if the convergence conditions hold,

an unknown function Y (t) satisfying Y ′(t)=A(t)Y (t) and Y (0)=I can be written in the

form Y (t)= exp(Ω(t)). Here Ω(t) is an infinite series of commutators, whose first terms

are given by Ω(t)=
∫ t
0 A(t′)dt′+1

2
∫ t
0 dt

′ ∫ t′
0 dt′′ [A(t′), A(t′′)] +... (see [50] for a pedagogical

review).

Intimately related to these considerations of Magnus from the very beginning is the

study of the so called Baker–Campbell–Hausdorff formula [50]. It gives C in terms of A, B

and their multiply nested commutators when expressing exp(A) exp(B) as exp(C), which

can be often of interest when considering quantum dynamics. Namely,

C(A,B) = log (exp(A) exp(B)) (1.0.19)

= A+B + 1
2[A,B] + 1

12 ([A, [A,B]] + [B, [B,A]]) + ....

The Floquet-Magnus expansion is guaranteed to converge if the period-averaged oper-

ator norm of the Hamiltonian is much smaller than the driving energy [46]. It happens

in systems where local Floquet Hamiltonians exist even at infinite times. In periodically

driven interacting many-body systems, the periodic driving often leads to a chaotic dy-

namics, asymptotically resulting in heating to infinite temperatures and the loss of an

effective Floquet Hamiltonian. Nevertheless, the high-frequency expansion might still

provide a suitable approximation, at least up to a certain time span beyond which the

system heats up [48]. In the limit where the driving frequency is much faster than all

other natural frequencies of the system, the system has hard time absorbing energy from

the drive, leading to virtual processes dressing the low-energy Hamiltonian, and one can

define the Floquet Hamiltonian at least perturbatively.

In systems for which the governing Hamiltonian diverges in the limit ω →∞, a high-

9



Chapter 1. Introduction

frequency expansion cannot be straight forwardly applied [47]. For example, this situation

occurs in optical lattices that use a resonant restoration of the tunneling or are subjected

to a strong time-modulated driving. It is solved by first applying a time-periodic unitary

transformation R̂(t) of both the wave function |ψ(t)〉,

|ψ′〉 = R̂|ψ〉, (1.0.20)

and the Hamiltonian Ĥ(t),

Ĥ ′ = R̂†ĤR̂− i~R̂† ∂
∂t
R̂. (1.0.21)

Such a transformation, which is reflected in a global shift of the quasimomentum [48],

results in a periodically time-dependent Hamiltonian with no diverging terms. It allows

for a significant progress in systems where R̂(t) and Ĥ ′(t) can be computed explicitly [47],

often by taking advantage of the Baker–Campbell–Hausdorff formula (Eq. 1.0.19). From

there on, the standard methods based on the high-frequency expansion (Eq. 1.0.18) can

be applied.

In cases where the driving strength is weak compared to the driving frequency ω

and it changes at a rate much smaller than ω, any effects due to micro-motion can be

disregarded [48]. In such cases, the tight-binding Hamiltonian Ĥ ′(t) (Eq. 1.0.21) can be

approximated by its time-independent cycle average[48]

Ĥ ′ ≈ 1
T

∫ T

0
dtĤ ′(t) ≡ Ĥeff , (1.0.22)

which successfully describes the effective system behavior away from an oscillatory dynam-

ics at the driving frequency. The result of this rotating-wave approximation can be related

to Floquet theory. The time-independent cycle-averaged Hamiltonian Ĥeff constitutes an

approximation of the effective Hamiltonian ĤF ≈ Ĥeff , whereas the unitary operator R̂(t)

approximates the micro-motion operator ÛF (t) ≈ R̂(t) [48].

An ultracold atomic gas with tunable synthetic magnetism obtained by the laser assisted

tunneling method (1.0.3), which we return to several times throughout this thesis (Sections

2.1, 3.1 and 3.2), is an example of a physical system where Floquet analysis can lead to

important conclusions. In what follows, we address this problem in the case of a one-

10



Chapter 1. Introduction

dimensional optical lattice, which can later easily be generalized.

In an optical lattice, atoms are subjected to a spatially periodic potential obtained

through an interaction with laser fields tailored to form a standing wave. In the limit of

a deep enough periodic potential (period d), particles (atoms) in such a system can be

effectively described by the tight binding Hamiltonian

Ĥ0 =
∑
m

(−Jâ†m+1âm +H.c.), (1.0.23)

where J ∈ R denotes the effective tunneling matrix element. Here â†m (âm) are the

particle creation (annihilation) operators in the m-th minimum of the periodic potential,

which satisfy the corresponding commutation relations. In order to introduce synthetic

magnetism, i.e. nontrivial phases of the hopping elements, the tunneling between the

neighboring sites is first suppressed by introducing a linear potential ωm that makes the

energies non-resonant. The tunneling is then restored by using a pair of Raman lasers

of frequencies ω1 and ω2 and wave vectors q1 and q2, which result in a traveling wave

perturbation ∼ sin(ωt − qx). Here the Raman frequencies are chosen to be resonant,

ω ≡ ω1 − ω2, and q = (q1 − q2) · x̂. This perturbation can be seen as a time-periodic

driving, and the new system is described by the Hamiltonian

Ĥ =
∑
m

(
−Jâ†m+1âm +H.c.

)
+
∑
m

(
V0

2 sin(ωt−mφ+ φ/2) + ωm
)
â†mâm (1.0.24)

≡ Ĥ0 + Ĥdrive(t),

where V0 measures the strength of the Raman driving and

φ ≡ qd. (1.0.25)

The frequency of the periodic driving ω is much faster than all other energy scales in

the system. The high-frequency expansion of the Hamiltonian (1.0.24) can thus provide

a suitable approximation at all experimentally relevant time-scales. However, as the

Hamiltonian (1.0.24) diverges in the limit ω →∞ because of the linear term, one has first

to apply a time-periodic unitary transformation that removes the divergence (Eqs. 1.0.20

11
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and 1.0.21). Namely, taking

R(t) = ei
∫ t

dt′Ĥdrive(t′) = ei
∑

m(−V0
2ω cos(ωt−mφ+φ/2)+ωmt)â†mâm

≡ ei
∑

m
λm(t)â†mâm , (1.0.26)

and making use of the Baker–Campbell–Hausdorff formula (Eq. 1.0.19) for evaluating the

products of exponentials, yields a Hamiltonian with no diverging terms

Ĥ ′(t) = Ĥ0 + i
∑
k

[
λk(t)â†kâk, Ĥ0

]
+ i2

2!
∑
k′,k

[
λk′(t)â†k′ âk′ ,

[
λk(t)â†kâk, Ĥ0

]]
+ . . .

=
∑
m

(
−Jei(λm+1(t)−λm(t))â†mâm +H.c.

)
= −J

∑
u

∑
m

(
Ju
(
V0

ω
sin φ2

)
e−iu(ωt−mφ)+iωtâ†m+1âm +H.c.

)
, (1.0.27)

where Ju is the u-th Bessel function. The second line in Eq. 1.0.27 is a consequence of the

commutation relations for the creation and annihilation operators â†m and âm, which we

have checked holds for both noninteracting bosons and bosons with contact interactions

(Tonks-Girardeau gas in Section 3.2). The third line follows by making use of the Bessel

generating function e
x
2 (t− 1

t ) = ∑
u Ju(x)tu, and writing the exponential as an infinite series

of Bessel functions. In the high-frequency limit ω →∞, the stroboscopic evolution of the

Hamiltonian in the rotating frame (Eq. 1.0.27) can now be straight forwardly obtained by

using the rotating-wave approximation (Eq. 1.0.22), resulting in the effective Hamiltonian

Ĥeff = −JJ1

(
V0

ω
sin φ2

)∑
m

eiφmâ†m+1âm +H.c.

≡ −
∑
m

Keiφmâ†m+1âm +H.c. (1.0.28)

Besides effectively rescaling the amplitude of the tunneling from J to K ≡ JJ1
(
V0
ω

sin φ
2

)
,

the combination of a linear tilt and Raman driving (Eq. 1.0.24) has also introduced a

nontrivial phase for the tunneling matrix elements,

−J −→ −Keiφm. (1.0.29)

This is precisely what is needed for a synthetic magnetic field in the optical lattice, as

motivated by the Peierls substitution (Eq. 1.0.11). The nontrivial phase φ, i.e. the

12
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synthetic magnetic field, is determined by the angle between the two Raman lasers (Eq.

1.0.25), offering high tunability.

1.0.6 Outline

The contribution of the work presented in this thesis to the field of synthetic magnetism

for neutral atoms and photons is twofold. In the first part, we explore interesting possi-

bilities for the realization, research and discovery of new topological states of matter in

quantum gases with synthetic magnetic fields: namely, Weyl fermions and semimetals [1],

and systems with fractional statistics (anyons) [2]. Besides the self-evident fundamen-

tal motivation, these topological systems hold great potential for technological advances,

e.g. through quantum computation. In the second part, we propose new methods for

introducing synthetic magnetism, often inspired by analogies between different physical

systems: the grating assisted tunneling scheme for optical lattices [3], the laser assisted

tunneling in a Tonks-Girardeau gas [4], and a synthetic Lorentz force for a classical atomic

gas [5–7]. We thus open the way to other studies of light propagation or particle dynamics

in synthetic magnetic fields.
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Chapter 2

Topological matter via synthetic
magnetism

Part of the work in this chapter is published in the following papers

• T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan,

Phys. Rev. Lett. 114, 225301 (2015).

• T. Dubček, B. Klajn, R. Pezer, H. Buljan, and D. Jukić,

Physical Review A Rapid Communication, accepted for publication.

2.0.1 Topological order

Phase transitions and Landau symmetry breaking theory

Matter, as the substance that has mass and takes up space in the world around

us, has attracted human attention since antiquity. Throughout the history of natural

sciences people have contemplated about the exact nature of matter, and its classification.

It was Greek philosophers who introduced the idea of matter being built of discrete

building blocks. Many centuries later, the development of condensed matter theory led

to the classification by the different ways in which atoms are organized in materials,

resulting in their different properties. Although always formed by atoms, many different

orders and forms of materials could emerge, corresponding to the different symmetries

in the organizations of the constituent atoms. The theory, concentrated on the different

symmetries that are changed when materials change from one order to an other, could
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Chapter 2. Topological matter via synthetic magnetism

account for all classically encountered forms of matter, such as solids, liquids, etc. For

example, during a phase transition from liquid to crystal, the continuous translation

symmetry of the liquid reduces to the discrete translation symmetry of the crystal—the

higher symmetry is spontaneously broken. For a long time, it was believed that this

phenomenological Landau symmetry-breaking theory [51, 52], with local order parameters,

was indeed describing all possible orders in matter.

Towards topological order

A few decades ago, however, it started to appear that symmetry alone was not enough

to completely characterize a material. With the discovery of the Berezinskii-Kosterlitz-

Thouless transition [53, 54], and in the attempt to describe high temperature superconduc-

tivity [55] and the newly discovered quantum Hall states [56, 57] with robust quantized

Hall conductivity [58], it became clear that a new kind of order needed to be introduced

for distinguishing states that were different, but at the same time shared all the same

(spatial and non-spatial) symmetries. Such phases, and the transitions between them,

could not be defined by a local order parameter. Soon, with the advent of the so called

spin-orbit-induced topological insulators [59–65], new topological quantum states started

appearing.

Today, the study of topological aspects, and their interplay with symmetries, is widespread

in the investigation of various electronic, and (interacting) bosonic and fermionic systems.

Genuinely quantum mechanical, topological order is a type of order that characterizes

gaped quantum phases of matter with a robust ground state degeneracy [14, 66]. Here

gaped quantum phase denotes a class of ground states that can be continuously deformed

into one another by varying local Hamiltonian parameters, while maintaining a non-zero

gap for all excitations above the ground state [14, 66]. These states have wave functions

that are topologically nontrivial. They are characterized by topological invariants such

as the Chern or Z2 invariants [58, 59, 64, 66], which we define in Section 2.0.2. The topo-

logical nontriviality, i.e. the nontrivial topological properties of these states, not related

to any local order parameter, can only be detected through the observation of emergent

phenomena, e.g. protected surface states [66].
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Intrinsic topological order

Only a part of the so called topological states whose quantum-mechanical wave functions

are topologically non-trivial, possesses real intrinsic topological order [14, 66]. Phases

with intrinsic topological order emerge in strongly interacting many-body systems [66].

Up to now, they are encountered only in fractional quantum Hall systems [67–69] and

the so called quantum spin liquids [70, 71]. Microscopically, intrinsic topological order

is reflected in long-range quantum entanglement [14]. The many-body states cannot

be written as a product state. Macroscopically, it means the state is robust against

any local perturbations in the Hamiltonian [14]. Intrinsic topological order and long-

range quantum entanglement lead to striking emergent phenomena: fractional charge,

fractional statistics and an emergent gauge theory [14]. Besides the interesting physics on

the boundaries, intrinsic topological phases have fascinating low-energy bulk excitations.

Topologically ordered states are of great technological interest, especially in the area

of quantum computation and information technology [72–74], because the long-range

entanglement and fractional statistics significantly reduce decoherence, as wave function

phases are distributed over many particles.

Symmetry protected topological states

A somewhat more trivial kind of topological state, dependent on the specific symme-

tries that are present in the system, occurs in the so called symmetry protected topological

phases of matter [66, 75]. They include insulating, superconducting, superfluid and nodal

systems: topological insulators [64, 76], topological superconductors [77], Dirac and Weyl

semimetals [78, 79], etc. In symmetry protected topological phases, the nontrivial topolog-

ical properties are only protected against local deformations that do not break the global,

continuous or discrete, symmetries (time reversal, spatial, pairing, chiral, etc.), thus the

name symmetry protected. Despite having topologically non-trivial wave functions, the

quantum entanglement in these states is only short-ranged[75]. A short-range entangled

quantum state can be connected to a real space direct product state through smooth local

deformations. Because of this, ideas originating from systems with no intrinsic topological

order can be extended to single-particle quantum systems, e.g. an electron on a lattice

in magnetic field, described by the Hofstadter-Harper Hamiltonian [80], or even classical
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ones. Recent examples establishing a classical version of the underlying quantum descrip-

tion include photonic [81] and mechanical [82] systems inspired by electronic topological

insulators.

The integer quantum Hall effect, whose discovery initiated the introduction of topo-

logical studies in physics, is somewhere between the two types of topological phases, thus

characterized as invertible topologically ordered state [83]. Namely, integer quantum Hall

states are simultaneously long-range entangled, but with no emergent fractionalized quasi-

particles [66]. Nevertheless, all mentioned topological quantum phases, being intrinsic

or not, can host protected gapless surface states that are often the main reason for the

excitement around them [66].

2.0.2 Topology, holonomy and geometric phases

In mathematics, the field of topology is concerned with properties that are conserved

under continuous deformations of certain objects, called topological spaces [84]. It deals with

the basic aspects related to the construction of topological spaces and related fundamental

concepts. Topology mostly developed as a field of study out of geometry, and is still

closely related to the analysis of concepts such as space, dimension, and transformation.

The conserved properties are expressed through the so called topological invariants, which

are shared by all homeomorphic topological spaces, i.e. spaces that can be deformed

into each other without ”cutting and pasting” [84]. Examples of topological invariants

include compactness, connectedness, orientability, as well as algebraic invariants such as

the homology and homotopy groups [84]. Spaces with nonvanishing topological invariants

are said to be topologically nontrivial and lead to topological protection. The differences

between distinct topological phases cannot be detected by any local order parameter.

Topology and geometry: the Gauss-Bonnet theorem and topological invariants

An archetypal example of topological invariants is found in the so-called Euler character-

istic χ of surfaces S in three-dimensional Euclidian spaces [84]. For surfaces of polyhedra,

where it was classically defined, the Euler characteristic is given by

χ = V − E + F, (2.0.1)
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where V , E, and F are respectively the numbers of vertices (corners), edges and faces in

the given polyhedron. The Euler characteristic describes a topological space’s shape or

structure regardless of the way it is bent. For example, the surfaces of convex spherical

polyhedra (tetrahedron, cube, octahedron, etc.) have Euler characteristic χ = 2, while

surfaces of toroidal polyhedra all have Euler characteristic χ = 0. In Fig. 2.1(a,b), we

show a few examples, and relation 2.0.1 can be verified explicitly by counting the total

number of vertices, edges and faces in each of the polyhedra. A generalization of this

formula for arbitrary surfaces is obtained by finding a polygonization of the surface. A

sphere has thus the same Euler characteristic as spherical polyhedra, χsphere = 2. A torus,

on the other hand, is characterized by χtorus = 0. Another rather famous example is the

Möbius band, with no vertices, 2 egdes and 2 faces, resulting in the Euler characteristic

χMöbius = 0 (Fig. 2.1(c)).

In differential geometry, the topology of a surface, given by the Euler characteristic, is

related to its geometry by the so called Gauss-Bonnet theorem,

∫
S
Kda+

∫
∂S
kgds = 2πχ(S). (2.0.2)

Here K is the Gaussian (local) curvature, which is integrated over the whole surface S,

and kg is the geodesic curvature of the boundary.

For closed surfaces, the second term on the L.H.S. of Eq. 2.0.2 vanishes (kg = 0),

and the Euler characteristic χ is thus given by the integral of the local curvature K.

Interestingly, any continuous deformations (no cutting or pasting) of the surface will,

although altering the details of K, result in the same integral
∫
S Kda, and thus same χ. In

other words, the Euler characteristic χ is a topological invariant—a quantity not sensitive

to any local deformations of the surface. From this topological invariant, one can find the

genus, i.e. the number of handles, of a closed two-dimensional surface,

g = 1
2(2− χ). (2.0.3)

For example, a sphere has no holes, which is reflected in a vanishing gsphere = 0. A torus,

on the other hand, has one hole, gtorus = 1, and thus cannot be obtained from a sphere

by any continuous deformation (Fig. 2.1(e)). This nonzero genus, g 6= 0, is reflected in

the emergence of topological protection for closed loop living on the surface of the torus.
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Namely, it is impossible to deform tiny loops on the surface into loops that thread the

hole by any continuous transformations, and vice-versa. Loops on the surface of a torus

that are closed by threading the hole, as is shown in Fig. 2.1(e), are (topologically)

protected against any continuous deformation. This is in contrast with what happens on

spherical surfaces, where arbitrary closed loops can always be continuously deformed into

trivial (pointlike) ones. In mathematical words, the homotopy group of the torus has two

elements, of which one is nontrivial, whereas the homotopy group for a sphere contains

only the trivial element.

Topology and physics: towards topological protection of emergent phenomena

Many-body physical systems and phenomena can also be considered from a topolog-

ical aspect. Phenomena characterized as topological include Lifshitz [85] and Kostelitz-

Thouless phase transitions [53, 54], and the previously introduced topological quantum

phases. The characteristics for which they are labeled as topological are rather diverse.

Lifshitz transitions [85], for example, are continuous quantum phase transitions, not associ-

ated with symmetry breaking, but characterized by a change of the Fermi surface topology

and its connectedness. -Berezinskii-Kostelitz-Thouless transitions [53, 54], on the other

hand, are vortex unbinding transitions in which the standard Landau spontaneous sym-

metry breaking scenario with emergent Goldstone bosons is replaced by a mechanism that

involves the creation of topological defects. The latter are finite energy distortion of the

order parameter field, such as vortices and dislocations, that cannot be eliminated by any

continuous change of the order parameter—they are topologically protected [53, 54].

However, without a doubt the most diverse and richest topology related phenomena

occur in zero-temperature and gaped quantum states [66]. Different phases (various

topological insulators, superconductors or semimetals) correspond to ground states char-

acterized by different sets of topological invariants, and the transitions between them are

called topological quantum phase transitions [66]. Their topological nature is reflected in

the impossibility to describe them by local order parameters, and the rise of some sort

of topological protection. Analogously to the example with the topological protection of

closed loops threading the hole of a toroidal surface, topology can have a striking impact

on the physics of emergent behavior. Generally, emergent phenomena occur when, in

some regimes, the low-energy physics of complex many-body systems can be characterized
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a)

c)

b)

e)

d)

�

Figure 2.1: Topology and geometry.
(a) Spherical and (b) toroidal polyhedra, with Euler characteristics χ = 2 and χ =
0, respectively. (c) Geometrical objects with different Euler characteristics: χsphere =
2, χcap = 1 and χMöbius = 0. According to the Gauss-Bonnet theorem, each Euler
characteristic can be calculated either from polygonization of the surface, or by integrating
the corresponding curvatures (Eq. 2.0.2). (d) Parallel transport of vector on a sphere. The
vector direction in changed after its parallel transport along a closed loop. The resulting
deflection angle is determined by the geometric path of the parallel transport (geometric
phase). (e) Homotopy groups of objects with different topologies. Loops on the surface
of a torus that are closed by threading the hole are (topologically) protected against any
continuous deformation.
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in terms of collective excitations (quasiparticles) [14, 66]. This is a consequence of the

fact that the elementary particles are organized in a structure that breaks a continuous

symmetry, resulting in the emergence of gapless Goldstone bosons [66]. The introduction

of quasiparticles and their effective excitations offers a view with a more clear relation

to macroscopic phenomena, yet these quasiparticles are generally not as robust as the

fundamental counterparts. The scenario in topological quantum matter is rather differ-

ent. In topological phases of matter, the low-energy field theory is a topological field

theory—a field theory that is insensitive to the metric of space-time and is characterized

by correlation functions that are topological invariants [66]. Due to this topological pro-

tection, the low-energy quasiparticles of a topologically ordered state are endowed with a

robustness that is qualitatively similar to that usually enjoyed by fundamental particles.

Moreover, while the collective excitations in topologically trivial matter are always scalar

bosons, topologically ordered many-body systems allow for the emergence of excitations

with fractional quantum numbers and fractional or even non-Abelian statistics [14, 66].

Parallel transport: geometrical and topological holonomy

Considerations of closed loops on surfaces with various curvatures and topologies can

reveal even more if combined with the so called parallel transport of a tangent vector [84].

Namely, the vector is transported along the closed loop, always in the plane tangent to

the surface of the closed surface and not allowed to rotate with respect to the normal. The

way of transporting data such as vectors along a curve in a parallel and consistent manner

defines the so called connection [84]. Depending on the characteristics of the surface, after

completing the whole loop, it can happen that the vector points in a direction that differs

from its initial orientation. This phenomenon is called a holonomy of the connection [84].

Two qualitatively different scenarios can happen, referred to as geometrical holonomy and

topological holonomy.

For example, if a vector is transported parallel to the surface of a sphere around a

closed loop (Fig. 2.1(d)), it will be eventually rotated by an angle with respect to the

initial orientation that is equal to the solid angle subtended by the surface enclosed by the

loop. Such a holonomy depends on the geometry of the path and represents the measure

of the surface curvature, which is a geometrical property of the underlying space, and is

thus called geometrical holonomy [84]. On the other hand, one can consider the parallel
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transport of a tangent vector on a Mobius strip, whose curvature is zero everywhere. The

resulting holonomy angle, unlike in the parallel transport on a sphere, does not depend

on the details of the loop, but only on how many times the path circles the strip. Such

a holonomy is due to the nontrivial topological properties of the underlying space and is

called a topological holonomy [84]. Having a topological nature, a topological holonomy is

robust against any deformations of the path that do not modify the winding number.

Holonomy in physics: the Berry phase

Geometric and topological holonomies have been identified in various physical systems

as well. Historically, it started with a rather unsystematic approach that yielded several

examples in both classical and quantum systems. They include the so-called Hannay angles

for the rotation of a Foucault pendulum, the nontrivial phases of polarized beams passing

through crystals [86], the phases of charged particle wave functions in vector potentials [15]

and electron wave functions in molecular systems. Only relatively recently, following

Berry’s work [20], the concept of a phase factor has been recognized as a generic feature

of quantum mechanics. In any quantum system with slowly varying external parameters

that is subjected to a cyclic adiabatic evolution, the wave function accumulates a non-

trivial geometrical phase that is dependent on the details of the evolution path—the Berry

phase [20]. Interestingly, this phase factor for the wave function can be precisely understood

as a holonomy in the Hermitian line bundle over the parameter space. The connection

in such a bundle is naturally defined by the adiabatic theorem [87, 88]. Specifically, the

adiabatic limit of the evolution of a wave vector describing the quantum state, along a

specified path in parameter space, can be mapped to the parallel transport of a vector along

a path on a curved surface. The Berry phase is technically an Abelian geometric phase,

associated with adiabatic cyclic evolutions of non-degenerate pure quantum states. Later

on, all these restrictions were removed, e.g. the concept generalized to non-adiabatic [89]

and non-cyclic evolutions [90], possibly in mixed states [91] or degenerate ground states

yielding non-Abelian phases [92]. The original Berry’s case [20], however, already shows

the big impact considerations of holonomies and the remarkably beautiful mathematical

structure of the resulting phases in quantum mechanics.

Consider a quantum system described by a Hamiltonian H = H(R) that depends

on a set of parameters R = (R1, R2, ...) characterizing the environment [20, 66]. A
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cyclic adiabatic evolution implies that the systems is described by a time-dependent

set of parameters R(t), moving slowly along a certain closed path C in the parameter

space. According to the adiabatic theorem, if the system starts in an eigenstate of H(R0)

described by |ψn(0)〉=|n,R0〉, it will remain in the instantaneous eigenstate corresponding

to En(R(t)) [20]. By solving the time-dependent Schrödinger equation, it follows that the

instantaneous eigenstate |n,R(t)〉 will accumulate two phases during such an evolution,

|ψn(t)〉 = eiγn(t)e−
i
~

∫ t
0 dt
′En(R(t′))|n,R(t)〉. (2.0.4)

The second exponential represents the familiar dynamical phase. The additional phase

γn(t) is characterized by a phase angle γn(t)=
∫ t

0 dR·An(R). HereAn(R) is a vector-valued

function

An(R) = i〈n,R| ∂
∂R
|n,R〉, (2.0.5)

called the Berry connection [66]. Although the Berry connection An(R) is a gauge-

dependent quantity, its path integral over a closed path, i.e. the Berry phase angle γn,

is gauge invariant [66]. Cyclic adiabatic quantum evolution can thus be regarded as the

quantum version of geometrical holonomies, characterized by the Berry phase angle

γn =
∮
C
dR · An(R). (2.0.6)

The Berry connection can also be viewed as a synthetic electrodynamic vector potential,

whose circulation along a closed loop C represents the synthetic magnetic flux through a

surface bounded by C. Exploiting the analogy with electrodynamics, it is thus possible

to introduce a gauge-invariant tensor Ωn
µν(R)=∇µA

n
ν (R)−∇νA

n
µ(R), called the Berry

curvature tensor [66]. For a three-dimensional parameter space, this reduces to the more

intuitive situation Ωn=∇×An(R). Physically, the Berry curvature can be thought of as

the result of a residual interaction of the nth energy level with the other energy levels that

were projected out as a result of the adiabatic approximation [66].

Geometric phases for electronic structures

The concept of geometric phases can be naturally adapted to electronic structures and

Bloch bands in general [93, 94]. This can lead to a spectrum of interesting phenomena,
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such as orbital magnetism or the Hall effects. The Brillouin zone is taken as the parameter

space, with H(R)→ H(q). A slow cyclic variation of the wave vector q in the periodic

Brillouin zone, which may be cause by an external field that enters the Hamiltonian as

a time-dependent variation of q → q + ∆q(t) results in the wave function acquiring a

geometric phase [93]. Additionally, if q and t are treated as independent parameters,

R → (q, t), in cases where the eigenstates are explicitly time dependent, the geometric

vector potential becomes time dependent, An(q, t), and an additional geometric scalar

potential arises. Just as expected from a synthetic magnetic field in momentum space,

the simplest consequence of the existence of a nonvanishing Berry curvature is that it

modifies the semiclassical equations of motion of a Bloch wavepacket. The anomalous

velocity results from the changes in the electron distribution within the unit cell and the

Berry phase is connected to the electron spatial location.

In systems with broken time-reversal symmetry, such as the paradigmatic quantum

Hall effect, topological invariants are simply given by integrals of the Berry curvature over

the Brillouin zone, giving rise to the so called (integer) Chern numbers [58, 66],

C = 1
2π

∫
∂BZ

da ·Ωn(q). (2.0.7)

For time-reversal-invariant systems, Ω(−q) = −Ω(q) and all ordinary Chern numbers

vanish by definition. Time-reversal-invariant systems of fermions are thus characterized

by a new topological invariant, the Chern parity, i.e. the Z2 topological invariant ν [59,

64, 66, 95].

Mathematically, the Z2 topological invariant can be formulated in several ways [59, 64,

95], which tend not the be simple in the most general case. However, if the system has extra

symmetry, calculations can be simplified a lot [64]. For example, in 2D spin crystals which

conserve the perpendicular spin, time-reversal symmetry requires the relation between the

Chern integers of up n↑ and down n↓ spins, n↑+n↓ = 0, and the difference nσ = (n↑−n↓)/2

defines the quantized spin Hall conductance. The Z2 is then given by [64, 95]

ν = nσmod2. (2.0.8)

In systems with inversion symmetry, on the other hand, the Z2 invariant ν is determined
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from the Eq. [60, 64]

(−1)ν = ΠaΠmξm(Λa), (2.0.9)

where ξm(Λa) are the the parity eigenvalues of Bloch states, at special points Λa where q

and −q coincide in the Brillouin zone.

2.0.3 Topological matter and (synthetic) magnetism

Magnetism has often shown to have a crucial role in the discovery and understanding

of topological states of matter. The first recognized, and probably best known, example of

topological order is in the fractional quantum Hall effect [67–69]. The quantum Hall effect,

integer [56, 57] or fractional [67–69], shows up when 2D electrons at low temperatures

are subjected to a magnetic field. This leads to a nonzero voltage VHall transverse to the

direction of the current Ichannel. The corresponding Hall conductance

σ = Ichannel

VHall
= ν

e2

h
, (2.0.10)

where e is the elementary charge and h is Planck’s constant, is then extremely precisely

quantized in terms of the so-called filling factor ν—the ratio of (quasi)particles to mag-

netic flux quanta. The striking feature of the quantum Hall effect is the persistence of

the quantization as the electron density is varied. In the case of the integer quantum Hall

effect, the factor ν is an integer number[56, 57]. Alternatively, in the case of the fractional

quantum Hall effect, electrons can collectively bind magnetic flux lines into quasiparti-

cles [67–69]. Interestingly, the corresponding excitations have a fractional elementary

charge and fractional statistics—a topological order signature.

Later on, physicists tried to circumvent the necessity for the strong external magnetic

fields, leading to the so called anomalous quantum Hall effect [96, 97]. Although the gen-

eral mechanism is complicated with multiple contributions, the key ingredients responsible

for the anomalous Hall effect are again related to magnetism, magnetization and spin-orbit

coupling. The latter is a relativistic effect that can also be described through vector poten-

tials, in general with non-commuting components (that is, non-Abelian). More generally,

about a decade ago, spin-orbit coupling has also given rise to the appearance of a whole

new field of symmetry protected topological phases. It is no accident: symmetries play an

essential role in these systems and the existence of magnetic fields, as an archetypal exam-
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ple of time-reversal symmetry interactions, can be an important guideline. Topologically

ordered states yield emergent fractional statistics, charge and gauge theories [14, 66], which

have all been closely related to magnetic phenomena since their very beginning. Finally,

different topological phases are characterized by different Berry curvatures [14, 20, 66],

which can be viewed as synthetic magnetic fields.

In this context, the recent advances in experiments on synthetic magnetic/gauge field

for atoms and photons [19, 22, 40, 98] create an opportunity that should not be missed.

Although the interest in topological order is nowadays spread among various areas in

physics, and beyond, ultracold atomic gases and photonic systems are propelled as one of

the most promising platforms for investigating these novel states of matter. Because of

their high controllability, it is suddenly possible to carefully tailor the synthetic fields, and

the resulting Berry curvature, thus moving the system towards desired topological orders.

2.0.4 Chapter outline

Below, we consider the realization and detection of two topological states in an ultracold

atomic gas, as well as their striking properties and emergent phenomena: a system with

Weyl points [1], and a system with fractional (anyonic) statistics [2]. Both realizations of

Weyl and of anyonic systems have shown to be highly elusive, although of great interest

both fundamentally and technologically. A viable and possibly simple scheme for their

experimental realization in ultracold atomic gases, which exploits the advantages of atomic

systems to contribute to the topological physics research across disciplines, is thus of great

importance.

Weyl points are synthetic magnetic monopoles with a robust three-dimensional linear

dispersion, identical to the energy-momentum relation for the not yet discovered relativistic

Weyl fermions. In condensed matter, Weyl semimetals are a non-insulating symmetry

protected topological phase. Materials with Weyl points are highly promising candidates,

due to their striking properties such as the topologically protected “Fermi arc” surface

states. By extending the experimentally viable laser assisted tunneling method for synthetic

magnetic fields, we propose an accessible realization of Weyl points in a three-dimensional

optical lattice [1]. We show that synthetic magnetism can break the ground for systems

of high interest both in high energy and condensed matter physics.
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Furthermore, we consider two-dimensional systems with intrinsic topological order,

which give rise to emergent fractional (anyonic) statistics. Motivated by the search for

a new realization and detection of such a state in an ultracold atomic gas, we point out

at the striking characteristics of the particle correlations and the momentum distribution

when statistics is fractional [2]. Namely, as wave functions for a system of anyons in two

dimensions are not single-valued, the momentum distribution is not a proper observable.

We propose to take advantage of the high controllability in the atomic gas, and use the

information obtained by the free expansion of the initial state.
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2.1 Weyl points in 3D optical lattices

As it is often with physical concepts, the interest for Weyl points originates from

two directions in physics. Certainly, there are Weyl semimetals, the condensed matter

version that can be found in gapless symmetry protected topological states of matter. For

Weyl points to occur, the three-dimensional material has to possess translation symmetry-

the symmetry protecting its topological nature. The time reversal and/or the inversion

symmetry of the resulting lattice, however, need to be broken [99, 100], making the

search for such materials challenging. Besides the earlier discussed fascinating general

characteristics of topological materials, Weyl semimetals bring in some new unique aspects.

The dispersions of the topological surface states intersect along the Fermi arcs. Their bulk

low-energy electrons have a robust three-dimensional linear dispersion that is identical

to the energy-momentum relation of the elusive relativistic massless fermions, the so

called Weyl fermions, revealing the second reason for the interest in Weyl points. In

relativistic quantum field theory there are three types of fermions: Dirac, Majorana, and

Weyl fermions [101]. The latter two have never been observed in particle phyisics. It

was conjectured that neutrinos could be Weyl fermions before the discovery of neutrino

oscillations ruled out such a possibility. Weyl fermions are also related to the Adler-Bell-

Jackiw chiral anomaly [102, 103]. A realization of a quantum system with emergent Weyl

fermions thus opens the possibility to the study of a so called anomaly in a quantum field,

i.e. the breaking of a conservation law of classical physics by quantum-mechanical effects.

Finally, besides all the fundamental importance, we emphasize again the technological

value of such a viable and possibly simple experimental scheme.

In the past decade, ultracold atomic gases and photonic systems have shown to be one

of the most promising platforms for investigating topological states of matter [104, 105].

However, until recently, Weyl points were scarcely addressed in these fields. In photonics,

the first prediction of a system with Weyl points considered a double gyroid photonic

crystal with broken time-reversal and/or parity symmetry [100], which was soon followed

by an experimental realization [106]. Around the same time, a few theoretical lattice

models possessing Weyl points [107–109] and Weyl spin-orbit coupling [110] were studied

in the context of ultracold atomic gases, owever, with no experimental realization. In

this section, we propose the realization of the Weyl Hamiltonian for ultracold atoms by
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a straightforward modification of the experimental system that was recently employed

to obtain the Harper-Hofstadter Hamiltonian [24]. We show that, by using methods

for generating synthetic magnetic fields and phase engineered hoppings, creating Weyl

points is less demanding, possible away from the otherwise reduced number of space

groups and points of symmetry in the Brillouin zone of the lattice in condensed matter

systems [111, 112]. By including the third spatial dimension, the proposal anticipates the

experimental exploration of nontrivial topology via synthetic magnetism in optical lattices

with more than two dimensions.

2.1.1 Laser assisted tunneling in 2D:
The Harper-Hofstadter Hamiltonian

One of the recent mathods for generating synthetic magnetic fields in optical lattices is

the laser-assisted tunneling technique [24–26]. It is realized by coupling the lattice to two

Raman lasers which, because of its spatial variation, makes the wave function of an atom

tunneling from one lattice site to another acquire a nontrivial phase. The laser-assisted

tunneling scheme requires only far off-resonant lasers and a single atomic internal state,

and thus avoids heating by spontaneous emission. An early related proposal involved

coupling of different internal states [113]. The scheme used in this proposal is based on the

proposal introduced in Ref. [114], and later modified to enable generation of a homogeneous

field [24, 25]. With this scheme, we can engineer both the amplitude and phase of the

tunneling matrix elements in optical lattices. For example, if a cubicD-dimensional optical

lattice has tunneling matrix elements Jd (d = 1, . . . , D), laser assisted tunneling can in

principle change them to Kde
iΦd , where the phases depend on the position.

The presence or absence of symmetries play a crucial role in symmetry protected

topological materials, such as the Weyl semimetals. The two-dimensional (2D) lattice

realized in Ref. [24], which is our starting point, possesses both the time-reversal and

inversion symmetry. Tunneling along the x direction is laser assisted, with the phase

alternating between 0 and π, whereas hopping along y stays regular [see Fig. 2.2(a)]. The

centers of inversion symmetry are denoted by orange crosses in Fig. 2.2(a). The time-

reversal symmetry is a consequence of the fact that the accumulated phase per plaquette

π is equivalent to a phase of −π. This system is a realization of the Harper Hamiltonian

for α = 1/2, where α is the flux per plaquette in units of the flux quantum [24, 25]. The
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lattice has two sublattices (A-B) giving rise to pseudospin.

In quasimomentum representation, the Hamiltonian is

Hα=1/2(k) = −2{Jy cos(kya)σx +Kx sin(kxa)σy}, (2.1.1)

where σi denote Pauli matrices; it has two bands,

Eα=1/2 = ±2
√
K2
x sin2(kxa) + J2

y cos2(kya), (2.1.2)

touching at two 2D Dirac points at (kx, ky) = (0,±π/2a) in the Brillouin zone [115]. Here

(Kx, Jy) denote the tunneling amplitudes, and (kx, ky) the Bloch wave vector.

2.1.2 Laser assisted tunneling in 3D:
Line nodes and the Weyl Hamiltonian

Suppose that we construct a 3D lattice by stacking 2D lattices from Fig. 2.2(a), one

on top of each other, with regular hopping (Jz) along the third (z) direction. This 3D

lattice is described by the Hamiltonian

HLN(k) = −2{Jy cos(kya)σx +Kx sin(kxa)σy + Jz cos(kza)I}, (2.1.3)

where I is the unity matrix. The 2D Dirac points have become line nodes (LN) in the 3D

Brillouin zone at which the two bands touch:

ELN = −2Jz cos(kza)± 2
√
K2
x sin2(kxa) + J2

y cos2(kya). (2.1.4)

Note that both the inversion and the time-reversal symmetry are inherited from the

α = 1/2 Harper Hamiltonian. Furthermore, the system possesses the lattice translation

symmetry, which is the only symmetry required for the protection of the Weyl symmetry

protected topological state. In order to achieve Weyl points, we must break one of former

two when adding the third dimension.

To achieve this goal, we propose to construct a 3D cubic lattice with laser assisted

tunneling along both x and z directions as follows. First, tunneling along these directions

is suppressed by introducing a linear tilt of energy ∆ per lattice site, identical along x
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and z. It can be obtained by a linear gradient potential (e.g., gravity or magnetic field

gradient [24]) along the x̂+ẑ direction. The tunneling is restored by two far-detuned Raman

beams of frequency detuning δω = ω1 − ω2, and momentum difference δk = k1 − k2 [24].

For resonant tunneling, δω = ∆/~, and a sufficiently large tilt (Jx, Jz � ∆� Egap) [24],

time-averaging over the rapidly oscillating terms yields an effective 3D Hamiltonian

H3D = −
∑
m,n,l

(Kxe
−iΦm,n,la†m+1,n,lam,n,l + Jya

†
m,n+1,lam,n,l

+Kze
−iΦm,n,la†m,n,l+1am,n,l + h.c. ) .

(2.1.5)

Here, a†m,n,l (am,n,l) is the creation (annihilation) operator on the site (m,n, l), and Φm,n,l =

δk·Rm,n,l = mΦx+nΦy+lΦz are the nontrivial hopping phases, dependent on the positions

Rm,n,l. An inspection of Eq. (2.1.5) reveals that a wealth of energy dispersion relations

can be achieved by manipulating the directions of Raman lasers δk. Next, we choose the

directions of the Raman lasers such that (Φx,Φy,Φz) = π(1, 1, 2), i.e. Φm,n,l = (m+ n)π

(modulo 2π). This is schematically illustrated in Fig. 2.2(b). It should be noted that

a seemingly equivalent choice (Φx,Φy,Φz) = π(1, 1, 0), will not be operational, because

a nonvanishing momentum transfer in the tilt direction is necessary for the resonant

tunneling to be restored [24, 25, 115].

A sketch of the 3D lattice obtained with such a choice of phases is illustrated in Fig.

2.2. It can be thought of as an alternating stack of two types of 2D lattices, parallel to the

xz plane, which are illustrated in Fig. 2.2(c,d); hopping between these planes is regular

(along y). The 3D lattice has two sublattices (A-B). Another view is stacking of 2D

lattices described by the Harper Hamiltonian Hα=1/2 [Fig. 2.2(a)], such that the hopping

along z has phases 0 or π, for m+ n even or odd, respectively. This breaks the inversion

symmetry, and under application of Bloch’s theorem,

H(k) = −2{Jy cos(kya)σx +Kx sin(kxa)σy −Kz cos(kza)σz}. (2.1.6)

Mathematically, the chosen phase engineering along z has replaced the identity matrix in

HLN with the Pauli matrix σz.
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Figure 2.2: Sketch of the 3D cubic lattice with phase engineered hopping along x and z
directions, which possesses Weyl points in momentum space. Dashed (solid) lines depict
hopping with acquired phase π (0), respectively. (a) The xy planes of the lattice are
equivalent to the lattice of the Harper Hamiltonian for α = 1/2. Centers of inversion
symmetry for this 2D lattice are denoted by orange crosses. Green triangles along the axes
denote the tilted directions. (b) A pair of Raman lasers enabling laser assisted tunneling is
sketched with arrows. The 3D lattice can be visualized as alternating stacks of 2D lattices
parallel to the xz plane, which are shown in (c) and (d); the hopping between these planes
(along y) is regular. The hopping along z is alternating with phase 0 or π, depending on
the position in the xy plane [see (b), (c), and (d)], which breaks the inversion symmetry.
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2.1.3 Topological synthetic magnetic monopoles

The energy spectrum of the Hamiltonian has two bands,

E(k) = ±2
√
K2
x sin2(kxa) + J2

y cos2(kya) +K2
z cos2(kza), (2.1.7)

which touch at four Weyl points within the first Brillouin zone at

(kx, ky, kz) = (0,±π/2a,±π/2a). (2.1.8)

Fig. 2.3 depicts the energy spectra in the first Brillouin zone, the Weyl points, and their

chiralities. The dispersions around the Weyl points are locally linear and described by

the anisotropic Weyl Hamiltonian HW (q) = ∑
i,j qiνijσj [116], where q = k − kW is the

displacement vector from the Weyl point (located at kW ) in momentum space. Here [vij]

is a 3 × 3 matrix, with elements vxy = −2Kxa, vyx = ±2Jya, vzz = ±2Kza, and zero

otherwise. The topological nature of the system is reflected in the possibility to assign

(positive and negative) chirality, defined as κ = sign(det[vij]), to the Weyl points [100].

Weyl points are monopoles of the synthetic magnetic field in momentum space. In

order to verify this property of our energy nodes, we have calculated the gauge field, i.e.

Berry connection

A(k) = i〈u(k)|∇k|u(k)〉, (2.1.9)

and the synthetic magnetic field, i.e. Berry curvature

Ω = ∇k ×A(k). (2.1.10)

The obtained Berry curvature is depicted in the insets of Fig. 2.3, clearly demonstrating

that what we have proposed is a construction of topological synthetic magnetic monopoles

in momentum space of a 3D optical lattice.

These monopoles are robust to any perturbation that adds a σi term (i = x, y, z) in

the Hamiltonian. The only way for Weyl points to disappear is when two of them with

opposite chirality annihilate. This topologically protected nature of Weyl points can be

probed in the proposed setup by adding a tunable A-B sublattice energy offset in the same

fashion as in Ref. [117], such that the on-site energy at sites with m+ n odd (even) is ε
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(−ε). This adds an εσz term to the Hamiltonian in Eq. 2.1.6, and shifts the Weyl points

parallel to the z-axis by tuning ε, as illustrated in Fig. 2.3(a). By making this term large

enough (ε = ±2Kz), one can drive the annihilation of the Weyl points pairwise either at

(kx = 0, ky = ±π/2a, 0) for ε = −2Kz, or at the edge of the Brillouin zone for ε = 2Kz,

and open up a gap in the system.

2.1.4 Topological surface states and Fermi arcs

Weyl semimetals imply the existence of intriguing topological surface states that come

in the form of ’Fermi arcs’ in momentum space [99]. Topological effects such as Berry

curvature have been experimentally observed in ultracold atomic systems [27, 117]. How-

ever, surface states are difficult to detect with light scattering methods because one has to

distinguish them from the bulk signal (e.g., see [118] and references therein). Nevertheless,

it is illustrative to show Fermi arcs and surface states in our model. In Fig. 2.4(a) we

take a slab of our lattice cut orthogonally to the x̂ − ŷ direction (infinite along the ẑ

and x̂+ ŷ directions), and in Fig. 2.4(b) we plot the energy spectrum of this slab E(k),

where k = k||(x̂+ ŷ)/
√

2 + kz ẑ. The Weyl points are now connected with ’Fermi arcs’ in

momentum space (shown with dashed lines). The states on the arcs are surface states [99],

as can be seen from the inset in Fig. 2.4(b) (only states from one of the surfaces are

shown). Surface states closer to the Weyl points spread more into the bulk than those in

the center of the arcs. The Fermi arcs belong to two energy dispersion sheets of surface

states, each one corresponding to one of the slab surfaces. The two sheets are located

adjacent to the energy dispersion of bulk states [99]; one sheet is on the bottom (the other

is on the top) of the upper (lower, respectively) band. These two sheets intersect at Fermi

arcs.

2.1.5 Experimental detection of Weyl points

We now propose schemes for the experimental detection of Weyl points that are applica-

ble for both ultracold bosons and fermions. In order to verify that we have points at which

the two bands touch in the 3D Brillouin zone, one can accelerate the initially prepared

ultracold atomic cloud from the ground state position in momentum space towards the

Weyl point using a constant force, and observe the crossover to the second band which

can be revealed by time-of-flight measurements. By pushing the cloud in directions which
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Figure 2.3: Sketch of the first Brillouin zone of the lattice depicted in Fig. 2.2, energy
spectrum and Weyl points. (a) The positions of the Weyl points in the Brillouin zone and
their chiralities are indicated with + and − signs. If a tunable A-B sublattice energy offset
is introduced, Weyl points move along dotted lines, and can annihilate at points denoted
with stars (see text). (b) Energy spectrum in the kx = 0 plane [shaded plane in (a)],
shows linear dispersion in the proximity of the Weyl points. The insets show the Berry
curvature of two Weyl points, demonstrating that they are synthetic magnetic monopoles
in momentum space.
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Figure 2.4: Surface states and Weyl points. (a) A slab of finite-width is cut from the
3D lattice along planes orthogonal to the x̂ − ŷ direction; cross section in the xy plane
is sketched. The two sides of the slab are indicated with letters L and R. (b) Energy
spectrum of the slab. The two dispersion sheets of surface states (corresponding to the
two surfaces of the slab) are denoted with R (blue) and L (orange). The intersections of
the two sheets are Fermi arcs (denoted with dashed lines). The arcs connect Weyl points
of opposite chiralities. The insets show examples of the profile of the Fermi arc surface
states across the slab, as indicated by the green dashed box in (a).
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would ’miss’ the Weyl point, Bloch oscillations would be observed within the lowest band.

Such a scheme was recently used to detect Dirac points in a honeycomb optical lattice [119],

and also to probe the topological phase transition in the Haldane model [117]. Two points

are worth emphasizing here. First, Weyl points are robust and would not be destroyed by

an additional small force [99, 105]. Second, the trajectory of the gas being pushed would

not be deflected in our lattice, because we have a time-reversal symmetric Hamiltonian.

The second scheme to observe the Weyl points is Bragg spectroscopy [120]. By using an

additional pair of Raman lasers, i.e., a two-photon Raman transition, one can couple states

of the Hamiltonian (Eq. 2.1.6) with a given energy and momentum difference, and induce

excitations from the lower band to the upper band to probe the band-structure [120]. This

scheme would reveal the existence of Weyl points with very high resolution as it would

not change the internal atomic state, and therefore not be sensitive to Zeeman shifts.

The proposed methods are applicable for both bosons and fermions. Here we discussed

atoms in a single spin state, however, a mixture of spin states provides another degree of

freedom to explore new phenomena, e.g., see [121]. By using single spin fermions, the

Weyl semimetal phase could be achieved by adjusting the particle density, i.e., the Fermi

level to the energy of the Weyl points.

The realization of Weyl points with ultracold atoms would open a new frontier of

research in Weyl physics, with potential to exploit unique atomic physics methods of state

preparation and diagnostics. As an example, consider a BEC which is initially formed in

the ground state of the band structure (e.g., see [122]), and then, by applying a potential

tilt for a finite duration, placed (in quasi-momentum space) at a Weyl point. This state is a

superposition of eigenstates from the vicinity of the Weyl point, and would start expanding

in our 3D lattice. If we assume isotropic dispersion around Weyl points (Kx ≈ Jy ≈ Kz),

the magnitude of the group velocity ~−1|∇kE(k)| is uniform. In this case, the BEC has

unique expansion in a form of a spherical shell with radius ∼ ~−1|∇kE(k)|t (the shell

would have structure depending on the initial excitation).

∼

We pointed out that Weyl points, and all the related exciting phenomena, can be
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experimentally addressed in the setup that was recently employed to obtain the Harper

Hamiltonian [24, 25]. Both Weyl fermions in quantum field theory and Weyl semimetals

as a symmetry protected topological state have shown to be elusive, mostly because of the

strict requirements on the space groups and symmetries they impose. By phase engineered

hopping methods such as laser assisted tunneling, which are developed for atomic systems,

these requirements are circumvented. By including such a tunable synthetic magnetism

in the design of quantum systems, this concept can open a new frontier in the research of

complex and puzzling topological matter. Moreover, as in topological phases interactions

can have a significant impact, our result on the applicability of laser assisted tunneling

in the presence of strong interactions [4], presented in the next section, additionally

strengthens this possibility.
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2.2 Fractional statistics in an expanding atomic gas

Quantum states with intrinsic topological order are characterized by long-range entan-

glement [66]. Unlike symmetry protected topological states that require the presence of

symmetry constraints (e.g. the Weyl semimetals encountered in Section 2.1), phases with

intrinsic topological order do not rely on any symmetry protection. Indeed, the presence of

long-range entanglement in these systems leads to the emergent quantum order. Namely,

the bulk of systems with intrinsic topological order hosts fascinating behavior in the form

of exotic quantum quasiparticles [66].

In two-dimensional systems, the emergent particles, called anyons, have fractional statis-

tics. Anyonic statistics interpolates between bosons and fermions [123, 124]. The paradig-

matic realization of anyons is found in the fractional quantum Hall effect (FQHE) [67, 96],

where localized quasiparticle excitations have a fractional elementary charge [96] and

statistics [125, 126]. Quantum spin-liquids, realizing the Kitaev model [70], are the other

known system that realizes anyonic quasiparticles [71]. While the fundamental motivation

for exploring anyons is self-evident, the so-called non-Abelian anyonic excitations hold

potential for technological advances, as they could be used for robust topological quantum

computation [72] (for review see Ref. [73]).

Some of the intriguing quantum mechanical implications of fractional statistics were

pointed out decades ago [123, 124], giving a simpler intuitive picture of anyons as compos-

ite particles [123], and anyons arising from merely statistical considerations [124]. A lot

more, however, still needs to be understood and discovered. Experiments with ultracold

atomic gases seem to be a perfect playground for exploring anyonic physics, because of

the quality in preparation, manipulation, and detection of numerous intriguing quantum

states [9]. Again, synthetic magnetic fields in these systems [98] enable physicists to tinker

with topology and, because of the possibility to explore 2D systems [127], statistics as

well. In an early paper, Paredes et al., inspired by the FQHE, proposed the realization of

a 1/2-Laughlin state in a bulk rotating gas [128]. Different schemes were later proposed

with atoms in optical lattices [129–131]. Ultracold atoms with two hyperfine levels in non-

Abelian potentials could yield ground states with non-Abelian anyonic excitations [132],

while bosons in Floquet-driven optical lattices may effectively exhibit fermionic statis-

tics [133]. The one-dimensional (1D) version of anyons [134–142] has also aroused interest,
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especially in 1D optical lattices [139–142]. Such particles were proposed to emerge from

occupation dependent hopping amplitudes, which could be realized with laser-assisted

tunneling [139, 141], or Floquet modulations [142]. Other proposals include lattices of

polar molecules [143], photonics lattices [144] and circuit-QED systems [145].

An undoubtedly important ingredient that needs to be investigated in this context is

the detection of the anyonic quantum state. Detection schemes that have been addressed

rely on braiding [128, 130, 146, 147], the pair-correlation function [131], and precision spec-

troscopy [148]. Free expansion, or time-of-flight method, is among the most used detection

techniques from the atomic physics toolbox [9], which could be of interest for systems where

bosons are converted into anyons by manipulating with their interaction (as in [139]), or by

introducing them as impurities in a background of topological states (e.g., [130, 131, 149]).

Up to now, however, expansion studies exist only for 1D systems [137].

We study the expansion of Abelian anyons in 2D. Typically, in systems of ultracold

bosons or fermions, free expansion provides the momentum distribution of the initial

quantum state [9]. Namely, the confining potential is turned off abruptly and, in cases

where interactions can be neglected, a given state expands according to its momentum

distribution, which is defined as the diagonal of the reduced single-particle density ma-

trix (RSPDM) represented in a basis of kinetic momentum eigenstates. The momentum

distribution is a valuable characteristic of any quantum state and was, for example, of

paramount importance as a signature of Bose-Einstein condensation [150], and the onset of

Fermi degeneracy in a trapped atomic gas [151]. We point out that, however, in a system

of anyons, the momentum distribution is not a proper observable. We think of anyons as

Wilczek’s composite particles [123], consisting of a charge and an infinitely thin magnetic

flux. As the magnetic field is non-vanishing at the position of the composite particle in

any gauge, it follows that orthogonal component of the kinetic momentum operator do not

commute on all space and cannot be diagonalized in the same basis. Nevertheless, this can

be remedied by turning definitions around. We define the quasimomentum distribution

for anyons as the asymptotic limit of the single-particle density of an anyonic gas freely

expanding from an initially localized state, which reduces to the standard definition in the

case of bosons or fermions. As an example, we calculate an exact time-dependent wave

function, which for t<0 describes an eigenstate of N anyons in a harmonic trap, and for

t>0 describes expansion of anyons after the trap is suddenly turned off at t=0. We find
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the solution by employing a scaling transformation [152, 153], and the quasimomentum

distribution via Monte-Carlo integration. For N=2 particles, we find that the asymptotic

single-particle density corresponds to the projection coefficients of the initial state onto

two-anyon eigenstates in free space, which underpins our conjecture. In addition, we

point out that anyonic statistics can be extracted from the pair-correlation function: the

two-particle correlations at short interparticle distances scale as a power-law with the

statistical parameter α in the exponent.

2.2.1 A multi-valued wavefunction and momentum distribution

An anyonic wavefunction ψ describing expansion from an eigenstate in a harmonic trap

obeys the Schrödinger’s equation i ∂
∂t
ψ=Hψ, with the Hamiltonian

H =
N∑
i=1

[
−1

2∇
2
i + 1

2ω(t)2r2
i

]
. (2.2.1)

Here, ω(t<0)=1 and ω(t≥0)=0. The symmetry of the wavefunction is anyonic, i.e.

ψ(. . . , ri, . . . , rj, . . . , t)=eimπαψ(. . . , rj, . . . , ri, . . . , t), (2.2.2)

where ri=xix̂+yiŷ are the particle positions, and m∈Z depends on how they are braided

during the exchange. The anyonic wave function is a multi-valued function of the positions

{ri} (e.g., see [126] for a discussion). For N bosons and fermions, the RSPDM,

ρ(r, r′, t)=N
∫
ψ∗(r, r2, ..., rN , t)ψ(r′, r2, ..., rN , t)dr2...drN , (2.2.3)

furnishes one-body observables such as the momentum distribution, which is given by its

Fourier transform:

n(k,t)=(2π)−2
∫
ρ(r, r′, t)eik·(r−r′)drdr′. (2.2.4)

For anyons, the single-particle density, i.e., the diagonal ρ(r, r, t) of the RSPDM is uniquely

defined, as it is not phase-dependent; therefore, ρD(r, t)≡ρ(r, r, t) is a legitimate observable.

However, the off-diagonal elements of the anyonic RSPDM depend on the wave function

phase and are not single-valued. Consequently, n(k, t) is not single-valued and therefore it

cannot be used as a definition of momentum distribution for anyons. We note in passing
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that for 1D anyons this problem does not exist as the wavefunction and consequently the

RSPDM are single valued [135–139].

2.2.2 Wilczek's composite particles

A more physical insight in the question of anyonic momentum distribution is obtained

if we think of anyons as Wilczek’s composite particles (CP) consisting of a point charge q

and an infinitely thin magnetic flux tube with magnetic flux Φ, so that α=−qΦ/2π [123].

The Hamiltonian describing such composite particles includes pairwise vector potential

interactions:

HCP =
N∑
i=1

−1
2

∇i + iα
∑
j 6=i

ẑ× rij
r2
ij

2

+ 1
2ω

2(t)r2
i

 , (2.2.5)

where rij=ri−rj. The corresponding wavefunction ψCP (r1, . . . , rN , t) is bosonic or fermionic

(here we assume bosonic symmetry for ψCP ). The vector potential interactions can be

gauged out from the Hamiltonian HCP to obtain H [123, 154], that is, the wavefunction

ψCP is related to the anyonic wavefunction ψ by a gauge transformation

ψ (r1, ..., rN , t) =
N∏
i<j

eiαφijψCP (r1, ..., rN , t) , (2.2.6)

where φij is the relative angle between two particles in the xy-plane. The RSPDM

ρCP (r, r′, t) of the wavefunction ψCP is uniquely defined, and it can be used to obtain one-

body observables, by properly accounting the gauge. For example, the Fourier transform

of ρCP (r, r′, t) yields the canonical rather than the kinetic momentum distribution because

of the presence of vector potential interactions. In order to obtain the kinetic momentum

distribution, one should first find a basis of eigenstates of the kinetic momentum operators.

However, this is not possible because the x and y components of these operators do not

commute at the positions of the particles where the flux is present:

[pax,i, pay,i] = −i2πα
∑
j 6=i

δ(ri−rj), (2.2.7)

where pax,ix̂+pay,iŷ ≡ −i∇i+α
∑
j 6=i ẑ×rij/r2

ij. Therefore, unlike the case for bosons or

fermions, the kinetic momentum distribution for anyons is not a proper observable. In

order to remedy this situation, we study the expansion of anyons from an initially localized
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state, to find an appropriate observable that corresponds to the momentum distribution,

which reduces to the usual definitions when the statistical parameter α approaches 0 for

bosons or 1 for fermions.

2.2.3 Free expansion of two anyons

For clarity, we first discuss the free expansion of two anyons released from a harmonic

trap. When N=2, the Schrödinger equation i ∂
∂t
ψ=Hψ can be rewritten in center-of-mass

R= (r1+r2) /2≡ (R, θ) and the relative r=r1−r2≡ (r, φ) coordinates. The ground state

for two anyons in a harmonic potential is given by [123, 124, 154],

ψ(R, r, t = 0) = N2r
|α|eiαφe−R

2− r
2
4 , (2.2.8)

where N2 is the normalization constant. Equation (2.2.8) already shows two important

characteristics of fractional statistics (0<|α|<1), with all their implications: the wave-

function cannot be written as a product of single-particle wavefunctions, and it is not

single-valued. At t=0, the trap is turned off and two anyons start expanding. The ex-

pansion dynamics can be found by decomposing the wavefunction (2.2.8) into two-anyon

eigenstates in free space, which are given by [15]

φKkMm(R, r) = eiMθJ|M |(KR)ei(m+α)φJ|m+α|(kr), (2.2.9)

up to normalization, with the corresponding energy EKk=K2/4+k2. The principal quan-

tum numbers are {K, k}∈[0,∞〉, and the angular quantum numbers are {M,m}∈Z. Be-

cause the initial ground state is rotationally invariant, only eigenstates with M=m=0

are present in the expansion; therefore, we omit M and m in further notation. The

time-dependent wavefunction during free expansion of two anyons is

ψ(R, r, t > 0) =
∫
dKdkKkaKkφKke

−iEKkt (2.2.10)

∝ 1
(1 + it)2

(
r

1 + it

)|α|
exp

[
−R

2 + r2/4
1 + it

+ iαφ

]
,
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where the coefficients aKk are the projection coefficients of the initial wavefunction (2.2.8)

on eigenstates in free space (2.2.9):

aKk ∝ k|α|e−
K2

4 −k
2
. (2.2.11)

We identify |aKk|2 with the quasimomentum distribution of two anyons.

That this definition is natural is underpinned by the following observations: (i) the

quasimomentum distribution does not change during free expansion; (ii) this definition

reduces to the standard one when the statistical parameter α approaches 0 for bosons or

1 for fermions; (iii) the asymptotic form of the single-particle density ρD(r, t→∞) has the

same shape as |aKk|2. Observation (i) is evidently true, observation (ii) follows from the fact

that eigenstates for bosons and fermions in free space are built from plane waves (properly

symmetrized), and we have verified (iii) to hold explicitly. The generalization of Eq. 2.2.10

to the case of N anyons would read ψ(t>0) =
∫
dβaβφβe

−iEβt. However, a definition of the

single-particle quasimomentum distribution from the projection coefficients aβ is unclear,

as we do not know which quantum numbers β, define eigenstates φβ of N anyons in free

space. These eigenstates are complex many-body wavefunctions, because a system of

anyons is a genuine many-body problem with all its inherent difficulties, even though

Hamiltonian H appears as to describe noninteracting particles. The fact is that vector

potential interactions between particles from HCP , when gauged out to obtain H, remain

hidden in the anyonic symmetry of the wavefunction ψ. Nevertheless, we can define the

quasimomentum distribution for N anyons as the asymptotic single-particle density, after

expansion in free space. This definition obviously obeys observation (ii) above, although

the connection with projection coefficients aβ is not yet clear.

2.2.4 Free expansion of an anyonic gas

Let us now consider expansion of N anyons from the harmonic trap. The generalization

of wavefunction (2.2.8) for N>2 does not yield the ground state in a harmonic oscillator.

In order to gain understanding of the expansion dynamics of anyons, we assume that

initially the system is in its eigenstate, given by [154]

ψ({ri}, t=0) = NN
∏
i<j

r
|α|
ij e

iαφije−
∑N

k=1
|rk|

2

2 . (2.2.12)
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Figure 2.5: The profile of the single-particle density ρD(xx̂, 0) of the wavefunction (2.2.13),
which we identify as quasimomentum distribution (see text), for N = 20 and different
values of α, obtained via Monte-Carlo integration. The inset shows the peak of the
bosonic density at α = 0. The single-particle density at any time t > 0 is given by
ρD(r, t) = b−2ρD(r/b, 0).

We can obtain the dynamics of the system for t≥0 by employing the scaling transforma-

tion [152, 153]:

ψ({ri}, t>0) = 1
bN
ψ({ri

b
}, 0)ei ḃ2b

∑N

k
|rk|2e−iEN τ(t). (2.2.13)

Here b=
√

1 + t2 is the time dependent scaling factor, EN=N+αN(N−1)/2 the eigenstate

energy and τ(t)=
∫ t dt′

b2(t′) a scaled time. The evolution of the single-particle density is

self-similar

ρD(r, t) = 1
b2ρD(r

b
, 0). (2.2.14)

Consequently, the shape of the asymptotic single-particle density is the same as the initial

single-particle density. In Fig. 2.5 we plot its profile for N = 20, for different values of

the statistical parameter α. We see that on the bosonic side, the form is narrower and

sharper, and it gets flatter and broader on the fermionic side, as one would expect from

the quasimomentum distribution.
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2.2.5 Correlations of particles with fractional statistics

Another observable that depends on the statistical parameter α, and can be used

to obtain information on the anyonic character of the system is the pair correlation

function [131]. The pair correlation function

g(r1, r2, t) = N(N − 1)
∫
|ψ(r1, r2, . . . , rN , t)|2dr3...drN (2.2.15)

is illustrated in Fig. 2.6 for different values of α and N , at t=0 (it changes trivially with

time due to the self-similarity of the evolution). One particle is fixed at r2=x̂, and we show

g as a function of the position of the second particle, r1. In Fig. 2.6(a) we show g for N=5:

two particles are uncorrelated only in the bosonic limit (α = 0), coinciding with the case

with no repulsive statistical interactions at any distances [155, 156]. In Fig. 2.6(b), the

angle φ1 parametrizes the position of the moving particle, r1 = cosφ1x̂ + sinφ1ŷ. Suppose

that we perform expansion of two anyons from a harmonic trap. If we detect one anyon

at an angle φ2 = 0, one may ask what is the probability of detecting the second anyon

at some other angle φ1? The plot in Fig. 2.6(b) for N = 2 provides information on what

we may expect from such an experiment. Bosons would be completely uncorrelated with

probability independent of φ1, fermions anti-correlated with the peak of the probability

at φ1 = π, and anyons ranging in between these two cases, depending on α. From the

structure of the wavefunction (2.2.13) it follows that for small interparticle distances, the

pair correlation function scales as

g ∝ |r1 − r2|2|α|. (2.2.16)

This can be seen from the plot in Fig. 2.6(b). It was recently pointed out that in

topologically ordered states, the low energy onset of spectral functions scales as a power

law with the statistical parameter in the exponent [157].

2.2.6 Ideas for implementation

One possible route to implement free expansion of anyons in ultracold atomic gases

is by building upon the proposals in Refs. [128, 131, 149]. Suppose that one implements

a system proposed in Ref. [128], where one first introduces a system of hard-core bosons
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Figure 2.6: Pair correlations of anyons. (a) Pair correlation function g(r1, r2=x̂) for
different values of the statistical parameters α. (b) Dependence of g on the distance
between particles |r1 − r2| = |(cosφ1 − 1)x̂ + sinφ1ŷ| as a function of N and α. See text
for details.

in a synthetic magnetic field, which is represented by a bosonic version of the Laughlin

wavefunction for electrons in the quantum Hall regime [128]. Next, instead of creating

quasihole fractionalized excitations with lasers [128], suppose that one introduces a few

bosonic atoms of another species, which have hard-core repulsive interactions with the orig-

inal bosons. These newly introduced bosons would behave as anyons, and their expansion

in the presence of background of the original bosons would reveal the quasimomentum dis-

tribution discussed here. Such a system of test particles immersed in a fractional quantum

Hall like state was discussed in Refs. [131, 149].

∼

We have pointed out that the momentum distribution, one of the key signatures of

various quantum states of matter, is not a proper observable for a system of anyons.

When statistics is fractional, which can be thought of as the presence of specific vector

interactions, orthogonal components of kinetic momentum do not commute on all space,

and the corresponding RSPDM cannot be diagonalized in the same basis. As a substitute

for the momentum distribution of a spatially localized anyonic state, we proposed to use

the asymptotic single-particle density after expansion of anyons in free space from the state.
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This definition reduces to the standard one when the statistical parameter approaches that

for bosons or fermions. We also presented examples of expansion dynamics obtained by

exact calculations, which underpin our proposal. Furthermore, we have demonstrated that

two-particle correlations of this state scale as a power-law with the statistical parameter

in the exponent. Finally, we have proposed a possible implementation of this system with

ultracold atomic gases.

Historically, the momentum distribution played a crucial role as key signature in experi-

mental realizations of new quantum states with ultracold atoms, such as the Bose-Einstein

condensated [150] and Fermi degenerated [151] trapped atomic gases. Nowadays, when an

increasing attention is attracted by topologically ordered states of matter because of their

amazing emerging phenomena, understanding their signatures is more than crucial. In

this context, fractional quantum numbers are among the most exciting emerging phenom-

ena. Our work stresses out how standard methods and understanding have to be taken

with caution when studying topological matter via quantum simulation and synthetic

magnetism. We show how ultracold atomic systems can help identifying intriguing aspects

associated with extracting observables from topological systems with emergent fractional

statistics.
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Chapter 3

The quest for synthetic magnetism

Part of the work in this chapter is published in the following papers

• T. Dubček, K. Lelas, D. Jukić, R. Pezer, M. Soljačić, and H. Buljan,

New J. Phys. 17, 125002 (2015).

• K. Lelas, N. Drpić, T. Dubček, D. Jukić, R. Pezer, and H. Buljan,

New J. Phys. 18, 095002 (2016).

• T. Dubček, N. Šantić, D. Jukić, D. Aumiler, T. Ban, and H. Buljan,

Phys. Rev. A 89, 063415 (2014).

• N. Šantić, T. Dubček, D. Aumiler, H. Buljan, and T. Ban,

Sci. Rep. 5, 13485 (2015).

• N. Šantić, T. Dubček, D. Aumiler, H. Buljan, and T. Ban,

Opt. Soc. Am. B 34, 1264 (2017).

3.0.1 The many faces of (synthetic) magnetism

The beginning of mankind’s interest in magnetism dates back to the ancient era, when

people first discovered lodestones, naturally magnetized pieces of magnetite, was attracting

iron. Throughout centuries, surgeons and sailors from ancient Greece and China exploited

what these materials could offer, while philosophers were astonished by the phenomenon.

Comprehending it, however, was not an easy task. In the 19th century, several discoveries
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happened, mainly by the work of H. C. Ørsted, A.-M. Ampère, C. F. Gauss; J.-B. Biot,

F. Savart, and M. Faraday. This finally enabled the complete understanding of magnetism,

and its unification with electricity and optics through J. C. Maxwell’s classical theory

of electromagnetism [158]. Many fascinating phenomena, such as charge distributions,

electric circuits, optical rays or ultraviolet radiations, finally had a good explanation. At

the beginning of 20th century, this motivated A. Einstein’s theory of special relativity.

It showed the theory for magnetism and magnetic fields cannot be separated from the

kinematic properties of the system. With the advent of quantum mechanics, furthermore,

the classical theory had to be adapted for systems where quantum behavior is important.

Still today, it is a field in which new questions arise, and new answers and explanations

have to be brought up.

The many different characteristics, behaviors and phenomena magnetism and magnetic

interactions can cause are striking. Various materials have diverse magnetic properties

that lead to different ways they are analized and used. Magnetism is also closely related

realizations of interesting physical concepts, such as geometrical and topological phases [66].

It plays an important role in the fundamental foundations of quantum electrodynamics,

electroweak and gauge theories [159]. Although always the same interaction, magnetism

appears to have endless possible appearances and faces. Not all of which are completely

understood yet.

As quantum simulations contribute to the study and comprehension of intriguing mag-

netic phenomena through synthetic magnetism, a clear guideline emerges. The flexibility

that systems as ultracold gases or photonic lattices can offer must not be neglected. De-

pending on the system at hand, finding a suitable scheme that enables the study of a

specific targeted concept or phenomenon is crucial. It can be in bulk or ordered systems,

with strong interactions or noninteracting particles, methods based on kinematics or in-

teractions with light. As each method has its own advantages and limitations, different

approaches often tackle complementary aspects.

3.0.2 Chapter outline

In this chapter, we consider and propose new methods that enable the realization of

synthetic magnetism in photonic and atomic systems.
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By drawing analogies between an optical and a photonic lattice, we introduce a grating

assisted tunneling scheme for tunable synthetic magnetic fields in one- and two-dimensional

photonic lattices [3]. The resulting lattices possess Dirac points in k-space, whose signature

we show to be a conical diffraction pattern. We explicitly show that, in two dimensions,

the lattice with grating assisted tunneling can realize the Harper-Hofstadter Hamiltonian,

traditionally achieved by using magnetic fields or spin-orbit interactions coupled to charged

particles.

Additionally, we show that in one dimension the laser assisted tunneling method can

also generate synthetic magnetic fields in systems with strong interactions, namely the

Tonks-Girardeau gas [4].

Finally, we propose the realization of a synthetic Lorentz force in a classical cold atomic

gas [5]. Unlike standard methods for synthetic magnetism in quantum degenerated gases,

based on the adiabatic motion of atoms, here the force arises from radiation pressure.

The theoretical proposal is followed by two collaborations with an experimental group,

which yielded the experimental demonstration of the idea [6, 7]. The introduced synthetic

Lorentz force opens the possibility to mimic classical charged gases in magnetic fields in

cold-atom experiments.
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3.1 Grating assisted tunneling in photonic lattices

The excitement about about topological states of matter is spread among many different

fields. Besides all the fundamental reasons that make these fascinating novel states of

matter so attractive, much of the interest arouses because of the technological advances

their striking phenomena could enable. Nowadays, it is clear that light science and optical

technologies play a central role in the quality of life and the development of society. The

possibility to manipulate and control light by designing topological states is thus extremely

appealing, making topological photonics a rapidly growing field [28–31, 33, 34, 36, 37, 41–

44, 100, 105, 160], for review see [105]. An extremely motivating topological aspect of

topological photonic systems are the topologically protected surface states. In these

systems, it is reflected in the existence of unidirectional states guiding light [41–44], which

are immune to backscattering and robust to imperfections. They may thus serve as

novel waveguides and for building integrated photonic devices. The first experimental

observations of such edge states were in the microwave domain, in magneto-optical photonic

crystals [44], theoretically proposed in Refs. [41–43]. In the optical domain, imaging of

topological edge states was reported in Floquet topological insulators, implemented in

modulated honeycomb photonic lattices [33], and in the two-dimensional array of coupled

optical-ring resonators [31].

Incidentally, synthetic magnetism offers unique tools for achieving these novel topolog-

ical photonic states and phases. It is thus important to develop methods for obtaining

synthetic magnetic/gauge fields depending on the system at hand. Different strategies

based on modulation, magneto-electric coupling or tailored geometries have been realized

in coupled optical resonators, photonic crystals and metamaterials. However, a viable

scheme for an arbitrary design of the phases of the complex tunneling matrix elements in

optical lattices, which possess a great potential for exploring photonic topological effects,

have been insufficiently addressed. In this section, we introduce one such scheme, termed

grating assisted tunneling, and propose its implementation in optically induced photonic

lattices [161–165]. The method is inpired by the earlier mentioned laser assisted tunneling

scheme, which was implemented in optical lattices with ultracold atoms [24–26]. We show

that drawing analogies between the behavior of different controllable physical systems can

lead to new ideas and significant advances. As the ultracold atomic system with heating
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from spontaneous emission is replaced by a photonic system where this is absent, many of

the results obtained with ultracold gases become perhaps even more feasible when adapted

to a photonic environment. The proposed method realizes tunable synthetic magnetic

fields in an optical lattiece. We demonstrate the emergence of synthetic magnetic fields by

directly comparing the evolution in the continuous photonic lattices with grating assisted

tunneling, and the dynamics in discrete lattices with non-trivial hopping phases. Namely,

we show that one- and two-dimensional square photonic lattices with grating assisted

tunneling can yield a conical diffraction pattern, which constitutes the realization of the

Harper-Hofstadter Hamiltonian.

3.1.1 A photonic lattice

We consider the paraxial propagation of light in a photonic lattice defined by the index

of refraction n = n0 + δn(x, y, z) (δn� n0), where n0 is the constant background index

of refraction, and δn(x, y, z) describes small spatial variations, which are slow along the

propagation z-axis. The slowly varying amplitude of the electric field ψ(x, y, z) follows

the (continuous) Schrödinger equation:

i
∂ψ

∂z
= − 1

2k∇
2ψ − kδn

n0
ψ; (3.1.1)

here, ∇2 = ∂2/∂x2 + ∂2/∂y2, and k = 2πn0/λ, where λ is the wavelength in vacuum.

From now on we will refer to δn(x, y, z) as the potential or index of refraction. In the

simulations we use n0 = 2.3, corresponding to the systems that were used to implement

the optical induction technique [162, 163], and λ = 500 nm.

3.1.2 The grating assisted tunneling method

For clarity, let us first present the grating assisted tunneling method in a 1D photonic

lattice. If the potential is a periodic lattice, δnL(x) = δnL(x+a), where a is the lattice con-

stant, and if the lattice is sufficiently ’deep’, the propagation of light can be approximated

by using a discrete Schrödinger equation [165, 166]:

i
dψm
dz

= −(Jxψm−1 + Jxψm+1), (3.1.2)
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Figure 3.1: Illustration of the grating assisted tunneling scheme. (a) Sketch of the spatial
dependence of the index of refraction δnL(x, z) = δnL+δnT+δnG, which creates a synthetic
magnetic field in a photonic lattice. A 1D photonic lattice [δnL = δnL0 cos2(πx/a)] is
superimposed with a linear gradient index in the x direction (δnT = −ηx, orange dotted
line), and an additional small grating potential [δnG = δnG0 cos2((qxx − κz)/2)], at a
small angle (θ is on the order of 1◦) with respect to the z axis. In the xz plane we
plot the projection of δnL (blue bold lines), and the grating (green dashed lines). (b)
A discrete lattice with complex tunneling matrix elements between sites, Kxe

iφm , and
spatially dependent phases φm, can model the system in (a). (c) A particular choice of θ
(see text), yields a lattice with φm = πm, and a dispersion with a 1D Dirac cone at kx = 0.
(d) The amplitude of the tunneling Kx as a function of the strength of the grating δnG0
(green squares). The tunneling amplitude Jx versus δnG0 for a system without the tilt.
(e,f,g) Numerical simulation of the evolution of a wavepacket that initially excites modes
close to kx = 0 in the continuous 1D photonic lattice. (e) Diffraction in a periodic photonic
lattice δnL. (f) Propagation in the tilted system, δnL + δnT , shows that the tunneling
(diffraction) is suppressed. (g) The tunneling is restored by an additional grating potential
with qx = π/a. (h) Propagation of the wavepacket in the corresponding discrete model
illustrated in (c).
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where Jx quantifies the tunneling between adjacent waveguides and ψm(z) is the amplitude

at the mth lattice site, i.e., waveguide. To create a synthetic magnetic field, we adopt

the strategy to tune the phase of the tunneling between lattice sites. For this 1D lattice,

we seek a scheme which effectively renormalizes Jx to get Kx exp(iφm), where φm denotes

the phase for tunneling from site m to site m + 1. The scheme is illustrated in Fig. 3.1.

In Fig. 3.1(a) we show the potential δn(x, z), which can be modeled as a discrete lattice

with complex tunneling parameters Kx exp(iφm) shown in Fig.3.1(b).

Let us gradually explain the idea behind the variation of the index of refraction as in

Fig. 3.1(a). In Fig. 3.1(e), we show the propagation of intensity in a continuous 1D model

in the lattice potential

δnL(x) = δnL0 cos2(πx/a), (3.1.3)

with ψ(x, 0) =
√
Ie−x

2/(3a)2 ; δnL0 = 4 × 10−4, a = 10 µm. We see the usual diffraction

pattern for a spatially broad excitation covering several lattice sites [165]. Next, suppose

that we introduce a linear gradient of index of refraction along the x direction

δnT (x) = −ηx (3.1.4)

in addition to the lattice potential, such that δn = δnL(x) + δnT (x). For a sufficiently

large tilt, the tunneling is suppressed. This can be seen from Fig. 3.1(f) which shows

the propagation of intensity in a tilted potential with η = 0.1δnL0/a; the tilt should be

smaller than the gap between the first two bands. Finally, let us introduce an additional

small grating potential at a small angle θ with respect to the z axis,

δnG(x, z) = δnG0 cos2((qxx− κz)/2), (3.1.5)

such that

δn(x, z) = δnL(x) + δnT (x) + δnG(x, z). (3.1.6)

This total potential δn(x, z) is illustrated in Fig. 3.1(a). The ’frequency’ κ is determined by

the angle θ of the grating with respect to the z-axis, which is chosen such that κ = ηak/n0

and the grating forms a z-dependent perturbation resonant with the index offset between

neighboring lattice sites ηa (Fig. 3.1(a)). The grating restores the tunneling along the

x-axis, hence the term grating assisted tunneling. Restored tunneling is seen in Fig. 3.1(g)
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which shows diffraction for identical initial conditions as in Figs. 3.1(e) and (f); the grating

parameters are qx = π/a and δnG0 = 0.1δnL0.

However, the diffraction pattern is drastically changed. In order to interpret it, we point

out that, for resonant tunneling where κ = ηak/n0 and a sufficiently large tilt (J � η),

z-averaging over the rapidly oscillating terms shows that the system can be modeled by

an effective discrete Schrödinger equation (e.g., see [24] for ultracold atoms):

i
dψm
dz

= −(Kxe
iφm−1ψm−1 +Kxe

−iφmψm+1), (3.1.7)

where φm = q · Rm = qxma. In Fig. 3.1(g) we used qx = π/a, i.e., φm = mπ. Such

a discrete lattice is illustrated in Fig. 3.1(c); its dispersion having a 1D Dirac cone at

kx = 0. For a wavepacket that initially excites modes close to kx = 0, the diffraction in the

discrete model (Eq. 3.1.7) yields the so-called (1D) conical diffraction pattern [37, 167],

as illustrated in Fig. 3.1(h). The initial conditions for propagation in the discrete model

corresponds to the initial conditions in the continuous system, ψm(0) =
√
Ie−(m/3)2 , and

Kx = 0.053 mm−1. Thus, we interpret the diffraction pattern in Fig. 3.1(g) as 1D conical

diffraction, a signature of the discrete model depicted in Fig. 3.1(c). A comparison of the

discrete [Fig. 3.1(h)] and the realistic continuous model [Fig. 3.1(g)], clearly shows that

we can use grating assisted tunneling to tune the phases of the tunneling parameters in

the discrete Schrödinger equation, thereby realizing synthetic magnetic fields.

Before proceeding to 2D systems, we discuss the amplitude of the tunneling matrix

elements Kx as a function of the strength of the grating δnG0. Figure 3.1(d) shows Kx

(green squares) and Jx (blue circles) versus δnG0, where Jx corresponds to the potential

which includes the lattice and the grating, but no tilt. The amplitudes Jx and Kx are

obtained by comparing the diffraction pattern of the discrete with the continuous model,

and adjusting Jx and Kx until the two patterns coincide, as in Figs. 3.1(g) and (h). Our

results in Fig. 3.1(d) are in agreement with those in ultracold atoms [e.g., see Fig. 3(a)

in Ref. [24]].
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3.1.3 Grating assisted tunneling in 2D and
the Harper-Hostadter Hamiltonian

The extension of the scheme to 2D lattices is straightforward. We consider a square

lattice, δnL = δnL0(cos2(πx/a) + cos2(πy/a)), the tilt in the x direction, δnT (x) = −ηx,

and the grating which has the form δnG(x, y, z) = δnG0 cos2((qxx + qyy − κz)/2). Prop-

agation of light in the total potential δn(x, y, z) = δnL(x, y) + δnT (x) + δnG(x, y, z) can

be modeled by the discrete Schrödinger equation (the derivation is equivalent to that in

Ref. [24] for ultracold atoms):

i
dψm,n
dz

= − (Kxe
iφm−1,nψm−1,n +Kxe

−iφm,nψm+1,n

+ Jyψm,n−1 + Jyψm,n+1), (3.1.8)

where φm,n = q ·Rm,n = qxma+ qyna. Note that the tunneling along y does not yield a

phase because there is no tilt in the y direction; the tunneling amplitude along y depends

on the depth of the grating, as illustrated in Fig. 3.1(d) with blue circles.

In order to demonstrate that the propagation of light in the continuous 2D potential

δn(x, y, z) is indeed equivalent to the dynamics of Eq. 3.1.8, we compare propagation in

the discrete model (Eq. 3.1.8), with that of the continuous equation (Eq. 3.1.1). The

lattice parameters are δnL0 = 4× 10−4, a = 13 µm; the tilt is given by η = 0.1δnL0/a; the

grating is defined by δnG0 = 0.17δnL0 and qx = −qy = π/a, which yields φm,n = (m−n)π,

and κ is chosen to yield resonant tunneling. The discrete lattice which corresponds to this

choice of phases is illustrated in Fig. 3.2(a). It has two bands,

β = ±2
√
K2
x sin2(kxa) + J2

y cos2(kya) (3.1.9)

(β is the propagation constant), touching at two 2D Dirac points at (kx, ky) = (0,±π/2a)

in the Brillouin zone [115], as depicted in Fig. 3.2(b). Suppose that the incoming beam

at z = 0, excites the modes which are in the vicinity of these two Dirac points. Around

these points, for a given k̂ = k/k, the group velocity, ∇kβ(kx, ky), is constant. Thus, the

beam will undergo conical diffraction, which has been thoroughly addressed with Dirac

points in honeycomb optical lattices [167]. To demonstrate this effect, we consider the
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propagation of a beam with the initial profile given by

ψ(x, y, 0) =
√
I cos(yπ/2a) exp(−(x/3a)2 − (y/3a)2) (3.1.10)

in the 2D potential δn(x, y, z) (the cosine term ensures that we excite modes close to the

two Dirac points). In Fig. 3.2(c) we show this beam after propagation for z = 162 mm.

The two concentric rings are a clear evidence of conical diffraction [167, 168]. We also

compare this with the propagation in the discrete model (Eq. 3.1.8), with tunneling phases

plotted in Fig. 3.2(a); Kx = 0.11 mm−1, Jy = 0.14 mm−1. The results of the propagation

in the discrete model are shown in Fig. 3.2(d). It is evident that for our choice of the tilt

and the grating, we have effectively realized the lattice plotted in Fig. 3.2(a). This is in

fact a realization of the HHH for α = 1/2, where α is the flux per plaquette in units of

the flux quantum [24, 25].

We emphasize that the spatial phase between the periodic lattice potential δnL and

the grating δnG is a relevant parameter. This point has recently been examined in

detail in the context of ultracold atoms [169]. To translate it to our system, suppose

that in our 1D system, we shift the grating along the x-direction, such that δnG =

δnG0 cos2((qxx− κz + ξ)/2). This simply shifts the phases in the discrete lattice [shown

in Fig. 3.1(c)] such that φm is replaced by φm + ξ, which moves the 1D Dirac point in

kx-space by ∆kx = ξ/a. We have numerically verified that this indeed happens.

3.1.4 Proposal for experimental realization

For the experimental implementation of the scheme, we propose the so-called optical

induction technique in photosensitive materials, which can be implemented in photore-

fractives [161–165]. In these systems, both the lattice δnL(x, y) and the grating potential

δnG(x, y, z) can be obtained in a straightforward fashion by using interference of plane

waves in the medium [165]. The lattice constant a, the grating parameter q, and hence the

hopping phase φm,n = q ·Rm,n, are tunable by changing the angle between the interfering

beams. This could enable manipulation of the phases of the tunneling matrix elements in

real time [163].

The most challenging part of the implementation appears to be creation of the linear

tilt potential. To observe the conical diffraction effects, one needs a linear gradient over the
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Figure 3.2: Grating assisted tunneling and conical diffraction in a square photonic lattice.
(a) Sketch of the 2D lattice with grating assisted tunneling along the x direction. The
resulting nontrivial hopping phases π and 0 are denoted with dashed and solid lines,
respectively. A wavepacket that makes one loop around the plaquette accumulates the
phase π. (b) The lattice possesses two 2D Dirac cones at (kx, ky) = (0,±π/2a) in the
dispersion β(kx, ky), where β is the propagation constant. (c) Intensity of a beam, which
initially excites modes in the vicinity of the Dirac points, after propagation for z = 162 mm.
The intensity has two concentric rings corresponding to the conical diffraction pattern.
(d) Simulation of the diffraction pattern in the discrete model corresponding to the lattice
in (a), which also exhibits conical diffraction (see text for details).
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∼ 20 lattice sites, which implies a total index tilt ∆n = 20ηa ∼ 20× 0.1δnL0 ∼ 8× 10−4.

In principle, the linear tilt could be achieved by using a spatial light modulator. Another

possibility which could create a linear tilt is to use crystals with linear dependence of the

index of refraction on temperature, and a temperature gradient across the crystal.

However, it should be emphasized that if one uses a superlattice for δnL, rather than the

linear tilt potential, as in Ref. [26] for ultracold atomic gases, the grating assisted tunneling

scheme proposed here would straightforwardly yield staggered synthetic magnetic fields

for photons. The achievement of such staggered fields is straightforward with optically

induced lattices proposed here.

∼

We have proposed a grating assisted tunneling scheme that introduces tunable synthetic

magnetic fields in an optical lattice, inspired by laser assisted tunneling in lattices of

quantum gases. Such a possibility is yet another manifestation and consequence of the

many faces interesting physical phenomena can have. Once again, it emphasizes the

value of Feynman’s idea of universal quantum simulation, and the search for systems

that are governed by the same laws. Nevertheless, as each of the systems possesses its

own advantages and limitations, making every new contribution to synthetic magnetism

valuable. For example, the absence of heating from spontaneous emission in photonics,

present in atomic systems, could result in even more feasible results, such as the potentially

resulting topological characteristics leading to backscattering immune light propagation.

We have confirmed the validity of the proposed grating assisted tunneling method for

synthetic magnetism by a direct comparison of the light propagation in such a continuous

system and the evolution in a discrete model with nontrivial hopping phases. This approach

can open the way for mapping the light propagation in tailored dielectric structures to

intriguing discrete models, such as the Harper-Hofstadter Hamiltonian.
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3.2 Laser assisted tunneling in a Tonks-Girardeau
gas

The introduction of interaction into quantum systems can lead to strongly correlated

quantum many-body states. Interactions can significantly enrich the underlying physics

and induce interesting consequences. In the context of topological matter, for example,

interactions have been shown to influence the transitions between different topological

phases [14, 66]. However, the prediction of the behavior of these systems is extremely

demanding. It is in these cases that quantum simulations and synthetic magnetism appear

to be the only way to the comprehension and characterization of such systems. The

recent experimental progress of the control of ultracold atomic gases has given rise to

a powerful tool for the coherent manipulation of many-body states and their dynamics,

where interactions between particles can be accurately adjusted by using light scattering

resonances. The introduction of synthetic magnetism, however, raises an important ques-

tion, especially in the case of optical lattices. In the latter, synthetic magnetic fields are

essentially obtained by periodic driving [23, 24, 26]. Interactions are known to induce

thermalization during the time-evolution of most quantum systems, as conjectured by the

eigenstate thermalization hypothesis [170]. With the addition of periodical driving, which

can potentially be an infinite source of energy, the system can thermalize to an effectively

infinite temperature [171–175]. Therefore, the combination of interactions and periodical

driving may have substantial consequences on the applicability of standard methods for

synthetic magnetism in quantum systems. In this chapter, we investigate the laser assisted

tunneling method for creating synthetic magnetic fields in a Tonks-Girardeau gas. We

start by introducing the consequences of interactions and periodic driving in quantum

many-body systems. We then consider the impact it can have on synthetic magnetism in

strongly interacting one-dimensional Bose gases, showing that the stroboscopic dynamics

of a Tonks–Girardeau gas with laser assisted tunneling effectively realizes the ground state

of 1D hard-core bosons on a discrete lattice with nontrivial hopping phases.

3.2.1 Periodically driven interacting systems

Unlike most noninteracting quantum systems, whose trajectories in phase space typi-

cally stay confined by the strict constraints of motion (the so called localization), interacting
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systems are likely to thermalize to the usual thermal state. At long times, no matter how

far from equilibrium the state in which the system is initially prepared is, the system

is ergodic and can be accurately described using equilibrium statistical mechanics. In

accordance with the so called eigenstate thermalization hypothesis, this can be seen as a

consequence of the thermal distributions being encoded in each many-body eigenstate [176].

In a periodically driven, i.e. Floquet, interacting system, the driving perturbation can

be strong enough to mix exponentially many eigenstates of the undriven Hamiltonian

together. This leads to a thermalization scenario that is independent on the initial state.

It is in contrast to what happens with no interactions present, when the extensive number

of conserved quantities exponentially reduces the number of states that are being mixed.

Furthermore, due to the lack of energy conservation in nonintegrable Floquet systems, as

energy is periodically pumped in by the driving, it is believed that the system approaches

a state described by an infinite-temperature ensemble [172, 177].

Although an intuition about transitions between phases with significantly different long-

time scenarios can be built from the paragraph above, there exist many possible exceptions.

For example, the introduction of disorder that is strong enough can effectively reduce the

size of the phase space, via segmentation into local subspaces, and lead to a localized

and nonergodic behavior in an interacting many-body system (many-body localization). In

periodically driven interacting systems that are mappable to free systems, on the other

hand, happens an extensive reduction of the eigenstates that get mixed together, leading

again to localization [177]. Moreover, even systems that approach effectively infinite

temperatures at infinite times can, if the time-scale relevant for the experiment is shorter

than the heating time th, approach a prethermalized Floquet steady state before heating

up.

An optical lattice with laser assisted tunneling, in which the tunneling suppressed by a

linear tilt is resonantly restored by a time-periodic potential (ω), is an example of a Floquet

system. When no interactions are present, the corresponding high-frequency effective

Hamiltonian directly corresponds to the target Hamiltonian with synthetic magnetic

fields, at all times that are experimentally relevant (a few hundred milliseconds). It is

important to investigate whereas the addition of interactions will still allow such a mapping

of the Floquet Hamiltonian. We address this problem in the context of a one-dimensional

gas with contact interactions, the Tonks-Girardeau gas, on an optical lattice. Due to
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the reduced dimensionality, this many-body system promises to show enhanced quantum

effects. It is also strongly related to the one-dimensional hard-core version of anyons [137].

In order to check the applicability of the standard laser assisted tunneling method, we

directly compare the quantum dynamics of a continuous Tonks-Girardeau system with

the periodic driving, with the ground state of hard core bosons on a discrete lattice with

complex hopping parameters.

3.2.2 Tonks-Girardeau gas and laser assisted tunneling

We consider N identical bosons in 1D interacting via pointlike interactions, described

by the Hamiltonian

Ĥ =
N∑
i=1

[
− ~2

2m
∂2

∂x2
i

+ V (xi, t)
]

+ g1D
∑

1≤i<j≤N
δ(xi − xj). (3.2.1)

In the strongly interacting Tonks-Girardeau regime [178], with infinitely repulsive

contact interactions g1D →∞, the interaction term in the Hamiltonian in Eq. 3.2.1 can

be replaced by a boundary condition for the many-body wave function

ΨB(x1, x2, . . . , xN , t) = 0 if xi = xj, (3.2.2)

satisfied by an antisymmetric many-body wave function describing a system of noninteract-

ing spinless fermions in 1D [178]. One can thus express the exact (static or time-dependent)

solution for the Tonks-Girardeau model via the famous Fermi-Bose mapping [178, 179],

as

ΨB(x1, x2, . . . , xN , t) =
∏

1≤i<j≤N
sgn(xi − xj)ΨF (x1, x2, . . . , xN , t) , (3.2.3)

where ψF denotes the solution for the noninteracting spinless fermionic case. By knowing

the many-body wave function describing the Tonks-Girardeau gas in an external potential

(ψB) or the noninteracting fermionic 1D gas (ψF ), one can obtain the reduced single

particle density matrix (RSPDM), defined as

ρ{B,F}(x, y, t) = N
∫
dx2 . . . dxN Ψ∗{B,F}(x, x2, . . . , xN , t)Ψ{B,F}(y, x2, . . . , xN , t).(3.2.4)

The RSPDM makes available, at least in principle, the expectation values of all one-body
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observables for the system, such as the single-particle density

ρ{B,F}(x, x, t) =
N∑
m=1
|ψm(x, t)|2 (3.2.5)

and the momentum distribution

n{B,F}(k, t) = 1
2π

∫
dxdy eik(x−y)ρ{B,F}(x, y, t). (3.2.6)

The single particle density ρB(x, x, t) is identical for the Tonks-Girardeau gas and the

noninteracting Fermi gas [178], and are thus straightforward to obtain. On the other hand,

the momentum distributions are significantly different on the two sides of the Fermi-Bose

mapping [180]. While the procedure is standard for noninteracting spinless fermions,

for the continuous Tonks-Girardeau model it can be efficiently calculated as outlined in

Ref. [181].

A Tonks-Girardeau gas in an optical lattice with laser assisted tunneling can be de-

scribed by the Hamiltonian in Eq. 3.2.1, with a time- and space-dependent potential

V (x, t) = VL(x) + VT (x) + VR(x, t). (3.2.7)

Here, the spatially periodic VL(x) = VL cos2(πx/D) accounts for the lattice. Atoms can

tunnel between its adjacent minima with an effective hopping parameter J . VT (x) = αx/D

introduces the tilt potential, which suppresses the tunneling between neighboring sites

for α large enough, if no VR(x, t) is present. The spatially and time-periodic VR(x, t) =

VR cos2 [(qx− ωt)/2] describes the potential arising from the two Raman lasers, with a

difference in frequency ω and wave vectors q. This restores the tunneling for ~ω = α, and

introduces effective nontrivial phases of the hopping parameters. In the regime J�αD

when the tilt completely suppresses the standard tunneling, for noninteracting systems,

the combination VT (x) + VR(x) is responsible for laser-assisted tunneling.

3.2.3 Hard core bosons and complex tunneling matrix elements

A continuous model of the Tonks-Girardeau gas in the potential in Eq. 3.2.7, in

the case of a deep optical lattice, can be approximated by a discrete Hamiltonian with

kinetic (hopping) terms, on-site interactions, tilt and periodic drive. The evolution of
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such a discrete Hamiltonian is determined by the high-frequency expansion [47, 182],

explained in Section 3.2.1. Because of the tilt potential, the Hamiltonian is divergent

in the limit of ω → ∞, which can be removed by applying a time-dependent unitary

transformation into a rotating frame. In the case of resonant driving (~ω = αD), as a

results of this transformation, the kinetic, tilt and drive terms become an effective kinetic

term with complex hopping matrix elements. The on-site interaction term, however, is

not affected for any strength of the interaction energy U and any lattice dimension. In

other words, the Tonks-Girardeau gas in the continuous potential (Eq. 3.2.7) can be

approximately described with a Hamiltonian of hard core bosons (HCB) on a discrete

lattice with nontrivial hopping phases:

Ĥ = −K
M∑
m=1

[
eiφm b̂†m+1b̂m + h.c

]
, b̂†2m = b̂2

m = 0,
{
b̂m, b̂

†
m

}
= 1, (3.2.8)

where the hopping phase is given with φn = qDn and K is the effective hopping amplitude.

The ground state properties of the HCB Hamiltonian (Eq. 3.2.8) can be obtained by

using the Jordan-Wigner transformation [183–185]

b̂†m = f̂ †m

m−1∏
β=1

e−iπf̂
†
β
f̂β b̂m =

m−1∏
β=1

eiπf̂
†
β
f̂β f̂m, (3.2.9)

which maps the HCB Hamiltonian (Eq. 3.2.8), to the Hamiltonian for discrete noninter-

acting spinless fermions:

Ĥ = −
M∑
m=1

[
Keiφm f̂ †m+1f̂m + h.c

]
, (3.2.10)

where f̂ †m and f̂m are the creation and annihilation operators for spinless fermions.

3.2.4 Continuous vs. discrete

In order to confirm the appropriateness of mapping the effective Hamiltonian of a

Tonks-Girardeau gas in an optical lattice with laser assisted tunneling to that of hard-core

bosons in a lattice with synthetic magnetism, i.e. when strong interactions are present, we

directly compare the evolution and observables for the continuous and discrete system. We

consider a discrete lattice with M = 40 sites, corresponding to M = 40 lattice sites of the
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Figure 3.3: Ground state momentum distribution of hard core bosons NB(k) and non-
interacting spinless fermions NF (k) in the discrete lattice with hopping phases φm = mπ.
[4]

optical lattice potential VL(x). By choosing the angle between the Raman beams [24, 25]

to yield q = π/D in the time-dependent potential VR(x, t), we select a particular phase

of the hopping parameters, φn = nπ. For this choice of the hopping phase, the discrete

lattice has alternating hopping matrix elements, K(−1)n, for tunneling from site n to site

n+ 1. We estimate the effective hopping amplitude to be K = 0.012ER, by comparing the

expansion of a Gaussian wave packet in the continuous and the evolution in the discrete

systems. The method is inpired by a similar procedure we have presented in the previous

section for a photonic system.

Specifically, we compare the ground state momentum distribution of hard core bosons

NB(k) and noninteracting spinless fermions NF (k) in the discrete lattice with hopping

phases φm = mπ, with the momentum distributions for Tonks-Girardeau bosons in the

continuous Wannier-Stark-ladder potential with periodic driving nB(k, t) and for free

fermions nF (k, t), respectively, at different times. The comparison for the same number

of particles clearly shows that the distributions for the continuous systems overlap at all

stroboscopic instants in Fig. 3.4, and are also in agreement with the results for a discrete

model guided by the effective Hamiltonian in Fig. 3.3. The occupancies of natural orbitals

are also in agreement at stroboscopic times, additionally strengthening the result about

the applicability of laser assisted tunneling in a Tonks-Girardeau gas.

∼

We have considered laser assisted tunneling, a powerful method for creating tunable

synthetic magnetic fields and tailoring the phases of complex matrix elements in lattices of
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Figure 3.4: Time dependence of the momentum distributions of Tonks-Girardeau bosons
in the continuous Wannier-Stark-ladder potential with periodic driving nB(k, t) and of
free fermions nF (k, t), at different times. [4]

ultracold atoms, in a system with strong contact interactions. Namely, we have confirmed

its applicability for a Tonks-Girardeau gas in a 1D optical lattice. Although interactions

are present, the high-frequency approximation of the continuous effective Hamiltonian,

describing the stroboscopic evolution in such a system, can be mapped to that of 1D

hard-core bosons on a discrete lattice with nontrivial hopping phases. Additionally, we

have directly compared the evolution of observables, such as momentum distribution and

natural orbitals, in the continuous and discrete systems, obtaining excellent agreement at

stroboscopic times.

Once again, we have shown that numerical ’experiments’, confirming a direct mapping

of continuous systems to discrete models, can open the way to the study of states where

simple approximations are not necessarilly applicable. For example, a similar study could

be performed for interactions of (finite) modulated strength [186, 187], potentially resulting

in new intriguing correlated many-body phases.
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3.3 Synthetic Lorentz force in classical atomic gases

In many of the complex many-body systems it is particularly the quantum nature of its

constituents that has a key role in the striking phenomena they give rise to. Consequently,

there has been a lot of interest in the interest in the study of quantum degenerate matter,

which also motivated the search for physical systems that can be used as quantum simu-

lators, such as quantum degenerate atomic gases. Most methods for synthetic magnetism

have been, accordingly, designed to rely on an adiabatic evolution in the ultracold quantum

degenerate system. It is thus possible to simulate, understand and predict the behavior

of complex quantum systems and related magnetic phenomena, which would have hardly

been possible even by using the most powerful super-computers. The latter can, never-

theless, be valid for some systems that do not fall in the category of quantum degenerate

matter. Examples include complex astrophysical objects, such as stars or globular clusters,

and plasmas, such as those in tokamak fusion reactors. However, classical (rather than

quantum degenerate) cold atomic gases have been circumvented in the quest for synthetic

magnetism, even though they could simulate in a controllable fashion, and in tabletop

experiments, versatile complex classical systems.

In classical atomic gases, any scheme for synthetic magnetism must be operational

on atoms moving with fairly large velocities (at least up to ∼ 0.5 m/s), which is why

standard methods relying on adiabatic dynamics are limited. In addition, because of

the relatively large volumes they occupy in magneto-optical traps, the synthetic force

in classical gases has to be fairly uniform and strong in volumes of at least few cubic

millimeters. On the other hand, because of the higher temperatures, schemes do not need

to be limited by avoiding spontaneous emission. With these guidelines in mind, we propose

a method for creating a synthetic Lorentz force based on the Doppler effect and radiation

pressure [5]. The theoretical proposal is followed by a collaboration with experimentalists

at the Institute of physics in Zagreb, yielding the experimental confirmation of the synthetic

Lorentz force [6, 7]. In this section, we briefly review the main concepts and the results

of this collaboration.
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3.3.1 Doppler force and two-step two-photon absorption

Atomic clouds trapped in optical molasses and magneto-optical traps are cooled down

by using the so called Doppler cooling [188] . The standard Doppler cooling force arises

when the laser field interacting with the cloud is red detuned compared to the atomic

resonance frequency, as is sketched in Fig.3.5(a). Due to the Doppler effect, an atom has

a higher probability of absorbing a photon if it is moving towards the light source. Every

absorption changes the momentum of the atom along the laser propagation axis. On the

other hand, spontaneously emitted photons yield random kicks. Cycles of absorption and

emission result in a viscous damping force FD(v)≈−αv for small velocities. This force is

collinear with the atom’s velocity.

In order to obtain a synthetic Lorentz force, we construct a laser-atom system in which

the Doppler effect and radiation pressure result in a force orthogonal to the atom’s velocity,

for example Fy(vx). The simplest configuration yielding such a dependence is sketched in

Fig. 3.5(b). A three-level atom interacts with two orthogonal laser beams in the x − y

plane (linearly polarized along z). The laser ω12 is detuned by δ12 = ω12 − (E2 − E1)~−1,

whereas ω23 is detuned by δ23. The resulting force for such a configuration is shown in Fig.

3.5(c,d). The absorption of ω23 photons, which results in Fy, is the second step in the

two-step two-photon absorption process: |1〉 → |2〉 → |3〉. The probability for two-step

absorption depends on the Doppler shifted detuning values δ12 − k12vx and δ23 − k23vy,

which provides the desired dependence of Fy on vx. The maximum in Fy is expected for

atoms with velocity (vx = δ12/k12, vy = δ23/k23), where each step is resonant.

3.3.2 Synthetic Lorentz force in a cold 87Rb cloud

The idea for constructing the synthetic Lorentz force is general and potentially appli-

cable to various atomic species. For concreteness, we theoretically consider such a force

in a cold cloud of 87Rb atoms, the same species in which the experimental realizations

take place later on. The force can be calculated by using density matrices and the Ehren-

fest theorem, yielding its dependence on the atomic velocity F(v). For example, in Fig.

3.5(c,d) we show the force resuting from a simple three-level scheme. The details of the

dependence of such a force are determined by the specific characteristics of the system

and scheme, e.g. atomic state decay rates and laser detunings or intensities. By taking
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Figure 3.5: Sketch of the main idea for constructing the synthetic Lorentz force. (a)
Illustration of the setup for the standard Doppler cooling force (using two-level atoms).
(b) The idea for the synthetic Lorentz force in the simplest three-level system that can be
realized with 87Rb atoms. The dashed line indicates that two-step absorption of ω12 + ω23
yields Fy . The force components (c) Fx and (d) Fy calculated as a function of the atomic
velocity.

advantage of the multi-level structure of atoms, including new atomic states that are

coupled by additional pairs of laser, and properly adjusting the detunings, it is therefore

possible to taylor a synthetic Lorentz force.

Because of the small velocities of the cold atoms, an excellent approximation is often

given by the Taylor expansion of the force in velocity up to the linear term:

Fx
Fy

 =

Fx0

Fy0

+

αxx 0

0 αyy


vx
vy

+

 0 αxy

αyx 0


vx
vy



= F0 + FD(v) + FSL(v). (3.3.1)

The third term FSL(v) is a general form of the synthetic Lorentz force with components

perpendicular to the velocity components: FSL,x = αxyvy, FSL,y = αyxvx. The force on a

standing atom is F0. The components of the standard Doppler force are FD,x = αxxvx,

and FD,y = αyyvy. Because the matrix representing FD is diagonal, it can be formulated

through a scalar potential in velocity space. When αxy = −αyx, FSL takes the form of the
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Figure 3.6: The tripod configuration of the three two-step excitations arms for 87Rb, and
the obtained force. (a) Red solid arrows depict first-step excitations (red detuned), and
blue dotted arrows depict second steps (blue detuned). Black dashed lines connect beams
that correspond to one arm. (b) Contour lines and length of the arrows correspond to the
magnitude of the force |F (v)| .

standard Lorentz force: FSL = v×B∗, where B∗ = αxyẑ. This can be achieved by using

a tripod configuration of three two-step excitation arms, as we show in Fig. 3.6.

The above presented prediction of the synthetic Lorentz force is made for individual

atoms. In order to be able to observe it experimentally, one has to know its impact

on a cold atomic cloud containing a huge number (∼ 109 [188]) of atoms. We propose

two scenarios, in which the signature of the synthetic Lorentz force can be found in the

center-of-mass motion (CM), and in the shape of the atomic cloud. Both of them were

recently experimentally realized [6, 7], yielding a final confirmation of the idea.

In the first case [6], the cold atomic cloud is initially displaced from the center of the

trap by a bias field, which causes its acceleration along the x-axis towards the center.

When in the center, the magneto-optical-trap cooling laser and all real magnetic fields are

turned off, leaving the cloud under the influence of only the synthetic Lorentz force. The

motion of the cloud is imaged with a camera. By looking at the trajectories, shown in Fig.

3.7, we can see that the cloud travels along the x-axis by inertia, whereas it accelerates

along the y-axis due to the synthetic Lorentz force.

In the second case [7], the cold atomic cloud is initially rotationally asymmetrical.

As the cloud is released from a magneto-optical trap, i.e. cooling lasers are turned off,

the evolution of its shape is observed under the influence of thermal expansion and the

applied synthetic Lorentz force. The signature of the synthetic Lorentz force is an angular

deflection during the expansion of the cloud. We theoretically discuss the expansion of
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Figure 3.7: Experimental measurements of the synthetic Lorentz force [6]: the trajectories
of the CM of the atomic cloud in the presence of the synthetic Lorentz force. (a) x(t), and
(b) y(t) for three different initial velocities, vx = 0.6m/s > 0 (circles), vx = −0.3m/s < 0
(squares), and vx = 0m/s (diamonds); the initial component of vy = 0 in all measurements.
Accelerating motion along y is the signature of the transverse force Fy, which depends on
the orthogonal velocity vx.

the cloud by employing the Fokker-Planck equation [188]

∂P (x,v, t)
∂t

+ v · ∇rP = −1
m
∇v · [(FD + FSL)P ] + D

m2∇
2
vP, (3.3.2)

where P (x,v, t) is the distribution of particles in the phase space and D is the diffusion

constant. In Fig. 3.8, we show the comparison of experimental and theoretical results

for the atomic density distributions after a 4ms expansion of the asymmetrical cloud for

three different laser configurations. Unlike the case when only first-step beams are present,

figures (b,c), the influence of the two-step absorption and the synthetic Lorentz force can

be seen through the deflection in figures (e,f,h,i).

We point out that, due to unavoidable experimental imperfections and additional

limitations of experiments, an initial theoretical framework often has to be extended

in order to successfully account for the experimental situation. For example, not all

transitions between the atomic states that participate in creating the synthetic Lorentz

force are closed, meaning that over time the population will leak into other states. This can

lead to a significant modification of the system evolution, and is experimentally accounted

for by the introduction of additional lasers that repump the population in the targeted
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Figure 3.8: Experimental measurements of the synthetic Lorentz force [7]: Atom density
distributions after time-of-flight of 4 ms for three different configurations, (a, d, g). The
corresponding experimental, (b, e, h), and numerical results, (c, f, i), are show in the
same row. (b, c) Density distribution with only the first-step beams present. (e, f, h,
i) Density distributions with all four beams present, hence under the influence of the
synthetic Lorentz force. Note that the two second-step beams have switched places from
(d) to (g). The deflection angles of the major axes are indicated with full white lines. In
panels (f ) and (i) a dashed line indicates what the deflection angle would be without the
synthetic Lorentz force term in Eq. 3.3.1.
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cycle. On the other hand, the lasers driving the transitions have a finite linewidth, which

we introduce in the simulations by convolving the force in velocity space with a Gaussian.

∼

By proposing a method for creating a synthetic Lorentz force in classical atomic gases,

we open the way to the study of complex classical, rather than quantum degenerate,

systems of charged particles in magnetic fields, such as astrophysical objects or plasma.

The idea is based on the Doppler effect and radiation pressure in two-step two-photon

transitions, yielding a force orthogonal to the atomic velocity. A collaboration with

the experimental group at the Institute of Physics in Zagreb has recently yielded the

experimental proof of the method for a cold atomic cloud in a magneto-optical trap [6,

7], once again emphasizing the importance of collaborations between theoretical and

experimental studies.
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Chapter 4

Conclusions

A wide spectrum of intriguing phenomena in modern physics, such as the quantum

Hall or Bohm-Aharonov effects, gauge invariance and topological phases, is rooted in

the coupling of electric charge to magnetic fields. However, it mostly includes quantum

many-body systems, which noticeably makes the research and understanding harder. On

one hand, phenomena in which the quantum nature of a system is essential are hard to

experimentally address, because they often require matter subjected to quite extreme

conditions. For example, extremely high magnetic fields and low temperatures, or highly

complicated structural designs. On the other hand, quantum many-body systems are

nearly impossible to theoretically address or simulate on classical computers, due to the

needed computer memory exponential dependence on the number of constituents.

The recognition of such a puzzling situation is certainly not new. It was in 1982. that

Feynman proposed the brilliant solution involving the concept of controllable quantum

simulators [8]. Only more recently, however, following the experimental advances in

the control of systems as ultracold atomic gases [9, 10] and photonic structures [11–13],

Feynman’s idea is finally brought to reality. As new methods for synthetic magnetism

are developed, neutral atoms and photons are governed to realize and simulate various

fascinating phenomena, typically emergent only in elusive states of matter. Still, many

significant aspects of correlated quantum many-body phases are yet to be discovered and

understood.

The contribution of the work presented in this thesis is twofold. The first part focuses

on the role of synthetic magnetism in the research of topological phases [1, 2]. The latter

are nowadays causing a lot of excitement, due to their fascinating emergent behavior,

which opens the way for diverse technological applications. As a consequence of a rather

79



Chapter 4. Conclusions

special quantum order - the topological order, phenomena such as protected surface states

or excitation with fractional quantum numbers emerge. Arguably their key aspect is

the robustness, particularly of interest in the context of quantum computation. We

have considered two systems in which highly elusive topological emerging phenomena

occur, and their relation to (synthetic) magnetism. By taking advantage of tunable

synthetic magnetic fields, we have pointed out how topological phases that otherwise rely

on complicated space groups and are thus hardly obtainable, such as Weyl semimetals,

can be realized in simple lattice geometries. Namely, we have shown that Weyl points

can be experimentally addressed in an experimentally viable ultracold atomic lattice with

laser assisted tunneling [1]. As expected, this resulted in emergent surface states in the

form of Fermi arcs. Moreover, the consideration of laser assisted tunneling in the presence

of pointlike strong interactions, presented in the second part of the thesis, introduces a

general pathway for investigating the possibility of realizing exotic topological phases with

interacting ultracold atomic gases in synthetic magnetic fields. We have also considered

the realization and detection of a state with fractional statistic in an ultracold atomic

gas. We have demonstrated how standard methods and understanding have to be taken

with caution when studying topological matter via quantum simulation and synthetic

magnetism. Ultracold atomic systems can emphasize the intriguing aspects associated

with extracting relevant observables from systems with fractional statistics. Specifically,

we have pointed out that the momentum distribution, one of the key signatures of quantum

states of matter, is not a proper observable for a system of anyons because orthogonal

components of kinetic momentum do not commute [2]. As a substitute for the momentum

distribution of a spatially localized anyonic state, we have proposed to use the asymptotic

single-particle density after expansion of anyons in free space from the state, which is

justified by the correct bosonic/fermionic limits and examples of expansion dynamics

obtained by exact calculations.

The second part of the thesis discusses our proposals of new methods for introducing

synthetic magnetism in atomic and photonic systems [3–7]. We have shown that drawing

analogies between different physical systems can yield new ideas in synthetic magnetism,

which enables addressing intriguing topological phases and beyond. Namely, we have

proposed a grating assisted tunneling scheme that introduces tunable synthetic magnetic

fields in a photonic lattice [3]. It is inspired by laser assisted tunneling in lattices of
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quantum gases, nevertheless without problems due to heating by spontaneous emission.

We have confirmed the validity of the proposed grating assisted tunneling method by a

direct comparison of the light propagation in the continuous system, which realizes conical

diffraction, and the evolution in a discrete model with nontrivial hopping phases. We stress

out that this approach can open the way for a general mapping of light propagation in

tailored dielectric structures to intriguing discrete models, such as the Harper-Hofstadter

Hamiltonian. In an atomic environment, such an approach enabled our investigation of

the applicability of laser assisted tunneling in the presence of strong interactions, and

we have confirmed its applicability for a Tonks-Girardeau gas in a 1D optical lattice [4].

Although the high-frequency approximation yields the correct effective Hamiltonian for the

stroboscopic evolution in this specific example, our work emphasizes how direct mapping

of continuous systems to discrete models via numerical ’experiments’ can open the way to

the study of states where simple approximations are not necessarily applicable. Finally,

we have extended the concept of simulation to complex classical, rather than quantum,

systems in the presence of magnetism. Examples include complex astrophysical objects

and stars. We have proposed a method for creating a synthetic Lorentz force in a classical

ultracold atomic gas, based on the Doppler effect and radiation pressure in two-step two-

photon transitions that yield a force orthogonal to the atomic velocity [5]. The theoretical

proposal was followed by a collaboration with an experimental group, which yielded the

experimental proof of the method for a cold atomic cloud in a magneto-optical trap [6, 7].

...................................
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Pro²ireni saºetak

1 Uvod

Kolektivno ponašanje velikog broja kvantnih čestica dovodi do nekih od najsloženijih i

zanimljivih pojava, kao što su supravodljivost, suprafluidnost ili Bose-Einesteinova kon-

denzacija. Međutim, razumijevanje i predviđanje razvoja kvantnih višečestičnih sustava

izuzetno je zahtjevno, čak i u slučajevima kada su svi zakoni koji vladaju jednočestičnim

ponašanjem poznati. S jedne strane, eksperimentalna dostupnost zanimljivih pojava u

kvantnim sustavima znatno je otežana ekstremnim uvjetima koje takva stanja zahtijevaju

(npr. niske temperature). S druge strane, uobičajen pristup prema kojem se višečestični

sustavi numerički simuliraju na klasičnim računalima nije primjenjiv u slučajevima u ko-

jima je kvantna priroda sustava izražena. Naime, broj stupnjeva slobode kvantnih sustava

čestica eksponencijalno je ovisan o njihovom broju. Računalna memorija koja je potrebna

za opisivanje i rješavanje toga sustava, dakle, eksponencijalno raste s brojem čestica u

sustavu. Zbog toga je numerički pristup u slučaju kvantnih pojava ograničen na sustave s

malim brojem čestica.

Richard Feynman je 1982. godine uveo ideju korištenja kontrolabilnih fizikalnih sustava

za simuliranje željenih kvantnih pojava [8]. Kao rješenje problema s kojim se klasična

računala susreću u slučajevima kvantnih višečestičnih sustava, predložio je koncept kvant-

nih simulatora. Točnije, Feynman je predložio korištenje visoko kontrolabilnih kvantnih

sustava koji su pažljivo prilagođeni na način da u potpunosti oponašaju (simuliraju) že-

ljeni kvantni višečestični sustav, te njegove pojave koje bi u protivnom ostale skrivene i

nerazjašnjene.

U tom kontekstu, posljednjih godina veliku pozornost privlači fleksibilnost ultrahlad-
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nih atomskih plinova i fotoničkih sustava [9–13]. Njihova efektivna dimenzionalnost može

se kretati od jedne do tri dimenzije. Atomi u ovim rijetkim hladnim plinovima [9, 10]

mogu pripadati bozonskoj ili fermionskoj statistici. Zbog raznolike prostorne ovisnosti

energije, podrijetlom od okolnih magnetskih polja i laserske svjetlosti, atomi mogu biti za-

točeni u harmoničkim, periodičkim ili iskrivljenim potencijalima. Međudjelovanje između

atoma moguće je namjestiti korištenjem raspršenja svjetlosti. U fotoničkim kristalima [11],

ponašanje fotona određeno je strukturom kristalnih vrpci na isti način kao i elektron-

sko ponašanje u uobičajenim materijalima. Krojenjem dielektričnih struktura kroz koje

se svjetlost propagira, fotonima se može oponašati elektrone u raznolikim zanimljivim

stanjima.

Međutim, i atomi i fotoni električki su neutralne čestice, te kao takve ne mogu izravno

reproducirati magnetske pojave. S druge strane, široki raspon intrigantnih pojava u mo-

dernoj fizici, kao što su baždarna invarijantnost ili kvantni Hallov i Aharonov-Bohm efekt,

proizlaze upravo iz vezanja elektromagnetskih polja i nabijenih čestica. Postoji stoga

veliko zanimanje za pronalazak umjetnih (sintetskih) magnetskih polja za atome i fotone,

odnosno okruženja u kojem se neutralni atomi i fotoni ponašaju po istim zakonima kao

nabijene čestice u magnetskim poljima. U klasičnim sustavima, radi se ponajprije o Loret-

zovoj sili. U kvantnim sustavima, kao ključne značajke izdvajaju se pojava geometrijskih

faza (Aharonov-Bohm faza [15] i Peierlsova substitucija [16]).

Pristup i način stvaranja sintetskog magnetskog/baždarnog polja usko je vezan uz

konkretan sustav o kojemu se radi. Prva sintetska magnetska polja za atome dobivena

su pri brzoj rotaciji Bose-Einstein-kondenziranih atomskih plinova, korištenjem analogije

između Coriolisove i Loretzove sile [17, 18]. U narednim godinama, pokazano je da se

umjetna magnetska polja za neutralne atome mogu dobiti iz njihovog međudjelovanja sa

svjetlošću u posebno krojenim laserskim poljima [19, 21, 22]. U tom slučaju, mehanizam se

temelji na analogiji Aharonov-Bohmove faze [15] pri gibanju nabijene čestice u magnetskom

polju, i Berryjeve faze [20] pri adijabatskom gibanju atoma u laserskom polju [19, 21,

22]. U optičkim rešetkama, metode za stvaranje sintetskih magnetskih polja uključuju

kompleksne matrične elemente tuneliranja između čvorova rešetke [23–27]. Netrivijalne

faze kompleksnih matričnih elemenata tuneliranja atoma, dobivene primjerice trešnjom ili

tzv. laserski potpomognutim tuneliranjem, pri tom se interpretiraju kao Peierlsove faze [16].

Sličan pristup, te analogija s Peierlsovim fazama matričnih elemenata tuneliranja, za
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stvaranje sintetskih magnetskih polja koristi se i u fotoničkim sustavima [28–30, 30, 31, 31–

37, 39, 40].

2 Topolo²ka materija pomo¢u sintetskog magnetizma

Dijelovi ovoga poglavlja objavljeni su i u sljedećim radovima:

• T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan,

Phys. Rev. Lett. 114, 225301 (2015).

• T. Dubček, B. Klajn, R. Pezer, H. Buljan, and D. Jukić,

Physical Review A Rapid Communication, prihvaćeno.

Magnetizam se povijesno pokazao i kao odlična nit vodilja u potrazi za tzv. topološkim

fazama. Topološko uređenje vrsta je uređenja koje se pojavljuje u kvantnim fazama tvari

s energetskim procjepom i robusnom degeneracijom osnovnog stanja [14, 66]. Topološka

stanja odlikuju se značajkama koje su topološki netrivijalne. Značajke su nevezane za

lokalne parametre uređenja, odnosno zaštićene su od lokalnih deformacija, i moguće ih

je detektirati isključivo kroz pojavu proizlazećih fenomena, kao što je pojava zaštićenih

rubnih stanja [66]. Faze s intrinsičnim topološkim uređenjem pojavljuju se u jako međudje-

lujućim kvantnim višečestičnim sustavima, a dosad su uočene u necjelobrojnom kvantnim

Hallovim sustavima [67–69], te u kvantnim spinskim tekućinama [70, 71]. U ovim stanjima

prisutna je dugodosežna kvantna prepletenost, a osim rubnih stanja u njihovoj unutraš-

njosti pojavljuju se pobuđenja necjelobrojnog naboja i statistike [14]. Nešto trivijalnija

vrsta topoloških stanja pripada tzv. simetrijski zaštićenim topološkim fazama [66, 75],

koje uključuju topološke izolatore, topološke supravodiče, Diracove i Weylove polumetale.

U ovim sustavima, topološka netrivijalnost zaštićena je isključivo od lokalnih deforma-

cija koje ne ruše prisutnu globalnu simetriju, te oni nisu okarakterizirani dugodosežnom

kvantnom prepletenošću.

2.1 Weylove to£ke u 3D opti£kim re²etkama

U relativističkoj kvantnoj teoriji polja postoje tri vrste fermiona: Diracovi fermioni,

Majoranini i Weylovi fermioni. Weylovi fermioni, koji su opisani tzv. Weylovim hamiltoni-

janom HWeyl = ~σ·~k, gdje je ~σ vektor Paulijevih matrica i ~k trodimenzionalni impuls, nisu
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nikad opaženi u fizici elementarnih čestica. Posljednjih godina javilo se veliko zanimanje

za Weylove polumetale—simetrijski zaštićene topološke sustave, u kojima se niskoenerget-

ski elektroni ponašaju kao Weylovi fermioni. U ovim materijalima javljaju se zaštićena

rubna stanja, čije se disperzije sijeku na tzv. Fermijevim lukovima. Osim fundamental-

nog značaja Weylovih fermiona i pripadnih pojava kao što je Adler-Bell-Jackiw kiralna

anomalija, topološka rubna stanja Weylovih polumetala značajna su i s aspekta eventu-

alne primjene za kvantna računala [72–74]. Za realizaciju Weylovih fermiona, međutim,

potrebno je udovoljiti simetrijskim zahtjevima, odnosno imati narušenje vremenske i/ili

prostorne obrativosti. Zbog toga je potraga za takvim sustavima poprilično zahtjevna.

Prvi sustav u kojemu su Weylove točke predložene [100] i realizirane [106] bio je žiroidni

fotonički kristal. Slijedile su realizacije u čvrstostanjskim sustavima [111, 112], a javilo se

i nekoliko prijedloga u onim hladnoatomskim [107–110]. U svakome od primjera, radilo

se o sustavima s kompliciranim geometrijskim značajkama.

U ovom radu predlažemo korištenje kontrolabilnosti i fleksibilnosti kvantnih plinova sa

sintetskim magnetskim poljima, odnosno eksperimentalno dostupnu realizaciju Weylovog

hamiltonijana u jednostavnoj kubičnoj optičkoj rešetci s laserski-potpomognutim tune-

liranjem [1]. Laserski-potpomognuto tuneliranje [24, 25] jedna je metoda za stvaranje

sintetskih magnetskih polja i uvođenja netrivijalnih faza kompleksnih matričnih elemenata

tuneliranja u optičkim rešetkama. Dvodimenzionalna varijanta ovoga sustava relativno

je nedavno korištena u realizaciji Harper-Hofstadterovog hamiltonijana. Rad donosi pri-

jedlog za njegovu izravnu trodimenzionalnu generalizaciju, u čijoj se disperziji predviđa

pojava Weylovih točaka—točaka u kojima se dvije vrpce sijeku linearno u sva tri smjera.

Ukazujemo kako hladni atomski plinovi pružaju jedinstvenu mogućnost za eksperimetalno

opažanje ovakve disperzije, kroz slobodnu ekspanziju u obliku sfernih ljuski. Weylove

točke predstavljaju sintetske magnetske monopole u Brillouinovoj zoni, što je direktno

potvrđeno izračunom Berryijeve zakrivljenosti. Razmatranjem rešetke koja je konačna

duž jednog smjera u prostoru, pokazujemo pojavu rubnih stanja. Izračunom njihove dis-

perzije, eksplicitno dobivamo oblik Fermijevih lukova u trodimenzionalnoj Brillouinovoj

zoni predloženog sustava. Konačno, dajemo konkretne prijedloge za potvrdu svi navede-

nih karakteristika u eksperimentalnoj realizaciji, korištenjem dvije uobičajene tehnike za

hladne atomske plinove: Braggova spektroskopija [120], te akceleracija oblaka u smjeru

Weylove točke i prijelaz u višu vrpcu [119].
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2.2 Necjelobrojna statistika u hladnom atomskom plinu

Postojanje dugodosežne kvantne prepletenosti u sustavima s intrinsičnim topološkim

uređenjem vodi do pojave egzotičnih kvantnih kvazičestičnih pobuđenja u njihovoj unu-

trašnjosti [66]. U dvodimenzionalnim sustavima, čestice koje se pojavljuju opisane su

necjelobrojnom statistikom i nazivaju se anyoni. Paradigmatična realizacija anyona

javlja se u necjelobrojnom kvantnom Hallovom efektu [67, 96], gdje lokalizirana kva-

zičestična pobuđenja imaju necjelobrojni naboj i statistiku. Kvantne spinske tekućine

drugi su primjer sustava koji realizira anyonske kvazičestice kroz realizaciju Kitaevog

modela [70, 71]. Statistika anyona interpolira između one bozonske i fermionske, zbog

čega se pri zamjeni dvaju čestica u višečestičnoj valnoj funkciji ψ pojavljuje netrivijalna

faza ψ(. . ., ri, . . ., rj, . . ., t)=eimπαψ(. . ., rj, . . ., ri, . . ., t), gdje je 0 < α < 1 tzv. statis-

tički parametar, a ri dvodimenzionalne koordinate čestica. Na neke od intrigantnih

kvantno-mehaničkih posljedica necjelobrojne statistike ukazano je već prije nekoliko de-

setljeća [123, 124], kroz intuitivnu sliku kompozitnih čestica, no dio ih ostaje nerazjašnjen

još i danas. Sintetski magnetizam i ultrahladni atomski plinovi, te kontrolabilnost i

fleksibilnost koje pružaju, postavljaju se vrlo perspektivan put za proučavanje problema

anyona [128–133]. Realizacija jednodimenzionalne varijante anyona u optičkim rešetkama

također je privukla pozornost[139–142]. U kontekstu novih eksperimentalnih realizacija

anyonskih sustava, neosporno bitan sastojak jest njihova detekcija.

U ovome radu razmatramo slobodnu ekspanziju Abelovih anyona u 2D [2]. Slobodna

ekspanzija jedna je od najkorištenijih metoda za detekciju u hladnim atomskim plinovima

i optičkim rešetkama [9]. U uobičajenim sustavima ultrahladnih bozona i fermiona, slo-

bodna ekspanzija pokazuje raspodjelu impulsa u početnom kvantnom stanju. Raspodjela

impulsa jedna je od kjlučnih karakteristika svakog kvantnog stanja te se, primjerice, povi-

jesno pokazala kao ključan potpis Bose-Einsteinove kondenzacije ili Fermijeve degeneracije

u zatočenom hladnom plinu [150, 151]. Međutim, u radu ukazujemo kako za sustave s

necjelobrojnom statistikom raspodjela impulsa nije prikladna opservabla. Naime, višez-

načnost anyonske valne funkcije preslikava se i na višeznačnost raspodjele impulsa koja bi

se dobila standardnom definicijom. Shvate li se anyoni kao Wilczekove kompozitne čestice,

koje se sastoje od točkastog naboja i beskonačno uskog magnetskog toka, okomite kompo-

nente kinetičkog impulsa međusobno ne komutiraju te ne mogu biti dijagonalizirane u istoj
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bazi. Kao rješenje predlažemo uvođenje tzv. raspodjele kvaziimpulsa, za koju pokazujemo

da je vremenski neovisna te poprima očekivani oblik u bozonskoj/fermionskoj granici ili

granici velikih vremena. Slaganje eksplicitno pokazujemo za sustav dva anyona zatočena u

harmoničkom potencijalu. Uporabom Monte-Carlo integracije dobivamo i konkretan oblik

raspodjele kvaziimpulsa za sustav od 20 anyona u harmoničkoj klopci, iz kojega se jasno

vidi utjecaj statističkog parametra α. Nadalje, pokazujemo ovisnost dvočestičnih korela-

cija u sustavu anyona u ovisnosti o statističkom parametru. Konačno, dajemo prijedlog

eksperimentalne implementacije ovakvog sustava s ultrahladnim atomskim plinovima.

3 Potraga za sintetskim magnetizmom

Dijelovi ovoga poglavlja objavljeni su i u sljedećim radovima:

• T. Dubček, K. Lelas, D. Jukić, R. Pezer, M. Soljačić, and H. Buljan,

New J. Phys. 17, 125002 (2015).

• K. Lelas, N. Drpić, T. Dubček, D. Jukić, R. Pezer, and H. Buljan,

New J. Phys. 18, 095002 (2016).

• T. Dubček, N. Šantić, D. Jukić, D. Aumiler, T. Ban, and H. Buljan,

Phys. Rev. A 89, 063415 (2014).

• N. Šantić, T. Dubček, D. Aumiler, H. Buljan, and T. Ban,

Sci. Rep. 5, 13485 (2015).

• N. Šantić, T. Dubček, D. Aumiler, H. Buljan, and T. Ban,

Opt. Soc. Am. B 34, 1264 (2017).

Magnetizam i magnetske pojave privlačile su ljudsku pozornost još od davnina. Nakon

što je u devetnaestom stoljeću zaokružena Maxwellova klasična teorija elektromagnetizma,

otkriće kvantne mehanike dovelo je do novih mogućnosti i pitanja. Još i danas, neka od

njih nisu u potpunosti razjašnjena. Kvantni simulatori i sintetski magnetizam otvaraju

put proučavanju kvantnih magnetskih pojava. Vrlo često, ključni korak na tome putu jest

odabir prikladne metode za stvaranje sintetskog magnetizma koja će omogućiti realizaciju

ciljanih složenih pojava. S takvom motivacijom, u ovome poglavlju, razmatraju se i
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predlažu nove metode za uspostavu sintetskog magnetizma u fotoničkim i atomskim

sustavima [3–7].

3.1 Re²etkom-potpomognuto tuneliranje u fotoni£koj re²etci

Sintetski magnetizam u fotoničkim sustavima pokazao se kao jedinstven alat za re-

alizaciju topoloških stanja i faza [28–31, 33, 34, 36, 37, 41–44, 100, 105, 160]. Bitan je

stoga razvoj metoda za postizanje sintetskih magnetskih polja u konkretnim sustavima

o kojima se radi. Strategije bazirane na modulaciji, magneto-optičkom vezanju ili poseb-

nim geometrijama, dosad su korištene za vezane optičke rezonatore, fotoničke kristale i

metamaterijale. Međutim, metoda koja bi omogućila postizanje uskladljivih kompleksnih

matričnih elemenata tuneliranja za optičke rešetke nije razvijena.

U ovom radu, uvodimo jednu takvu metodu—tzv. rešetkom-potpomognuto tunelira-

nje [3], te predlažemo njegovu implementaciju u optički induciranim fotoničkim rešet-

kama [161–165]. Metoda je inspirirana prethodno spomenutim laserski-potpomognutim

tuneliranjem u optičkim rešetkama [24, 25]. Uspostavu sintetskog magnetizma pokazu-

jemo direktnom usporedbom evolucije u kontinuiranoj fotoničkoj rešetci s dinamikom u

diskretnoj rešetci s netrivijalnim fazama matričnih elemenata tuneliranja. Točnije, po-

kazujemo da jedno i dvodimenzionalne fotoničke rešetke mogu dovesti do tzv. konične

difrakcije [37, 167]—potpisa realizacije Harper-Hofstadterovog hamiltonijana.

3.2 Laserski-potpomognuto tuneliranje u TG plinu

Uvođenje međudjelovanja u kvantne sustave često dovodi do jako-koreliranih višečes-

tičnih stanja. Međudjelovanje može znatno obogatiti proizlazeću fiziku, te uzrokovati

zanimljive posljedice. U okviru topoloških stanja, primjerice, pokazano je da interakcije

mogu dovesti i do faznih prijelaza. Nedavnim eksperimentalnim napretkom u kontroli

atomskih plinova, u kojima se međudjelovanje može mijenjati korištenjem raspršenja

svjetlosti, omogućena je koherentna manipulacija višečestičnim stanjima i njihovom di-

mamikom. Sintetski magnetizam, međutim, u ovim sustavima uglavnom se uvodi nekim

oblikom periodičnog tjeranja [23, 24, 26], što u kombinaciji s međudjelovanjem tijekom evo-

lucije dovodi do termalizacije na efektivno beskonačnoj temperaturi [170–175]. Posljedice

kombinacije međudjelovanja i periodičkog tjeranja, stoga, mogu imati značajan utjecaj
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na primjenjivost uobičajenih metoda za stvaranje sintetskog magnetizma u kvantnim

sustavima.

U ovom radu proučavamo metodu laserski-potpomognutog tuneliranja za stvaranje

sintetskih magnetskih polja u jednodimenzionalnim bozonskim plinovima s kontaktnim

interakcijama—tzv. Tonks-Girardeau plinovima [4]. Poglavlje započinjemo s uvođenjem

posljedica koje međudjelovanje i periodičko tjeranje imaju u kvantnim višečestičnim susta-

vima. Zatim slijedi razmatranje utjecaja na sintetski magnetizam u jako međudjelujućim

bozonskim plinovima, gdje pokazujemo da stroboskopska dinamika Tonks-Girardeau plina

s laserski-potpomognutim tuneliranjem efektivno realizira osnovno stanje jednodimenzi-

onalnih neprobojnih bozona na diskretnoj rešetci s netrivijalnim fazama preskoka.

3.3 Sintetska Lorentzova sila za hladni plin

Većina metoda za stvaranje sintetskih magnetskih polja za atome dizajnirana je kori-

štenjem adijabatske evolucije u ultrahladnim kvantno-degeneriranim atomskim plinovima,

a sintetski magnetizam u klasičnim sustavima gotovo je u potpunosti zanemaren. Me-

đutim, i među klasičnim sustavima s magnetskim interakcijama javljaju se primjeri koji

su dovoljno složeni da predviđanje njihova ponašanja postaje prezahtjevno i za najjača

super-računala. Primjerice, kompleksni astrofizički objekti ili plazme. U klasičnim atom-

skim plinovima, shema za stvaranje sintetskog magnetskog polja mora biti primjenjiva

na atome s relativno velikim brzinama, zbog čega su standardne metode vezane uz adi-

jabatsku evoluciju ograničene. Nadalje, zbog relativno velikih volumena koje zauzimaju

, magnetska sila mora biti relativno uniformna i jaka na područjima od barem nekoliko

kubnih milimetara. S druge strane, zbog relativno velikih temperatura, spontana emisija

fotona prihvatljiva je.

S ovim smjernicama, predlažemo metodu za stvaranje sintetske Lorentzove sile koja

se zasniva na Dopplerovom efektu i tlaku zračenja [5]. Ovaj teorijski prijedlog popraćen

je suradnjom s eksperimentalnom grupom na Institutu za fiziku, iz koje proizlazi ekperi-

mentalna potvrda sintetičke Loretzove sile [6, 7]. U ovom radu, kratko dajemo pregled

glavnih ideja, te zatim i rezultata spomenute suradnje.

90



Poglavlje 5 Prošireni sažetak

4 Zaklju£ak

Ovaj rad teorijski se bavi problemom sintetskih magnetskih polja za atome i fotone.

Doprinos je okrenut u dva smjera. Prvi dio rada usredotočen je na ulogu sintetskog

magnetizma u istraživanju topoloških faza [1, 2]. U posljednje vrijeme ovo područje iz-

aziva veliko zanimanje, ponajprije zbog fascinantnih pojava kao što su zaštićena rubna

stanja i necjelobrojni kvantni brojevi. Vjerojatno ključna karakteristika upravo je njihova

robusnost, koja je posebice od značaja za primjenu u kvantnom računanju. Razmatrali

smo dva sustava u kojima se javljaju teško dostižni topološki fenomeni, te njihovu vezu

sa (sintetskim) magnetizmom. Koristeći prednosti sintetskih magnetskih polja, pokazali

smo kako se topološke faze koje u protivnom zahtjevaju komplicirane prostorne grupe

i zbog toga su teško dohvatljive, mogu realizirati u jednostavnim rešetkama. Točnije,

predložili smo eksperimentalnu realizaciju Weylovih točaka, te vezanih pojava, u optičkoj

rešetci s laserski-potpomognutim tuneliranjem [1]. Također, razmotrili smo i realizaciju

te detekciju stanja s necjelobrojnom statistikom u hladnom atomskom oblaku. Pokazali

smo kako se uobičajenim metodama i razumijevanju mora oprezno pristupati pri istraživa-

nju topoloških stanja uz pomoć kvantne simulacije i sintetskog magnetizma. Ultrahladni

atomski sustavi tako naglašavaju zanimljive aspekte vezane uz izvlačenje relevantnih op-

servabli kod necjelobrojne statistike. Točnije, ukazali smo kako raspodjela impulsa, jedan

od ključnih potpisa kvantnih stanja, nije primjerena opservabla u sustavu anyona, u kojem

okomite komponente kinetičkog impulsa ne komutiraju [2]. Predložili smo alternativnu op-

servablu koja u granicama odgovara ispravnoj raspodjeli, te pokazali kako se necjelobrojna

statistika može raspoznati i iz dvočestičnih korelacija anyona u harmoničkom oscilatoru.

Drugi dio rada bavi se prijedlozima novih metoda za uvođenje sintetskog magnetizma

u atomskim i fotoničkim sustavima [3–7]. Pokazali smo da povlačenje analogija između

različitih fizikalnih sustava može dovesti do novih ideja u sintetskom magnetizmu, što

otvara put prema zanimljivim topološkim fazama i drugim pojavama. Predložili smo tzv.

rešetkom-potpomognuto tuneliranje kao način za uvođenje podesivih sintetskih magnetskih

polja u fotoničkim rešetkama [3]. Potvrdili smo ispravnost ove metode direktnom uspored-

bom propagacije svijetlosti u kontinuiranom sustavu, u kojemu dolazi do konične difrakcije,

i evolucije u diskretnom modelu s netrivijalnim fazama preskoka. Naglasili smo kako ova-

kav pristup vodi na mogućnost generalnog preslikavanja širenja svjetlosti u dielektričnim
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strukturama na intrigantne diskretne modele, kao što je Harper-Hofstadterov hamilto-

nijan. Isti pristup omogućio nam je ispitivanje primjenjivosti laserski-potpomognutog

tuneliranja u prisustvu jakih interakcija, što smo i potvrdili za slučaju Tonks-Girardeau

plina u jednodimenzionalnoj rešetci [4]. Konačno, proširili smo koncept simulacije i na

klasične, a ne kvantne, sustave u prisustvu sintetskog magnetizma. Dali smo prijedlog

metode za stvaranje sintetske Lorentzove sile u klasičnim hladnim atomskim plinovima,

koja se zasniva na Dopplerovom efektu i tlaku zračenja kod dvokoračnih dvofotonskih

prijelaza, čime se postiže sila okomita na brzinu [5]. Teorijski prijedlog popraćen je su-

radnjom s eksperimentalnom grupom, čime je ideja dokazana za hladni atomski plin u

magneto-optičkoj zamci [6, 7].
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