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1   INTRODUCTION 

1.1   Colorectal cancer 

Colorectal cancer (CRC) is the third most common malignancy and the fourth leading 

cause of death in the global human population, accounting for about 1.4 million new cases and 

almost 700 000 deaths in 2012 worldwide (Ferlay et al, 2015). These numbers are expected to 

annually increase to more than 2.2 million new cases and 1.1 million cancer deaths by 2030 

worldwide (globocan.iarc.fr 2017). 

Colorectal cancer is a result of multiple risk factors that co-occur and interact. They 

include sociodemographic factors, such as old age and male sex (Brenner et al, 2014), family 

history of CRC (Taylor et al, 2010), predisposing diseases like inflammatory bowel disease 

(Jess et al, 2012), obesity (Ma et al, 2013) or diabetes (Jiang et al, 2011), lifestyle and 

environmental factors such as smoking (Liang et al, 2009), excessive alcohol consumption 

(Fedirko et al, 2011) and high consumption of red and processed meat (Chan et al, 2011) or the 

intestinal microbiota (Lucas et al, 2017). Within the microbiota, colonization with Bacteroides 

fragilis or Fusobacterium spp has also been implicated in CRC growth (Brenner et al, 2014). 

These risk factors can promote a sporadic onset of CRC which is the case for about 90% of all 

CRC cases (Lucas et al, 2017). As previously mentioned, also familial inheritance for CRC can 

occur, which accounts for approximately 10% of all cases. Depending on inherited genetic 

alterations involved, it is possible to distinguish two main forms of hereditary CRC – Lynch 

syndrome (hereditary non-polyposis colorectal cancer; mutations in DNA mismatch repair) and 

familial adenomatous polyposis (germline mutations in the APC gene) (Lucas et al, 2017).  

1.1.1   Molecular pathogenesis 

All of the above mentioned causes of  CRC can lead to genetic instability, reduced DNA 

integrity and subsequently to the loss of DNA stability which allows the accumulation of 

mutations (Terzic et al, 2010). Somatic mutations in defined genes are required to initiate and 

promote CRC development along the adenoma-carcinoma sequence (Fig 1.). Among the 

earliest events occurring in CRC are mutations in the tumor suppressor gene adenomatous 

polyposis coli (APC). Progression to malignancy is further promoted by activating mutations 

in the Kirsten rat sarcoma viral oncogene homolog (KRAS) and inactivating mutation of tumor 

protein p53 (TP53), a tumor suppressor gene. Additionally, mutations in the v-Raf murine 

sarcoma viral oncogene homolog B (BRAF) with CpG island methylator phenotype, as well as 
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MutL homolog 1 (MLH1) gene promoter methylation which leads to high levels of 

microsatellite instability, are also causes for CRC development (Brenner et al, 2014). 

Therefore, loss of control of cell proliferation, unlimited cell growth and hence tumor 

development are orchestrated by mutations in a variety of genes which are introduced over time.  

CRC development begins with the formation of a hyper-proliferative intestinal 

epithelium, which thereby loses its cellular organization and consequently structure and 

ultimately leads to the formation of benign polyps or adenomas (Fig 1.). Some of these 

adenomas develop into adenocarcinoma while accumulating more genetic mutations, which can 

take up to 10 years. Later on, cancerous cells may invade surrounding tissue even further, 

reaching lymph nodes or blood vessels and leading to metastasis to the liver and/or the lung 

(Davies et al, 2005). 

 

1.2   Immune system 

Once a tumor is established, processes to evade recognition by the host immune system 

are activated. The immune system is a host defense system which uses a complex array of 

protective mechanisms in order to control and eliminate pathogenic organisms, infectious 

agents, toxins or cancer cells. The immune system is conceptually divided into two parts – the 

innate immune system and the adaptive immune system (humoral or cell-mediated), both of 

which have characteristic features.  

Innate immunity involves rapid immune responses after a pathogen is encountered and 

therefore leads the host’s initial response. In the intestine, it comprises various physical barriers 

(epithelial or mucus layers), soluble proteins and biomolecules (cytokines, chemokines, 

Figure 1. Adenoma-carcinoma sequence. Somatic mutations lead from hyper-proliferative epithelium 
to adenomas, adenocarcinomas and ultimately cancer (hopkinscoloncancer.org 2017) 
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complement proteins) as well as membrane-bound or cytoplasmic receptors which bind 

molecular patterns expressed on surfaces of microbes. Cells included in innate immune 

response are neutrophils, basophils, eosinophils, dendritic cells, natural killer (NK) cells and 

monocyte-derived macrophages (Chaplin, 2010).  

In addition, adaptive immunity leads to a slower, but more targeted response. It depends 

on antigens presented by antigen presenting cells (APCs), which are recognized by B and T 

lymphocytes in the context of major histocompatibility (MHC) molecules (Pecorino, 2012). 

MHC molecules are cell surface glycoproteins that bind fragments of proteins that have either 

been synthesized within the cell (MHC class I, MHCI) or ingested by the cell and proteolytically 

processed (MHC class II, MHCII). These mentioned lymphocytes express respective antigen-

specific receptors that are encoded by genes assembled through somatic rearrangement of germ-

line gene elements. In this way, the immune system creates a great variety of antigen receptors, 

each with potentially unique specificity for a different antigen (Chaplin, 2010).  

However, T and B lymphocytes respond differently upon antigen recognition. Main 

functions of B cells are to synthesize and secrete antibodies, therefore contributing to humoral 

immunity. In contrast, T cells, specifically CD8+ cytotoxic T cells (CTLs) and CD4+ T helper 

cells (Th1, Th2, Th17, regulatory T cells), are responsible for cell-mediated immunity and 

mostly eliminate virally infected cells and tumor cells. They are activated through a broad 

spectrum of transmembrane heterodimeric proteins called T cell receptors (TCRs). 

Additionally, TCRs require accessory chains (CD3) which allow signal transduction after 

antigen recognition, leading to the activation of T cells. Activated T cells release perforins or 

granzymes, and express ligands for death receptors on the target cells. Because of high 

specificity and strict control of T cell activation and host-pathogen discrimination, cytotoxic T 

cell responses are considered as one of the most important anti-tumor defenses of the body 

(Pecorino, 2012). On the other hand, as inflammation is one of the main drivers of cancer 

development, active T cells can also exert protumorigenic functions by establishing and 

maintaining inflammatory tumor environment. Therefore, the immune system is an important 

regulator of tumor growth. 

1.2.1   Immunosurveillance, immunoediting and immune escape 

When the immune system recognizes and eliminates primary developing tumors, 

immunosurveillance takes place. It is expected that the immune system can recognize tumor-

specific antigens (molecules that are unique to cancer cells) or tumor-associated antigens 
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(molecules that are differently expressed in cancer and healthy cells) and start to eliminate the 

tumor cells (Pecorino, 2012).  It has been shown that components of both the adaptive and the 

innate immune system are involved in immunosurveillance (Marcus et al, 2014). Means of 

action depend on tumor’s origin, mechanism of transformation, anatomic localization and 

mechanism of immunological recognition (Dunn et al, 2004).  

Tumors can escape or limit immunosurveillance and even shift the immune response to 

a tumor-promoting role. This concept was termed immunoediting due to the fact that cancer 

cells are constantly able to modulate and edit the host’s anti-tumor immune response (Pecorino, 

2012). This is facilitated by a specific tumor microenvironment which is characterized by a 

chronic intrinsic inflammatory response that leads to the recruitment of various innate and 

adaptive immune cells (Grivennikov et al, 2010). Their abundance and activation state as well 

as the expression of various immune mediators and modulators dictate whether the immune 

cells will drive tumor-promoting inflammation or anti-tumor immunity.  

The immune cells most frequently found within the tumor microenvironment are tumor 

associated macrophages (TAMs) and T lymphocytes (Grivennikov et al, 2010). TAMs usually 

promote tumor growth and are considered important for angiogenesis, invasion and metastasis 

(Condeelis i Pollard, 2006). On the other hand, T cells can exert both tumor-suppressive and 

tumor–promoting effects. The presence of activated CTLs or Th1 cells correlates with better 

survival in some cancers such as colon cancer or melanoma. However, many of the same T cell 

subsets are also involved in tumor promotion, progression or metastasis in other types of 

cancers. (Grivennikov et al, 2010). On the other hand, it is known that Th17 cells and its 

secreted interleukins have a prominent role in early stages of CRC development as shown in 

CRC patients with elevated levels of IL-17A which had a drastic reduction in survival rates 

(Formica et al, 2014; De Simone et al, 2013; Tosolini et al, 2011). Therefore, modulating T 

cell activation within the tumor microenvironment has been rapidly studied in the past years 

and shall further be explained. 
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1.2.2   The role of co-stimulatory and co-inhibitory molecules in T cell activation 

In order to activate T cells, two stimuli are required. First, the before mentioned 

TCR/CD3 complex is able to interact with antigens only in the context of MHC molecules. 

However, this interaction provides only a partial signal for T cell activation. The second signal 

originates from interactions of the CD28 family of receptors on T cells with the B7 family of 

ligands on APCs (Fig. 2) (Chaplin, 2010; Ni i Dong, 2017). The second signal can be co-

stimulatory or co-inhibitory, either promoting or inhibiting T cell activation. The absence of a 

co-stimulator, the first interaction leads to an anergic state of prolonged T cell non-

responsiveness (Chaplin, 2010). 

Many recent studies investigated properties of these co-stimulatory and co-inhibitory 

molecules, which are involved in the interaction between APCs and T cells (Figure 2). One 

example are ligands of the B7 family such as B7.1 (CD80) and B7.2 (CD86) which are 

expressed on APCs and interact with receptors on T cells such as CD28 or the cytotoxic T 

lymphocyte associated antigen 4 (CTLA4) to promote or inhibit T cell activation, respectively. 

As CD80 and CD86 are induced or up-regulated on stimulated APCs, they interact with CD28 

receptors on T cells and enhance TCR-mediated signaling and promote T cell survival, leading 

to clonal expansion and differentiation of effector T cells (Lenschow et al, 1996). After T cell 

activation, CTLA4 is induced and CD80/CD86 binding leads to the down-regulation of T cell 

Figure 2. Overview of CD28/B7-family members on APCs and T cells. MHC class I or II interaction 
with TCR gives rise to the first signal for T cell activation. B7 ligands on APCs bind multiple receptors 
on T cells which can deliver co-stimulatory or co-inhibitory signals. For some of the newly identified 
B7 members, the respective receptor still remains unknown (Pardoll, 2012) 
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proliferation (Suh et al, 2003). There are about 10 other B7 proteins which are structurally 

related to CD80 and CD86 and can be expressed in multiple organs with non-immune function, 

as well as on APCs. In this way, self-tolerance is maintained and tissues are protected from 

damage when the immune system is reacting to pathogenic infection. However, expression of 

both ligands or receptors might be dysregulated in tumors, which are therefore taking part in 

one of the additional mechanisms of immune escape. Generally, it is expected for inhibitory 

ligands or receptors which regulate T cell effector functions in tissues, to be overexpressed on 

tumor cells or non-transformed cells within tumor microenvironment (Pardoll, 2012). One 

important example of this case is programmed cell death ligand 1 (PD-L1), which was found 

to be expressed in many immune but also cancer cells and leads to the co-inhibition of T cell 

activation, and therefore impaired cytokine production as well as loss of cytotoxicity of 

activated T cells (Ni i Dong, 2017). Since this thesis focuses on the function of B7 homolog 3 

(B7-H3), it shall further be explained in more detail. 

1.3   B7 homolog 3 

B7-H3 (CD276) is an immunoregulatory proteins of the B7 family that was discovered 

in 2001 (Chapoval et al, 2001). It is located on chromosome 15 in humans and chromosome 9 

in mice. The gene, comprised of 10 exons, gives rise to a 316 amino acid long type I 

transmembrane glycoprotein belonging to the immunoglobulin superfamily with an expected 

molecular weight of 45-66 kDa. Due to exon duplication in humans it can be found in two 

isoforms depending on the number of pairs of V-like and C-like immunoglobulin domains – 

4IgB7H3 or 2IgB7H3, while in mice only 2Ig forms are present (Fig. 3) (Janakiram et al, 2017). 

Figure 3. The structure of human and mouse B7-H3. Numbers on top represent amino acid numbers. 
Sig - signal peptide; IgV - V-like Ig; IgC - C-like Ig; Ts - transmembrane region; Cyto - cytoplasmic tail 
(adapted from Wang et al, 2014) 
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The interacting receptor on T cells still remains to be determined, as triggering receptor 

expressed on myeloid cell-like transcript 2 (TLT-2, TREML2) had been described as its 

costimulatory receptor in mice (Hashiguchi et al, 2008), but was not confirmed by other studies 

(Leitner et al, 2009).  

B7-H3 is one the most evolutionary conserved B7 family member as it is universally 

expressed across various species from fish to mammals on mRNA-level (Sun et al, 2011). 

Furthermore, its mRNA is widely expressed in many tissues such as heart, prostate, testis, 

uterus, liver, pancreas, small intestine and colon (Chapoval et al, 2001). Low expression was 

also found in brain, skeletal muscle, kidney, lung and some lymphoid organs (Chapoval et al, 

2001). Its expression by immune cells such as T cells and APCs (dendritic cells, macrophages) 

can be induced by phorbol 12-myristate 13-acetate (PMA) + ionomycin, interferon gamma 

(IFN-γ) and granulocyte-macrophage colony stimulating factor (GM-CSF) (Chapoval et al, 

2001). However, even though the B7-H3 mRNA is constitutively present, there is a tight post-

transcriptional regulation, as B7-H3 protein expression is limited and maintained at low levels. 

It seems that microRNA mechanisms are involved in this regulation, as B7-H3 mRNA and 

protein expression was shown to be inversely correlated with expression of miRNA-29 and 

miRNA-187 (Wang et al, 2014, 2016). Still, aberrant B7-H3 protein expression has been 

described in various malignancies such as melanoma, glioma, lung cancer, pancreatic cancer, 

colon cancer, ovarian cancer, breast cancer and gastric cancer (Janakiram et al, 2017). In most 

cases, increased protein expression of B7-H3 correlates with shorter overall survival of patients, 

as well as with larger tumor size and more invasive tumor grade and was, therefore, identified 

as a poor prognosis factor (Ingebrigtsen et al, 2014; Mao et al, 2015). However, in mouse 

models for lymphoma and mastocystoma, B7-H3 expression was associated with favorable 

clinical outcomes (Janakiram et al, 2017; Sun et al, 2010).  

The immunomodulatory role of B7-H3 has been studied intensively in the past few years 

leading to quite contradictory results since these studies showed both co-stimulatory and co-

inhibitory activities of B7-H3 on T cells. Additionally, B7-H3 has been shown to interact with 

NK cells and inhibit their activity leading to reduced NK-mediated lysis both in vitro and in 

vivo (Janakiram et al, 2017; Lee et al, 2017).  

On the other hand, B7-H3 has been shown to have non-immunological roles. It promotes 

osteoblast differentiation and bone mineralization (Suh et al, 2004), but it was also shown to 

exhibit immune cell-independent roles in the context of cancer progression. It was shown to 

induce expression of matrix-metalloproteinase (MMP) 9 trough Janus kinase 2 and signal 
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transducer and activator of transcription 3 (Jak2/Stat3) in CRC cell lines (Liu et al, 2015) and 

also showed positive correlation with MMP-2 (Jiang et al, 2016), suggesting pro-migratory and 

pro-invasive roles for B7-H3. Furthermore, it was demonstrated that B7-H3 down-regulates the 

expression of E-cadherin and β-catenin, and up-regulates N-cadherin and vimentin in CRC at 

the same time. This would suggest its involvement in epithelial-to-mesenchymal transition and 

consequently cancer cell invasion, migration and metastasis formation (Jiang et al, 2016). B7-

H3 also promotes the Warburg effect by increasing protein levels of Hypoxia-inducible factor 

1-alpha (HIF1-α) and key enzymes of glycolytic pathway (lactate dehydrogenase A - LDHA, 

pyruvate dehydrogenase kinase 1 - PDK1) (Lim et al, 2016) indicating functions of B7-H3 that 

might be independent of its role in shaping the immune system’s response. Furthermore, recent 

data showed nuclear localization of B7-H3 in cancer cells, hinting for cell-intrinsic roles for 

B7-H3 in the absence of an immune compartment (Ingebrigtsen et al, 2012). However, little is 

known about immune cell-independent roles of B7-H3. 

In the group of Prof. Dr. med. Sebastian Zeissig, previous work showed that in 

genetically induced tumor mouse model, B7-H3 expression is increased within tumor cells 

compared to tumor-infiltrating immune cells, as well as normal tissue of the same mice 

(unpublished, Fig. 4). Therefore, in order to analyze potential immune cell-independent roles 

of B7-H3 in CRC, this thesis aimed to establish a B7-H3 knockout in a mouse colorectal cancer 

cell line using CRISPR/Cas9 technology (Ran et al, 2013). These established cell lines were 

analyzed on the levels of apoptosis, proliferation and, to some extent, metabolic activity in order 

to evaluate if there are any cell-intrinsic consequences for tumor cell behavior due to the lack 

of functional B7-H3 protein, independent of the immune system.  

  A   B  

Figure 4. B7-H3 expression is increased in tumor tissue of a genetically induced intestinal tumor 
mouse model. (A) mRNA expression of B7-H3 in normal and tumor tissue of APCMin/+ mice shown 
by qRT-PCR. (B) mRNA expression of B7-H3 for distinct cell subsets within intestinal tumor tissue. 
Each dot represents one mouse. TAN – tumor-associated neutrophils, MDSC – myeloid derived 
suppressor cells, TAM – tumor-associated macrophages, DC – dendritic cells, NK – natural killer cells 
(unpublished data, courtesy of Dr. Kenneth Peuker). 



 

9 

2   METHODS 

2.1   Molecular methods 

2.1.1   Generation of PX458-gB7-H3 plasmid for targeting Cd276 gene 

For targeting the Cd276 gene (Gene ID: 102657; ncbi.nlm.nih.gov 2017) in murine 

CMT-93 CRC cells, a pair of DNA oligonucleotides coding for gRNA was designed using the 

design wizard provided online (Benchling.com, 2017). gRNA targeting exon 3 was chosen 

depending on its reasonably high on-target score and very good off-target score to minimize 

off-targeting (Table 1). 

Table 1. Oligonucleotide sequences and their on- and off-target scores. Four base pairs (marked in 
red) had to be added accordingly, in order to ligate the insert into the reading frame of the plasmid. 
gRNA  Sequence (5’ à 3’) On-target Off-target 

gRNA 
(F) CACCGCGCGTCCGAGTAACCGACGA 

71.4 98.8 
(R) AAACTCGTCGGTTACTCGGACGCGC 

For genome targeting, the mentioned DNA oligonucleotide pair coding for gRNA was 

cloned into the pSpCas9(BB)-2A-GFP (PX458) plasmid, obtained from Addgene (Addgene 

plasmid #48138, Appendix A). The plasmid expresses the Cas9 nuclease and gRNA 

simultaneously, allowing precise gene modifications upon binding of Cas9 to the target 

sequence. Therefore, PX458 was digested with Fast Digest BpsI (Thermo Fischer Scientific) in 

1x FastDigest Buffer (Thermo Scientific) at 37 °C overnight, and later dephosphorylated with 

Fast AP (Thermo Fisher Scientific) at 37 °C for 10 minutes. Afterwards, the digested plasmid 

was size fractioned by agarose gel electrophoresis and later purified from the gel using the 

PureLink Quick Gel Extraction Kit (Invitrogen). Thus, gel slices were dissolved in “Buffer L3” 

at 50 °C and then loaded onto a DNA-binding column. DNA was bound to the column by 

centrifugation at 13 000 g for 1 minute. Flow through was discarded and column was washed 

with “Wash Buffer”. “Elution Buffer” was added to the column and incubated for 1 minute at 

room temperature. Finally, plasmid DNA was collected by centrifugation at 13 000 g for 1 

minute. Final concentration was determined using Nanodrop 2000 (Thermo Scientific). 

Additionally, the oligonucleotides (Eurofins Genomics) were phosphorylated with T4 

PNK (Thermo Fisher Scientific) and annealed using the following protocol: 37 °C for 30 

minutes, 95 °C for 5 minutes, ramp down to 25 °C by 0,1 °C/s. The duplexes were ligated into 
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a linearized PX458 with T4 DNA Ligase (Thermo Fisher Scientific) at 17 °C overnight and 

afterwards heat-inactivated at 65 °C for 10 minutes.  

The ligated plasmids were transformed into chemically competent Echerichia coli (E. 

coli) strain Stbl3 (Thermo Fisher Scientific) via heat-shock. Stbl3 were thawed on ice, 5 µl of 

the ligation mix was added to the bacteria, followed by incubation on ice for 30 minutes, heat-

shock (42 oC) for 30 seconds, cooling down on ice for 2 minutes and then incubated in 250 µl 

LB medium at 37 oC for 1 hour with shaking Finally, bacteria were spread onto Luria-Bertani 

(LB) plates with ampicillin (Amp+, 100 ng /ml) and incubated overnight at 37 °C. 

Next day, single bacterial colonies were picked with sterile pipette tips and transferred 

into round-bottom tubes in 5 ml of LB Amp+ medium (100 µg /ml), and incubated overnight 

at 37 °C with shaking. After approximately 18 hours, plasmid DNA was isolated using the 

Thermo Scientific GeneJET Plasmid Miniprep Kit. Bacterial cultures were harvested by 

centrifugation at 8000 rpm for 2 minutes. Pellet was resuspended in “Resuspension Solution”, 

cells were lysed by addition of “Lysis Buffer”, followed by “Neutralization Buffer” and 

centrifugation at 12 000 g. Supernatant was transferred to a DNA-binding column and DNA 

was bound to it by centrifugation at 12 000 g for 1 minute. Column was washed twice with 

“Wash Solution”, and afterwards membrane was dried by centrifugation at 12 000 g for 2 

minutes. “Elution Buffer” was added to the membrane and incubated for 2 minutes at room 

temperature. Plasmids were collected by centrifugation at 12 000 g for 2 minutes. Finally, 

plasmids were sent for sequencing (GATC Sanger sequencing) (Table 7) and later analyzed by 

ApE (M. Wayne Davis). 

Validated plasmids were again transformed into Stbl3 as described and propagated on 

a larger scale via Maxiprep (Qiagen EndoFree Plasmid Maxi Kit). Bacterial cultures (250 ml) 

were harvested by centrifugation at 6000 g for 15 minutes at 4 °C, Pellet was resuspended in 

“Buffer P1”. Cells were lysed by addition of “Buffer P2” and incubation at room temperature 

for 5 minutes. Lysis was stopped by addition of chilled “Buffer P3”. Lysate was filtered and 

“Buffer ER” was added to the filtrate, which was then incubated on ice for 30 minutes. Filtered 

lysate was applied to a column, which was later washed twice with “Buffer QC”. DNA was 

eluted with “Buffer QN” and precipitated by addition of isopropanol and centrifugation at 15 

000 g for 30 minutes at 4 °C. Pellet was washed with 70% ethanol at 15 000 g for 10 minutes, 

air dried, redissolved in “Buffer TE” and stored at -20 °C for further use. 
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2.1.2   Genotyping by polymerase chain reaction (PCR) 

Whole cell DNA of CMT-93 cells transfected with control vector or vector containing 

gRNA-coding sequence (PX458-gB7-H3; vector map in the appendix) was isolated by addition 

of 50 mM NaOH and boiling for 30 minutes at 100 °C, with a final addition of 10 µl of 1 M 

Tris/HCl (pH 8). PCR genotyping was done using the primers listed in Table 7 and set up 

according to Table 2 and Table 3. 

Table 2. PCR genotyping reaction mix. 

Reagent 

µl per 

reaction 

Final 

concentration 

5x OneTaq Buffer (NEBioLabs) 5 1x 

dNTP mix (10 mM) 0.5 200 µM 

Forward primer 0.1 0.2 µM 

Reverse primer 0.1 0.2 µM 

OneTaq Polymerase (NEBioLabs) 0.125 1.25 U/50 µl 

Nuclease-free water 17.675 NA 

DNA 1.5 < 1000 ng 

Total volume 25  

 
 

Table 3. PCR genotyping amplification protocol. 
Step Temperature Time  

Initial denaturation 94 °C 30 sec  

Denaturation 94 °C 30 sec  

Annealing 56 °C 30 sec 35 cycles 

Elongation 68 °C 1 min  

Final elongation 68 °C 5 min  

Hold 4 °C ∞  

 

PCRs from all clones were first analyzed on a QIAxcel fragment analyzer and the clones 

which showed a different size than the expected 252 (Cd276 (B7H3)_1) or 934 base pairs  

(Cd276 (B7-H3)_2) were further size fractioned on an agarose gel. Fragments of interest were 

isolated from the gel using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Thus, 

“Buffer NTI” was added to gel slices and incubated at 50 °C until dissolved. Samples were 

loaded onato a DNA binding column and centrifuged at 11 000 g for 1 minute. Column was 
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washed twice with “Buffer NT3”, and membrane was dried by centrifugation at 11 000 g for 1 

minute. “Elution Buffer” was heated to 70 °C and added to the column which was then 

incubated for 5 minutes at 70 °C. PCR fragments were collected by centrifugation at 11 000 g 

for 1 minute. Isolated PCR fragments were sent for sequencing in order to check for potential 

mutations. Mutations were discovered by alignment of the obtained sequence to the known 

sequence of Cd276 using ApE. 

2.1.3   cDNA sythesis and real time PCR 

Whole cell mRNA was isolated using the PeqGold Total RNA Kit (VWR, peqlab). 

Culture medium was aspirated completely and “RNA Lysis Buffer T” was added. Cells were 

scraped to aid cell lysis. Lysate was transferred into a DNA-removing column and centrifuged 

at 12 000 g for 1 minute at room temperature. Equal volume of 70% ethanol was added to the 

flow through, which was then transferred into a RNA-binding column. RNA was bound by 

centrifugation at 10 000 g for 1 minute. Column was washed with “RNA Wash Buffer I” and 

“RNA Wash Buffer II” and membrane was dried by centrifugation at 10 000 g for 2 minutes. 

RNA was eluted in RNase free H2O. cDNA was synthesized using the High-capacity cDNA 

Reverse Transcription kit (Thermo Fisher Scientific) according to Tables 4 and 5. Real time 

PCR was performed using SYBR Green (Thermo Fisher Scientific), primers (Table 7) and the 

appropriate protocol (Table 6) on the real time PCR machine Stratagene MX 3005P. Relative 

gene expression was calculated from Ct values using the ΔΔCt method (Livak and Schmittgen, 

2001). 

Table 4. cDNA synthesis reaction mix 

Reagent 

µl per 

reaction 

10x RT Buffer 2 

25x dNTP mix (100 mM) 0.8 

10x Random primers 2 

Reverse Transcription (RT) Polymerase 1 

RNase inhibitor 1 

Nuclease free-water 3.2 

RNA 10 

Total volume 20 
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Table 5. cDNA synthesis protocol 
Step Temperature Time 

Step 1 25 °C 10 min 

Step 2 37 °C 120 min 

Step 3 85 °C 5 min 

Step 4 4 °C ∞ 

 

Table 6. qRT-PCR amplification protocol. 
Step Temperature Time  

Hot start activation 95 °C 10 min  

Denaturation 95 °C 15 sec  

Annealing 55 °C 30 sec 40 cycles 

Extension 72 °C 30 sec  

 

Table 7. Primer sequences for plasmid sequencing, PCR genotyping and sequencing, and qRT-
PCR. 

 Gene Direction Sequence 5'-3' 

sequencing oligonucleotide insertion 
site in PX458 

(F) GATACAAGGCTGTTAGAGAG 

(R) AGGCGGGCCATTTAC 

 
Cd276 (B7-H3)_1 

(F) CTGACAGACACCAAACAGCTG 

PCR 
genotyping 

(R) AAAGAGTGGAAGCAGAGGGTAC 

Cd276 (B7-H3)_2  
(F) GCCTTCCATTCCGACATAAACG 

 (R) ATTCTGGACCACCCTAAGCATG 

 
Actb (β-actin) 

(F) AGATGACCCAGATCATGTTTGAG 

 (R) GTACGACCAGAGGCATACAG 

qRT-PCR Cd276 (B7-H3) exons 3-4 
(F) CCTGTTGGTGCAAGGCAATG 

(R) GTCATGCTGGGCTTCGAGTA 

 
Cd276 (B7-H3) exons 7-8 

(F) GGCCTCTGAAACCCTCTGAA 

 (R) GACAAACCCATTCGTTGGGG 
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2.2   Cell Culture 

2.2.1   General conditions 

For this research mouse colorectal carcinoma cell line CMT-93 was used. These cells 

have epithelial morphology and grow in clumps as an adherent culture. 

 If not stated differently, cells were grown in Dulbecco's Modified Eagle Medium 

(DMEM, Gibco) with 10% fetal bovine serum (FBS, BiochromAG/MerksMillipore), 1% L-

glutamine (BiochromAG/MerksMillipore) and 1% penicillin/streptomycin (P/S, 

BiochromAG/MerksMillipore) at 37 °C with 5% CO2. Upon splitting or experimental use, cells 

were incubated with trypsin until detached at 37 °C. The reaction was stopped using pre-

warmed medium and cells were further handled as needed. For freezing, cells were trypsinized, 

centrifuged (1 400 rpm, 4 °C, 5 minutes) and the supernatant was removed. Cells were 

resuspended in 10% dimethyl sufoxide (DMSO, Sigma Aldrich) in FBS and frozen to -80 °C 

instantly.  

2.2.2   Transfection and single cell sort 

3x105 CMT-93 cells per well were seeded in 6-well plates 24 hours prior to transfection. 

Cells were transfected using 1 µg of the generated plasmid, or PX458 as a control and 

appropriate amount of Lipofectamine 2000 (Thermo Fisher Scientific). Six hours post-

transfection, cells were washed with 1x Dulbecco's phosphate-buffered saline (D-PBS), new 

media was added, and cells were grown for an additional 48 hours before the single cell sort. 

The transfected CMT-93 cells were trypsinized, washed with 1x D-PBS, centrifuged at 

1400 rpm and 4 °C for 5 minutes, and resuspended in FACS buffer (1x D-PBS + 10% FBS). 

Prior to sorting, 7-aminoactionmycin D (7-AAD, BD Bioscience) viability dye was added to 

the cells. Cells positive for GFP and negative for 7-AAD were sorted using FACS Aria III (BD 

Bioscience) into flat bottomed 96-well plates containing DMEM with 20% FBS, 2% P/S, 1% 

L-glutamine per well and grown until confluency. Afterwards, cells were seeded into bigger 

wells and medium was changed to regular type when clones reached 12-well plate. 

2.3   Biochemical methods 

2.3.1   Protein recovery 

Cells were lysed with 1x radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Igepal, 0.5% sodium desoxycholat, 0.1% SDS), 
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incubated by shaking at 4 °C for 1 hour and subsequently centrifuged at 13 000 g for 5 minutes. 

The supernatant was used for further analysis.  

Total protein concentration was determined with Bio-Rad Protein Assay Dye Reagent 

Concentrate by mixing standards or diluted samples (1:30) with diluted concentrate (1:5). 

Absorbance was measured at 595 nm on FlexStation 3 microplate reader (Molecular Devices). 

2.3.2   Protein deglycosylation 

Prior to B7-H3 protein analysis via Western blotting, supernatants were treated with 

Protein-N-glycosidase F (PNGase F, Roche). First, the amounts of buffers 1 and 2 needed for 

reaction were calculated according to the formula: 

 

𝑦 = 28 − 𝑥	
  

𝑉(𝑏𝑢𝑓𝑓𝑒𝑟	
  1) = 	
  	
  1/2	
  𝑦	
  

𝑉(𝑏𝑢𝑓𝑓𝑒𝑟	
  2) = 	
  	
  1/2	
  𝑦	
  

For the reaction, protein extracts of each sample were mixed with the respective amount 

of buffer 1 (50 mM Na3PO4, 1% SDS, 1% β-mercaptoethanol, 1x complete proteinase inhibitor, 

pH 7.8), and the mix was incubated for 5 minutes at 95 °C with shaking. After incubation, each 

mix was left to cool down partially, buffer 2 (50 mM Na3PO4, 1% NP-40, 1x complete 

proteinase inhibitor, pH 7.5) was added and left to cool down to room temperature. Finally, 2 

µl of PNGase was added and samples were shaken at 37 °C overnight. Subsequently, for SDS-

PAGE, samples were mixed with 5x Laemmli buffer with DTT (16 µl per 40 µg of protein) and 

H2O (4 µl per 40µg of protein), incubated in the thermomixer at 60 °C for 20 minutes and 

subjected to Western blotting as described in 2.3.3. 

2.3.3   Western blot 

Prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 20 µg 

of protein was diluted in total volume of 16 ml 1x RIPA buffer with 4 ml of 5x Laemmli buffer 

with DTT and cooked for 5 minutes at 95 °C (if not stated differently). Samples were loaded 

on a SDS-PAGE gel composed of stacking and running gels of relevant concentrations (Table 

8). 40 µl aliquots were loaded to the gel, stacked at 80 V until protein ladder started to separate, 

where x is the volume of protein extract needed for 40 µg of protein to be used for analysis in 
Western blot. 
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and then separated at 110 V until finished. The gel was blotted on the methanol-activated 

polyvinylidene difluoride (PVDF) membrane (Roth) using Trans-Blot Turbo™ Transfer 

System (Bio-Rad) and semi-dry blotting program (45 minutes, 1.0 A, 25 V). The blots were 

blocked in 5% skim milk in TBS-T (50 mM Tris/HCl, pH 7.6; 150 mM NaCl; 1% Tween 50) 

for 1 hour at room temperature and then incubated overnight at 4 °C in appropriate primary 

antibodies diluted in 5% skim milk in TBS-T (Table 9).  

On the following day, membranes were transferred into corresponding secondary 

antibodies (Table 9) in 5% skim milk/TBS-T and incubated for 1 hour at room temperature. 

Finally, membranes were incubated for 5 minutes in 1:1 solution of Clarity™ Western ECL 

Blotting Substrate (Bio-Rad) and then visualized chemiluminilescently using ImageQuant™ 

LAS 4000 (GE Healthcare). 

Table 8. Formulation of 1 X Running and Stacking gels used for SDS-PAGE. 
  Running gel Stacking gel 

  7.5% 12.5% 4% 

dH2O (ml) 4.5 3.5 2.48 

Running Gel Buffer (ml) 2 2 - 

Stacking Gel Buffer (ml) - - 0.9 

40% PAA (ml) 1.5 2.5 0.38 

TEMED (µl) 10 10 4.5 

10% APS (µl) 40 40 12 

 

Table 9. Primary and secondary antibodies used for Western blotting. 
 Antibody Dilution Source Company 

Primary 
antibodies 

Mouse anti-β-actin 1:2000 rabbit Sigma Aldrich 

Human anti-B7-H3 1:200 goat R&D Systems 

Mouse anti-PARP 1:2000 rabbit Cell Signaling 

Mouse anti-caspase 3 1:2000 rabbit Cell Signaling 

Secondary 
antibodies 

HRP-conjugated anti-rabbit IgG 1:1000 goat NEBioLabs 

HRP-conjugated anti-goat IgG 1:2000 donkey Santa Cruz 
Biotechnology 
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2.3.4   Immunofluorescence staining 

300,000 cells were seeded onto 12 mm round coverslips. On the next day, cells were 

washed, and then fixated for 30 minutes in cold 4% paraformaldehyde in 1x D-PBS at 4 °C. 

After fixation, cells were permeabilized first with 0.02% saponin in 1x D-PBS (5 minutes), and 

then with 0.02% saponin and 0.2% glycin in 1x D-PBS (10 minutes). Subsequently, cells were 

blocked with 0.02% saponin and 10% FBS in 1x D-PBS for 30 minutes and incubated in a 

humid chamber with primary goat anti-B7H3 antibody (1:40 in blocking buffer, R&D Systems) 

at 4 °C overnight. On the following day, cover slips were incubated in the secondary donkey 

anti-goat antibody conjugated with Alexa Flour® 488 (1:1000 in blocking buffer, Invitrogen) 

and DAPI (1:1000 in blocking buffer, Sigma Aldrich) for 1 hour at room temperature, mounted 

on slides with FluorSave (MerckMillipore) and kept at 4 °C in the dark. Images were taken 

using Zeiss’ Axiovert 200M inverted microscope, and analyzed via ImageJ. 

2.4   Functional in vitro assays 

2.4.1   BrDU assay 

500 000 cells per well were seeded in a 6-well plate. On the next day, 10 µl of 1 mM 

BrDU solution (BD Biosciences BrDU Flow kit) per ml of medium was added to each well, 

and cells were incubated at 37 °C for 45 minutes. After incubation, cells were trypsinized, 

centrifuged and washed with 1x D-PBS. Between each step cells were washed with 1x “BD 

Perm/Wash Buffer”. 

After centrifugation, supernatant was removed, as well as in all the following washing 

steps. Cells were then resuspended in 100 µl of “BD Cytofix/Cytoperm Buffer”, incubated on 

ice for 30 minutes, and afterwards washed with 1 ml of 1x “BD Perm/Wash Buffer”. Next, cells 

were resuspended in 100 µl of “BD Cytoperm Permeabilization Buffer plus”, incubated on ice 

for 10 minutes and again washed with 1 ml of 1x “BD Perm/Wash Buffer”. Cells were re-fixed 

with 100 µl “BD Cytofix/Cytoperm Buffer” 5 minutes on ice, following with the 1x “BD 

Perm/Wash Buffer” washing step. Subsequently, cells were resuspended in 100 µl of the DNase 

working solution (300 µg/ml) and incubated at 37 °C for 1 hour. Cells were incubated with 

FITC anti-BrDU antibody in 1x “BD Perm/Wash Buffer” for 20 minutes at room temperature 

in the dark and then with 7-AAD solution for 20 minutes on ice in the dark. Cells were 

resuspended in staining buffer (1x D-PBS with 1% FBS) and acquired on flow cytometer (BD 

LSR II) using a low flow rate (<400 events/second). Finally, data was acquired using FlowJo.  
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2.4.2   Growth assay 

7 500 cells per well were seeded in triplicates in a 12-well plate for 8 different time 

points. Starting from day 2, wells for each condition were collected and counted on 8 

consecutive days using the hemocytometer. 

2.4.3   MTT assay 

1 500 cells per well were seeded in triplicates in a 96-well plate for 7 different time 

points. For each time point, wells with only culture medium served as a blank. The first reading 

was acquired 5 hours after cells were seeded to allow adherence. This reading was defined as 

time point zero and would be subtracted for all subsequent readings in order to normalize the 

actual number of seeded cells. For each time point, through 7 consecutive days, with a final 

concentration of 10%, MTT solution (Cell Growth Determination Kit, MTT based, Sigma 

Aldrich) was aseptically added to each well and incubated for 3 hours. After incubation period, 

the medium was removed and MTT solvent was added in an amount equal to original culture 

volume. Fluid was pipetted up and down to dissolve the crystals and absorbance was measured 

at 570 nm and 690 nm with FlexStation 3 microplate reader. For data analysis, 690 nm readings 

were subtracted from 570 nm reading well by well. The results were then divided by the average 

zero time point reading for each well to normalize for starting cell numbers. Finally, absorbance 

values were displayed as a percentage of day zero. 

2.4.4   Cell death analysis 

300 000 cells per well were seeded in a 12-well plate. On the next day, cells were treated 

with 1 µM staurosporine (Sigma Aldrich) or DMSO (1:1000) as a vehicle control and incubated 

at 37 °C for 2.5 hours. Treated cells were either used for Western blot (PARP, Caspase 3), as 

previously described, or stained with Annexin V and subsequently analyzed by flow cytometry.  

Prior to Annexin V staining, cells were trypsinized, centrifuged, washed and 

resuspended in Annexin V binding buffer. Cells were stained with Annexin V-APC antibody 

(Biolegend) and 7-AAD according to manufacturer’s instructions and analyzed on flow 

cytometer (BD LSR II), and finally FlowJo. 

2.5   Statistics 

For multiple testing one-way analysis of variance (ANOVA), followed by Dunnett’s 

test and two-tailed t-test were performed and mean ± standard error of the mean was plotted. 
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3   RESULTS 

3.1   Generation of B7-H3 knockout clones 

The aim of this thesis was to analyze possible cell-autonomous roles of B7-H3 in the 

mouse colorectal cancer cell line CMT-93. I used the CRISPR/Cas9 technology (Ran et al, 

2013) to abolish B7-H3 expression in CMT-93 cells. First, CMT-93 cells were transfected with 

either empty vector or the CRISPR plasmid containing coding sequence of gRNA targeting the 

B7-H3 gene. The transfected cells were single cell sorted via flow cytometry for green 

fluorescent protein (GFP) expression of the transfected plasmid, leading to 288 control clones 

and 480 targeted single cell clones.  

Out of all sorted control cells, 10 grew further and were analyzed via PCR as a control 

for the targeted clones. For targeted cells, initially 53 clones grew further after sorting. 

However, only 27 clones survived and were screened for mutations in the Cd276 (B7-H3) gene 

via PCR. 

Out of those 27 clones, a total of 16 clones showed aberrant fragment lengths of the 

PCR products after size fractionation (Fig. 5). 11 clones showed multiple fragments including 

the wild type allele, indicating heterozygosity of Cd276 mutations in these clones. Four clones 

had fragments which were clearly distinguishable from the wild type clones. However, one 

clone (4C11) showed no fragments at all, indicating that the introduced mutation might have 

been considerably different in size than initially expected. Therefore, the PCR was repeated 

with primers producing a longer (934 bp long) amplicon. In this case, a fragment was detected 

(Appendix B) indicating that the introduced mutation in this specific clone was a deletion longer 

than 252 base pairs. All clones which showed a clearly different (potentially homozygous) band 

pattern compared to the control cells in the PCR were sequenced to analyze the amplified gene 

sequences and predict a possible loss of protein expression due to frameshift mutations. 

From the 5 sequenced clones, all showed a mutation in the targeted region and 3 out of 

5 (4D6, 4H12, 6B6) had a mutation predicted to lead to a frameshift and, consequently, a 

premature stop codon (Tab. 10). For clone 4C11, the protein size could not be predicted as the 

mRNA splice site was lost due to the deletion. 
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Table 10. Overview of the clones carrying B7-H3 mutations. Length of mutation for each clone and 
the predicted protein size. Protein size was predicted according to the coding sequences and their 
respective changes via Benchling.com. All sequences can be found in Appendix C. 

Clone name Mutation Predicted protein size (AA) 

4C11 324 bp deletion NA 

4D6 32 bp deletion 119 

4E8 27 bp insertion 325 

4H12 109 bp insertion 166 

6B6 7 bp deletion 122 

 

 

 

 

Figure 5. Mutations in the Cd276 (B7-H3) gene after transfection and single cell sort. PCR of 
possible mutation sites in single cell sorted CMT-93 cells after transfection with empty vector or vector 
containing gRNA-coding sequence to target the B7-H3 gene. Untransfected CMT-93 cells were used 
as a control, and water as a negative control (NC). Clones 1C11, 1D7, 2A8 and 2D3 represent individual 
empty vector clones whose expected band size (approx. 252 bp) is the same as the untransfected control. 
Potential knock-out clones are 4C11, 4D6, 4H12, 6B6 and 4E8. 
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3.2   Mutated clones are deficient in B7-H3 

After discovering 4 clones with a potential loss-of-function mutation in B7-H3 (4C11, 

4D6, 4H12 and 6B6), qRT-PCR and Western blots were performed to confirm that these clones 

had lost B7-H3 expression. First, mRNA levels were analyzed via qRT-PCRs (Fig. 6A, 6B). 

To this end, two primer sets were used. One set binds around the mutation site to confirm a 

possible reduction in the mRNA levels, and the second primer pair binds farther from the 

mutation site, toward the 3’-end of B7-H3 mRNA in order to ensure that a negative result is not 

obtained due to a lack of primer binding. As controls, the clones 1C11, 1D7, 2A8, 2D3, which 

were transfected with an empty vector, were used in all further experiments (Fig. 5). 

The mutated clones showed a reduction in B7-H3 mRNA levels regardless of the primer 

pair used (Fig. 6A, 6B). However, the differences in expression were only significant when 

primers for the targeted site were used. To confirm these results, B7-H3 expression was 

analyzed on protein level by Western blot (Fig. 6C). Since B7-H3 is heavily glycosylated, 

protein samples were treated with protein-N-glycosidase F (PNGase F) to be able to analyze 

B7-H3 expression as a single band. The Western blot confirmed a band corresponding to B7-

H3 at about 40 kDa which was only visible in cell lysates derived from either untransfected or 

control transfected cells. Hence, the introduced mutations in the Cd276 gene led to a loss of 

B7-H3 expression in all 4 mutant clones (Fig. 6C).  

In order to further confirm findings from Western blot results, cells were immunofluorescently 

stained for B7-H3 (Fig. 7). In general, B7-H3 protein is present at moderate levels, and located 

mostly in the cytoplasm. However, a complete lack of B7-H3 protein was observed in mutant 

clones with no immunofluorescence signal compared to the control samples (Fig. 7). In 

conclusion, successful deletion of B7-H3 in the colorectal cancer cell line CMT-93 was 

achieved via the CRISPR/Cas9 system as documented by qRT-PCR, Western blot and 

immunofluorescence staining. 
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Figure 6. B7-H3 deficiency induced in CMT-93 cells via the CRISPR/Cas9 system. (A-C) Expression of 
B7-H3 shown by qRT-PCR (A-B) and Western blot (C). qRT-PCR was performed with two different primer 
pairs either binding around the mutation site (A) or at the 3’-end of the mRNA (B). As a control, vector 
transfected clones were used. Multiple testing was done using one-way ANOVA, followed by two-tailed 
unpaired t-test. (C) Representative Western blot from cell lysates derived from CMT-93 cells either 
untransfected, transfected with control vector or transfected with vector inducing a knockout of B7-H3. 
Primary antibody: anti-B7-H3, anti-β-actin. All results shown are representative of the two independent 
experiments. 
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Figure 7. B7-H3 expression is lost in mutant clones. Immunofluorescence staining for B7-H3 (green) 
in CMT-93 cells transfected either with control vector (left) or a plasmid inducing a knock-out for B7-
H3 (middle and right). Representative images are shown. DAPI is shown in blue. Scale bar represents 
50 µm. 

3.3   Cell death is not altered by B7-H3 deletion 

After obtaining clones deficient for B7-H3, we wanted to analyze if there are any cell-

autonomous roles for B7-H3 in CRC cells. Therefore, clones deficient for B7-H3 were tested 

for changes in apoptosis by staining for extracellularly exposed phosphatidylserine using 

Annexin V and evaluating the levels of cleaved caspase-3 and PARP. As a control, samples 

were also treated with staurosporine to induce apoptosis. 

First, we tested the effect of B7-H3 on apoptosis via Annexin V staining. As seen in 

Fig. 8A, upon treatment with staurosporine, the percentage of apoptotic cells increased, 

indicating that the staurosporine treatment was effective. Nevertheless, regardless of the 

staurosporine treatment, no difference in the percentage of apoptotic cells was noticed between 

wild-type and B7-H3-deleted clones. Although a strong heterogeneity in apoptosis rates 

between the different knock-out clones could be detected (Fig. 8A), this heterogeneity did not 

correlate with residual B7-H3 expression (Fig. 6C).  

In addition, the clones were also tested for protein levels of PARP and cleaved caspase-

3 as additional markers for apoptosis (Fig. 8B). Caspase-3 was expected at around 33 kDa, 

while its cleaved form has a size of about 19 kDa. While no cleaved caspase-3 was observed in 

control settings, the cleaved form of caspase-3 was detected upon staurosporine treatment, 

indicating that the staurosporine treatment was effective. Nevertheless, similar amounts of 

cleaved caspase-3 were detected in control compared to B7-H3-deficient cells. On the other 

hand, PARP Western blots were not successful, and are, therefore, not shown. 
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3.4   Cell proliferation is not significantly affected by loss of B7-H3 expression   

After cell death analysis, I aimed to analyze if B7-H3 influences cellular proliferation 

in a cell-autonomous manner. To do so, levels of bromodeoxyuridine (BrDU) incorporation, 

cell growth assays as well as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assays were carried out. As seen in Figure 9, no consistent difference in cellular 

proliferation was noticed in three independent analyses for proliferation between control and 

Figure 8. B7-H3 deficiency does not influence apoptosis. (A) Annexin V staining by FACS. Multiple 
testing was done using one-way ANOVA, followed by two-tailed unpaired t-test. (B) Western blot for 
caspase-3 and β-actin as a loading control. Primary antibodies: anti-caspase 3, anti-β-actin. CMT-93 
cells were treated either with vehicle or staurosporine (1 µM) for 2.5 hours (A-B). Vector transfected 
cells served as negative controls. 

A  

B  
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B7-H3-deficient clones. Specifically, no difference between wild-type and knockout clones was 

found in cell cycle analysis (Fig. 9A). In addition, no significant variation in cell proliferation 

over time (Fig. 9B) or cell metabolism in terms of mitochondrial activity tested with MTT (Fig. 

9C) was found. Although some B7-H3-deficient clones showed slight differences in 

proliferation rates, these alterations were not consistent among the different knockout clones 

and among the different experiments carried out, so no role for B7-H3 in the regulation of cell 

proliferation was observed.   
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Figure 9. B7-H3 does not regulate cell proliferation. (A) Cell cycle analysis of CMT-93 cells as 
determined using the BrdU assay and FACS. CMT-93 cells, transfected either with control vector or with 
vector carrying gRNA-coding sequence, were harvested and stained with 10 µM BrdU for 45 minutes. 
Afterwards, cells were harvested and analyzed via flow cytometry. Vector transfected cells served as 
negative controls. Multiple testing was done using one-way ANOVA, followed by two-tailed unpaired t-
test. Data are mean ± s.e.m. (B) Time course for proliferation of CMT-93 cells, transfected either with 
control vector or with gRNA-containing vector (n = 3 cultures per clone). Data are mean ± SD. (C) MTT 
assay of CMT-93 cells transfected either with control vector or with vector containing gRNA-coding 
sequence. Data are mean ± SD. 

 

C  
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4   DISCUSSION 

4.1   Use of CRISPR/Cas9 system to generate B7-H3 knockout clones  

The aim of this thesis was to analyze potential cell-autonomous roles of B7-H3 in a 

CRC cell line. To this end, the CRISPR/Cas9 system was used to generate different knockout 

clones. I was able to obtain several B7-H3 mutant clones carrying various mutations in B7-H3 

that were associated with a frameshift mutation and consequently a premature stop codon. 

Additionally, clone 4C11 showed a complete loss of the mRNA splice site between exon 3 and 

4, which leads to a defect in mRNA splicing. When analyzing the residual expression of B7-

H3 in these mutants, they showed reduced levels of B7-H3 mRNA. However, discrepancy in 

B7-H3 mRNA expression was evident upon testing with two sets of primers. Higher reduction 

observed using primers amplifying the targeted site could be attributed to the proximity of the 

mutated site, as the DNA integrity and stability might be disrupted due to the introduced 

mutations. On the contrary, primers amplifying the 3’-end of the mRNA sequence for B7-H3 

showed that the mutant mRNA is still transcribed, although at lower levels, indicating that a 

small portion of all produced B7-H3 mRNA might be degraded. Nevertheless, since some 

mRNA of the Cd276 gene still seemed to be transcribed, it was necessary to analyze B7-H3 

protein levels in mutant clones via Western blotting and immunofluorescence staining. Western 

blot analysis showed only bands at about 40 kDa in the control samples while all mutant clones 

did not show any expression of B7-H3. This was confirmed by immunofluorescence, which 

also showed no B7-H3 staining in mutant clones. Taken together, these results imply that all 

detected mutations lead to a degradation of B7-H3 protein after mRNA translation and that the 

observed loss of protein is indeed due to premature stop codons or, in case of 4C11, complete 

change of mRNA composition due to the loss of the mRNA splice site between exons 3 and 4. 

Therefore, in all mutant clones analyzed, a loss-of-function of B7-H3 was induced. 

Via immunofluorescence staining, the intracellular localization of B7-H3 could also be 

analyzed in CMT-93 cells. In several publications, B7-H3 was shown to be located on the 

membrane, as well as in the cytoplasm and nucleus (Ingebrigtsen et al, 2012, 2014; Janakiram 

et al, 2017). However, my data (Fig. 8) showed no nuclear localization for B7-H3 protein, but 

rather cytoplasmic localization. Additionally, parallel work by Liz Matthiesen in our lab on 

CMT-93 cells transiently overexpressing B7-H3 also showed that B7-H3 can be found at the 

membrane, in the cytoplasm and potentially in lysosomes (data not published). Lack of nuclear 

localization in CMT-93 cells might be attributed to the fact that nuclear B7-H3 was mainly 
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reported in human malignancies or in vivo CRC models, where B7-H3 could interact with other 

immune cells (Ingebrigtsen et al, 2012, 2014). Furthermore, the cytoplasmic tails of mouse and 

human B7-H3 have minor differences which might be responsible for different intracellular 

signaling or localization (Uniprot.org 2017). 

4.2   Loss of B7-H3 does not influence apoptosis or proliferation in CMT-93  

We set out to analyze the potential role of B7-H3 in regulating cell apoptosis and 

proliferation in a cell-intrinsic manner. In neither case, we were able to notice any consistent 

effect of deletion of B7-H3.  

In all cases, among wild-type as well as B7-H3 mutant clones, clone-dependent 

variations in the functional analyses were observed, which was expected due to the fact that 

mutants were derived from single cells from a heterogeneous CMT-93 population. As we could 

only see clone-specific differences, but no consistent changes among B7-H3 mutant clones, B7-

H3 does not control cell apoptosis and proliferation in CMT-93 cells in a cell-autonomous 

manner. 

Recently, it has also been reported that B7-H3 does not affect apoptosis or proliferation 

in bladder (T24 and 5637 cells) and hepatic (HepG2 and SMMC7721 cells) carcinoma cell lines 

(Kang et al, 2015; Li et al, 2017) in a cell-intrinsic manner,  similar to what we have shown in 

CMT-93 cells. However, in both cases, B7-H3 was knocked-down using an siRNA/shRNA 

strategy compared to the CRIPSR/Cas9 knock-out strategy used in this study, and thus only 

exhibit a partial reduction in protein expression. Studies by Kang et al (2015) and  Li et al 

(2017) thereby showed increased cell migration, invasion and metastasis depending on the 

expression of B7-H3 in bladder and hepatic carcinoma cell lines. It is therefore important to 

note that I have so far not addressed whether B7-H3 regulates CRC cell migration and invasion 

in a cell-autonomous manner. This could be analyzed in vitro by scratch wound healing assays 

or trans-well chamber assays, but also by checking for mRNA and protein expression levels of 

MMP-2 and -9, E-cadherin, N-cadherin and vimentin. Moreover, since Zhang et al (2015) 

showed that silencing of B7-H3 in HCT-8 cells leads to increased oxaliplatin-induced apoptosis 

in these cells, it would be interesting to see how mutants would behave in the presence of this 

specific apoptosis-inducing drug, as it has a different mechanism of action than staurosporine. 

These additional studies could elucidate if B7-H3 has any cell-autonomous roles in CRC 

development independent of its potential function in the control of immune cell function. 
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Furthermore, factors within the tumor microenvironment such as chemokines, cytokines 

or immune cells could also be introduced in an in vitro set up to analyze if the activity of tumor 

B7-H3 is dependent on the presence of certain parts of the immune system. One example for 

studying effects within the anti-tumor immune response would be to analyze the ability of B7-

H3 mutants to activate OT-I CD8+ T cells. These cells are isolated from transgenic OT-I mice 

which carry transgenic T cell receptors designed to recognize ovalbumin residues 257-264 in 

the context of H2Kb, which is a MHC Class I molecule involved in antigen presentation to the 

T cells. With this, direct interactions between tumor cell-specific B7-H3 and CD8+ T cells and 

thus non-cell autonomous roles of B7-H3 in the regulation of T cells could be analyzed. 

4.3   Prospects 

In the future, the generated mutant clones will be used in several different ways. As 

mentioned, they will be first tested for other potential cell-autonomous roles of B7-H3 such as 

cell migration, invasion and metastasis, as well as metabolic influences (eg. effects on glucose 

metabolism). Additionally, effects of B7-H3 on tumor growth and metastatic potential will be 

further defined in in vivo tumorigenicity studies using wild-type C57BL/6 mice and 

recombination activating gene (Rag-)-deficient mice, which lack mature T and B cells. To this 

end, control and B7-H3 deficient clones will be injected intravenously and subcutaneously into 

mice which will then be analyzed for tumor formation. In these experiments, cell-autonomous 

roles as well as T-cell dependent effects can be analyzed in the Rag1-/- and wild-type 

background, respectively. Second, immunological roles of B7-H3 in CRC development will be 

further analyzed by direct investigation of B7-H3-dependent interactions between CRC cells 

and T cells. As described above, co-cultivation of the CMT-93 knockout clones with OT-I CD8+ 

T cells will be used to study if B7-H3 acts as a co-stimulatory or co-inhibitory factor in T cell 

activation, and if it is also involved in the regulation of T cell killing of tumor cells. Finally, 

and most importantly, we aim to investigate the role of B7-H3 in intestinal tumor development 

using mice with conditional deletion of B7-H3 within the intestinal epithelium or the immune 

compartment via the Cre/LoxP system (Le and Sauer, 2000). 
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5   CONCLUSION 

Within this thesis, I was able to generate B7-H3 loss-of-function mutants using 

CRISPR/Cas9 technology in the mouse CRC cell line CMT-93. I could demonstrate that these 

mutants do not exhibit cell-intrinsic defects in proliferation and apoptosis as a consequence of 

loss of B7-H3. The data presented in this thesis suggest that B7-H3 in CRC cells predominantly 

exhibits non-cell-autonomous roles, e.g. through regulation of antitumor immunity, which will 

be investigated using tumor models based on intravenous and subcutaneous injection of the 

generated clones into mice. 
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APPENDIX A: Vector map for PX456 

PX458  (gB7-­H3)  
9292  bp  



 

II 

APPENDIX B: Possible off-target sites for gRNA 

Targeted sequence   Gene   Chromosome   Position  
AGAGTCCTAGGAACCGACGA   NA   chr11   51085046  
CGCCTCCGAGCAGCCGCCGA   Fam115a   chr6   42693036  
AGCGTCCGAGAACCTGACGA   NA   chr17   28042566  
CGCGGCCGAGGAACCAACAA   NA   chr16   28929235  

 

 
 
APPENDIX C: Gel image for 934bp long PCR amplicon  



 

III 

APPENDIX D: Sequences and alignments of mutant clones in the targeted part. Top 
sequence is the Cd276 reference sequence, and other two sequences were obtained by 
sequencing using forward and reverse primers respectively. Inserted or deleted parts are marked 
in red. 
  
4D6 

 
4C11 

 
4H12 

 
  



 

IV 

6B6 
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APPENDIX E: Composition of Buffers 
 

Kit/Purpose Buffer Composition 

PureLink Quick Gel 
Extraction Kit 

“Gel Solubilization Buffer L3” contains guanidinium thiocyanite 

“Wash Buffer” contains 75-80% ethanol 

“Elution Buffer 10 mM Tris/HCl, pH 8.5 

GeneJET Plasmid 
Miniprep kit 

“Resuspension Solution” contains 10 mg/ml RNase A 

“Lysis Buffer” contains sodium hydroxide and 
sodium lauryl sulfate 

“Neutralization Buffer” contains guanidinium chloride 

“Wash Buffer” contains 75-80% ethanol 

“Elution Buffer” 10 mM Tris/HCl, pH 8.5 

EndoFree Plasmid Maxi 
Kit 

“Buffer P1” (resuspension 
solution) 

50 mM Tris-Cl, pH 8.0 

10 mM EDTA 

100 µg/ml RNase A 

“Buffer P2” (lysis buffer) 200 mM NaOH 

1% SDS (w/v) 

“Buffer P3” (neutralization 
buffer) 

3.0 M potassium acetate 

pH 5.5 

“Buffer ER” NA 

“Buffer QBT” (equilibration 
buffer) 

750 mM NaCl 

50 mM MOPS, pH 7.0 

15% isopropanol (v/v) 

0.15% Triton X-100 (v/v) 

“Buffer QC” (wash buffer) 1.0  M NaCl 

50 mM MOPS, pH 7.0 

15% isopropanol (v/v) 

“Buffer QN” (elution buffer) 1.6 M NaCl 

50 mM MOPS, pH 7.0 

15% isopropanol (v/v) 

“Buffer TE” 10 mM Tris-Cl, pH 8.0 

1 mM EDTA 

NucleoSpin Gel and PCR 
Clean-up kit 

“Buffer NTI” contains guanidinium thiocyanite 

“Buffer NT3” contains 75-80% ethanol 

“Elution Buffer NE” 5 mM Tris/HCl, pH 8.5 

PeqGold Total RNA Kit “RNA Lysis Buffer T” contains guanidinium 
thiocyanate 40-50% 



 

VI 

“RNA Wash Buffer I” contains ethanol 25-50%,  
guanidinium thiocyanate 10-25% 

“RNA Wash Buffer II” NA 

BrDU FlowKit “BD Cytofix/Cytoperm Buffer” contains 4.2% formaldehyde 

“BD Cytoperm Permeabilization 
Buffer Plus” 

NA 

“BD Perm/Wash Buffer” NA 

Restriction Digestion FastDigest Buffer NA 

cDNA synthesis 10x RT Buffer NA 

PCR 5x OneTaq Buffer NA 

Deglycosylation PNGase Buffer 1 50 mM Na3PO4 

1% SDS (w/v) 

1% b-mercaptoethanol (v/v) 

1x complete proteinase inhibitor 

pH 7.8 

PNGase Buffer 2 50 mM Na3PO4 

1% NP-40 (v/v) 

1x complete proteinase inhibitor 

pH 7.5 

Protein recovery RIPA Buffer 50 mM Tris/HCl, pH 7.4 

150 mM NaCl 

5 mM EDTA 

1% Igepal (v/v) 

0.5% sodium deoxycholat (w/v) 

0.1% SDS (w/v) 

Western blot 5x Laemmli with DTT 5% SDS (w/v) 

50% glycerol (w/v) 

625 mM Tris 

500 mM DTT 

Running Gel Buffer 1.5 M Tris Base 

0.4% SDS (w/v) 

pH 8.8 

Stacking Gel Buffer 0.5 M Tris Base 

0.4% SDS (w/v) 

pH 6.8 

 

 



 

VII 

10x SDS Running Buffer 190 mM glycin 

25 mM Tris 

0.1% SDS (w/v) 

Semi-dry Transfer Buffer 19 mM Tris Base 

0.4% glycin (w/v) 

10% methanol (v/v) 

TBS-T 50 mM Tris/HCl, pH 7.6 

150 mM NaCl 

1% Tween 50 (v/v) 

Flow cytometry FACS Buffer 1x D-PBS 

10% FBS (v/v) 

Annexin V staining Annexin V Binding Buffer 50 mM HEPES 

700 mM NaCl 

12.5 mM CaCl2 

pH 7.4 
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