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1.     Introduction 
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1.1.    Fruit fly (Drosophila melanogaster Meigen, 1830)  

The common fruit fly is normally a yellow brown (tan) color, and is only about 3 mm in 

length and 2 mm in width (Patterson et al., 1943). The shape of the common fruit fly's body is 

what one would normally imagine for a species of the order Diptera. Similar to all insects 

Drosophila is covered in a chitinous exoskeleton; has three main body segments; and has 

three pairs of segmented legs. It has a rounded head with large, red, compound eyes; three 

smaller simple eyes, and short antennae. Its mouth has developed for sopping up liquids 

(Patterson and Stone, 1952). The female is slightly larger than the male (Patterson et al., 

1943). There are black stripes on the dorsal surface of its abdomen, which can be used to 

determine the sex of an individual. Males have a greater amount of black pigmentation 

concentrated at the posterior end of the abdomen (Patterson and Stone, 1952) and sex combs 

on their front legs (Figure 1). It has been theorized that these sex combs might be used for 

mating (Patterson et al., 1943). Like other flies, Drosophila melanogaster has a single pair of 

wings that form from the middle segment of its thorax. Out of the last segment of its throax 

(which in other insects contains a second pair of wings) develops a set rudimentry wings that 

act as knobby balancing organs. These balancing organs are called halteres (Raven and 

Johnson, 1999).  

 

 

Figure 1. Normal adult female (left) and male fruit flies, Drosophila melanogaster (Source: 

http://berkeley.edu/news/media/releases/2002/07/03_paras.html). 
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Reproduction in Drosophila is rapid. A single pair of flies can produce hundreds of offspring 

within a couple of weeks, and the offspring become sexually mature within one week (Lutz, 

1948). Drosophila mature through complete metamorphosis, as do all members of the order 

Diptera. As in all insect species Drosophila melanogaster lays eggs. The eggs are placed on 

fruit, and hatch into fly larvae (maggots), which instantly start consuming the fruit on which 

they were laid (Patterson and Stone, 1952). Under laboratory conditions, typically a 

temperature of 25 °C and a relatively high humidity, D. melanogaster has a life cycle of 10 

days (Figure 2).  There are three larval instars, and this is the period of development in which 

all growth occurs. This times spent in the three major stages are: a) Embryonic development: 

24 hours; b) Larval development: 96 hours; c) Pupal development: 96-120 hours. Adult flies 

typically emerge according to a circadian rhythm and females are unreceptive to the attention 

of males for about the first 8-10 hours of their lives. This is of great practical importance, 

because it means that flies separated by their sex during this period will be virgin and can be 

used in controlled crosses. Under "typical" laboratory conditions the life span of D. 

melanogaster is 45-60 days.  There have been very extensive studies of the environmental and 

genetic influences on life span and this species is extensively used for studies of aging 

(Patterson and Stone, 1952; Partridge and Tower, 2008). 

 

Figure 2. The life cycle of Drosophila melanogaster (Source: 

http://itcamp.teacher.org.hk/2009CU2/GEN6/experiment/). 

http://www.eol.org/pages/733739
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As the name implies, the fruit flies lives primarily on plant material. The adults thrive on 

rotting plants, and fruits; while eggs are usually laid on unripened/slightly ripened fruit, so by 

the time the larva develop the fruit will have just started to rot, and they can use the fruit that 

the egg was laid on as their primary source of nutrition. Drosophila are considered major 

pests in some area of the world for this reason (Lutz, 1948; Demerec, 1950). Drosophila 

melanogaster has been introduced to every continent of the world with one exception, 

Antarctica. On other continents its range is limited only by mountain ranges, deserts, and high 

lattitudes (Demerec, 1950). The natural range of D. melanogaster is throughout the Old 

World tropics. Humans have helped to spread Drosophila melanogaster to every other 

location which it inhabits (Demerec, 1950; Patterson and Stone, 1952). The world-wide 

distribution of this fly is relatively recent, however. Its ancestral home is thought to be 

tropical West Africa.  From there it spread to Euroasia, perhaps 6,000-10,000 years ago. It 

spread to the Americas only 500 or so years ago, probably on trans-Atlantic slave ships 

(Keller, 2007).  

1.2.    Heat Shock Proteins (Hsps) 

 

Heat shock proteins are an evolutionary conserved family of proteins whose expression 

increases in response to a variety of different metabolic insults. Despite their designation, 

most of the heat shock proteins are constitutively expressed and perform essential functions. 

Most notable is their role as molecular chaperones, facilitating the synthesis and folding of 

proteins throughout the cell. In addition, heat shock proteins have been shown to participate in 

protein assembly, secretion, trafficking, protein degradation, and the regulation of 

transcription factors and protein kinases. Increased levels of heat shock proteins after stress 

plays a central role in cellular homeostasis. All organisms exhibit homeostatic-like responses 

when subjected to rapid changes in their environment. The ability of the organism to 

successfully adapt or acclimate to its new environment is critical to its survival, and likely 

represents an integral driving force in evolution. One well studied response to sudden adverse 

environmental changes is the so-called heat shock or stress response. When confronted with 

physiologically relevant increases in temperature, cells from all organisms respond similarly 

by rapidly increasing the synthesis of a select group of proteins, the heat shock proteins 

(Hsps). Changes in the expression of the heat shock proteins are controlled by a set of 

transcription factors referred to as heat shock factors (HSF) 1-4. The resultant increase and 

accumulation of the Hsps now gives the stressed cell added protection, thereby allowing for 

http://www.eol.org/pages/733739?category_id=17#7b268401342c1418f5fa226a6a05a9bc
http://www.eol.org/pages/733739?category_id=17#ba57fe79156700ef80bdb4a11617e945
http://www.eol.org/pages/733739?category_id=17#ba57fe79156700ef80bdb4a11617e945
http://www.eol.org/pages/733739?category_id=17#4e6591f7ce7f33b92bb420850b4c8dc4
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continued cell survival. In addition to increased temperatures, other insults also result in 

increased Hsp expression. These include exposure of cells to various metals, amino acid 

analogues, hypoxia, and a large number of agents/treatments which result in reduced ATP 

levels. Because so many adverse conditions lead to increased Hsp expression, the heat shock 

response now is commonly referred to as the “stress response”. Despite their designation as 

Hsps or stress proteins we now know that almost all of these proteins are in fact synthesized 

in cells grown under normal conditions (i.e. constitutive) and that their expression increases 

after metabolic stress. Under conditions of stress, where protein folding/assembly events may 

be compromised, the increased expression and accumulation of the stress proteins facilitates 

the ability of cells to both repair and synthesize new proteins to replace those that were 

damaged after the particular metabolic insult.  

The Hsp70 family represents one of the largest stress protein families with related members 

distributed throughout the cell. In times of stress, usually whenever the cell finds itself under 

conditions that are unfavorable for protein folding, members of the Hsp70 family are 

expressed at higher levels. Increased expression of the chaperones help in the repair of 

proteins damaged by the particular stress event as well as guide the synthesis of new 

polypeptides needed to replace those irreparably damaged. Elevated levels of hsp70 proteins 

have been linked with inhibition of apoptosis as well as the resistance of cells to various 

chemotherapeutic agents. In addition, numerous studies continue to demonstrate that changes 

in the levels of the different hsp70 family members may prove clinically useful for the 

diagnosis of many important human diseases (Hartl and Hayer-Hartl, 2002; Kleizen and 

Braakman, 2004; Walsh et al., 2004; Haslbeck et al., 2005; Bukau et al., 2006; Pearl and 

Prodromou, 2006; www.assaydesigns.com). 

The small hsps (e.g. hsp22) are perhaps the most widespread but least conserved members of 

the heat shock protein family. While bacteria and single-cell eukaryotes express only one or 

two members, Drosophila melanogaster expresses 16, humans 10, and plants as many as 19.  

The function(s) of each small heat shock protein is unknown. DmHsp22 is shown to localize 

in mitochondria both in D. melanogaster S2 cells and after heterologous expression in 

mammalian cells. Fractionation of mitochondria indicates that DmHsp22 resides 

in the mitochondrial matrix, where it is found in oligomeric complexes. The mitochondrial 

localization of this small hsp22 of Drosophila and its high level of expression in aging 

suggests a role for this small heat shock protein in protection against oxidative stress 

(Genevieve et al., 2000). 
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Increased expression and activity of hsps upon heat stress is regulated primarily at the level of 

increased transcription by heat-shock factor (HSF) (Morimoto, 2008). HSF is constitutively 

expressed in the cytoplasm and is maintained in an inactive state by association with Hsps, 

including Hsp70, Hsp90 and Hsp40 (Voellmy, 2004). Stresses that cause protein unfolding in 

the cell, such as heat and oxidative stress, titrate the Hsps away from HSF, enabling HSF to 

undergo trimerization, activation and translocation to the nucleus, where it binds to conserved 

heat-shock elements (HSEs) in the promoters of Hsp genes and activates their transcription. 

Once Hsp levels have risen sufficiently and/or the stress is removed, HSF is titrated back into 

its inactive monomeric form by association with Hsps, enabling a feedback loop that 

terminates the response (Figure 3). HSF is also regulated by posttranslational modifications 

such as phosphorylation, sumoylation and acetylation (Voellmy, 2004; Morimoto, 2008). 

Cellular stress that causes protein unfolding, therefore, will cause changes in the amount and 

availability of Hsps that will be transduced to their networks of clients, thereby coordinately 

altering signaling pathways, protein localization and stability and affecting global changes in 

the physiology of the cell. In this way, chronic stress can lead to deleterious effects, such as 

those associated with aging (Soti and Csermely, 2007). The insulin/insulin-like growth factor 

(IGF)-1-like signaling (IIS) pathway (Figure 3) has been found to be a key regulator of life 

span and aging phenotypes across species (Kenyon, 2005). IIS acts through a conserved 

transcription factor, Forkhead box O (FOXO), the targets of which include Hsps; therefore, 

Hsps might be key mediators of IIS effects on aging (Cohen et al., 2006). Additional 

pathways co-regulate stress resistance, life span and Hsp expression. For example, the 

Drosophila JNK-signaling pathway promotes oxidative stress resistance and expression of the 

Hsp70-class protein Hsp68, and both JNK signaling and Hsp68 overexpression were reported 

to extend fly life span (Wang et al., 2003). In summary, several stress-response pathways, 

including HSF, IIS and JNK, converge upon the activation of Hsp gene expression and can 

increase both stress resistance and life span (Tower, 2009).  
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Figure 3. Regulation of Hsp genes by HSF and FOXO (Source: Tower, J. (2009): Hsps and aging, Cell press, 

Trends in Endocrinology and Metabolism 20 (5)). 

 

 

Aging is associated with characteristic changes in gene expression, in particular that of the 

Hsps. During normal aging of an otherwise unstressed animal, Hsp expression increases in a 

variety of tissue-specific and disease-specific patterns, consistent with aging and disease as 

intrinsic stress states (Morrow and Tanguay, 2003; Landis and Tower, 2005; Macario and 

Conway de Macario, 2005).  For example, upregulated hsp22 and hsp70 gene expression 

during Drosophila aging requires functional HSE sites in the promoter. One likely mediator 

of increased Hsp expression during aging is increased oxidative stress (Landis and Tower, 

2005; Muller et al., 2007).  Several Hsp genes, including hsp22 and hsp70, are upregulated 

during normal Drosophila aging (Landis and Tower, 2005). Recently, both hsp22 and hsp70 

have been found to be predictive biomarkers of Drosophila life span and mortality: expression 

of hsp22-GFP and hsp70-GFP transgenes in young (approximately one week old) flies was 

negatively correlated with remaining life span (Yang and Tower, 2009), and during aging, 

both genes were observed to spike in expression in the hours preceding death of the animal 

(Grover et al., 2008).  
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1.3.    Oxidative stress and aging 

 

Aging is thought to evolve due to the decreasing force of natural selection acting on older 

individuals (Rose, 1991; Partridge and Barton, 1993; Charlesworth, 1994; Kirkwood, 1995; 

Kirkwood and Austad, 2000). Repair and maintenance of somatic tissues appears unable to 

keep pace with endogenous and exogenous sources of damage, leading to progressive 

deterioration of structure and function with age. Accumulating evidence suggests that 

oxidative damage may be a key cause of aging in species ranging from C. elegans to 

Drosophila to humans (Harman, 1956; Stadtman, 1992; Wallace, 1999; Finkel and Holbrook, 

2000; Hekimi and Guarente, 2003). Reactive oxygen species (ROS) such as superoxide, 

hydrogen peroxide, hydroxyl radical and others are produced as toxic byproducts of normal 

cellular metabolism (Figure 4). Among the most important defenses against oxygen radicals 

are the superoxide dismutase (SOD) enzymes (Fridovich, 1995). ROS damage each of the 

four classes of cellular macromolecules (lipids, nucleic acids, carbohydrates and proteins), 

and oxidative damage products of each have been found to accumulate during aging (Yu, 

1993; Meli et al., 2003). In many organisms aging has been found to be associated with the 

accumulation of ‘‘abnormal’’ proteins. These include conformationally altered and inactive 

enzymes and proteins that are oxidatively damaged (Gershon and Gershon, 1970; Rothstein, 

1983; Rothstein, 1989; Finch, 1990; Stadtman, 1992; Finkel and Holbrook, 2000; Stadtman 

and Levine, 2003).  
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Figure 4. The sources and cellular responses to reactive oxygen species (ROS) (Source: Finkel T., N.J. 

Holbrook (2000): Oxidants, oxidative stress and the biology of aging.  Nature 408: 239-247). 

 

 

1.4.    Free radical theory of aging 

 

In the mid-1950s, Denham Harman articulated a free-radical theory of ageing, speculating 

that endogenous oxygen radicals were generated in cells and resulted in a pattern of 

cumulative damage (Harman, 1957). The free radical theory of aging postulates that the 

production of intracellular reactive oxygen species is the major determinant of life span 

(Figure 5) (Balaban et al., 2005). ROS are generated in multiple compartments and by 

multiple enzymes within the cell. Important contributions include proteins within the plasma 

membrane, such as the growing family of NADPH oxidases (Lambeth 2004); lipid 

metabolism within the peroxisomes; as well as the activity of various cytosolic enzymes such 

as cyclooxygenases. Although all these sources contribute to the overall oxidative burden, the 
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vast majority of cellular ROS (estimated at approximately 90%) can be traced back to the 

mitochondria (Figure 6).  

 

 
Figure 5. Model of ROS damage during aging. In young animals the mitochondria produces ATP and reducing 

equivalents with low amounts of ROS byproducts. The ROS damage mitochondria, resulting in a vicious cycle 

of increasing ROS production. The damaged mitochondria are less efficient and produce less ATP and reducing 

equivalents and more ROS. Decreased ATP production results in decreased protein synthesis and turnover, in 

turn increasing protein half life and the chances for oxidative damage. Damaged proteins and mitochondria 

signal induction of hsps that are beneficial in the short term, but may accumulate to toxic levels in old animals 

(Source:  Landis G. N., Tower J. (2005): Mechanisms of Aging and Development 126: 365-379). 

 

 

The generation of mitochondrial ROS is a consequence of oxidative phosphorylation, a 

process that uses the controlled oxidation of NADH or FADH to generate a potential energy 

for protons across the mitochondrial inner membrane. This potential energy is in turn used to 

phosphorylate ADP via ATPase (Nemoto et al., 2000; Werner and Werb, 2002; Dada et al., 

2003). The production of mitochondrial superoxide radicals occurs primarily at two discrete 

points in the electron transport chain, namely at complex I (NADH dehydrogenase) and at 

complex III (ubiquinone–cytochrome c reductase). Under normal metabolic conditions, 

complex III is the main site of ROS production (Turrens, 1997). Evidence indicates that, in 

vitro, mitochondria convert 1–2% of the oxygen molecules consumed into superoxide anions 

(Boveris and Chance, 1973). Given that these initial estimates were made on isolated 

mitochondria in the presence of high, non-physiological concentrations of oxygen, the in vivo 

rate of mitochondrial superoxide production is undoubtedly considerably less. Whatever the 
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absolute amount of mitochondrial ROS, given their potentially harmful effects, it is likely that 

numerous protective mechanisms have evolved to limit oxidant production and 

release. The balance between ROS production and antioxidant defences determines the degree 

of oxidative stress (Finkel and Holbrook, 2000).  

 

 
 

Figure 6. A Schematic Model of ROS Generation in the Mitochondria (Source: Balaban et al. (2005): 

Mitochondria, Oxidants and Aging. Cell 120: 483-495). 

 

1.5.    Green Fluorescent Protein (GFP) 

 

The green fluorescent protein (GFP) is a protein composed of 238 amino acids (26.9kDa), 

which exhibits bright green fluorescence when exposed to blue light (Prendergast and Mann, 

1978; Tsien, 1998).  Although many other marine organisms have similar green fluorescent 

proteins, GFP traditionally refers to the protein first isolated from the jellyfish Aequorea 

victoria. The GFP from A. victoria has a major excitation peak at a wavelength of 395 nm and 

a minor one at 475 nm. Its emission peak is at 509 nm which is in the lower green portion of 

the visible spectrum. The GFP from the sea pansy (Renilla reniformis) has a single major 

excitation peak at 498 nm. In cell and molecular biology, the GFP gene is frequently used as a 

reporter of expression (Phillips, 2001). In modified forms it has been used to make biosensors, 

and many animals have been created that express GFP as a proof-of-concept that a gene can 

be expressed throughout a given organism. The GFP gene can be introduced into organisms 

and maintained in their genome through breeding, injection with a viral vector, or cell 

transformation. To date, the GFP gene has been introduced and expressed in many bacteria, 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Amino_acids
http://en.wikipedia.org/wiki/Atomic_mass_unit
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Jellyfish
http://en.wikipedia.org/wiki/Aequorea_victoria
http://en.wikipedia.org/wiki/Aequorea_victoria
http://en.wikipedia.org/wiki/Fluorescence_spectroscopy
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Sea_pansy
http://en.wikipedia.org/wiki/Renilla_reniformis
http://en.wikipedia.org/wiki/Cell_biology
http://en.wikipedia.org/wiki/Molecular_biology
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Reporter_gene
http://en.wikipedia.org/wiki/Biosensor
http://en.wikipedia.org/wiki/Viral_vector
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yeast and other fungi, fish (such as zebrafish), plant, fly, and mammalian cells, including 

human (Tsien, 1998). In the 1960s and 1970s GFP, along with the separate luminescent 

protein aequorin, was first purified from Aequorea victoria and its properties studied by 

Osamu Shimomura (Shimomura et al., 1962). In A. victoria, GFP fluorescence occurs when 

aequorin interacts with Ca2+ ions, inducing a blue glow. Some of this luminescent energy is 

transferred to the GFP, shifting the overall color towards green (Morise et al., 1974).   

GFP has a typical beta barrel structure (Figure 7), consisting of one β-sheet with alpha helix(s) 

containing the chromophore running through the center (Ormö et al., 1996; Yang, 1996).  

Inward facing sidechains of the barrel induce specific cyclization reactions in the tripeptide 

Ser65–Tyr66–Gly67 that lead to chromophore formation. This process of post-translational 

modification is referred to as maturation. The hydrogen bonding network and electron 

stacking interactions with these sidechains influence the color of wild type GFP (wtGFP) and 

its numerous derivatives. The tightly packed nature of the barrel excludes solvent molecules, 

protecting the chromophore fluorescence from quenching by water (Yang, 1996).  

 

 

 

 

 

 

Figure 7. Gfp and fluorophore. GFP molecules drawn in cartoon style, one fully and one with the side of the 

beta barrel cut away to reveal the chromophore (highlighted as ball-and-stick) (Source: 

http://en.wikipedia.org/wiki/File:Gfp_and_fluorophore.png). 

 

 

http://en.wikipedia.org/wiki/Zebrafish
http://en.wikipedia.org/wiki/Aequorin
http://en.wikipedia.org/wiki/Osamu_Shimomura
http://en.wikipedia.org/wiki/Aequorin
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Beta_barrel
http://en.wikipedia.org/wiki/Chromophore
http://en.wikipedia.org/wiki/Chromophore
http://en.wikipedia.org/wiki/Chromophore
http://en.wikipedia.org/wiki/Beta_barrel
http://en.wikipedia.org/wiki/Chromophore
http://en.wikipedia.org/wiki/Ball-and-stick_model
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1.6.    Goals of the project 

 

It is known that oxidative stress induces the expresion of the heat shock proteins. In this 

project I wanted to see the effects of different extrinsic factors on the oxidative stress intensity 

in fruit fly. The objective was to test whether there are any significant differences in the 

fluorescence, hence the expression of the heat shock proteins between the single flies of two 

different genotypes that were put on the normal food and on the 2% hydrogen peroxide food.  

Furthermore, I wanted to investigate whether there are differences  between different social 

groups of flies as well as the diferences between sexes. I was wondering if the females in the 

group with only one male or with more males are more stressed? Similar, would males be 

more stressed in the group with only one female or with more of them? Here I used two 

different genotypes tagged with the GFP, hsp22-GFP and hsp70-GFP. I was interested to see 

if the genotypes are different in their responses, or they would not show any significant 

difference.  



 14
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2.1.    Materials 

 

2.1.1.    Fly lines  

 

• Hsp22à     yacw; hsp22GFP(3)1mI1/ TM3, Sb 

• Hsp70à     yacw; hsp70GFP(3)1mI2/ TM3, Sb 

 

 

y-ac-w (yellow- acre- white) à Placed in line on the second chromosome 

Sbà Stubble 

TM3à Balancer on the third chromosome 

 

A balancer chromosome is a genetic tool used to prevent crossing over (genetic recombination) 

between homologous chromosomes during meiosis. Balancers are most often used in 

Drosophila melanogaster genetics to allow populations of flies carrying heterozygous 

mutations to be maintained without constantly screening for the mutations. TM3, Sb balancer 

is a balancer chromosome that stabilizes the third chromosome and carries a mutant Sb 

(Stubble) gene as a marker. All flies containing the TM3, Sb balancer will have shortened (or 

stubbly) hairs on the back of the fly, which are easily seen when viewed through a microscope 

(Greenspan, 2004). 

 

2.1.2.    Fly food (recipe) 

 

Ingredients:  

  

Water   22 L   

Light corn syrup 1.5L   

Corn meal  2100 mL  

Non-active yeast 600 mL   

Soy flour  500 mL   

Agar   250 mL   

Malt extract  1475 mL  

 

http://en.wikipedia.org/wiki/Genetic_recombination
http://en.wikipedia.org/wiki/Homologous_chromosome
http://en.wikipedia.org/wiki/Meiosis
http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://en.wikipedia.org/wiki/Heterozygous
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Acid Mix A  225 mL   

Tegosept Acid Mix 130 mL 

All reagents were purchased from Sigma-Aldrich.  

 

Instructions: 

Corn meal is measured and put into plastic bag. All other dry ingredients are measured and 

put into a plastic bag.  Because the malt is sticky, it is measured last. The vat is filled with 

water. The steam valve (~ 4 ¼ turns) and stirring rod are turned on and the stirring set to 

medium speed. When the water is almost to a boil, corn syrup is added. Once the corn syrup is 

dissolved and water is boiling, corn meal is slowly added boiled for 45 minutes. The stirring 

speed is increased and the stirring direction is changed to prevent clumping. After the 

cornmeal has boiled for 45 minutes, the rest of the dry ingredients are slowly added boiled for 

30-35 minutes. Acid Mix A and Tegosept Acid Mix are added slowly and boiled for 10 more 

minutes. Steam is turned off and stir rod is turned to slowest speed. Food is pumped  into vials 

and needs to be cooled down for about 24 hours (Figure 8).  

 

 

 

 

 
 

 

Figure 8. Fly food in vials with fruit flies (Source: Melina Butuči). 
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2.1.3.    Hydrogen peroxide (H2O2) 

 

Hydrogen peroxide is naturally produced in organisms as a by-product of oxidative 

metabolism. Nearly all living things (specifically, all obligate and facultative aerobes) possess 

enzymes known as peroxidases, which harmlessly and catalytically decompose low 

concentrations of hydrogen peroxide to water and oxygen (Halliwell et al., 2000).  

Hydrogen peroxide is a good candidate for a behavior regulator as it is the most stable and 

diffusible of ROS species and has been shown to function as a cellular signaling molecule in 

several other processes (Balaban et al., 2005). 

 

2.2.    Methods 

 

2.2.1.    Fly lines construction 

 

Both of the fly lines were constructed in Dr. John Tower's lab, University of Southern 

California. 

 

2.2.1.1.    DNA constructs 

 

Plasmids for making transgenic GFP reporter flies were derived from pGreen pelican. 

phsp22p-Gpel was a derivative of pGreen pelican in which the sequence between the Kpn I 

and Bgl II sites was replaced by the sequences from − 312 to +10 of the hsp22 gene of D. 

melanogaster, and in phsp70-Gpel, these sequences were replaced by the sequences from − 

194 to +10 of the hsp70 gene. The hsp gene sequences used in cloning were generated using 

the following oligonucleotides containing engineered Bgl II and Kpn I sites: hsp22 forward 

primer CC AGA TCT TCA ATG TGT CTC TCT GCG, hsp22 reverse primer CC GGT ACC 

TTT GAA CTG AGA GCG TAG, hsp70 forward primer CC AGA TCT CTC GAG AAA 

TTT CTC TGG, and hsp70 reverse primer CC GGT ACC GAA TTG AAT TGT CGC TCC. 

The template for amplification of hsp70 sequences was plasmid pBS70Z, and the template for 

amplification of hsp22 sequences was plasmid “ hsp22 5 ′ D (− 314)” (Yang and Tower, 

2009). 

 

 

http://en.wikipedia.org/wiki/Oxidative_metabolism
http://en.wikipedia.org/wiki/Oxidative_metabolism
http://en.wikipedia.org/wiki/Aerobes
http://en.wikipedia.org/wiki/Peroxidase
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2.2.1.2.    Drosophila P element – mediated transformation 

 

Transgenic fly strains were generated by microinjection of the P-element constructs into fly 

embryos along with delta2 – 3 “ turbo ” helper plasmid (pUChspD2-3wc) as a source of 

transposase, using standard methods. Strains with multiple inserts were generated in order to 

increase reporter expression levels, as follows: to generate strains with multiple inserts, strains 

with single inserts were crossed to the delta2-3 transposase source to mobilize the inserts, and 

chromosomes bearing multiple inserts were first identified by increased expression of the 

mini-white+ marker gene, and then insert copy number was confirmed using genomic 

Southern blotting (Yang and Tower, 2009). 

 

2.2.1.3.    Generation of PEPCK-GFP reporter flies 

 

A strain of flies was generated where GFP expression is under the control of a promoter that 

is not induced by heat or oxidative stress, in this case the PEPCK gene promoter. A gene-trap 

line of genotype w[1118]; P{w[+mGT] = GT1} BG02569 was obtained from Bloomington 

Drosophila stock center and produces GAL4 protein under the control of PEPCK gene 

regulatory sequences; this strain is hereafter referred to as PEPCK-GAL4 . A strain was 

constructed containing multiple copies of a construct with a upstream activating sequence 

(UAS) promoter driving expression of eGFP as follows: starting strains were obtained from 

Ron Davis (Baylor College of Medicine) that contained the UAS-2XeGFP construct inserted 

on the second chromosome (line U-202-3) and on the third chromosome (line U-307-1). 

These lines were crossed to a strain bearing the delta2-3 transposase source to mobilize the 

inserts, and chromosomes were derived that contained multiple copies of the insert on the 

second and third chromosomes, named UAS-2xEGFP[m5B29] and    UAS-2xEGFP[m6B1] , 

respectively, where the “ m ” stands for multimer derivative chromosome. These second and 

third chromosomes bearing the multiple inserts were then placed into the same genetic 

background and made homozygous by appropriate crosses to double-balancer strains, to 

generate strain w ; UAS-2- xEGFP[m5B29] ; UAS 2xEGFP[m6B1] . This strain was crossed 

to the PEPCK-GAL4 strain described earlier to generate progeny of genotype w; UAS-

2xEGFP[m5B29]/PEPCK- GAL4; UAS-2xEGFP[m6B1] . In these progeny flies, the PEPCK 

gene regulatory sequences drive expression of GAL4 transcription factor, which in turn binds 

to the multiple UAS promoter constructs to drive expression of eGFP. Therefore, in these flies 
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the GFP expression is ultimately driven by the regulatory sequences of PEPCK , and they are 

hereafter referred to as “ PEPCK-GFP ” reporter flies (Yang and Tower, 2009). 

 

2.2.2.    Keeping/Maintaining flies 

 

Figure 9. shows how the fruit flies are being stored for maintenance in the Nuzhdin lab at 

USC. It is the most important that the vials are properly marked with the fruit fly line and a 

date. On the left hand side of the picture are showed boxes with flies that are being kept as 

factories for mating. They are grouped by different fly lines and separated from each other so 

they do not get mixed up and are called aging vials. The reason why there are many of them is 

because they are in different stages of life. The midle box contains all of the fly lines we are 

using prepared for every day virgin collection. In the last box are fly lines back-ups kept only 

for maintaining the lines, in case something goes wrong. 

 

 

 
 

Figure 9. Maintenance of the fly lines used in this project (Source: Melina Butuči). 

 

 

 



 20

2.2.2.1.    Knocking- out flies  

 

• Carbon dioxide (CO2) 

 

In order to use D. melanogaster as a model organism for genetic analysis, it is necessary to 

maintain cultures of flies for manipulation in crosses and as a backup for any mishaps which 

may occur. Culturing is very easy and it is recommended to have students maintain their own 

cultures of flies. As long as students reculture their flies on a regular basis and no mass 

contamination occurs, flies can be maintained for decades.  

The problem with fruit flies is that they fly. Therefore a variety of methods have been 

developed to anesthetize flies. Included are ether, commercial brands such as Flynap, carbon 

dioxide and cooling. Each has its strengths and weaknesses. Ether is flammable, has a strong 

odor and will kill flies if they are over-etherized (and can anesthetize younger students). 

Flynap (from Carolina Biological) is messy and has an odor that some find offensive. Each of 

these, however, requires low- cost equipment which can be easily purchased. Carbon dioxide 

works very well, keeping flies immobile for long periods of time with no side effects, 

however CO2 mats (blocks) are expensive and a CO2 source (usually a bottle) and delivery 

system (vials and clamps) are necessary, increasing the costs. The least harmful to the flies is 

either carbon dioxide or cooling anesthetizing. In the Nuzhdin lab at University of Southern 

California, CO2 from bottles is being used every day on a regular basis.   

 

2.2.2.2.    Transferring flies from one vial to another 

 

Flies should be transferred every 10 to 14 days. A funnel is placed in the mouth of a fresh 

culture vial that already has media added. In the old vial (the one with flies in it),  the flies are 

gently tapped down by softly tamping the vial on a soft surface, such as a mouse pad. The 

flies will fall to the bottom and remain there for a few seconds, enough time to quickly take 

the plug off the vial, invert it into the funnel, and gently tamp, together, the two vials to force 

flies down into the new vial.  
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2.2.2.3.    Sexing flies 

It is quite easy to differentiate males from females and with a little practice one becomes 

confident of its ability to do so. Males are generally smaller and have a darker and more 

rounded abdomen. The coloration of the abdomen is the easiest to recognize. In addition, 

males have tarsal sex combs on their first pair of legs. These are black and very distinctive, 

but can only be seen under relatively high magnification. With a little practice, by looking at 

the abdomen one will become proficient in accurately sexing flies. Sexing flies is critical 

when making crosses, so be sure you are confident in identifying the difference between the 

sexes.  

2.2.2.4.    Collecting virgin females  

 

While it's a simple matter of placing virgin females with males, it is important to recognize 

the time factor involved for obtaining virgins. Females remain virgins for only 8-10 hours 

after eclosure and must be collected within this time frame. Alternatively, it is quite easy to 

distinguish virgins from mature flies visually. It is strongly suggested that one obtains extra 

virgins in case a mistake is made in identification or the fly dies before mating and egg lying 

can occur. In a strong culture, multiple virgin females should be easily obtained. Although 

females are able to lay eggs as virgins, they will be sterile and no larvae will be produced. In 

the removal method all flies need to be removed 8-10 hours before collecting. The surface of 

food needs to be visually inspected to ensure complete removal of flies. After 8-10 hours all 

females that are present need to be collected. All will be virgins. They are placed in a fresh 

culture vial and we need to wait 2-3 days to look for larvae. Virgin females can lay eggs, but 

they will be sterile. Since they are photoperiod- sensitive, females tend to eclose early in the 

morning. Therefore early collections will ensure the greatest number of virgins for 

experimentation. However, collection is possible later in the day. Sometimes it is possible to 

separate flies by visually looking at them. Being able to recognize virgin females removes the 

necessity of emptying culture vials on a timely basis. Virgin females are much larger than 

older females and do not have the dark coloration of mature females. In addition, in the early 

hours after eclosure, there will be visible a dark greenish spot (the meconium, the remains of 

their last meal before pupating) on the underside of the abdomen.  
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2.2.3.    Conditioning 

 

The flies were collected as virgins. Then they were put into their treatment vials. Flies that 

were chosen to be solo conditioned were put in male/female pairs for 3 days to mate, then 

they were separated into solo conditioned vials, so that all females were mated and laying 

eggs. They were transferred once during their aging process, and were aged for 14 days.  

Then, the flies chosen for chemical conditioning with hydrogen peroxide were put on the 2% 

hydrogen peroxide medium for 24 hours and at the same time the rest of the flies were 

transferred onto fresh food as well. That was done with a reason that no one gets transferred 

more than anyone else. For getting hydrogen peroxide medium prepared fly food was taken 

and microwaved so it melts. Next, it was left to cool down, but not to get too hard and 

afterwards hydrogen peroxide was added to get 2% solution, depending on the fly food 

volume. The food with hydrogen peroxide was then transferred into the clean vials and let to 

completely cool down. The volume of the fly food in the vial is 10 ml.  

 

2.2.4.   Environment 

 

The easiest way to grow flies is at room temperature. However, the optimum rearing 

condition is a temperature of 25 °C and 60% humidity. In these conditions generation time is 

shorter (9-10 days from egg to adult). Unless equipment is readily available this is 

unnecessary for successful rearing and crossing of flies. It is preferable to keep flies out of 

drafts and direct sunlight or heat sources. These will rapidly dry the media, necessitating 

frequent media changes and the potential to dehydrate the flies.  

Flies are being kept in the room where the circadian rhythms can be controlled by 

automatically switching the lights on and off according to the timer. Our flies were timed to 

have the day light from 9am to 9pm (Figure 10).  
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Figure 10. Fly room at the University od Southern California, Nuzhdin lab. It is the place where the flies are 

kept at constant environmental conditions, where they are being sexed from each other using CO2 and transfered 

from old to new vials (Source: Melina Butuči). 

 

2.2.5.    Stereo microscope 

 

After the social and chemical treatment, pictures of flies were taken using Leica MZ FLIII 

flourescence stereomicroscope with SPOT CCD camera and imaging software (Figure 11).  

Stereo microscopes, also called dissecting microscopes, are two compound microscopes 

which focus on the same point from slightly different angles. This allows the specimen to be 

viewed in three dimensions.  As opposed to compound microscopes, the image is upright and 

laterally correct (not upside down and backwards). The Leica MZ FLIII with fluorescence 

filter system enables unprepared fluorescing specimens to be non-destructively inspected, 

manipulated, sorted and recorded. The fluorescence stereomicroscope has a large field of 

view and a long working distance, for viewing and manipulating large specimens in 

http://www.martinmicroscope.com/MicroscopePages/CompoundMicroscopes.htm
http://www.martinmicroscope.com/MicroscopePages/CompoundMicroscopes.htm
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transmission, relection and fluorescence. The magnification zooms from 1x to 10x. A colour 

CCD camera of moderate quality documents observations. Particularly in molecular biology 

and in gene technology this new observation technique offers ideal conditions for in-vivo and 

in-situ investigations of living organisms in real time. 

 

 

Model:   Leica MZ FLIII Stereomicroscope 

Objective Lenses:  Plan-Apo 0.8x to 10x 0.12NA 

Illumination Sources: 100W Mercury 

                                    Intralux 5000 halogen  

Filter Sets:    470nm Excitation filter set(GFP) and 560nm Excitation filter set(dsRed) 

Cameras:   Leica DC 300 F cooled colour CCD camera 

Software:   Media Cybernetics Image Pro Express 

 

 

2.2.5.1.    Advantages and Techniques 

 

• Able to image large specimens using reflected, transmitted or fluorescent light 

• Large working distance between objective lens and sample 

• Great for animal specimens 

 

 

The digital image recording systems from Leica Microsystems allow rational creation, 

processing and archiving of digitized images. It is combined with the Leica Image Manager 

image management system. The IM Image Overlay module delivers perfect results for 

multiple fluorescence recordings in cell biology or genetics.  It has quick switching from 3D 

to microscopic observation with 10x micro objectives (resolution 0.7 µm, 1320 Lp/mm) or 

20x (resolution 0.8 µm, 1260 Lp/mm).  Leica stereomicroscopes are designed with two 

parallel beam paths above a common main objective. This is the most elaborate, but proven 

the best principle for fatigue-free viewing and for perfect image quality. In addition, the Leica 

MZ FLIII has the patented separate illumination beam path (TripleBeam™) for the 

fluorescence illuminator. This unique innovation ensures that, at all zoom positions, the light 

is guided correctly and utilized fully, and that the background of the field of view is uniformly 

http://www.aomf.ca/pdfs/LEICASTEREOMICROSCOPE.pdf
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dark. Leica’s innovation in the design and manufacturing stages pay off with the intense 

fluorescence and in the detail-rich, reflex-free images with their jet-black backgrounds. 

Two novel features enable filters to be changed in a moment: the arrangement of excitation 

and barrier filters on the same filter carrier, and the creation of a horizontally-rotatable rapid 

filter changer for four filter combinations. With just one quick movement, the excitation filter 

is in the illumination beam path and the barrier filter is in the observation beam path. At low 

magnifications, stereomicroscopes provide a panoramic view of the whole object; at high 

magnifications, they reveal fine detail. The zoom range of the Leica MZ FLIII, from 8x to 

100x with 1x objective and 10x eyepieces, its maximum magnification of 800x and its high 

resolution of up to 750 line pairs/mm with the 2x planapochromatic objective, take its 

observation range into that of the classical microscope. Intense UV radiation can cause 

damage to the retina of the observer’s eye. That is why UV barrier filters are permanently 

installed in the observation beam paths; there is a UV protection screen above the specimen 

plane and stray-light protection at the lamp housing, and there are dummy filter carriers in the 

empty filter positions (http://www.oulu.fi/pyokui/tiedostot/laitteet/Leica%20M1-160-0en.pdf). 

 

 

GFP Filter sets    Excitation filter  Barrier filter 

 

GFP fluorescence  425/60 nm   480 nm 

GFP Plus fluorescence 480/40 nm   510 nm 

GFP Plant fluorescence  470/40 nm   525/50 nm 

 

 

 

 

http://www.oulu.fi/pyokui/tiedostot/laitteet/Leica%20M1-160-0en.pdf
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Figure 11. Leica MZ FLIII flourescence stereomicroscope with SPOT CCD camera and imaging software 

(Source: http://www.oulu.fi/pyokui/tiedostot/laitteet/Leica%20M1-160-0en.pdf). 

 

 

2.2.6.    MicroPicAnalyzer    

 

The pictures of  flies were then processed with MicroPicAnalyzer. The software was 

developed at University of Southern California, by a Ph.D. student Reza Dehestani Ardekani. 

Colored pictures have 3 channels: Red, Green and Blue. The color of each pixel is determined 

by a combination of these 3 channels, for example Red and Green make Y considering one 

byte of memory for each number. The range of each channel is between 0 to 255 and higher 

the number means brighter the picture. If r,g,b for a pixel is 0,0,0 the color of that pixel would 

be black. Same way, if r,g,b is 255,255,255 the color would be white. To quantify GFP, we 

are looking at the intensity of the green channel. Since checking each pixel in these large 

pictures (1600x1200) is really tedious, we do it in an automated way by looking at each pixel 

and making a histogram of their values. We divide each channel to N bins (here the number of 

bins is N = 4) and count the number of pixels that fall into that bin. For example, for N = 4, 

the threshold for bins are 0-64, 64-128, 128-192, 192-255. Now for each image, we record the 

number of pixels that their green's intensity is between 0-64 and also the sum of their values. 

http://www.oulu.fi/pyokui/tiedostot/laitteet/Leica%20M1-160-0en.pdf
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We do the same thing for all the other bins as well. Using this method, pictures that have 

higher number of pixels in higher bins (bin 192-255 is the highest) are more greenish, and 

since in these pictures the only source of green channel is GFP, they have higher expression 

of the GFP.  

The input file is a picture in jpg format, and the output file are RGB values in Excel.  

 

2.2.7.    Data analysis 

 

Data analysis and charts were done in Excel and statistics in SAS proc glm. SAS has several 

procedures for analysis of variance models, including proc anova, proc glm, proc varcomp, 

and proc mixed. We mainly will use proc glm and proc mixed, which the SAS manual terms 

the “flagship” procedures for analysis of variance. The “glm” in proc glm stands for “general 

linear models.” 
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3.    Results 
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3.1.    Chemical stress in male fruit flies 

 

Statistical analysis was done on the sample size of 23 males. 12 of them were put on the 

normal food, each one of them separately into a single vial; 11 of them were were put on the 

food with 2% hydrogen peroxide. The actual genotypes (hsp22 versus hsp70) did not show 

statisticaly significant importance, which is why they are processed together as a single hsp 

genotype.  Looking at the data we were not able to show that there was a difference of the 

GFP expression between the flies that were put on the normal food versus flies that were 

conditioned with 2% hydrogen peroxide. Yet, the values of flourescence are slightly higher 

for the flies put on the 2% hydogen peroxide food (Figure 12). 

 

 

F1, 23=0.79;  P=0.385;  mean without H2O2= 4.82458;   mean with H2O2=4.95491; 

StDev 1m H2O2= 0.345026;  StDev 1m= 0.374893. 

 

Chemical stress in male fruit flies

4

4.2

4.4

4.6

4.8

5

5.2

5.4

H2O2 food normal food

flu
or
es
ce
nc
e 
(g
1l
og
 v
al
ue
s)

 
Figure 12. Chemical stress in male fruit flies. Results are showed as means of a variable g1log ± SD. 
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3.2.   Chemical stress in female fruit flies 

 

Statistical analysis was done on the sample size of 23 females. 7 of them were put on the 

normal food, each one of them separately into a single vial; 16 of them were put on the food 

with 2% hydrogen peroxide. The actual genotypes (hsp22 versus hsp70) did not show 

statisticaly significant importance, which is why they are processed together as a single hsp 

genotype. Looking at the data we were not able to show that there was a difference of the GFP 

expression between the flies that were put on the normal food versus flies that were 

conditioned with 2% hydrogen peroxide. But the difference between the values of 

flourescence between the female flies put on normal food and those put on 2% hydogen 

peroxide food is noticable, showing higher values for those flies put on the 2% hydrogen 

peroxide food (Figure 13). 

 

 

F1, 23=2.73; P=0.1132;  mean without H2O2= 4.9242;  mean with H2O2= 5.17591; 

StDev 1f H2O2 = 0.374502;  StDev 1f = 0.211093. 
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Figure 13. Chemical stress in female fruit flies. Results are showed as means of a variable ± SD. 
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3.3.    Chemical stress in both male and female fruit flies together 

 

Although looking at the males and females separately on 2% hydrogen peroxide food showed 

only a slight difference in flourescence values compared to those from normal food values, it 

pointed out that females give a stronger flourescence signal than males under the same 

conditions. Nevertheless, if we look at the overall flourescence in males and females put on 

the 2% hydrogen peroxide together, the result will show a statistically significant difference 

between those flies and the ones that were on the normal food (Figure 14).  

 

 

F1, 46=4.39;   P=0.0417;  mean without H2O2 = 4.86129;   mean with H2O2 = 5.0812; 

StDev 1m+f H2O2 = 0.372587;  StDev 1m+f = 0.321216. 
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Figure 14. Chemical stress in both male and female fruit flies together. Results are showed as means of a 

variable g1log ± SD. 
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3.4.   Social stress in female fruit flies 

 

Statistical analysis was done on the sample size of 45 females. There were three different 

social groups . The maximum number of flies per vial was 8. Group one was made out of 1 

male and 7 females per vial. From this group we examined 18 females. Second group had an 

even ratio between sexes, 4 males and 4 females per vial. From this group we examined 10 

females. Lastly, the third group was made out of 7 males and 1 female per vial only. Here, we 

examined 17 females. The highest flourescence value in females showed the third group of 7 

males and 1 female per vial, while the least fluorescence value in females showed the first 

group of 1 male and 7 females. We also compared the fluorescence values between the groups. 

First group with 1 male and 7 females and the second group with 4 males and 4 females are 

not significaly different from each other, but both of them are different from the third group 

with 7 males and 1 female. From this results we can see that overall effect from different 

social groups on female stress is significant (Figure 15).  

 

 

F2, 42 = 12.35;  P<0.0001;  mean 1,7=4.804;  4,4=4.916;  7,1=5.257; 

StDev (1,7)f = 0.25572; StDev (4,4)f = 0.320871; StDev (7,1)f = 0.269619. 

 

 

4,4*7,1 F1, 25=8.75; P=0.0068; 

1,7*7,1 F1, 33 = 26.01; P<0.00011; 

7*4,4 F1,26=1.03; P=0.320.  
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Figure 15. Social stress in female fruit flies. Results are showed as means of a variable g1log ± SD. 

 

 

3.5.    Social stress in male fruit flies 

 

Statistical analysis was done on the sample size of 40 males. There were three different social 

groups . The maximum number of flies per vial was 8. Group one was made out of 1 male and 

7 females per vial. From this group we examined 12 males. Second group had an evan ratio 

between sexes, 4 males and 4 females per vial. From this group we examined 9 males. Lastly, 

the third group was made out of 7 males on 1 female per vial only. Here, we examined 19 

males. The highest flourescence value in males showed the first group of 1 male and 7 

females per vial, while the least fluorescence value in males showed the second group of 4 

males and 4 females. We also compared the fluorescence values between the groups. None of 

the groups of different socials treatments showed to be significant for males, since they do not 

differ statisticaly from each other (Figure 16).  

 

 

F2, 37 = 1.09;  P=0.347; mean 1,7=4.846;  4,4=4.595;  7,1=4.706; 

StDev (1,7)m = 0.455448; StDev (4,4)m = 0.391052; StDev (7,1)m = 0.348134. 
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4,4*7,1 F1, 26=0.58; P=0.453; 

1,7*7,1 F1, 29 = 0.93; P=0.342; 

1,7*4,4 F1,19=1.76; P=0.200. 
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Figure 16. Social stress in male fruit flies. Results are showed as means of a variable ± SD. 
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4.    Discussion 
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It is known that hsps are robustly induced in response to various stresses (both intrinsic and 

extrinsic) and are key mediators of an organism's resistance to stress (Tower, 2009). In this 

experiment, we tested the effects of the chemical stress on the expression of the hsps.  We 

found that there is a significant effect only when the results for males and females were taken 

together. However, looking at the absolute values of the fluorescence in the samples, it is 

apparent that the fruit flies (both males and in females) that were put on the 2% hydrogen 

peroxide food showed higher fluorescence values than the flies put on the normal food.  

Interestingly, in the experiments on the effect of chemical stress it is possible to see that the 

maximum levels of hsp expression in males on  2% hydrogen peroxide food almost  equaled 

the minimum level of the hsp expression in females on normal food. We have therefore 

shown that the fruit flies on 2% hydrogen peroxide generate higher hsp expression by 

measuring the artificially induced increase in the fluoresence of a GFP via the response to 

oxidative stress by hsp. 

In determining how the social environment effects the levels of stress in both males and 

females, we chose to create three different social groups: 1 male with 7 females, 4 males with 

4 females and 7 males with 1 female. Looking at females, the data showed statistical 

significance only for the females that were placed in the groups of 7 males with 1 female. 

Lone females in the vial with 7 males experience the most stress, as measured by the highest 

flourescence values from all the other male/female ratios. This is probably due to the constant 

male aggressive behaviour correlated with mating impulse. However, the least stressed 

environment for female flies was group of 7 females and 1 male. Interestingly, what seems to 

be the lowest value for female stress, seems to be the highest value of all for the male stress 

values. Although there is not a statisticaly significant difference between the social treatments 

for males, we can still predict that the most stressed males are the ones from the group of 1 

male and 7 females. The least stressed males were the ones from the group where the ratio 

between males and females is the same, 4 males and 4 females.  

Both in social and chemical experiments the statistically least stressed females showed higher 

flourescence, meaning stronger stress response than the most stressed male fruit flies.  One 

explanation for this results could be the fact that the effects of stress are simply higher in 

female fruit flies. Or maybe it is only due to the size of females, who tend to be even twice as 

big as males. There could be another factors involved and to answer this question furter 

investigations need to be performed.   

There are a lot of other questions that arose and haven't been answered yet. For example, does 

changing the sex ration effect males more than females? Or vice versa? How different the 
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genotypes really are in their responses to stress? Is the effect consistent across all treatments? 

Is hsp22 always dimmer and by the same amount across all the treatments? Or is it brighter 

for some and dimer for others? 

 

In order to give a good answer to those questions further experiments need to be performed. 

The social treatments need to be expanded and more male/female ratios need to be 

investigated. It would be useful to have some data from the wild type flies in addition to our 

GFP-hsp tagged flies and to use those flies as a control group. Expanding the sample size 

would theoretically result in  less noise whereby our results would be much more confident, 

and our conclusions more realistic. Furthermore, by expanding the sample size, it would 

enable us to do more complicated and specific analysis and we would generate data from 

more comparisons between the treatments.  

 

Our next step in this project will be to automate the experiments and monitor fruit flies with 

the camera system that is being developed at the moment at University of Southern California. 

The camera system will allow us to track each fly separately in real-time, for as many 

hours/days as we want, which will show us hour-by-hour hsp expression change and thus for 

each fly separately.  

Within this experiment it has been noticed that the males often, about 50% of the time, had 

bright spot in their lower right abdomens. It lacks the symmetry and its positioning suggests 

that it might be related to the digestive system. Although it is still not known what that might 

be, it is often seen in the wild type flies which makes us exclude the possibility that it is 

related to the transgenes. This type of glow is all or nothing - either they have it, or they do 

not. That still was not the problem for our data, since we could chose from the 

MicroPicAnalyzer at what bins to look at while examining the GFP output. To remedy this 

situation, we ignored the higher bins in the green channel, and chose only the lowest one. 

Thereby, lots of low level fluorescence represents widespread hsp expression.  
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5.    Conclusion  
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Based on the results from this research, whose goal was to see whether different chemical and 

social environments cause a significant level of oxidative stress in fruit flies, we came to this 

conclusions: 

 

i. There is a significant effect of  2% hydrogen peroxide on the expression of the hsp 

genes involved in the response to oxidative stress in fruit fly, Drosophila 

melanogaster. The higher intensity of the fluorescence was noticed in both males and 

females that were put on the 2% hydrogen peroxide food, but the statisticaly important 

difference between them was noticed when we looked at the expression in both males 

and females together. 

 

ii. There was a difference in the hsp genes expression established in the experiments 

involving different social groups of fruit flies, especially in females the effect was 

strong. The most stressful group for females was the group of 7 males and 1 female, 

and the least stressful group was the group of 1 male and 7 females. The most stressful 

group for males was the group of 1 male and 7 females, and the least stresssful group 

was the group of 4 males and 4 females.  

 

iii. In all the analyses the actual genotype, hsp22 and hsp70, never came out as an 

important factor, showing a difference between the two lines used in this experiment. 

 

iv. Interestingly, it has been seen that in the experiments on the effect of chemical stress  

that maximum levels of Hsp expression in males on 2% hydrogen peroxide food 

almost  equaled the minimum level of the Hsp expression in females on normal food, 

showing general higher expression of Hsps in female fruit flies.  
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