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Prošireni sažetak doktorske disertacije 

 

Mutacije nastaju u stanicama kao promjene u sekvenci molekule DNA, potiču evoluciju i uzrok 

su mnogih bolesti. Pri prepisivanju i prevođenju, mutacije mogu utjecati na stabilnost molekula 

RNA i funkcionalnost proteina i stoga imati učinke na fenotip. Jedna od teorija starenja ističe 

akumulaciju oštećene DNA kao glavni uzrok starenja (Freitas and de Magalhaes, 2011). Postoje 

mnogi primjeri bolesti koje su uzrokovane izravno utjecajem pojedinačnih nukleotidnih 

polimorfizama (Bessenyei et al., 2004). Mutacije također mogu dovesti do supstitucije 

aminokiselina i na taj način uzrokovati povećanu osjetljivost proteina na karbonilaciju (Dukan 

et al., 2000), koja je ireverzibilni tip oksidacijskog oštećenja. Proteinska karbonilacija se 

akumulira tijekom starenja te se može smatrati biomarkerom mnogih bolesti povezanih sa 

starenjem.  

Pitanje postavljeno u ovom istraživanju je: mogu li mutacije akumulirane na nivou molekule 

DNA biti puferirane pomoću RNA šaperona? Da bi bile u potpunosti funkcionalne, molekule 

RNA se također moraju smotati u trodimenzionalnu strukturu. Budući da se nerijetko događaju 

greške u ovom procesu (Herschlag, 1995), molekule RNA zauzimaju dugoživuće alternativne 

strukture (Downs i Cech, 1996) koje zahtijevaju pomoć RNA-vezujućih proteina (RNA 

šaperona). Kao i proteinski šaperoni, RNA šaperoni stabiliziraju nativne strukture i/ili pomažu 

u ponovnom smatanju krivo smotanih vrsta (Russell, 2008). Pokazano je da proteinski šaperoni 

mogu puferirati mutacije koje utječu na proteinsku stabilnost i tako maskirati njihove fenotipske 

posljedice (Queitsch et al., 2002; (Burga et al., 2011); (Fares et al., 2002). U kontekstu 

održavanja strukture RNA, od posebnog interesa su DEAD-box RNA helikaze (DBRH), koje 

odmataju zavojnice RNA i tako mogu  umanjiti greške smatanja (Pan i Russell, 2010). Također, 

mnoge DBRH, uključujući RhlB komponentu degradosoma bakterije E. coli i eukariotski faktor 

inicijacije eIF4A, uključene su u smatanje i razmatanje različitih molekula RNA te bi mogli 

djelovati kao širok spektar mutacijskih pufera.  

Dobiveni rezultati pokazuju da povećana ekpresija DEAD-box RNA helikaza (RhlB, SrmB i 

CsdA) poboljšava fitnes mutatora E. coli iz 40.000 generacije (40k). Na taj se način, po prvi 

puta, pokazala sposobnost RNA šaperona u puferiranju štetnih mutacija. Ovaj fenomen je 

demonstriran i u drugom soju bakterije E. coli sniženog fitnesa, ΔmutH, koji je poboljšan 

povećanom expresijom DBRH (RhlB, SrmB i CsdA). Nakon što je utvrđeno da ne postoji niti 

jedna identična mutacija između sojeva 40k i ΔmutH, zaključeno je da RNA šaperoni puferiraju 



 

 
 

širok spektar supstrata. Kako bi se ispitala molekularna osnova puferiranja, identificirane su 

mutacije koje djeluju štetno na stanični fitnes pojedinačno: mutacija u genu lamB (iz liste 

mutacija u soju ΔmutH) i sinonimna mutacija u genu rplS (iz liste mutacija u soju 40k). 

Kompeticijskim eksperimentima pokazano je puferiranje ovih štetnih učinaka uz pomoć 

pojačane ekspresije DBRH. Mehanistička raznolikost puferiranja dokazana je i pojačanom 

ekspresijom „cold-shock“ proteina CspA, koji je poboljšao fitnes u oba soja, 40k i ΔmutH.   

Ispitani su korisni učinci RNA helikaza i u eukariotskim stanicama. Stoga, drugi dio ove 

disertacije uključuje proučavanje DEAD-box RNA helikaze Mss116, kodirane u jezgri kvasca 

S. cerevisiae, eksprimirane u mitohondrijima i potrebne za učinkovito izrezivanje 

mitohondrijskih introna grupe I i II. Od ukupno 13 introna u mtDNA, sedam ih se nalazi u genu 

COX1, koji kodira za podjedinicu I citokrom c oksidaze, a pet u genu COB, koji kodira citokrom 

b (Kennell et al., 1993).  

Pretpostavljeno je da izrezivanje introna još jedan izvor pogrešaka u kontekstu stanične 

homeostaze, posebno u kontroli kvalitete mRNA i proteina, stoga je testirano može li 

učinkovitije i preciznije izrezivanje na razini mRNA ili potpuno uklanjanje introna iz mtDNA 

rezultirati poboljšanim staničnim fitnesom. Doista, fenotip bez introna (I0) uključuje povećanu 

količinu zrelih mRNA komponenti dišnog lanca COX1 i COB te ima pozitivan učinak na životni 

vijek kvasca. Učinkovitije izrezivanje introna iz gena COX1 i COB pomoću RNA helikaze 

Mss116  također je rezultiralo produženim kronološkim životnim vijekom, što ukazuje na važnu 

ulogu kontrole kvalitete RNA u životnom vijeku kvasca S.cerevisiae.  

Sojevi kvasca s uklonjenim mitohondrijskim intronima (I0) ili s pojačanom ekspresijom 

Mss116, pokazivali su dulje generacijsko vrijeme, produljeni kronološki životni vijek, fuziju 

mitohondrija, povišenu potrošnju kisika, veću razinu ATP-a i povećanu razinu zrelih mRNA 

proteina COX1 i COB u usporedbi s divljim tipom. Delecija gena RTG2 u testiranim sojevima 

kvasaca dovodi do smanjene razine potrošnje kisika i ATP-a, te smanjenog mitohondrijskog 

volumena i mase, što dokazuje da su ove fenotipske promjene kontrolirane aktivacijom 

retrogradnog odgovora. Ovi rezultati naglašavaju važnost održavanja homeostaze molekule 

RNA u normalnom staničnom funkcioniranju. 

Jedno od pitanja postavljenih u ovom istraživanju je da li se pojava genskih polimorfizama, 

evoluiranih experimentalno u kontinuiranim bakterijskim kulturama, reflektira u polimorfizmu 

oksidacije proteina. Richard Lenski je tijekom experimenta „E.coli long term evolution 

experiment“, kojega je započeo 1988. godine, sačuvao brojne generacije bakterijskih kultura 



 

 
 

koje su evoluirale tijekom vremena. Ova zbirka predstavlja bogat skup mutacija koje nam mogu 

pomoći u razumijevanju molekularne osnove proteinske otpornosti i osjetljivosti na 

oksidacijska oštećenja. Mutatorski sojevi, koji su nastali rano u ovoj experimentalnoj evoluciji 

in vitro, zajedno s ne-mutatorima i zajedničkim pretkom predstavljaju idealni modelni sustav 

za proučavanje utjecaja različitih vrsta mutacija na oksidacijsku osjetljivost proteina, te njihovih 

fenotipskih učinaka.                

Cilj ovog projekta je bio odvojiti proteine exprimirane tijekom exponencijalnog rasta pretka, 

mutatora i ne-mutatora koristeći metodu dvodimenzionalne oxi-diferencijalne gel elektroforeze 

(engl. two dimenzional Oxi-differential gel electrophoresis, 2D Oxi-DIGE). Ova metoda 

omogućuje učinkovito detektiranje oksidativnog oštećenja proteina (karbonilacije) i njihove 

ekspresije na istom gelu, obilježavajući ih različitim fluorescentnim bojama. Istovremenim 

označavanjem karboniliranih proteina specifičnim fluorescentnim bojama (mutatora i ne-

mutatora u usporedbi s pretkom), oni s višom ili nižom razinom karbonilacije identificirani su 

spektrometrijom masa.  

Koristeći 2D Oxi-DIGE identificirano je 39 proteina iz mutatorskog soja bakterije Escherichia 

coli (E. coli) s povećanom razinom karbonilacije, od kojih 10 nosi mutaciju u kodirajućim 

genima i 25 proteina sa sniženom razinom karbonilacije, od kojih 6 nosi mutaciju u kodirajućim 

genima. Također su identificirani proteini s povećanom razinom karbonilacije (kao što je ATP 

sintaza) u mutatorskom soju u usporedbi s pretkom i ne-mutatorom čiji kodirajući geni ne nose 

mutaciju, ali proteini koji su im interakcijski partneri nose, što ukazuje na indirektan učinak 

genskih polimorfizama na karbonilaciju proteina.  
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1. INTRODUCTION  

 

Mutations are changes in DNA sequence which occur constantly in the cells, drive evolution 

and cause diseases. When transcribed and translated, they may have an impact on RNA and 

protein stability and functionality accounting for their particular phenotypic effects. The DNA 

damage theory of aging posits that accumulated DNA damage leads to accelerated aging 

(Freitas and de Magalhaes, 2011). There are many examples of diseases caused directly by the 

impact of single nucleotide polymorphisms (SNPs) on cellular phenotype (such as inborn 

genetic diseases) (Bessenyei et al., 2004). Mutations can also lead to subtle protein misfolding 

due to synonymous substitutions whose eventual phenotype is conditional. Here it was studied 

how mutations with adverse phenotype effect can be rescued at the RNA and the protein level 

in two model organisms, namely Escherichia coli and Saccharomyces cerevisiae. Preliminary 

results aiming at discerning molecular basis of oxidative damage were also introduced.  

First part of this research was addressing the question: can weak deleterious mutations 

accumulated at DNA level be buffered at the RNA level? Such a process would be of major 

interest in the research of RNA homeostasis involvement in cellular fitness; however, it would 

also implicate selective pressure at RNA level rarely considered by biologists. To be fully 

functional, RNA molecules must also fold into three-dimensional structures. Secondary 

structure of RNA has a similar stability as a native one and therefore frequently adopting  

misfolded structures (Herschlag, 1995). Proteins with RNA chaperone activity can facilitate 

conformational rearrangements of this long-lived misfolded species by stabilizing the native 

fold or refolding the misfolded structures (Russell, 2008).   

Similar to RNA chaperone-assisted RNA folding, protein chaperones assist other proteins to 

achieve and maintain their native structures, enabling them to function properly. Phenotypic 

effects of harmful mutations that modify protein structure and function can be masked by 

protein chaperones. Phenomenon of mutation buffering was demonstrated by release of cryptic 

genetic variations as the result of heat shock protein 90 inhibition (Queitsch et al., 2002; Rohner 

et al., 2013; Rutherford and Lindquist, 1998) and by rescued fitness of E. coli mutator strains 

due to GroEL overproduction (Fares et al., 2002). DEAD box RNA helicases (DBRHs) have a 

role in the unfolding of RNA duplexes and thus facilitating folding errors. Considering them as 
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buffers of deleterious mutations that affect RNA stability, they are focus of this part of the 

thesis.  

The results presented here reveal identification of individual mutations that lead to decreased 

fitness and are bufferd with RNA chaperones. With this result, a novel research area have 

opened with multiple research directions, whereby the identification of mutations whose 

phenotype can be buffered at RNA level is only one of them.  

An additional question is whether beneficial effects of RNA helicases upon cellular functioning 

are limited to prokaryotes or extended also to eukaryotic cells. Therefore, the second part of 

this thesis includes the study of DEAD-box RNA helicase Mss116, encoded in S. cerevisiae 

nucleus, expressed in mitochondria and required for efficient splicing of mitochondrial group I 

and group II introns. From a total 13 introns in the S. cerevisiae mtDNA, 7 are found in COX1 

gene, encoding for a subunit I of cytochrome c oxidase and 5 in COB gene, encoding 

cytochrome b (Kennell et al., 1993). 

It was hypothesized that splicing is another source of errors in the context of cellular 

maintenance, specifically in the mRNA and protein quality control. Therefore, it was tested if 

more efficient and accurate splicing at mRNA level, or complete removal of introns from DNA, 

may result in improved cellular fitness. Indeed, the intronless phenotype includes increased 

amount of COX1 and COB mature mRNA components of the respiratory chain, and has 

beneficial effect on yeast lifespan. These results promote the RNA maintenance as a potential 

hallmark of aging, underscoring its importance in normal cellular functioning.  

Third, started to address the question whether the emergence of gene polymorphisms, evolved 

experimentally in continuous bacterial cultures, is reflected in the polymorphism of protein 

oxidability, measured by level of protein carbonylation. Protein carbonylation is an irreversible 

type of oxidative damage, accumulates during aging and can be considered as a biomarker of 

many age-related diseases. Mutations can also increase protein susceptibility to carbonylation 

(Dukan et al., 2000).  

Richard Lenski started the E. coli long term evolution experiment project in 1988 by archiving 

numerous intermediate cultures over numerous generations. This collection presents a rich 

source of mutations whose penetrance to the level of proteins could facilitate our understanding 

of the molecular basis of protein resistance and sensitivity to oxidative damage. Since mutator 

strains emerged spontaneously early in the experiment of in vitro evolution, together with non-
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mutator derived from the same ancestor, it was an ideal model system to study the impact of 

different levels of diverse mutations on proteins – their oxidability and phenotypic effects.  

Using two-dimensional gel electrophoresis proteins expressed during exponential growth in the 

ancestor, mutator and non-mutator were separated. By simultaneous labelling of proteins and 

their carbonylation with specific fluorescent dyes, proteins with higher or lower carbonylation 

levels (in mutator and non-mutator, compared with the ancestor), were identified by mass 

spectrometry. The availability of genome sequences allowed matching each acquired mutation 

to its position in the genome and differential carbonylation at the protein level. 
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2. LITERATURE REVIEW  

 

2.1. Cellular fitness and homeostasis  

In order to have a functional cell, all biological processes must be in an equilibrium, 

homeostasis. Following the central dogma of molecular biology, there are three main 

components in the cell: DNAs, RNAs and proteins. DNA carries information that is transcribed 

into mRNA and translated into protein. Therefore, it is crucial to maintain DNA integrity and 

preserve the fidelity of gene expression.  

An important element of cellular homeostasis is responsible for proper functioning of RNA 

molecules (“ribostasis”). RNAs have wide range of cellular activities, from translating genetic 

information into functional proteins to catalyzing some biochemical reactions and processing 

posttranscriptional modification to maintain the functional stability of RNA. However, the 

majority of functional molecules are proteins underscoring the importance of cellular 

proteostasis (protein homeostasis) that is accomplished by cellular mechanisms involved in 

protein synthesis, folding, trafficking, aggregation and protein degradation. A failure in any of 

these systems can lead to a disease or progression of ageing. A loss of homeostasis can affect 

cellular phenotype, i.e., fitness (Hartl, 2016).  

 

2.2.  RNA folding 

RNA molecules are able to fold into many different structures, and as such, can perform 

multiple tasks in a cell. Building blocks of the RNA structure are nucleotides and each RNA 

nucleotide consists of three parts: ribose sugar, a phosphate group and a nitrogenous base. There 

are four basic secondary structural elements in RNA: helices, loops, bulges, and multi-branched 

loops (Fig 1.). The helices are A-form Watson-Crick duplexes; the loops, bulges and multi-

branched loops are all non-Watson-Crick regions terminated by one or more helices. In the 

process of folding, RNAs can become trapped in alternative structures, which are as stable as 

the native one. Beside this kinetic problem, there is also a thermodynamic one when it comes 

to a single tertiary structure among the competing ones (Herschlag, 1995). The importance of 

understanding RNA properties led to the discovery of its catalytic properties and involvement 

in replication, intron splicing and translational regulation (Giegé et al., 1998).  
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Figure 1. Elements of RNA secondary structure: helix, hairpin loop, bulge loop, interior 

(internal) loop and multi-branched loop. Adopted from Ding and Lawrence, (2003).  

 

2.2.1. Proteins with RNA chaperone activity 

RNA misfolding is common and it frequently produces long-lived alternate structures that 

require the assistance of RNA-binding proteins for timely resolution. It is clear that, in the 

cellular environment, RNA molecules profit from the assistance of several classes of non-

specific RNA binding proteins that have been described as “chaperones”  (Herschlag, 1995) 

(Fig 2.). Proteins with RNA chaperone activity prevent misfolding or resolve misfolded RNA 

species and after the RNA has been folded into its native structure, the protein becomes 

dispensable and dissociate (Herschlag, 1995). Such proteins are present from bacteria to 

humans and some of them are: virus-encoded RNA chaperones, ribosomal proteins, cold shock 

proteins (CSPs), E. coli translation initiation factor 1, E. coli transcriptional regulator StpA and 

heteronuclear ribonucleoproteins (Semrad, 2011).  
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Figure 2. RNA folding and the effect of RNA chaperones. Adopted from Herschlag, (1995).  

 

Cold shock proteins are expressed during temperature decline, involved in transcription, mRNA 

stability and translation. After a cold shock (from optimal 37˚C to 15˚C), E. coli cells 

immediately stop dividing and protein synthesis is repressed, but various CSPs are produced. 

There are nine members of the CSP family, CspA to CspI. The major ones, CspA, CspE and 

CspC facilitate transcription and translation of some proteins interacting non-specifically with 

RNA molecules and destabilizing mRNA structures. They act as transcriptional antiterminators 

enabling expression of genes dependent on CSPs at low temperature (Bae et al., 2000).  

Another group of proteins involved in RNA folding are RNA helicases. They are highly 

conserved proteins and have important roles in RNA metabolism (Tanner and Linder, 2001). 

Classification is based on comparative sequence and functional analysis: helicases that form 

oligomeric rings, superfamilies (SFs) 3 to 6 and those that do not form rings, SFs 1 and 2 

(Singleton et al., 2007). Largest family within the superfamily 2 are DEAD-box proteins with 

nine conserved motifs among which is Walker B motif that contains amino acid sequence Asp-

Glu-Ala-Asp (DEAD) and non -conserved C terminal extension (Linder et al., 1989).  

The E.coli genome codes for 5 DEAD-box proteins – RhlB, RhlE, SrmB, CsdA and DbpA –

involved in ribosome biogenesis, RNA turnover and translation initiation. In this thesis focus 

was on RhlB, SrmB and CsdA.  
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The RhlB protein is a part of the RNA degradosome, a multienzyme complex, along with 

endoribonuclease RNaseE and PNPase, polynucleotide phosphorylase (Py et al., 1996).  

SrmB protein stabilizes certain mRNAs and is involved in the assembly of the 50S ribosomal 

subunit at low temperatures (Charollais et al., 2003). 

CsdA, cold shock DEAD-box protein A, participates in ribosome biogenesis. When 

overexpressed in S2 mutant, it restores the incorporation of S2 and S1 ribosomal proteins into 

the ribosome (Moll et al., 2002). CsdA is involved in mRNA degradation after cold shock 

(Prud’homme‐Généreux et al., 2004) and is homologous to eukaryotic initiation factor eIF4A 

(Lu et al., 1999). 

Saccharomyces cerevisiae possess RNA helicases involved in nuclear transcription, mRNA 

splicing, translation, transport, quality control mechanisms in gene expression, folding of self-

splicing RNA introns and RNA decay (Fig 3.). The S. cerevisiae genome codes for 26 DEAD-

box proteins and most of them have homologs in mammalian cells.  

Mss116 is a nuclear encoded DEAD-box RNA helicase, required for efficient splicing of 

mitochondrial group I and II introns (Halls et al., 2007). Although, under near physiological 

conditions, some of these introns self-splice in vitro, in vivo their self-splicing abilities 

(efficiency) depends on intron-encoded maturases or nuclear-encoded proteins like Mss116 

(Fedor and Williamson, 2005). The mechanism of Mss116 in intron splicing involves binding 

to RNA to stabilize on-pathway intermediates and RNA duplex unwinding to disrupt misfolded 

secondary structures (Del Campo et al., 2009; Fedorova and Pyle, 2012; Russell et al., 2013). 

Involvement of Mss116p in splicing is, at least in part, independent of mitochondrial translation, 

as splicing of the bi1 (first intron of COB), ai5γ (seventh intron of COX1) and ω (the only intron 

of the LSU-rRNA) introns does not require a maturase.  
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Figure 3. Cellular processes (shown in red) that require RNA helicases. Adopted from de la 

Cruz et al., (1999). 

 

2.3. Protein folding  

Proteins are molecules built as amino acid chains and are involved in almost all biological 

functions. To fulfil this biological role they must fold into a favourable three-dimensional 

structure, the native state, where interactions between protein residues are most stable and are 

thus able to find the lowest energy structure (Anfinsen, 1973; Dinner et al., 2000). During this 

process, proteins encounter energetic barriers, which can result in partially folded states or 

folding intermediates (Fig 4.). Accumulation of misfolded proteins often leads to the formation 

of insoluble aggregates. Aggregation can lead to formation of amyloid fibrils, oligomers or 

amorphous aggregates which can be toxic for the cell.  

Protein folding and unfolding are key to their specific interactions and catalysis and, therefore, 

play a substantial role in translocation across membranes, regulation of the cell cycle, the 

immune response and secretion (Radford and Dobson, 1999). Since such major processes 

depend on the protein folded state, its impairment can lead to various diseases (Thomas et al., 

1995). Cystic fibrosis, Huntington’s disease, Alzheimer’s and Parkinson’s diseases are some of 

pathologies known to be directly associated with deposition of specific misfolded proteins 

forming aggregates in, or outside, the cell (Dobson, 2001).  
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Figure 4. Energy landscape scheme of protein folding and aggregation. The purple surface 

shows the multitude of conformations ‘funneling’ to the native state via intramolecular contacts 

and the pink area shows the conformations moving toward amorphous aggregates or amyloid 

fibrils via intermolecular contacts. Both parts of the energy surface overlap. Aggregate 

formation can occur from intermediates populated during de novo folding or by destabilization 

of the native state into partially folded states and is normally prevented by molecular 

chaperones. Cell-toxic oligomers may occur as off-pathway intermediates of amyloid fibril 

formation. Adopted from Hartl and Hayer-Hartl, (2009).  

 

2.3.1. Protein chaperones  

Protein folding depends on a group of proteins, molecular chaperones, found in all three 

domains of life, which help other proteins to fold properly. Molecular chaperones function in 

preventing protein misfolding and aggregation, typically by shielding hydrophobic surfaces 

exposed by proteins in their non-native states (Hartl and Hayer-Hartl, 2009). Chaperones have 

essential roles in assisting the folding, assembly and transport of newly synthesized 

polypeptides (Hartl et al., 2011). During stress conditions in a cell protein misfolding and 

aggregation is frequent and the activity of chaperones is required. Known as heat-shock proteins 

(HSPs), chaperones are classified according to their molecular weight: HSP40, HSP60, HSP70, 
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HSP90, HSP100 and the small HSPs (15–30 kDa). In de novo protein folding and refolding, 

chaperones HSP70, HSP90 and chaperonin HSP60 act in the ATP-dependent manner, unlike 

some small HSPs that do not use ATP in preventing unfolded proteins to aggregate. Protein 

chaperones are also characterized according to their localization: cytosolic and organelle-

specific chaperones. 

 

2.3.2. Mutation buffering  

During evolution, mutations arising in the genome are a driving force potentially leading to the 

emergence of new protein functions and can alter protein stability. Nonsynonymous mutations 

alter the amino acid sequence of a protein and synonymous mutation code for the same amino 

acid. Detrimental mutations that are highly destabilizing will not become fixed, although 

mutations that are introducing a new function have been shown to mainly decrease protein 

stability (Tokuriki et al., 2008). Destabilizing effects of mutations can be buffered by the 

structure maintenance effects of protein chaperones, thereby supporting the preservation of 

genetic diversity (Fares et al., 2004; Rutherford, 2003). Here are some experimental evidences 

for this phenomenon: 

Rutherford and Lindquist (1998) reported buffering capacity of heat shock protein HSP90 using 

Drosophila melanogaster as a model organism. Mutated version of Hsp90 gene (Hsp83) 

resulted with impaired Hsp90 function and led to developmental abnormalities of flies. These 

experiment provided a new outlook of chaperones in evolution.  

Tokuriki and Tawfik (2009) performed in vitro mutagenesis of four enzymes, three clients of 

GroEL/ES E. coli chaperonin, glyceraldehydophosphate dehydrogenase from E. coli 

(GAPDH), human carbonic anhydrase 2 (CA2), a variant of Pseudomonas sp. 

phosphotriesterase (PTE) and E. coli triose phosphate isomerase (TIM), which is not a 

GroEL/GroES client (Chapman et al., 2006; Kerner et al., 2005). Randomly mutated enzyme-

encoding genes were transformed to E. coli carrying plasmid for GroEL/ES overexpression. 

Using such system, they aimed to examine buffering of destabilizing and adaptive mutations in 

the presence and absence of GroEL/ES overexpression. In the presence, results showed that 

folding of enzyme variants carrying mutations were improved comparing to the wild type 

enzymes and genetic diversity promoted (Tokuriki and Tawfik, 2009).   
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To investigate mutation buffering, Casanueva et al. (2012) used Ceanorhabditis elegans as a 

model organism to overexpress the transcription factor heat shock factor 1 (HSF-1), a regulator 

of the environmental stress response. They crossed the hsf-1 transgenic animals with strains 

carrying diverse mutations that affect development, which results in reduced mutation 

penetrance. Overexpression of this specific chaperone masked phenotypic consequences of 

mutations, such as: body morphology effect, larval and embryonic lethality, male gonad 

migration defect etc. This phenomenon was observed in all developmental stages of C. elegans 

with the protection ranging from 18 to 88% (Casanueva et al., 2012).  

 

2.4.  E. coli long term evolution experiment  

In 1988, Richard Lenski started the ”E. coli long-term evolution experiment” (LTEE) by 

continuously growing 12 parallel cultures from E. coli B laboratory strains, REL606 and 

REL607, which differ only in the araA genetic marker encoding for L-arabinose isomerase 

(Sniegowski et al., 1997). The E. coli B strain REL606 has a mutation in the araA gene that 

renders it unable to utilize the sugar L-arabinose. Strain REL607 is a spontaneous revertant of 

REL606 containing a single point mutation that restores the ability to metabolize L-arabinose. 

This marker is selectively neutral in a variety of conditions and can be used to determine the 

relative frequencies of Ara− (REL606-derived) and Ara+ (REL607-derived) cells in a mixture 

for competition assays or marker divergence experiments. Ara− and Ara+ cells form red and 

white colonies, respectively, on tetrazolium arabinose (TA) plates, because utilization of the 

sugar rather than only the tryptone and yeast extract components of this medium causes the 

excretion of acetic acid, acidifying the area surrounding the colony and changing the 

tetrazolium indicator colour from red to white. Within a few thousand generations, four cultures 

became mismatch repair deficient mutators adapting faster to the minimal growth medium by 

mutating at over a 100-fold increased mutation rate (Sniegowski et al., 1997; Wielgoss et al., 

2013). The populations reached the milestone of 60,000 generations in April 2014. Every 75th 

day (~500 generations), the evolving populations themselves are stored away in the ultra-low 

freezer at -80 ºC. Richard Lenski and his team sequenced the genomes of E. coli clones sampled 

at generations 500; 1,000; 1,500; 2,000; 5,000; 10,000; 15,000; 20,000; 30,000; 40,000 and 

50,000, so they could examine the rate and mode of genomic evolution. They identified 45 

mutations in the 20K clone (20,000 generation), which include 29 single-nucleotide 

polymorphisms and 16 deletions, insertions and other polymorphisms (DIPs). 22 point 
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mutations that were found in coding regions in the 20K clone are non-synonymous. In total 

they found 14,572 mutations; 500 insertions of insertion sequence (IS) elements; 726 deletions 

and 1,132 insertions each ≤ 50 base pairs (bp) (small indels); and 267 deletions and 45 

duplications each >50 bp (large indels). After 50,000 generations, average genome length 

declined by 63 kb (~1.4%) relative to the ancestor. At this time point, six populations evolved 

hypermutable phenotypes with the defect in mismatch repair system or in removal of oxidized 

nucleotides (Sniegowski et al., 1997; Wielgoss et al., 2013). Figure 5a presents the total number 

of mutations over time in all 12 populations. Figure 5b represents number of mutations to a 

smaller scale for six populations before they evolved hypermutability and the six ones that did 

not become mutators.  

 

 

 

Figure 5. Total number of mutations over time in the 12 LTEE populations. a) Total mutations in each 

population. b) Total mutations rescaled to reveal the trajectories for the six populations that did 

not become hypermutable for point mutations and for the other six before they evolved 

hypermutability. Each symbol shows a sequenced genome; some points are hidden behind 

others. Each line passes through the average of the genomes from the same population and 

generation. Adopted from Tenaillon et al., (2016).  

In addition, another strain that accumulated mutations during short-term evolution (evolved ΔmutH) 

and its ancestor (MG1655) were also sequenced in the purpose of better understanding of the 

results. The MG1655-derived sequences were kindly provided by Dr. Tobias Warnecke, as well 

as a mutation identifications of MG1655 and REL606-derived strains.  
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2.5. Aging  

Aging is a large-scale process present in almost all species, from fungi to humans. It is a 

progressive impairment of physiological functions followed by a steep increase in morbidity 

and mortality with age (De Magalhaes, 2011). There are two main groups of aging theories: 

first stating that aging is programmed into the body, and second emphasizing environmental 

impact on living organisms, which accumulate damage that causes aging at widely different 

levels with chronological age, but similarly with biological age (fraction of life span). 

Understanding the molecular processes of aging can provide means for prevention or delay of 

age-related diseases. However, there are many unanswered questions concerning the causes of 

aging, notably genetics versus life style.  

 

2.5.1. The hallmarks of aging  

Experts have defined nine cellular and molecular hallmarks of aging: genomic instability, 

telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular 

communication (López-Otín et al., 2013). Increased DNA damage accumulation can lead to 

different kinds of premature aging diseases, such as Werner syndrome, Ataxia telangiectasia, 

Bloom syndrome and Rothmund–Thomsom syndrome (Burtner and Kennedy, 2010).  

 

2.5.1.1. Genomic instability 

The integrity and stability of DNA is crucial for lasting cellular homeostasis and perpetuation 

of life because genes are required for the renewal of proteins that are generally short-lived. 

Such homeostasis can be disrupted exogenously by physical, chemical and biological agents, 

as well as endogenously including DNA replication errors, spontaneous hydrolytic reactions 

and reactive oxygen species (ROS) (Hoeijmakers, 2009). Those kinds of damage include 

point mutations, double strand breaks, translocations, deletions and can result in 

tumorigenesis or even cell death because of the loss of genes or loss of gene function due to 

macro and micro-mutations.  
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2.5.1.2. DNA damage theory of aging 

DNA has a central role in life and its modifications can have enormous impact because function 

and structure provided by proteins depends on genes. DNA is subject to damage and mutations.  

When a gene mutation occurs, it will be copied into mRNA sequence that will be translated into 

an altered, often dysfunctional, protein (unless the mutation is a neutral mutation that does not 

alter amino acid sequence). DNA damage, on the other hand, caused by different physical or 

chemical modifications, changes the structure of a double helix (Fig 6.). This scenario can lead 

to cell cycle arrest and trigger programmed cell death, be it programed (apoptosis) or not 

(necrosis).  

DNA damage theory of aging proposes that the accumulation of DNA damage is the main cause 

of deterioration in cellular fitness and aging process (Carrington, 2007; Szilard, 1959). Many 

researches have shown that DNA mutations increase with age and defects in DNA repair 

mechanisms can accelerate aging processes (Hasty et al., 2003; Vijg and Dollé, 2002). But, no 

increase in mutation frequency with age was detected in mouse brain that still ages (Stuart et 

al., 2000). May it be that mutations in other organs causes brain aging? Too many similar 

questions remain unanswered.  

Rossi et al. (2007) showed that endogenous DNA damage accumulates with age in mice wild 

type stem cells and can lead to decline in stem cell function, while Hyun et al. (2008) reported 

that DNA repair capacity is higher in long-lived nematode Caenorhabditis elegans mutants 

with defects in the insulin/IGF-1 pathway than in wild type animals. But, why? What is the 

cause of age-related decay in DNA repair capacity? In general, genetic diseases caused by 

defects in DNA repair mechanism, known as progeroid syndromes, support the DNA damage 

theory of aging (Freitas and de Magalhaes, 2011).  

There is also experimental evidence that does not support this theory. Narayanan et al. (1997) 

provided experiments with mice defective in mismatch repair endonuclease, PMS2, where mice 

nullizygous for Pms2 resulted with 100-fold elevation in mutation frequency compared with 

both wild-type and heterozygous mice, but do not affect development nor accelerate aging.  
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Figure 6. Overview of the DNA damage theory of ageing. Adopted from Freitas and de 

Magalhaes, (2011).  

 

2.5.1.3. Proteostasis theory of aging 

Proteostasis network includes processes of protein synthesis, folding, transport, localization, 

aggregation, degradation and has a role in maintaining proteome stably functional. During aging 

the processes of proteostasis are decaying and damaged proteins accumulate. To preserve 

protein homeostasis in the cell, molecular chaperones and the proteolytic system, which 

represent cellular protein quality control, have the most important function. The 

ubiquitin/proteasome system (UPS) is the main proteolytic system responsible for targeting 

damaged proteins (ubiquitination) and their degradation (Fig 7.). The 8 kDa regulatory protein, 

ubiquitin, is targeting proteasome substrates for degradation. The UPS system plays important 

role in lifespan; its activity is required for long-lived mutants to achieve maximal lifespan 

extension. C. elegans insulin/insulin-like growth factor-1-signaling (IIS) mutant extended 

lifespan is dependent on E3 ligase, a key component involved in proteolysis regulation (Ghazi 

et al., 2007). Molecular chaperones activity has also significant impact on longevity; their 

increased expression results in enhanced longevity (Koga et al., 2011; Lithgow et al., 1995; 
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Shama et al., 1998). Failure of protein quality control systems leads to proteopathies, protein 

conformational disorders, including neurodegenerative diseases and amyloidosis (Esser et al., 

2004; Morimoto, 2008).  

 

Figure 7. Protein fates in the proteostasis network. Adopted from Hartl et al., (2011).  

 

2.5.2. DNA polymorphisms 

DNA polymorphisms are variations in nucleotide sequence, predominantly single nucleotide 

polymorphisms (SNPs), high variability in repeat number of simple sequence motifs (mostly 

from mono- to penta-nucleotides) and much less frequent large deletions, inversions and 

duplications. Polymorphic variations do not necessarily affect the phenotype. There are several 

types of SNPs: they can be synonymous without affecting protein sequence, or non-

synonymous leading to altered protein sequence, structure and in some cases even a function. 

SNPs are associated with different types of diseases. Some of the examples are: Alzheimer 

disease (Wolf et al., 2013), sickle cell anemia (Ingram, 1956), cystic fibrosis (Hamosh et al., 

1992) and hyperlipidemia (Huertas-Vazquez et al., 2010). Cystic fibrosis is caused by the 

mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (Riordan et 

al., 1989). 
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2.5.3. Oxidative stress 

Oxidative stress is a change in cellular redox system that occurs with imbalanced levels of 

prooxidants (production of ROS) and antioxidants. Although production of ROS is caused by 

some environmental changes or xenobiotics, it is also a product of a normal cellular oxidative 

metabolism. ROS are highly reactive molecular species, which include free radicals and 

nonradicals. Superoxide (O2•-), hydroxyl radical (OH•), hydroperoxyl radical (HO2•), nitric 

oxide (NO•), nitrogen dioxide (NO2•), and peroxyl (ROO•) are some of the small molecules 

that can damage nucleic acids, lipids, and proteins and alter their functions. Oxidative damage 

can target two different parts of a protein: the protein backbone and the amino-acid side chain. 

The first leads to fragmentation reactions and the second produces different oxidations 

products, such as carbonyl derivatives and alkoxyl radicals.  

 

2.5.3.1. The free radical theory of aging 

The “free radical hypothesis” was first proposed by Harman in 1956. He proposed free radical 

oxidative damage of macromolecules as the main cause of aging (Harman, 1956). This 

hypothesis was later altered into “oxidative stress hypothesis”, but still maintains the argument 

that increase in ROS and failure of antioxidant defences result in impaired proteostasis, 

metabolic regulation, DNA repair, and ultimately leads to senescence-associated decrease in 

physiological fitness (Sies et al., 1985; Sohal and Allen, 1990). Cutler (1991) tested the 

hypothesis that antioxidants may increase longevity and found a positive correlation of specific 

antioxidants with lifespan of mammals. In 1997, scientists used rats (3-4 years lifespan) and 

pigeons (35 years lifespan) as model organisms. They measured oxygen consumption, H2O2 

and free radical production that were all higher in heart mitochondria of the short-lived rats than 

in pigeons supporting the free radical theory of aging (Herrero and Barja, 1997). There are also 

experiments that do not support this theory. For example, naked mole rats are attractive 

organisms to study effects of oxidative damage on aging, since they live up to 30 years while 

ordinary rats live 3-4 years. Conversely to this theory, results showed that oxidative protein 

damage levels are higher in naked mole rat compared to Wistar laboratory rats (Harman, 1956).  
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2.5.3.2. Protein carbonylation 

Protein carbonylation (PC) is a well-known marker for oxidative stress. It is a type of 

irreversible protein modification caused by ROS. PC includes a direct metal catalysed oxidative 

(MCO) attack on lysine, arginine, proline and threonine residues (‘‘primary protein 

carbonylation’’) (Fig 8.) or reactions via the addition of aldehydes, such as those generated 

from lipid peroxidation processes, to amino acid side chains (‘‘secondary protein 

carbonylation’’) (Butterfield and Stadtman, 1997; Grimsrud et al., 2008; Levine, 2002). 

Misfolded proteins are more susceptible to oxidation and result in higher levels of carbonylation 

compared to natively folded proteins (Dukan et al., 2000). Conformational stability also plays 

a major role in the susceptibility to oxidation. It is shown that the proteome of pathogenic 

bacteria is more resistant to oxidation than the proteome of non-pathogens due to its increased 

conformational stability (Vidovic et al., 2014).   

Oxidative damage results in impaired protein function and elevated mutation rate (Krisko and 

Radman, 2010, 2013). Protein carbonylation is increasing with the age of many species and has 

a significant damaging effect on cellular functions. Diseases associated with increased 

carbonylation include Parkinson’s disease, Alzheimer’s disease, cancer, cataractogenesis, 

diabetes, sepsis and autoimmune diseases (Dalle-Donne et al., 2003; Levine, 2002).  
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Figure 8. Carbonylation and derivatization of a protein amino-acid side chain. A scheme for the 

formation of glutamic semialdehyde from an arginyl residue is depicted as a consequence of an 

MCO. For detection, the carbonyl group, in this case glutamic semialdehyde, is subsequently 

derivatized by 2,4-dinitrophenol hydrazine. The resulting protein 2,4-dinitrophenol hydrazone 

can be detected by specific monoclonal or polyclonal antibodies (see Requena et al., 2001).  

Adopted from Nyström, (2005).   

 

2.6. Yeast as a model organism in aging 

Budding yeast Saccharomyces cerevisiae is a unicellular eukaryote used as a model organism 

in molecular biology and genetics. Since (i) it is inexpensive to grow yeast in large amounts of 

standard media (in which their doubling time is 1.5-2 hours at 30 ˚C), (ii) yeast genome size is 

small and completely sequenced (6000 genes) long ago (Goffeau et al., 1996). As it is largely 
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orthologous to the human genome, S. cerevisiae serves as an exquisite experimental model for 

studying aging. Fundamental cellular processes including DNA replication, transcription, 

mRNA translation, protein degradation and cell cycle are conserved in eukaryotic organisms 

through evolution and genetically manipulated yeast cells are used in experimental studies for 

better understanding of these processes. System of homologous recombination allows easy 

genetic manipulations, providing knockouts for a particular gene of interest.  

S. cerevisiae can reproduce sexually and asexually, depending on the environmental conditions, 

and can exist in haploid and diploid state. Both states can undergo asexual reproduction 

(mitosis) called budding, which occurs when the ‘mother’ yeast cell produces a genetically 

identical new small cell (a bud). Under high stress conditions, diploid cells undergo sexual 

reproduction (meiosis) producing haploid spores. There are two mating types determined by 

two different alleles of the mating-type (MAT) locus and the protein encoded by the HO gene 

is an endonuclease responsible for the process of mating type switching by a gene conversion 

process. Haploid cell type MATa (a cell) can mate with the opposite mating type MATα (α cell) 

forming a stable diploid MATa/MATα (a/α cell).  

 

2.6.1. Replicative and chronological lifespan 

Yeast as a model organism for studying aging was introduced after the discovery that single 

yeast cell is mortal (Barton, 1950). A. Barton was the first persone who separated each daughter 

cell from its mother cell and Mortimer and Johnston (1959) discovered decreasing number of 

divisions during individual cell lifespan. This is a definition of replicative lifespan (RLS) – 

number of buds produced by a single yeast cell (Fig 9.). The average number of buds generated 

by single cell is between 19 to 25 daughter cells. Experimentally, RLS can be measured by 

microdissection using agar plate with the yeast strain and a thin needle for removing buds under 

a microscope - method still used for lifespan analysis (Sutphin et al., 2011). Since S. cerevisiae 

cells divide asymmetrically, buds are smaller than the mother cell and can be visually 

distinguished under a microscope. After separation of a ‘daughter’ cell, chitin bud scars are 

formed on the surface of a mother cell and can be monitored to estimate the number of 

asymmetric divisions. New methods include microfluidic devices, a system based on chemical 

or mechanical trapping of mother cells, where daughter cells are removed by a flowing medium 

(Lee et al., 2012). It is also possible to quantify fluorescent signal during cell lifespan (Xie et 

al., 2012). Another interesting technique is Mother Enrichment Program (MEP), which disables 

https://en.wikipedia.org/wiki/Protein
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offspring to divide upon estradiol addition leading to linear growth of the population (Lindstrom 

and Gottschling, 2009).  

Another approach to quantify lifespan of budding yeast is chronological lifespan (CLS), 

measured as the time during which non-dividing population survives under starvation 

conditions (Fig 9.). Yeast culture is grown in liquid medium, 2% glucose, until it reaches 

stationary phase; glucose from the medium is depleted, cell growth reduced and mitochondrial 

respiration activated (Longo, 1997). Yeast culture can be maintained in the medium depleted 

of 2% glucose (standard CLS method) or transferred to water during post-diauxic phase 

(extreme calorie restriction/starvation). Number of viable cells is estimated by plating different 

dilutions of culture on agar plates.  

Kaeberline and his co-workers (2009) reported a molecular mechanism of chronological 

lifespan in aging. They found that decrease in the pH of the culture medium promotes yeast 

chronological aging, i.e. that increased CLS is result of reduced extracellular acetic acid 

(Burtner et al., 2009).   

 

 

 

Figure 9. Schematic for yeast replicative and chronological aging. Replicative Lifespan (RLS) 

in yeast is measured by the number of mitotic divisions that can arise from a single mother cell. 

Replicative viability is calculated as the mean number of daughters produced from mothers of 

a particular strain background before senescence. Chronological Lifespan (CLS) is measured 

by the length of time cells in a stationary culture can remain viable. Viability is calculated by 

the fraction of the culture able to reenter the cell cycle after an extended state of quiescence. 

Adopted from Kaeberlein et al., (2007).  
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2.6.2. S. cerevisiae mitochondria 

Like all eukaryotic organisms, S. cerevisiae possess mitochondria, organelles responsible for 

adenosine triphosphate (ATP) production. ATP is a cellular energy source required for many 

biological functions including DNA, RNA and protein synthesis, cell signalling, transport and 

cell division. Since yeast is a facultative anaerobe, ATP can be produced by respiration or 

fermentation. ATP produced by respiration is generated by oxidative phosphorylation 

(OXPHOS) on the inner mitochondrial membrane.The mitochondrion contains outer and inner 

membranes, inter-membrane space, cristae and matrix. Cristae are folds of the inner membrane 

that provide an increase in the surface area, enabling higher production of ATP molecules. 

Matrix is space surrounded by the inner membrane where mitochondrial DNA, enzymes, 

ribosomes and electron transport chain (ETC) are located.  

The ETC system of S. cerevisiae includes NADH dehydrogenase (Ndi1p, Nde1-2p), which 

represent mammalian Complex I and four additional protein complexes: Complex II (Sdh1-4p), 

Complex III (Qcr1-9p), Complex IV (Cox1-11p) and Complex V (F1Fo ATP synthase), which 

together with cytochrome c and ubiquinone form OXPHOS system. Complex I-IV transfer 

electrons from NADH and FADH2, produced in the Krebs cycle, to oxygen through ETC. 

Energy released in this process is used to transport protons across the inner mitochondrial 

membrane, out of the matrix, and to maintain an electrochemical potential (Δµ H) composed of 

an electrical gradient (ΔΨ) and a pH gradient. During chemiosmosis, protons are transported 

back into the matrix by ATP synthase, the enzyme that uses the energy to phosphorylate ADP 

to ATP.  

 

2.6.2.1. S. cerevisiae mitochondrial genome 

Mitochondrial (mt) DNA in S. cerevisiae encodes for seven essential components of three 

respiratory chain complexes. The COB gene encodes for apocytochrome b (complex III), 

COX1, COX2 and COX3 genes encode for subunits I, II and III of the cytochrome c oxidase 

(complex IV) and ATP6, ATP8 and ATP9 genes encode for subunits 6, 8 and 9 of the F0 

component of the mitochondrial ATP synthase (complex V) (Fig 10.). Mitochondrial genome 

also encodes the small subunit 15S rRNA and the large subunit 21S rRNA of the mt ribosome, 

24 tRNAs and RNA subunit of the RNase P (Foury et al., 1998). S. cerevisiae mitochondrial 

genome can also contain 7 introns in the COX1 gene, 5 in the COB gene and 1 in the 21S rRNA. 

Yeast mtDNA is organized into dynamic nucleoprotein complexes termed the nucleoids. Each 
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cell contains 50-100 copies of mtDNA and each nucleoid up to 10 copies of mtDNA (Chen and 

Butow, 2005; Lipinski et al., 2010). Except for mtDNA and packaging proteins, significant part 

of the nucleoids is nuclearly encoded proteins which play an important role in maintenance of 

the mitochondrial genome. The nuclear genome of S. cerevisiae encodes about 200 proteins 

that participate in the maintenance and expression of the mitochondrial genome (Hong et al., 

2007). Deletion of nuclear genes coding for mitochondrial DNA polymerase subunit Mip1p, 

DNA helicase Pif1p and some others involved in the mitochondrial DNA metabolism, leads to 

complete loss (rho°) of mtDNA (Genga et al., 1986; Lahaye et al., 1991). Since rho° yeast cells 

cannot perform respiration, they are unable to grow on non-fermentable carbon source, such as 

glycerol or ethanol. Due to mutations in mtDNA with functional replication and transcription, 

wild type (rho+) mtDNA turns into non-functional (rho-) with deficiency in protein synthesis 

(Mounolou et al., 1966). Both, complete loss and non-functional mtDNA result in the petite 

phenotype, small yeast colonies forming in the presence of fermentable carbon source, such as 

glucose. Although mitochondrial genome is not requisite for yeast survival, its function in 

synthesis of iron-sulphur is essential (Kispal et al., 2005).  
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Figure 10. Consensus genome map of S. cerevisiae mtDNA. A consensus genome map based 

on the alignment of nine divergent mtDNAs illustrates the extensive polymorphisms across S. 

cerevisiae mtDNAs. The consensus sequence (~109 kbp) is substantially longer than the longest 

mtDNA in this alignment (~86 kbp) due to indel variation. Genes (red arrows), introns (green), 

and tRNAs (blue) are indicated. The light blue bar indicates a sole tRNA encoded on the light 

strand. The orange bars indicate the number of polymorphic sites within 100 bp windows, where 

the inner and outer edges of the circle represent 0 and 100, respectively. The grey line represents 

the genome-wide average of 51 polymorphic sites per window. Adopted from Wolters et al., 

(2015).  

  

2.6.2.1.1. Group II introns 

Introns are nucleotide sequences within genes, between two exons, that must be spliced out 

from the precursor messenger RNA (pre-mRNA) molecule to generate functional gene product. 

After introns are removed, exons are joined together to form a mature mRNA. Spliceosomal 

introns and tRNA introns are removed by spliceosomes and splicing endonucleases, 

respectively; group I and group II introns are ribozymes catalyzing their own RNA splicing. 

Out of 13 introns in the S. cerevisiae mitochondrial genome, 9 are group I and 4 group II introns. 

They are characterized by different splicing mechanisms, secondary and tertiary structures.  
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Group II introns are found in bacteria, archaebacteria, mitochondria, and chloroplasts, but not 

in the nuclear genomes. They consist of catalytically active intron RNA (ribozyme) and an 

intron-encoded protein (IEP). Intron RNA contains six helical domains: I to IVa at the 5’ end, 

IVb to VI at the 3’ end. IEP contains four domains:   

 RT (reverse transcriptase) 

 X (maturase, RNA splicing)  

 D (DNA binding) 

 An endonuclease activity  

 

 

Figure 11. Genomic structure of a group II intron. The 2- to 3-kb sequence consists of RNA 

and protein portions. The intron RNA domains are depicted in red and demarcated with Roman 

numerals. Domains I to IVa are at the 5′ end of the intron, while domains IVb to VI are at the 

3′ end. The IEP sequence is nested within the RNA’s sequence and the domains are denoted by 

differently shaded blue boxes. The IEP contains a reverse transcriptase domain (RT) with motifs 

0 to 7, a maturase domain (X, sometimes called X/thumb), a DNA-binding domain (D), and an 

endonuclease domain (En). Exons are shown in green. Adopted from Zimmerly and Semper, 

(2015).  

 

 

Reverse transcriptase activity of IEPs enables introns mobility; acting as retroelements, introns 

are moving through the genome by copying themselves. IEPs, also known as maturases, play a 

role in splicing generating a mature mRNA. RNA splicing includes two trans-esterification 

reactions, first one forming intron-exon lariat and second one resulting with excised lariat and 

connected exons (Newman, 1998) (Fig 12.). After splicing, IEP remains bound to the excised 

intron RNA lariat forming a nucleoprotein complex that invades DNA sites.  
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Figure 12. RNA splicing. Splicing of mRNA precursor involves two successive trans-

esterification reactions. In the first reaction (1) the 2′ OH of a specific adenosine (red) at the 

branch site near the 3′ end of the intron attacks the 5′ splice site (blue). This reaction releases 

the 5′ exon (green; with a 3′ OH terminus) and leaves the 5′ end of the intron (blue) joined by a 

2′-5′ phosphodiester bond to the branch site adenosine (red); this intron–3′ exon intermediate is 

therefore in the form of a lariat. In the second reaction (2) the 3′ OH of the 5′ exon intermediate 

(green) attacks the 3′ splice site, producing the spliced mRNA and lariat-shaped intron products 

Adopted from Newman, (1998). 

  

2.6.2.2. Retrograde response 

Mitochondria are organelles responsible for the ATP production, fuel most cellular functions, 

and their maintenance is of a great importance. It is believed that they have evolved via 

endosymbiosis with pre-eukaryotic cells, followed by gene transfer into the nuclear genome 

and the majority of mitochondrial proteins are encoded in the nucleus. Consequently, 

communication between mitochondria and nucleus is crucial for the mitochondrial 

maintenance, therefore it includes the antegrade (nucleus to mitochondria) and the retrograde 

(mitochondria to nucleus) communication pathway.  

Mitochondrial retrograde signalling pathway is activated when the mitochondrial dysfunction 

occurs. In S. cerevisiae, this includes three nuclearly encoded proteins: Rtg1p, Rtg2p and Rtg3p 

(Fig 13.). Retrograde pathway activator, Rtg2p, regulates translocation of Rtg1 and Rtg3 
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cytosolic proteins to the nucleus, which are transcriptional activators of nuclear genes that code 

for mitochondrial proteins (Sekito et al., 2000). This translocation depends on partial 

dephosphorylation of Rtg3p and binding of Rtg2p to Mks1p, a negative regulator of the 

retrograde response which can inhibit this signalling pathway by binding to Bmh1/2p (Liu et 

al., 2003).  

Expression of about 400 genes are significantly altered in retrograde response (Epstein et al., 

2001). Liu and Butow (1999) showed that expression of four genes involved in tricarboxylic 

acid (TCA) cycle are under the control of RTG1, RTG3 transcription factors when respiratory 

function is reduced. Those genes are: CIT1, ACO1, IDH1, and IDH2 coding for citrate 

synthase, aconitase and two subunits of mitochondrial NAD(+)-dependent isocitrate 

dehydrogenase, respectively. 

 

 

Figure 13. Simplified scheme of the RTG-dependent retrograde signaling pathway. In S. 

cerevisiae this pathway depends on three proteins. Rtg1 and Rtg3 form a transcription factor 

that translocates to the nucleus when the pathway is activated. In the nucleus, Rtg1 and Rtg3 

control the expression of a set of genes that code for mitochondrial proteins. Rtg2 is an activator 

of the pathway that allows the nuclear translocation of Rtg1 and Rtg3. Adopted from da Cunha 

et al., (2015).   
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3. MATERIALS AND METHODS  

 

3.1. Bacterial strains, plasmids, and growth conditions 

The strains used in this research were derived either from the E. coli K12 MG1655 strain by 

laboratory evolution and P1 transduction and/or transformation, or from the REL606 strain and 

its descendants in the LTEE (Sniegowski et al., 1997). All strains used are listed in Table 1. 

Sequences of cspA, rhlB, srmB, and csdA inserted into pCA24N::Cam were obtained from the 

ASKA collection (http://www.shigen.nig.ac.jp/ecoli/strain/). For strain construction and 

subsequent experiments, bacteria were grown in Luria-Bertani (LB) medium at 37 °C. To 

distinguish competitors during competition assays, cells were plated onto tetrazolioum 

arabinose (TA) solid medium (Lenski, 1991).  

Table 1. List of E. coli strains used in this study.    

Strain Characteristics Source, Reference or Construction 

MG1655  Lab stock 

ΔaraA E.coli MG1655ΔaraA ::Kan/Ara- NBRP 

MR01 MG1655 ΔaraA::Kan/Ara- Transduction with P1(ΔaraA ::Kan) 

MR02 MR01 pCA24N::Cam/Ara- Transformation 

MR03 MG1655 pCA24N-cspA::Cam/Ara+ Transformation 

MR04 MG1655 pCA24N-rhlB::Cam/Ara+ Transformation 

MR05 MG1655 pCA24N-srmB::Cam/Ara+ Transformation 

MR06 MG1655 pCA24N-csdA::Cam/Ara+ Transformation 

ΔmutH MG1655 ΔmutH::Kan /Ara+ Keio collection 

MR07  ΔmutH /Ara- Selection on TA plates 

MR08 MR07 pCA24N::Cam/Ara- Transformation 

MR09 ΔmutH pCA24N-cspA::Cam/Ara+ Transformation 

MR10 ΔmutH pCA24N-rhlB::Cam/Ara+ Transformation 

 

http://www.shigen.nig.ac.jp/ecoli/strain/
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Table 1. (continued) 

Strain Characteristics Source, Reference or Construction 

MR11 ΔmutH pCA24N-srmB::Cam/Ara+ Transformation 

MR12 ΔmutH pCA24N-csdA::Cam/Ara+ Transformation 

REL607 E.coli B/Ara+ (Wiser et al., 2013) 

REL606 E.coli B /Ara- (Wiser et al., 2013) 

MR13 REL606 pCA24N::Cam/Ara- Transformation 

MR14 REL607 pCA24N-cspA::Cam/Ara+ Transformation 

MR15 REL607 pCA24N-rhlB::Cam/Ara+ Transformation 

MR16 REL607 pCA24N-srmB::Cam/Ara+ Transformation 

MR17 REL607 pCA24N-csdA::Cam/Ara+ Transformation 

REL 10953 Ara+ (Wiser et al., 2013) 

MR18 REL 10953/Ara- Selection on TA plates 

MR19 MR18 pCA24N::Cam/Ara- Transformation 

MR20 REL 10953 pCA24N-cspA::Cam/Ara+ Transformation 

MR21 REL 10953 pCA24N-rhlB::Cam/Ara+ Transformation 

MR22 REL 10953 pCA24N-srmB::Cam/Ara+ Transformation 

MR23 REL 10953 pCA24N-csdA::Cam/Ara+ Transformation 

de novo ΔmutH MG1655 ΔmutH::Kan /Ara+ Transduction with P1 (ΔmutH::Kan) 

MR24 de novo ΔmutH/Ara- Selection on TA plates 

MR25 MR24 pCA24N::Cam/Ara- Transformation 

MR26 de novo ΔmutH pCA24N-cspA::Cam/Ara+ Transformation 

MR27 de novo ΔmutH pCA24N-rhlB::Cam/Ara+ Transformation 

MR28 de novo ΔmutH pCA24N-srmB::Cam/Ara+ Transformation 

MR29 de novo ΔmutH pCA24N-csdA::Cam/Ara+ Transformation 

REL 8602A Ara+ (Wiser et al., 2013) 

MR30 REL 8602A/Ara- Selection on TA plates 

MR31 MR30 pCA24N::Cam/Ara- Transformation 
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Table 1. (continued) 

Strain Characteristics Source, Reference or Construction 

MR32 REL 8602A pCA24N-cspA::Cam/Ara+ Transformation 

MR33 REL 8602A pCA24N-rhlB::Cam/Ara+ Transformation 

MR34 REL 8602A pCA24N-srmB::Cam/Ara+ Transformation 

MR35 REL 8602A pCA24N-csdA::Cam/Ara+ Transformation 

MR36 MR01 pJ444-01::Amp/Ara- Transformation 

MR37 MG1655 pJ444-01-cspA::Amp F20L/Ara+ Transformation 

MR38 MG1655 pJ444-01-rhlB::Amp E166K/Ara+ Transformation 

MR39 MG1655 pJ444-01-srmB::Amp E158K/Ara+ Transformation 

MR40 MG1655 pJ444-01-csdA::Amp E157K/Ara+ Transformation 

MR41 MG1655 ΔmutH::Cam /Ara+ Transduction with P1 (ΔmutH::Cam) 

MR42 MR41/Ara- Selection on TA plates 

MR43 MR42 pJ441-01::Kan/Ara- Transformation 

MR44 MR41 pJ441-01-cspA::Kan F20L /Ara+ Transformation 

MR45 MR41 pJ441-01-rhlB::Kan E166K/Ara+ Transformation 

MR46 MR41 pJ441-01-srmB::Kan E158K/Ara+ Transformation 

MR47 MR41 pJ441-01-csdA::Kan E157K/Ara+ Transformation 

MR48 REL606 pJ441-01::Kan/Ara- Transformation 

MR49 REL607 pJ441-01-cspA::Kan F20L/Ara+ Transformation 

MR50 REL607 pJ441-01-rhlB::Kan E166K/Ara+ Transformation 

MR51 REL607 pJ441-01-srmB::Kan E158K/Ara+ Transformation 

MR52 REL607 pJ441-01-csdA::Kan E157K/Ara+ Transformation 

MR53 MR18 pJ441-01::Kan/Ara- Transformation 

MR54 REL 10953 pJ441-01-cspA::Kan F20L /Ara+ Transformation 

MR55 REL 10953 pJ441-01-rhlB::Kan E166K/Ara+ Transformation 

MR56 REL 10953 pJ441-01-srmB::Kan E158K/Ara+ Transformation 

MR57 REL 10953 pJ441-01-csdA::Kan E157K/Ara+ Transformation 
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3.2. Mutant proteins 

Mutations in the DEAD domain of E. coli DBRHs abolish or severely reduce helicase activity, 

as demonstrated for the E. coli DBRHs RhlB (Vanzo et al., 1998), DbpA (Elles and Uhlenbeck, 

2007), and CsdA (Turner et al., 2007). Here, DBRH mutants in which the central glutamic acid 

residue has been recoded to yield lysine, a change known to abolish RhlB ATPase activity, 

which is required for helicase activity was used (Vanzo et al., 1998). Mutations in the nucleic 

acid-binding domain of CspA were previously evaluated for their impact on both nucleic acid 

binding and protein stability (Hillier et al., 1998). The F20L mutation was found to only weakly 

affect protein stability, but strongly reduce nucleic acid binding (Hilier et al., 1998) and was 

therefore chosen for this study. Plasmids carrying the mutated genes were constructed by and 

purchased from DNA2.0. 

 

3.3. Competition assays  

Pairwise competition experiments was performed to estimate the relative fitness of two 

competing E. coli strains as previously described (Lenski, 1991). Briefly, the two competitors 

were grown separately, mixed at an initial ratio of 1:1 and diluted 100-fold in the competition 

environment (LB supplemented with the relevant antibiotics for plasmid maintenance). Initial 

and final densities (after either 24 or 2 hr) were estimated by diluting and spreading the cells 

on indicator TA (tetrazolium and arabinose) plates, which allow the competitors to be 

distinguished through an arabinose-utilization marker, which is neutral under the conditions 

utilized (Lenski, 1988). Relative fitness was calculated as  

w=ln(Af/Ai)/ln(Bf/Bi), 

where A and B are the densities of the two competitors, and i and f represent initial and final 

densities, respectively. One-sample t-tests was used to evaluate whether mean relative fitness 

differed from the null expectation of one. 

 

3.4. Introduction of point mutations into ancestral genetic backgrounds 

All point mutations detected in the evolved ΔmutH strain that were located in a gene of known 

function (i.e., not located in a y-gene) were individually introduced into the ancestral MG1655 

background using a recombineering approach (Sawitzke et al., 2013). Briefly, single-stranded 
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oligonucleotides were designed, ∼70 nt in length, that were complementary to the region of 

interest and carried the desired point mutation (Table 2.). They were transformed by 

electroporation into the TB56 (Ara+) and TB62 (Ara−) strains supplemented with pSIM6. In 

both TB56 and TB62 (kindly provided by Tobias Bergmiller), the native mutS promoter has 

been replaced with an ara promoter. In the presence of 0.2% arabinose, the strains have wild-

type MutS levels, whereas in the presence of 0.2% glucose, MutS expression is repressed. 

Growing strains in LB medium supplemented with 0.2% glucose therefore increases the 

likelihood that oligo-born mutations are fixed due to impaired mismatch repair. Following 

electroporation, cells were grown overnight at 32 °C on LB agar plates supplemented with 0.2% 

arabinose, and the presence of mutations was confirmed by sequencing target regions from 

individual colonies on an ABI PRISM 310 Genetic Analyzer using the Big Dye Terminator 1.1 

Cycle Sequencing kit (Life Technologies, Carlsbad, CA). The primers used for sequencing are 

listed in Table 3. 

 

Table 2. Primers used for introducing point mutations.  

 

Primer name 

 

 

Primer sequence 

rapA_Ok 
GC GGC GCA GGT AGA GTT TGA AAC CTT TAA CCA CCA GCT TAA CGC GGT 

TAA CCG TCA CAC CGG CAG CAA ACT GGT T 

cyoA_Ok 
GTA CAG CCC GAA CTG GTC ACA CTC CAA TAA AGT GAA AGC TGT GGT 

CTG GAC GGT ACC TAT CTT AAT CAT 

torA_Ok 
GAT AAT GCC ACG GTT GGA GTG ATT GCC GTA CTG GCC GAG ATC GTT 

ACG CTC AAA CTG CGT GGT CGC AGG 

osmC_Ok 
CG CTG CGC CAA TCA GTT CTT CAG GGT TGG TTC TTT TTT CGC CTT CAA 

AAC GCG TGT TAA ATC CAT ACG GCT GTT G 

lsrR_Ok 
TG TTC AAA GTG AAG AAT GAA TTA TGA CAA TCA GCG ATT CGG CAA TTT 

CAG AAC AGG GAA TGT GTG AAG AAG AAC A 

speC_Ok 
TT TTA TGA CAC GCT GAC GCA GTA CGT TGA GAT GGG TAA CAG CAC CTT 

TGC TTG CCC TGG ACA TCA ACA TGG TGC GTT T 

lamB_Ok 
TG TAC ATC GGG CGA ATA CCG ACG GTC CAC CAC CTG GTC CCG TTG TCG 

TTA TCC CAG TTG ATA TCC TGG TAC ATA C 

rplS_non-

syn_Ok 

CCA GAC TCA CTC TCC GGT AGT TGA CAG CAT TTC TAT CAA ACG TCG 

TGG TGC TGT TCG TAA AGC TAA ACT 
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Table 3. Primers used for sequencing.  

 

Primer name 

 

 

Primer sequence 

rapA_fwd TTC GTC GTC ACG AAT GTT CGG G 

rapA_RC CCT TTC TGG CGA TAC CGG TAG 

cyoA_fwd AAA GCG ATT TCA TTC ACG GTA GC 

cyoA_RC TTG CAG GCA CTG TAT TGC TCA GT 

torA_fwd ATC GAT GCG ATC CTC GAA CC 

torA_RC TTA TTC CAG AAG TCA TCA AAC GCT 

osmC_fwd TCG GAA TAT CCT GCT TAT CCT CG 

osmC_RC AAG GTA GAG GCA TCA ATA CCC G 

lsrR_fwd TTC CAG ACA GCC TTC AAA GCG 

lsrR_RC CTT TTA ATT TGT TCA TAA CCT TAG GTG 

speC_fwd TTT ATT CGC TGC CGA TGT GCC 

speC_RC CGG CAG TCG TCA TTA CCG C 

lamB_fwd GTG TCC TGA AGG GCT TTA ACA A 

lamB_RC AGC GTT ACC GGT GTA GTC GTA A 

rplS_non-syn_fwd AAT ATC CCA TAG CCA GTA ACA AG 

rplS_non-syn_RC GCA ACT TGA ACA AGA GCA GAT G 

rplS_syn_fwd CAC AGG GTT TAG GAA AAA AAT 

rplS_syn_RC GTA CCT TCC TTC CGT CCG G 

 

 

3.5. Determination of relative chaperone levels 

Exponentially growing evolved ΔmutH strains overexpressing one of the four RNA chaperone 

proteins (CspA, RhlB, SrmB or CsdA) were pelleted by centrifugation and resuspended in 

UTCDTT buffer containing 8 M urea, 2 M thiourea, 4% 3-[(3-cholamidopropyl) 

dimethylammonio]-1-propanesulfonate hydrate (CHAPS) and 10 mM dithiothreitol  (DTT) 

supplemented with a mixture of protease inhibitors. Cells were incubated for 2 hr at room 

temperature followed by a 20-min centrifugation step at 12,000 × g. Protein concentrations 

were determined using the Bradford assay (Bradford, 1976). For each sample, 15 μg of total 

protein extract was loaded onto an acrylamide gel (6% stacking and 20% resolving gel) using 
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sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 6X-His tagged 

CspA, RhlB, SrmB, and CsdA were detected by Western blotting using a mouse monoclonal 

anti-6X His tag antibody (Abcam, United Kingdom) followed by a goat anti-mouse polyclonal 

antibody conjugated to horseradish peroxidase (Abcam). Proteins were visualized on 

autoradiographic film using the Amersham ECL Advance chemiluminescence detection system 

(GE Healthcare Life Sciences, United Kingdom). ImageJ (Collins, 2007) was used to quantify 

the intensity of each chaperone band on the Western blot and normalized this intensity by the 

amount of total protein loaded into each lane (detected by Coomassie staining of the 

polyacrylamide gel and subsequent quantification with ImageJ). This normalized abundance 

allows comparing relative chaperone levels across experiments (Figure 23). 

 

3.6. Yeast strains and growth conditions 

Strain Y258 and the pBG1805 plasmid bearing Mss116 for overexpression (Mss116OE) were 

purchased from Thermo Scientific (Dharmacon). Mss116E268K was purchased from DNA 2.0 

and cloned into pBG1805 using standard cloning techniques (Sambrook et al., 1989). Mss116OE 

and Mss116E268K were overexpressed in the Y258 nuclear background. The nuclear background 

of the I0 strain is a161-U713 and the corresponding intron-containing strain was used as the WT 

control for I0. a161-U7 wild type and I0 were a gift from Dr. Alan Lambowitz. 

All strains were grown on yeast extract-peptone-dextrose (YPD) medium with 2% (w/v) 

glucose, 1%  (w/v) yeast extract, 2% (w/v) peptone and on –URA medium (same as YPD  with 

uracil dropout supplement), at 30 °C with shaking. All experiments were performed on 

exponentially growing cells: cells were grown to OD 0.6-0.7 for WT, I0, ΔHap4, and ΔRtg2 

and to OD 0.9-1.0 for Mss116OE and Mss116E268K, harvested by centrifugation at 4,000 × g for 

5 minutes, washed and further treated as required. 

 

3.7. Gene deletion 

Deletion of Hap4 and Rtg2 was performed by following the protocol described in (Golik et al., 

1995), using a hygromycin cassette for selection in the WT background and a nourseothricine 

cassette in the I0 background. Primers used for the deletions are listed in Table 4.  
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Table 4. Primers used for the deletion of Hap4 and Rtg2.  

 

Primer name 

 

Primer sequence 

Upstream flanking region of rtg2  

FW1_rtg2 CAA ACC TCA CTA GAC GAC TAC 

RC1_rtg2  ATA GTC GAC AGA CAT CTA GTC TTT AAA TAC TTG 

Downstream flanking region of rtg2  

FW2_rtg2 GCA CGC CAA TTT TAA CCC TCT C  

RC2_rtg2 GCG ATA GTG ATA CCG AGA CTG A 

Upstream flanking region of hap4  

FW1_hap4 TCG ATT TTG CAG ATT GTT CTA AAA GTA AAT 

RC1_hap4 TAT CAG CTG AAA GTC TTT GCG GTC AT 

Downstream flanking region of hap4  

FW2_hap4 TAT GAG CTC AAT AGG CAT GTT GCA ATA 

RC2_hap4  TCT CTT GAC GTG TTT CAC CAT ACG   

 

3.8. Insertion of point mutations into the promoter regions 

In order to introduce promoter-attenuating mutations into mitochondrial DNA, the protocol 

described in (Bonnefoy et al., 2007) was followed. Briefly, a mutant fragment of mtDNA (in 

this case promoter sequences) flanked by WT mtDNA sequence is first transformed into a rho0 

strain, which is then mated with a recipient rho+ strain. Upon mating, mitochondria from the 

two strains fuse and recombination between the two mtDNAs produces recombinant rho+ 

strains in which the new mtDNA sequence is integrated by double crossover. For 

transformation, tungsten powder was used as a carrier of DNA (Tungsten M-10 Microcarriers 

#1652266, BioRad). Bombardment was performed using the Biolistic PDS-1000/He particle 

delivery system (BioRad). Cells were transformed with linear DNA fragments obtained by 

ligation of each mutated promoter region with 500bp of up- and downstream flanking DNA 

(Table 5.). SacI and SalI restriction sites were added by PCR for ligation between the 3’-end of 

the upstream flanking region and the 5’-end of the promoter sequence, and 3’-end of the 

promoter sequence and 5’-end of the downstream flanking region, respectively. The mutations 

introduced here have been previously shown to reduce the strength of cox1 and cob promoters 

(Turk et al., 2013). 
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Table 5. Primers for promoter point mutations insertion.  

Cox1 ATTGATATAAGTAATAGATA  ATTGAAATAAGTAATAGATA 

Upstream flanking region of cox1 promoter 

Primer name                     Primer sequence 

FW_u_cox1 CCG GGA CTT ATA TAT TTA ATA CTA AAA A  

RC_u_cox1 AC TTA TTA TTT AAT ATT ATA TAT TAC TTT TTA GAGCTC AT 

Downstream flanking region of cox1 promoter 

Primer name                     Primer sequence 

FW_d_cox1 AT CAGCTG T AAT AAT AAT ATT ATT AAT ATT TTA TAT AAA TAA 

RC_d_cox1 AAT TAT TGT TAT ATC TAA AAG GAT AAT AAT ATA TTA 

Cob TATTATATAAGTAATATATA  TATTAAATAAGTAATATATA 

Upstream flanking region of cob promoter 

Primer name                     Primer sequence 

FW_u_cob ATA TTT AAA GAA GGA ATT GTT TAT ATA TAT TAA TAT 

RC_u_cob TTT CTT ATA ATT ATA TTA AGA TTA TAT ATA TAA ATA G GAG CTC AT 

Downstream flanking region of cob promoter 

Primer name                     Primer sequence 

FW_d_cob AT CAG CTG AAA ATA ATA TAA AAT AAT TAT AAT TCA ATT TAT ATA TTA A 

RC_d_cob ATA TAT AAT TAT TAT TAT TAT TAA TAA ATT ATA AAA ATA AAA 

 

3.9. Chronological lifespan measurement 

All strains were grown to saturation as described above and pelleted at 4,000 × g for 5 min. 

Cells were then washed twice and resuspended in sterile deionized water (106 cells in 10 mL in 

order to avoid cell growth on the debris of dead cells) and incubated at 30 °C with shaking. 

Every 2-3 days, cells were serially diluted and plated onto YPD plates in order to evaluate cell 

growth. 

 

3.10. Replicative lifespan measurement 

Replicative lifespan (RLS) was determined by micromanipulation for Mss116OE and 

Mss116E268K in the Y258 background, as well as for Mss116OE in the Hap4 and Rtg2 nuclear 

backgrounds, counting the number of daughters produced by individual mother cells. It was not 

possible to reliably determine RLS for the I0 strain as daughter and mother cells could not be 



 

37 
 

separated in a timely manner, which is critical for RLS measurements. Wild type cells were 

incubated at 30 °C on YPD and mutants on -URA plates for the duration of the experiment. 

Using a microscope equipped with a microdissection apparatus suitable for S. cerevisiae (Singer 

Instruments), cells were transferred to defined places on agar plates and virgin daughter cells 

collected. Each cell was monitored continuously over several days every 60 - 90 min until all 

mother cells stopped budding. The total number of daughter cells was noted for each mother 

cell. The total number of monitored mother cells is as follows: 90 cells for the empty vector 

control, 86 cells for Mss116OE, and 91 cells for the Mss116E268K. The measurements were pooled 

from 3 independent experiments. 

 

3.11. Respiration measurement 

Oxygen uptake was monitored polarographically using an oxygraph equipped with a Clark-type 

electrode (Oxygraph, Hansatech, Norfolk, UK). Cells were harvested during exponential 

growth phase, spun and resuspended in growth medium (as above) at the density of 30 × 106 

cells/mL. 500 μL of culture were transferred to an airtight 1.5 mL oxygraph chamber. Cells 

were assayed in conditions closely similar to the ones in a flask culture (30 °C and stirring). 

Oxygen content was monitored for at least 4 min. To ensure that the observed oxygen 

consumption was due to the mitochondrial activity, complex III inhibitor antimycin (final 

concentration 10 μg/mL) was routinely added to the cultures and compared to the rate observed 

without antimycin. 

 

3.12. Flow cytometry 

Flow cytometry was carried out on a Becton-Dickinson FACSCalibur machine equipped with 

a 488 nm Argon laser and a 635 nm red diode laser. 

 

3.13. Measurement of the Mss116 overexpression level 

The expression level of Mss116 in the Mss116OE strain was measured by using a rabbit 

polyclonal anti-His tag antibody (Abcam, ab137839, 1:10000) and secondary IgG goat anti-

rabbit labeled with Alexa 488 (Thermo Fisher Scientific, A11034, 1:2000). The signal obtained 

by flow cytometry (mean fluorescence over 10000 cells) was compared to the Mss116 tagged 
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with GFP (Thermo Scientific) endogenous expression level estimated by using flow cytometry 

measurement based on the GFP signal. The mean fluorescence intensity in Mss116OE was 

normalized to the mean fluorescence intensity detected in wild type cells with endogenous 

expression of Mss116. 

3.14. Assessment of mitochondrial membrane potential and mass 

Variations of the mitochondrial transmembrane potential (ΔΨm) were studied using 3,3′-

dihexyloxacarbocyanine iodide (DiOC6(3)). This cyanine cationic dye accumulates in the 

mitochondrial matrix as a function of ΔΨm21. Cells (1 × 106/mL) were incubated in 1 mL 

culture medium containing 40 nM DiOC6(3) for 30 min in the dark at 30 °C with constant 

shaking. DiOC6(3) membrane potential-related fluorescence was recorded using FL1 height. A 

total of 10,000 cells were analyzed for each curve. The collected data was analyzed using 

FlowJo software version 7.2.5 to determine the mean green fluorescence intensity after each 

treatment. The results are expressed as a percentage of mean fluorescence of the control strain. 

As a negative control, in each experiment, aliquots of cells were preincubated with carbonyl-

cyanide 4-(trifluoromethoxy)- phenylhydrazone (FCCP, Sigma) and antimycin (Sigma) at 

100 μM and 5 μg/mL, respectively, 10 min before fluorescent dye staining, which leads to a 

collapse of mitochondrial membrane potential. 

To measure mitochondrial mass, 10-N-Nonyl acridine orange (NAO) wasuse, a dye that binds 

to cardiolipin, a phospholipid specifically present on the mitochondrial membrane (Perry et al., 

2011). Cells (1 × 106/mL) were incubated in 1 mL culture medium containing 100 nM NAO for 

30 min in the dark at 30 °C with constant shaking, followed by analysis on FACSCalibur flow 

cytometer with the same photomultiplier settings as used for DiOC6(3). 

 

3.15. Evaluation of the mitochondrial morphology and protein import 

machinery 

To image mitochondrial morphology, strains were transformed with a MitoLoc plasmid 

(Vowinckel et al., 2015) (a gift from Markus Ralser) according to a previously described 

protocol (Gietz and Schiestl, 2007), with the only difference that the cells were incubated with 

the plasmid overnight at room temperature. Microscope slides were prepared as follows: 150 μL 

of YPD media containing 2% agarose was placed on a preheated microscope slide and cooled, 

before applying yeast cells to obtain a monolayer. The cells were centrifuged at 4000 × g for 
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3 min, and resuspended in 50 μL YPD. Once dry, the cover slip was placed, sealed, and mounted 

on a temperature-controlled Nikon Ti-E Eclipse inverted/UltraVIEW VoX (Perkin Elmer) 

spinning disc confocal setup, driven by Volocity software (version 6.3; Perkin Elmer). Images 

were recorded through a 60xCFI PlanApo VC oil objective (NA 1.4) using coherent solid state 

488 nm and 543 nm diode lasers with a DPSS module, and a 1000 × 1000 pixel 14-bit 

Hamamatsu (C9100-50) electron-multiplied, charge-coupled device (EMCCD). The exposure 

time was 100 ms for GFP and 300 ms for mCherry, at 5–10% laser intensity. The number of 

cells with cytosolic mCherry accumulation was counted manually. Approximately 1000 cells 

of each strain were examined. Images were analysed using ImageJ software with the MitoLoc 

plugin. 

 

3.16. ROS measurement 

Cells were incubated in the dark with 5 μM MitoSOXTM red mitochondrial superoxide indicator 

(Molecular Probes) for 10 min at 30 °C and subsequently analyzed by flow cytometry. 

Fluorescence (excitation/emission maxima of 510/580 nm) of 10,000 cells resulting from the 

intracellular red fluorescence was measured in the FL2 channel. The collected data was 

analyzed using FlowJo software version 7.2.5 for Microsoft (TreeStar, San Carlos, CA, USA) 

to determine the mean green fluorescence intensity after each treatment. The results are 

expressed as the mean fluorescence across 10,000 cells. 

 

3.17. RNA extraction 

Total RNA was isolated using the NucleoSpin RNA kit (Macherey&Nagel) according to the 

manufacturer’s instructions for up to 3 × 108 yeast cells, which includes incubation with 50–

100 U of zymolyase for 1 hr at 30 °C. The quality of the resulting total RNA was tested on 1% 

agarose gels. 

 

3.18. Quantitative real-time PCR 

cDNA was synthesized from 1000 ng of total RNA using the iScriptTM cDNA Synthesis Kit 

(Biorad). The cDNA was 100-fold diluted, mixed with primer pairs for each gene and 

SYBRgreen (BioRad). All primer pairs were designed to have a melting temperature of 60 °C 



 

40 
 

and are listed in Table 6. The qPCR reaction was run on a QuantFlexStudio 6 (Life 

Technologies) using 40 cycles, after which the melting curves for each well were determined. 

Final fold change values were estimated relative to the UBC6 gene in the control strain 

replicates.  

Table 6. Primers used for q-PCR.  

Systematic 

gene name 

Standard 

gene 

name 

FWD primer RC primer 

YBL099W ATP1 ATGTTGGCTCGTACTGCTGCTATTC GCAATACCATCACCGACTGCAAG 

Q0085 ATP6 
ATGTTTAATTTATTAAATACATATA

TTACATCACCATTA 

TAAATAGCTTCTTGTGAAATTAATCA

TCTTGAAC 

YNR001C CIT1 
ATG TCA GCG ATA TTA TCA ACA 

ACT AGC AA 

GGT TTT ACC GTG TTC TTT CTT GAA 

TTT TTT A  

Q0105 COB 
ATG GCA TTT AGA AAA TCA AAT 

GTG TAT TTA AGT T 

TAT GCA CAT CTC TTA TAA TAT GTT 

CAA CAG A 

Q0045 COX1 
ATG GTA CAA AGA TGA TTA TAT 

TCA ACA AAT GC 

ATT AAA GCA GGC ATT ACT AAG 

AAG AAA ATC A 

Q0250 COX2 
ATG TTA GAT TTA TTA AGA TTA 

CAA TTA ACA ACA TTC AT 

GTC CAT GTT TAA TAT ATT TAT ATG 

CAA TAG GAT T 

YGL187C COX4 
ATG CTT TCA CTA CGT CAA TCT 

ATA AGA TTT TT 

TCT AAC CTA GCT AAA CCA GTT 

TCT TGA T 

YJR104C SOD1 
ATG GTT CAA GCA GTC GCA GTG 

TTA AA 

TTG AAA GGA TTG AAG TGA GGA 

CCA G 

YHR008C SOD2 
ATG TTC GCG AAA ACA GCA GCT 

GC 

ATT GGT CAA CAG CAG TGT TGA 

ATC C 

YER100W UBC6 
ATG GCT ACA AAG CAG GCT CAC 

AAG 

GGT TTG TAT GGA TAA TCA GAC 

GGG AA 

YBR072W HSP26 
ATG TCA TTT AAC AGT CCA TTT 

TTT G 
TTA GTT ACC CCA CGA TTC TTG A 

YJL159W HSP150 TGTCTCTCAAATTGGTGATGGTCAA TCTTTGGGGCTAAAGTAGTGGTGGT 

YOR136W IDH1 
GCT TAA CAG AAC AAT TGC TAA 

GA 

GTT GAT GAT TTC ATT CGT GAA 

GTC 

YKL148C SDH1 
ATG CTA TCG CTA AAA AAA TCA 

GCG CTC 
TTG TAG CCC GCC TCG GCA AG 

YLL041C SDH2 
ATG TTG AAC GTG CTA TTG AGA 

AGG AAG 

TTG ATC TTT AAC AGC GCA TCA 

AGT ACC 

YCR005C CIT2 
ATG ACA GTT CCT TAT CTA AAT 

TCA AAC AGA A 

TCC CTG GAA TAC CTC TCA TAC 

CAC 

YBR179C FZO1 TCG TGG AGC TCA CTC AAG AA GGT ACA CGC AAA ACA TCA CG 
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Table 6. (continued) 

 

Systematic 

gene name 

Standard 

gene 

name 

FWD primer RC primer 

YLL001W DNM1 GAA TCG AAG CAA ACG AAG GA CTC TCG GTC AGT GGA GGT TC 

YIL065C FIS1 GGA CGC ATA CGA ACC ACT CT ATT CTC GTC TAC GGG ACT CG 

Q0050 aI1 
TTT ACA TGG TAA TTC ACA ATT 

ATT TAA TG 

AAT ACA GCA TGA CCA ACT ACT 

AAA A 

Q0055 aI2 
GGT CAT GCT GTA TTA ATG ATT 

TTC T 

CCA ATT AAA GCA GGC ATT ACT 

AAG A 

Q0060 aI3 
GCT TTA ATT GGA GGT TTT GGT 

AAC 

GTA GCT CCA ATT ATT AAT GGT 

AAT AAA TA 

Q0065 aI4 
TAC GAG CAT TTA TTT TGA TTC 

TTT GGT 

GAA TAA TTA AAA TAT ATA CTT 

CAG GGT G 

Q0070 aI5α 
CAA CAG GAA TTA AAA TTT TCT 

CAT GAT TA 
TTG AAC CAC CAT GGA TTA GAG C 

Q0075 aI5β 
TCA TTA GAT GTA GCA TTC CAC 

GAT 
AAT GTC CCA CCA CGT AGT AAG T 

 aI5γ TAC TAC GTG GTG GGA CAT TTT C 
AAT AGC ACC CAT TGA TAA TAC 

ATA GT 

 bI1 
GGT TAT TGT TGT GTT TAT GGA 

CAG A 

ACC TCA ATG TGA CAA TTG TGA 

TAG 

Q0110 bI2 
TGT CAC ATT GAG GTA ATA TAA 

ATA TCG 

CTG AGA ATA AAT TAG TAA TAA 

CTA GTG C 

Q0115 bI3 
TTG TAT CTT GAT TAT GAG GTG 

GGT T 
GGA TTA GAG GGT TAG ATA CTG AG 

Q0120 bI4 
ATT CTA TTC ACC TAA TAC TTT 

AGG TCA 

GAT TAC CAG GAA TAT AGT TAT 

CAG GA 

 bI5 
ATC CTT TAG TAA CAC CAG CAT 

CTA T 

AAT GGT AAT AAG TAT CAT TCA 

GGT ACA 

 

3.19. Single cell generation time measurement  

Individual cells (approximately 100 for each strain) were placed on agar plates of appropriate 

growth medium, as described above, using a micromanipulator. Next, an image of each original 

mother cell was taken every 10 minutes for 8-9 hours. The images were then analysed and 

division time of each cell was extracted.  
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3.20. Single molecule RNA-FISH and imaging 

Yeast cultures were grown as described above, fixed with 37% formaldehyde for 45 min at 

room temperature, digested with 2.5 μL of zymolyase (Zymo Research, 2000 U) at 30 °C for 

60 min and permeabilized with 70% ethanol overnight at 4 °C. Cells were hybridized in the 

dark at 30 °C using Stellaris RNA-FISH probes (Biosearch Technologies). 45 probes targeting 

intron aI2 and 40 probes targeting intron aI5b cox1 were coupled to Quasar 670 dye (red). 43 

probes targeting cox1 exons were coupled to Quasar 570 dye (green). All probes are listed in 

Table7. Yeast cells were placed on microscope slides with Vectashield Mounting Medium and 

imaged with an Olympus IX70 wide-field fluorescence microscope. A series of z-stacks was 

acquired with a step size of 0.3μm. The images were analysed using Image J. The number of 

green (exon), red (intron) and yellow (colocalized) foci was manually counted and normalized 

per 100 cells in each of three biological replicates. At least 300 cells were analyzed per replicate 

per strain. 

Table 7. RNA-FISH probes used for targeting aI2, aI5b and cox1 exons 

aI2 intron aI5β intron exons 

GTGCGCCGTTTCGCTTAATTT ATTAATTTAATAAGTGTCGTGC ATGGTACAAAGATGATTATAT 

CTGTATTGAAGTGTTAATTGAT GGTTATATATATATATATATTA CAACAAATGCAAAAGATATTG 

TATCTCTGTTTATTCAATTAAT GCTAACGGGGAAACTCTTATAA GTATTATATTTTATGTTAGC 

CTTTACCGTATCATTTTGGTTC GACAATCCCGTGATAACTTTAA TTTTTAGTGGTATGGCAGG 

TTAGTAGTAACATACATAGTAT GTATTGTAGAGACTAAACGTG CAGCAATGTCTTTAATCATTAG 

GATACGTAAACCATATGGCTTA GATTTTAATATTATTTAAATAT GCACCTGGTTCACAATATTTAC 

GGGGCCAACTCAACGGGGACA GAGATAGTCCAATCTTATATG GGTAATTCACAATTATTTAATG 

GCATGCCATAAAAGCGCTGGAG CAATTAATATCTCCTTTTGGG GTAGTTGGTCATGCTGTA 

CAGCCAGCGCAAGGTAAGAACT GTTCCGGTCCCTGGTCCGGCC GTAATGCCTGCTTTAATTG 

GTCTTCATAGTACCCAAATTTA CGAAACTAAAGATATTAAG TATTTATTACCATTAATAATTG 

GTGAGATACTTTAGTACTTTAT GAATCAATTATAAATAATTATA GCTACAGATACAGCATTTCC 

GCAAGGAAGGAAGACAGTTTAG GATAATTATACTGAAGAAGAAA GAATTAATAACATTGCTTTTTG 

GATTAATACTACGGATTTTTC CTGGATTATTTGAAGGAGATGG GTATTACCTATGGGGTTAG 

GAAAATAATCATAATAAACTTG GTTTTTCAATTACTTTTTCTTT GTTTAGTTACATCAACTTTAG 

GTCAGATATTAGAATGTTATTA GATGTTTTATTAGCTAATTATT GAATCAGGTGCTGGTACAGGG 

GGTTCTAATAATATTACCTTAG GTCTTTATTTTAAAATTGGTC CTGTCTATCCACCATTATC 

GGATTAATATTTCATATTTAAA CAGCTAAATATAATTTTAATAA CTATTCAGGCACATTCAGGACC 

CTAAAGATATTAACACTAATAT CAGCTGTTAAATGAAATATTAT GTGTAGATTTAGCAATTTTTGC 

GAAATTCCTAAAACATCTGGAG GAAGTATTTATAAATTATATTA CATTTAACATCAATTTCATCAT 

GACCTTTAAGTGTTGGAAATCC GGTAAATTATTAACATATAAAA GGTGCTATTAATTTCATTG 

TTGTACAAGAAAGTATGAGAAT CCTTGATTAACAGGTTTTAAT CAACATTAAATATGAGAAC 
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Table 7. (continued) 

 

aI2 intron aI5β intron exons 

GGAATTCCTCAAGGTAGTGTTG CATAAAAATAGTCAATGATTAA GTATGATCAATTTTCATTAC 

GAGGTAGAAATCCAATTTATAA GTCCGGCCCGCCCCCGCG CGTTCTTATTATTATTATC 

GATTAGATTAAGAGACCATTAC GCGGACCCCAAAGGAGATATTA CCTGTATTATCTGCTGGT 

GGTGTAATGGGTTCTCATAATG CTTGGTGGTATTTTAAAAAGAG GAAGTATCAGGAGGTGGTGACC 

GGGTATGATGTAAAAGTTACAC CTGGTGCTACAGCTTATATTTA GAGCATTTATTTTGATTCTTTGG 

GGGTTAGACATCATACTAGTTT GCTCAATCATCAAAAGCTATA CACCCTGAAGTATATATTTT 

GCCCCTATTAGAAGTATTGTAA CCTTTTATTGAATATTTTAAT GGCTTCAATTGGATTATTAGG 

GGCTATTGTTCTCATGGTATT CCATTAAGTCTTAGAAGATATA GGATTAGATGCAGATCTTAGAG 

CCCAGAGGGGTTGGAAGATTAA CAATATTTATTATTAAATATTG GCTCTAATCCATGGTGGTTC 

GGTAGAGGTATTATAAACTATT CTTATTAAAATTAAATAAATTA GGGTGGTTTAACTGGTGTTGCC 

GGTAGAATTACATACATTTTAT CTTAATTCTTTATTAATATTA CTTACTACGTGGTGGGAC 

GTTGATCCTCATTCAAAAGTTA GAATTAATATTATTACAAAGTG CTATGTATTATCAATGGGTGC 

GATTCTAATTATACACCTGATG CTTTAGAAATAAAAAATG GCAGGATACTATTATTGAAG 

GATAGATATAAATATATGTTAC GAGTTAAAATTATTATTAATAA GGGGCTAATGTTATTTTC 

GTGGTATTTGTCAAATTTGTGG CTTCATTATAACAATATCG GGTATTAATGGTATGCCTAG 

CATCACGTAAGAACATTAAATA GATAATATTAAAGAGTAAAAT GATTATCCTGATGCTTTCGCAG 

CTATCTGTAAAACATGTCATTT CTTAAAGTGTTAATTAAA GTCGCTTCTATTGGTTCATTC 

GTTCATCAAGGTAAATATAATG ATATTCTTTTTTTTTTATG GATCAATTAGTTAATGGATTAA 

CAGGTTTATAATAATTATTAT  GCACCTGATTTTGTAGAATC 

CTATTAAATATGCGTTAAATGG  CACCAGCTGTACACTCATTTAA 

GCCGTATGATATGAAAGTATC  CACCAGCTGTACAATCTTAA 

CGGTTCGGAGAGGGCTCTTTTA   

GATAGGTTTGCTACTCTAC   

GCCCCTATTAGAAGTATTGTAA   

GGCTATTGTTCTCATGGTATT   

CCCAGAGGGGTTGGAAGATTAA   

GATAGGTTTGCTACTCTAC   

 

3.21. Protein extraction for 2D Oxi-DIGE 

Bacterial cultures were grown up to exponential phase (OD600=0.4) in LB medium, each strain 

in four replicates. After centrifugation (7,155 x g, 15 min, 4 °C) pellets were treated with 500 

µL of UTC (8M urea, 2M thiourea, 4% CHAPS, 5 mM DTT) buffer, each and homogenized by 

vortexing and by extensive pipeting. Contaminant DNA was broken by sonication (10 seconds, 

3 times) on ice. Protein concentration was measured after centrifugation (16,000 x g, 30 min, 4 

°C) by Bradford method (Bradford, 1976) from the supernatant and subjected to second 

sonication for 10 s in order to break remained genomic DNA. 
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3.22. 2D Oxi-DIGE 

Internal standard (IS) was prepared using an aliquot of each samples of the experiment. For 

each sample, 300 µg of proteins was prepeared for carbonyls derivatization. pH was adjusted 

to 4.0. Samples were derivatized by 0.5 mM final CF647DI-Hydrazide (Biotium Inc. USA), 60 

min incubation (4 °C). Samples were immediately precipitated with trichloroacetic acid (TCA) 

and acetone. Protein pellet homogenised in UTC buffer (without DTT) (9,300 x g overnight 4 

°C). pH was adjusted on 8.5 followed by minimal tagging with Cy3NHS. All the samples were 

tagged with 400 pmol Cy3NHS (50 µg of CF647-Hydrazide prior tagged proteins) and Internal 

Standard (1850 µg of IS) was tagged with Cy2NHS. For each 2D gel, 50 ug of protein extract 

(Cy3NHS and CF647Hydrazide labelled) was mixed with 50 ug of Internal Standard (Cy2NHS 

labelled). 

Proteins were separated by isoelectric focusing on Immobiline DryStrip (Serva, 24 cm, pH3-

10) in an IPGPhor3 (GE Health Care, Little Chalfont, UK) following separation according to 

molecular weight with Ettan Dalt System electrophoresis (GE Health Care, Little Chalfont, UK) 

in 8-18% polyacrilamide gradient gel. Following completion of the electrophoresis, gels were 

scanned with Typhoon FLA9500 system (GE Health Care, Little Chalfont, UK). 

 

3.23. Gel imaging and analysis 

Images were analyzed using SameSpots 2D analysis software (TotalLab, UK). All the gels were 

automatically aligned onto one reference gel (Cy2NHS internal standard labeled sample) and 

then manually corrected to ensure proper alignment. Differentially expressed proteins labelled 

with Cy3NHS (1.5 fold change, p≤0.05, ANOVA) between mutator strain, ancestor and non-

mutator were included for liquid chromatography/mass spectrometry identification. 

Carbonylated spots signal (CF647 Hydrazide signal) was normalized and Relative Modification 

index (RMI) was calculated. Statistically significant spots (p≤0.05 (ANOVA) and 1.5 RMI) 

were selected for further identification. Spots of interest were excised from gel using a 

semiautomatic picking device according to manufacturer instruction (Screen Picker, 

LabConsult Inc., Belgium).  
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4.    RESULTS  

4.1. RNA chaperones buffer deleterious mutations in E.coli 

 

This part of my thesis is already published in eLife journal (Rudan, M., Schneider, D., 

Warnecke, T., & Krisko, A. (2015). RNA chaperones buffer deleterious mutations in E. coli. 

Elife, 4, 1-16.). 

 

4.1.1. Overexpression of DEAD-box RNA helicases enhances fitness of a 

low-fitness strain 

Mutations that affect protein folding can be buffered by protein chaperones. This phenomenon 

results with no change in the phenotype. The hypothesis in this research proposed mutation 

buffering on the RNA level by RNA chaperones. More precisely, it was suggested that 

maintaining RNA structure and increasing its stability by DBRHs could mask the detrimental 

effects of mutations. To test this hypothesis, competition experiments between certain E.coli 

strains were performed and their relative fitness measured. The E. coli REL606 strain, which is 

the ancestor of the long-term evolution experiment (LTEE), and two evolved mutS mutator 

strains with deficiency in mismatch repair system were used. Mutator strains were sampled 

from a lineage after ∼20,000 (20k) and ∼40,000 (40k) generations of adaptation to a minimal 

glucose-limited medium (Sniegowski et al., 1997).  

During this evolution experiment under conditions of weak selection, 40k strain accumulated 

deleterious mutations and resulted with decreased fitness compared with its ancestor (Figure 

14A). The 20k strain did not show any deviation in fitness compared to the ancestor (Figure 

14A). Since mutS mutation arose ∼3,000 generations into the LTEE (Sniegowski et al., 1997), 

it is present in both 20k and 40k strains and it is not responsible for reduced fitness in 40k strain.  

Three DEAD box RNA helicases, RhlB, CsdA and SrmB, were selected to test the 

aforementioned hypothesis. Since mutator strain sampled from 40,000 generation showed 

compromised fitness, plasmids carrying a selected E. coli DBRH gene (either rhlB, csdA, or 

srmB) were introduced into its background. The same was done with the ancestor and the 20k 

strain for control experiments. Each transformed strain was competed against a strain of the 

same genotype but bearing an empty control plasmid. Overexpression in the ancestral and the 

20k backgrounds had limited effects on competitive fitness, while overexpression of each 
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DBRH enhanced fitness of the mutationally compromised 40k genotype (Figure 14B). To 

confirm this buffering effect is due to helicase activity of DBRHs, plasmid carrying the 

mutation that rendered the respective helicase domain catalytically inactive were introduced. In 

each case, the central glutamic acid residue of the DEAD motif has been substituted with lysine 

(E166K, E157K, and E158K). For each DBRH tested, fitness gains were abolished (Figure 

14B), suggesting that helicase and therefore RNA remodelling activities are essential for 

buffering.      

   

A)                                       B) 

 

Figure 14. Relative fitness of E. coli REL606-derived strains. 

A) Relative fitness of the 20k and 40k genotypes, each competed against their REL606 ancestor. 

B) Relative fitness of ancestral and evolved genotypes overexpressing one of three DEAD box 

RNA helicases (DBRHs) compared with identical strains carrying the empty control plasmid. 

E166K, E157K, and E158K: competitions in the 40k background where plasmids carried 

mutated versions of the respective DBRH. In each case, the central glutamic acid residue of the 

DEAD motif has been recoded to lysine, compromising the helicase activity. Bar heights 

indicate mean relative fitness across four biological replicates, with each mean derived by 

averaging over four technical replicates. Error bars represent standard errors of the mean. **p 

< 0.01, *p < 0.05 (one-sample t-test). Based on and adopted from Rudan et al., (2015).   
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It was also tested weather fitness rescue occur in stationary phase as results of strain survival 

or it is already present in exponential phase. Same competition experiments were performed for 

20k and 40k strains compared to ancestor and selected DBRHs in the 40k background. Mixed 

cultures of competitors were plated after 2 hours (mid-exponential phase) and resulted with 

similar buffering effects as the ones in stationary phase (Figure 15).  

 

Figure 15. Relative fitness in competition experiments terminated in mid-exponential phase 

(REL606). Based on and adopted from Rudan et al., (2015).   

 

4.1.2. RNA chaperones buffer distinct mutations in a second low-fitness 

strain 

It is known for chaperones responsible for de novo protein folding and refolding to function in 

ATP-dependent manner. They recognize exposed hydrophobic amino-acid side chains that are 

buried in the native state (Hartl et al., 2011) and this non-specific pathway allows buffering to 

occur across a wide range of substrates. In order to examine does the DBRH-mediate buffering 

occur in a second low-fitness strain and test whether it encompasses diverse target substrates, 
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MG1655-derived mutH deletion (ΔmutH) strain was used, a mutator with deficient mismatch 

repair system allowing different mutations to accumulate. This strain was sampled after a 

relatively short period of laboratory evolution (∼500 generations) and, in competition 

experiments, it displayed reduced fitness compared with its ancestor (Figure 16A). Upon 

overexpression of specific DBRH gene (rhlB, csdA or srmB), ΔmutH experienced fitness gains 

as the previous mutS mutator strain did (Figure 16B). To confirm that fitness effects were not 

directly related to the mutH deletion, mutH was deleted in the ancestral MG1655 background 

de novo. Fitness of the de novo ΔmutH strain was not reduced compared with the deletion-free 

ancestor (Figure 16A). 

 

 

Figure 16. Relative fitness of Escherichia coli MG1655-derived strains.  

A) Relative fitness of the evolved and de novo-constructed ΔmutH strains, each competed 

against their MG1655 ancestor. B) Relative fitness of ancestral, evolved, and de novo ΔmutH 

genotypes overexpressing one of three DEAD box RNA helicases compared with identical 

strains carrying the empty control plasmid. E166K, E157K, and E158K, bar heights and error 

bars are as described in Figure 14. **p < 0.01, *p < 0.05 (one-sample t-test). Based on and 

adopted from Rudan et al., (2015).   

 

 

https://elifesciences.org/content/4/e04745#fig1
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To examine effect of DBRHs on fitness during different bacterial growth phases, competitions 

experiments with evolved ΔmutH terminated in the mid-exponential phase (after 2 hr) were 

performed. Results showed similar buffering effects as the ones in stationary phase (Figure 17).  

 

 

Figure 17. Relative fitness in competition experiments terminated in mid-exponential phase 

(MG1655). Based on and adopted from Rudan et al., (2015).   

 

After confirmed mutation buffering of these three RNA helicases in a second low-fitness strain, 

it was necessary to rule out the buffering of identical mutations across strains. For this purpose 

the genomes of the evolved ΔmutH strain and its laboratory ancestor were sequenced (Chapter 

2.4). 20k and 40k strains were already sequenced carrying 667 single nucleotide polymorphisms 

in coding sequences of 755 in total and 1163/1291, respectively. In the evolved ΔmutH it was 

found significantly fewer mutations compared with the 40k strain, more precisely 12 SNPs in 

coding sequences (Table 8). While evolved ΔmutH do not contain large deletions, except the 

mutH deletion itself, 20k strain possess one and 40k four of them. More importantly, there were 
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no identical point mutations or indels in the two evolved strains, implying buffering of 

independent mutations. This might be indicative of a general rather than gene- or pathway-

specific buffering mechanism and is consistent with DBRHs being broad-spectrum catalysts of 

RNA remodelling that recognize and target misfolded substrates through a non-specific 

mechanism of action (Jarmoskaite et al., 2014).  

Table 8. Number of mutations in evolved mutator strains compared with their respective 

ancestors. 

Strain  SNPs (CDS/total) 
¤ Small indels 

(CDS/total) 
Large deletions 

20k 667/755 86/129 1 

40k 1163/1291 128/183 4 

Evolved ΔmutH 12/12 0/2 0± 

 

 SNP, single-nucleotide polymorphism; CDS, coding sequence 

¤ ≤ 4 bp 

± Excluding the ΔmutH deletion itself  

 

4.1.3. Pinpointing individual deleterious mutations buffered by RNA 

chaperones 

In order to justify buffering of mutations that compromise mRNA stability by DBRHs and 

eventually reveal its molecular mechanism, mutations that are individually deleterious and 

subject to fitness improvement by chaperone overexpression were identified. Since evolved 

ΔmutH strain carries only 12 point mutations, each mutation was tested as a candidate for 

DBRH-mediated buffering separately. Out of 12 mutations, seven of them are located in a gene 

of known function (hepA, torA, lamB, cyoA, osmC, lsrR and speC) and five are located in y-

genes. Recombineering approach was used, also known as homologous recombination-

mediated genetic engineering, to individually introduce each of 7 mutations into the MG1655 

genome. After constructing strains with specific mutations, competition experiments in which 

each strain was compared against MG1655 were performed. Results displayed one strain with 

impaired fitness, the one with a mutation in the lamB gene (Figure 18A). By overexpressing 

DBRHs, this strain revealed fitness increase (Figure 18A). Maltose outer membrane protein, 

coded by lamB gene, is involved in the transport of maltose and maltodextrins. It becomes 



 

51 
 

derepressed under glucose-limiting conditions to maximize sugar uptake. Mutants with lamB 

deletion are outcompeted by reference strains when grown on glucose (Death et al., 1993), 

suggesting a possible cause of fitness loss in our strain. Same type of competition experiments 

were performed terminating in the exponential phase and results were consistent with the 

previous ones, verifying lamB as a driver of fitness loss in this strain (Figure 19).  

Due to the large number of mutations in the second mutator strain, 40k, it was difficult to test 

each mutation as a candidate for DBRH-mediated buffering, so focus was on two mutations in 

the essential ribosomal protein gene rplS: one synonymous (rplSsyn) and one non-synonymous 

(rplSnonsyn). Both mutations are present in the 40k strain but not in the 20k one. It is known that 

some synonymous mutations in ribosomal protein genes, such as rplA and rpsT in Salmonella 

typhimurium, can strongly compromise fitness (Lind et al., 2010). Therefore, competitions 

between the REL606 ancestor and strains carrying either the rplSsyn or rplSnonsyn mutation were 

performed. Results showed no effect on fitness in the presence of rplSnonsyn mutation, but rplSsyn 

mutation has a deleterious effect and was rescued by DBRH overexpression (Figure 18). 

Additional results for competitions terminated in mid-exponential phase (after 2 hr) are shown 

in Figure 20. 
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Figure 18. Fitness effects and buffering of individual mutations.  

Relative fitness of strains carrying single point mutations introduced into the relevant ancestral 

background competed against the respective ancestor. Initial screening for fitness defects 

involved two biological replicates (diamonds). For the two mutations, where the initial screen 

suggested a measurable fitness deficit, lamB and rplSsyn, all competitions were carried out in 

quadruplicate. Bar heights and error bars are as described in Figure 14. **p < 0.01, *p < 0.05 

(one-sample t-test). OE: overexpression; EP: empty plasmid. Based on and adopted from Rudan 

et al., (2015).   

 

 

 

https://elifesciences.org/content/4/e04745#fig1
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Figure 19. Relative fitness in competition experiments terminated in mid-exponential phase 

(lamB). OE: overexpression; EP: empty plasmid. Based on and adopted from Rudan et al., 

(2015).   
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Figure 20. Relative fitness in competition experiments terminated in mid-exponential phase 

(rplSsyn). OE: overexpression; EP: empty plasmid. Based on and adopted from Rudan et al., 

(2015).   

 

4.1.4. Fitness gains upon overexpression of cspA suggest diverse 

mechanisms of buffering 

Along with DBRHs, some other chaperones also assist in RNA folding, so different 

mechanisms could be involved in mutation buffering. In order to investigate mechanistic variety 

in buffering, the cold shock protein CspA which inhibit the formation of misfolded RNA 

secondary structures by stabilizing single-stranded RNA (Jiang et al., 1997) was selected. 

Plasmids overexpressing cspA gene were introduced into the 20k and 40k strains and their 

ancestor and then competition experiments performed against the same genotype with empty 

plasmid. Relative fitness of compromised 40k strain was improved. The same set of 

experiments was done with MGG1655 derived strains. Evolved ΔmutH, second low-fitness 

strain, has also experienced fitness gain by overexpressing CspA (Figure 21). By contrast, 
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overexpression of a mutant version of CspA with severely reduced nucleic acid-binding activity 

(Hillier et al., 1998) did not confer fitness benefits upon overexpression (Figure 21). Figure 22 

is demonstrating relative fitness in competition experiments terminated in mid-exponential 

phase and 24 hours overexpressing CspA in 40k, evolved ΔmutH, rplSsyn and lamB mutant.  

 

Figure 21. Effects of CspA overexpression on relative fitness. 

Relative fitness of REL606- and MG1655-derived strains overexpressing CspA compared with 

strains of the same genotype carrying the empty control plasmid. F20L: competitions in the 40k 

and evolved ΔmutH backgrounds, respectively, where plasmids carried a mutated version of 

the cspA gene yielding a protein with compromised nucleic acid binding ability (Hilier et al., 

1998). Bar heights and error bars are as described in Figure 14. **p < 0.01, *p < 0.05 (one-

sample t-test). Based on and adopted from Rudan et al., (2015).   

https://elifesciences.org/content/4/e04745#bib14
https://elifesciences.org/content/4/e04745#bib14
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Figure 22. Relative fitness in competition experiments terminated in mid-exponential phase 

(cspA). OE: overexpression; EP: empty plasmid. Based on and adopted from Rudan et al., 

(2015).   

 

Although CspA levels are relatively low compared with overexpressed DBRHs (∼fourfold and 

∼twofold reduced relative abundance compared with CsdA and RhlB/SrmB, respectively, 

Figure 23), buffering still occurs likely because CspA is subject to negative autoregulation (Bae 

et al., 1997).  

Hunger at al. demonstrated association of DBRHs and cold shock proteins in preventing the 

formation of unfavourable structures (Hunger et al., 2006). Therefore, it is not surprised that 

the RNA chaperones mediated buffering include identical substrates.  
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Figure 23. Relative chaperone abundances. 

A) Representative Western blot for evolved ΔmutH strains overexpressing one of the focal RNA 

chaperones. Molecular weights (from nucleotide sequence): CspA, 7,403 kD; RhlB, 47,126 kD; 

SrmB, 49,914 kD; CsdA, 70,546 kD. B) Representative Coomassie-stained SDS-PAGE gel. C) 

Relative chaperone levels are defined as the ratio of Western blot intensity to Coomassie 

intensity. The lowest ratio detected across triplicate experiments in all strains was set to one. 

Comparing these ratios between strains overexpressing different RNA chaperones gives a semi-

quantitative indication of relative chaperone abundances. For example, CsdA levels in CsdA-

overexpressing cells are ∼fourfold higher than CspA levels in CspA-overexpressing cells. Note 

that this metric does not allow conclusions about the absolute fraction of total protein that is 

occupied by each chaperone in the different strains. Based on and adopted from Rudan et al., 

(2015).   
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4.2. Removal of self-splicing introns from S. cerevisiae mitochondria 

triggers the retrograde response  

 

This part of my thesis is currently under the revision.  

 

4.2.1. Deletion of self-splicing introns from S. cerevisiae mitochondria 

lead to hyper-fusion phenotype  

Mobile genetic elements frequently compromise host fitness (Werren, 2011), corrupting genetic 

information or disturbing adaptive gene expression patterns, sometimes to lethal effect. Despite 

this, mobile genetic elements are ubiquitous in most eukaryotic genomes (Hurst and Werren, 

2001). In this part of research, effect on yeast fitness when mitochondrial introns are removed 

was explored.  

Three genes of mitochondrial DNA in S. cerevisiae contain self-splicing introns: the 21S 

ribosomal RNA gene (which harbours a single group I intron named omega) and two protein-

coding genes, cox1 (group I: aI3, aI4, aI5, aI5; group II: aI1, aI2, aI5) and cob (group I: bI2, 

bI3, bI4, bI5; group II: bI1), both encoding components of the electron transport chain. Under 

a low-cost model for the persistence of self-splicing introns, removing these introns should have 

little, if any, effect on host fitness. Contrary to this prediction, it was found that a strain where 

all mitochondrial introns have been removed (I0) exhibits stark phenotypic differences to the 

wild-type (WT) strain. First, yeast growth on glucose-supplemented YPD medium was 

measured and 30% slower post-diauxic growth of I0 compared to the WT strain (a161_U7) was 

observed (Figure 24A). Chronological life span (CLS) was also measured where I0 experienced 

almost two-fold longer lifespan (Figure 24B) compared to WT. To examine mitochondrial 

morphology and to measure mitochondrial mass 10-N-Nonyl acridine orange (NAO) 

fluorescent dye was used.  I0 displayed increased mitochondrial mass (Figure 24C) and almost 

three-fold increase in mean mitochondrial volume (Figure 24D). To visualize mitochondria in 

a single cell, MitoLoc plasmid was used and mitochondrial fusion phenotype of I0 observed, 

characterized by a large network of branched tubules of homogeneous diameter (Figure 25). 

Since there are known genes for the regulation of fusion and fission processes in S. cerevisiae 

genome, their transcription levels were validated to verify this phenotype. I0 had upregulated 

levels of mitofusin (fzo1) and the mitochondrial GTPase mgm1 transcript levels, key regulators 
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of mitochondrial fusion, whereas levels of dnm1 and fis1, which orchestrate mitochondrial 

fission, were unchanged (Figure 26). Mitochondrial inner membrane potential plays a central 

role in ATP production and no significant differences in I0 compared to the WT strain, measured 

by 3,3'-Dihexyloxacarbocyanine iodide (DiOC6(3)) fluorescence (Figure 27A), revealing that 

mitochondria are functional despite grossly altered morphology. Biomarkers of mitochondrial 

metabolism in fact point to increased mitochondrial activity, with higher oxygen consumption 

(Figure 27B) and higher ATP levels (Figure 27C) during exponential growth. Despite increased 

activity, levels of mitochondrial superoxide are reduced (Figure 27D), likely reflecting a >7.5 

fold upregulation of the mitochondrial ROS-scavenger SOD2 (qPCR, t-test P=0.003) (Figure 

29). At the molecular level, a 10.9-fold (5.8-fold) increase in the level of mature cox1 (cob) 

mRNA was observed (Figure 28A, B).   
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   A)                                                                B) 

 

 

C)                                                             D) 

 

Figure 24. Phenotypic characteristics of I0 and Mss116OE strains compared with their 

corresponding WT strains and Mss116E268K mutant: A) Generation time of I0 and Mss116OE is 

increased in post-diauxic shift growth. B) Chronological lifespan of I0 and Mss116OE is 

extended, observed as fraction of surviving cells over days in starvation. C) Mitochondrial mass 

is more than 2.5 fold enlarged in I0 and Mss116OE measured by flow cytometry as fluorescence 

intensity of cardiolipin-specific dye, NAO (10-N-Nonyl acridine orange). D) Mitochondrial 

volume of I0 and Mss116OE is 2.5 and 2 fold higher, respectively. The quantification of 

mitochondrial volume was performed using MitoLoc plugin for ImageJ in more than 500 cells. 

Data are mean ± SD from at least three independent cultures, each performed in triplicate. 

***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). 
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Figure 25. Representative images of cells with visualized mitochondria via preCOX4-mCherry 

and preSU9-GFP. This image was taken in the collaborator lab of Dr. Ira Milošević group, 

European Neuroscience Institute, Gottingen, and supervised by Dr. Anita Kriško.  
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Figure 26. Transcription levels of genes regulating mitochondrial fusion and fission of Io, 

Mss116OE and Mss116E268K strain.  
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   A)                                                              B) 

 

C)                                                                 D) 

 

Figure 27. Increased mitochondrial activity of I0 and Mss16OE strains. A) Mitochondrial inner 

membrane potential measured by flow cytometry using DiOC6(3) (3,3'-

Dihexyloxacarbocyanine iodide fluorescence). B) Respiration measurements of oxygen 

consumption. C) ATP levels are increased in I0 and Mss16OE strains. D) Mitochondrial 

superoxide levels measured by flow cytometry using MitoSOX fluorescence intensity display 

a decrease in I0 and Mss16OE strains. Data are mean ± SD from at least three independent 

cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post 

hoc). 
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                       A)                                                  B) 

 

Figure 28. Transcript levels of individual introns of COX1 (A) and COB genes (B) are  

decreased compared to Mss116E268K mutant, while level of mature cox1 (cob) mRNA 

demonstrate 10.9-fold (5.8-fold) increase. Colour of the squares on the heat map corresponds 

to the mean value of the log fold change from three biological and three technical replicates. 

UBC6 was used for normalization.  

 

4.2.2. Deletion of self-splicing introns from S. cerevisiae mitochondria 

activate the retrograde response  

By testing different gene expression changes in I0 strain, induction of cit2, and upregulation of 

the two rate-limiting members of the TCA cycle, cit1 and idh1 was observed (Figure 29). Cit2 

is coding for citrate synthase which expression is controlled by Rtg1 and Rtg2 transcription 

factors. Furthermore, both mitochondrially (cox1, cox2, atp6) and nuclearly (cox4, atp1, sdh1, 

sdh2) encoded parts of the respiratory chain were upregulated (Figure 29). To examine the 
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activation of retrograde response in the I0 strain, rtg2, the transcriptional master regulator of the 

retrograde response and a sensor of mitochondrial dysfunction was deleted, which resulted with 

suppressed I0 phenotype. First, chronological lifespan was measured where ΔRTG2I0 

experienced decreased fraction of survived cells (Figure 30A) and lower oxygen consumption 

(Figure 30B) compared to the WTa161-U7 and ΔRTG2 a161-U7 strains. ATP levels were more 

than two fold decreased in ΔRTG2I0 strain (Figure 30C) and mitochondrial volume reduced 

(Figure 30D). Imaging revealed that mitochondrial shape have lost the tubular structure and 

adopted a large spherical shape (Figure 31), suggesting defects in the maintenance of 

mitochondrial ultrastructure (Paumard et al., 2002; Velours et al., 2009). Figure 32 is 

demonstrating transcription levels of genes included in respiratory chain, TCA cycle, retrograde 

response, antioxidant protection and mitochondrial fusion and fission.  
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Figure 29. Quantitative real time PCR measurement of differential gene expression reveals up-

regulation of the respiratory chain components, TCA cycle enzymes and mitochondrial ROS-

scavenger SOD2 in I0 and Mss116OE strains. Colour of the squares on the heat map corresponds 

to the mean value of the log fold change from three biological and three technical replicates. 

UBC6 was used for normalization.  
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               A)                                                         B) 

  

 

C)                                                              D) 

  

Figure 30. Phenotypic characteristics of ΔRTG2 mutants. A) Chronological lifespan of 

ΔRTG2I0 and ΔRTG2Mss116OE strain is decreased compared to I0 and Mss16OE strains. B) 

Oxygen consumption rates of ΔRTG2I0 and ΔRTG2Mss116OE strain are decreased compared 

to the ones in I0 and Mss16OE strains. C) ATP levels are more than two fold decreased in 

ΔRTG2I0 and ΔRTG2Mss116OE strain relative to I0 and Mss16OE strains. D) Mitochondrial 

volume of ΔRTG2I0 and ΔRTG2Mss116OE is decreased in comparison to I0 and Mss16OE 

strains. Data are mean ± SD from at least three independent cultures, each performed in 

triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). 
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Figure 31. Representative images of cells with visualized mitochondria via preCOX4-mCherry 

and preSU9-GFP. Even though it has no significant effect on mitochondria in the WT 

background, the absence of Rtg2 has shown to be detrimental for the mitochondria of I0 and 

Mss16OE strains. This image was taken in the collaborator lab of Dr. Ira Milošević group, 

European Neuroscience Institute, Gottingen, and supervised by Dr. Anita Kriško.  
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Figure 32. Transcript levels of target genes in the absence of RTG2 abolish the phenotype 

characteristic of I0 and Mss116OE strains. ΔRTG2I0 and ΔRTG2Mss116 strain demonstrate 

down-regulation of genes involved in oxidative phosphorylation, TCA cycle, retrograde 

response, antioxidant protection and mitochondrial fusion. Colour of the squares on the heat 

map corresponds to the mean value of the log fold change from three biological and three 

technical replicates. UBC6 was used for normalization.  
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Since it is known that first three steps of the TCA cycle (involving aco1, cit1, idh1 and idh2) 

switch from the control of the HAP genes to RTG genes under conditions of mitochondrial 

stress (Liu and Butow, 1999), the phenotypic changes in the strain with deleted hap4 gene were 

investigated in order to confirm activation of retrograde response as the one responsible for 

hyper efficient transcript maturation. Deleting hap4, the transcriptional activator of nuclearly 

encoded components of the respiratory chain (as well as the TCA cycle enzymes under normal 

conditions) has the same effect (Figure 33 A, B, C, D), demonstrating that a nuclear response 

is critical for the mitochondrial phenotype to emerge. Mitochondria assume a regular tubular 

shape of reduced volume that is comparable to the mitochondria in the control strain (Figure 

34). Consistent with prior observations, no change in TCA cycle genes was observed following 

hap4 deletion (Figure 35) which indicate that an intact retrograde response, including both 

metabolic changes and upregulation of respiratory chain components, is necessary to generate 

the mitochondrial phenotype observed in the I0 strain. 
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A)                                                                 B) 

  

 

           C)                                                                   D) 

  

Figure 33. Phenotypic characteristics of ΔHAP4 mutants. A) Chronological lifespan display no 

significant differences between tested ΔHAP4 strains. B) Oxygen consumption rates of ΔHAP4 

mutants demonstrate same values. C) ATP levels remain similar at each tested ΔHAP4 strain. 

D) Mitochondrial volume shows no significant differences between tested ΔHAP4 strains and 

their wild types. Data are mean ± SD from at least three independent cultures, each performed 

in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). 
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Figure 34. Representative images of cells with visualized mitochondria via preCOX4-mCherry 

and preSU9-GFP. The absence of Hap4 transcription factor reverses the increased 

mitochondrial volume in the I0 and Mss16OE strains. This image was taken in the collaborator 

lab of Dr. Ira Milošević group, European Neuroscience Institute, Gottingen, and supervised by 

Dr. Anita Kriško.  
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Figure 35. Transcript levels of target genes in ΔHAP4I0 and ΔHAP4Mss116 mutants 

demonstrate no changes compared to the I0 and Mss116OE strain (up-regulation of TCA cycle 

and retrograde response). Colour of the squares on the heat map corresponds to the mean value 

of the log fold change from three biological and three technical replicates. UBC6 was used for 

normalization.  



 

74 
 

Why does the deletion of self-splicing introns lead to increased abundance of their host 

transcripts? One possibility is that, by deleting intronic sequence, regulatory elements that 

influence host gene expression were inadvertently removed. Regulatory elements here might 

be motifs that act in cis at the DNA or RNA level but also intron-encoded proteins. Both group 

I and group II introns self-splice in vitro, but auxiliary proteins are required for efficient and 

accurate splicing in vivo (Halls et al., 2007). Some of these proteins, termed maturases, are 

encoded in the nucleus and imported into the mitochondria. Yet others are encoded by the 

introns themselves and specifically act on them, for example by stabilizing salient RNA folding 

intermediates. By removing the introns and therefore the proteins they encode, did regulatory 

functions of these proteins that go beyond their core involvement in splicing was unwittingly 

abolished? Alternatively, rather than removing specific regulatory elements, might the act of 

short-circuiting the splicing process by itself interfere with normal expression? Specifically, the 

normal levels of transcription might be tuned to accommodate a certain proportion of mis-

spliced transcripts, which are spotted by mitochondrial quality control and ultimately degraded. 

In I0, splicing does not occur so that erroneous splicing products do not arise. As a result, 

production of functional cox1/cob mRNAs might overshoot its target and trigger a system-wide 

response, for example because altered COX1/COB levels upset dosage balance amongst 

respiratory complexes.  

 

4.2.3. Overexpression of Mss116 RNA helicase phenocopies I0 strain  

To test this hyper-efficient maturation hypothesis and to rule out that the removal of regulatory 

elements is causing mitochondrial stress, splicing efficiency was altered by orthogonal means. 

First, the nuclearly encoded mitochondrial DEAD box RNA helicase Mss116, which promotes 

splicing of all S. cerevisiae mitochondrial introns by remodeling or stabilizing particular RNA 

structures in an ATP-dependent manner, was overexpressed. Next, overexpression and 

mitochondrial localization of Mss116 was confirmed by flow cytometry/mass spectrometry and 

immunocytochemistry, respectively, using an N-terminal His-tagged version of the protein 

(Figure 36). Then phenotypic effects of Mss116 overexpression were characterized using an 

untagged version of the protein. Remarkably, the Mss116 overexpression strain (Mss116OE) 

phenocopies I0. Mss116OE exhibits increased generation times (Figure 24A), extended 

chronological life span (Figure 24B), mitochondrial fusion (Figure 25. 26.), elevated oxygen 

consumption (Figure 27B), and altered ATP and ROS production (Figure 27C, D). 
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Transcriptional and proteomic responses are highly correlated between I0 and Mss116OE (Figure 

24-29). In addition, longer replicative lifespan (RLS) in Mss116OE was observed (Figure 37.), 

a more direct proxy of ageing. The RLS was not possible to measure accurately in I0, where 

separating mother and daughter cells in a timely fashion proved challenging for unknown 

reasons. In order to confirm role of Mss116 helicase activity in this phenotypic effects, a DEAD 

box mutant of Mss116 (Mss116E268K), which lacks ATPase and therefore helicase activity was 

overexpressed. Results showed that it does not phenocopy I0 (Figure 24-29). This suggests that 

the role of Mss116 in splicing – which relies on helicase activity – is critical rather than a 

recently suggested ATP-independent role in transcription elongation (Markov et al., 2014).  

     A)                                                                      B)  

 

 

Figure 36. Mss116 is overexpressed and localized to mitochondria. (A) Expression level of 

Mss116 is 2.5 fold as measured by flow cytometry. The endogenous expression of Mss116 is 

monitored using its genomic fusion with GFP. In the case of overexpression, Mss116 was His-

tagged and detected using  and anti-Hi-tag primary antibody and Alexa488-tagged secondary 

antibody. (B) Mss116 is localized to mitochondria, both in the WT background and in Mss116 

overexpression strain.  
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Figure 37. Median and maximal replicative lifespan of Mss116OE is extended compared to the 

empty vector control and Mss116E268K. The total number of monitored mother cells is as 

follows: 90 cells for the empty vector control, 86 cells for Mss116OE, and 91 cells for the 

Mss116E268K. Measurements were pooled across 3 independent experiments. 

 

 

The fact that Mss116OE – which encodes a full complement of introns – phenocopies I0 

eliminates the hypothesis that lost DNA-level functionality explains the I0/Mss116OE 

phenotype. However, it does not explicitly rule out the possibility that intron-encoded proteins 

are involved, since these are absent in I0 but might also be reduced in Mss116OE. To test this 

alternative hypothesis a plasmid bearing the sequence of each maturase alone (aI1, aI3, aI5, 

bI2, bI3) was inserted into the I0 strain (Figure 38). Each maturase was tagged with an N-

terminal mitochondrial localization sequence. As a phenotypic read-out, mitochondrial 

morphology as well as metabolic changes were monitored. It was found that reintroduction of 

neither maturase rescues the I0 phenotype (Figure 39).  
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Figure 38. Overexpression of individual intron-encoded maturases does not change transcript 

levels observed in I0 strain. Colour of the squares on the heat map corresponds to the mean 

value of the log fold change from three biological and three technical replicates. UBC6 was 

used for normalization.  
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Figure 39. Representative images of cells with visualized mitochondria via preCOX4-mCherry 

and preSU9-GFP. Overexpression of intron-encoded maturases does not reverse the hyper-

fused mitochondrial phenotype observed in I0 strain. This image was taken in the collaborator 

lab of Dr. Ira Milošević group, European Neuroscience Institute, Gottingen, and supervised by 

Dr. Anita Kriško.  

 

To characterize the effects of Mss116 overexpression on splicing dynamics in greater detail, 

qPCR was used to measure the levels of total cox1 and cob transcripts as well as individual 

introns. For cox1, exon and intron (aI2, aI5ß) levels were monitored using RNA fluorescent in 

preSu9-GFP preCox4-mCherry merged 

WT a161-U7 + pYES2 

I0 aI5β
OE
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situ hybridization (RNA FISH). It was found that most mitochondrial introns are strongly 

depleted in Mss116OE compared to the empty vector control and relative to exons (Figure 40). 

The relative depletion of individual introns, however, is variable and one intron aI5α is equally 

abundant in Mss116OE and WT (Figure 40a). These observations are consistent with a model 

where initial pre mRNA abundance (and therefore nascent transcriptional output) is unchanged 

in Mss116OE  compared to WT and differential steady state levels are the result of post 

transcriptional events, with individual intron abundances determined by differential modulation 

of splicing kinetics in response to Mss116 overexpression. Based on these findings, it was 

suggested  that Mss116OE phenocopies I0 because eliminating introns at the DNA level (I0) and 

facilitating accurate and efficient excision at the RNA level (Mss116OE) both result in 

abnormally efficient transcript maturation. That is, fewer transcripts are eliminated by 

mitochondrial quality control because splicing is erroneous or does not proceed in a timely 

manner, resulting in a greater number of mature cox1/cob mRNAs. For reasons that remain to 

be elucidated, increased transcript levels are then perceived as stressful and trigger the 

retrograde response, culminating in a multifaceted stress phenotype. In this regard it was 

speculated that elevated COB (COX1) levels might interfere with proper assembly and function 

of complex III (complex IV) and therefore constitute a deleterious dosage imbalance phenotype. 

That disruption of splicing homeostasis can impact normal physiological function and lead to 

cellular stress and disease is now well documented (Wang and Cooper, 2007). There is also 

increasingly detailed mechanistic knowledge of how proteins involved in splicing can alter 

growth and ageing via a metabolic route, exemplified by the recent finding that splicing factor 

1 is a modulator of dietary restriction-induced longevity in C. elegans (Heintz et al., 2017). The 

classic model here is that loss of splicing homeostasis – through genetic, developmental, or 

environmental perturbation – leads to deleterious shifts in splice isoform production or 

precipitates increased production of erroneous transcripts that tax the quality control system 

and/or have direct cytotoxic effects. In other words, the disease/stress state is a high-error state. 

Results presented here are unusual since they demonstrate that normal splicing can be 

associated with high error rates and that, therefore, splicing homeostasis can also be disturbed 

by increasing splicing efficacy. 
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Figure 40. Transcriptional changes associated with intron removal. 
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Figure 40. (continued) Transcriptional changes associated with intron removal. 

qPCR measurements showing upregulation of respiratory chain and oxidative phosphorylation 

complexes and key members of the TCA cycle, activation of the retrograde response and 

mitochondrial fusion (left panel). In both cox1 (central panel) and cob (right panel), intron 

levels are specifically reduced upon overexpression of Mss116OE but not Mss116E268K. The 

colour of the squares on the heat maps corresponds to the mean value of the log fold change 

from three biological (each averaged over three technical replicates). UBC6 was used for 

normalization. (b) FISH based RNA detection (RNA-FISH) confirms the reduction of introns 

aI2 and aI5β from the cox1 transcript pool. The quantification was performed using ImageJ; 

green, red and green/red co-localized puncta were counted in more than 300 cells. The plot 

represents % of signals per 100 cells. Bar heights display the mean of three biological replicates 

(each averaged over three technical replicates). Error bars are standard error of the mean. ***P 

< 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). White lines mark cell boundaries. 

White arrows mark examples of exonic puncta that do not co-localize with intronic puncta. 

 

 

 

 

4.3. Long-term accumulation of gene polymorphisms and their effect on 

protein oxidability in E.coli  

 

4.3.1. Elucidating correlation between E.coli genomic mutations and level of     

proteome carbonylation (preliminary results) 

 

The data presented in this part of thesis is considering mutation accumulation to be correlated 

with the change in protein carbonylation (increase or decrease). Depending on the proteins 

whose genes are affected with mutations, the result of total carbonylation should be different. 

Some of possible scenarios are: a) mutation in a protein that is a part of the ribosom leading to 

impaired protein synthesis will result with higher level of total protein carbonylation, b) 
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mutation in proteins that have a role in folding and refolding of other proteins will lead to 

carbonylation change of their clients, c) mutation in individual protein is cause of increase or 

decrease of carbonylation level of that specific protein. Some mutations lead to conformational 

changes of a protein and could also render it more sensitive or robust to oxidation.  

To answer the question if gene polymorphisms are reflected in the polymorphisms of protein 

oxidability, E.coli strains from “Long term evolution experiment” (Sniegowski et al., 1997) 

were chosen to work with. Those were: the ancestor REL606, the evolved mutator 10953 and 

the non-mutator strains 10956 sampled from the same lineage after 40,000 generations. 

Hypothesis in this part of my research was that accumulated mutations in the mutator strain 

lead to higher levels of carbonylation compared do the ancestor and the non-mutator, due to 

increased sensitivity of a protein to oxidation. In order to identify proteins with higher 

carbonylation in the mutator strain, they were separated using 2D-DIGE and compared the 

resulting protein spot pattern with the one of the ancestor and the non-mutator strain. After 

protein extraction, all samples were tagged with two fluorescent probes: Cy3NHS specific for 

labelling amino groups (including N-terminus), thus enabling visualization of protein 

expression; and hydrazide (CF647 Hz) specific for labelling carbonyl groups. Signal intensity 

of the hydrazide CF647 Hz dye correlates with the quantity of protein carbonyls, and is 

normalized to their expression level (Figure 41A; 42A). In addition, samples of each strain were 

pooled together into an additional sample named internal standard (IS) and labelled with 

Cy2NHS fluorescent dye to serve as a control for protein expression across all samples (Figure 

41A; 42A). Overlap of protein expression signal and the one of carbonylation is shown in Figure 

41B and 42B for non-mutator and mutator strains, respectively. 
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A)       Cy2NHS_IS                                          Cy3 NHS                                            CF647Hz  

 

B) 

                                                    

Figure 41. 2D Oxi-DIGE, non-mutator strain.  

A) Protein extract labelled with Cy2NHS for internal standard, Cy3NHS for detection of 

protein expression levels and CF647Hz for labeling carbonylated groups. B) Cy3NHS 

(green signal) and CF647Hz (red signal) overlap.  
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A)         Cy2NHS_IS                                                  Cy3 NHS                                        CF647Hz  

 

 

B) 

 

Figure 42. 2D Oxi-DIGE, mutator strain.  

A) Protein extract labeled with Cy2NHS for internal standard, Cy3NHS for detection of protein 

expression levels and CF647Hz for labeling carbonylated groups. B) Cy3NHS (green 

signal) and CF647Hz (red signal) overlap.  
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4.3.2. Identification of proteins with increased/decreased carbonylation 

levels in mutator strain compared with ancestor and non-mutator  

More than 1200 individual protein spots from mutator strain were separated by 2D-DIGE 

according to their isoelectric point and molecular weight. In total, 64 proteins that showed 1.5-

fold change in expression or carbonylation (Figure 43), with p≤0.05 (t-test) in mutator 

compared with ancestor and non-mutator, were identified by mass spectrometry. Spots were 

sent for mass spectrometry identification in 3P5 proteomic facility, Université Paris Descartes, 

Institut Cochin.  

All proteins identified with higher or lower carbonylation are listed in Table 9 and Table 10, 

respectively. There were 39 highly carbonylated proteins detected, 10 of which carrying 

mutation in their genes (5 synonymous, 4 non synonymous and 1 intergenic); 25 proteins with 

lower levels of carbonylation, 6 of which carrying mutation in their genes (2 synonymous, 3 

non synonymous and 1 intergenic) (Table 9 and Table 10).         

 Approximately 1200 proteins in E.coli 40k strain were detected in the above described results 

and in 64 of those proteins >1.5 fold change in protein carbonylation was observed. Out of 39 

proteins with increased carbonylation, 26% were also mutated in its coded genes and out of 

25 proteins with decreased carbonylation, 24% had mutation(s) in their respective genes.  

 

Figure 43. Spots on 2D-DIGE gel that were picked and analysed by mass spectrometry. 
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Table 9. Identified proteins with higher carbonylation in mutator strain, compared to ancestor 

and non-mutator. * stands for synonymous mutation; ** non-synonymous mutation; *** 

intergenic. Empty cells indicate that no significant change in the protein carbonylation level 

was found.  

 

 

Protein name 

 

 

Mutated 

gene 

 

Mutator Hz / 

Ancestor Hz 

 

Mutator Hz /  

Non-Mutator Hz 

 

Fold 

change 

P value  Fold 

change 

P value 

Elongation factor G  19,210 0,017   

Polyribonucleotide 

nucleotidyltransferase 
pnp * 81,537 0,005 16,277 0,0067 

Formate acetyltransferase 1  8,899 0,007 2,439 0,0599 

Transketolase 1  16,015 0,015   

Proline-tRNA ligase  87,646 0,051 14,792 0,0611 

Chaperone protein HscA hscA** 2,257 0,031 3,261 0,0091 

NAD-dependent malic 

enzyme 
 12,201 0,039 16,376 0,0366 

Dihydrolipoyllysine-residue 

succinyltransferase 

component of 2-oxoglutarate 

dehydrogenase complex 

sucB** 8,335 3*10-8 5,519 
0,0000

1 

Paraquat-inducible protein B pqiB ** 6,113 0,006 2,5073 0,0684 

ATP synthase subunit alpha  2,060 0,031 2,288 0,0213 

Enolase  5,405 0,018 5,587 0,0189 

Isocitrate lyase  2,863 0,018 5,832 0,0069 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 
lpxD** 6,378 0,011 6,284 0,0112 

3-oxoacyl-[acyl-carrier-

protein] synthase 2 
 6,378 0,011 6,284 0,0112 
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Glutamate-1-semialdehyde 

2,1-aminomutase 
 3,892 0,004 5,510 0,0022 

Ribosome-binding ATPase 

YchF 
 4,380 0,016 11,373 0,0079 

6-phosphogluconate 

dehydrogenase, 

decarboxylating 

gnd* 29,573 0,001 73,508 0,0011 

Acetate kinase ackA* 7,616 0,048   

Succinyl-CoA ligase [ADP-

forming] subunit beta 
 2,190 0,041 3,261 0,016 

Protease 7  3,651 0,003 3,284 0,004 

Acetate kinase  11,264 0,027 8,462 0,030 

Outer membrane protein F ompF*** 10,676 0,007 7,062 0,009 

tRNA-modifying protein 

YgfZ 
 3,624 0,005 8,152 0,002 

Acetyl-coenzyme A 

carboxylase carboxyl 

transferase subunit beta 

 18,500 0,008 25,134 0,008 

Acetyl-coenzyme A 

carboxylase carboxyl 

transferase subunit alpha 

 13,702 0,0009 6,928 0,001 

2-dehydro-3-

deoxyphosphooctonate 

aldolase 

 2,382 0,030 3,172 0,016 

30S ribosomal protein S2  4,408 0,013 2,016 0,099 

Outer membrane protein A  5,713 0,003 6,402 0,0033 

Histidine-binding 

periplasmic protein 
 5,878 0,026 6,475 0,024 

Sugar phosphatase YidA  5,878 0,026 6,475 0,024 

Elongation factor P-like 

protein 
 5,878 0,026 6,475 0,024 

D-ribose-binding periplasmic 

protein 
 18,547 

0,0000

3 
12,463 3*10-5 
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Fatty acid metabolism 

regulator protein 
 20,537 0,0006 21,962 0,0006 

Purine nucleoside 

phosphorylase DeoD-type 
 2,912 0,023 7,091 0,006 

FKBP-type 22 kDa peptidyl-

prolyl cis-trans isomerase 
 9,475 0,002 5,982 0,0041 

3-oxoacyl-[acyl-carrier-

protein] reductase FabG 
fabG* 5,691 0,0001 6,1204 0,0001 

Single-stranded DNA-

binding protein 
 2,158 0,008 4,541 0,0017 

Outer membrane lipoprotein 

SlyB 
   19,261 0,0157 

Cell division protein FtsA  8,530 0,0156 4,325 0,0281 

 

Table 10. Identified proteins with lower carbonylation in mutator strain, compared to ancestor 

and non-mutator. * stands for synonymous mutation; ** non-synonymous mutation; *** 

intergenic. Empty cells indicate that no significant change in the protein carbonylation level 

was found.  

 

 

Protein name 

 

 

Mutated 

gene 

 

Mutator Hz / 

Ancestor Hz 

 

Mutator Hz /  

Non-Mutator Hz 

 

Fold 

change 

P value  Fold 

change 

P value 

Pyruvate kinase I pykF*   -4,7352 0,0327 

Periplasmic oligopeptide-

binding protein 
oppA** -6,891 0,0062 -72,437 0,0074 

Acetate kinase    -1,1055 0,8458 

Outer membrane protein C    -9,5079 0,0232 

Outer membrane protein A  -222,42 0,0238 -117,45 0,0300 

D-tagatose-1,6-bisphosphate 

aldolase subunit GatY 
 -7,538 0,0006 -41,682 0,0010 
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FKBP-type peptidyl-prolyl cis-

trans isomerase SlyD 
 -5,821 0,0002 -5,5637 0,0045 

Uridine phosphorylase  -3,117 0,03511 -5,8525 0,0083 

Succinate dehydrogenase iron-

sulfur subunit 
sdhB** -3,235 0,0053 -4,5233 0,0538 

Molybdate-binding 

periplasmic protein 
modA** -2,863 0,0008 -7,0947 0,0036 

FKBP-type 22 kDa peptidyl-

prolyl cis-trans isomerase 
   -12,252 0,0577 

3-oxoacyl-[acyl-carrier-

protein] reductase FabG 
 -6,556 0,0015 -12,276 0,0142 

Osmotically-inducible protein 

Y 
 -4,6683 0,0012 -5,1027 0,04850 

30S ribosomal protein S5  -9,339 0,0094   

Single-stranded DNA-binding 

protein 
 -78,636 0,0017 -50,514 0,0001 

DNA protection during 

starvation protein 
 -6,498 0,0001 -1,7803 0,2500 

Outer membrane lipoprotein 

SlyB 
 -6,0991 0,04159   

Iron-binding protein IscA  -17,925 0,0055 -2,9647 0,0254 

Cold shock-like protein CspE  -158,22 0,0054 -151,31 0,0084 

Cold shock-like protein CspB  -12,919 1,6*10-5 -24,019 0,0001 

50S ribosomal protein L7/L12  -86,730 0,04874 -37,862 0,0003 

D-ribose-binding periplasmic 

protein 
 -15,779 0,0049 -423,89 0,0024 

UDP-3-O-(3-

hydroxymyristoyl) 

glucosamine N-acyltransferase 

lpxD* -2,133 0,0032 -3,6382 0,0223 

Glucose-1-phosphate 

thymidylyltransferase 1 
 -3,606 0,00039 -4,1841 0,0001 

D-tagatose-1,6-bisphosphate 

aldolase subunit GatY 
gatY*** -7,538 0,00064 -41,682 0,001 
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Proteins that displayed an increase in their carbonylation levels in the mutator relative to 

ancestor and non-mutator and do not carry mutation in their genes were also identified, however 

they do carry mutations in polypeptides reported to interact with them transiently or 

permanently. One such example is ATP synthase. ATP synthase is the main enzyme in 

oxidative phosphorylation consisting of two regions: FO (a, b and c subunits) and F1 (α, β, γ, δ 

and ε subunits), all shown in Figure 44. Mutator strain from LTEE carries intergenic mutation 

between atpG (28 bp distance), coding for ATP synthase gamma chain and the atpA (23 bp 

distance), coding for ATP synthase subunit alpha, which has a 2-fold increase in carbonylation 

level compared with the one in ancestor. Another mutation is found in the F1 region, atpB gene 

(non-synonymous mutation L28P), coding for ATP synthase subunit a, which plays a direct 

role in the translocation of protons across the membrane. Since both, F1 and FO complexes are 

rotary motors and its subunits are in constant interactions, it is likely to expect that mutation in 

gene coding for one subunit of the protein will result with eventually conformational changes 

in the interaction partners. This is likely to render it more susceptible to oxidative damage, 

manifested as increased level of carbonylation.  

 

Figure 44. Rotary model of ATP synthase based on the subunit composition of the E. coli 

enzyme. Adopted from Jiang et al., (2001).  

 

 



 

91 
 

5. DISCUSSION  

 

Proteins that are misfolded or have compromised stability due to certain mutations can be 

buffered by molecular chaperones, so that harmful effects of mutations are masked. The aim of 

this research was to test whether RNA chaperones play a similar role in buffering mutations. 

Results of this study showed that DEAD box RNA helicases can improve fitness of mutator 

E.coli bacteria whose relative fitness was impaired compared to the control strains. This 

phenomenon was confirmed with another RNA chaperone, cold shock protein A, responsible 

for stabilization of mRNAs. By performing competition experiments and calculating relative 

fitness it was demonstrated that buffering by RNA chaperones occurs at the organismal level 

where helicase and nucleic acid-binding activity are required for buffering by DBRHs and 

CspA, respectively.  

In order to understand the molecular basis of mutation buffering and its relationship with 

phenotype, it is crucial to first understand how different chaperones interact with different 

RNAs. In this work it is established that buffering by RNA chaperones is done at the organismal 

level, that DHRHs and CspA require helicase activity and nucleic acid binding activity, 

respectively, to perform buffering. Further, lamB and rplS are identified as mutations especially 

responsive to buffering, and as such they could be valuable to further research of this 

phenomenon. Correlation of base pairing probabilities, among other metrics for quantifying 

mutational impact on RNA secondary structure, suggest severe impact of rplSsyn, thus 

implicating this mutation as a possible cause of fitness loss. Similarly, lamB was predicted to 

have the most severe effects on the local RNA structure of all the mutations in the evolved 

ΔmutH strain, as indicated by the maximum local base pair distance (dmax). However, these 

measurements can only tell us about the mutation impact on RNA structure; whether the 

resulting defects can be rescued by chaperones, or whether these defects have any impact on 

the organismal level, is beyond the scope of this measurement. In order to quantify the 

reliability of any structural predictor one would have to study a far larger set of characterized 

mutations which are both deleterious and amenable to buffering. 

RNA chaperone activity might be beneficial through stabilizing, destabilizing, or remodelling 

affected structures in the transcript or by affecting the way these transcripts interact with other 

transcripts and/or RNA-binding proteins (Pan and Russell, 2010). 
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In the case of lamB, it is possible that local increase in stability caused by the mutation causes 

a temporary block in translation which is resolved by RNA chaperones. 

A more complex scenario is also possible, one in which the non-synonymous lamB mutation 

results in a dominant negative protein product, in which case the mutation is buffered by the 

overexpressed RNA chaperone facilitation degradation of the mutant LamB protein mRNA, 

thereby amealiorating fitness defects. In order to distinguish between these scenarios, this study 

should be followed up by thorough and targeted experiments, such as measuring levels of 

LamB, which is predicted to decrease in upon chapereone overexression. However, there are 

still issues that need to be considered. First, it should be established if the RNA buffering is 

direct or indirect i.e. is it a result of interaction between RNA chaperons and the RNA itself or 

the RNA chaperones mediate buffering through interactions with cell components other than 

the RNA. Some mutations could be a buffering target by both protein and RNA chaperones. 

One possible example would be a protein helping rescue a misfolded protein while an RNA 

chaperone removes the translational roadblocks responsible for mislfolding. Therefore, 

clarifying the contributions of both protein and RNA chaperones to mutation buffering will be 

of great interest in future research. 

In addition, RNA structure can be affected by both synonymous and non-synonymous 

mutations through, in case of non-synonymous mutations, changes arising in the sequence, even 

if the amino acid change is selectively neutral, or through changes in translation kinetics and 

folding, affecting fitness at protein level, in case of synonymous mutations (Plotkin and Kudla, 

2011). Therefore, wheather the mutation is synonymous or non-synonymous cannot be used as 

a reliable factor based on which mutations can be classified as candidates for buffering by RNA 

chaperones. 

Lastly, similar to protein chaperones, RNA chaperones are likely to act through a range of 

mechanisms. Therefore, another challenge in the future will be indentifying the general 

principles of the RNA chaperone mutational mediated buffering. Findings presented here 

should be taken as a stepping stone to continue the investigation and meet this challenge. Recent 

advances in high throughout probing of RNA secondary structures and RNA-protein 

interactions have made this challenge a realistic one. Ultimately, we should clarify the 

consequnces of this mechanistically diverse activity of RNA chaperones on not just RNA 

biogenesis, but also evolution and evolvability. 
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Further research will be required to tease apart how individual introns affect overall mis-

splicing burden. It is evident from population genomic analysis of different S. cerevisiae strains 

that some introns are fixed across extant populations whereas others exhibit presence/absence 

polymorphism (Wolters et al., 2015). This seems to suggest that the removal of at least some 

introns is insufficiently stressful to be purged by natural selection. At the same time, studies of 

suv3, the second DEAD box RNA helicase present in yeast mitochondria, suggest that the 

deleterious effect of removing individual introns while possibly idiosyncratic is at least partially 

cumulative. Deletion of suv3, a component of the mitochondrial degradosome, decreases levels 

of mature cox1/cob mRNA and compromises respiratory capacity, but less so where more 

introns had been removed from the mitochondrial DNA (Golik et al., 1995). Importantly at least 

for the combinations tested – severity was found to depend on the number but not identity of 

the cox1 or cob introns present. 

In addition to providing a deeper insight into post-transcriptional gene regulation in 

mitochondria, our findings have implications for understanding the evolutionary persistence of 

self-splicing introns and perhaps mobile elements more generally. The phenotypic effects run 

counter to the notion that self-splicing introns are low-cost passengers and instead demonstrate 

that these selfish elements are firmly embedded in the organization of mitochondrial gene 

expression. Their presence is expected and their forced removal compromises normal 

expression of their host genes. These observations can be explained by an evolutionary lock-in 

model where the primordial colonization of an intron-free cox1/cob ancestor by a self splicing 

intron led to a drop in cox1/cob mRNA levels and favoured compensatory mutations that 

increased cox1/cob transcription to restore mRNA abundance back to their original levels. 

When these introns are forcefully removed, however, this hard wired upregulation turns 

maladaptive. There no longer is a pool of transcripts targeted for degradation leading to excess 

levels of mature mRNA. Suggested evolutionary lock-ins of this type might provide an 

unappreciated mechanism to facilitate the longer-term persistence of genetic parasites. This 

argument might in principle extend to nuclear introns: if, for a given dosage-sensitive gene, 

mis-splicing is common and transcription levels are set to compensate, intron loss might be 

deleterious and prevented by purifying selection even though the intron makes no adaptive 

contribution to gene regulation. 
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Aim of third part of the thesis was to elucidate the molecular basis of protein sensitivity to 

oxidative damage, in particular protein carbonylation. The system of E.coli bacterial cells with 

accumulated over 1000 mutations during 40,000 generations of in vitro evolution presented us 

with endless possibilities to observe and study the ones with effects on protein oxidation 

susceptibility. At the level of total protein carbonylation, increased levels in the mutator strain 

was observed compared with the ancestor and non-mutator, which strongly suggested a major 

effect of accumulated mutations on protein oxidability.  

Since, these are preliminary results of screening the proteome carbonylation, there are still some 

open questions that need to be answered. For example, what is the percentage of mutated genes 

that are also expressed and detectable using this method? What is the contribution of mutations 

in individual proteins crucial for the maintaining the cell compared to proteome enrichment for 

carbonylation.  

Until now, only mutations in coding regions were related to carbonylation status of proteins. 

Indirect effects of genetic polymorphisms on protein carbonylation was also observed, such as 

ATP synthase with mutation in FO region, one intergenic mutation, and carbonylated subunit in 

F1 region. Elucidation of this interplay between mutation and carbonylation of different subunits 

and/or proteins would require analyse of interaction parteners, where this effect is observed.  

In order to elucidate impact of the mutations on protein susceptibility to oxidation, it is 

neccesery to determine how many of mutated genes in E.coli 40k strain are expressed at the 

level above 2D Oxi-DIGE detection trashold.  

Conclusion based on these results is that mutational impact on protein sensitivity to 

carbonylation is not a consistent pattern; it is rather a complex form of interactions between 

proteins whose coded genes are subjected to mutations or are not.  
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6. CONCLUSIONS 

 

Both RNA and protein homeostasis are of great importance to maintain the cell (prokaryotic or 

eukaryotic) in balance. They can be also disrupted by mutations that have an impact on 

RNA/protein conformation with phenotypic consequences. On the protein level, detrimental 

mutation effect can be buffered by protein chaperones with no impairment of phenotype.  

The results presented in Chapter 4.1 provide, for the first time, evidence of RNA chaperone 

mediated mutation buffering by measuring the relative fitness of E.coli strains. Performing 

competition experiments, it was shown that growth rate of two low-fitness mutator strains (40k 

and ΔmutH)  was improved by overexpression of three DEAD-box RNA helicases (RhlB, 

SrmB, CsdA) and the cold shock protein CspA, respectively. Not a single identical mutation 

has been identified between 40k and ΔmutH strain, suggesting that RNA chaperone buffering 

occur across a broad range of substrates. Mutations that have shown to be individually 

deleterious were found in lamB and rplS gene and their compromised fitness rescued by DBRHs 

and CspA overexpression.  

The main question that arises after revealing the phenotypic effects of mutation buffering by 

RNA chaperones is: what is the molecular basis of this phenomenon? There are several aspects 

to examine the mechanism of RNA chaperone competence in concealing the effects of 

deleterious mutations. First is analysing transcriptome of E.coli strains (wild type and mutator) 

in the presence of RNA chaperone overexpression followed by the proteome level analyses. 

Next thing that would be of the particular interest for this study is identification of protein-RNA 

interactions using individual-nucleotide resolution cross-linking and immunoprecipitation 

(iCLIP), enabling association of RNA chaperones and their respective substrates. This approach 

would allow us to perceive RNA chaperone binding preferences to RNA molecules with or 

without certain mutations. Further studies that could reveal molecular mechanism of mutation 

buffering include identification of mutations (synonymous and nonsynonymous) that are 

privileged buffered by the RNA chaperone activity. The data presented here indicate the 

relevance of synonymous mutations in this context. Individual synonymous mutation in the rplS 

gene has shown decline in the relative fitness and the rescue by DBRHs. Therefore, producing 

the mutant libraries of selected genes and introducing them into E.coli, sequester the ones that 

decrease the fitness in competitions experiments and increase the same one in the presence of 
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RNA chaperone overexpressions would provide us with more information in comprehending 

this mechanism.  

Another interesting aspect of this study is the evolution one. Accumulation of genetic changes 

drive the evolution and in parallel alter the sequences coding for diverse RNA chaperones 

whose preferences toward their target substrates could be modified. In which direction this 

phenomenon focus the evolution require additional investigation in the future.  

An important role of RNA quality control in the lifespan of eukaryotic organism, S.cerevisiae, 

was demonstrated in the Chapter 4.2, showing that more efficient splicing of mitochondrial 

introns from COX1 and COB gene by Mss116 DEAD-box RNA helicase overexpression results 

with prolonged chronological lifespan compared to the wild type strain. Both S.cerevisiae 

strains, the one with deleted mitochondrial introns (I0) and the one with overexpressed Mss116, 

showed increased generation time, prolonged CLS, mitochondrial fusion phenotype, increased 

oxygen consumption, higher levels of ATP and increased levels of mature cox1 and cob mRNA 

compared with their levels in the wild type. Further results led to conclusion that this phenotypic 

changes are controlled by activation of the retrograde response. By deleting rtg2 gene, 

mitochondrial volume and mitochondrial spherical shape were reduced in the tested 

S.cerevisiae strain.  

RNA splicing homeostasis was perceived here in unconventional fashion. For the first time it 

was shown that efficient splicing or forced intron removal of yeast mitochondrial mRNAs can 

activate the stress response and affect phenotype. It is known that introducing the minor stress 

(ROS, heat shock, calorie restriction) can activate pathways to promote organism longevity. 

Here, it is demonstrated that more efficient splicing can also activate stress response and 

prolonge both, CLS and RLS.  

In order to understand more how disruption of RNA splicing homeostasis affect phenotype, 

further studies including the analyses of intronic polymorphisms and RNA chaperone 

involvement would be of great benefit.  

The objective of this studies was also to explore molecular bases of protein resistance or 

sensitivity to oxidative damage by measuring carbonylation levels. Data presented in Chapter 

4.3 demonstrates that only 5% of detected proteins using 2D Oxi-DIGE method had significant 

change (increase or decrease) of protein carbonylation in the mutator strain compared with non-
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mutator. Although, 26% of the proteins with increased level and 24% of the ones with decreased 

carbonylation level contain a mutation in their coded genes. Since data presented here also point 

out proteins with altered carbonylation levels and their interaction parteners carrying certain 

polymorphisms in their coded genes, suggested underlaying mutation-based impact on 

carbonylation is not straightforward. One approach for revealing whether DNA polymorphisms 

reflect in polymorphisms of protein oxidability is to examine individual protein level of 

carbonylation by introducing diverse types of mutations in the coded gene.  

DNA polymorphisms can certainly influence organismal fitness and phenotype modifying 

RNA, protein homeostasis or by crosstalk among DNA, RNA and protein level. In order to 

understand the biological effect of this crosstalk, studying the RNA chaperone function in the 

mutation buffering regarding protein sensitivity to oxidation could result with some valuable 

insights. By identification of target proteins that are crucial in displaying certain diseases with 

detecting their conformation changes, carbonylation level and related gene polymorphisms, we 

could design a predictive model for the early diagnostic.  
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