Abstract | Pristupilo se pretraživanju internet baze Web of Science [1] u verziji 5.28 za polimere: CN (celulozni nitrat), CR-39 ili PADC (polialil diglikol karbonat), PC (polikarbonat), PE (polietilen), PEEK (polietilen eter keton), PET (polietilen tereftalat), PI (poliimid), PMMA (polimetil metakrilat), PP (polipropilen), PS (polistiren), PTFE (politetrafloroetilen), PVC (polivinil klorid) i PVDF (polivinilden florid). Tražio se podatak o dimenzijama latentnih ionskih tragova iniciranih zračenjem brzih teških iona. Za sve polimere osim PEEK i PVC pronašli su se eksperimentalni podaci, a za CN nije pronađen dovoljan broj podataka za analizu. Tragovi u traženim polimerima proučavali su se različitim eksperimentalnim tehnikama medu kojima su najvažnije : FTIR (infracrvena spektroskopija), Ramanova spektroskopija, XRD (raspršenje X zraka), SANS (raspršenje neutrona pod malim kutem), SAXS (raspršenje X zraka pod malim kutem), UV-vidljiva (ultraljubičasta) spektoskopija, proučavanje vodljivosti (konduktometrija), TEM (transmisijska elektronska mikroskopija), SEM (skenirajuća elektronska mikroskopija), SFM/AFM (skenirajuća mikroskopija sila/atomska mikroskopija sila) uz brojne druge korištene tehnike. Model koji se koristio za interpretaciju eksperimentalnih podataka o ionskim tragovima u polimerima jest analitički model termalnog vala (analytical thermal spike model, ATSM) [2]. Model se pokazao univerzalan i primjenjiv u najširem spektru materijala kako izolatorskih tako i poluvodičkih te je dokazao svoju ispravnost i unutar opsega ovog rada. Usprkos odstupanjima, dobiveni podaci slijede trendove predviđene modelom. Glavni trend je povećanje kvadrata radijusa ionskog traga o linearnoj elektronskoj zaustavnog moći iona. Različite eksperimentalne tehnike su rezultirale različitim prosječnim veličinama tragova pa je dana okvirna procjena utjecaja eksperimentalne tehnike. Redovita pojava kod analiziranih podataka jest da su se ioni često ponašali kao brzi neovisno u kojem su režimu brzine pa se sugerira da bi možda bilo bolje odabrati < 0.5 MeV/n za spore ione (umjesto dosadašnjih 2.2 MeV/n) te > 1 MeV/n za brze (umjesto dosadašnjih 7.6 MeV/n) [2]. Dodatan fenomen koji je istražen unutar okvira rada jest ovisnost veličine traga o nabojnom stanju projektila iona za površinske slojeve (do 100 nm u dubinu) u PET-u, a naročito za PI. Tu je utvrđeno da postoji vrlo jaka sveza između povećanja veličine traga i višekratnika nabojnog stanja. Ta veza ima ovisnost kao ~ nabojm gdje je m određen na 1.25 za PP te 0.741 za PET. Na većim dubinama materijala (1-1.5 mm) ovaj efekt nestaje. [58] |
Abstract (english) | We accessed the Web of Science [1] web site in version 5.28 in search for the following polymers: CN (nitrocellulose), CR-39 (allyl diglycol carbonate) or PADC (polyallyl diglycol carbonate), PC (polycarbonate), PE (polyethylene), PEEK (polyether ether ketone), PET (polyethylene terephthalate), PI (polyimide), PMMA (polymethyl methacrylate), PP (polypropylene), PS (polystyrene), PTFE (polytetrafluoroethylene), PVC (polyvinyl chloride) and PVDF (polyvinylidene fluoride). We sought information about the dimensions of latent ion tracks initiated by radiation of fast heavy ions. For all polymers other than PEEK and PVC, we found at least some experimental data. For CN, insufficient data for the analysis was found. The traces in the required polymers were studied by a variety of experimental techniques, such as FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, XRD (X-ray diffraction), SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), UV-Vis (ultraviolet-visible) spectroscopy, conductivity study, TEM (transmission electron microscopy), SEM (scanning electron microscopy), SFM/AFM (atomic force microscopy/scanning force microscopy) and many other techniques. The model used to interpret experimental ion track data in polymers is an analytical thermal spike model (ATSM) [2]. The model has proved universal and applicable in the widest range of insulating and semiconducting materials, and has proven its validity within the scope of this thesis. Despite deviations from the model, the data obtained follow the trend given by the model. The main trend is the increase of the ionic radius quadrature with linear electronic stopping power of the ion. Various experimental techniques have resulted in different average track sizes, so a rough estimate of the effect on the experimental technique is given. The usual occurrence in the analyzed data is that the ions often acted as fast independent in which the speed regime the were so it is suggested, and it may be better to choose <0.5 MeV / n for the slow ions (instead of the current 2.2 MeV / n) and > 1 MeV / n for fast ions (instead of the current 7.6 MeV / n) [2]. An additional phenomenon explored within the framework of this work is the dependence of the track size on the charge state of the ion projectile for the surface layers (up to 100 nm in depth) in PET and, in particular, for PI. It has been established that there is a very strong link between the increasing track size and multiple of the charge state. This link has a relation like ~ chargem where m is specified at 1.25 for PP and 0.741 for PET. This effect disappears for higher depths in material (1-1.5 mm). [58] |