Utjecaj dopiranja TiO2 sloja rijetkim zemljama na efikasnost solarnih ćelija s organskom bojom

Hanžek, Juraj

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:662566

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-21

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Juraj Hanžek

UTJECAJ DOPIRANJA TiO₂ SLOJA RIJETKIM ZEMLJAMA NA EFIKASNOST SOLARNIH ĆELIJA S ORGANSKOM BOJOM

Diplomski rad

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

INTEGRIRANI PREDDIPLOMSKI I DIPLOMSKI SVEUČILIŠNI STUDIJ FIZIKA; SMJER ISTRAŽIVAČKI

Juraj Hanžek

Diplomski rad

Utjecaj dopiranja TiO₂ sloja rijetkim zemljama na efikasnost solarnih ćelija s organskom bojom

Voditelj diplomskog rada: dr. sc. Krunoslav Juraić

Ocjena diplomskog rada: _____

Povjerenstvo: 1. _____

2. _____

3. _____

Datum polaganja: _____ Zagreb, 2018.

Hvala mentoru dr. sc. Krunoslavu Juraiću na vođenju kroz metode mjerenja uzoraka i na pomoći pri analizi mjerenja. Zahvaljujem se i doktorandici Ivani Panžić i studentici Mariji Ivezić pri pomoći oko sinteze DSSC te dr. sc. Andreji Gajović, voditeljici Laboratorija materijala za konverziju energije i senzore u kojemu su većim dijelom napravljena istraživanja, na provedenim eksperimentima elektronske mikroskopije i Ramanove spektroskopije te korisnim savjetima.

Sažetak

Istražena su svojstva nanočestica TiO_2 i TiO_2 dopiran s atomima rijetkih zemlji (Sm i Ho) za primjenu u fotonaponskim ćelijama. Elektronskom mikroskopijom i Ramanovom spektroskopijom analizirana je morfologija i struktura pripremljenih materijala, a UV-Vis spektroskopijom optička svojstva tih materijala u formi tankih filmova. Dobiveni slojevi su integrirani u solarne ćelije s organskom bojom te je testirana njihova efikasnost mjerenjem strujnonaponske karakteristike upotrebom solarnog simulatora. Dobivena je nešto manja efikasnost solarnih ćelija s organskom bojom (eng. Dye-sensitized solar cells, skraćeno DSSC) na dopiranim podlogama TiO_2 u odnosu na DSSC na podlogama čistog TiO_2 .

Ključne riječi: solarne ćelije s organskom bojom DSSC, Ti O_2 nanočestice, I-V krivulja, energijski procijep, rijetke zemlje

Rare earth Doping of TiO₂ Thin Films Influence on Dye-Sensitized Solar Cells Efficiency

Abstract

The properties of TiO_2 nanoparticles and rare earth (Sm and Ho) doped TiO_2 nanoparticles have been investigated for application in solar cells. Electron microscopy and Raman spectroscopy were used for morphological and structural characterization and UV-Vis spectroscopy for the optical properties of the prepared TiO_2 thin films. The Dye-sensitized solar cells (DSSC) were assembled with the prepared TiO_2 thin films, and their efficiency was tested with the solar simulators. The DSSC with the doped TiO_2 layers had lower efficiency than the ones with undoped TiO_2 layers.

Keywords: Dye-sensitized solar cells (DSSC), TiO₂ nanoparticles, I-V curve, band gap, rare earth

Sadržaj

1	Uvo	d		1
2	Teo	rijska pozadina		3
	2.1 Princip rada DSSC			3
		2.1.1 Ubacivanje (eng. injectio	n) elektrona u TiO ₂ i (ne)radijativna	
		deekscitacija pobuđenog s	stanja	4
		2.1.2 Regeneracija oksidirane b	oje	5
		2.1.3 Transport elektrona u me	zoporoznom poluvodiču	6
		2.1.4 Rekombinacija elektrona	u poluvodiču s oksidiranom bojom ili	
		elektrolitom		8
		2.1.5 Reakcija na protuelektrod	li	9
	2.2	Osnovni parametri solarne ćelije		9
	2.3	Kristalna struktura TiO $_2$		10
	2.4	Utjecaj dopiranja na strukturu Ti	O_2	11
	2.5	SEM, HR-TEM i HAADF		12
	2.6	Ramanova spektroskopija		13
3	Mat	erijali i metode		16
	3.1	Sinteza DSSC		16
	3.2	SEM, HR-TEM i HAADF		17
	3.3	Ramanova spektroskopija		18
	3.4	UV-Vis spektroskopija		18
	3.5	Solarni simulator		21
4 Rezultati i diskusija				24
	4.1	Morfologija Ti O_2 filma $\ldots \ldots$		24
	4.2	Kristalna struktura Ti O_2 filma $$.		26
	4.3	Apsorpcija TiO ₂ filma		31
	4.4	Parametri DSSC		33
5	Zak	ljučak		38

Literatura

1 Uvod

Globalna potrošnja energije kontinuirano raste zbog porasta svjetskog stanovništva i povećanja potražnje energije u državama u razvoju. 2017. godine je svjetska potrošnja energije iznosila $6.2 \cdot 10^{20}$ J, dok se za 2050. godinu procjenjuje da će ona narasti na $8.6 \cdot 10^{20}$ J što je porast od oko 40% [1]. Zbog sve manjih zaliha fosilnih goriva kao i ekoloških incidenata povezanih s nuklearnom energijom, značajno raste interes za obnovljive izvore energije (sunčeva energija, vjetar, geotermalna energija i td.). Ukupna snaga Sunčevog zračenja koje dopire do Zemljine površine iznosi 120000 TW, što je 6000 puta više od trenutne svjetske potrošnje energije. Zbog toga Sunčevo zračenje ima potencijal da postane glavni izvor energije u budućnosti. No, pretvorba sunčeve energije u električnu struju na učinkovit način koristeći jeftine i lako dostupne materijale ostaje veliki izazov [2].

Solarne ćelije (fotonaponske ćelije, fotovoltaici) su uređaji koji na principu fotoelektričnog efekta pretvaraju svjetlosnu energiju izravno u električnu energiju. S obzirom na materijal koji se koristi kao aktivni sloj, razvoj solarnih ćelija možemo podijeliti u 3 generacije.

Prva generacija solarnih ćelija trenutno dominira tržištem solarnih ćelija. Kao aktivni sloj u njima se koristi monokristalni silicij (c-Si) i polikristalni Si (pc-Si). S obzirom na druge vrste solarnih ćelija, mono-kristalne solarne ćelije imaju veću efikasnost, no cijenu im određuje proces pročišćavanja Si. Multi-kristalne solarne ćelije imaju više nečistoća u Si i zbog toga su jeftinije od mono-kristalnih solarnih ćelija jer proces pročišćavanja Si nije toliko zahtjevan, no efikasnost im je nešto manja.

Drugu generacija solarnih ćelija odnosi se na tankoslojne solarne ćelije. Njihova osnovna prednost je što je aktivni sloj u formi tankog filma debeo od nekoliko stotina nanometara do nekoliko mikrometara što je značajno tanje od debljine prve generacije solarnih ćelija. Najčešće korišteni materijali u ovoj generaciji solarnih ćelija su: amorfni i mikrokristalni Si (a-Si i a-Si/ μ c-Si), kadmij-telurij (Cd-Te), bakarindij-selenid (CIS), te bakar-indij-galij-diselenid (CIGS). S obzirom na to da koriste značajno tanji aktivni sloj, troškovi proizvodnje ovih solarnih ćelija značajno su niži u odnosu na solarne ćelije prve generacije. Mane solarne ćelije od amorfnog Si su znatno manja efikasnost u odnosu na c-Si, te problem degradacije (Staebler-Wronski efekt) [3]. S druge strane zalihe indija su male, a njegova proizvodnja skupa, dok je kadmij izrazito otrovan [4].

U treću generaciju solarnih ćelija spadaju solarne ćelije na bazi organskih boja (Dye-sensitized solar cells, skraćeno DSSC), polimerne solarne ćelije, perovskitne solarne ćelije i solarne ćelije bazirane na kvantnim točkama. Prvu DSSC ćeliju su napravili O'Regan i Grätzel pri čemu su koristili nanočestice TiO_2 za formiranje poroznog filma sa dodatkom organske boje [2]. Prije svega jednostavna i jeftina pripreme DSSC bila je poticaj za njihovo intenzivno istraživanje i razvoj.

S obzirom na relativno malu efikasnost DSSC trenutna istraživanja su usmjerena u pravcu povećanja njihove efikasnosti. Jedan od predloženih načina je dopiranje TiO₂ rijetkim zemljama [5].

Cilj rada je istražiti utjecaj dopiranja TiO_2 anatasa samarijem (Sm) i holmijem (Ho) te dodatne modifikacije kateholom (CAT), salicilnom kiselinom (SA) ili 5-aminosalicilnom kiselinom (5-ASA), na optička svojstva TiO_2 koje bi mogle doprinijeti boljoj efikasnosti DSSC ćelije. Hipoteza je da će se dopiranjem povećati efikasnost ćelije zbog dodatnih nivoa u energijskom procijepu TiO_2 , a modifikacije kateholom, salicilnom kiselinom i 5-aminosalicilnom kiselinom bi mogle omogućiti dodatnu apsorpciju te tako povećati efikasnost ćelije.

2 Teorijska pozadina

2.1 Princip rada DSSC

Princip rada DSSC prikazan je na slici 2.1. U poroznu strukturu oksidnog sloja

Slika 2.1: Shema DSSC [6].

(najčešće se koristi TiO₂, no može se koristiti i ZnO ili Nb₂O₅) je infiltrirana organska boja u vrlo tankom sloju. Molekula boje (u ovom radu je korištena boja N3) apsorbira foton, pobudi se te izbaci elektron u vodljivu vrpcu TiO₂. Molekula boje se regenerira elektronom kojeg preuzme iz elektrolita. Obično je to jodid/trijodid par. Jod se regenerira trijodidom na protuelektrodi te elektroni putuju kroz vanjski otpor čime je strujni krug zatvoren. Maksimalni napon koji se može dobiti apsorpcijom svjetlosti je razlika između Fermijevog nivoa elektrona u TiO2 i redoks potencijala elektrolita [6]. Kada molekula boje preda elektron TiO₂, tada preda i šupljinu elektrolitu. Ako se dogodi rekombinacija šupljine i elektrona prije njihovog razdvajanja na suprotne strane, solarna ćelija ne generira električnu struju u strujnom krugu. Boja, osim što se pobuđuje svjetlošću ima i funkciju da bude električni izolator čime sprječava rekombinaciju, a TiO₂ osim što podupire boju ima i funkciju da sakupi i vodi elektrone. Samo će molekule boje tik uz površinu TiO₂ uspješno predati elektron poluvodiču a šupljinu elektrolitu. Stoga je vrlo bitno da porozni sloj TiO₂ ima što veću efektivnu površinu kako bi što veći broj molekula boje sudjelovao u uspješnom generiranju parova elektron - šupljina i njihovom razdvajanju. To se postiže upotrebom

nanočestičnog TiO₂.

U nastavku su detaljnije objašnjeni osnovni procesi koji se događaju u DSSC [7].

2.1.1 Ubacivanje (eng. injection) elektrona u TiO₂ i (ne)radijativna deekscita cija pobuđenog stanja

Za razliku od drugih tipova solarnih ćelija (npr. u prvoj generaciji solarnih ćelija Si apsorbira svjetlost i transportira nosioce naboja), u DSSC je funkcija apsorpcije svjetlosti (boja) odvojena od transporta nosilaca naboja (oksidni sloj).

Rutenij (Ru) spojevi (npr. N3, N719, Z907 i td.) imaju apsorpciju svjetlosti MLCT (eng. metal to ligand charge transfer) karaktera, tj. elektroni se gibaju s metalnog centra molekule u karboksilni bipiridilni ligand (eng. carboxylated bipyridyl ligand) koji je direktno vezan na površinu poluvodiča. Razdvajanje naboja se odvija ultrabrzim ubacivanjem elektrona iz π^* orbitale organskog liganda u poluvodič. Willing i suradnici su izmjerili vrijeme od 25 fs za ubacivanje elektrona s N3 boje u TiO₂ pod ultra visokim vakuumom [8]. Vrijeme života vibracije molekule je oko 160 fs što implicira da se ubacivanje dogodi prije termalne relaksacije pobuđenog stanja molekule. Osim ultra brzog femtosekundnog ubacivanja, uočen je proces ubacivanja na pikosekundnoj vremenskoj skali (obično desetak pikosekundi). On se javlja jer spinorbit interakcija stvara međusistemski prijelaz (eng. Intersystem crossing) sa singlet u triplet stanja (~100 fs) nakon čega se triplet stanje termalizira te se elektroni sa termaliziranog tripletnog stanja ubacuju u poluvodič [9].

Postoji više izvora pobude (eng. driving force) za ubacivanje elektrona u TiO₂ poluvodič. Kad se boja poveže na TiO₂ poluvodič, ona mu na površini preda proton. Taj proton zajedno sa kationima u elektrolitu stvore dipol duž površine poluvodiča što je shematski prikazano na slici 2.2. Izmjereno je da razlika potencijala koja tako nastaje iznosi ~ 0.3eV. Ako je energija pobuđenog stanja elektrona u boji veća od energije vodljive vrpce TiO₂, razlika tih energija stvara razliku potencijala. Treći razlog za ubacivanje elektrona u TiO₂ je entropijski. Veća gustoća stanja u anatasu nego u boji (normirano na jediničnu površinu) daje pobudu $\approx 0.1eV$ [10].

Da bi efikasnost DSSC bila što veća, nije toliko važna brzina ubacivanja elektrona, već što veća kvantna efikasnost ubacivanja elektrona. Ona je definirana kao:

$$\varphi_{inj} = \frac{k_{inj}}{k_{inj} + k_1} \tag{2.1}$$

Slika 2.2: Shematski prikaz distribucije naboja u blizini površine TiO_2 nanočestice. Zbog apsorpcije kationa na TiO_2 površini, javlja se električno polje iz površine TiO_2 prema van prikazano strelicama. To polje će se smanjiti povećanjem koncentracije ubačenih elektrona u TiO_2 koji će neutralizirati neke od pozitivnih naboja na površini. [10].

gdje su k_{inj} i k_1 brzina ubacivanja elektrona i brzina deekscitacije (radijativna i neradijativna) pobuđenog stanja boje. Za prihvatljivu efikasnost φ_{inj} je dovoljno da k_{inj} bude 100 puta veća od k_1 . Moguće je smanjiti brzinu ubacivanja elektrona povećanjem E_c (energija dna vodljive vrpce od TiO₂). To će s jedne strane povećati napon otvorenog kruga (V_{oc}), no s druge strane, smanjit će razliku energija između pobuđenog stanja boje i vodljive vrpce TiO₂ (ΔE_{inj}), što za posljedicu može smanjiti φ_{inj} i J_{sc} . Ovisno o tome koji učinak je izraženiji, DSSC može povećati ili smanjiti efikasnost.

2.1.2 Regeneracija oksidirane boje

Nakon fotoinduciranog ubacivanja elektrona iz molekule organske boje u vodljivu vrpcu TiO₂, boja je u oksidiranom stanju i mora se reducirati elektronskim donorom u elektrolitu kako bi se regenerirala. Donja granica za vrijeme regeneracije može se procijeniti pomoću kinetike ograničene difuzijom (eng. diffusion-limited kinetics). U neviskoznom elektrolitu konstanta brzine difuzije (k_{diff}) je u rasponu $10^9 - 10^{10}M^{-1}s^{-1}$ [7]. Efikasnost regeneracije (φ_{reg}) daje vjerojatnost da je oksidirana boja regenerirana elektronskim donorom od elektrolita umjesto da se dogodila rekombinacija s elektronom u TiO₂ i definira se kao:

$$\varphi_{reg} = \frac{k_{reg}}{k_{reg} + k_{rec}} \tag{2.2}$$

gdje je k_{reg} brzina regeneracije, a k_{rec} brzina rekombinacije elektrona s oksidiranom bojom. Za većinu boja je $\varphi_{reg} \approx 1$ ako se kao elektrolit koristi jod. Redukcija oksidirane boje (S^+) s jodom događa se nizom reakcija:

$$S^+ + I^- \to (S \bullet \bullet \bullet I) \tag{2.3}$$

$$(S \bullet \bullet \bullet I) + I^- \to (S \bullet \bullet \bullet I_2^{-\bullet})$$
(2.4)

$$(S \bullet \bullet \bullet I_2^{-\bullet}) \to S + I_2^{-\bullet}$$
(2.5)

$$2I_2^{-\bullet} \to I_3^- + I^-$$
 (2.6)

Prvi korak je transfer elektrona između S^+ i I^- . $U_0(I^{\bullet}/I^-)$ iznosu +1.23 V u odnosu na NHE (normalna vodikova elektroda, eng. normal hydrogen electrode) u acetonitrilu. $U_0(S^+/S)$ je manje pozitivniji u većini boja koje se koriste u DSSC. To je razlog zašto je oksidacija jodida u slobodni jodidov radikal (I^{\bullet}) malo vjerojatna. Redoks potencijal joda vezanog za boju ($S \bullet \bullet I$) je manje pozitivan i zato je veća vjerojatnost da će on nastati kao prvi korak u regeneraciji boje. Dodavanjem drugog jodida nastat će ($S \bullet \bullet I_2^{-\bullet}$) spoj, koji će disocirati u osnovno stanje boje S i $I_2^{-\bullet}$. Na kraju će $I_2^{-\bullet}$ prijeći u trijodid i jodid. Mjerenja su pokazala da je pobuda od 0.5 - 0.6eV potrebna za regeneraciju boje na bazi Ru spojeva u jodid/trijodid elektrolitu. Potreba za tako velikom pobudom dolazi iz činjenice da u početnoj reakcija u regeneraciji sudjeluje I^-/I_2^- par koji ima pozitivniji potencijal od I^-/I_3^- para.

2.1.3 Transport elektrona u mezoporoznom poluvodiču

Mezoporozni sloj TiO₂ se sastoji od velikog broja povezanih nanokristala. Ako nanočestice nisu dopirane i ako su okružene ionima elektrolita, one neće imati unutrašnje električno polje i neće pokazivati savijanje vrpci (eng. band bending).Pošto je gradijent elektronske koncentracije glavni uzrok sile, transport elektrona u mezoporoznom TiO₂ poluvodiču odvija se difuzijom koja se opisuje ambipolarnim difuznim mode-

Slika 2.3: Pregled transporta elektrona u mezoporoznom TiO_2 s porama popunjenim elektrolitom. Zarobljeni elektroni mogu biti locirani na TiO_2 /elektrolit granici, u unutrašnjosti TiO_2 nanočestice ili na površini nanočestice [7].

lom [11]:

$$D_{amb} = \frac{n+p}{(n/D_p) + (p/D_n)}$$
(2.7)

gdje je D_{amb} ambipolarni difuzni koeficijent, n i p koncentracije negativnih i pozitivnih nositelja naboja, a D_n i D_p pripadne difuzijske konstante negativnih i pozitivnih nositelja naboja (u DSSC to su elektroni i kationi). Kada je DSSC obasjana snagom 1 sunca, koncentracija kationa u elektrolitu (~ $3 \cdot 10^{20} cm^{-3}$) je puno veća od koncentracije elektrona u TiO₂ (~ $10^{18} cm^{-3}$) pa na transport elektrona ne bi trebala utjecati mobilnost i vrsta kationa. No, uočeno je da vrsta iona značajno utječu na difuzijsku konstantu što ne predviđa taj model. Vrsta boje koja se koristi u DSSC ne utječe na transport elektrona u TiO₂, no intenzitet upadne svjetlosti utječe tako što brzina transporta elektrona raste s porastom intenziteta. To se može objasniti ako uzmemo da koeficijent difuzije, osim o koncentraciji elektrona, ovisi i o Fermijevom nivou u TiO₂.

Promjena vrijednosti koeficijenta difuzije je reda veličine manja od izračunate vrijednosti za kristal TiO₂ anatas (~ $0.4cm^2s^{-1}$). To se može objasniti modelom višestrukog zatočenja (eng. multiple trapping model). U tom modelu, elektroni su uglavnom zarobljeni u lokaliziranom stanju energije ispod vodljive vrpce, a mogu prijeći u vodljivu vrpcu termalnim pobuđenjem. Frakn i suradnici su mjerili trans-

port elektrona za različite veličine nanočestica TiO_2 i uočili da gustoća zarobljenih stanja raste, a koeficijent difuzije se smanjuje kada se veličina nanočestica TiO_2 smanjuje [12]. Zaključili su da se zarobljena stanja nalaze na površini TiO_2 . Podrijetlo zarobljenih elektron je još nejasno. Možda se elektroni zarobe na defektu u unutrašnjosti ili na površini od TiO_2 ili se Coulombski zarobe preko lokalnog polja tj. preko interakcije elektrona s polarnim TiO_2 kristalom ili s kationima elektrolita.

Na transport elektrona u mezoporoznom TiO_2 utječe i geometrija mreže filma. Benkstein i ostali su napravili simulaciju i eksperiment na nasumičnoj mreži s različitim poroznostima napravljenu od sferičnih TiO_2 nanočestica [13]. Dobili su da veća poroznost stvara više mrtvih krajeva (eng. dead ends, čestice s jednim susjedom), manje od 1% za 50% porozan film do 31% za 75% porozan film. Put elektrona postaje više vijugav za porozniji film što smanjuje transport elektrona u TiO₂ poluvodiču.

2.1.4 Rekombinacija elektrona u poluvodiču s oksidiranom bojom ili elektrolitom

Elektroni su tijekom relativno sporog transporta kroz mezoporozni TiO₂ film uvijek nekoliko nanometara udaljeni od granice između poluvodiča i elektrolita. Rekombinacija elektrona s oksidiranom bojom ili s akceptorima u elektrolitu je tada moguća ako elektron može doći unutar udaljenosti tuneliranja (za trijodid ta udaljenost je < 3nm). U većini slučajeva se pretpostavlja da je rekombinacija elektrona s akceptorima u elektrolitu puno veća od rekombinacije s oksidiranom bojom jer se boja vrlo brzo regenerira. Jedan od razloga zašto rekombinacija s trijodidom nije jako velika je ta što trijodid ima negativan apsolutni naboj kao i elektron i to značajno smanjuje rekombinaciju. Durrant i suradnici su našli da se prijelazna apsorpcija (ΔA) za rekombinaciju može aproksimirati produženom eksponencijalnom funkcijom: $\Delta A(t) = \Delta A(0)e^{-(t/\tau)^{\alpha}}$ [14]. Eksperimentalni podaci pokazuju da α ovisi o sastavu elektrolita i vrsti boje. Fill faktor mjeri povećanje rekombinacije s povećanjem fotonapona. On je obično mali ako smanjenjem potencijal na TiO₂ raste rekombinacija elektrona na trijodidu. Drugi razlog malog fill faktora je da se elektronska koncentracija u TiO₂ poluvodiču poveća što poveća rekombinaciju jer će neki elektroni u TiO₂ poluvodiču neutralizirati pozitivan naboj na njegovoj površini i smanjiti dipolno polje.

2.1.5 Reakcija na protuelektrodi

Transport kationa u elektrolitu između elektroda se događa difuzijom. Ona stvara serijski otpor u DSSC koji ovisi o koeficijentu difuzije, koncentraciji elektrolita i udaljenosti između elektroda. Ako se koristi elektrolit I^-/I_3^- u DSSC tada se na protuelektrodi trijodid reducira u jodid:

$$i_3 + 2e^- \to 3I^- \tag{2.8}$$

Protuelektroda mora biti katalitički aktivna da osigura brzu reakciju i mali prednapon. Pt je dobar katalizator za reakciju.

Slika 2.4: Tipična vremena trajanja osnovnih procesa u DSSC pri radnim uvjetima (zračenje 1 sunca) koristeći elektrolit jodid/trijodid. Rekombinacijski procesi su označeni crvenom bojom [7].

2.2 Osnovni parametri solarne ćelije

Iz I-V krivulje se mogu dobiti osnovni parametri solarnih ćelija koji pokazuju njihovu kvalitetu. I-V krivulja osvijetljene solarne ćelije ima karakterističan oblik prikazan na slici 2.5a. Napon otvorenog kruga (V_{oc}) je maksimalni napon solarne ćelije i javlja se kada solarnom ćelijom ne teče struja (I=0). Struja kratkog spoja (I_{sc}) je struja kada je napon ćelije jednak nula. Maksimalna snaga je definirana kao točka na I-V krivulji solarne ćelije gdje je umnožak $I \cdot V$ maksimalan. I_{max} i V_{max} su vrijednosti napona i struje kada solarna ćelija daje maksimalnu snagu. Fill faktor (FF) je mjera kvalitete solarne ćelije. Dobije se kao omjer maksimalne snage solarne ćelije i umnoška napona

Slika 2.5: (a) Definicija I_{sc} , V_{oc} , I_{max} , V_{max} i P_{max} parametara za I-V krivulju (crveno) solarne ćelije [15]. (b) Efekt povećanja serijskog otpora (R_s) odnosno smanjenja shunt otpora (R_{sh}) na oblik I-V krivulje (crno) solarnih ćelija [16].

otvorenog kruga i struje kratkog spoja.

$$FF = \frac{P_{max}}{I_{sc} * V_{oc}}$$
(2.9)

Grafički, fill faktor je omjer površina plavnog i zelenog pravokutnika prikazanih na slici 2.5a. Ako želimo detaljnije shvatiti karakteristike solarnih ćelija iz I-V krivulje, moramo definirati dodatna dva parametra. Serijski otpor (R_s) se definira kao inverz nagiba tangente I-V krivulje kada je struja nula a napon iznosi V_{oc} . Shunt otpor (R_{sh}) se definira kao inverz nagiba tangente I-V krivulje kada je napon nula a struja iznosi I_{sc} . Najvažniji parametar solarne ćelije je dakako efikasnost (η), omjer maksimalne snage solarne ćelije i intenziteta upadne svjetlosti.

$$\eta = \frac{P_{max}}{I_{svjetlosti}} = \frac{FF * V_{oc} * I_{sc}}{I_{svjetlosti}}$$
(2.10)

2.3 Kristalna struktura TiO₂

Titanijev dioksid se u prirodi pojavljuje u tri kristalne modifikacije: rutil, anatas i brukit. Anatas i brukit zagrijavanjem mogu prijeći u rutil dok obrnuti proces nije moguć. Temperatura faznog prijelaza je na 900 °C i 1000 °C. Sve tri kristalne modifikacije pri visokom tlaku prelaze u visokotlačnu fazu koja se naziva TiO₂ II: anatas pri tlaku većem od 25,6 GPa pri sobnoj temperaturi, a rutil pri (7 ± 0.5) GPa [17]. TiO₂ zbog širokog energijskog procijepa između vodljive i valentne vrpce ima dobra poluvodička svojstva. Biološki i kemijski je neutralan, otporan je na fotokoro-

ziju i kemijsku koroziju. TiO₂ u kristalnoj modifikaciji anatasa je najfotoaktivniji i najpraktičniji poluvodič za uporabu u zaštiti okoliša. Anatas TiO₂ ima tetragonsku strukturu prostorne grupe D_{4h}^{19} (oktaedri kisika imaju četiri brida zajednička sa susjednim oktaedrima) te dvije molekule TiO₂ u elementarnoj ćeliji [18]. Na slici 2.6 prikazana je shema kristalne strukture anatasa i rutila.

Slika 2.6: Shema kristalne strukture od kristalnih modifikacija TiO₂ [18].

2.4 Utjecaj dopiranja na strukturu TiO₂

Ti ima oksidacijski broj 4, a oksidacijski broj Sm i Ho je 3 [19]. Iako se čini da je veličina atoma Sm i Ho prevelika u odnosu na Ti da bi se supstitucijski ugradili u kristalnu rešetku TiO₂ poluvodiča na mjestu Ti, HAADF metodom ćemo pokazati da se Sm doista supstitucijski ugradi i da nastane p-tip poluvodič [20].

Uočeno je da dopiranje TiO₂ Sm usporava fazni prijelaz iz anatasa u rutil te smanjuje veličinu nanočestica. Izmjereni su energijski procijepi nedopiranog TiO₂ i TiO₂ dopiranog sa Sm koji iznose 3.1eV i 2.9eV. Smanjenje energijskog procijepa je pridijeljeno uvođenju akceptorskih nivoa. Kao posljedica toga, dobivena je povećana kvantna efikasnost DSSC (eng. Incident photon-to-electron conversion efficiency, IPCE) što je dalo veću struju kratkog spoja (I_{sc}). Također, smanjenje energije vodljive vrpce E_{cb} TiO₂ dopiranog Sm smanji razliku energija Fermijevog nivoa (E_F) i redoks potencijala I^-/I_3^- . Napon otvorenog kruga V_{oc} se može definirati kao

$$V_{oc} = |E_F - E_{cb}| \tag{2.11}$$

što znači da dopiranjem smanjujem
o V_{oc} od DSSC [21]. Na slici 2.7
b vidimo ilustri-

Slika 2.7: (a) Promjena I-V krivulje dopiranjem TiO_2 Sm [21]. Crna krivulja je dobivena na čistom TiO_2 , a crvena na TiO_2 dopiranim Sm. (b) Ilustracija fotonaponskog procesa u TiO_2 nanočestici dopiranoj Sm [22].

rane fotonaponske procese u dopiranoj TiO₂ nanočestici. Proces A je "down-conversion" luminiscencija koja omogućava pretvorbu ultraljubičaste svjetlosti u vidljivu svjetlost što bi potencijalno moglo poboljšati apsorpciju vidljive svjetlosti. Kada su elektroni ubačeni u vodljivu vrpcu TiO₂, elektroni mogu biti i zarobljeni oko nečistoća u nanočestici uključujući Sm (proces B). Taj proces efektivno potiskuje rekombinaciju čime se poluživot elektrona produžuje. No značajnim povećanjem koncentracije dopanda (Sm), poveća se i broj zarobljenih elektrona i neki od tih elektrona mogu neradijativno prijeći u valentnu vrpcu (proces C) pa preveliko dopiranje TiO₂ može imati i negativan utjecaj na efikasnost DSSC. [22]

2.5 SEM, HR-TEM i HAADF

Osnovni princip rada skenirajućeg elektronskog mikroskopa (SEM) temelji se na prelaženju po površini uzorka vrlo precizno fokusiranim snopom elektrona. Uzorak se nalazi na nosaču u komori mikroskopa, a kao izvor elektrona služi katoda smještena u emisijskoj komori. Elektroni se ubrzavaju na putu između katode i anode koje se nalaze pod visokim naponom. Obično se koriste naponi do 30 kV, a ako se snimaju nevodljivi uzorci idealno je koristiti manje vrijednosti napona 1-5 kV kako bi se u što većoj mjeri izbjeglo nabijanje površine uzorka. Elektroni se na površinu uzorka fokusiraju i usmjeravaju pomoću magnetskih leća te se snop pomiče velikom brzinom po cijeloj površini uzorka. Prilikom interakcije s atomima na površini uzorka elektron iz snopa izbijaju dodatne elektrone. Te izbijene elektrone nazivamo sekundarnim elektronima ili SE (eng. Secondary electrons). Detektor sekundarnih elektrona u SEM-u prenosi signal na ekran ili kameru te se tako dobiva slika uzorka. SEM instrumenti najčešće imaju i detektor, odnosno spektrometar, za mjerenje energije raspršenog rendgenskog zračenja (eng. Energy-dispersive X-ray spectroscopy, skraćeno EDS) koji omogućava određivanje kemijskog sastava uzorka koji se snima. To je detektor koji mjeri karakteristično rendgensko zračenje nastalo tako što elektroni koji padaju na uzorak izbiju elektron iz unutarnje ljuske atoma u uzorku te se prilikom prelaska elektrona iz valentne ljuske u to nepopunjeno stanje emitira foton koji ima energiju u području rendgenskog zračenja. Zapisom dobivenog spektra može se iz omjera intenziteta karakterističnih linija odrediti elementarni sastav uzorka (uzevši u obzir karakteristični intenzitet za danu vrpcu).

U transmisijskoj elektronskoj mikroskopiji (TEM) koriste se transmitirani i difraktirani elektroni za dobivanje slike uzorka (mikrografija) i difrakcijskih slika. Elektron ima i valna i čestična svojstva pa se za velike energije može postići puno manja de Broglievu valnu duljinu elektrona od valne duljine vidljive svjetlosti čime se dobiva bolja rezolucija od optičkog mikroskopa.

Ako se želi postići da skeniranje bude osjetljivo na atomski broj, koristi se širokokutno prstenasto tamno polje (eng. high-angle annular dark-field, skraćeno HAADF) gdje detektiramo elektrone raspršene na jezgri atoma (Rutherfordovo raspršenje) pod velikim kutom. Kako udarni presjek elektrona na jezgri atoma raste s porastom atomskog broja kemijskog elementa (odnosno s porastom broja nukleona u jezgri), raspršenje na težim jezgrama atoma će biti intenzivnije što će se manifestirati kao svjetlija točka na slici.

2.6 Ramanova spektroskopija

Ramanova spektroskopija temelji se na neelastičnom raspršenju pobudnog zračenja na uzorku koje proizlazi iz interakcije upadnog zračenja s električnim dipolom molekule. Klasičnom teorijom ta se interakcija može shvatiti kao smetnja na električno polje molekule zbog koje dolazi do električne polarizacije. Kvantno mehanički gledano, raspršenje se objašnjava prijelazima u virtualna stanja, koja su energijski niža od stvarnih elektronskih prijelaza, pri čemu dolazi do promjene u vibracijskoj energiji. Virtualna stanja ne moraju biti stacionarna vlastita stanja molekule, no ako se podudaraju s nekim od pravih vlastitih stanja tada je riječ o rezonantnoj Ramanovoj spektroskopiji. Razlikujemo Stokesove i anti-Stokesove vrpce. Stokesove vrpce nastaju pri pobuđenju molekule u više vibracijsko stanje dok u slučaju anti-Stokesovih vrpci fotoni preuzimaju dio energije od molekule koja prelazi u niže vibracijsko stanje (slika 2.8). Stokes i anti-Stokes spektri su međusobno simetrični, ali su vrpce

Slika 2.8: Energijski prijelazi kod infracrvene apsorpcije, Rayleighevog raspršenja i Stokes i anti-Stokesovog Raman raspršenja [23].

različitog intenziteta. Stokesovo raspršenje je većeg intenziteta jer je gustoća naseljenosti osnovnog stanja veća od gustoće naseljenosti nekog pobuđenog stanja. Zbog toga se najčešće snima samo Stokesov dio spektra. Vrpce koje se opažaju u Ramanovom spektru odgovaraju vlastitim frekvencijama molekule, odnosno jedinične ćelije kristala i nazivaju se normalni modovi. Nisu svi normalni modovi vibracije Raman-aktivni, već njihova aktivnost ovisi o simetriji molekule, odnosno kristala [24]. Budući da je poznata kristalna struktura anatasa, faktorskom analizom grupa se dobije 15 optičkih modova. Modovi A_{1g} , B_{1g} i E_g su Raman aktivni, a modovi A_{2u} i E_u su infracrveno aktivni. Mod B_{2u} nije niti infracrveno niti Raman aktivan. Na slici 2.9 su prikazani svi optički modovi anatasa i pripadni pomaci svakog atoma. U modovima $\nu_1(E_g)$, $\nu_2(B_{1g})$, $\nu_3(A_{1g})$, $\nu_7(A_{2u})$, $\nu_8(E_u)$ i $\nu_9(B_{2u})$ se Ti-O veza rasteže i sužava, dok se u modovima $\nu_4(B_{1g})$, $\nu_5(E_g)$, $\nu_6(E_g)$, $\nu_10(E_u)$ O-Ti-O veza savija [25].

Slika 2.9: Pomak svakog atoma za vibracije optičkih modova u anatasu prikazan je strelicama. Puni krugovi označavaju atome Ti, a šuplji krugovi atome O [25].

3 Materijali i metode

3.1 Sinteza DSSC

Slika 3.1: Lijevo: TiO_2 slojevi naneseni na podloge FTO stakla, sredina: TiO_2 slojevi nakon umakanja u N3 boju, desno: sastavljene DSSC.

Prije samog nanošenja sloja TiO_2 na podlogu prozirnog vodljivog stakla (FTO, engl. fluorine doped tin oxide), podloge su temeljito očišćene pridržavajući se standardnog protokola za čišćenje ovakvih podloga. Najprije se FTO staklo uronilo u aceton i ostavilo u ultrazvučnom čistaču 480 s. Zatim se procedura ponovila s etanolom te na kraju s destiliranom vodom. Na kraju se FTO staklo osušilo mlazom dušika i 20 min tretiralo u UV-ozon čistaču.

Za pripravu sloja za vođenje elektrona u DSSC se koristio nanočestični prah TiO_2 te nanočestični prahovi TiO_2 dopirani s atomima rijetkih zemlji (1%Sm, 1%Ho i 2%Ho) te dodatno modificirani s kateholom (CAT), salicilnom kiselinom (SA) ili 5aminosalicilnom kiselinom (5-ASA) . Uzorci dopiranih varijanti TiO_2 praha pripremljeni su u kemijskom laboratoriju suradne institucije (Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia).

TiO₂ pasta je pripremljena miješanjem 0.10 g TiO₂ praha i $200 \mu \text{L}$, $250 \mu \text{L}$, $300 \mu \text{L}$ ili 375 μ L 3% PVDF NMP (N-metil-2-pirolidin (NMP) s 3% poli(vinilidin-fluoridom)) u tarioniku sve dok smjesa nije postala homogena. Tehnikom rakel noža (engl. doctor blade) s razmakom koji omogućava da se dobije sloj od $10 \mu \text{m}$ ili $20 \mu \text{m}$ nanesena je TiO₂ pasta na vodljivu stranu FTO stakla te ostavljena u peći 1 h na 150 °C da 3% PVDF NMP ispari. Na isti način je nanesen sloj paste TiO₂ dopiranog s 1%*Sm*, 1%*Ho* ili 2%*Ho*, kao i modificirani s CAT, SA ili 5-ASA. Zatim su se TiO₂ podloge uronile u N3 boju (*Ru*(4, 4' – *dikarboksi* – 2, 2' – *bipiridin*)₂(*NCS*)₂)) na 24h. Pažljivo su isprane s etanolom.

Kao protuelektroda je korišteno FTO staklu sa slojem platine nanesenim evapo-

racijom na vodljivu stranu FTO stakla. Na podlogama s platinom su izbušene rupice kroz koje će se kasnije ubrizgati elektrolit. Podloga s TiO₂ slojem i staklo s Pt elektrodom su međusobno spojeni uz korištenje plastične folije (spacera) kako bi se ostavio prostor između TiO₂ sloja i Pt elektrode u koji će se ubrizgati elektrolit. Kroz prethodno izbušene rupe na podlozi platine, ubrizgao se elektrolit (0.05M I_2 i 0.1M KI u acetonitrilu) između podloga platine i TiO₂ podloge. Rupica je zatvorena ljepljivom trakom.

3.2 SEM, HR-TEM i HAADF

Slika 3.2: Skenirajući elektronski mikroskop na Institutu Ruđer Bošković [26].

Za određivanje morfologije TiO₂ filma koristili smo skenirajući elektronski mikroskop (SEM) Hitachi S-4800 s hladnim FEG-om (Field Emission Gun). Slike su dobivene u sekundarnom elektronskom (SE) načinu rada s akceleracijskim naponom od 5 kV. Za procjenu veličine nanočestica koristili smo visoko razlučivi transmisijski elektronski mikroskop (engl. high-resolution transmission electron microscope, HR-TEM) Philips CM200 FEG transmisijski elektronski mikroskop s akceleracijskim naponom od 200 kV. Za TEM mjerenje, praškasti uzorak je stavljen u kloroform te je rastresen u ultrazvučnoj kupelji kako bi se dobila suspenzija. Zatim je mali dio suspenzije bio kapnut na ugljikom-premazanu bakrenu mrežicu promjera 3mm. Pretražnim transmisijskim elektronskim mikroskopom sa širokokutnim prstenastim tamnim poljem (eng. High angle annular dark field scanning transmission electron microscopy, skraćeno HAADF STEM) je napravljeno snimanje na double Cs aberration corrected (TEM and STEM) JEOL-ARM 200CF.

3.3 Ramanova spektroskopija

Ramanova spektroskopija je napravljena na Horiba, Jobin–Yvon T64000 spektrometru, a diodni laser PSU-H-led valne duljine 532 nm korišten je za pobudu. Korištena je snaga lasera od 25 ili 8 mW, ovisno koliko je bio osjetljiv uzorak. Snimano je u mikro-Raman modu s objektivom koji ima 50x povećanje, a konfokalna pukotina je bila $300\mu m$. Spektri su snimljeni u području od 50 - 5500 cm^{-1} , i to je svaki spektar sniman po 5 sekundi 4 ponavljanja kako bi se popravio signal-šum omjer.S obzirom na to da se kao detektor koristi CCD kamera koja ima broj kanala koji odgovara ~ 600 cm^{-1} , svaki spektar je sniman u više dijelova koji se softverski spoje.

Slika 3.3: Ramanov spektrometar na Institutu Ruđer Bošković [27].

3.4 UV-Vis spektroskopija

Za određivanje energijskog procijepa TiO_2 filmova korištena je UV-Vis spektroskopija (mjerenje koeficijenta transmisije i refleksije). Za određivanje doprinosa N3 boje apsorpciji zračenja u UV-Vis području cijelog uzorka izmjeren je koeficijent transmisije uzorka TiO_2 filma prije i nakon nanošenja N3 boja. Eksperimentalni postav prikazan je na slici 3.4. Sastoji se od izvora svjetla DH 2000 BAL (deuterijska i halogena

Slika 3.4: Eksperimentalni postav za UV-Vis spektroskopiju.

žarulja), optičkih vlakana, leća, komore za pozicioniranje uzorka te visokorezolucijskog UV-Vis spektrometra (Ocean Optics HR4000) s optičkom rešetkom. Svjetlost se od izvora optičkim vlaknom dovodi do komore za uzorke. Upadno svjetlo iz optičkog vlakna se lećom fokusira na površinu uzorka. Drugom lećom se skuplja dio svjetlosnog snopa koji prođe kroz uzorak te se optičkim vlaknom odvodi u spektrometar. Nosač uzorka i leća su tako pozicionirani da snop svjetla pada okomito na površinu uzorka. S obzirom na to da su slojevi TiO₂ debeli 10-ak μm i vrlo porozni, intenzitet direktno transmitirane svjetlosti je vrlo malen. Da bi se odredio difuzni koeficijent refleksije korištena je integrirajuća sfera (80mm). Svjetlost pod kutom od 6° pada na uzorak te se difuzno raspršuje na površini uzorka, a posebno konstruirana unutrašnja površina integrirajuće sfere raspršenu svjetlost fokusira na izlaz sfere gdje je spojeno optičko vlakno koje svjetlost dovodi do spektrometra. Za ovaj eksperiment korišten je puno jači izvor svjetlosti (ksenonska lampa snage 150W). Integrirajuća sfera i ksenonska lampa prikazani su na slici 3.5. Spektrometar je USB kabelom spojen na računalo. Koristeći program "Ocean Optics Spectrasuite" prvo smo izmjerili spektar reflektirane svjetlosti na standardnom uzorku spektralona (serijski broj: OD91E 4548) za koji je poznata spektralna ovisnost koeficijenta refleksije u svrhu baždarenja

(a) Ksenonska lampa i njen izvor

Slika 3.5: Uređaji korišteni za određivanje difuznog koeficijenta refleksije

spektrometra. S tako baždarenim spektrometrom smo izmjerili koeficijent refleksije TiO_2 filmova. Kod mjerenja koeficijenta transmisije nije potrebno korištenje standardnog uzorka za baždarenje. Paul Kubelka i Franz Munk su teorijskim računom dobili vezu između koeficijenta refleksije i apsorpcije [28]:

$$2bSX = ln\left[\frac{R-a-b}{R-a+b} * \frac{R'-a+b}{R-a-b}\right]$$
(3.1)

gdje su korištene supstitucije:

$$a = 1 + \frac{K}{S}$$
 $b = \sqrt{a^2 - 1}$ (3.2)

R je koeficijent refleksije uzorka, *R'* je koeficijent refleksije podloge na kojoj se nalazi uzorak, X je debljina uzorka, K je koeficijent apsorpcije a S koeficijent raspršenja. Pretpostavke modela su da svjetlost pada okomito na uzorak i da je materijal homogen. S obzirom na to da je sloj TiO₂ vrlo debeli (10-ak μm) možemo pretpostaviti da mu je debljina $X = +\infty$. Lijeva strana jednadžbe (3.1) je $+\infty$ pa desna strana mora biti $+\infty$ što je zadovoljeno ako je nazivnik unutar logaritma jednak 0. Tada se izraz pojednostavi u:

$$\frac{K}{S} = \frac{(1 - R_{\infty})^2}{2R_{\infty}}$$
(3.3)

U [29] je izračunata indirektna apsorpcija kao funkcija frekvencije:

$$\alpha h\nu = B(h\nu - E_g)^2 \tag{3.4}$$

gdje je α koeficijent apsorpcije, h Planckova konstanta , ν frekvencija svjetlosti, *B* konstanta a E_g širina energijskog procijepa. Koristeći jednadžbu (3.3) te crtanjem funkcije $\sqrt{\alpha h \nu}$ u ovisnosti o ν dobijemo Tauc plot [30]. Prilagodbom te krivulje pravcem u području 3.2 do 3.5eV dobijemo iznos širine energijskog procijepa kao nultočku prilagođenog pravca.

3.5 Solarni simulator

Za mjerenje I-V karakteristike sastavljenih DSSC korišten je eksperimentalni postav prikazan na slici 3.6. Sastoji se od solarnog simulatora spektralne distribucije intenzi-

Slika 3.6: Eksperimentalni postav za mjerenje I-V karakteristike solarne ćelije.

teta slične sunčevom spektru te Keithley 2400 sourcemetra. Najprije se referentnom solarnom ćelijom kalibrira snaga solarnog simulatora da odgovara snazi zračenja jednog sunca. Zatim se DSSC spoji na Keithley 2400 sourcemeter. Keithley 2400 sourcemer izmjeri struju generiranu u DSSC u ovisnosti o narinutom naponu (I-V karakteristika solarne ćelije). Za modeliranje I-V karakteristike DSSC može se koristiti ekvivalentni strujni krug prikazan na slici 3.7 [31]. Rješavanjem strujnog kruga dobijemo jednadžbu [32]:

$$I = I_{ph} - I_0 \left(e^{\frac{V - R_s I}{nV_T}} - 1 \right) - \frac{V - R_s I}{R_{sh}}$$
(3.5)

Slika 3.7: Model solarne ćelije [33].

gdje je I_{ph} foto struja (engl. photo current), I_0 tamna struja (engl. dark current), V napon solarne ćelije, R_s serijski otpor, R_{sh} shunt otpor, a n faktor idealnosti diode (1 za Ge, 2 za Si). Koristili smo i pokratu:

$$V_T = \frac{e}{k_B T} \tag{3.6}$$

gdje je e elementarni naboj, k_B je Boltzmannova konstanta, a T temperatura. Za mali nametnuti napon dominira linearni član i jednadžba (3.5) se može napisati kao [34]:

$$I = I_{pA} - G_A V \tag{3.7}$$

Gdje su pokrate:

$$I_{pA} = \frac{I_{ph}}{1 + R_s/R_{sh}} \qquad G_A = \frac{1}{R_{sh} + R_s}$$
(3.8)

Linearnom regresijom na I-V podatke mjerenja mogu se odrediti parametri I_{pA} i G_A . Ako je $(V + R_s I) \gg k_B T$ jednadžba (3.5) se može zapisati kao [34]:

$$V = C_0 + C_1 I + C_2 ln \left(1 - \frac{I_c}{I_{pA}} \right)$$
(3.9)

gdje je korištena pokrata:

$$I_c = I + G_A V \tag{3.10}$$

Primjenom metode najmanjih kvadrata za I-V podatke mogu se odrediti parametri C_0 , C_1 i C_2 . Serijski i shunt otpor se tada mogu odrediti iz izračunatih parametara

kao:

$$R_s = -C_1 R_{sh} = \frac{1 + G_A C_1}{G_A} (3.11)$$

Da se odrede ostali parametri solarne ćelije može se pretpostaviti da je $R_s \ll$, $R_{sh} \gg$ i T = 300K tada je $V_T \approx 0.02585 eV$ te se jednadžba (3.5), a ujedno i ekvivalentni strujni krug dodatno pojednostave pa vrijedi:

$$I = I_{ph} - I_0 \left(e^{\frac{V}{nV_T}} - 1 \right)$$
(3.12)

gdje je pojednostavljeni strujni krug prikazan na slici 3.8. Prilagodbom funkcije

Slika 3.8: Pojednostavljeni model solarne ćelije.

(3.12) na I-V podatke mjerenja dobijemo parametre I_{ph} , I_0 i n. Koristeći tu funkciju i relaciju P = V * I možemo naći vrijednost maksimalne snage P_{max} za DSSC. V_{max} i I_{max} su vrijednosti napona i struje za maksimalnu snagu. Struju kratkog spoja I_{sc} dobijemo uvrštavanjem napona V=0 u jednadžbu (3.12) i vidimo da je ona jednaka foto struji I_{ph} . Napon otvorenog kruga V_{oc} je nultočka I-V krivulje dane jednadžbom (3.12). Vrijednost fill faktora (FF) je dana relacijom (2.9), a iznos efikasnosti (η) DSSC možemo dobiti iz jednadžbe (2.10).

4 Rezultati i diskusija

4.1 Morfologija TiO₂ filma

(b) TiO₂-1%Sm

(c) TiO_2 -1%Sm-CAT

Slika 4.1: SEM slike dobivene na TiO₂ filmovima

Na slici 4.1a vidi se površina TiO_2 filma, na slici 4.1b je prikazana površina TiO_2 filma dopiranog Sm, a na slici 4.1c je površina TiO_2 filma dopiranog Sm i modificiranog kateholom. Sa slike se može uočiti aglomeracija nanočestica na TiO_2 -1%Sm i na TiO_2 -1%Sm-CAT pri čemu je na uzorku s kateholom aglomeracija izraženija.

Iako se uočava poroznost na mikrometarskoj skali, to ne potvrđuje da je riječ o nanomaterijalu. Da se pokaže da je doista riječ o nanomaterijalu, prije nanošenja praha u obliku filma, prah je sniman visokorezolucijskom transmisijskom elektronskom mikroskopijom (HR-TEM) s povećanjem od nekoliko stotina tisuća puta. Na slici 4.2a je TiO₂, na slici 4.2b TiO₂ dopiran Sm, a na slici 4.2c TiO₂ dopiran Sm i modificiran kateholom. Sa slike 4.2 se vidi da su dimenzije TiO₂ nanočestica od 30-40 nm dok su za TiO₂-1%Sm odnosno TiO₂-1%Sm-CAT dimenzije nanočestica od

(b) TiO₂-1%Sm

(c) TiO₂-1%Sm-CAT

10-20 nm. To je posljedica priprave uzoraka dopiranih Sm koji su dobiveni kombinacijom sol-gel postupka i sinteze eksplozijom (eng. combustion syntheses). Sinteza eksplozijom je bila primijenjena za dobivanje dopiranih uzoraka kako bi Sm bio ravnomjerno raspoređen u kristalnoj rešetci TiO_2 , dok na uzorak TiO_2 nije bilo potrebno primijeniti eksploziju već je dobiven samo sol-gel postupkom.

Kako bi se odredilo da li je Sm intersticijski ili supstitucijski ugrađen u kristalnu rešetku korištena je HAADF metoda. Pošto atomski broj Sm iznosi 62, dok za Ti i O ima vrijednost od 22 i 16 respektivno, intenzitet raspršenja elektrona na Sm mora biti puno veći nego na Ti i O. To znači da će svijetle točke na slici dobivene HAADF metodom biti Sm. Sa slike 4.3 se može uočiti da je Sm supstitucijski ugrađen u kristalnu rešetku TiO₂ i da ga ima oko 1% od ukupnog broja TiO₂.

Slika 4.3: Slika dobivena HAADF na uzorku TiO₂-1%Sm. Crvenim strelicama su označene najizraženije lokalno svjetlije točke prepoznate kao atomi Sm.

4.2 Kristalna struktura TiO₂ filma

Za proučavanje kristalne strukture TiO2 filmova korištena je Ramanova spektroskopija. Na slici 4.4 su prikazani Ramanovi spektri filmova TiO₂-1%Sm (crvena krivulja), TiO₂-1%Sm-5-ASA (žuta krivulja), TiO₂-1%Sm-CAT (zelena krivulja), TiO₂-1%Sm-SA (plava krivulja) i praha nedopiranog TiO₂ (crna krivulja) za usporedbu. Svi spektri

TiO ₂ -1%Sm	TiO ₂ -1%Sm-5-ASA	TiO ₂ -1%Sm-CAT	TiO ₂ -1%Sm-SA	anatas [25]
145	147*	146	151	144Eg
196	200	197	201	197Eg
397	404	400	395	399 B_{1g}
520**	516**	520**	509**	$513A_{1g} \\ 519B_{1g}$
642	633***	639	634	639Eg

* kombinacija vrpci anatasa 144 Eg
 i rutila 143 B_{1g}

** kombinacija vrpci anatasa 513 A_{1g} i 519 B_{1g} *** kombinacija vrpci anatasa 639Eg i rutila 612 A_{1g}

Tablica 4.1: Ramanove vrpce (u cm^{-1}) od spektara prikazanih na slici 4.4 te Ramanske vrpce anatasa dobivene u radu Toshiaki-a i ostalih te njihov tip moda [25].

imaju karakteristične vrpce anatasa osim TiO_2 -1%Sm-5-ASA koji osim vrpci anatasa ima i vrpce rutila koje su na slici 4.4 označene oznakama ljubičaste boje. U tablici 4.1

Slika 4.4: Ramanovi spektri od: crven:TiO₂-1%Sm, žuti:TiO₂-1%Sm-5-ASA,zeleni:TiO₂-1%Sm-CAT, plavi:TiO₂-1%Sm-SA i crni:TiO₂

su dane sve izmjerene vrijednosti vrpci uzoraka koje su prepoznate kao vrpce anatasa, a prikazane su na slici 4.4 s crnim slovima, te vrpce anatasa iz literature [25]. Mala odstupanja od onih danih u literaturi javljaju se zbog mjerenja uzorka na sobnoj temperaturi što proširuje vrpce. Iako do faznog prijelaza iz anatasa u rutil u mono-

TiO ₂ -1%Sm-5-ASA	rutil [35]			
147*	$143B_{1g}$			
-	235kom			
433	447Eg			
633**	$612A_{1q}$			
-	$826B_{2g}$			
* kombinacija vrpci anatasa	144Eg i rutila			
$143B_{1g}$ ** kombinacija vrpci anatasa 639 Eg i rutila $612A_{1g}$				

Tablica 4.2: Ramanove vrpce (u cm^{-1}) za spektar prikazan na slici 4.4 te Ramanske vrpce rutila iz literature [25].

kristalu pri atmosferskom tlaku dolazi na 900 °C, budući da je riječ o nanomaterijalu,

a ne monokristalu, temperatura faznog prijelaza se može smanjiti do 300-400 °C pa jača snaga lasera primijenjena prilikom snimanja uzorka može uzrokovati fazni prijelaz. Nanočestice dopiranih TiO₂ filmova su manje od čistog TiO₂ pa je temperatura faznog prijelaz za dopirane TiO₂ filmove manja. Također, 5-ASA isto apsorbira lasersku svjetlost čime se uzorak dodatno zagrijava. U tablici 4.2 dani su maksimumi vrpci

Slika 4.5: Ramanovi spektri od: crven:TiO₂-1%Ho, žuti:TiO₂-1%Ho-5-ASA,zeleni:TiO₂-1%Ho-CAT, plavi: TiO₂-1%Ho-SA i crni:TiO₂

izmjerenih za TiO₂-1%Sm-5-ASA koje su prepoznate kao vrpce rutila, a prikazane su na slici 4.4 s ljubičastim oznakama i maksimumima vrpci rutila iz literature [35]. Ramanski spektar filmova TiO₂-1%Ho (crvena krivulja), TiO₂-1%Ho-5-ASA (žuta krivulja), TiO₂-1%Ho-CAT (zeleni), TiO₂-1%Ho-SA(plava krivulja) i praha čistog TiO₂ (crna krivulja) za usporedbu je prikazan na slici 4.5. Spektri TiO₂-1%Ho-5-ASA i TiO₂-1%Ho-SA imaju maksimume vrpci rutila (označe-ne ljubičastim oznakama), a ostali osim vrpci rutila imaju i vrpce anatasa koje su na slici 4.5 označene crnim slovima. U tablici 4.3 su dane sve izmjerene vrijednosti vrpci uzoraka sa slike 4.5 koje su prepoznate kao vrpce anatasa ,a u tablici 4.4 dani su maksimumi izmjerenih vrpci koje su prepoznate kao vrpce rutila. Izmjerene vrijednosti su uspoređene s maksimumima vrpci rutila i anatasa iz literature [35] [25]. Na slici 4.6 su također prikazne Ramanske vrpce na podlogama TiO₂ dopiranim Ho, no s 2% atomske koncentracije

TiO ₂ -1%Ho	TiO ₂ -1%Ho-CAT	anatas [25]
145*	146*	144Eg
197	-	197Eg
401	401	399 B_{1g}
510**	F20**	$513A_{1g}$
519	520	$519B_{1g}$
636***	631***	639Eg

* kombinacija vrpci anatasa 144Eg i rutila 143 B_{1g}

** kombinacija vrpci anatasa 513 A_{1g} i 519 B_{1g}

*** kombinacija vrpci anatasa 639 \check{Eg} i rutila
 612 A_{1g}

Tablica 4.3: Ramanove vrpce (u cm^{-1}) od spektara prikazanih na slici 4.5 te Ramanske vrpce anatasa dobivene u radu Toshiaki-a i ostalih te njihov tip moda [25].

TiO ₂ -1%Ho	TiO ₂ -1%Ho-5-ASA	TiO ₂ -1%Ho-CAT	TiO ₂ -1%Ho-SA	rutil [35]
145*	147*	146*	147*	$143B_{1g}$
-	-	-	262	235kom
430	426	432	427	447Eg
636**	604	631**	614	612 A_{1g}
858	-	855	845	826B _{2q}
709	-	706	707	Ŭ

* kombinacija vrpci anatasa 144Eg i rutila 143 B_{1g}

** kombinacija vrpci anatasa 639 Eg
 i rutila 612 A_{1g} rutila

Tablica 4.4: Ramanove vrpce (u cm^{-1}) od spektara prikazanih na slici 4.5 te Ramanske vrpce rutila izmjerene od Portoa i ostalih te njihov tip moda [25].

TiO ₂ -2%Ho	anatas [25]			
143*	144*Eg			
194	197Eg			
399	399 B_{1g}			
F17**	$513A_{1g}$			
517	$519B_{1g}$			
636***	639Eg			
* kombinacija vrpci	anatasa 144Eg i ru-			
tila $143B_{1-}$				
* kombinacija vrpci anatasa 513.4, i				
$510B_1$				
51715 ₁ g				

*** kombinacija vrpci anatasa 639 Eg
 i rutila 612 A_{1g} rutila

Tablica 4.5: Ramanove vrpce (u cm^{-1}) od spektara prikazanih na slici 4.6 te Ramanske vrpce rutila iz literature [25].

(do sada su svi uzorci dopirani s 1% atomske koncentracije). U tablici 4.5 i 4.6 su prikazani maksimumi vrpci izračunati iz spektara prikazanih na slici 4.6 te uspoređeni s vrpcama od anatasa i rutila respektivno. Na slici 4.7 su prikazani potpuni spektri svih uzoraka na kojima je snimana Ramanova spektroskopija. Osim Ramanovih

Slika 4.6: Ramanovi spektri od:+ crven:TiO₂-2%Ho, žuti:TiO₂-2%Ho-5-ASA,zeleni:TiO₂-2%Ho-CAT, plavi:TiO₂-2%Ho-SA i crni:TiO₂

TiO ₂ -2%Ho	TiO ₂ -2%Ho-5-ASA	TiO ₂ -2%Ho-CAT	TiO ₂ -2%Ho-SA	rutil [35]
143*	144*	151*	143*	$143B_{1g}$
-	-	-	-	235kom
430	427	429	423	447Eg
-	610	615	603	$612A_{1g}$
847	-	-	-	826B _{2g}

* kombinacija vrpci anatasa 144Eg i rutila 143 B_{1q}

Tablica 4.6: Ramanove vrpce (u cm^{-1}) od spektara prikazanih na slici 4.6 te Ramanske vrpce rutila iz literature [35].

vrpci, za većinu uzoraka su uočene i luminiscentne vrpce. Eksperimentalno se to može provjeriti tako da se koristi još jedan laser različite valne duljine i tada će se Ramanove vrpce pomaknuti za iznos jednak pomaku frekvencije laserske zrake dok će luminiscentne vrpce ostati na istoj valnoj duljini.

Slika 4.7: Slika Ramanskih spektra svih uzoraka

4.3 Apsorpcija TiO₂ filma

Slika 4.8: (a) Refleksija na filmu TiO₂-1%Sm. (b) Koeficijent apsorpcije filma TiO₂-1%Sm kao rezultat primjene Kubelka-Munk modela.

Koristeći mjerni postav za UV-Vis spektroskopiju, na debljem filmu TiO_2 dopiranom Sm izmjeren je koeficijent refleksije R u ovisnosti o valnoj duljini u području 340-1000nm i prikazan na slici 4.8. Mjerenje u tom spektralnom području je od interesa za karakterizaciju rada DSSC. Za valnu duljinu 824 nm detektor je bio u zasićenju s obzirom da ksenonski izvor svjetla na toj valnoj duljini ima izolirani maksimum u intenzitetu pa koeficijent refleksije izmjeren na toj valnoj duljini nema fizikalno značenje.

Slika 4.9: Tauc plot za koeficijent apsorpcije uzorka TiO_2 -1%Sm prikazanog na slici 4.8. Isprekidanom linijom je označen pravac prilagodbe korišten za odredivanje širine energijskog procijepa prema izrazu (3.4)

Koristeći Kubelka-Munk model, iz podataka refleksije izračunata je spektralna ovisnost koeficijenta apsorpcije uzorka i prikazana na slici 4.9. S obziro da TiO₂ ima indirektni optički energijski procijep, korištenjem izraza (3.4), na slici 4.9 je konstruiran Tauc plot i linearnom regresijom u području linearne ovisnosti o energiji je određena širina energijskog procijepa kao nultočka pravca prilagodbe. Dobivena vrijednost energijskog procijepa iznosi:

$$E_g = (3.09 \pm 0.03)eV. \tag{4.1}$$

Za TiO₂ dopiran samarijem Hongquan Jiang i suradnici su dobili $E_g = 3.03 eV$ [36]. Rosendo López i Ricardo Gómez su istom metodom odredili energijski procijep za TiO₂ $E_g = 3.26 eV$ [37]. To znači da porozni sloj TiO₂ dopiran Sm ima nešto uži energijski procijep u odnosu na čisti TiO₂. Sužavanje energijskog procijepa je posljedica uvođenja akceptorskih nivoa dopiranjem Sm [22]. Osim dopiranja, i veličina nanočestica ima utjecaj na širinu energijskog procijepa zbog efekta kvantnog zatočenja (eng. quantum confinement effect) koji se može uočiti kada je veličina nanočestice

Slika 4.10: Transmisije uzoraka mjerene UV-Vis spektroskopijom. (a) Koeficijent transmisije za: crno: pokrovno stakalce, crveno: TiO_2 -1%Sm-CAT, žuto: nedopirani TiO_2 , zeleno: TiO_2 -1%Sm, pri čemu su isprekidane krivulje čisti filmovi, a pune krivulje filmovi s infiltriranom N3 bojom. (b) Koeficijent transmisije za: crveno: TiO_2 -1%Ho, zeleno: TiO_2 -1%Sm te plavo TiO_2 -2%Ho

manja od valne duljine elektrona [36]. Tada za male nanočestice energijske vrpce prelaze u diskretne nivoe što za posljedicu ima proširenje energijskog procijepa, a samim time i negativan utjecaj na efikasnost solarnih ćelija.

Izmjeren je koeficijent transmisije za staklo, čisti TiO_2 , TiO_2 -1%Sm i TiO_2 -1%Sm-CAT. Zatim su slojevi senzitizirani organskom bojom N3 te je ponovljeno mjerenje koeficijenta transmisije na istom mjestu uzorka. Rezultati su prikazani na slici 4.10. Za sve uzorke senzitizirane organskom bojom jasno se mogu uočiti područja valnih duljina za koje je koeficijent transmisije smanjen u odnosu na čiste uzorke. To su područja valnih duljina u kojima je značajan doprinos organske boje ukupnoj apsorpciji uzorka. Također, apsorpcija za film TiO_2 -1%Sm je veća od one za TiO_2 . Najvjerojatniji razlog za to leži u različitoj debljini uzoraka (deblji sloj apsorbira više svjetlosti) s obzirom na manjkavosti pripreme slojeva metodom Rakel noža. Na slici 4.10b se vidi da vrsta dopiranja ne utječe na apsorpciju filma u promatranom području.

4.4 Parametri DSSC

Kako bi se povećala efikasnost solarnih ćelija prvo se optimizirala koncentracija TiO₂ praha u 3% PVDF NMP otapalu prilikom pripreme TiO₂ paste. Na slici 4.11 je prikazana ovisnost efikasnosti (Eff), fill faktora (FF), napona otvorenog kruga (V_{oc}) i struje kratkog spoja (I_{sc}) o koncentraciji praha u otapalu. Koncentracija od 0.33 g/mL praha TiO₂ u otapalu daje najveću efikasnost od 0.11% DSSC, a razlog je što ima i najveći

Slika 4.11: Ovisnost parametara DSSC pripremljenih sa slojevima čistog (nedopiranog) TiO₂ o koncentraciji TiO₂ u otapalu (3% PVDF NMP)

napon otvorenog kruga V_{oc} =0.56V i najveću struju kratkog spoja I_{sc} =0.18mA.

Osim koncentracije, analiziran je i utjecaj debljine podloge na parametre DSSC. Pripremljene su podloge TiO₂ debljina $10\,\mu\text{m}$ i $20\,\mu\text{m}$. Vrijednosti debljine se odnose na nominalne debljine određene procijepom Rakel noža tijekom nanošenja sloja. Stvarne debljine slojeva su nešto manje s obzirom da naknadnim postupkom sušenja slojeva otapalo ispari. Njihovi parametri su prikazani na slici 4.12. Efikasnost DSSC na sloju debljine $20\,\mu\text{m}$ je veća od one na sloju debljine $10\,\mu\text{m}$. Struja kratkog spoja i napon otvorenog kruga su unutar standardne greške za različite debljine tj. nije uočena promjena tih parametara s promjenom debljine. Porast efikasnosti je dakle isključivo zbog porasta fill faktora. Porast fill faktora je posljedica smanjenja serijskog otpora i porasta shunt otpora u solarnoj ćeliji. Chung-Yi Huang i suradnici su analizirali utjecaj debljine TiO₂ sloja na efikasnost DSSC i dobili maksimalnu efikasnost za filmove deblje $10\,\mu\text{m}$, a za filmove tanje od $10\,\mu\text{m}$ efikasnost se smanjuje [38].

Budući da se prilikom optimizacije koncentracije praha u otapalu koristila deb-

Slika 4.12: Ovisnost I-V karakteristike i parametara DSSC za čisti (nedopirani) TiO_2 o debljini sloja TiO_2 . Svi TiO_2 slojevi su pripremljeni s koncentracijom od 0.33 g/mL TiO_2 praha u otapalu.

ljina $10\,\mu\text{m}$, moguće je da solarne ćelije male koncentracije (više otapala) imaju manju efikasnost jer se uz korištenje većeg volumena otapala dobiju nehomogenije TiO₂ podloge. To bi objasnilo i smanjenje fill faktora smanjenjem koncentracije (slika 4.11). Promjena V_{oc} i I_{sc} s koncentracijom se ne može objasniti promjenom debljine nakon isparavanja otapala. Razlog promjene V_{oc} i I_{sc} s koncentracijom je dobivanje različite poroznosti TiO₂ filma s različitom koncentracijom.

Za podloge TiO₂ dopirane s Ho uočava se pad efikasnosti DSSC. Glavni razlog je smanjenje struje kratkog spoja s porastom atomskog udjela Ho. Iako se očekivalo povećanje struje kratkog spoja zbog smanjenja energijskog procijepa [21], na smanjenje I_{sc} značajan utjecaj ima povećanje broja defekata na površini nečistoća u TiO₂ što povećava vjerojatnost rekombinacije elektrona na tim defektima. Također, budući da dopirani filmovi imaju manje nanočestice, poveća se dodatno koncentracija zatočenih elektrona, a koeficijent difuzije smanji [7]. Povećana koncentracija elektrona više

Slika 4.13: Ovisnost parametara DSSC o dopiranju TiO₂ s Ho.

smanji dipolno polje na površini TiO₂ (slika 2.2) pa se smanji broj ubačenih elektronea s boje u TiO₂ zbog čega se dodatno smanji I_{sc} [10].

Sa slike 4.13 se može uočiti smanjenje fill faktora za dopirane ćelije što za posljedicu ima i smanjenje efikasnosti. FF se smanjio zbog povećanja serijskog otpora koji se povećao zbog smanjenja koeficijenta difuzije jer dopirani film ima manje nanočestice [7]. Iako se za koncentraciju od 1% Ho nije uočilo smanjenje napona otvorenog kruga, za 2% Ho je uočeno smanjenje. Na V_{oc} utječe širina energijskog procijepa TiO₂ opisana izrazom 2.11. TiO₂ dopiran Ho ima manje nanočestice od čistog TiO₂ što povećava širinu energijskog procijepa, a dopiranje Ho smanjuje. Za atomsku koncentraciju 1% Ho se navedeni efekti poništavaju te nema značajnije promjene energijskog procijepa, a time i V_{oc} . Povećanjem atomske koncentracije Ho na 2% prevlada utjecaj dodatnih energijskih nivoa koji smanje energijski procijep što za posljedicu ima smanjenje V_{oc} .

Za DSSC pripremljene na podlogama TiO2 dopiranim 1%Sm primjećen je sličan

Slika 4.14: Ovisnost parametara DSSC o dopiranju TiO₂ s Sm.

efekt kao za podloge dopirane s 2%Ho. Dakle, smanjena je efikasnost prije svega zbog smanjenja I_{sc} . Smanjen je fill faktor i V_{oc} , a razlozi su isti kao i u slučaju Ho.

DSSC pripremljene na TiO₂-1%Sm-CAT podlozi nisu davale mjerljivu vrijednost struje. Ćelije ili nisu dobro sastavljene (kratki spoj) ili je katehol prekrio cijelu površinu TiO₂ pa se N3 boja nije uspjela vezati direktno na površinu TiO₂ nanočestica, a izlazni rad elektrona iz N3 boje nije dovoljan za prijelaz elektrona u katehol. U slučaju da se N3 ne veže za katehol, objasnilo bi i zašto UV-Vis napravljen na TiO₂-1%Sm-CAT podlozi prije i nakon nanošenja N3 boje ne pokazuje promjene u transmisiji. S obzirom na to bilo bi interesantno istražiti mogućnost da se u DSSC koristi druga organska boja čiji je elektrodni potencijal takav da je moguć prijenos elektrona u katehol. Solarne ćelije modificirane sa SA i 5-ASA također nisu dale mjerljivu vrijednost struje.

5 Zaključak

Sastavljene su DSSC na podlogama TiO_2 i na TiO_2 podlogama dopiranim s 1%Sm, 1%Ho i 2%Ho. TEM slike su pokazale da postupak priprave dopiranog uzorka smanjuje dimenzije TiO₂ nanočestice s 30-40 nm na 10-20 nm. UV-Vis spektroskopijom se pokazalo da je dopiranje TiO₂ podloge rijetkim zemljama učinkovit način za smanjenje energijskog procijepa TiO₂. Očekivalo se povećanje struje kratkog spoja i smanjenje napona otvorenog kruga, no izmjereno je smanjenje obaju parametara solarnih ćelija. Smanjenje struje je objašnjeno povećanjem koncentracije zatočenih elektrona u TiO₂ nanočesticama što povećava rekombinaciju elektrona. Kao posljedica, solarne ćelije na dopiranim podlogama su imale manju efikasnost od onih na podlozi s čistim TiO₂. Dobiveno je veće smanjenje struje kratkog spoja na dopiranim podlogama s većom atomskom koncentracijom Ho. Do povećanja struje kratkog spoja bi eventualno došlo ako se TiO₂ dopira s rijetkom zemljom s koncentracijom dovoljno malom da se ne poveća značajno koncentracija zarobljenih atoma, no dovoljno velikom da dopiranje smanji energijski procijep. U tom slučaju bi bilo optimalno koristiti drugu metodu dopiranja koja ne smanji veličinu TiO₂ nanočestice. Tako bi se izbjeglo proširenje energijskog procijepa zbog efekta kvantnog zatočenja te bi se mogla koristiti manja koncentracija rijetkih zemlji za smanjenje energijskog procijepa. Podloge modificirane s CAT, SA i 5-ASA nisu pokazivale mjerljivu struju kratkog spoja, a vjerojatan razlog je što CAT, SA i 5-ASA prekriju TiO₂ nanočestice te onemoguće vezanje N3 boje za TiO_2 .

Literatura

- [1] International Energy Outlook 2017, U.S. Energy Information Administration, https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-IE02017& region=0-0&cases=Reference&start=2010&end=2050&f=A&linechart= Reference-d082317.2-1-IE02017&sourcekey=0, 1.10.2018.
- [2] Brian O'Regan & Michael Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films // Nature 353(1991), 737–740.
- [3] D. L. Staebler, C. R. Wronski: Reversible conductivity changes in dischargeproduced amorphous Si // Appl. Phys. Lett. 31(2008), 292-294
- [4] Ranabhat Kiran, Patrikeev Leev, Antal'evna-Revina Aleksandra, Andrianov Kirill, Lapshinsky Valerii, Sofronova Elena: An introduction to solar cell technology // Journal of Applied Engineering Science 14, 4(2016), 481-491
- [5] Pom L. Kharel, Francis P. Zamborini i Bruce W. Alphenaar: Enhancing the Photovoltaic Performance of Dye-Sensitized Solar Cells with Rare-Earth Metal Oxide Nanoparticles // Journal of The Electrochemical Society, 165, 3(2018) H52-H56
- [6] Michael Grätzel: Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells // Inorg. Chem. 44, 20(2005), 6841–6851
- [7] Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson: Dye-Sensitized Solar Cells // Chem. Rev. 110, 11(2010), 6595–6663
- [8] Thomas Hannappel, Bernd Burfeindt, Winfried Storck i Frank Willig: Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO₂ Film // J. Phys. Chem. B 101(1997), 6799-6802
- [9] Jani Kallioinen, Gábor Benkö, Villy Sundström, Jouko E. I. Korppi-Tommola i Arkady P. Yartsev: Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)₂(NCS)₂ into Nanocrystalline TiO2 Thin Films // J. Phys. Chem. B 106(2002), 4396-4404

- [10] David Cahen i Gary Hodes: Nature of Photovoltaic Action in Dye-Sensitized Solar Cells // J. Phys. Chem. B, 104, 9(2000), 2053–2059
- [11] N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat i A. J. Frank: Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO₂ // J. Phys. Chem. B, 104(2000), 3930-3936
- [12] N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat i A. J. Frank: Spatial location of transport-limiting traps in TiO2 nanoparticle films in dyesensitized solar cells // Appl. Phys. Lett. 87(2005), 202106
- [13] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank: Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells // J. Phys. Chem. B 107, 31(2003), 7759-7767
- [14] J. Nelson, S. A. Haque, D. R. Klug, J. R. Durrant: Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes // Phys. Rev. B 63, 20(2001) 205321
- [15] Schematic I-V curve of an illuminated PV module and the most important parameters, https://www.researchgate.net/figure/1-The-figure-showsa-schematic-I-V-curve-of-an-illuminated-PV-module-and-the-most_ fig10_279955703, 1.10.2018.
- [16] Schematic I-V curve of an illuminated PV module and the influence of a series resistance R s and a shunt resistance R sh to the I-V curve, https://www. researchgate.net/figure/2-Schematic-I-V-curve-of-an-illuminated-PV-module-and-the-influence-of-a-series_fig11_279955703, 1.10.2018.
- [17] P. Y. Simons and F. Dachille: The structure of TiO₂II, a high-pressure phase of TiO₂ // Acta Cryst. 23(1967), 334-336
- [18] Plodinec Milivoj, Fizikalna i kemijska svojstva funkcionaliziranih titanatnih nanostruktura. Doktorski rad. Zagreb : Prirodoslovno-matematički fakultet, 2014.
- [19] List of oxidation states of the elements, https://en.wikipedia.org/wiki/ List_of_oxidation_states_of_the_elements, 1.10.2018.
- [20] J.C. Slater: Atomic Radii in Crystals // J. Chem. Phys. 41(1964), 3199-3204

- [21] Liguo Wei, Yulin Yang, Xue Xia, Ruiqing Fan, Ting Su, Yan Shi, Jia Yu, Liang Li and Yanxia Jiang: Band edge movement in dye sensitized Sm-doped TiO₂ solar cells: a study by variable temperature spectroelectrochemistry // RSC Adv. 5, 86(2015), 70512-70521
- [22] Meihua Liu, Yuchen Hou i Xiaofei Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO₂ photoanodes // Journal of Materials Research 32, 18(2017), 3469-3476
- [23] Energy-level diagram showing the states involved in Raman spectra, https://en.wikipedia.org/wiki/Raman_spectroscopy#/media/File: Raman_energy_levels.svg, 1.10.2018.
- [24] W. Demtröder, Laser spectroscopy: Basic Concepts and Instrumentation 3rd ed. Berlin Heidelberg New York: Springer, 2003.
- [25] Toshiaki Ohsaka, Fujio Izumi and Yoshinori Fujiki: Raman Spectrum of Anatase, TiO₂ // Journal of Raman spectroscopy, 7, 6 (1978), 321-324
- [26] Pretražni elektronski mikroskop, JSM 7000F, https://sestar.irb.hr/ images/instrumenti/photos/28.jpg, 1.10.2018.
- [27] Ramanov spektrometar tvrtke HORIBA Jobin Yvon model T64000, https://www.irb.hr/var/ezflow_site/storage/images/istrazivanja/ zavodi/zavod-za-fiziku-materijala/laboratorij-za-molekulskufiziku-i-sinteze-novih-materijala/oprema/raman-spectrometer/ 523571-1-cro-HR/Raman-spectrometer.jpg, 1.10.2018.
- [28] Paul Kubelka, Franz Munk: An Article on Optics of Paint Layers // Z. Tech. Phys, 1931
- [29] Earnest J. Johnson: Semiconductors and Semimetals, Volume 3, Chapter 6 Absorption near the Fundamental Edge, Academic Press Inc, 1967.
- [30] Krunoslav Juraić, Tanki filmovi amorfnonanokristalnog silicija: strukturne i optičke osobine. Doktorski rad. Zagreb : Prirodoslovno-matematički fakultet, 2012.

- [31] Liyuan Han, Naoki Koide, Yasuo Chiba, and Takehito Mitate: Modeling of an equivalent circuit for dye-sensitized solar cells // Appl. phys. Lett. 84(2004), 2433-2435
- [32] Tian Hanmin, Zhang Xiaobo, Yuan Shikui, Wang Xiangyan, Tian Zhipeng,Liu Bin, Wang Ying, Yu Tao, Zou Zhigang: An improved method to estimate the equivalent circuit, parameters in DSSCs // Solar Energy 83, 5(2009), 715–720
- [33] Stephen lourens Tanihaha, Henri P. Uranus, Jessie Darma: Fabrication and Characterization of Dye-Sensitized Solar Cell Using Blackberry Dye and Titanium Dioxide Nanocrystals // 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies.
- [34] K. Bouzidi, M. Chegaar, A. Bouhemadou: Solar cells parameters evaluation considering the series and shunt resistance // Solar Energy Materials & Solar Cells 91, 18(2007), 1647–1651
- [35] S. P. S. Porto, P. A. Fleury and T. C. Damen: Raman Spectra of TiO₂, MgF₂, ZnF₂
 FeF₂, and MnF₂ // Phisical review 154, 2(1967), 522-526
- [36] Hongquan Jiang, Qingyuan Wang, Shuying Zang, Jingshen Li, Qiaofeng Wang: Enhanced photoactivity of Sm, N, P-tridoped anatase-TiO₂ nano-photocatalyst for 4-chlorophenol degradation under sunlight irradiation // Journal of Hazardous Materials 261, 15(2013), 44–54
- [37] Rosendo López and Ricardo Gómez: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO₂: a comparative study // J. of Sol-Gel Sci. Technology 61, 1(2012), 1–7
- [38] Chung-Yi Huang, Ying-Chan Hsu, Jian-Ging Chen, Vembu Suryanarayanan, Kun-Mu Lee, Kuo-Chuan Ho: The effects of hydrothermal temperature and thickness of TiO₂ film on the performance of a dye-sensitized solar cell // Solar Energy Materials & Solar Cells 90, 15(2006), 2391–2397