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Trace anomalies from matter models in curved
spacetime

Abstract

Using the effective action approach we deal with two main topics: the trace anomaly

in chiral theory and higher spin effective actions.

First, we recalculate the odd-parity trace anomaly for Weyl fermion and consider

possible contributions from tadpole and seagull terms in the Feynman diagram approach

with dimensional regularization. Introduction of an axial symmetric tensor, in addition to

the usual gravitational metric, allows us to use Dirac fermions which are coupled not only

to the usual metric but also to the additional axial tensor. We obtain the trace anomaly for

Majorana and Weyl fermions in two suitable limits of such a general configuration. We also

compute non-perturbatively the odd-parity trace anomaly in a theory of a Dirac fermion

field coupled to a metric-axial-tensor background, using Schwinger-DeWitt heat kernel

technique with two different regularizations: dimensional and ζ-function regularization.

We find that in theories with chiral fermions coupled to curved background the trace of

the energy-momentum tensor at one-loop gets a contribution from the Pontryagin density

with an imaginary coefficient. We also find that for Majorana and Dirac fermions the

odd-parity part of the trace anomaly vanishes as expected.

Second, we analyze the effective actions obtained in both massless and massive scalar

and fermion model coupled to higher spin sources (external fields) via conserved currents.

We are focused on two-point correlators so that the constructed one-loop effective action

contains only the quadratic terms and the relevant equations of motion for the sources we

obtain are the linearized ones. We show that our results can be expressed in a geometric

form, that is, in terms of covariant generalized Jacobi tensors. In 3d we also consider the

odd-parity sector where we find a generalization of Pope-Townsend Chern-Simons-like

action. Moreover, we formulate the worldline quantization of a massive fermion model

coupled to external higher spin sources. We find that the regularized effective action

obtained in this way is endowed with an L∞ symmetry.

Keywords: effective actions, trace anomalies, Pontryagin density, higher spins, L∞ sym-

metry



Anomalije traga iz modela materije u zakrivljenom
prostoru

Prošireni sažetak

Kada opisujemo fundamentalne interakcije u fizici, simetrije i pridruženi zakoni očuvanja
igraju glavnu ulogu. Može se dogoditi da, nakon što kvantiziramo teoriju, zakon očuvanja
koji je vrijedio na klasičnom nivou, na kvantnom nivou vǐse ne vrijedi. Tada kažemo
da je teorija anomalna. Kvantne anomalije mogu biti bezopasne ili štetne. Bezopasne
anomalije (na primjer kiralna anomalija koja objašnjava raspad piona na dva fotona)
imaju fzikalne posljedice, dok štetne anomalije (na primjer kiralna baždarna anomalija)
narušavaju konzistentnost teorije pa se stoga koriste za isključenje teorija.

Koristeći metodu efektivne akcije bavit ćemo se neparnom anomalijom traga tenzora-
energije impulsa u 4d u teoriji s kiralnim fermionima u zakrivljenom prostoru te Diracovim
fermionima u MAT gravitaciji. Pokazat ćemo da je neparni dio anomalije traga dan s
Pontryaginovom gustoćom s imaginarnim koeficijentom što ukazuje na lom unitarnosti
i narušenje konzistencije teorije (jer tenzor energije-impulsa postaje imaginaran). To
sugerira da se ova anomalija može koristiti kao selektivni kriterij za razne teorije.

Zanimaju nas i modeli materije vezani na polja vǐseg spina. Dok je teorija slobodnih
bezmasenih polja vǐseg spina većeg od dva konzistentna, postoje ozbiljna ograničenja u
obliku ”no-go” teorema za opis njihovih interakcija, osobito u ravnom prostor-vremenu.

Kao prvi korak prema našem cilju da analiziramo anomalije u modelima materije koji
interagiraju s poljima vǐseg spina, potrebno je vidjeti koji je oblik efektivne akcije dobivene
integrirajući mikroskopsko polje materije (fermionsko ili skalarno) u teoriji u kojoj je
mikroskopsko polje vezano na polja vǐseg spina putem očuvanih struja. Usredotočit ćemo
se na kvadratni dio efektivne akcije te doznati da su dobivene akcije nelokalne. Nakon
oduzimanja konačnog broja kontračlanova iz efektivne akcije, pokazuje se da ova metoda
predstavlja alat za dobivanje informacije o dinamici vǐsih spinova. To ukazuje da bismo u
ovom pristupu, računanjem korelatora vǐseg reda mogli doznati vǐse o nelinearnoj strukturi
vǐsih spinova. Na ovaj način možemo dobiti i uvid u to kako su ”no-go” teoremi povezani
s našim slučajem, tj. predstavljaju li ograničenja ili ih zaobilazimo.

Naš drugi pristup temelji se na kvantizaciji svjetske linije fermionskog modela vezanog
na polja vǐseg spina. U ovom pristupu dobivamo egzaktnu baždarnu transformaciju pa
postoji mogućnost da dobivena efektivna akcija bude baždarno invarijantna bez dodavanja
kontračlanova. U slučaju da nema generaliziranih anomalija difeomorfizama, pronalaz-
imo da efektivna akcija posjeduje L∞ simetriju. To sugerira da integriranje L∞ algebre
možemo koristiti za pronalaženje mogućih kandidata za teorije vǐsih spinova.

Efektivne akcije i simetrije

Fundamentalni objekt u kvantnoj teoriji polja je particijska funkcija koja je generator
svih korelacijskih funkcija. Definiramo je sa

Z[ϕ] =

ˆ
DφeiS[φ,ϕ] (1)

gdje je ϕ vanjsko klasično polje kao na primjer spin 1 polje Aµ, spin 2 polje hµν ili općenito
polje vǐseg spina-s ϕµ1...µs . Pretpostavljamo da je klasična akcija S[φ, ϕ] suma slobodne



akcije S0[φ] za neko polje materije φ te interakcije Sint[φ, ϕ]: S[φ, ϕ] = S0[φ]+Sint[φ, ϕ]. Za
danu particijsku funkciju Z[ϕ] uvodimo efektivnu akciju W [ϕ] = −ilnZ[ϕ] koja generira
sve povezane korelacijske funkcije. Pretpostavimo li da je interakcija oblika

Sint[φ, ϕ] =
∑
s

ˆ
ddxϕµ1...µsj

µ1...µs(x). (2)

gdje su jµ1...µs(x) očuvane struje (na ljusci mase) minimalno vezane na vanjsko polje spina
s ϕµ1...µs , tada efektivna akcija postaje:

iW [ϕ] = iW [0] +
∞∑
n=1

∑
s1,...,sn

in

n!

ˆ n∏
i=1

ddxiϕ
µ11...µ1s1 (x1) . . . ϕµn1...µnsn (xn)

× 〈0|T jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉c (3)

Jednopetljeni korelator na jednu točku za jµ1...µs definira se kao 〈〈jµ1...µs(x)〉〉 = δW [ϕ]
δϕµ1...µs (x)

.

Simetrije klasične teorije. Ako je klasična akcija S, koja opisuje polje materije
φ(x) vezano na baždarno polje Aµ, invarijantna na baždarnu transformaciju δAµ = ∂µλ,
struja jµ(x) = δS

δAµ(x)
biti će očuvana ∂µj

µ(x) = 0.

Slično, za polje materije φ(x) vezano na gravitaciju, klasična akcija invarijantna je
na difeomorfizme δξgµν(x) = ∇µξν + ∇νξµ pa je tenzor energije-impulsa kovarijantno
očuvan ∇µTµν(x) = 0. Osim toga, akcija je invarijantna i na Weylove transformacije
δωgµν(x) = 2ω(x)gµν(x) u bezmasenom slučaju što implicira da trag tenzora energije-
impulsa ǐsčezava T µµ = 0.

Nadalje, za polje materije φ(x) vezano na polje vǐseg spina ϕµ1...µs , s > 2, ako je akcija
invarijantna na baždarnu transformaciju u najnižem redu δϕµ1...µs = ∂(µ1Λµ2...µs), tada
je struja jµ1...µs(x) = δS

δϕµ1...µs (x)
očuvana na ljusci mase ∂µ1jµ1...µs(x) = 0. Povrh toga,

u limesu m → 0, ako je teorija invarijantna na generalizirane Weylove transformacije
δϕµ1...µs = η(µ1µ2ωµ3...µs), trag struje jµ1...µs ǐsčezava ηµ1µ2jµ1...µs(x) = 0.

Simetrije kvantne teorije. Ako kvantna teorija posjeduje iste simetrije kao i
klasična teorija, kvantna efektivna akcija W biti će invarijantna na iste baždarne trans-
formacije kao i klasična akcija. Za polje spina 1 korelator na jednu točku struje 〈〈jµ(x)〉〉
poštuje Wardov identitet za baždarnu invarijantnost

∂µ〈〈jµ(x)〉〉 = 0 (4)

Nadalje, za polje spina 2 imamo Wardov identitet za invarijantnost na difeomorfizme te
Wardov identitet za Weylovu invarijantnost:

∇µ〈〈Tµν(x)〉〉 = 0, 〈〈T µµ (x)〉〉 = 0 (5)

Sličan kovarijantan zakon očuvanja trebao bi biti zapisan i za s > 2 struje, ali često ćemo
se zadovoljiti i s najnižim netrivijalnim redom za koji se zakon očuvanja reducira na

∂µ1〈〈jµ1...µs(x)〉〉 = 0 (6)

vi



Konačno, Wardov identitet za generalizirane Weylove transformacije je

ηµ1µ2〈〈jµ1...µs(x)〉〉 = 0 (7)

U slučaju kada kvantna teorija ne poštuje iste simetrije kao i klasična teorija, Wardovi
identiteti su narušeni i tada kažemo da je teorija posjeduje anomaliju.

Anomalija traga

Pri opisu fundamentalnih interakcija u fizici, simetrije i pripadni zakoni očuvanja igraju
važnu ulogu. Može se dogoditi da simetrija klasične teorije nije simetrija efektivne akcije
u kvantnoj teoriji i tada teorija posjeduje anomaliju [1]-[3]. U ovom radu fokusiramo se na
anomaliju traga za Weylove fermione vezane na gravitaciju. Ovu anomaliju još nazivamo
i Weylova anomalija ili konformna anomalija. Oblik anomalije traga ovisi o dimenziji
prostorvremena i uvjetima konzistencije (Wess-Zumino). U 4 dimenzije anomalija traga
sadrži Weylovu, Eulerovu (Gauss-Bonnet) i Pontryaginovu gustoću [4]-[12]:

〈〈T µµ (x)〉〉 = aE + cW 2 + e P (8)

gdje je posebno

P =
1

2
εµνρσ Rµν

αβ Rρσαβ (9)

Dok Weylova i Eulerova gustoća čuvaju CP (nabojna konjugacija i paritet), Pontryaginova
gustoća narušava CP. Koeficijenti a, c and e ovise o teoriji [7, 13, 14] . Mi ćemo se fokusirati
na koeficijent e uz neparni dio anomalije.

Jedan slučaj gdje se Pontryaginova gustoća može javiti je u teoriji s kiralnim fermion-
ima koji interagiraju s gravitacijom [15]-[21] u 4d. Akcija je

S =

ˆ
d4x

√
|g| iψLγµ

(
∇µ +

1

2
ωµ

)
ψL (10)

dok je metrika gµν = ηµν + hµν gdje je hµν mala preturbacija oko ravnog prostora. U

originalnom računu [15] polje ψ je redefinirano ψ → |g| 14ψ. Račun anomalije traga bazi-
ran je na Feynmanovim dijagramima i dimenzionalnoj regularizaciji. Slijedeći [19], u
ovom radu predstaviti ćemo detaljniji račun neparnog djela anomalije traga. Prije svega,
ne redefiniramo polje ψ te razmatramo postojanje dodatnih neǐsčezavajućih dijagrama.
Ispostavlja se da samo korelator na 3 točke (trokutni dijagram) doprinosi. Eksplicitan
račun trokutnog dijagrama daje h2 član u razvoju Pontryaginove gustoće

〈〈T µµ 〉〉 = − 3i

768π2
P

Moramo još provjeriti i očuvanje tenzora energije-impulsa. Pokazuje se da anomalija na
difeomorfizme ne ǐsčezava. Da bismo je pokratili uvodimo kontračlan C = −1

2

´
ω hµµA0

gdje je A0 = i
768π2P. Na taj način anomalija traga postaje

〈〈T µµ 〉〉 =
i

768π2
P (11)

vii



Time se potkrepljuje rezultat iz [15]. Za desne fermione koeficijent e ima suprotan predz-
nak eR = − i

768π2 .
Neparni dio anomalije traga za Weylove fermione često je prihvaćen sa sumnjom, a

razlog tome je tvrdnja da su bezmaseni Majoranini i Weylovi fermioni isti jer njihove
klasične akcije izgledaju isto u dvokomponentnoj notaciji. Ako je ova tvrdnja istinita i
na kvantnom nivou, anomalija traga za Weylove fermione ne postoji. S druge strane, ne
smijemo zaboraviti da je centralni objekt u kvantnoj teoriji, kada razgovaramo o anoma-
lijama, integralna mjera koja nije ista za Majoranine i Weyove fermione. Jedan način
na koji možemo pokazati da one nisu iste je eksplicitni račun anomalije traga. Neparni
dio anomalije traga za Majorana fermione ǐsčezava dok je za Weylove fermione zadan
Pontyaginovom gustoćom.

Da bismo učvrstili naš rezultat i izbjegli probleme s integralnom mjerom, uvodimo
MAT gravitaciju gdje povrh obične metrike gµν , uvodimo i aksijalni metrički tenzor fµν :
Gµν = gµν + γ5fµν . Ideja je ugraditi naš sustav u šire okruženje te na taj način omogućiti
formulaciju problema pomoću Diracovih fermiona. Akcija je tada

S =

ˆ
d4x iψ

√
|Ḡ|γaÊµ

a

(
∂µ +

1

2
Ωµ

)
ψ (12)

Akcija je invarijantna na difeomorfizme δΞGµν = DµΞν + DνΞµ s parametrom Ξµ =
ξµ + γ5ζ

µ i na Weylove transformacije δωGµν = 2ωGµν s parametrom ω te aksijalne
Weylove transformacije δηGµν = 2γ5ηGµν s parametrom η. Sada postoje dva očuvana
tenzora energije-impulsa T µµ (x) i T5µ

µ(x). Račun anomalije traga pomoću Feynamovih
dijagrama i dimenzionalne regularizacije daje

〈〈T µµ (x)〉〉 =
i

768π2
εµνλρR(1)

µν
στR(2)

λρστ

〈〈T5µ
µ(x)〉〉 =

i

1536π2
εµνλρ

(
R(1)
µν

στR(1)
λρστ +R(2)

µν
στR(2)

λρστ

)
(13)

gdje su R(1)
µνρλ i R(2)

µνρλ redom, obični i aksijalni dio Riemannovog tenzora.

Neparni dio anomalije traga za lijevi Weylov fermion dobiva se u limesu hµν → hµν
2

,

fµν → hµν
2

glasi

〈〈T µµ 〉〉 =
i

768π2
P (14)

S druge strane, za desni Weylov fermion koristimo limes hµν → hµν
2

, kµν → −hµν
2

te u ovom
slučaju anomalija mijenja predznak. Nadalje, neparni dio anomalije traga za Diracov
fermion (ili Majorana ako ψ zadovoljava uvjet realnosti) dobiva se u limesu hµν → hµν ,
fµν → 0. Anomalija u ovom slučaju ǐsčezava.

Isti rezultat može se dobiti i neperturbativno koristeći Schwinger-DeWittovu metodu
zajedno s dvije različite regularizacije: dimenzionalnom i regularizacijom pomoću ζ-
funkcije, kao što je pokazano u [20]. Definiramo amplitudu

〈x̂, ŝ|x̂′, 0〉 = 〈x̂|eiF̂ŝ|x̂′〉 (15)

viii



gdje je F̂ = ∇̂µĝ
µν∇̂ν − 1

4
R̂ i koja zadovoljava sljedeću diferencijalnu jednadžbu

i
∂

∂ŝ
〈x̂, ŝ|x̂′, 0〉 = −F̂x̂〈x̂, ŝ|x̂′, 0〉 (16)

Koristeći anstatz

〈x̂, ŝ|x̂′, 0〉 = − lim
m→0

i

16π2

√
D̂(x̂, x̂′)

ŝ2
e
i
(
σ̂(x̂,x̂′)

2ŝ
−m2ŝ

)
Φ̂(x̂, x̂′, ŝ) (17)

gdje je Φ̂(x̂, x̂′, ŝ) =
∑∞

n=0 ân(x̂, x̂′)(iŝ)n s rubnim uvjetom [â0] = 1, dobiva se rekurzivna
relacija za koeficijente ân:

(n+ 1)ân+1 + ∇̂µân+1∇̂µσ̂ −
1√
D̂
∇̂µ∇̂µ

(√
D̂ân

)
+

(
1

4
R̂−m2

)
ân = 0 (18)

Uz ovu relaciju možemo odrediti koeficijente ân u limesu x̂ → x̂′ što označavamo s [ân].
Za neparni dio anomalije traga u 4d relevantan je koeficijent [â2]

[â2]|odd =
1

48
R̂µνR̂µν

Da bismo izračunali anomaliju traga potreban nam je i regulator da bismo eliminirali
divergencije u koincidentnim točkama. Kao što smo već spomenuli koristimo dimenzion-
alnu i regularizaciju pomoću ζ-funkcije. U dimenzionalnoj regularizaciji, d = 4 i za m = 0
efektivna akcija glasi

L̂ =
1

16π2

(
1

d− 4
− 3

4

) ˆ
ddx̂ tr

(
[â2]|m=0

√
ĝ
)

+ L̂R (19)

gdje je

L̂R =
i

64π2
tr

ˆ ∞
0

d̂s ln(4πiµ2ŝ)
√

ĝ
∂3

∂(îs)3

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

) ∣∣∣
m→0

(20)

Goli dio akcije je invarijantan na Weylove transformacije δω̂L̂ = 0 dok renormalizirani dio
L̂R definira tenzor energije-impulsa 2√

ĝ

δ
δĝµν

L̂R = 〈〈T̂ µν〉〉.U prikladnom limesu, za neparni

dio anomalije traga opet dobivamo (14), čime potkrepljujemo rezultat iz [15, 19]. Isto
možemo potvrditi i korǐstenjem regularizacije pomoću ζ-funkcije. Povrh toga, pokazujemo
da se opisana metoda može proširiti na MAT gravitaciju.

Važno je primijetiti da je koeficijent uz Pontryaginovu gustoću imaginaran. Imaginarni
tenzor energije-impulsa može slomiti unitarnost te narušiti konzistentnost teorije. To
sugerira da ovu anomaliju koristimo kao selektivni kriterij za razne modele. Naime, ako
u nekoj teoriji postoji balans lijevih i desnih kiralnih fermiona neparni dio anomalije se
pokrati te problem anomalije tada ne postoji. Napomenimo i da Pontryaginova gustoća
ǐsčezava u nekim slučajevima kao što su FRW ili Schwarzschildova geometrija.

Jedan od važnih ishoda ovog pristupa je i sama MAT gravitacija koja se može samostalno
proučavati kao novi bimetrički model.

ix



Efektivne akcije i polja vǐseg spina

Da bismo konstruirali konzistentnu kvantnu teoriju gravitacije i materije, ideja je koristiti
beskonačan broj polja vǐseg spina. Jedan primjer te ideje je teorija (super)struna gdje se
u spektru javlja beskonačan toranj polja vǐseg spina [22, 23]. Još jedan primjer teorije s
beskonačno mnogo polja vǐsih spina je i Vasilievljeva teorija [24]-[27] . Moguće je da ovo
nisu jedini primjeri, ali tada se postavlja pitanje: koji zahtjevi moraju biti zadovoljeni da
bi teorija vǐsih spinova imala smisla?

U ovom radu predstaviti ćemo ideju započetu u [28] te u [29]-[33] gdje koristimo pristup
efektivne akcije da bismo odredili linearnu klasičnu dinamiku polja vǐseg spina. Interakcija
masivnog skalarnog ili fermionskog polje s poljima vǐseg spina ϕµ1...µs dana je putem
očuvanih jµ1...µs , Sint ∼

∑
s

´
ddxϕµ1...µsjµ1...µs . Da bismo analizirali dinamiku polja vǐseg

spina potreban nam je kvadratni dio efektivne akcije što znači da su jednadžbe gibanja
linearizirane. Efektivnu akciju dobivamo računanjem korelatora na 2 točke očuvanih struja
pomoću Feynmanovih dijagrama i metode koju su uveli Davydychev i suradnici, [34]-[36].
Kao što smo prethodno spomenuli, ideja je uvesti beskonačno polja vǐsih spinova u teoriju.
Zato razmatramo i korelatore dvije struje za bilo koji spin vezane na polja koji mogu
doprinositi efektivnoj akciji. Ove korelatore zovemo mješoviti ili ne-dijagonalni.

Važno je napomenuti i da očuvane struje nisu jedinstvene te da njihov oblik utječe
na oblik efektivne akcije. Uglavnom ćemo se usredotočiti na dva specifična izbora koje
nazivamo jednostavne struje i struje čiji trag ǐsčezava. Jednostavne struje su

js
µ1...µs

= isϕ†
(↔
∂µ

)s
ϕ , jf

µ1...µs
= is−1ψ̄γµ

(↔
∂µ

)s−1

ψ (21)

dok su struje bez traga dane kao posebna linearna kombinacija prethodnih struja. Njihov
trag ǐsčezava u limesu kada masa ide u nulu (slučaj generalizirane Weylove invarijantnosti).
Definirane su sa:

jst
µ1...µs

=

b s
2
c∑

l=0

as
s,l (2πµµ)l j̃s

µ1...µs−2l
, jft

µ1...µs
=

b s−1
2
c∑

l=0

af
s,l (2πµµ)l j̃f

µ1...µs−2l
(22)

gdje je

as
s,l =

(−1)ls! Γ
(
s+ d−3

2
− l
)

22ll!(s− 2l)! Γ
(
s+ d−3

2

) , af
s,l =

(−1)l(s− 1)! Γ
(
s+ d−3

2
− l
)

22ll!(s− 2l − 1)! Γ
(
s+ d−3

2

) (23)

Amplituda za struje dva različita spina s1 i s2 za struje čiji trag ǐsčezava može biti zapisana
kao linearna kombinacija amplituda za jednostavne struje.

Analizom općenitog oblika očuvanog korelatora na 2 točke doznajemo da se isti mogu
zapisti pomoću projektora πµν = ηµν − ∂µ∂ν

2
, na sljedeći način

bs/2c∑
l=0

alπ
s−2l
µν πlµµπ

l
νν (24)

gdje su koeficijenti al funkcije impulsa k i mase m. Iako je zapis pomoću projektora jako
prikladan, informacija o geometriji naših rezultata zadana je implicitno na ovaj način.

Najjednostavniji način za formulaciju slobodne bezmasene teorije vǐsih spinova je
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pomoću Fronsdalovog tenzora [37, 38]

F ≡ 2ϕ− ∂ ∂ · ϕ+ ∂2ϕ′ = 0 (25)

Fronsdalova jednadžba invarijantna je na lokalne baždarne transformacije δϕ = ∂Λ s
parametrom Λ ≡ Λµ1···µs−1 , samo ako je parametar Λ ograničen Λ′ = 0. Ovo ograničenje
možemo izbjeći ako uvedemo generalizaciju F(n) Fronsdalovog diferencijalnog operatora
[39]-[41], koji je baždarno invarijantan za n dovoljno velik. Operator F(n) zadan je
rekurzivno

F(n+1) = F(n) +
1

(n+ 1)(2n+ 1)

∂2

�
F(n)′ − 1

n+ 1

∂

�
∂ · F(n) (26)

sa F(0) = �ϕ i F(1) ≡ F = �ϕ − ∂∂ · ϕ + ∂2ϕ′. Obzirom na to da rezultate izražavamo
pomoću projektora, operatori F(n) nisu prikladni za našu analizu jer su nelokalni i neočuvani
(njihova divergencija ne ǐsčezava). Za naše svrhe važan je generalizirani Einsteinov tenzor

G(n) =
n∑
p=0

(−1)p
(n− p)!

2pn!
ηp F(n)[p], gdje je

{
s = 2n s even

s = 2n− 1 s odd
(27)

Divergencija G(n) je nula te su neograničene jednadžbe gibanja za ϕ

G(n) = 0 (28)

U [30] pokazujemo da se bilo koja jednadžba gibanja može izraziti pomoću generaliziranog
Einsteinovog tenzora i njegovih tragova.

Da bismo izrazili efektivnu akciju u geometrijskom obliku, uvodimo generalizirani
Jacobijev tenzor Rµ1,...µsν1...νs = ∂µ1 . . . ∂µsϕν1...νs|antisimetriziran u svim (µj , νj) (generalizacija

Riemannovog tenzora), koji je povezan sa F(n) na sljedeći način:

F(n) =

{
1

�n−1R
(s)[n] s = 2n

1
�n−1∂ ·R(s)[n−1] s = 2n− 1

(29)

Bilo koju akciju ili jednadžbu gibanja možemo izraziti pomoću generaliziranih Jacobijevih
tenzora tako da ovisnost o generaliziranim Einsteinovim tenzorima zamijenimo s ovisnošću
o F(n), te ovisnost o F(n) zamijenimo s ovisnošću o Jacobijevim tenzorima.

Da bi naša opća zapažanja bila konkretnija promatramo sljedeće eksplicitne primjere.
Najjednostavni primjeri su bezmaseni skalarni i fermionski model s jednostavnim i stru-
jama bez traga. Posebno, eksplicitnim računom korelatora s dvije struje doznajemo da,
za struje čiji je trag nula, i sam korelator ima svojstvo da je njegov trag nula. Doznajemo
i da, u ovom slučaju, ne-dijagonalni korelatori ǐsčezavaju.

Općenito, bezmaseni slučaj ne sadržava potpunu informaciju pa stoga koristimo ma-
sivni skalarni i fermionski model. Iako možemo izračunati izraze za korelatore dvije struje
u općenitoj dimenziji, rezultati su izraženi pomoću hipergeometrijskih funkcija iz kojih
je teško ǐsčitati efektivnu akciju. Stoga ih često razvijamo u red oko infracrvenog (IR)(
k
m
→ 0

)
i ultraljubičastog (UV)

(
m
k
→ 0

)
područja. Ovaj razvoj dopušta nam da izdvo-

jimo informaciju o dinamici izvora.
U IR sektoru, za vǐse spinove nalazimo članove koji nisu očuvani te narušavaju War-

dove identitete. Spomenuti članovi su lokalni te ih možemo eliminirati tako da od akcije
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oduzmemo konačan broj prikladnih kontračlanova. Postoji jedno važno opažanje vezano
uz oduzimanje lokalnih kontračlanova. Naime, za spin-1 i spin-2 znamo kovarijantni oblik
minimalnog vezanja pa u tim slučajevima nije potrebno oduzimati kontračlanove, jer for-
malizam perturbativne teorije polja se automatski brine za kovarijantnost, pod uvjetom
da u obzir uzmemo i korelator na jednu točku povrh korelatora na dvije točke. Ovaj prim-
jer pokazuje i da dimenzionalna regularizacija daje kovarijantne izraze (bez oduzimanja
rukom) kao što je npr. pokazano u [42] za skalarnu teoriju koja interagira s gravitacijom.

Spomenimo neke od rezultata. Na primjer, vodeći član u IR u fermionskom modelu
je univerzalan

T̃µ1...µsν1...νs
IR∼ imd−4+2b s

2
cΓ

(
2− d

2
− bs/2c

)
k2b s+1

2
c πs mod 2

µν

(
π2
µν − πµµπνν

)b s
2
c

+ · · ·

pa pripadna jednadžba gibanja glasi

〈〈 jµ1...µs〉〉 ∼ md−4+2b s
2
cΓ

(
2− d

2
− bs/2c

)
2b

s−1
2
cGµ1...µs + . . . (30)

Posebno, za spin 1, dominantni član efektivne akcije u IR je uobičajena Maxwellova akcija

W∼md−4

ˆ
dxFµνF

µν

Za spin 2, efektivna akcija je suma kozmološke konstante, Einstein-Hilbertove akcije i
Weylove gustoće W2 = RµνλρR

µνλρ − 2RµνR
µν + 1

3
R2 (konformna invarijanta u 4d).

W ∼ md

ˆ
ddx
√
g ×

[
Γ

(
−d

2

)
−

Γ
(
1− d

2

)
24m2

R−
Γ
(
2− d

2

)
80m4

W2 + . . .

]
(31)

Za spin 3 efektivna akcija dana je kao generalizacija Maxwellove akcije

W∼md−2

ˆ
dx
(
(Fµνλ)2 − (F ′µ)2

)
+ . . .

Povrh toga, treba provjeriti da su IR i UV limesi efektivne akcije dobro definirani. U
IR sektoru nalazimo članove koji su divergentni za m→∞. Spomenuti članovi su lokalni
i obuhvaćaju neočuvane članove pa biramo shemu u kojoj ih eliminiramo tako da od
akcije oduzmemo konačan broj prikladnih kontračlanova. Općenito, efektivna akcija tada
je dana pomoću Fronsdalovog kinetičkog operatora, [37, 38], u nelokalnoj formi uvedenoj
u [39]-[41].

Nadalje, u 3d fermionskom modelu postoji i neparni sektor gdje za ne-dijagonalne
korelatore struja čiji trag ǐsčezava općeniti izraz za spinove s1 × s2, s2 > s1 glasi

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2
imks1+s2−3

2s2+1
π
s2−s1

2
νν

b s1
2
c∑

l=0

(−1)lΓ (s1 − l)
22ll!Γ (s1 − 2l)

πlµµπ
l
ννπ

s1−2l−1
µν εσµνk

σ (32)

Za jednake spinove, ova akcija promatrana je u [43, 44] te nedavno u [45]-[52].
Dakle, počevši od slobodne kvantne teorije polja vezane na vanjska polja vǐseg spina

putem očuvanih struja, nalazimo da efektivna akcija, dobivena integriranjem mikroskop-
skog polja, sadrži informaciju o klasičnoj dinamici vǐsih spinova. Kako se zadržavamo
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na korelatorima na dvije točke, efektivna akcija je kvadratna, dok su jednadžbe gibanja
linearne u polju.

Napomenimo ponovno da za vǐse spinove znamo samo lineariziranu verziju interakcije i
baždarne transformacije i stoga nalazimo narušenje Wardovog identiteta. Da bismo zado-
voljili Wardove identitete dovoljno je od efektivne akcije oduzeti konačan broj lokalnih
kontračlanova. Očekujemo da bismo za očuvanje (bez oduzimanja kontračlanova) trebali
znati potpuni oblik kovarijantnog minimalnog vezanja i baždarne transformacije. U tu
svrhu, u [33] promatrali smo kvantizaciju svjetske linije koja se temelji na Weylovoj kvan-
tizaciji čestice u kvantnoj mehanici. Početna točka je slobodna fermionska teorija vezana
na vanjske izvore. Zatim koristimo Weylovu kvantizaciju. Potpuna akcija izražena je kao
očekivana vrijednost operatora

S = 〈ψ| − γ ·(P̂ − Ĥ)−m|ψ〉 (33)

Općeniti kvantni operator Ô može se uz Weylovo preslikavanje predstaviti pomoću
simbola O(x, p)

Ô =

ˆ
ddx ddy

ddk

(2π)d
ddp

(2π)d
O(x, p) eik·(x−X̂)−iy·(p−P̂ ) (34)

tako da operator Ĥ ima simbol h(x, p)

hµ(x, p) =
∞∑
n=0

1

n!
hµµ1...µn(s) (x) pµ1 . . . pµn (35)

gdje je s = n + 1 spin i hµµ1...µn(s) je simetrični tenzor. Simetrično tenzorsko polje hµµ1...µn

je linearno vezano na očuvanu struju vǐseg spina

J (s)
µµ1...µs−1

(x) =
is−1

(s− 1)!

∂

∂z(µ1
. . .

∂

∂zµs−1
ψ
(
x+

z

2

)
γµ)ψ

(
x− z

2

) ∣∣∣
z=0

. (36)

Akcija (33) invarijantna je na transformaciju

δεh
µ(x, p) = ∂µxε(x, p)− i[hµ(x, p) ∗, ε(x, p)] ≡ D∗µx ε(x, p) (37)

gdje ∗ označava Moyalov produkt. Sljedeće, promatramo regulariziranu efektivnu akciju:

Wreg[h, ε] = −N
ˆ ∞
ε

dt

t
Tr
[
e−tĜ

]
(38)

gdje je Ĝ = −γ ·(P̂ − Ĥ)−m. Ideja je razviti efektivnu akciju perturbativno

W [h] =
∞∑
n=1

1

n!

ˆ n∏
i=1

ddxi
ddpi

(2π)d
W(n)

µ1,...,µn
(x1, p1, . . . , xn, pn, ε)h

µ1(x1, p1) . . . hµn(xn, pn)

te na taj način dobivamo izraze za amplitude W
(n)
µ1,...,µn(x1, p1,. . ., xn, pn, ε) (slične Feyn-
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manovim dijagramima). Jednadžba gibanja je

Fµ(x, p) ≡
∞∑
n=0

1

n!

ˆ n∏
i=1

ddxi
ddpi

(2π)d
W(n+1)

µ,µ1...,µn
(x, p, x1, p1, . . . , xn, pn, ε)

×hµ1(x1, p1) . . . hµn(xn, pn) = 0

Važna prednost gore opisane procedure je da daje potpuni oblik baždarne transformacije
što ima dalekosežne posljedice: možemo pokazati da cijela akcija ima L∞ simetriju [53].

U L∞-algebri imamo graduirani vektorski prostor X =
⊕

iXi gdje je Xi vektorski
prostor, i = . . . , 1, 0,−1, . . . , sa stupnjem i te multilinearnim preslikavanjima Lj, j =
1, 2, . . ., sa stupnjem dj = j − 2. Vektore iz X označavamo s x1, x2, . . . a njihov stupanj
je xi = deg(xi). Preslikavanja Lj zadovoljavaju sljedeće kvadratne identitete:∑

i+j=n+1

(−1)i(j−1)
∑
σ

(−1)σε(σ;x)Lj(Li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0 (39)

gdje σ označava permutaciju dok je ε(σ;x) Koszulov predznak.
U našem slučaju, zbog strukture efektivne akcije i jednadžbe gibanja, biti će nam

potrebna samo tri vektorska prostora X0, X−1, X−2 te kompleks

X0
L1−→ X−1

L1−→ X−2
L1−→ 0 (40)

Stupnjevi su sljedeći: ε ∈ X0, hµ ∈ X−1 te Fµ ∈ X−2. Eksplicitnom provjerom L∞ relacija
(39) može se pokazati da je na ovaj način generirana L∞ algebra.

L∞ relacije mogu se interpretirati kao Wardovi identiteti. U dokazu L∞ simetrije
pretpostavili smo da nema anomalija, ali tu pretpostavku treba provjeriti eksplicitnim
računom amplituda. Lom Wardovih identiteta na kvantnom nivou indicirao bi da je
teorija anomalna što ukazuje na moguće prepreke u konstrukciji teorije vǐsih spinova. S
druge strane, ako nema anomalija, L∞ algebra može se koristiti za pronalaženje teorija
koje automatski zadovoljavaju L∞ relacije i baždarnu invarijantnost za vǐse spinova, što
otvara novi pristup za istraživanje modela vǐsih spinova.

Ključne riječi: efektivne akcije, anomlije traga, Pontryaginova gustoća, vǐsi spinovi, L∞

simetrija
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Chapter 1

Introduction

When describing the fundamental interactions in physics, symmetries and related conser-

vation laws play a crucial role. A symmetry is a transformation of the fields that leaves

the classical action invariant. However, it may happen that, once we quantize the theory,

a classically valid conservation law is violated. We call such a theory anomalous. Anoma-

lies can be harmful or harmless. Harmful anomalies, such as chiral gauge anomalies, spoil

the consistency of the theory and can be used as a selective criterion for theories. On the

other hand, harmless anomalies have physical consequences, such as Adler-Bell-Jackiw

anomaly which explains the pion decay to two photons.

Using the effective action approach, we will deal with odd parity trace anomalies in

4d in chiral fermion theory coupled to curved background and Dirac fermion in metric-

axial-tensor (MAT) gravity . We will show in several ways that the odd parity part of the

trace anomaly is given with Pontryagin density with imaginary coefficient, which indicates

breakdown of unitarity and hence spoils the consistency of the theory. This suggests that

we can use this anomaly as an exclusion criterion.

We are also interested in matter models coupled to higher spin fields. However, while

the theory of free massless fields of spin higher than two is consistent, their interactions

pose a challenge, that is, there exist several ”no-go” theorems which impose serious re-

strictions on interacting theories, particularly in flat spacetime.

As the first step toward our goal to analyze anomalies in matter models coupled to

higher spin fields, it is important to see what is the form of effective actions obtained

by integrating out microscopic matter fields (scalar or fermion) in a theory in which a

microscopic field is coupled to higher spin fields via conserved currents. We will focus

1



on the quadratic part of the effective action and find that they are nonlocal. In this

approach, after subtraction of finite number of local counterterms, we gain information

about dynamics of higher spins. This indicates that, using this approach to compute

higher-point correlators, we could acquire information about non-linear structure of higher

spin theory. In this way we could also gain insight on how the ”no-go” theorems are

connected with our case, whether they pose restrictions or they are circumvented.

Our second approach is based on worldline quantization of the fermion field coupled

to higher spin fields. In this way we obtain the exact gauge transformation and hence the

effective action has prospective to be gauge invariant without subtraction of counterterms.

If there are no generalized diff-anomalies, the effective action admits L∞ symmetry. This

indicates that integrating L∞ algebra could be used to determine possible candidates for

higher spin theories.

1.1 Trace anomaly

If a symmetry of a classical action is not a symmetry of an effective action in quantum

field theory, we say that such a theory is anomalous. An introduction to anomalies can

be found in the following textbooks [1]-[3].

In general, in fermionic field theory, we can divide the anomalies into two groups:

split and non-split anomalies. Aspects of split and non-split anomalies are discussed in

[54, 55]. Split anomalies have an opposite sign for opposite fermion chiralities, while the

non-split anomalies have the same sign for opposite chiralities. As an example of the

split anomalies let us mention the consistent chiral gauge or gravity anomalies. They

occur only in theories with chiral imbalance. These anomalies are harmful and spoil the

consistency of theory. As a consequence, they have been used as an exclusion criterion.

On the other hand, as an example of non-split anomalies let us mention the covariant

gauge or gravity anomalies, such as the anomaly that explains the decay of a π0 into two

γ’s or the Kimura-Delbourgo-Salam anomaly [56]-[58]. In this thesis we will focus on the

trace anomalies, also referred to as Weyl anomaly or conformal anomaly. Regarding the

trace anomalies, the even-parity part falls into the non-split category, while the odd-parity

part of the trace anomaly is split.

The appearance of even parity part of the trace anomaly was first discussed in [4], see

2



also [5] for a general form of trace anomaly in various dimensions and [6] for arbitrary spin.

One can follow general algorithm for the construction of gravitational axial and conformal

anomalies for arbitrary spin [7]. Even trace anomaly can be applied to Hawking effect,

gravitational instantons, asymptotic freedom and Weinberg asymptotic safety, see [8].

There exists a vast literature on even trace anomalies in 4d, mostly old [59]-[78], but also

recent, such as [79, 80] related to renormalization of 3-pt correlators of energy-momentum

tensor and conserved currents, and [81] where the Feynamn diagram approach was used

to compute the conformal anomaly for spin-1
2

fermions, denoting a renewed interest in

the subject.

The form of trace anomaly is determined by the dimension of spacetime and the

consistency conditions. In particular, the most general form of the trace anomaly in four

dimensions contains squares of the curvature and d’Alambertian of Ricci scalar. Using

cohomological analysis, it was found that the trace anomaly can be written in terms of

Weyl density, Euler (Gauss-Bonnet) density, d’Alambertian of Ricci scalar and also the

Pontryagin density, see [9]-[12]. The d’Alambertian of the Ricci scalar is trivial in the

sense that it can be removed by adding local counterterm to the action. Also Weyl and

Euler density preserve CP (charge conjugation and parity) and hence belong to even parity

part of the trace anomaly, while the Pontryagin density violates CP and belongs to the

odd parity part. Recently, trace anomalies gained on popularity due to conformal field

theories and their relation to the AdS/CFT correspondence. In [82, 83] the appearence

of the Pontryagin anomaly was discussed in context of AdS/CFT correspondence.

We will focus our attention to the parity-odd part of the trace anomaly in 4d, see

[15]-[21], [84, 85]. One model where the Pontryagin density can appear in the trace of the

energy-momentum tensor is the theory of chiral fermions. In fact, the coupling between

gravity and matter is given by the metric and energy-momentum tensor and it is important

to note that the energy-momentum tensor for two fermions with two different chiralities

is different. This difference can emerge in the form of an anomaly, in particular the trace

anomaly.

In this thesis we will present a continuation of work done in [15]-[17], namely [19, 20]

(see also [21]) where we revisit the computation of the odd part of the trace anomaly in

the theory of chiral fermions. Following [19] we will present a more detailed derivation of

parity odd trace anomaly using Feynman diagrams approach together with dimensional
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regularization. First, contrary to [15], we will not redefine the fermion field. Secondly, we

will take into account possible contributions from the tadpole and seagull terms. In this

way we confirm the result of [15].

Furthermore, motivated by Bardeen’s method for computation of chiral gauge anoma-

lies [86], we will introduce metric-axial-tensor gravity (for short MAT). The main idea

is to embed our system in a larger framework and to formulate our problem in terms of

Dirac fermions instead of Weyl fermions. We will couple Dirac fermion to the usual metric

gµν and an axial symmetric tensor fµν .

Let us briefly explain the main problem with chiral fermions and the reason behind

the introduction of MAT. In anomaly calculations the most important part is played

by the integral measure. However, in the case of chiral fermions the definition of the

measure presents a problem because the Dirac operator for a Weyl fermion contains

a chiral projector. We introduce MAT to avoid problems related to fermion integral

measure, and instead we are allowed to work with Dirac fermions for which the integral

measure is well defined. Note that, throughout the calculation, it is necessary to preserve

the information about the definite chirality of the fermion field. We repeat the calculation

of parity-odd trace anomaly in this new setup and we derive the anomaly for Dirac,

Majorana and Weyl fermion in specific limits (which we call collapsing limits) and confirm

our previous result.

The limitation of this derivation is that it is perturbative, that is, we compute only

the lowest order of the odd trace anomaly and we then covariantize it. This is of course

permitted provided we are convinced that there are no diff-anomalies. With a MAT back-

ground this verification is exceedingly complex and in this thesis and in [19] we content

ourselves with an analogous but simpler verification carried out in [17]. Instead, there

is a method that guarantees that diffeomorphisms are respected throughout the deriva-

tion: DeWitt’s method, [13, 14]. Our aim here is to combine DeWitt’s with Bardeen’s

method. This will require a introduction on the so-called hypercomplex calculus, which is

the appropriate framework for MAT gravity. Hypercomplex analysis in physical problems

was introduced and used in [87]-[93]. Following [20], we show that the same result for

parity odd trace can be obtained non-perturbatively by means of heat kernel and using

two different regularizations: dimensional regularization and ζ-function regularization.

Finally, although we do not use it here, we should mention the method recently devised

4



in [94], where a fifth dimension is introduced as a regulator.

It turns out that the odd-parity part of the trace anomaly comes with an imaginary

coefficient. It was pointed already in [15] that imaginary energy-momentum tensor might

break unitarity and thus spoil the consistency of the theory. This observation suggests

that we could use this anomaly as a selective criterion for the theories.

1.2 Effective actions in higher spin theories

It is a common belief that, to construct a consistent quantum theory of gravity and

matter, we need an infinite number of fields. One example which supports this idea is

(super)string theory, where an infinite tower of higher-spin excitations appears [22, 23].

One more example of higher spin theory with an infinitely many higher spin fields is the

Vasiliev theory [24]-[27] which exist in a four-dimensional and lower space-time. Very

likely these are not the only possibilities. But then a question arises: what are the

requirements to be satisfied in order for these theories to make sense?

The theory of higher spins dates back to 1936 when Dirac tried to generalize his spin-1
2

equation [95]. In 1939 Fierz and Pauli [96] systematized the study of massive higher spin

fields through Lorentz covariance and energy positivity and in 1974 Singh and Hagen in

[97, 98] constructed the Lagrangian formulation of Fierz and Pauli equations. A few years

later, Fronsdal in [37, 38] considered the massless limit of Singh-Hagen Lagrangian and

found that the equation of motion is invariant under gauge transformations only if the

gauge parameter is traceless. In [39]-[41] Francia and Sagnotti constructed the free field

equations which are unconstrained and nonlocal for spin larger than two.

Here we will present a program started in [28] and continued in [29, 30] (see also

[31, 32]) where we used the effective action approach to determine the classical dynamics

of the higher spin fields. Higher spin fields appear naturally in the one-loop effective action

of the simplest free theories in any dimension and it is possible to make contact with the

literature on classical higher spin theories, [39]-[41], [99]-[109]. Sources of inspiration for

our approach has been Sakharov method of induced gravity [110], higher spin theories in

3d [111]-[116] and also [117]-[119]. The idea of exploring the one-loop effective action is

far from new: the list of works which may have some overlap with our program includes

[119]-[128].
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We start by coupling a massive scalar and fermion theory to higher spin fields via

conserved currents. Next, to analyze the dynamics of higher spin fields we need the

quadratic part of the effective action (linearized equations of motion). We obtain the latter

by computing the 2-point correlator of our conserved currents using Feynman diagrams

and a method introduced by Davydychev and collaborators, [34]-[36]. Even though we

will often consider only 2-point correlators of currents with equal spins, as we previously

mentioned, in higher spin theory an infinite tower of spins appears. This suggests that

we should also consider the correlator of any two currents coupled to fields that can enter

the action. We refer to these correlators as mixed or non-diagonal. One more important

thing to note is that the conserved currents are not unique and their form affects the

form of the effective action. We will mostly focus on two specific choices, we call them

”simple” and ”traceless”. We will demonstrate several examples for scalar and fermion

field theories with different choices of currents.

To prepare the ground, we will start with a consideration of the general form of

conserved 2-point correlators and learn that they can be represented in terms of projectors

which make the conservation obvious. We also consider a form of traceless correlators.

Now, even though the projectors are extremely convenient, the geometrical content of the

results remains hidden in this way. For this reason we turn to the formulation of our

results in terms of geometrical objects - Jacobi tensors.

To make our general observations more concrete, we have to turn to explicit examples.

The easiest examples are the massless scalar and fermion model where we are able to derive

some very general results. In particular, we compute the 2-point correlator for simple

and traceless currents. We find that the correlators for traceless currents are themselves

traceless. In general, in the massless case we do not get all the information we can extract

from the massive theory and to make sure we get a complete information we must use

massive models.

Using massive scalar and fermion models we derive general expressions for 2-pt corre-

lators in a general dimension, however, these results are given in terms of hypergeometric

functions and are not particularly ”readable”. Because of that we often expand the re-

sults around IR
(
k
m
→ 0

)
and around UV

(
m
k
→ 0

)
in a specific dimension: d = 3, 4. The

expansion in powers of mass allows us to single out the dynamics of the sources and we

will refer to it as tomography.
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There is another reason why we use UV and IR expansions: we have to check that

the IR and UV limits of the one-loop effective action are well defined. In the IR sector

we find terms which are divergent in the limit m → ∞. There are also terms which are

non-conserved and violate Ward identity. These terms are local and can be subtracted

by adding a finite number of local counterterms to the action. In this way, for spin-1 we

find the Maxwell action, for spin-2 Einstein-Hilbert and for spin-3 the effective action is

based on the corresponding linearized Fronsdal kinetic operator, [37, 38], in the nonlocal

form introduced by Francia and Sagnotti, [39]-[41]. In view of constructing a covariant

action for higher spins, this result is promising. It suggests that integrating out scalar

or fermion fields (or any other field by which one can form conserved currents) can be a

prospective way to analyze the dynamics of higher spin fields.

Also, in 3d in fermion model we can consider the odd parity sector which emerges

from the parity-breaking fermion mass term, and we find a generalization of Pope and

Townsend’s Chern-Simons-like action in the case when mixed higher-spin fields are taken

into consideration. In the case of equal spins, this is the action considered in [43, 44] and

recently discussed by a number of authors, see e.g. [45]-[52].

We previously mentioned that different choices of currents lead to different effective

actions. In particular, we discuss diagonalization of our 2-point correlators, that is, the

possibility of vanishing off-diagonal correlators for appropriate choice of coefficients in the

currents.

There is one more important point related to local subtractions. We already men-

tioned that we find several violations of Ward identities, but since the terms which vio-

late conservation are local, we can recover conservation by subtracting appropriate local

counterterms from the action. We recall that for spin-1 and spin-2 we know the covariant

form of minimal coupling. In these cases we show that we do not have to subtract lo-

cal counterterms, because the perturbative field theory formalism already automatically

takes care of covariance, provided one takes into account not only the two-point bubble

diagrams but also tadpole and seagulls. This exercise also shows that dimensional reg-

ularization gives manifestly covariant expressions (without subtractions by hand) as was

e.g. done in [42] for scalar matter coupled to gravity.

The example of spin-2 shows that the gauge transformation is not linear, in fact, it is

crucial to consider the complete gauge transformation to show that the theory respects
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Ward identities. In contrast, for spin 3 and higher we have only the linearized version

of gauge transformation and as a consequence our Ward identity is not satisfied. The

reason is that seagull diagrams are related to the additional terms in the initial action,

beyond the minimal model we start with (a scalar or fermion field minimally coupled

to a background field). Conservation (without subtractions) requires the presence of

such additional terms and constraints their form and their coefficients. Hence, when we

consider higher spin backgrounds, this observation may be used in order to determine the

form of the additional action terms. This goes in the direction of constructing an off-shell

covariant model.

So, to avoid subtractions, we should know the full form of gauge transformation and

covariant minimal coupling. In this regard, in [33] we considered the worldline quanti-

zation method of a fermion model which is based on the Weyl quantization of a particle

in quantum mechanics. The literature on the worldline quantization is large. Here we

refer in particular to the calculation of effective actions via the worldline quantization in

relation to higher spin theories, [117, 118, 128]. The first elaboration of this method is

given in [129], to which many others followed, see for instance [130]-[138].

The main idea in worldline quantization is to replace the field dependence on the po-

sition and the field derivatives by the corresponding position and momentum operators,

respectively, and we rely on the Weyl quantization for the latter. We define the effec-

tive action and expand it perturbatively. In this way we obtain the expressions for the

amplitudes, which are similar to Feynman diagram approach.

A peculiar thing about this procedure it that it comes with the precise form of the

gauge symmetry. This has a outstanding consequence: it is possible show that the full

(not only the local part of) effective action in the fermion model accommodates (curved)

L∞ symmetry. The latter is a symmetry that characterizes many (classical) field theories,

including closed string field theory. This fact first appeared in [139, 140], see also [141],

as a particular case of strongly homotopic algebras [142, 143]. L∞ describes other field

theories as well [144], such as gauge field theories [145]-[147], Chern-Simons theories,

Einstein gravity and double field theory [53]. For other, more recent applications, see

[148]-[150].

We interpret L∞ relations as Ward identities. Breakdown of these relations at the

quantum level would suggest the presence of anomalies. Possible obstructions in construc-
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tion of the higher spin theories may appear in the form of anomalies in this approach.

If there are no generalized diff-anomalies, integrating L∞ algebra, that is determining

theories which satisfy L∞ relations and higher spin gauge invariance, is a prospective way

to investigate higher spin models.

1.3 Organization of the thesis

The thesis is organized as follows.

In chapter 2 we introduce the notion of the effective action and discuss its symmetries.

We also discuss the general form of the trace anomaly and we review the properties of

massless Weyl and Majorana fermions in 4d.

Chapter 3 follows [19]. We reconsider the computation of the anomaly given in [15]. We

calculate the trace anomaly, but here we do not redefine the fermion field and we consider

possible tadpole and seagull terms. We complete this chapter with the discussion of Ward

identity for diffeomorphisms and some final remarks on the the odd trace anomaly.

Chapter 4 is based on [19]. We introduce the MAT (metric-axial-tensor) gravity, and

we couple it to Dirac fermions. Afterwards, we give a derivation of the trace anomalies

in this formalism and we compute the collapsing limits for Dirac, Weyl and Majorana

fermions.

Chapter 5 is based on [20]. We give a brief introduction to axial-complex numbers

and axial-complex analysis. We also present the axial-complex analysis of geodesics in an

axial-complex space: we define normal coordinates, the world function and the coincidence

limit, the VVM determinant and the parallel displacement matrix for tensors and for

spinors. Even though the (pseudo)Riemannian geometry of an axial-complex space is

already introduced in the previous chapter, for this chapter is practical to partially change

the notation. We formulate the theory of Dirac fermions in a MAT background, define the

ordinary energy-momentum tensor and its axial partner and analyze their classical Ward

identities with respect to ordinary and axial diffeormorphisms and Weyl transformations.

We also define the ‘square’ of the Dirac operator, a central object for the application of

the Schwinger-DeWitt method. Next we describe this method and derive the relevant

heat kernel coefficients. We use these results to the non-perturbative computation of the

odd part of the trace anomalies tor the two energy-momentum tensors with two different
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regularizations: the dimensional and ζ-function regularization. Finally, we compute the

collapsing limit for Weyl fermion and show that the two anomalies collapse to a single

one and, as expected, correspond to the odd trace anomaly already calculated in [15, 17]

and [19].

In chapter 6 we give a short introduction to higher spin theories and related ”no-go”

theorems.

In chapter 7 we introduce the massive scalar and fermion model. This chapter is based

general observations related to 2-point functions given in [29, 30]. We discuss universal

form of equations of motion and show how to geometrize our results, that is how to express

them in terms of Jacobi tensors. Next, we give a short summary of Davydychev’s method

to compute one-loop Feynman diagramsand summarize the results in 3d worked out in

[28]. Finally, we give general guidelines for calculations. Next we turn to calculations of

2-pt functions.

Chapters 8 and 9 follow main results from [29, 30]. We analyze massless scalar and

fermion models for simple and traceless currents and we find some general expressions for

any spin and any dimension. We also consider the one-loop scalar and fermion massive

model two-point functions of simple currents and their IR and UV expansion (tomogra-

phy) in 3 and 4 dimensions. We also produce the expressions for two-point correlators of

spin 1, 2, 3 currents in any dimensions. Next we show some examples of mixed correlators

in fermion model in various dimensions and give their UV and IR expansions. We also

discuss the issue of tadpole and seagull terms and how they guarantee covariance without

subtractions in the case of spin 1 and 2. Furthermore, we try to diagonalize our results,

that is, we try to find the form of currents for which the mixed spins correlators vanish.

Last two chapters are based on [33]. In chapter 10 we carry out the worldline quan-

tization for free Dirac fermions coupled to external sources (the case of a scalar field is

given in [128]) and give expressions for the amplitudes. In chapter 11 we reveal the L∞

structure of the related effective action.

Section 12 is devoted to the conclusion and discussion of our results.
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Chapter 2

Effective actions, symmetries and

anomalies

To analyze our matter models and the existence of anomalies within them we use the

effective action approach. In this chapter we introduce main definitions which we will

use throughout this thesis, such as the partition function and quantum effective action.

Moreover, we will discuss symmetries and associated conservation laws for both classical

and quantum actions in gauge theory, gravity and a general spin-s theory. We conclude

that, if the emergent Ward identities are violated, the theory is anomalous.

Next we focus on a specific type of anomalies, the trace anomalies in matter models.

We first discuss a general form of the trace anomaly given by Wess-Zumino consistency

conditions. It turns out that there are three possible terms which can contribute to the

anomaly: Weyl, Euler and Pontryagin density. The coefficients of these terms depend

on the theory in question. Our focus will be on the coefficient of the parity-odd part -

Pontryagin density. One possible model in which such a term does not vanish is a theory

of a chiral fermion (for example left-handed Weyl fermion) coupled to curved background.

Let us mention that there is a common misconception that a Weyl fermion is the same

as massless Majorana fermion at both classical and quantum level. While the odd-parity

part of the trace anomaly for massless Majorana certainly vanishes, this is not the case

for Weyl fermion [15]. Because of this, to prepare the ground for the calculation of the

parity-odd trace anomaly, we first discuss fermions in 4d, in particular, we focus on the

similarities and differences between massless Majorana and Weyl fermions.
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2.1 Effective action

Let us start with the main definitions, see [1]. Fundamental object in quantum field

theory is the partition function. The partition function Z[ϕ] is the generating function of

all correlation functions. It can be written as

Z[ϕ] =

ˆ
DφeiS[φ,ϕ] (2.1)

where ϕ is some external (classical) field such as spin 1 field Aµ, spin 2 field hµν or higher

spin fields ϕµ1...µs . We assume that the classical action S[φ, ϕ] is a sum of the free action

S0[φ] for some field φ and the interaction Sint[φ, ϕ]:

S[φ, ϕ] = S0[φ] + Sint[φ, ϕ] (2.2)

Next we expand the partition function

Z[ϕ] =
∞∑
n=0

∑
s1,...,sn

1

n!

ˆ n∏
i=0

ddxiϕµi1...µisi (xi)
δnZ[ϕ]

δϕµ11...µ1s1 (x1) . . . δϕµn1...µnsn(xn)

∣∣∣
ϕ=0

(2.3)

where δnZ[ϕ]
δϕµ11...µ1s1

(x1)...δϕµn1...µnsn (xn)

∣∣∣
ϕ=0

is the correlation function. Given the partition func-

tion Z[ϕ] we can introduce the effective action W [ϕ]

Z[ϕ] = eiW [ϕ] ⇒ iW [ϕ] = lnZ[ϕ] (2.4)

The effective action is the generating function for all connected correlation functions. The

expansion of the effective action for the external source ϕµ1...µs is

iW [ϕ] =
∞∑
n=0

∑
s1,...,sn

1

n!

ˆ n∏
i=0

ddxiϕµi1...µisi (xi)
δn(iW [ϕ])

δϕµ11...µ1s1 (x1) . . . δϕµn1...µnsn (xn)

∣∣∣
ϕ=0

(2.5)

where δn(iW [ϕ])
δϕµ11...µ1s1

(x1)...δϕµn1...µnsn (xn)

∣∣∣
ϕ=0

is the connected correlation function.

Let us now assume that we constructed on-shell conserved currents jµ1...µs(x) and let

us couple them minimally to spin-s external fields ϕµ1...µs . We can write interaction as

Sint[φ, ϕ] =
∑
s

ˆ
ddxϕµ1...µsj

µ1...µs(x) (2.6)
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The n-point correlation function then reads

δnZ[ϕ]

δϕµ11...µ1s1 (x1) . . . δϕµn1...µnsn (xn)

∣∣∣
ϕ=0

= in〈0|T jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉 (2.7)

while the n-point connected correlation function becomes

δn(iW [ϕ])

δϕµ11...µ1s1 (x1) . . . δϕµn1...µnsn (xn)

∣∣∣
ϕ=0

= in〈0|T jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉c (2.8)

For example, 1-point correlator is the same as 1-point connected correlator

i〈0|jµ11...µ1s(x1)|0〉 =
δZ[ϕ]

δϕµ11...µ1s(x1)

∣∣∣
ϕ=0

=
δeiW [ϕ]

δϕµ11...µ1s(x1)

∣∣∣
ϕ=0

=
δ(iW [ϕ])

δϕµ11...µ1s(x1)
eiW [ϕ]

∣∣∣
ϕ=0

= i〈0|jµ11...µ1s(x1)|0〉c (2.9)

while for the 2-point correlator we get

i2〈0|T jµ11...µ1s1 (x1)jµ21...µ2s2 (x2)|0〉 =
δ2Z[ϕ]

δϕµ11...µ1s1 (x1)δϕµ21...µ2s2 (x2)

∣∣∣
ϕ=0

=
δ2eiW [ϕ]

δϕµ11...µ1s1 (x1)δϕµ21...µ2s2 (x2)

∣∣∣
ϕ=0

=

(
δ2(iW [ϕ])

δϕµ11...µ1s1 (x1)δϕµ21...µ2s2 (x2)
+

δ(iW [ϕ])

δϕµ11...µ1s1 (x1)

δ(iW [ϕ])

δϕµ21...µ2s2 (x2)

)
eiW [ϕ]

∣∣∣
ϕ=0

= i2〈0|T jµ11...µ1s1 (x1)jµ21...µ2s2 (x2)|0〉c + i2〈0|jµ11...µ1s1 (x1)|0〉c〈0|jµ21...µ2s2 (x2)|0〉c

= i2〈0|T jµ11...µ1s1 (x1)jµ21...µ2s2 (x2)|0〉c + i2〈0|jµ11...µ1s1 (x1)|0〉〈0|jµ21...µ2s2 (x2)|0〉

Altogether, the connected 2-point correlator can be expressed as

〈0|T jµ11...µ1s1 (x1)jµ21...µ2s2 (x2)|0〉c

= 〈0|T jµ11...µ1s1 (x1)jµ21...µ2s2 (x2)|0〉 − 〈0|jµ11...µ1s1 (x1)|0〉〈0|jµ21...µ2s2 (x2)|0〉 (2.10)

Finally, we can write the effective action as:

iW [ϕ] = iW [0] +
∞∑
n=1

∑
s1,...,sn

in

n!

ˆ n∏
i=1

ddxiϕ
µ11...µ1s1 (x1) . . . ϕµn1...µnsn (xn)

× 〈0|T jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉c. (2.11)
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where we separated the constant term. The full one-loop 1-pt correlator for jµ1...µs is given

as a variation of the effective action with respect to the source and it reads

〈〈jµ1...µs(x)〉〉 =
δW [ϕ]

δϕµ1...µs(x)
=
∞∑
n=0

∑
s1,...,sn

in

n!

ˆ n∏
i=1

ddxiϕ
µ11...µ1s1 (x1) . . . ϕµn1...µnsn (xn)

× 〈0|T jµ1...µs(x)jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉c. (2.12)

2.2 Symmetries of a classical theory

Let us start with a simple example of the classical action S that describes some matter

field φ(x) coupled to gauge field Aµ. If the action is invariant under gauge transformation

δAµ = ∂µλ (2.13)

where λ is the parameter,

δS =

ˆ
ddx

δS

δAµ
δAµ =

ˆ
ddxjµ(x)∂µλ = −

ˆ
ddx∂µj

µ(x)λ = 0 (2.14)

the current jµ(x) = δS
δAµ(x)

will be conserved since the above equation holds for any λ

∂µj
µ(x) = 0 (2.15)

Next, consider classical action S that describes matter field φ(x) coupled to curved back-

ground. The classical action is invariant under diffeomorphisms (general coordinate trans-

formations) and Weyl transformations (for massless theory). For coordinate transforma-

tions xµ → x′µ(x) the metric transforms as

gµν(x)→ g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) (2.16)

For infinitesimal transformations xµ → x′µ = xµ − ξµ, the variation of the metric is given

as Lie derivative of the metric in the direction of ξ

δξgµν(x) = ∇µξν +∇νξµ (2.17)
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If the action is invariant under diff-transformations

δξS =

ˆ
ddx

δS

δgµν
δξg

µν = −
ˆ
ddx
√
gTµν(x)∇µξν =

ˆ
ddx
√
gξν∇µTµν(x) = 0 (2.18)

since the above equation holds for any parameter ξ, the energy-momentum tensor must

be covariantly conserved

∇µTµν(x) = 0 (2.19)

The energy momentum tensor is defined as

Tµν =
2
√
g

δS

δgµν
, T µν = − 2

√
g

δS

δgµν
(2.20)

Furthermore, let us consider Weyl transformations

gµν(x)→ g′µν(x) = e2ω(x)gµν(x) (2.21)

which in the infinitesimal form read

δωgµν(x) = 2ω(x)gµν(x) (2.22)

Weyl invariance of the action

δωS =

ˆ
ddx

δS

δgµν
δωg

µν =

ˆ
ddx
√
gω(x)T µµ (x) = 0 (2.23)

implies tracelesness of the energy-momentum tensor

T µµ = 0 (2.24)

Finally, consider classical action S which describes matter field φ(x) coupled to some

higher spin field ϕµ1...µs , s > 2. If the action is invariant under gauge transformation (to

the lowest order)

δϕµ1...µs = ∂(µ1Λµ2...µs) (2.25)
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then the current jµ1...µs(x) = δS
δϕµ1...µs (x)

is conserved on-shell:

∂µ1jµ1...µs(x) = 0 (2.26)

In the limit m→ 0, we can also have invariance under the local transformations

δϕµ1...µs = η(µ1µ2ωµ3...µs) (2.27)

which are usually referred to as (generalized) Weyl transformations. These transforma-

tions induce tracelessness of the currents jµ1...µs in any couple of indices:

ηµ1µ2jµ1...µs(x) = 0 (2.28)

2.3 Symmetries of a quantum theory

Let us now consider the quantum theory. If the quantum theory possesses the same

symmetries as a classical theory the quantum effective action will be invariant under

infinitesimal transformations. We start with the effective action W [A], where A is the

spin-1 field. If the action is invariant under gauge transformation δAµ = ∂µλ with λ

parameter,

δW =

ˆ
ddx

δW

δAµ
δAµ =

ˆ
ddx〈〈jµ(x)〉〉∂µλ = −

ˆ
ddx∂µ〈〈jµ(x)〉〉λ = 0 (2.29)

the 1-point correlator of the current 〈〈jµ(x)〉〉 = δW
δAµ(x)

will be conserved since the above

equation holds for any parameter λ

∂µ〈〈jµ(x)〉〉 = 0 (2.30)

The above equation represents the Ward identity for gauge invariance.

Next, we treat the effective action W [g] where g is the metric (spin-2). If this action

is invariant under diff-transformations δξgµν(x) = ∇µξν +∇νξµ

δξW =

ˆ
ddx

δW

δgµν
δξg

µν = −
ˆ
ddx
√
g〈〈Tµν(x)〉〉∇µξν =

ˆ
ddx
√
g ξν∇µ〈〈Tµν(x)〉〉 = 0
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the 1-point correlator of the energy-momentum tensor must be covariantly conserved

∇µ〈〈Tµν(x)〉〉 = 0 (2.31)

Furthermore, Weyl invariance of the effective action

δωW =

ˆ
ddx

δW

δgµν(x)
δωg

µν =

ˆ
ddx
√
gω(x)〈〈T µµ (x)〉〉 = 0 (2.32)

implies tracelesness of the 1-point correlator of the energy-momentum tensor

〈〈T µµ (x)〉〉 = 0 (2.33)

Expressions (2.31) and (2.33) correspond to Ward identities for diff- and Weyl invariance.

A similar covariant conservation as (2.31) should be written also for the s > 2 cur-

rents, but we will often content ourselves with the lowest non-trivial order in which the

conservation law reduces to

∂µ1〈〈jµ1...µs(x)〉〉 = 0 (2.34)

For 1-point correlator we can also write the tracelessness condition in the limit m→ 0

ηµ1µ2〈〈jµ1...µs(x)〉〉 = 0 (2.35)

In case it is not possible to retain classical symmetries at the quantum level we say that

the theory is anomalous. The next section we devote to the discussion of the anomalies

and their general form.

2.4 Wess-Zumino consistency conditions

To determine a general form of an anomaly we can use cohomological analysis. It turns

out that potential candidates for the anomaly satisfy Wess-Zumino consistency conditions.

Here we will mostly discuss the Weyl anomaly, based on [10]-[12].

Let us consider a classical theory invariant under some symmetry group G with gauge

parameters λa. Let us denote generic fields of the theory with ϕi, i = 1, . . . , N and let
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the local transformation law be

ϕi(x)→ ϕi(x) + δλϕi(x) (2.36)

As we already mentioned, the classical action S is invariant under (2.36)

δλS = 0 (2.37)

where

δλ =

ˆ
ddx

∑
i

δλϕi(x)
δ

δϕi(x)
(2.38)

The variation of the 1-loop effective action gives Ward identity

δλW = Aλ (2.39)

where Aλ is a local functional of the fields linear in parameter λ. If we can eliminate Aλ
by subtracting a local counter-term C from the effective action so that

Aλ = δλC (2.40)

then

δλ(W − C) = 0 (2.41)

we obtain the classical Ward identity. On the other hand, if we cannot find such a counter-

term then the classical conservation law is broken at 1-loop and Aλ is an anomaly.

Let us now turn the anomaly problem to the cohomology problem. Inspired by the

BRST formalism we:

• promote gauge parameters λa to anticommuting fields (Fadeev Popov ghosts)

• for λa assume the transformation law

λa(x)→ λa(x) + δλλ
a(x) (2.42)
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with a particular choice of δλλ
a

• modify the operator

δλ =

ˆ
ddx

∑
i

δλχi(x)
δ

δχi(x)
(2.43)

where χi now represents all fields in the theory including ghosts.

There is a particular choice of δλλ
a(x) for which the operator δλ defined in (2.43) becomes

nilpotent

δ2
λ = 0 (2.44)

we call this operator the coboundary operator corresponding to the symmetry G. The

Ward identity now becomes

δλW = Aλ (2.45)

with δλ defined in (2.43). Now Aλ satisfies the Wess-Zumino consistency condition

δλAλ = 0 (2.46)

We call Aλ a cocycle. Furthermore, if there exists a term C so that we can write

Aλ = δλC (2.47)

then we call Aλ a coboundary. If this is not true for any C then Aλ is a non-trivial cocycle

- anomaly. Cocycles split into classes and each class is defined by a cocycle modulo all

coboundaries. These classes form cohomology groups.

From now on we will focus on an example where a symmetry group G consists of

diffemorphisms and Weyl symmetry. We will see that the anomaly in this case satisfies

also a cross-consistency condition which gives further restrictions on the form of the

anomaly. Moreover, we will see that it is possible to completely eliminate diff-anomaly

(or Weyl-anomaly) by subtracting a suitable counterterm from the action. In this case

only Weyl anomaly remains.
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Let us start with diffeomorphisms. Let us denote with ξµ(x) the parameter of infinites-

imal diff-transformations which act on the metric as

δξ gµν = ∇µξν +∇νξµ (2.48)

Next we promote the gauge parameter ξµ to anticommuting field with the transformation

law

δξξ
µ = ξν∂νξ

µ (2.49)

The variational operator is

δξ =

ˆ
ddx

∑
i

δξχi
δ

δχi
(2.50)

where χi stands for all the fields in the theory including ghosts. We choose the transfor-

mation law of the ghost ξµ so that the operator δξ is nilpotent

δ2
ξ = 0 (2.51)

Let us now consider Weyl transformations. Let ω(x) parametrise infinitesimal Weyl

transformations which act on the metric as

δω gµν = 2ω(x)gµν (2.52)

where ω(x) is some generic positive function. Now we promote the gauge parameter ω(x)

to an anticommuting field with the transformation law

δωω(x) = 0 (2.53)

Next we define

δω =

ˆ
ddx

∑
i

δωχi
δ

δχi
(2.54)

20



where the transformation law for ω(x) is such that δω is nilpotent

δ2
ω = 0 (2.55)

If a classical theory is invariant under Weyl or diff-transformations we can write a corre-

sponding Ward identity and check if we get an anomaly at the quantum level.

We can also simultaneously include both Weyl and diff-invariance in the theory at the

classical level. We need two more transformation laws

δξω(x) = ξµ∂µω, δωξ
µ = 0 (2.56)

Furthermore, we assume that ω and ξµ are anticommuting with each other. Nilpotent

coboundary operator

(δω + δξ)
2 = 0 (2.57)

now defines a coupled cohomological problem. Altogether we have

δ2
ω = 0, δ2

ξ = 0, δωδξ + δξδω = 0 (2.58)

For a classical theory which is invariant under Weyl and diff- transformations we have

δξS = 0, δωS = 0 (2.59)

On the other hand, in quantum theory, the Ward identity for 1-loop effective action is

δξW = Aξ = −
ˆ
ddxξν∇µTµν

δωW = Aω =

ˆ
ddx2ωT µµ (2.60)

The anomaly satisfies the consistency conditions

δωAω = 0, δξAξ = 0 (2.61)

Aξ is a cocycle of δξ, while Aω is a cocycle of δω. Since the classical theory is invariant
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under both Weyl and diff- transformations the generic cocycle of the coboundary operator

δω + δξ is Aω +Aξ. We also get a cross-consistency condition

δωAξ + δξAω = 0 (2.62)

If a pair Aω and Aξ is such that there exists a local term C satisfying

Aω = δω C and Aξ = δξ C (2.63)

then such anomaly pair is considered to be trivial as it can be cancelled by adding the

local term C to the quantum action. The condition which identifies the anomaly is that

for any C

Aω +Aξ 6= (δω + δξ)C (2.64)

Note that in general both Aξ and Aω are nonvanishing, however, by subtraction of an

appropriate counter-term we can restore covariance of the quantum theory.

Aξ → Aξ − δξC = 0 (2.65)

Aω → Aω + δωC ⇒ 〈〈T µµ〉〉 6= 0 (2.66)

In this case the theory has only Weyl anomaly.

2.5 General form of trace anomaly

In this section we will discuss a general form of the trace anomaly [6]-[12]. For a review

see [151].

Let us assume that the theory is covariant at the quantum level

Aξ = 0 (2.67)

It follows from consistency conditions that the trace anomaly must be invariant under
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both diffeomorphisms and Weyl transformations

δξAω = 0, δωAω = 0 (2.68)

Possible terms in the anomaly, by dimensional analysis, must have dimension four in 4d.

Moreover, because of diff-invariance, the anomaly must be constructed from diff-invariant

objects such as Riemann tensor, Ricci tensor and Ricci scalar. Mentioned objects have

dimension 2, which means that in 4d we can construct the trace anomaly from squares

of Riemann tensor or d’Alambertian of Ricci scalar. Recall that the trace of energy-

momentum tensor at the quantum level in general is not vanishing. Possible terms are:

〈〈T µµ (x)〉〉 = aRµνλρR
µνλρ + bRµνR

µν + cR2 + d2R + e εµνρσ Rµν
αβ Rρσαβ (2.69)

The d’Alambertian of Ricci scalar can be subtracted by a local counterterm (Weyl varia-

tion of R2) and hence it is not a true anomaly. From consistency conditions we get

a+ b+ 3c = 0 (2.70)

that only two of the three constants a, b, c are independent. Usually, we write the trace

anomaly in terms of

• Euler density: E = RµνλρR
µνλρ − 4RµνR

µν +R2

• Weyl density: W2 = RµνλρR
µνλρ − 2RµνR

µν + 1
3
R2

• Pontryagin density: P = 1
2
εµνρσ Rµν

αβ Rρσαβ

General form of the trace of energy-momentum tensor therefore is

〈〈T µµ (x)〉〉 = aE + cW2 + e P (2.71)

Coefficients a, c and e depend on the theory and are well known for various matter

types [7, 13]. The coefficient e is the one we would like to study in detail for chiral models.
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2.6 Dirac, Majorana and Weyl fermions in 4d.

We would like to devote this section to fermions in 4d. In particular, we will focus on

a discussion of the statement that a massless Majorana fermion is the same as a Weyl

fermion. If this is true at both classical and quantum level, there is no chance for an odd

parity trace anomaly to exist. On the other hand this statement is not undisputed. Our

aim here is to examine classical and quantum differences between the two types of fermions

and show that there is no a priori uncontroversial evidence that the relevant statement

is true. Therefore it is necessary to leave the last word to explicit computations, such as

the one for odd parity trace anomaly. We will start with a review on the properties of

Dirac, Majorana and Weyl fermions, based on [152].

2.6.1 Majorana fermions

We start with a few basic facts about fermions in 4d. We call a fermion field ψ(x) any

solution of the Dirac equation:

(iγµ∂µ −m)ψ(x) = 0 (2.72)

where γµ denotes a set of 4 × 4 matrices which we call Dirac matrices (or γ-matrices).

Dirac matrices satisfy

{γµ, γν} = 2gµν (2.73)

where metric gµν has mostly - signature, and

γ†µ = γ0γµγ0

One possible solution to Dirac equation is the real solution. Majorana found a rep-

resentation of γ-matrices for which the Dirac equation is real. In this representation

γ-matrices are real, and we will denote them with γ̃. Let us write down Majorana repre-

sentation of

γ̃0 =

 0 σ2

σ2 0

 , γ̃1 =

iσ1 0

0 iσ1

 , γ̃2 =

 0 σ2

−σ2 0

 , γ̃3 =

iσ3 0

0 iσ3

 (2.74)
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where σi are Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (2.75)

With this choice of γ-matrices, as a solution of the Dirac equation we get a Majorana

field ψ̃ which satisfies a reality condition:

ψ̃ = ψ̃∗ (2.76)

Note that Majorana representation is not unique. If we have two choices of Dirac matrices

they are related by an unitary transformation. This means that a general solution for

γ-matrices can be obtained using Majorana representation so that

γµ = Uγ̃µU † (2.77)

where U is a unitary matrix. It follows that, if ψ̃ is a solution of Dirac equation in

Majorana representation, then ψ is a solution to Dirac equation in a general representation

ψ = Uψ̃ (2.78)

Let us now see how does the Majorana reality condition look in this other representation.

We can rewrite

U †ψ = (U †ψ)∗ (2.79)

so that

ψ = UUTψ∗ (2.80)

Usually, instead of matrix U , we use another unitary matrix C defined by

UUT = γ0C (2.81)
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with properties

γTµ = −C−1γµC, CC∗ = −1, CC† = 1 (2.82)

Now we can introduce the notion of Lorentz-covariant conjugate ψ̂

ψ̂ = γ0Cψ
∗ (2.83)

The reality condition (2.80) now becomes

ψ = ψ̂ (2.84)

Above we introduced Lorentz-covariant conjugate ψ̂. Let us now explain the reason for

that name. We start from a 4-component Dirac fermion ψ. Under Lorentz it transforms

as

ψ(x)→ ψ′(x′) = exp

[
−1

2
λµνΣµν

]
ψ(x) , (2.85)

for x′µ = (eλ)µν x
ν , where Σµν = 1

4
[γµ, γν ] are the Lorentz generators. Now, the Majorana

reality condition makes sense only if it holds in any reference frame. To prove that this is

true we must show that ψ̂ and ψ transform in the same way under Lorentz transformations.

We take a complex conjugate of (2.85) and multiply with γ0C. It turns out that if ψ

transforms like (2.85), then

ψ̂(x)→ ψ̂′(x′) = exp

[
−1

2
λµνΣµν

]
ψ̂(x) , (2.86)

The fact that ψ̂ transforms in the same way as ψ is the reason why we call ψ̂ Lorentz-

covariant conjugate.

2.6.2 Helicity and chirality

Let us now introduce two concepts: helicity and chirality. Helicity of a particle is defined

as a projection of the spin along the direction of motion of the particle. For a particle
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with momentum ~p helicity is:

h =
~Σ · ~p
|~p|

(2.87)

where ~Σ denotes the spin

Σi =
i

2
εijkΣjk (2.88)

where i, j, k = 1, 2, 3. Eigenvalues of helicity h are ±1. An eigenstate with helicity −1 we

call right-handed, while an eigenstate with helicity +1 we call left-handed.

Since helicity commutes with the Dirac Hamiltonian, it follows that helicity is a con-

served quantity for a free Dirac particle. However, helicity is not Lorentz invariant for

massive particles. If we imagine a fermion with spin and momentum in the same direction,

its helicity will be +1. On the other hand, let us now imagine a second observer, which is

moving faster than the particle in the first reference frame. For this observer the particle

is moving in the other direction, and since the spin does not change, its helicity is −1.

For massless particles, since they are traveling at the speed of light, helicity is Lorentz

invariant. All observers agree on the value of helicity for a massless particle.

Let us now discuss chirality (handedness) of a particle. Chirality of a particle is

associated to the matrix γ5 defined as:

γ5 = iγ0γ1γ2γ3 (2.89)

which anticommutes with γ-matrices:

{γ5, γµ} = 0 (2.90)

Properties of γ5 are

γ†5 = γ5, (γ5)2 = 1, C−1γ5C = γT5

which ensure that the matrices

PL =
1 + γ5

2
, PR =

1− γ5

2
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behave like projection matrices on fermion field. We are now in position to write a generic

fermion field as a sum

ψ = ψL + ψR (2.91)

where ψL and ψR are left-handed and right-handed projections of ψ defined by

ψL = PLψ, ψR = PRψ (2.92)

The eigenvalues of γ5 are ±1

γ5ψL = +ψL, γ5ψR = −ψR (2.93)

Note that chirality is a Lorentz invariant quantity, but it is not conserved since γ5 does not

commute with the Hamiltonian. To be precise, γ5 does not commute with the mass term

in the Hamiltonian. For a massless fermion both helicity and chirality are well defined.

2.6.3 Weyl fermions

Previously we were searching for real solutions of the Dirac equation. Let us now focus

on the search for the solutions of the Dirac equation which satisfy a chirality constraint:

γ5ψL = +ψL for left-handed fermion

γ5ψR = −ψR for right-handed fermion (2.94)

A solution which is eigenvector of the chirality matrix γ5 is called a Weyl fermion. Here

we use chiral (Weyl) representation of Dirac matrices

γ̃0 =

0 1

1 0

 , γ̃i =

 0 σi

−σi 0

 , γ̃5 =

−1 0

0 1

 , (2.95)

In this representation γ5 is diagonal, so that the projectors become

PL =

0 0

0 1

 , PR =

1 0

0 0

 , (2.96)
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It follows that, in chiral representation, a generic Dirac field ψ (4-component) can be

written as

ψ =

ωt
ωb

 , (2.97)

where ωt and ωb are 2-component spinors. Right-handed field has only the top two

components ωt, while the left-handed field has only the bottom 2-components ωb:

ψR =

ωt
0

 , ψL =

 0

ωb

 , (2.98)

The Lagrangian for left-handed field can now be written as

LL = iω†bσ
µ∂µωb (2.99)

where σµ = (1, ~σ). The left-handed Weyl fermion is a solution of

iσµ∂µωb = 0 (2.100)

For right-handed Weyl fields we have

LR = iω†t σ̄
µ∂µωt (2.101)

where σ̄µ = (1,−~σ). The right-handed Weyl fermion is a solution of

iσ̄µ∂µωt = 0 (2.102)

2.6.4 Dirac fermions from Weyl fermions

Here we want to show how to represent Dirac fermion using Weyl fermions. Since Dirac

fermion is in general massive we must include both left and right chirality. Dirac field can

be constructed from two independent (say left) Weyl fields ψ1L and ψ2L

ψ = ψ1L + ψ̂2L (2.103)
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Note that the Dirac field is, in contrast to Majorana and Weyl, completely unconstrained

solution to Dirac equation. Let us see if it is possible to impose both chirality and reality

conditions in the same time. In other words we want to see if it is possible for a fermion

field to be Weyl and Majorana in the same time. To see that this is not possible, let use

Majorana representation of Dirac matrices where Majorana field is real. Weyl fermion,

on the other side, satisfies

γ5ψL,R = ±ψL,R (2.104)

now, in Majorana representation, γ5 is purely imaginary and hence the above equation

cannot be satisfied by a real field ψL,R. We conclude that Majorana cannot be Weyl at

the same time.

2.6.5 Majorana fermions from Weyl fermions

Just like Dirac fermion, Majorana fermion can be massive. To represent a Majorana

fermion using Weyl fermions we must include both chiralities. In addition, the combina-

tion of left and right Weyl fermion now must satisfy Majorana reality condition. A left

chiral fermion satisfies

(1− γ5)ψL = 0 (2.105)

Let us now take complex conjugate and multiply with γ0C

γ0C(1− γ∗5)ψ∗L = 0 (2.106)

Since γ5 is hermitian γ∗5 = γT5 and

C−1γ5C = γT5 (2.107)

we conclude

γ0C(1− γ∗5)ψ∗L = (1 + γ5)γ0Cψ
∗
L = (1 + γ5)ψ̂L (2.108)

30



that ψ̂L is a right-handed Weyl fermion. We can write Majorana fermion in terms of Weyl

fermion as

ψ = ψL + ψ̂L (2.109)

We can also rewrite Majorana fermion in terms of Weyl fermions using 2-component

notation. Majorana condition is

ψ =

ωt
ωb

 =

 iσ2ω∗b

−iσ2ω∗t

 = ψ̂ (2.110)

where we used

γ0C =

 0 iσ2

−iσ2 0

 (2.111)

in chiral representation. This means that we can write Majorana field as

ψ =

 ωt

−iσ2ω∗t

 =

iσ2ω∗b

ωb

 = ψ̂ (2.112)

In terms of 2-component spinors massive Dirac equation splits into:

iσ̄µ∂µωt = mωb

iσµ∂µωb = mωt (2.113)

which means that Majorana field satisfies

σ̄µ∂µωt = −mσ2ω∗t

σµ∂µωb = mσ2ω∗b (2.114)

Let us now focus on the statement that there is a one-to-one correspondence between

the components of a Weyl spinor and those of a Majorana spinor in such a way that the

Lagrangians in two-component notation look the same. We start with the analysis of the
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Majorana Lagrangian in 2-component notation:

LM =
1

2
ψ̄(iγµ∂µ −m)ψ

=
i

2

[
ωtσ̄

µ∂µωt − ∂µω†t σ̄µωt −m
(
ωTt σ

2ωt − ω†tσ2ω∗t

)]
(2.115)

where we used the right-handed field to express the Lagrangian. Now let us take a look

at the Lagrangian for right-handed Weyl fermion. We can split it

LW = iω†t σ̄
µ∂µωt

=
i

2
ω†t σ̄

µ∂µωt −
i

2
∂µω

†
t σ̄

µωt +
i

2
∂µ

(
ω†t σ̄

µωt

)
(2.116)

ignoring the total derivative, we get

LW =
i

2

[
ω†t σ̄

µ∂µωt − ∂µω†t σ̄µωt
]

(2.117)

By comparison we see that the Lagrangians LM and LW are the same in the massless

case. Even though in the massless case these two Lagrangians are indistinguishable, we

must keep in mind that representations of Lorentz group for Majorana and Weyl fermion

are different. Weyl field is a part of chiral representation
(

1
2
, 0
)

or
(
0, 1

2

)
while Majorana

is a part of
(

1
2
, 0
)
⊗
(
0, 1

2

)
constrained with reality condition.

2.6.6 Charge conjugation, parity and CP

Charge conjugation C is an operation on the fields that replaces all fields with complex

conjugates. For a fermion field, charge conjugation must must be Lorentz covariant,

otherwise the action would not be Lorentz invariant. Charge conjugation operation on

the field ψ reads

CψC−1 = ηCψ̂ (2.118)

where ηC is a phase which, for simplicity, we set equal to 1. Let us recall the properties

of a Weyl fermion ψL = PLψ under charge conjugation. Since PL is a constant matrix the
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operation of charge conjugation acts only on fields

CψLC
−1 = PLηCψ̂ = PLψ̂ = ψ̂L (2.119)

Let us now consider Lorentz-covariant conjugate ψ̂L

ψ̂L = γ0C(ψL)∗ = γ0CP
∗
Lψ
∗ (2.120)

Now use the fact that γ5 is hermitian and CP T
L = PLC to write

ψ̂L = γ0PLCψ
∗ = PRγ0Cψ

∗ = PRψ̂ = ψ̂R (2.121)

It follows that Lorentz-covariant conjugate of ψL is a right-handed fermion and its charge

conjugate is left-handed.

The parity operation is a spacetime transformation that maps (t, ~x) to (t,−~x). Under

a parity transformation momentum changes sign, and spin remains the same so that the

helicity of a particle changes. Since helicity and chirality coincide for massless particles,

chirality changes as well. The parity operation is defined by

PψL(t,
→
x)P−1 = ηPγ0ψR(t,− →x) (2.122)

where ηP is a phase.

If we consider CP, the action of a Majorana fermion is obviously invariant under it.

For a Weyl fermion we have

CPψL(t,
→
x)(CP)−1 = γ0ψ̂L(t,− →x) = γ0PRψ̂(t,− →x) = γ0ψ̂R(t,− →x) (2.123)

Applying CP to the Weyl action one gets

CP

(ˆ
iψLγ

µ∂µψL

)
(CP)−1 =

ˆ
iψ̂R(t,− →x)γµ†∂µψ̂R(t,− →x)

=

ˆ
iψ̂R(t,

→
x)γµ∂µψ̂R(t,

→
x) (2.124)
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But one can easily prove that

ˆ
iψ̂R(t,

→
x)γµ∂µψ̂R(t,

→
x) =

ˆ
iψL(x)γµ∂µψL(x) (2.125)

Therefore the action for a Weyl fermion is CP invariant. It is also, separately, T invariant,

and, so, CPT invariant.

Now let us go to the quantum interpretation of the field ψL. It’s plane wave expansion

is

ψL(x) =

ˆ
dp
(
a(p)uL(p)e−ipx + b†(p)vL(p)eipx

)
(2.126)

where uL, vL are fixed and independent left-handed spinors. The interpretation is: b†(p)

creates a left-handed particle while a(p) destroys a left-handed particle with negative

helicity (because of the opposite momentum). However eqs.(2.123, 2.124) force us to

identify the latter with a right-handed antiparticle: C maps particles to antiparticles,

while P invert helicities, so CP maps left-handed particles to right-handed antiparticles.

2.6.7 Comments on massless Majorana and Weyl fermions

The evident difference between massless Majorana and Weyl fermions is that they belong

to two different representations of the Lorentz group, irreducible to each other (in 4d

there cannot exist a spinor that is simultaneously Majorana and Weyl).

Next, the reason why they are sometimes considered as a unique object is due to the

fact that we can establish a one-to-one correspondence between the components of a Weyl

spinor and of a Majorana spinor so that the Lagrangian in two-component notation looks

the same. But, if the action is the same for both Weyl and Majorana, how can there be

any differences?

In general, the action does not contain the complete information. In the quantum

theory a crucial role is played by the functional measure, which is very likely to be different

for Weyl and Majorana fermions. This is the decisive point for the anomalies. The path

integral of a free Dirac fermion is interpreted as the determinant of the massless Dirac

operator /D = i/∂ + /V (where V denotes any potential), i.e. the (suitably regularized)

product of its eigenvalues. A similar interpretation holds also for a massless Majorana

fermion.
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For a Weyl fermion the matter is not so straightforward. The Dirac operator anticom-

mutes with γ5 and hence it maps a left-handed spinor to a right-handed one. Therefore,

the eigenvalue problem is not well defined for /DL = /DPL so that the determinant is ill-

defined. Another idea is to replace det /DL with
(

det
(
/D
†
L
/DL

)) 1
2
, but in this case we have

an undetermined overall phase factor. This problem has been known for a long time1.

There is a few ways to overcome this problem. One way is to use a perturbative approach

(Feynman diagram technique) in a chiral fermion theory. This is the method used in

[15, 17]. We will revisit it below. The second way is based on Dirac fermions, [54, 55, 86],

(i.e. with the ordinary Dirac path integral measure), where we recover the chiral fermion

theory as a special limit. Finally, let us mention [94], where a fifth dimension is introduced

as a regulator, although we do not use it here.

The above arguments lead toward the conclusion that massless Majorana and Weyl

fermions, notwithstanding some similarities, may really be different objects. It is impor-

tant to avoid a priori conclusions, but rather develop both hypotheses and compare the

final results. This said, we should find properties that differentiate Weyl and massless

Majorana fermions. For this reason, in the next chapter we show that one such property

is the parity odd Weyl anomaly, which is zero for a massless Majorana fermion, while it

equals the Pontryagin density for a Weyl fermion. On the other hand, the even parity

trace anomaly is the same for both.

1In particular, since Fujikawa method holds when we have both chiralities present in the theory one
cannot use it for chiral theories. This problem has been discussed in detail in [55] where it is shown that
the original Fujikawa method cannot reproduce the non-Abelian consistent chiral anomalies, but only the
covariant ones in chirally symmetric theories. We cannot expect to be able to reproduce the odd parity
trace anomaly in a left-handed theory, because the latter belongs to the same class as the non-Abelian
consistent chiral anomalies (split anomalies). This observation applies to [85], where, using Fujikawa
method and Pauli-Villars regularization, the authors obtain a vanishing odd trace anomaly which seems
to contradict our result below. Using a Dirac fermion path integral measure introduces both chiralities,
even though formally the action itself is declared to be the Weyl one. For this particular anomaly what
matters is that only one chirality is involved through all the steps, including the path integral measure.
Bearing this in mind, the result of [85] applies to Dirac and Majorana fermions and is in fact consistent
with ours.
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Chapter 3

Odd parity trace anomaly in chiral

theories

In this chapter we reconsider the calculation of the odd trace anomaly in chiral fermion

theories in a 4d curved background given in [15]. The motivation for this is to give a more

complete and detailed calculation of the trace anomaly. In particular, in [15, 16], as well

as in [17], tadpoles and seagull diagrams were neglected. In ordinary (non-chiral) theories

coupled to gravity such diagrams can contribute in a form of local terms to the effective

action, and they help to restore conservation, which otherwise would be violated by local

terms, see [153]. Instead, we find in [19], that these diagrams do not contribute for the

parity odd diagrams in a chiral theory, and do not change the final result of [15]. However,

they should be taken into account and evaluated. Moreover, in contrast to [15], here we

do not redefine the fermion field1. As a consequence, the energy-momentum tensor is

different from the energy-momentum tensor in [15], that is, it contains an additional term

from the
√
|g| in the action. This additional term gives a contribution to both the trace

anomaly and the diff-anomaly. However, subtraction of the appropriate counterterm from

the effective action cancels the diff-anomaly and in the same time produces the same trace

anomaly as in [15]. In this chapter we closely follow [19].

1In [15] the fermion field was redefined ψ → (|g|) 1
4ψ.

36



3.1 Odd parity trace anomaly in chiral theories

The model considered in [15] was a left-handed Weyl spinor coupled to external gravity

in 4d. The action is

S =

ˆ
d4x

√
|g| iψLγµ

(
∇µ +

1

2
ωµ

)
ψL (3.1)

where γµ = eµaγ
a (µ, ν, ... are world indices, a, b, ... are flat indices), ∇ is the covariant

derivative with respect to the world indices and ωµ is the spin connection:

ωµ = ωµ
abΣab

Finally ψL = 1+γ5
2
ψ. Classically the energy-momentum tensor

T µν = − i
4
ψLγ

µ
↔
∇νψL + (µ↔ ν) (3.2)

is both conserved on shell and traceless.

From (3.1) we can extract the (simplified) Feynman rules as follows. The action (3.1)

can be written as

S =

ˆ
d4x

√
|g|
[
i

2
ψLγ

µ
↔
∂µψL −

1

4
εµabcωµabψLγcγ5ψL

]
(3.3)

where it is understood that the derivative applies to ψL and ψL only, and we used the

relation {γa,Σbc} = i εabcdγdγ5. Expanding

eaµ = δaµ + χaµ + ..., eµa = δµa + χ̂µa + ..., and gµν = ηµν + hµν (3.4)

and inserting these expansions in the defining relations eaµe
µ
b = δab , gµν = eaµe

b
νηab, one finds

χ̂µν = −χµν and hµν = 2χµν . (3.5)

Expanding accordingly the spin connection

ωµab = eνa(∂µe
ν
b + eσbΓσ

ν
µ), Γσ

ν
µ =

1

2
ηνλ(∂σhλµ + ∂µhλσ − ∂λhσµ) + ...
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after some algebra one gets

ωµab ε
µabc = −1

4
εµabc ∂µhaλ h

λ
b + ... (3.6)

Therefore, up to second order the action, by incorporating (|g|) 1
4 in the ψ field, can be

written as

S ≈
ˆ
d4x

[
i

2
(δµa −

1

2
hµa)ψLγ

a
↔
∂µψL +

1

16
εµabc ∂µhaλ h

λ
b ψ̄Lγcγ5ψL

]

The free action is

Sfree =

ˆ
d4x

i

2
ψLγ

a
↔
∂ aψL (3.7)

and the lowest interaction terms are

Sint =

ˆ
d4x

[
− i

4
hµa ψLγ

a
↔
∂µψL +

1

16
εµabc ∂µhaλ h

λ
b ψ̄Lγcγ5ψL

]
(3.8)

Retaining only the above terms of the action of (3.8), the Feynman rules are as follows

(momenta are ingoing and the external gravitational field is assumed to be hµν). The

fermion propagator is

P :
i

/p+ iε
(3.9)

The two-fermion-one-graviton vertex is

Vffh : − i
8

[(p+ p′)µγν + (p+ p′)νγµ]
1 + γ5

2
(3.10)

The two-fermion-two-graviton vertex (V ε
ffhh) is

V ε
ffhh :

1

64
tµνµ′ν′κλ(k − k′)λγκ

1 + γ5

2
(3.11)

where

tµνµ′ν′κλ = ηµµ′ενν′κλ + ηνν′εµµ′κλ + ηµν′ενµ′κλ + ηνµ′εµν′κλ (3.12)
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3.1.1 Complete expansion

The previous action (3.1) is a simplified one. It disregards the measure
√
|g|, which is

incorporated in the fermion field ψ. In a more complete approach one should take into

account tadpole and seagull terms and reinsert
√
|g| in the action. Some of these, in

principle, might be relevant for the trace anomaly. To this end we need the complete

expansion in hµν up to order three of the action, more precisely,

gµν = ηµν + hµν (3.13)

gµν = ηµν − hµν + (h2)µν + . . .

eµa = δµa −
1

2
hµa +

3

8
(h2)µa −

5

16
(h3)µa + . . .

eaµ = δaµ +
1

2
haµ −

1

8
(h2)aµ +

1

16
(h3)aµ + . . .√

|g| = 1 +
1

2
(tr h) +

1

8
(tr h)2 − 1

4
(tr h2)− 1

8
(tr h)(tr h2) +

1

48
(trh)3 +

1

6
(trh3) + . . .

and

Γλµν =
1

2

(
∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν

)
− 1

2
(h− h2)λρ (∂µhρν + ∂νhρµ − ∂ρhµν) (3.14)

In this approximation the spin connection is

ωabµ =
1

2

(
∂bhaµ − ∂ahbµ

)
+

1

4

(
hσa∂σh

b
µ − hσb∂σhaµ + hbσ∂ahσµ − haσ∂bhσµ

)
−1

8

(
haσ∂µh

b
σ − hbσ∂µhaσ

)
(3.15)

+
1

8

(
(h2)aλ∂µh

b
λ − (h2)bλ∂µh

a
λ

)
+

3

16

(
(h2)aλ∂bhµλ − (h2)bλ∂ahµλ

)
− 3

16

(
(h2)aλ∂λh

b
µ − (h2)bλ∂λh

a
µ

)
+

1

8

(
haρhbλ − hbρhaλ

)
∂λhµρ + . . .
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Up to third order in h the action is

S =

ˆ
d4x

[ i
2
ψLγ

m
↔
∂mψL −

i

4
ψLh

m
a γ

a
↔
∂mψL +

3i

16
ψL(h2)ma γ

a
↔
∂mψL −

5i

32
ψL(h3)ma γ

a
↔
∂mψL

− 1

16
εmabcψLγcγ5ψL

(
hσm∂ahbσ + (h2)σm∂bhaσ − hρmhσa∂σhρb −

1

2
hρm∂ahρσh

σ
c

)
(3.16)

+
1

2
(trh)

(
i

2
ψLγ

m
↔
∂mψL −

i

4
ψLhm

a γ
a
↔
∂mψL +

3i

16
ψL(h2)m

a γ
a
↔
∂mψL

− 1

16
εmabcψLγcγ5ψLh

σ
m∂ahbσ

)
+

(
1

8
(tr h)2 − 1

4
(tr h2)

)(
i

2
ψLγ

m
↔
∂mψL −

i

4
ψLh

m
a γ

a
↔
∂mψL

)
+

(
−1

8
(tr h)(tr h2) +

1

48
(trh)3 +

1

6
(trh3)

)
i

2
ψLγ

m
↔
∂mψL + . . .

]
The propagator (3.9) comes from the first term of the first line in the RHS of (3.16). The

vertex Vffh comes from the second term, while V ε
ffhh originates from the first term in the

second line of (3.16). There are many other vertices of the type Vffh, Vffhh, Vffhhh. It is

important to single out which may be relevant to trace anomalies.

The Ward identity for Weyl invariance, in absence of anomalies, is:

T(x) ≡ gµν(x)〈〈T µν(x)〉〉 = 〈〈T µµ (x)〉〉+ hµν(x)〈〈T µν(x)〉〉 = 0 (3.17)

Writing

〈〈T µν(x)〉〉 = 〈0|T µν(0)(x)|0〉 (3.18)

+
∞∑
n=1

1

2nn!

ˆ n∏
i=0

dxi hµ1ν1(x1) . . . hµnνn(xn)T µνµ1ν1...µnνn(x, x1, . . . , xn),

order by order in h, eq.(3.17) breaks down to

T(0)(x) ≡ 〈0|T(0)µ
µ(x)|0〉 = 0 (3.19)

T(1)(x) ≡ T µµ1ν1µ (x, x1) + 2δ(x− x1)〈0|T µ1ν1(0) (x)|0〉 = 0 (3.20)

T(2)(x) ≡ T µµ1ν1µ2ν2µ (x, x1, x2) + 2δ(x− x1)T µ1ν1µ2ν2(x, x2)

+2δ(x− x2)T µ2ν2µ1ν1(x, x1) = 0 (3.21)
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where

T µν(0) = 2
δS

δhµν(x)

∣∣∣∣∣
h=0

= − i
4

(
ψLγ

µ
↔
∂νψL + µ↔ ν

)
+
i

2
ηµν ψLγ

m
↔
∂mψL, (3.22)

T µνµ1ν1(x, x1) = i〈0|T T µν(0)(x)T µ1ν1(0) (x1)|0〉 − ηµ1ν1δ(x− x1)〈0|T µν(0)(x)|0〉

+4〈0| δ2S

δhµν(x)δhµ1ν1(x1)
|0〉 (3.23)

and

T µνµ1ν1µ2ν2(x, x1, x2)

= −〈0|T T µν(0)(x)T µ1ν1(0) (x1)T µ2ν2(0) (x2)|0〉+ 4i〈0|T T µν(0)(x)
δ2S

δhµ1ν1(x1)δhµ2ν2(x2)
|0〉

−iηµ1ν1δ(x− x1)〈0|T T µν(0)(x)T µ2ν2(0) (x2)|0〉 − iηµ2ν2δ(x− x2)〈0|T T µν(0)(x)T µ1ν1(0) (x1)|0〉

+4i〈0|T T µ1ν1(0) (x1)
δ2S

δhµν(x)δhµ2ν2(x2)
|0〉+ 4i〈0|T T µ2ν2(0) (x2)

δ2S

δhµ1ν1(x1)δhµν(x)
|0〉

+ (ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1 + ηµ1µ2ην1ν2) δ(x− x1)δ(x− x2)〈0|T µν(0)(x)|0〉

−4ηµ1ν1δ(x− x1)〈0| δ2S

δhµν(x)δhµ2ν2(x2)
|0〉 − 4ηµ2ν2δ(x− x2)〈0| δ2S

δhµν(x)δhµ1ν1(x1)
|0〉

+8〈0| δ3S

δhµν(x)δhµ1ν1(x1)hµ2ν2(x2)
|0〉 (3.24)

The functional derivatives of S with respect to h are understood to be evaluated at h = 0.

In the sequel we will need the explicit expressions of vertices, up to order two in h (for

a derivation of Feynman rules see [19]). Beside (3.10) and (3.11) we have:

V ′ffh :
i

4
ηµν(/p+ /p

′)PL (3.25)

V ′ffhh :
3i

64

[
((p+ p′)µγµ′ηνν′ + (p+ p′)µγν′ηνµ′ + {µ↔ ν})

+ ((p+ p′)µ′γµηνν′ + (p+ p′)µ′γνηµν′ + {µ′ ↔ ν ′})
]
PL (3.26)

V ′′ffhh : − i

16

[
ηµν ((p+ p′)µ′γν′ + {µ′ ↔ ν ′})

+ηµ′ν′ ((p+ p′)µγν + {µ↔ ν})
]
PL (3.27)

V ′′′ffhh :
i

8
(/p+ /p

′)(ηµνηµ′ν′ − ηµν′ηµ′ν − ηµµ′ηνν′)PL (3.28)

So far we have been completely general. From now on we consider only the odd part
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of the correlators, that is only correlators linear in εµνλρ.

To start with, consider 〈0|T(0)µ
µ(x)|0〉, to which only a tadpole can contribute, but

its odd part vanishes because we cannot construct a scalar using ε and η. For the same

reason also 〈0|T µν(0)(x)|0〉 vanishes.

The two-point function 〈0|T T µν(0)(x)T µ1ν1(0) (x1)|0〉 also must vanish, because in momen-

tum space it must be a 4-tensor linear in ε and formed with η and the momentum k:

there is no such tensor, symmetric in µ↔ ν, µ1 ↔ ν1 and (µ, ν)↔ (µ1, ν1).

As for the terms 〈0| δ2S
δhµν(x)δhµ1ν1 (x1)

|0〉 they might also produce nonvanishing contribu-

tion from tadpoles diagram, but like in the previous case it is impossible to satisfy the

combinatorics.

In conclusion (3.19) and (3.20) are identically satisfied, while (3.21) becomes

T(2)(x) = T µµ1ν1µ2ν2µ (x, x1, x2)

= ηµν

(
− 〈0|T T µν(0)(x)T µ1ν1(0) (x1)T µ2ν2(0) (x2)|0〉+ 4i〈0|T T µν(0)(x)

δ2S

δhµ1ν1(x1)δhµ2ν2(x2)
|0〉

+4i〈0|T T µ1ν1(0) (x1)
δ2S

δhµν(x)δhµ2ν2(x2)
|0〉+ 4i〈0|T T µ2ν2(0) (x2)

δ2S

δhµ1ν1(x1)δhµν(x)
|0〉

+8〈0| δ3S

δhµν(x)δhµ1ν1(x1)hµ2ν2(x2)
|0〉
)

(3.29)

To proceed further, we focus now on the terms containing the second derivative of S.

Looking at (3.16) we see that there are several such terms. We argue now that those among

them that do not contain the ε tensor, although the gamma trace algebra may generate

an ε tensor, cannot contribute to the odd trace anomaly. The vertices corresponding to

such terms have two fermion and two graviton legs, that is, they are of the type Vffhh.

By Fourier transform, we associate an incoming eipx plane wave to one fermion and an

outgoing e−ip
′x one to the other, while we associate two incoming plane waves eik1x, eik2x

to the two gravitons. Since none of them contain derivatives of h, the vertex will depend

at most on q = k1 + k2, not on k1 − k2, see for instance the vertex coming from the third

term in the first line of (3.16), i.e. V
′

ffhh. This being so, the contributions from the terms

related to the second derivative of S in (3.29) via such vertices, and linear in ε, must

vanish, because it is impossible to form a 4-tensor symmetric in µ1 ↔ ν1, µ2 ↔ ν2 and

(µ1, ν1)↔ (µ2ν2) with ε, η and qµ.

It follows that only the contribution with the vertex V ε
ffhh might contribute non triv-
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ially to the odd trace anomaly. Looking at the form of V ε
ffhh, it is clear that the two terms

in the third line of (3.29) give vanishing contribution because the contraction of µ with ν

becomes a (vanishing) contraction of the t tensor, (3.12). The second term in the second

line vanishes as well, an to prove that, we have to introduce a dimensional regulator and

use Feynman parametrization (for details see [19]).

Next, let us consider the fourth line of (3.29). These are seagull terms, with three

external graviton lines attached to the same point of a fermion loop. The gamma trace

algebra cannot generate an ε tensor from all such terms, except of course the second term

in the second line and the one in the fourth line. Therefore we can exclude all the former

from our consideration. As for the latter the relevant vertex has two fermion legs, with

the usual momenta p and p′, and three graviton legs, with incoming momenta k1, k2, k3

and labels µ1, ν1, µ2, ν2 and µ3, ν3, respectively. Its expression for the second term in the

second line of (3.29) is

∼ εµ2µ3λρk
λ
3γ

ρηµ1ν3ην1ν2 (3.30)

symmetrized in µ1 ↔ ν1, µ2 ↔ ν2, µ3 ↔ ν3, and with respect to the exchange of any two

couples (µi, νi). The seagull term is therefore proportional to

ˆ
d4p

pρ

p2

which vanishes. As for the term in the fourth line of (3.29), one comes to similar conclu-

sions.

In summary, the odd trace anomaly receives contributions only from

T(2)(x) = T µµ1ν1µ2ν2µ (x, x1, x2) (3.31)

= ηµν

(
− 〈0|T T µν(0)(x)T µ1ν1(0) (x1)T µ2ν2(0) (x2)|0〉+ 4i〈0|T T µν(0)(x)

δ2S

δhµ1ν1(x1)δhµ2ν2(x2)
|0〉
)

This result looks very much like the starting point of [15], i.e. it seems to reduce to

the same contributions, i.e. the triangle diagram and bubble diagram (which turned out

to vanish), but there is an important modification: the T µν(0)(x) is different from the free

energy-momentum tensor in [15], the definition (3.22) contains an additional piece (the

second). It is not hard to show that the second term in the RHS of (3.31) vanishes also
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when taking account of this modification. As for the three point function in the first term

of (3.31)

• we obtain of course the same result as in [15] when the calculation is made with

three vertices Vffh: P − Vffh-P -Vffh-P -Vffh (this calculation is repeated in [19]);

• it is 0 when the second or third vertices are replaced by V ′ffh,

• and it is -4 times the result of [15] if the first vertex is replaced by V ′ffh, i.e. P -V ′ffh-

P -Vffh-P -Vffh .

• When we replace more than one vertex Vffh with V ′ffh we get 0.

So the overall result of (3.31) is (1− 4 = −3) times the end result for the trace anomaly

in [15].

We will see below that this modification of the anomaly must be canceled in order to

guarantee conservation. Let us call the lowest order integrated anomaly, obtained in [15],

Aω = −
´
ωA0. Then the new addition equals −4Aω. By adding to the effective action

the term C = −
´

1
2
trhA0 we exactly cancel this additional unwanted piece. We will

verify that this counterterm cancels an analogous anomalous term in the Ward identity

of the diffeomorphisms, anomalous term which is generated by the same diagram P -V ′ffh-

P -Vffh-P -Vffh which is the cause of the additional term in question in the trace anomaly.

In conclusion, the only relevant term for the odd trace anomaly is the P -Vffh-P -Vffh-

P -Vffh one. This is the term computed first in [15], which gives rise to the Pontryagin

anomaly. It should be remarked that in the odd trace anomaly calculation there are no

contributions from tadpole and seagull terms.

3.1.2 Odd trace anomaly for Dirac and Majorana fermions

The action for a Dirac fermion is the same as in (3.16) with ψL everywhere replaced by

the Dirac fermion ψ. In order to evaluate the odd trace anomaly we remark that an odd

contribution in (3.24) can come only from the terms in (3.16) that contain the ε tensor.

Since these terms contain γ5, upon tracing the gamma matrix part, either they give 0

or another ε tensor. In the latter case they produce an even contribution to the trace

anomaly, which does not concern us here. In conclusion the odd trace anomaly, in the

case of a Dirac fermion, vanishes.
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When the fermion are Majorana the conclusion does not change. The simplest way

to see it is to use the Majorana representation for the gamma matrices. Then ψ has four

real components, and the only change with respect to the Dirac case is that in the path

integral we integrate over real fermion fields instead of complex ones, while all the rest

remains unchanged.

3.2 Conservation of the energy-momentum tensor

As already anticipated above, trace anomalies are strictly connected with diffeomorphism

anomalies. In 4d the so-called Einstein-Lorentz anomalies are absent, but there may

appear other anomalous terms in the Ward identity of the diffeomorphisms. The latter

together with a Weyl anomaly partner form a cocycle of the joint diff+Weyl cohomology,

see [10, 11]. Usually, by adding a local counterterm to the effective action, one can restore

diffeomorphism invariance. In the present case, odd parity trace anomaly, the analysis of

such possible anomalies was carried out in a simplified form in [17]. In this section we

wish to complete that analysis by considering also tadpoles and seagull terms.

If we take into account the tadpole and seagull terms in the conservation law one has

to take into account also the VEV of the energy-momentum tensor. Let us set

〈0|T µν(0)(x)|0〉 = 〈0|T µν(0)(0)|0〉 = Θµν = Aηµν (3.32)

The Ward identity is

∇µ〈〈T µν(x)〉〉 = ∂µ〈〈T µν(x)〉〉+ Γµµλ〈〈T
λν(x)〉〉+ Γνµλ〈〈T µλ(x)〉〉 = 0 (3.33)

because 〈〈T µν(x)〉〉 ≡ 2√
−g

δW
δgµν(x)

. To first order in hµν we have

Γνµλ(x) ≈ 1

2

(
∂µh

ν
λ + ∂λh

ν
µ − ∂νhµλ

)
Γµµλ(x) ≈ 1

2
∂λh

µ
µ (3.34)

Now we use (3.18, 3.22, 3.23, 3.24). To the 0-th order in h (3.33) implies

∂µ〈0|T µν(x)|0〉 = 0 (3.35)
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To get the WI to first order one must differentiate (3.33) with respect to hµν . One has

δhµν(x)

δhλρ(y)
=

1

2

(
δλµδ

ρ
ν + δλν δ

ρ
µ

)
δ(x− y) (3.36)

Differentiating the first term on the RHS of (3.33) one gets the ordinary divergence of the

two-point function. Then

δΓµµλ(x)

δhµ1ν1(y)
=

1

2
ηµ1ν1∂xλδ(x− y) (3.37)

δΓνµλ(x)

δhµ1ν1(y)
=

1

4

(
∂µδ(x− y) (δν1λ η

µ1ν + δµ1λ η
ν1ν) + ∂λδ(x− y)

(
δµ1µ η

νν1 + δν1µ η
νµ1
)

− ∂νδ(x− y)
(
δν1λ δ

µ1
µ + δµ1λ δ

ν1
µ

))
(3.38)

Putting everything together one finds

∂xµT µνµ1ν1(x, y) +
1

2
ηµ1ν1∂xλδ(x− y)Θλν (3.39)

+
1

2

(
∂xλδ(x− y)ηµ1νΘλν1 + ∂xλδ(x− y)ην1νΘλµ1 − ∂x νδ(x− y)Θµ1ν1

)
= i∂xµ〈0|T T

µν
(0)(x)T µ1ν1(0) (y)|〉+ 4∂xµ〈0|

δ2S

δhµν(x)δhµ1ν1(y)
|0〉

+∂xλδ(x− y)ηµ1νΘλν1 + ∂xλδ(x− y)ην1νΘλµ1 − ∂x νδ(x− y)Θµ1ν1 = 0.

We have already noted that, for what concerns the odd part, all the terms in the RHS

vanish. Therefore conservation is guaranteed up to second order in h.

The order three Ward identity has a rather cumbersome expression, in particular

it contains various terms linear in Θµν , see equation (62) in [19]. Since they do not

contribute to the odd part of the identity we drop them altogether. Furthermore, the

two point functions 〈0|T T µν(0)(x)T λρ(0)(y)|0〉 cannot contribute to the odd part because the

combinatorics of the ε and η tensor plus an external momentum does not allow it. Next

the VEV’s of second and third derivative of S with respect to h cannot contribute with a

tadpole term: if we look at (3.16) and focus on the vertices that can give an odd parity

contribution, i.e. those containing the ε tensor, we notice that they depend linearly on

the external momenta (not on the fermion momenta); therefore, in a tadpole term, the

momentum integrand can only be linear in the internal momentum pµ, and thus vanishes.
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Therefore, as far as the odd part is concerned, the remaining terms are:

−∂xµ〈0|T T
µν
(0)(x)T µ1ν1(0) (x1)T µ2ν2(0) (x2)|0〉+ 4i∂xµ〈0|T T

µν
(0)(x)

δ2S

δhµ1ν1(x1)δhµ2ν2(x2)
|0〉

+4i∂xµ〈0|T T
µ2ν2
(0) (x2)

δ2S

δhµν(x)δhµ1ν1(x1)
|0〉+ 4i∂xµ〈0|T T

µ1ν1
(0) (x1)

δ2S

δhµν(x)δhµ2ν2(x2)
|0〉

= 0. (3.40)

The last three terms on the LHS can be shown to vanish. The proof is not as simple as the

previous ones. One has to push the calculations one step further, introduce a dimensional

regulator and use Feynman parametrization (see [19] for details). The integration over

the relevant parameter can easily be shown to vanish. What remains to be verified is

therefore

∂xµ〈0|T T
µν
(0)(x)T µ1ν1(0) (x1)T µ2ν2(0) (x2)|0〉 = 0. (3.41)

Let us consider the term generated by the diagram P − V ′ffh − P − Vffh − P − Vffh.

We have already calculated it above, it equals −∂xνA(x), where A(x) is the unintegrated

Weyl anomaly calculated in [15]. So conservation is violated by this term. Adding to the

action the term C = −
´

1
2
trhωA0, as we have anticipated above, we get the diff variation

δξC = −
ˆ
∂νξ

ν A =

ˆ
ξν∂νA (3.42)

which exactly cancels this anomaly2.

Next we have to consider the diagram P −Vffh−P −V ′ffh−P −Vffh and P −Vffh−

P − Vffh−P − V ′ffh. In the on-shell case, k2
1 = 0 = k2

2, these contributions can be shown

to vanish. It is enough to take formula (3.18) of [15]. The first diagram corresponds to

contracting this formula with kµ1 or kν1 . It is easy to see that such a contraction vanishes.

The second diagram corresponds to contracting the same formula with kµ
′

2 or kν
′

2 , which

again vanishes. Therefore, at least in the on-shell case these diagrams do not contribute.

In conclusion we have to verify (3.41) for the triangle diagram P − Vffh−P − Vffh−

P − Vffh (and the crossed one). This is what was already done in [15, 17].

2Concerning the signs remember that there is a relative - sign between the unintegrated Diff and trace
anomalies
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3.2.1 On-shell, off-shell and locality

In [15, 17] the following integrals were used in order to compute the relevant Feynman

diagram

ˆ
d4p

(2π)4

ˆ
dδ`

(2π)δ
p2

(p2 + `2 + ∆)3
=

1

(4π)2

(
−2

δ
− γ + log(4π)− log ∆

)
ˆ

d4p

(2π)4

ˆ
dδ`

(2π)δ
p4

(p2 + `2 + ∆)3
=

∆

2(4π)2

(
−2

δ
− γ + 4 + log(4π)− log ∆

)
(3.43)

and

ˆ
d4p

(2π)4

ˆ
dδ`

(2π)δ
`2

(p2 + `2 + ∆)3
= − 1

2(4π)2ˆ
d4p

(2π)4

ˆ
dδ`

(2π)δ
`2p2

(p2 + `2 + ∆)3
=

1

(4π)2
∆ (3.44)

where ∆ = u(1−u)k2
1 + v(1− v)k2

2 + 2uv k1k2, u, v are Feynman parameters, and δ is the

dimensional regulator: d = 4 + δ.

The odd trace anomaly comes from the term

− 1

128

ˆ
d4p

(2π)4

ˆ
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(2p− k1)λγρ

× /p+ /̀− /k1

(p− k1)2 − `2
(2p− 2k1 − k2)αγβ

/p+ /̀− /q
(p− q)2 − `2

/̀
γ5

2

)
(3.45)

see also [15, 17]. This requires the two integrals (3.44), which must be further integrated

on v from 0 to 1−u and on u from 0 to 1. The integrations over the Feynman parameters

are elementary and lead to the result

T
µ
µαβλρ(k1, k2) =

1

192(4π)2
kσ1k

τ
2

(
tλραβστ (k

2
1 + k2

2 + k1k2)− t(21)
λραβστ

)
(3.46)

We report this result here to stress the fact that the terms contained in it are contact

terms and thus lead to a local anomaly. In [17] we remarked that the piece proportional

to (k2
1 + k2

2) disappears on shell, and off-shell corresponds to a trivial anomaly.

To compute the conservation law (3.41) we need also the integrals (3.43). It is evident

from the form of their RHS’s that integrating on u and v will lead to non-contact terms,

and non-local expressions for the odd diff anomaly. However if we put k1 and k2 on shell
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things change. The contact terms have been discussed in [17]. They can be eliminated by

subtracting local counterterms without spoiling the trace anomaly. As for the noncontact

terms they are polynomials of k1 and k2 multiplied by log k1·k2. All such terms are listed

in Appendix E of [17]. They look non-local. However, using the Fourier transform

ˆ
d4k1

(2π)4

d4k2

(2π)4
ei(k1(x−z)+k2(y−z)) log (k1 + k2)2

= − 1

4π2
δ(4)(x− y)�z

(
1

(x− z)2
log

(x− z)2

4

)
, (3.47)

one can show that they give a vanishing contribution when inserted into the effective

action, because of the on shell condition �hµν = 0 (De Donder gauge, see Appendix 3.A).

On the other hand, when k1 and k2 are off shell, the anomaly looks nonlocal. This is

a surprise because we are used to think of anomalies as local expressions. But we have

learned from [29] and from the higher spins analysis that when higher spins are involved

(including the metric) covariance generally requires to sacrifice locality. However the

ensuing non-locality is a gauge artifact. By imposing a suitable gauge choice, locality can

be restored. As an example see eq.(8.21) and others in [29].

3.3 Comments on the Pontryagin trace anomaly

Let us add some comments on the Pontryagin trace anomaly. A non-trivial property is that

it belongs to the family of chiral anomalies characterized by having opposite coefficients

for opposite chiralities - split anomalies. This anomaly did not appear for the first time

in [15]. The possibility of its existence due to its Wess-Zumino consistency was pointed

out in [12] and, although somewhat implicitly, its existence was implied by [7]. A similar

anomaly was found in a different contest (originating from an antisymmetric tensor field)

in the framework of an AdS/CFT in [82, 83], where a possible conflict with unitarity was

pointed out. The same risk has been pointed out, from a different viewpoint, in [15].

In general it seems that its presence signals some kind of difficulty in properly defining

the theory. Very likely for this reason the existence of the Pontryagin trace anomaly for

chiral fermions is still considered controversial and objections have been raised against it.

Such objections are often reducible to the credence that Weyl fermions are equivalent to

massless Majorana fermions.
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One more important observation is that in conformal field theory in 4d the three-

point functions of the energy-momentum tensor cannot have an odd part, so how can an

anomaly arise from the regularization of a vanishing bare correlator? The answer to this

question is given in [17]: an anomaly can arise as a simple quantum effect; we have shown

other examples of correlators which do not arise from the regularization of nonvanishing

bare correlators, [18]. The crucial criterion is consistency.

Finally, we have stressed above that the crucial ingredient in the anomalies computa-

tion is the functional integral measure and we have also pointed out the issues connected

with the latter for chiral fermions. Here we used a Feynman diagram technique, assuming

that it reproduces the correct path integral measure. Although this must be the case,

because the relevant Feynman diagrams (with chiral propagators and chiral vertices) are

different from those for Dirac or Majorana fermions, it is fair to say that we do not have

a direct proof of it. However, there is a way to avoid any residual doubts concerning the

path integral measure. It relies in the analogue of the method used by Bardeen, [86],

for chiral gauge anomalies, see also [54]. In such an approach one uses Dirac fermions

(and, consequently, the ordinary Dirac measure) and recovers the chiral fermion theory

by taking a specific limit. To this approach is devoted the next chapter.
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Appendices

3.A de Donder gauge

To simplify the anomaly calculation, in the section above (and in [15]) we used

k2
1 = k2

2 = 0 (3.48)

This means that we are putting the external lines on-shell. In other words, the above

equation is telling us that the external fields satisfy the EOM of gravity Rµν = 0 which

in linearized form reads

2hµν = ∂µ∂λh
λ
ν + ∂ν∂λh

λ
µ − ∂µ∂νh′ (3.49)

where h′ denotes the trace of hµν . Now, we can choose the de Donder gauge

gµνΓλµν = 0 (3.50)

which at the linearized level can be written as

∂µh
µ
λ −

1

2
∂λh

′ = 0 (3.51)

Using the de Donder gauge, the EOM of gravity at linearized level is

2hµν = 0 (3.52)

In momentum space this becomes k2
1 = k2

2 = 0.
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Chapter 4

Metric-Axial tensor gravity

In previous chapters we mentioned problems related to the path integral measure with

Weyl fermions. To avoid these issues, we will rely on the method inspired by Bardeen,

[86] for chiral gauge anomalies, see also [54]. In this approach the idea is to construct a

model where one uses Dirac fermions (and, consequently, the ordinary Dirac measure).

Transferring this technique in the context of trace anomalies for chiral fermions, requires,

in addition to the usual metric gµν , the introduction of an axial tensor fµν . This second

tensor couples axially to Dirac fermions. We call this model metric-axial gravity, or for

short MAT. In this way, we are able to derive the trace anomalies for Dirac, Majorana

and Weyl fermions as particular limits of the general case. This chapter is based on [19].

4.1 Bardeen’s method

This section is a short review of Bardeen’s method to derive gauge anomalies, [86]. This

method enables us to calculate covariant and consistent anomalies in a unique model by

coupling Dirac fermions to an axial potential A, in addition to the usual vector potential

V . The anomalies one obtains in this way satisfy the Wess-Zumino consistency conditions,

but depend on two potentials.

We consider a theory of Dirac fermions coupled to two non-Abelian (vector Vµ and

axial Aµ) gauge potentials, both valued in a Lie algebra with anti-hermitean generators

T a, with [T a, T b] = fabcT c. The action is

S[V,A] = i

ˆ
d4xψ

(
/∂ + /V + γ5 /A

)
ψ (4.1)

52



It is invariant under two sets of gauge transformations
Vµ −→ Vµ +DV µα

Aµ −→ Aµ + [Aµ, α]

ψ −→ (1− α)ψ

,


Vµ −→ Vµ + [Aµ, β]

Aµ −→ Aµ +DV µβ

ψ −→ (1 + γ5β)ψ

(4.2)

where DV µ = ∂µ + [Vµ, · ] and α = αa(x)T a, β = βa(x)T a. As a consequence there are

two covariantly conserved currents, jµ = jaµT
a and j5µ = ja5µT

a, where

jaµ = ψγµT
aψ, ja5µ = ψγµγ5T

aψ (4.3)

In the one-loop quantum theory it is impossible to preserve both conservations. The most

one can do is to preserve, for instance, the vector one

[Dµ
V jµ]a + [Aµ, j5µ]a = 0 (4.4)

while the axial conservation becomes anomalous:

[Dµ
V j5µ]a + [Aµ, jµ]a =

1

4π2
εµνλρtr

[
Ta

(
1

4
FµνV FλρV +

1

12
FµνA FλρA −

1

6
FµνV AλAρ

− 1

6
AµAνF λρ

V −
2

3
AµF νλ

A Aρ − 1

3
AµAνAλAρ

)]
(4.5)

where F µν
V = ∂µV ν − ∂νV µ + [V µ, V ν ] + [Aµ, Aν ], and F µν

A = ∂µAν − ∂νAµ + [V µ, Aν ] +

[Aµ, V ν ]. From this expression we can derive two results in particular. Setting Aµ = 0 we

get the covariant anomaly

[Dµ
V j5µ]a =

1

16π2
εµνλρtr

(
TaFµνV FλρV

)
(4.6)

Taking the collapsing limit V → V
2
, A→ V

2
, and adding (4.4) to (4.5) we get the consistent

non-Abelian gauge anomaly

[DV µj
µ
L]a =

1

24π2
εµνλρtr

[
Ta∂µ

(
Vν∂λVρ +

1

2
VνVλVρ

)]
(4.7)

where jLµ = ψLγµψL, with ψL = 1+γ5
2
ψ.
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4.2 Metric-Axial-Tensor Gravity

4.2.1 Axial metric

We use the symbols gµν , g
µν and eaµ, eµa in the usual sense of metric and vierbein and their

inverses. Then we introduce the formal writing1

Gµν = gµν + γ5fµν (4.8)

where f is a symmetric tensor. Their background values are ηµν and 0, respectively, so

that

gµν = ηµν + hµν , fµν = kµν (4.9)

In matrix notation the inverse of G, G−1, is defined by

G−1 = ĝ + γ5f̂ , G−1G = 1, ĜµλGλν = δµν (4.10)

which implies

ĝf + f̂ g = 0, ĝg + f̂f = 1. (4.11)

That is

f̂ = −ĝfg−1, ĝ =
(
g − fg−1f

)−1
(4.12)

So

ĝ = (1− g−1 fg−1f)−1g−1, f̂ = −(1− g−1f g−1f)−1g−1f g−1 (4.13)

1We use at times the suggestive terminology axial-complex for an expression like Gµν , axial-real for gµν
and axial-imaginary for fµν . This alludes to a geometrical interpretation, which is however not necessary
to expand on in this context.
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Keeping up to second order terms:

gµν = ηµν − hµν + hµλh
λν + . . .

ĝµν = ηµν − hµν + hµλh
λν + kµλk

λν + . . .

f̂µν = −kµν + hµλk
λν + kµλh

λν + . . . (4.14)

4.2.2 MAT vierbein

Likewise for the vierbein one writes

Ea
µ = eaµ + γ5c

a
µ, Êµ

a = êµa + γ5ĉ
µ
a (4.15)

This implies

ηab
(
eaµe

b
ν + caµc

b
ν

)
= gµν , ηab

(
eaµc

b
ν + eaνc

b
µ

)
= fµν (4.16)

Moreover, from Êµ
aE

a
ν = δµν ,

êµac
a
ν + ĉµae

a
ν = 0, êµae

a
ν + ĉµac

a
ν = δµν , (4.17)

one gets

êµa =

(
1

1− e−1c e−1c
e−1

)µ
a

, ĉµa = −
(
e−1c

1

1− e−1c e−1c
e−1ce−1

)µ
a

(4.18)

In accord with (4.9) we have

eaµ = δaµ +
1

2
haµ −

1

8
(hh+ kk)aµ +

1

16
(h3 + khk + hk2 + k2h)aµ + . . . (4.19)

êµa = δµa −
1

2
hµa +

3

8
(hh+ kk)µa −

5

16
(h3 + khk + hk2 + k2h)µa + . . .

caµ =
1

2
kaµ −

1

8
(hk + kh)aµ +

1

16
(k3 + hkh+ h2k + kh2)aµ + . . .

ĉµa = −1

2
kµa +

1

16
(hk + kh)µa −

5

16
(k3 + hkh+ h2k + kh2)µa + . . .
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or

Ea
µ = δaµ +

1

2
haµ −

1

8
(hh+ kk)aµ + γ5

(
1

2
kaµ −

1

8
(hk + kh)aµ

)
+ . . . (4.20)

Êµ
a = δµa −

1

2
hµa +

3

8
(hh+ kk)µa − γ5

(
1

2
kµa −

3

8
(hk + kh)µa

)
+ . . .

4.2.3 Christoffel and Riemann

The ordinary Christoffel symbols are

γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) (4.21)

The MAT Christoffel symbols are defined in a similar way

Γλµν =
1

2
Ĝλρ (∂µGρν + ∂νGρµ − ∂ρGµν) (4.22)

=
1

2

(
ĝλρ (∂µgρν + ∂νgρµ − ∂ρgµν) + f̂λρ (∂µfρν + ∂νfρµ − ∂ρfµν)

)
+

1

2
γ5

(
ĝλρ (∂µfρν + ∂νfρµ − ∂ρfµν) + f̂λρ (∂µgρν + ∂νgρµ − ∂ρgµν)

)
≡ Γ(1)λ

µν + γ5Γ(2)λ
µν

Up to order two in h and k these become

Γ(1)λ
µν =

1

2

(
∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν

−hλρ (∂µhνρ + ∂νhµρ − ∂ρhµν)− kλρ (∂µkνρ + ∂νkµρ − ∂ρkµν)
)

+ . . . (4.23)

Γ(2)λ
µν =

1

2

(
∂µk

λ
ν + ∂νk

λ
µ − ∂λkµν

−hλρ (∂µkνρ + ∂νkµρ − ∂ρkµν)− kλρ (∂µhνρ + ∂νhµρ − ∂ρhµν)
)

+ . . . (4.24)

Proceeding the same way one can define the MAT Riemann tensor via Rµνλ
ρ:

Rµνλ
ρ = −∂µΓρνλ + ∂νΓ

ρ
µλ − ΓρµσΓσνλ + ΓρνσΓσµλ (4.25)

= −∂µΓ
(1)ρ
νλ + ∂νΓ

(1)ρ
µλ − Γ(1)ρ

µσ Γ
(1)σ
νλ + Γ(1)ρ

νσ Γ
(1)σ
µλ − Γ(2)ρ

µσ Γ
(2)σ
νλ + Γ(2)ρ

νσ Γ
(2)σ
µλ

+γ5

(
− ∂µΓ

(2)ρ
νλ + ∂νΓ

(2)ρ
µλ − Γ(1)ρ

µσ Γ
(2)σ
νλ + Γ(1)ρ

νσ Γ
(2)σ
µλ − Γ(2)ρ

µσ Γ
(1)σ
νλ + Γ(2)ρ

νσ Γ
(1)σ
µλ

)
≡ R(1)

µνλ
ρ + γ5R(2)

µνλ
ρ
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The MAT spin connection is introduced in analogy

Ωab
µ = Ea

ν

(
∂µÊ

νb + ÊσbΓνσµ

)
= Ω(1)ab

µ + γ5Ω(2)ab
µ (4.26)

where

Ω(1)ab
µ = eaν

(
∂µê

νb + êσbΓ(1)ν
σµ + ĉbσΓ(2)ν

σµ

)
+ caν

(
∂µĉ

νb + êσbΓ(2)ν
σµ + ĉbσΓ(1)ν

σµ

)
(4.27)

Ω(2)ab
µ = eaν

(
∂µĉ

νb + êσbΓ(2)ν
σµ + ĉbσΓ(1)ν

σµ

)
+ caν

(
∂µê

νb + êσbΓ(1)ν
σµ + ĉbσΓ(2)ν

σµ

)
(4.28)

4.2.4 Transformations. Diffeomorphisms

Under diffeomorphisms, δxµ = ξµ, the Christoffel symbols transform as tensors except for

one non-covariant piece

δ
(n.c.)
ξ γλµν = ∂µ∂νξ

λ (4.29)

The same happens for the MAT Christoffel symbols

δ
(n.c.)
ξ Γλµν = ∂µ∂νξ

λ (4.30)

This means in particular that Γ
(2)λ
µν is a tensor.

It is more convenient to introduce also axial diffeomorphisms and use the following

compact notation. The axially-extended (AE) diffeomorphisms are defined by

xµ → xµ + Ξµ, Ξµ = ξµ + γ5ζ
µ (4.31)

Since operationally these transformations act the same way as the usual diffeomorphisms,

it is easy to obtain for the non-covariant part

δ(n.c.)Γλµν = ∂µ∂νΞ
λ (4.32)

We can also write

δΞGµν = DµΞν +DνΞµ (4.33)
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where Ξµ = GµνΞ
ν .

In components one easily finds

δξgµν = ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgλµ (4.34)

δξfµν = ξλ∂λfµν + ∂µξ
λfλν + ∂νξ

λfλµ

δζgµν = ζλ∂λfµν + ∂µζ
λfλν + ∂νζ

λfλµ (4.35)

δζfµν = ζλ∂λgµν + ∂µζ
λgλν + ∂νζ

λgλµ

Summarizing

δ
(n.c.)
ξ Γ(1)λ

µν = ∂µ∂νξ
λ, δ

(n.c.)
ξ Γ(2)λ

µν = 0 (4.36)

δ
(n.c.)
ζ Γ(1)λ

µν = 0, δ
(n.c.)
ζ Γ(2)λ

µν = ∂µ∂νζ
λ

and the overall Riemann and Ricci tensors are tensor, and the Ricci scalar R is a scalar.

But also R(1) and R(2), separately, have the same tensorial properties.

4.2.5 Transformations. Weyl transformations

There are two types of Weyl transformations. The first is the obvious one

Gµν −→ e2ωGµν , Ĝµν → e−2ωĜµν (4.37)

and

Ea
µ −→ eωEa

µ, Êµ
a → e−ωÊµ

a (4.38)

This leads to the usual relations

Γλµν −→ Γλµν + ∂µω δ
λ
ν + ∂νω δ

λ
µ − ∂ρω ĜλρGµν (4.39)

and

Ωab
µ −→ Ωab

µ +
(
Ea
µÊ

σb − Eb
µÊ

σa
)
∂σω (4.40)
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For infinitesimal ω this implies

δωgµν = 2ω gµν , δωfµν = 2ω fµν (4.41)

δ(0)
ω hµν = 2ωηµν , δ(1)

ω hµν = 2ωhµν , . . .

δ(0)
ω kµν = 0, δ(1)

ω kµν = 2ωkµν , . . .

The second type of Weyl transformation is the axial one

Gµν −→ e2γ5ηGµν , Ĝµν → e−2γ5ηĜµν (4.42)

and

Ea
µ −→ eγ5ηEa

µ, Êµ
a → e−γ5ηÊµ

a (4.43)

This leads to

Γλµν −→ Γλµν + γ5

(
∂µη δ

λ
ν + ∂νη δ

λ
µ − ∂ρη ĜλρGµν

)
(4.44)

and

Ωab
µ −→ Ωab

µ + γ5

(
Ea
µÊ

σb − Eb
µÊ

σa
)
∂ση (4.45)

Eq.(4.42) implies

gµν −→ cosh(2η) gµν + sinh(2η) fµν , fµν −→ cosh(2η) fµν + sinh(2η) gµν (4.46)

which, for infinitesimal η becomes

δηgµν = 2η fµν , δ(0)
η hµν = 0, δ(1)

η hµν = 2η kµν , . . .

δηfµν = 2η gµν , δ(0)
η kµν = 2η ηµν , δ(1)

η kµν = 2η hµν , . . . (4.47)
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4.2.6 Volume density

The ordinary density
√
|g| is replaced with

√
|G| =

√
det(G) =

√
det(g + γ5f) (4.48)

The expression in the RHS has to be understood as a formal Taylor expansion in terms

of the axial-complex variable g + γ5f . This means

tr ln(g + γ5f) = tr ln g + tr ln
(
1 + γ5(g−1f)

)
= tr ln g +

1

2
tr ln

(
1− (g−1f)2

)
+ γ5 tr arcth(g−1f) (4.49)

=
1 + γ5

2
tr ln(g + f) +

1− γ5

2
tr ln(g − f)

It follows that

√
|G| = e

1
2

tr ln(g+γ5f) = e
1
2( 1+γ5

2
tr ln(g+f)+

1−γ5
2

tr ln(g−f))

=
1

2

(√
det(g + f) +

√
det(g − f)

)
+
γ5

2

(√
det(g + f)−

√
det(g − f)

)
(4.50)

√
|G| has the basic property that, under diffeomorphisms,

δξ
√
|G| = ξλ∂λ

√
|G|+

√
|G| ∂λξλ (4.51)

This is a volume density, and has the following properties

√
|G| → e4ω

√
|G|,

√
|G| → e4ηγ5

√
|G|, (4.52)

under Weyl and axial-Weyl transformations, respectively. Moreover

1√
|G|

∂ν
√
|G| = 1

2
Ĝµλ∂νGµλ = Γµµν (4.53)
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4.3 Axial fermion theories

From the above it is evident that the action for a fermion field in interaction with MAT

cannot be written in the classical form
´
d4x

√
|g|ψOψ, as in the case of ordinary gravity,

where O is the usual operatorial kinetic operator in the presence of gravity, because in the

MAT case
√
|G| contains the γ5 matrix. Instead,

√
|G| must be inserted between ψ and

ψ. Moreover we have to take into account that the kinetic operator contains a γ matrix

that anticommutes with γ5. Thus, for instance, using DλGµν = 0 and (Dλ + 1
2
Ωλ)E = 0,

where D = ∂ + Γ, one gets

ψγaÊµ
a

(
∂µ +

1

2
Ωµ

)
ψ = ψ(D̄µ +

1

2
Ω̄µ)γaÊµ

aψ (4.54)

where a bar denotes axial-complex conjugation, i.e. a sign reversal in front of each γ5

contained in the expression, for instance Ω̄µ = Ω
(1)
µ − γ5Ω

(2)
µ . The reader should be aware

that, in particular, a concise notation like Dµγλ is ambiguous. The MAT fermion action

is now

S =

ˆ
d4x iψ

√
|Ḡ|γaÊµ

a

(
∂µ +

1

2
Ωµ

)
ψ (4.55)

=

ˆ
d4x iψ

√
|Ḡ|γa(êµa + γ5ĉ

µ
a)

(
∂µ +

1

2

(
Ω(1)
µ + γ5Ω(2)

µ

))
ψ

=

ˆ
d4xψ

√
|Ḡ|(êµa − γ5ĉ

µ
a)

[
i

2
γa
↔
∂µ +

i

4

(
γaΩµ + Ω̄µγ

a
)]
ψ

=

ˆ
d4xψ

√
|Ḡ|(êµa − γ5ĉ

µ
a)

[
i

2
γa
↔
∂µ −

1

4
εabcd

(
Ω

(1)
µbcγdγ5 + Ω

(2)
µbcγd

)]
ψ

where it is understood that ∂µ applies only to ψ or ψ, as indicated, and Ḡ denotes the

axial-complex conjugate. To obtain this one must use (4.53) and (4.54).

4.3.1 Classical Ward identities

Let us consider AE diffeomorphisms first, (4.31). It is not hard to prove that the ac-

tion (4.55) is invariant under these transformations. Now, define the full MAT energy-

momentum tensor by means of

Tµν =
2√
|G|

←
δ S

δGµν

(4.56)
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This formula needs a comment, since
√
|G| contains γ5. To give a meaning to it we

understand that the operator 2√
|G|

←
δ

δGµν
in the RHS acts on the operatorial expression,

say O
√
|G|, which is inside the scalar product, i.e. ψO

√
|G|ψ. Moreover the functional

derivative acts from the right of the action. Now the conservation law under diffeorphisms

is

0 = δΞS =

ˆ
ψ

←
δ O
δGµν

δGµνψ =

ˆ
ψ

←
δ O
δGµν

(DµΞν +DνΞµ)ψ

= −2

ˆ
ψ

←
δ O
δGµν

←
DµΞνψ (4.57)

where D acts (from the right) on everything except the parameter Ξν . Differentiating with

respect to the arbitrary parameters ξµ and ζν we obtain two conservation laws involving

the two tensors

T µν = 2ψ

←
δ O
δGµν

ψ (4.58)

T µν5 = 2ψ

←
δ O
δGµν

γ5ψ (4.59)

At the lowest order the latter are given by eqs. (4.81),(4.82) below.

Repeating the same derivation for the axial complex Weyl transformation one can

prove that, assuming for the fermion field the transformation rule

ψ → e−
3
2

(ω+γ5η)ψ, (4.60)

(4.55) is invariant and obtain the Ward identity

0 =

ˆ
ψ

←
δ O
δGµν

Gµν (ω + γ5η)ψ (4.61)

We obtain in this way two WI’s

T µνgµν + T µν5 fµν = 0, (4.62)

T µνfµν + T µν5 gµν = 0, (4.63)
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4.3.2 A simplified version

A simplified approach to the trace anomaly calculation consists first in absorbing
√
|G|

in ψ by setting Ψ = |G| 14ψ and thereby assuming the transformation properties

δΞΨ = Ξµ∂µΨ +
1

2
DµΞµΨ (4.64)

for AE diffeomorphisms, and

δω+γ5Ψ = e
1
2
ω+γ5ηΨ, (4.65)

for axial-complex Weyl transformations.

To arrive at an expanded action one uses (4.9,4.19), up to second order, and finds

Ω(1)ab
µ =

1

2

(
∂bhaµ − ∂ahbµ

)
+

1

4

(
hσa∂σh

b
µ − hσb∂σhaµ + hbσ∂ahσµ − haσ∂bhσµ

)
−1

8

(
haσ∂µh

b
σ − hbσ∂µhaσ

)
− 1

8

(
kaσ∂µk

b
σ − kbσ∂µkaσ

)
+

1

4

(
kσa∂σk

b
µ − kσb∂σkaµ + kbσ∂akσµ − kaσ∂bkσµ

)
+ . . . (4.66)

and

Ω(2)ab
µ =

1

2

(
∂bkaµ − ∂akbµ

)
+

1

4

(
hσa∂σk

b
µ − hσb∂σkaµ + hbσ∂akσµ − haσ∂bkσµ

)
−1

8

(
haσ∂µk

b
σ − hbσ∂µkaσ

)
− 1

8

(
kaσ∂µh

b
σ − kbσ∂µhaσ

)
+

1

4

(
kσa∂σh

b
µ − kσb∂σhbµ + kbσ∂ahσµ − kaσ∂bhσµ

)
+ . . . (4.67)

In particular

εµabcΩ
(1)
µab = −1

4
εµabc (hσa∂bhµσ + kσa∂bkµσ) + . . . (4.68)

εµabcΩ
(2)
µab = −1

4
εµabc (hσa∂bkµσ + kσa∂bhµσ) + . . . (4.69)
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Up to order two in h and k we have

S =

ˆ
d4xψ|Ḡ|

1
4 (êµa − γ5ĉ

µ
a)

[
i

2
γa
↔
∂µ −

1

4
εabcd

(
Ω

(1)
µbcγdγ5 + Ω

(2)
µbcγd

)]
|G|

1
4ψ

=

ˆ
d4x

[ i
2

Ψγµ
↔
∂µΨ− i

4
Ψ(hµa − γ5k

µ
a )γa

↔
∂µΨ (4.70)

+
3i

16
Ψ
(
(k2)µa + (h2)µa − γ5(hk + kh)µa

)
γa
↔
∂µΨ

+
1

16
εµabcΨ ((hσa∂bhµσ + kσa∂bkµσ) γcγ5 + (hσa∂bkµσ + kσa∂bhµσ)γc) Ψ

+
1

8
εabcdΨ(hµa − γ5k

µ
a ) (∂chbµγdγ5 + ∂ckbµγd) Ψ

]
+ . . .

=

ˆ
d4x

[ i
2

Ψγµ
↔
∂µΨ− i

4
Ψ(hµa−γ5k

µ
a )γa

↔
∂µΨ

+
3i

16
Ψ
(
(k2)µa + (h2)µa − γ5(hk + kh)µa

)
γa
↔
∂µΨ

− 1

16
εµabcΨ ((hσa∂bhµσ + kσa∂bkµσ) γcγ5 + (hσa∂bkµσ + kσa∂bhµσ)γc) Ψ

]
+ . . .

Here we do not report explicitly the terms cubic in h and k: they contains three powers

of h and/or k multiplied by ΨγµΨ or Ψγµγ5Ψ and possibly by the ε tensor. They contain

one single derivative, applied to either h, k or Ψ. These cubic terms will not affect our

results.

4.3.3 Feynman rules

For a derivation of the Feynman rules in this case see [19]. The fermion propagator is

i

/p+ iε
(4.71)

The two-fermion-h-graviton vertex is (Vffh):

− i
8

[(p+ p′)µγν + (p+ p′)νγµ] (4.72)

The axial two-fermion-k-graviton vertex is (Vffk):

− i
8

[(p+ p′)µγν + (p+ p′)νγµ] γ5 (4.73)

(p incoming, p′ outgoing).

There are 6 2-fermion-2-graviton vertices:
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V
(1)
ffhh :

3i

64

[
((p+ p′)µγµ′ηνν′ + (p+ p′)µγν′ηνµ′ + {µ↔ ν})

+ ((p+ p′)µ′γµηνν′ + (p+ p′)µ′γνηµν′ + {µ′ ↔ ν ′})
]

(4.74)

V
(2)
ffkk :

3i

64

[
((p+ p′)µγµ′ηνν′ + (p+ p′)µγν′ηνµ′ + {µ↔ ν})

+ ((p+ p′)µ′γµηνν′ + (p+ p′)µ′γνηµν′ + {µ′ ↔ ν ′})
]

(4.75)

V
(3)
ffhk :

3i

64

[
((p+ p′)µγµ′ηνν′ + (p+ p′)µγν′ηνµ′ + {µ↔ ν})

+ ((p+ p′)µ′γµηνν′ + (p+ p′)µ′γνηµν′ + {µ′ ↔ ν ′})
]
γ5 (4.76)

V
(1)ε
ffhh :

1

64
tµνµ′ν′κλ (k − k′)λγκ γ5 (4.77)

V
(2)ε
ffkk :

1

64
tµνµ′ν′κλ (k − k′)λγκ γ5 (4.78)

V
(3)ε
ffhk :

1

64
tµνµ′ν′κλ (k − k′)λγκ (4.79)

where t is the tensor (3.12). The graviton momenta k, k′ are incoming.

As anticipated above, we dispense from writing down the vertices with three h, k

legs. For the purposes of this calculation it is possible to dispose of them with a general

argument, without entering detailed calculations.

4.3.4 Trace anomalies - a simplified derivation

We will now derive the odd parity trace anomalies in the model (4.70), by considering

only the triangle diagram contributions and disregarding tadpoles and seagull terms. We

will justify later on this simplified procedure.

The overall effective action is

W [h, k] = W [0] +
∞∑

n,m=0

im+n−1

2n+mn!m!

ˆ n∏
i=1

dxihµiνi(xi)
m∏
j=1

dyjkλjρj(yj)

·〈0|T T µ1ν1(x1) . . . T µnνn(xn)T λ1ρ15 (y1) . . . T λmρm5 (ym)|0〉 (4.80)

where, in the simplified version of this section, the T operator in the time-ordered ampli-
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tudes refer to the classical ones, i.e.

T µν ≡ T µν(0,0) = − i
4

(
ψγµ

↔
∂νψ + µ↔ ν

)
, (4.81)

T µν5 ≡ T µν5(0,0) =
i

4

(
ψγ5γ

µ
↔
∂νψ + µ↔ ν

)
, (4.82)

The quantum Ward identities for the Weyl and axial Weyl symmetry are obtained by

replacing the classical energy-momentum tensor expressions with the one-loop one-point

functions in (4.62) and (4.63)

T(x) ≡ 〈〈T µν〉〉gµν + 〈〈T µν5 〉〉fµν = 0, i.e. 〈〈T µµ 〉〉+ . . . = 0 (4.83)

T5(x) ≡ 〈〈T µν〉〉fµν + 〈〈T µν5 〉〉gµν = 0, i.e. 〈〈T µ5µ〉〉+ . . . = 0 (4.84)

In the present simplified setup the relevant one-loop one-point functions are

〈〈T µν(x)〉〉 =
∞∑

n,m=0

im+n

2n+mn!m!

ˆ n∏
i=1

dxihµiνi(xi)
m∏
j=1

dyjkλjρj(yj)

·〈0|T T µν(x)T µ1ν1(x1) . . . T µnνn(xn)T λ1ρ15 (y1) . . . T λmρm5 (ym)|0〉 (4.85)

〈〈T µν5 (x)〉〉 =
∞∑

n,m=0

im+n

2n+mn!m!

ˆ n∏
i=1

dxihµiνi(xi)
m∏
j=1

dyjkλjρj(yj)

·〈0|T T µν5 (x)T µ1ν1(x1) . . . T µnνn(xn)T λ1ρ15 (y1) . . . T λmρm5 (ym)|0〉 (4.86)

In particular for the trace anomalies, at level O(h2, hk, k2), we have

〈〈T µµ (x)〉〉(2) = −1

8

ˆ
dx1dx2hµ1ν1(x1)hµ2ν2(x2)〈0|T T µµ (x)T µ1ν1(x1)T µ2ν2(x2)|0〉

−1

4

ˆ
dx1dyhµ1ν1(x1)kλρ(y)〈0|T T µµ (x)T µ1ν1(x1)T λρ5 (y)|0〉 (4.87)

−1

8

ˆ
dy1dy2kλ1ρ1(y1)kλ2ρ2(y2)〈0|T T µµ (x)T λ1ρ15 (y1)T λ2ρ25 (y2)|0〉

〈〈T5µ
µ(x)〉〉(2) = −1

8

ˆ
dx1dx2hµ1ν1(x1)hµ2ν2(x2)〈0|T T5µ

µ(x)T µ1ν1(x1)T µ2ν2(x2)|0〉

−1

4

ˆ
dxdyhµ1ν1(x1)kλρ(y)〈0|T T5µ

µ(x)T µ1ν1(x1)T λρ5 (y)|0〉 (4.88)

−1

8

ˆ
dy1dy2kλ1ρ1(y1)kλ2ρ2(y2)〈0|T T5µ

µ(x)T λ1ρ15 (y1)T λ2ρ25 (y2)|0〉

It is clear that only the terms containing an odd number of T5 will contribute to the odd

parity trace anomaly.
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The three-point functions (4.87,4.88) are given by the ordinary triangle diagrams. All

such diagrams give the same contribution

∼
(
k1 ·k2 tµνµ′ν′λρ − t(21)

µνµ′ν′λρ

)
kλ1k

ρ
2 (4.89)

where

t
(21)
µνµ′ν′κλ = k2µk1µ′ενν′κλ + k2νk1ν′εµµ′κλ + k2µk1ν′ενµ′κλ + k2νk1µ′εµν′κλ (4.90)

Upon Fourier-anti-transforming and replacing in (4.87) and in (4.88) we get:

〈〈T µµ (x)〉〉(2) = −2Nεµνλρ
(
∂µ∂σh

τ
ν ∂λ∂τk

σ
ρ − ∂µ∂σhτν ∂λ∂σkτρ

)
(4.91)

〈〈T5µ
µ(x)〉〉(2) = −2N

[1

2
εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σhτν ∂λ∂σhτρ

)
(4.92)

+
1

2
εµνλρ

(
∂µ∂σk

τ
ν ∂λ∂τk

σ
ρ − ∂µ∂σkτν ∂λ∂σkτρ

) ]
where N = i

768π2 is the constant that appears in front of the Pontryagin anomaly in [15].

Covariantizing these expressions we get

Θµ
µ ≡

ˆ
ω〈〈T µµ (x)〉〉 = N

ˆ
ωεµνλρR(1)

µν
στR(2)

λρστ (4.93)

Θ5µ
µ ≡

ˆ
η〈〈T5µ

µ(x)〉〉 =
N

2

ˆ
η εµνλρ

(
R(1)
µν

στR(1)
λρστ +R(2)

µν
στR(2)

λρστ

)
(4.94)

The important remark is now that the odd parity trace anomaly, in an ordinary theory

of Weyl fermions, can be calculated using the above theory of Dirac fermions coupled to

MAT gravity and setting at the end hµν → hµν
2
, kµν → hµν

2
and ω = η, for left-handed

Weyl fermions, and hµν → hµν
2
, kµν → −hµν

2
for right-handed ones. We will refer to these

as collapsing limits.

4.3.5 What happens when hµν → hµν
2 , kµν →

hµν
2 .

Let us show that in the collapsing limit hµν → hµν
2
, kµν → hµν

2
we have the following

results:

Γ(1)λ
µν →

1

2
γλµν , Γ(2)λ

µν →
1

2
γλµν (4.95)
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This is evident in the approximate expressions (4.23,4.24), but it can be proved in general.

To order n in the expansion of h and k of Γ
(1)λ
µν we are going to have a first term of order

n in h alone, then

n
2

 of order n − 2 in h and order 2 in k, then

n
4

 of order n − 4

in h and order 4 in k, and so on, up to order [n/2] in h. In the collapsing limit, all these

terms collapse to the first term of order n in h divided by 2n. In total they are

[n/2]∑
k=0

 n

2k

 = 2n−1 (4.96)

Therefore they give the order n term in h of γλµν divided by 2. A similar proof holds for

Γ
(2)λ
µν .

Looking at the definition (4.25) of the curvatures R(1)
µνλ

ρ and R(2)
µνλ

ρ one easily sees that

in the collapsing limit

R(1)
µνλ

ρ → 1

2
Rµνλ

ρ, R(2)
µνλ

ρ → 1

2
Rµνλ

ρ, (4.97)

where Rµνλ
ρ is the curvature of gµν . In a similar way, using (4.66, 4.67), one can show

that

Ω(1)ab
µ → 1

2
ωabµ , Ω(2)ab

µ → 1

2
ωabµ (4.98)

Notice also that in the collapsing limit

gµν + fµν = ηµν + hµν + kµν → gµν

gµν − fµν = ηµν + hµν − kµν → ηµν (4.99)

so that

√
|G| → 1− γ5

2
+

1 + γ5

2

√
|g|, (4.100)

and

Ea
m → δam

1− γ5

2
+ eam

1 + γ5

2
, Êm

a → δma
1− γ5

2
+ êma

1 + γ5

2
. (4.101)
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From the above follows that the action (4.70) tends to

S =

ˆ
d4x iΨγaÊm

a (∂m +
1

2
Ωm)Ψ (4.102)

−→
ˆ
d4x

[
iΨγm

1− γ5

2
∂mΨ + iΨγaêma

(
∂m +

1

2
ωm

)
1 + γ5

2
Ψ

]

As for the opposite handedness one notices that, if hµν → hµν
2
, kµν → −hµν

2
, we have

Ω(1)ab
µ → 1

2
ωabµ , Ω(2)ab

µ → −1

2
ωabµ (4.103)

and in (4.101) the sign in front of γ5 is reversed. Therefore the limiting action is

S ′ =

ˆ
d4x

[
iΨγa

1 + γ5

2
∂aΨ + iΨγaêma

(
∂m +

1

2
ωm

)
1− γ5

2
Ψ

]
(4.104)

We recall that γa is the flat (non-dynamical) gamma matrix.

Concerning the energy-momentum tensor, from the definitions (4.58,4.59), in the col-

lapsing limit both T µν and T µν5 become

T
′µν(x) = 4

δS ′

δhµν(x)
(4.105)

As a consequence (4.83) and (4.84) collapse to the same expression

T(x) → 〈〈T ′µν〉〉gµν ≡ T′(x) (4.106)

T5(x) → 〈〈T ′µν〉〉gµν ≡ T′(x) (4.107)

that is, there is only one trace Ward identity.

4.3.6 The Pontryagin anomaly

As pointed out above the odd parity trace anomaly in an ordinary theory of Weyl fermions

can be calculated, to first order, using the above theory of Dirac fermions coupled to MAT

gravity and calculating the collapsing limit of the Weyl anomaly for a Dirac fermion

coupled to MAT gravity. The collapsing limit of the relevant action reproduces the action
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for Weyl fermions

S ′ =

ˆ
d4x
√
|g|
[ i

2
ψLγ

m
↔
∂mψL −

i

4
ωµabcψLγcγ5ψL

]
(4.108)

up to a right-handed kinetic term, which is however harmless due to the presence of the

PL projector in the vertices. Inserting the replacements into either (4.93) or (4.94) we

find

T′(x) =
N

4
εµνλρRµν

στRλρστ (4.109)

This is not yet the correct result for one must take into account the different combinatorics

in (4.80) and in

W [h] = W [0] +
∞∑
n=0

in−1

2nn!

ˆ n∏
i=1

dxihµiνi(xi)〈0|T T µ1ν1(x1) . . . T µnνn(xn)|0〉(4.110)

which is appropriate for (4.108)2. This amounts to multiplying (4.109) by a factor of 2.

Therefore, finally the anomaly is

T(x) =
N

2
εµνλρRµν

στRλρστ (4.111)

which is the already found Pontrygin anomaly, [15].

In the case of right-handed fermions the anomaly is the same, but with reversed

sign. Thus the odd trace anomaly for Dirac fermions vanishes. This is confirmed by the

following subsection.

4.3.7 Odd trace anomaly in the Dirac and Majorana case

From the results (4.93,4.94) we can draw other conclusions. The action (4.55) reduces to

the usual Dirac action if we set fµν = 0, and to the Majorana action if ψ satisfies the

Majorana condition. From (4.93) we have the confirmation that the odd trace anomaly

2The factor 1
2n in the RHS must be properly interpreted. When inserting the results for the n-point

functions in (4.110), one should recall that the vertex (4.72) contains already a 1
2 factor in it with

respect to the energy-momentum tensor: symbolically we could write Vffh = 1
2 T̃ , where T̃ is the Fourier

transform of the energy-momentum tensor with fields replaced by corresponding plane waves. A simple
practical recipe is to just forget factor 1

2n in (4.110), as was done, in [15]. The same holds also for the
formula (4.80).
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of these theories vanishes. But we also see that in both cases there is an anomaly in the

axial energy-momentum tensor.

Θ5µ
µ =

N

2

ˆ
η εµνλρRµν

στRλρστ (4.112)

for the Dirac case, and 1
2

of it in the Majorana case. This is a new result and it is the

analog in the trace case of the Kimura-Delbourgo-Salam anomaly for the axial current.

4.4 Odd trace anomalies (the complete calculation)

Let us now justify the assumption made above, that only triangle diagrams provide a

nonvanishing contribution to the odd trace anomaly. The complete calculation requires

taking into account all the tadpoles and seagull terms that arise from the action (4.55).

4.4.1 Trace Ward indentity

We need to expand Ward identity (4.83, 4.84) in series of h and k. (expanded version is

written down in [19]). Since we are interested only in the odd terms, we will drop all the

terms that are even or vanish (the vev of T µν(0,0)(x) and T µν5(0,0)(x), the two-point functions

of the energy-momentum tensors, as well as the vev of the second and third derivatives

of S). In this way the WI’s get simplified as follows

T(1,1)(x, x1, y1) ≡ T(1,1)
µµ1ν1λ1ρ1
µ (x, x1, y1) = 0 (4.113)

T(2,0)(x, x1, x2) ≡ T(2,0)
µµ1ν1µ2ν2
µ (x, x1, x2) = 0 (4.114)

T(0,2)(x, y1, y2) ≡ T(0,2)
µλ1ρ1λ2ρ2
µ (x, y1, y2) = 0 (4.115)

. . .

and

T5(1,1)(x, x1, y1) ≡ T5(1,1)
µµ1ν1λ1ρ1
µ (x, x1, y1) = 0 (4.116)

T5(2,0)(x, x1, x2) ≡ T5(2,0)
µµ1ν1µ2ν2
µ (x, x1, x2) = 0 (4.117)

T5(0,2)(x, y1, y2) ≡ T5(0,2)µ
µλ1ρ1λ2ρ2(x, y1, y2) = 0 (4.118)

. . .
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These are the Ward identities in the absence of anomalies, but we expect the rhs’s of all

these identities to be different from zero at one-loop. The odd parity anomaly can be

present only in the rhs of (4.113, 4.117) and (4.118): the remaining two cannot contain

the ε tensor linearly. After such a repeated trimming, the relevant WI for our purposes

are (4.113, 4.117) and (4.118), and the terms that need to be closely scrutinized are

T µνµ1ν1λ1ρ1(1,1) (x, x1, y1) = −〈0|T T µν(0,0)(x)T µ1ν1(0,0) (x1)T λ1ρ15(0,0)(y1)|0〉

+4i〈0|T T λρ15(0,0)(y1)
δ2S

δhµν(x)δhµ1ν1(x1)
|0〉+ 4i〈0|T T µ1ν1(0,0) (x1)

δ2S

δkλ1ρ1(y1)δhµν(x)
|0〉

+4i〈0|T T µν(0,0)(x)
δ2S

δkλ1ρ1(y1)δkµ1ν1(x1)
|0〉, (4.119)

T λρµ1ν1µ2ν25(2,0) (x, x1, x2) = −〈0|T T λρ5(0,0)(x)T µ1ν1(0,0) (x1)T µ2ν2(0,0) (x2)|0〉

+4i〈0|T T µ1ν1(0,0) (x1)
δ2S

δkλρ(x)δhµ2ν2(x2)
|0〉+ 4i〈0|T T µ2ν2(0,0) (x2)

δ2S

δhµ1ν1(x1)δkλρ(x)
|0〉

+4i〈0|T T λρ5(0,0)(x)
δ2S

δhµ1ν1(x1)δhµ2ν2(x2)
|0〉 (4.120)

T λρλ1ρ1λ2ρ25(0,2) (x, y1, y2) = −〈0|T T λρ5(0,0)(x)T λ1ρ15(0,0)(y1)T λ2ρ25(0,0)(y2)|0〉

+4i〈0|T T λ1ρ15(0,0)(y1)
δ2S

δkλρ(x)δkλ2ρ2(y2)
|0〉+ 4i〈0|T T λ2ρ25(0,0)(y2)

δ2S

δkλ1ρ1(y1)δkλρ(x)
|0〉

+4i〈0|T T λρ5(0,0)(x)
δ2S

δkλ1ρ1(y1)δkλ2ρ2(y2)
|0〉 (4.121)

The terms above that contain the second derivative of S are bubble diagrams where one

vertex has two external h and/or k graviton lines. These diagrams are similar to those

already met above and in [15], and can be shown to similarly vanish, see [19] for details.

Therefore we are left with

T(1,1)(x, x1, y1) = −〈0|T T(0,0)µ
µ(x)T µ1ν1(0,0) (x1)T λ1ρ15(0,0)(y1)|0〉 (4.122)

T5(2,0)(x, x1, x2) = −〈0|T T5(0,0)
λ
λ(x)T µ1ν1(0,0) (x1)T µ2ν2(0,0) (x2)|0〉 (4.123)

T5(0,2)(x, y1, y2) = −〈0|T T5(0,0)
λ
λ(x)T λ1ρ15(0,0)(y1)T λ2ρ25(0,0)(y2)|0〉 (4.124)

which are the intermediate results already obtained above. From this point on the calcu-

lation proceeds as in section 4.3.4.
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Chapter 5

A non-perturbative approach to split

anomalies

In the previous chapter we introduced a new model of modified gravity, metric-axial-tensor

gravity, where beside the usual metric, we introduced an additional symmetric tensor to

interact axially with fermions. Recall that in the previous chapter, the approach was

perturbative, we calculated the Feynman diagrams at the lowest significant order and

then covariantized the result. This is of course permitted, provided we are sure that there

are no diff-anomalies. Unfortunately, this verification is extremely complicated with a

MAT background, and so we limited to an analogous but simpler verification carried out

in [17]. However, we have to guarantee that diffeomorphism invariance is not broken

throughout the derivation. This can be done with DeWitt’s method, [13, 14], which is

based on point-splitting. Since the point-splitting is along a geodesic, this guarantees

covariance under diffeomorphisms. We will need a regularization in order to get rid of

divergences. Note that this method requires a formulation of MAT more accurate than in

[19] and in previous chapter. For this reason we introduce an appropriate framework for

MAT gravity, the so-called hypercomplex calculus [20]. We define all necessary ingredients

so that they are compatible with MAT gravity. In particular, we define a ‘square’ Dirac

operator, which respects the axially extended diffeomorphisms. The result for a fermion

of specific handedness is obtained by taking the appropriate smooth collapsing limit.

We will use two different regularization methods: the dimensional and the ζ-function

regularization, which give identical results. The latter agree with the perturbative results

previously obtained in [15, 17, 19]. In this chapter we closely follow [20].
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5.1 Axial-complex analysis

Axial-complex numbers are defined by

â = a1 + γ5a2 (5.1)

where a1 and a2 are real numbers. Arithmetic is defined in the obvious way. We can

define a conjugation operator

â = a1 − γ5a2 (5.2)

We will denote by AC the set axial-complex numbers, by AR the set of axial-complex

numbers with a2 = 0 (the axial-real numbers) and by AI the set of axial-complex numbers

with a1 = 0 (the axial-imaginary numbers). We can define a (pseudo)norm

(a, a) = ââ = a2
1 − a2

2 (5.3)

This determines an axial-light-cone with all the related problems. In general, whenever

possible, we will keep away from it by considering the case |a1| > |a2|. Alternatively

we will use an axial-Wick-rotation (analogous to the Wick rotation for the Minkowski

spacetime light-cone) a2 → ia2. Whenever we resort to it explicit mention will be made.

Introducing the chiral projectors P± = 1±γ5
2

, we can also write

â = a+P+ + a−P−, a± = a1 ± a2 (5.4)

We will consider functions f̂(x̂) of the axial-complex variable

x̂ = x1 + γ5x2 (5.5)

from AC to AC, which are axial-analytic, i.e. admit a Taylor expansion, and actually

identify the functions with their expansions. Using the property of the projectors it is

easy to see that

f̂(x̂) = P+f̂(x+) + P−f̂(x−) =
1

2

(
f̂(x+) + f̂(x−)

)
+
γ5

2

(
f̂(x+)− f̂(x−)

)
(5.6)
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In the same way we will consider functions from AC4 to AC, with analogous properties.

f̂(x̂µ) = P+f̂(xµ+) + P−f̂(xµ−) =
1

2

(
f̂(xµ+) + f̂(xµ−)

)
+
γ5

2

(
f̂(xµ+)− f̂(xµ−)

)
(5.7)

with µ = 0, 1, 2, 3, and

x̂µ = xµ1 + γ5x
µ
2 (5.8)

are the axial-complex coordinates. Axial-complex numbers and analysis are a particular

case of pseudo-complex or hyper-complex numbers and analysis, [92, 93].

Derivatives are defined in the obvious way:

∂

∂x̂µ
=

1

2

(
∂

∂xµ1
+ γ5

∂

∂xµ2

)
,

∂

∂x̂
µ =

1

2

(
∂

∂xµ1
− γ5

∂

∂xµ2

)
(5.9)

Notice that for axial-analytic functions

d

dx̂
=

∂

∂x1

≡ ∂

∂x̂
, (5.10)

whereas ∂
∂x̂
f̂(x̂) = 0.

As for integrals, since we will always have to do with rapidly decreasing functions at

infinity, we define

ˆ
dx̂ f̂(x̂)

as the rapidly decreasing primitive ĝ(x̂) of f̂(x̂). Therefore the property

ˆ
dx̂

∂

∂x̂µ
f̂(x̂) = 0 (5.11)

follows immediately. As a consequence of (5.10) it follows that, for an axial-analytic

function,

ˆ
dx̂ f̂(x̂) =

ˆ
dx1 f̂(x̂) (5.12)
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and we can define definite integrals such as

ˆ b̂

â

dx̂ f̂(x̂) = ĝ(b̂)− ĝ(â) (5.13)

In this axial-spacetime we introduce an axial-Riemannian geometry as follows. The

main formulas have already appeared in 4.2, although in a somewhat different notation.

An important difference with 4.2 is that, there, all the quantities where functions of xµ.

Here, and throughout this chapter they are functions of x̂µ unless otherwise specified.

Consequently, the main changes in notation are

Gµν −→ ĝµν , Ĝµν −→ ĝµν , ĝ −→ g̃, f̂ −→ f̃

Ea
µ −→ êaµ, Êµ

a −→ êµa , êµa −→ ẽµa , ĉµa −→ c̃µa

γλµν −→ Γλµν , Γλµν −→ Γ̂λµν , Ωab
µ −→ Ω̂ab

µ , Ξµ −→ ξ̂µ

R −→ R̂, R(1,2) −→ R̂(1,2)

Starting from a metric ĝµν = gµν + γ5fµν , the Christoffel symbols are defined by

Γ̂λµν =
1

2
ĝλρ
(

∂

∂x̂µ
ĝρν +

∂

∂x̂ν
ĝµρ −

∂

∂x̂ρ
ĝµν

)
(5.14)

They split as follows

Γ̂µνλ = Γ
(1)µ
νλ + γ5Γ

(2)µ
νλ (5.15)

and are such that the metricity condition is satisfied

∂

∂x̂µ
ĝνλ = Γ̂ρµν ĝρλ + Γ̂ρµλ ĝνρ, (5.16)

which, in AR4, takes the form

∂

∂x̂µ
gνλ = Γ(1)ρ

µν gρλ + Γ
(1)ρ
µλ gνρ + Γ(2)ρ

µν fρλ + Γ
(2)ρ
µλ fνρ (5.17)

∂

∂x̂µ
fνλ = Γ(1)ρ

µν fρλ + Γ
(1)ρ
µλ fνρ + Γ(2)ρ

µν gρλ + Γ
(2)ρ
µλ gνρ (5.18)
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5.2 MAT geodesics

Let us set

Γ̂µνλ = Γ
(1)µ
νλ + γ5Γ

(2)µ
νλ (5.19)

The equation for MAT geodesics is

¨̂x
µ

+ Γ̂µνλ
˙̂x
ν ˙̂x

λ
= 0 (5.20)

where a dot denotes derivative with respect to an axial-affine parameter t = t1 +γ5t2. For

axial-real and axial-imaginary components this means

ẍµ1 + Γ
(1)µ
νλ (ẋν1ẋ

λ
1 + ẋν2ẋ

λ
2) + Γ

(2)µ
νλ (ẋν1ẋ

λ
2 + ẋν2ẋ

λ
1) = 0 (5.21)

ẍµ2 + Γ
(1)µ
νλ (ẋν1ẋ

λ
2 + ẋν2ẋ

λ
1) + Γ

(2)µ
νλ (ẋν1ẋ

λ
1 + ẋν2ẋ

λ
2) = 0 (5.22)

These geodesic equations can be obtained as equations of motion from the action

Ŝ =

ˆ
dt̂

√
ĝµν ˙̂x

µ ˙̂x
ν

= S1 + γ5S2 (5.23)

where ĝµν = gµν + γ5fµν .

The action takes values in AC. For instance, setting the proper time τ̂ = τ1 + γ5τ2,

Ŝ[x̂] =

ˆ
dτ̂
(
ĝµν ˙̂x

µ ˙̂x
ν
) 1

2
(5.24)

But unlike [92, 93] we require the action principle to be specified by δŜ[x̂] = 0.

Taking the variation of S[x̂] with respect to δx̂ = δx1 + γ5δx2, with

δĝµν =
∂ĝµν
∂x̂λ

δx̂λ (5.25)

δgµν =
1

2

(
∂gµν
∂xλ1

+
∂fµν
∂xλ2

)
δxλ1 +

(
∂fµν
∂xλ1

+
∂gµν
∂xλ2

)
δxλ2 =

∂gµν
∂xλ1

δxλ1 +
∂fµν
∂xλ1

δxλ2

δfµν =
1

2

(
∂gµν
∂xλ1

+
∂fµν
∂xλ2

)
δxλ2 +

(
∂fµν
∂xλ1

+
∂gµν
∂xλ2

)
δxλ1 =

∂gµν
∂xλ1

δxλ2 +
∂fµν
∂xλ1

δxλ1
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we get the equation of motion

ĝµρ ¨̂x
ρ

+ Γ̂ρνλ ĝµρ
˙̂x
µ ˙̂x

ν
= 0, i.e. ¨̂x

µ
+ Γ̂µνλ

˙̂x
ν ˙̂x

λ
= 0 (5.26)

Let us rewrite

√
ĝµν ˙̂x

µ ˙̂x
ν

=
√
A+ γ5B, (5.27)

A = gµν (ẋµ1 ẋ
ν
1 + ẋµ2 ẋ

ν
2) + 2fµν ẋ

µ
1 ẋ

ν
2,

B = fµν (ẋµ1 ẋ
ν
1 + ẋµ2 ẋ

ν
2) + 2gµν ẋ

µ
1 ẋ

ν
2,

so that we have

Ŝ[x̂] =

ˆ
dτ̂

√
ĝµν ˙̂x

µ ˙̂x
ν

=
1

2

[ˆ
dτ1

(√
A+B +

√
A−B

)
+

ˆ
dτ2

(√
A+B −

√
A−B

)]
+

γ5

2

[ˆ
dτ1

(√
A+B −

√
A−B

)
+

ˆ
dτ2

(√
A+B +

√
A−B

)]
(5.28)

Varying this action with respect to δxλ we obtain the same equation of motion (5.26).

This is due to (5.12) and to the fact that, the action is an analytic function of x̂, so that

the variation with respect to δx̂λ is the same as the variation of δxλ1 .

Eventually we will set x2 = 0 everywhere, but it is very convenient to keep the axial-

analytic notation as far as possible.

5.2.1 Geodetic interval and distance

The quantity

Ê = E1 + γ5E2 =
1

2
ĝµν ˙̂x

µ ˙̂x
ν

(5.29)

is conserved as a function of t̂. Since ĝµν ˙̂x
µ ˙̂x

ν
is constant for geodesics, we can write for

the arc length parameter ŝ

dŝ

dt̂
=

√
ĝµν ˙̂x

µ ˙̂x
ν
, (5.30)
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and

ŝ− ŝ′ =
ˆ t̂

t̂′
dτ̂
√

2Ê =
√

2Ê (t̂− t̂′). (5.31)

ŝ− ŝ′ is the axial arc length along the geodesic between x̂ and x̂′. The half square of it is

called the world function and it is denoted

σ̂(x̂, x̂′) =
1

2
(ŝ− ŝ′)2 = Ê(t̂− t̂′)2 = (t̂− t̂′)

ˆ t̂

t̂′
Êdτ̂ (5.32)

The main properties are

σ̂;µ = ∂̂µσ̂ = (t̂− t̂′)ĝµν ˙̂x
ν
≡ −ĝµν ŷν (5.33)

ŷµ are the normal coordinates based at x̂. Using (5.32,5.33) one can see that

1

2
σ̂;µσ̂;

µ = σ̂ (5.34)

The subscript ;µ means the covariant derivative with respect to x̂µ, while ;µ′ means the

covariant derivative with respect to x̂′µ
′
.

Remark 1. σ̂ = σ1 + γ5σ2, but notice that, even when we set x2 = 0, we cannot infer

that σ2 = 0. This descends from eq.(5.30). Looking at (5.28), we see that B does not

vanish even when xν2 = 0. As a consequence the axial-imaginary part of (5.27) does not

vanish, so the axial-imaginary part of eq.(5.30) will not automatically vanish either.

5.2.2 Normal coordinates

Normal coordinates can be defined based at x or at x′:

ŷµ
′
(x̂′, x̂) = (t̂− t̂′)dx̂

µ′

dt̂′
(5.35)

ŷµ(x̂, x̂′) = (t̂′ − t̂)dx̂
µ

dt̂
(5.36)

The tangent vector dx̂µ

dt̂
to the geodesic at x̂ satifies

D

dt̂

dx̂µ

dt̂
=
d2x̂µ

dt̂2
+ Γ̂µνλ

dx̂ν

dt̂

dx̂λ

dt̂
= 0 (5.37)
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and an analogous equation at x̂′. Now we can write

ŷµ
′
;ν(x̂

′, x̂)ŷν(x̂, x̂′) = (t̂′ − t̂)ŷµ′ ;ν(x̂′, x̂)
dx̂ν(t̂)

dt̂

= (t̂′ − t̂) d
dt̂
ŷµ
′
(x̂′, x̂) = (t̂′ − t̂)dx̂

µ′(t̂′)

dt̂′
= −ŷµ′(x̂′, x̂) (5.38)

It is useful to determine the coincidence limit x̂′ → x̂. We use the notation:

[. . .] = lim
x̂′→x̂

(. . .) (5.39)

Dividing by t̂− t̂′ the second and fourth terms and taking the coincidence limit, one gets

[ŷµ
′
;ν ]
dx̂ν

dt̂
=
dx̂µ

dt̂
→ [ŷµ

′
;ν ] = δµν (5.40)

where [X] denotes the result of the coincidence limit of the quantity X. In a similar way

one can prove

[
ŷµ
′
;ν′

] dx̂ν
dt̂

= −dx̂
µ

dt̂
→

[
ŷµ
′
;ν′

]
= −δµν (5.41)

[ŷµ;ν ]
dx̂ν

dt̂
= −dx̂

µ

dt̂
→ [ŷµ;ν ] = −δµν (5.42)

[ŷµ;ν′ ]
dx̂ν

dt
=

dx̂µ

dt
→ [ŷµ;ν′ ] = δµν (5.43)

From (5.38) we get

ŷµ
′
;ν ŷ

ν + ŷµ
′
= 0 (5.44)

In a similar way one derives also

ŷµ
′
;ν′ ŷ

ν′ + ŷµ
′
= 0 (5.45)

ŷµ;ν′ ŷ
ν′ + ŷµ = 0 (5.46)

ŷµ;ν ŷ
ν + ŷµ = 0 (5.47)

For instance, differentiating (5.45) with respect to x̂λ
′
, one gets

ŷµ
′
;ν′λ′ ŷ

ν′ + ŷµ
′
;ν′ ŷ

ν′
;λ′ + ŷµ

′
;λ′ = 0
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taking the coincidence limit, and using (5.41), one finds an identity, because [ŷµ
′
] = 0.

Differentiating another time with respect to x̂ρ
′

one gets

[ŷµ
′
;λ′ρ′ ] = 0 (5.48)

Differentiating again with respect to x̂τ
′

and using the Bianchi identity for R̂µ
λρτ =

R(1)µ
λρτ + γ5R

(2)µ
λρτ , one finds

[ŷµ
′
;λ′ρ′τ ′ ] =

1

3

(
R̂µ

ρλτ + R̂µ
τλρ

)
(5.49)

and, in a similar way,

[
ŷµ
′
;λρτ

]
=

1

3

(
R̂µ

λρτ + R̂µ
ρλτ

)
(5.50)

[ŷµ;λρτ ] =
1

3

(
R̂µ

τλρ + R̂µ
ρλτ

)
(5.51)

5.2.3 Coincidence limits of σ̂

Covariantly differentiating (5.34) we get

σ̂;ν = σ̂;µν σ̂;
µ (5.52)

In the coincidence limit [σ̂;ν ] = 0. Therefore (5.52) is trivial in the coincidence limit.

Differentiating the first and last member of (5.33) we get

σ̂;µλ = −ĝµν ŷν ;λ (5.53)

Using (5.42) one gets

[σ̂;µλ] = ĝµλ (5.54)

Similarly

[σ̂;µλ′ ] = −ĝµλ (5.55)
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Differentiating (5.52) once more one gets

σ̂;νλ = σ̂;µνλ σ̂;
µ + σ̂;µν σ̂

µ
;λ

which, in the coincidence limit, using the previous results, yields an identity. Differenti-

ating it again

σ̂;νλρ = σ̂;µνλρ σ̂;
µ + σ̂;µνλ σ̂

µ
;ρ + σ̂;µνρ σ̂

µ
;λ + σ̂;µν σ̂;

µ
λρ (5.56)

In the coincidence limit this becomes

[σ̂;νλρ] = [σ̂;ρνλ] + [σ̂;λνρ] + [σ̂;νλρ] (5.57)

Since σ̂ is a biscalar we have

[σ̂;νλρ] = [σ̂;νρλ] + R̂ρλν
τ [σ̂;τ ] = [σ̂;ρνλ] (5.58)

Therefore

[σ̂;ρνλ] = [σ̂;λνρ] = [σ̂;νλρ] = 0 (5.59)

Differentiating (5.56) once more and taking the coincidence limit one gets

[σ̂;νλρτ ] = −1

3

(
R̂ντλρ + R̂νρλτ

)
≡ Ŝνλρτ (5.60)

where R̂ντλρ = ĝνµR̂
µ
τλρ. Differentiating once more

[σ̂;νλρστ ] =
3

4

(
Ŝνλστ ;ρ + Ŝνλσρ;τ + Ŝνλτρ;σ

)
(5.61)

We will need also the coincidence limits of tensors covariantly differentiated with respect

to a primed index ν ′. In general

[tµ1...µk;ν′ ] = [tµ1...µk ];ν − [tµ1...µk;ν ] (5.62)
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So

[σ̂;µν′ ] = [σ̂;µ];ν − [σ̂;µν ] = −ĝµν (5.63)

[σ̂;µν′λ] = [σ̂;µλν′ ] = [σ̂;µλ];ν − [σ̂;µλν ] = 0 (5.64)

[σ̂;µν′λρ] = [σ̂;µλρν′ ] = [σ̂;µλρ];ν − [σ̂;µλρν ] = − [σ̂;µλρν ] = −Ŝµλρν (5.65)

[σ̂;µν′λρσ] = [σ̂;µλρσν′ ] = [σ̂;µλρσ];ν − [σ̂;µλρσν ] =
1

4
Ŝµλρσ;ν −

3

4

(
Ŝµλνρ;σ + Ŝµλσν;ρ

)
(5.66)

Similarly, one obtains

[σ̂;µ
µ
ν
ν
ρ
ρ] = −8

5
R;µ

µ +
4

15
R̂µνR̂

µν − 4

15
R̂µνλρR̂

µνλρ

[σ̂;µν
ν
ρ
ρµ] = −

[
σ̂;µ

µ′
ν
ν
ρ
ρ
]

=
2

5
R;µ

µ − 1

15
R̂µνR̂

µν − 4

15
R̂µνλρR̂

µνλρ

5.2.4 Van Vleck-Morette determinant

The Van Vleck-Morette determinant in MAT is defined by

D̂(x̂, x̂′) = det(−σ̂;µν′) (5.67)

D̂(x̂, x̂′) is a bidensity of weight 1 both at x̂ and x̂′. Later on we will need a bidensity of

weight 0:

∆̂(x̂, x̂′) =
1√
ĝ(x̂)

D̂(x̂, x̂′)
1√
ĝ(x̂′)

(5.68)

The VVM determinant also satisfies (for 4 dimensions)

(D̂(x̂, x̂′)σ̂;µ);µ = 4D̂(x̂, x̂′) (5.69)

In the coincidence limit

[∆̂
1
2
;λ] = [ĝ−

1
4 (x̂)

√
D̂(x̂, x̂′)

1

2

(
σ̂−1µν′σ̂;µν′λ

)
ĝ−

1
4 (x̂′)] =

1

2
[σ̂µ;µλ] = 0 (5.70)
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We need to compute the covariant derivatives of σ̂−1µν′ ≡ {σ̂−1
;µν′}. The latter is defined

as

σ̂−1µν′σ̂;ν′λ = δµλ (5.71)

Differentiating this relation once, twice and thrice one gets

[σ̂−1µν′
;λ] = 0, (5.72)[

σ̂−1
µλ′ ;ρσ

]
= − [σ̂;µ′λρσ] = [σ̂;λρσµ] = Ŝλρσµ (5.73)[

σ̂−1
µλ′ ;ρστ

]
= − [σ̂;λµ′ρστ ] =

1

4
Ŝµρστ ;λ −

3

4

(
Ŝµρλσ;τ + Ŝµρτλ;σ

)
(5.74)

Differentiating once more one gets

[∆̂
1
2
;λρ] =

1

6
ĝµν
(
R̂µνλρ + R̂µλνρ

)
=

1

6
ĝµν ĝµσR̂

σ
λνρ =

1

6

(
R

(1)
λρ + γ5R

(2)
λρ

)
(5.75)

and

[∆̂
1
2
;λρσ] =

1

12

(
R̂λρ;σ + R̂ρσ;λ + R̂σλ;ρ

)
(5.76)

Finally

[∆̂
1
2
;µ
µ
ν
ν ] = +

1

5
R̂;µ

µ +
1

36
R̂2 − 1

30
R̂µνR̂

µν +
1

30
R̂µνλρR̂

µνλρ (5.77)

5.2.5 The geodetic parallel displacement matrix

The geodetic parallel displacement matrix Ĝµ
ν′(x̂, x̂

′) is needed in order to parallel displace

vectors from one end to the other of the geodetic interval. It is defined by

[Ĝµ
ν′ ] = δµν , Ĝµ

ν′;λσ̂
;λ = 0 (5.78)
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The second condition means that the covariant derivative of Ĝµ
ν′ vanishes in directions

parallel to the geodesic. Since tangents to the geodesics are self-parallel, it follows that

Ĝµ
ν′ σ̂;ν′ = −σ;µ, σ̂;µ Ĝ

µ
ν′ = −σ̂;ν′ (5.79)

Ĝµν′ = Ĝν′µ, σ̂;
λ′Ĝµ

ν′;λ′ = 0

Ĝµ
ν′Ĝν′

λ = δλµ

The analogous parallel displacement for spinors is I(x, x′): the object I(x, x′)ψ(x′) is

the spinor ψ(x) obtained by parallel displacement of ψ(x′) along the geodesic from x′ to

x. It is a bispinor quantity satisfying

σ̂;
µÎ;µ = 0, [Î] = 1 (5.80)

and 1 is the identity matrix in the spinor space. Differentiating (5.80) once we get [Î;µ] = 0.

Differentiating twice we get

[Î;(µν)] = 0, (5.81)

while

Î(x, x′);µν − Î(x, x′);νµ = −1

2
(dΩ̂ + Ω̂Ω̂)µν Î(x, x′) = −1

2
R̂µνI(x, x′) (5.82)

where R̂µν = R̂µν
abΣab. So

[Î(x, x′);[µ,ν]] = [Î(x, x′);µν ] = −1

4
R̂µν (5.83)

Proceeding with the differentiations of (5.80) we find

[Î;νλρ] + [Î;λνρ] + [Î;ρλν ] = 0 (5.84)

Now

[Î;νλρ]− [Î;νρλ] =
1

2
R̂ρλ[Î;ν ] = 0 (5.85)

85



and

3[Î;νλρ] =
1

2
∇̂ρR̂λν +

1

2
∇̂λR̂ρν (5.86)

In particular

[Î;ν
ν
ρ] =

1

6
∇̂νR̂ρν (5.87)

Differentiating (5.80) once more with respect to xσ, using (5.60) and then contracting

with ĝνλĝσρ we find, after simplifying,

[Î;µ
µ
ν
ν ] + [Î;µν

νµ] = 0 (5.88)

A contraction with ĝνσĝλρ gives:

[Î;µν
νµ] + 2[Î;µν

µν ] + [Î;µ
µ
ν
ν ] = 0 (5.89)

Using (5.82), we get

[Î;σρµν ] = [∇̂ν∇̂µ(Î;σρ)] = −1

2
R̂σρ;µν +

1

8
R̂σρR̂µν + [Î;ρσµν ] (5.90)

Contracting with ĝµσĝνρ gives

[Î;µν
µν ] = 0 +

1

8
R̂µνR̂µν + [Î;µν

νµ] (5.91)

since by Walker’s identity

∇̂ρ∇̂λR̂ρλ = 0 (5.92)

Finally, by using (5.88), (5.89), one gets

[Î;ν
ν
ρ
ρ] =

1

8
R̂ρλR̂ρλ (5.93)
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5.3 Fermions in MAT background

The action of a fermion interacting with a metric and an axial tensor is

Ŝ =

ˆ
d4x̂

(
iψ

√
ĝγaêµa

(
∂µ +

1

2
Ω̂µ

)
ψ

)
(x̂) (5.94)

=

ˆ
d4x̂

(
iψ

√
ĝ(ẽµa − γ5c̃

µ
a)

[
1

2
γa
↔
∂µψ +

i

4
γdε

dabcΩ̂µbcγ5

]
ψ

)
(x̂)

It must be noticed that this action takes axial-real values1. The field ψ(x̂) can be under-

stood, classically, as a series of powers of x̂ applied to constant spinors on their right and

the symmetry transformations act on it from the left. The analogous definitions for ψ†

are obtained via hermitean conjugation. In the second line it is stressed that the action

contains also an axial part. It is understood that ∂µ = ∂
∂x̂µ

applies only to ψ or ψ, as

indicated, and ĝ denotes, as usual, the axial-complex conjugate of ĝ.

5.3.1 A more precise formula for the energy-momentum tensor

In our calculation a more explicit formula of the energy-momentum tensor is needed than

in the previous chapter. The energy-momentum tensor is defined by

Tµν =
2√
ĝ

←
δ Ŝ

δĝµν
=

1

2
(Tµ

a ê
aν + Tν

aê
aµ) (5.95)

where

Tµ
a =

1√
|ĝ|

←
δ Ŝ

δêaµ
(5.96)

Let us prove first that the functional derivative of Ω̂m does not contribute to the energy-

momentum tensor. Consider the general variational formula

δΩ̂bc
µ =

1

2
êbν
(
∇̂µ(δêcν)− ∇̂ν(δê

c
µ)
)
− 1

2
êcν
(
∇̂µ(δêbν)− ∇̂ν(δê

b
µ)
)

+
1

2
êbν êcλ

(
∇̂λ(δê

e
ν)− ∇̂ν(δê

e
λ)
)
êeµ (5.97)

1One could consider also an axial complex action, but for our purposes this is a useless complication.
That is why we use the notation ψ instead of ψ̂.
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where ∇̂ denotes the covariant derivative such that ∇̂µê
a
λ = 0. After some algebra one

gets

γd ε
dabc êµa δΩ̂µbc = γd ε

dabc êµa ê
ν
b∇µδecν (5.98)

Now use this and

δêaµ(x)

δêbν(y)
= δab δ

ν
µδ(x, y)

and insert them into the definition (5.95). The relevant contribution is

Tλρ
Ω =

1

2

(
Tλ
a ê
aρ + Tρ

aê
aλ
)

Ω
(5.99)

≡ 1

8

ˆ
ψγdε

dabcêµa

(
δΩ̂µbc

δêeλ
êeρ +

δΩ̂µbc

δêeρ
êeλ

)
γ5ψ

=
1

8

ˆ
ψγdε

dabcêµa

(
êλb ê

ρ
c∇̂µδ(x, y) + êρb ê

λ
c ∇̂µδ(x, y)

)
γ5ψ = 0

Therefore the only contribution to the energy-momentum tensor comes from the variation

of the first êµa factor in (5.94). The result is

Tλρ = − i
2
ψγ̂λĝρµ

(
∂µ +

1

2
Ω̂µ

)
+ (λ↔ ρ) = − i

2
ψγ̂λ∇̂ρψ + (λ↔ ρ) (5.100)

where γ̂λ = γaêλa.

It is useful to write it as a trace

Tλρ(x) =
i

2
tr
(
ηγ̂(λ∇̂ρ)ψ(x)ψ†(x)

)
=

i

4
tr
(
ηγ̂(λ[∇̂ρ)ψ(x), ψ†(x)]

)
(5.101)

where η ≡ γ0, the flat gamma matrix. The commutator is interpreted as

[∇̂ρψ, ψ†](x) =
1

2
lim
x′→x

(
[∇̂ρψ(x), ψ†(x′)] + [∇̂ρψ(x′), ψ†(x)]

)
(5.102)

Inserting (5.101) in the path integral it becomes

〈〈Tλρ(x)〉〉 =
i

8
lim
x′→x

tr
(
ηγ̂(λ

(
Ŝ(1);ρ)(x, x′)− Ŝ(1);ρ′)(x, x′)

))
(5.103)
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where Ŝ(1) is the Hadamard function

Ŝ(1)(x, x′) = 〈〈[ψ(x), ψ†(x′)]〉〉 (5.104)

This leads to Christensen’s method, [66, 67], to compute the energy-momentum tensor

and related quantities, such as trace anomalies. We will not pursue this point of view here

although it could be done. It is in fact strictly connected with the main approach we will

follow later on, which we consider simpler. They are both based on fermion propagators

such as Ŝ(1)(x, x′). A discussion of fermion propagators and their properties in a MAT

background is presented in Appendix 5.A.

5.3.2 The Dirac operator and its inverse

In the action (5.94) the Dirac operator is

F̂ = iγ̂ ·∇̂ = iγ̂µ∇̂µ = iγaêµa∇̂µ ≡ γa F̂a (5.105)

where the ∇̂ operator is, schematically, D̂ + 1
2
Ω̂ and satisfies ∇̂µê

a
ν = 0.

Under AE diffeomorphisms ψ transforms as: δξ̂ψ = ξ̂ ·∂ψ, while

δξ̂

(
iγ̂ ·∇̂ψ

)
= ξ̂ ·∂

(
iγ̂ ·∇̂ψ

)
(5.106)

Under AE Weyl transformation F̂ transform as

δω̂F̂ = −1

2
γa{F̂a, ω̂} (5.107)

and it has the following hermiticity property

F̂ † = ηF̂ η (5.108)

where η = γ0 and γ0 is the nondynamical (flat) gamma matrix. To obtain (5.108) use

Ω̂† = −ηΩ̂
†
η, etc.

Integrating out the fermion field in (5.94) means, roughly speaking, evaluating the

determinant of the Dirac operator F̂ . This is however not what we need. First, because

the log of the determinant is formally the trace of the log of F̂ ; taking this trace means
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integrating over spacetime and tracing over the gamma matrices: this would suppress

any explicit γ5 dependence and, thus, any axial splitting. Second, because F̂ is local,

while, in order to exploit a coincidence limit (in order to guarantee covariance), we need

a bilocal quantity. This quantity exists, it is the inverse of F̂ : the fermion propagator.

The Schwinger-DeWitt method is based on it. Let us explain this approach, adapting it

to MAT.

One starts from the propagator

Ĝ(x̂, x̂′) = 〈0|T ψ(x̂)ψ†(x̂′)|0〉 (5.109)

which satisfies

i
√
ĝη γ̂µ∇̂µĜ(x̂, x̂′) = −1δ(x̂, x̂′) (5.110)

where 1 is the unit matrix in the spinor space. Ĝ is not yet what we need. The Schwinger-

DeWitt method requires a quadratic operator and, in addition, we must get rid of the γ

matrices, except γ5. This is achieved with the ansatz

Ĝ(x, x′) = −iγ̂µ∇̂µĜ(x, x′)η−1 (5.111)

Remark 2. Why the ansatz (5.111). In ordinary gravity, from the diff invariance of the fermion action,

we can extract the transformation rule

δξ (iγµ∇µψ) = ξ ·∂ (iγ ·∇ψ) (5.112)

while δξψ = ξ ·∂ψ. Therefore it makes sense to apply γ ·∇ to γ ·∇ψ, because the latter transforms as ψ.

This allows us to define the square of the Dirac operator:

F 2ψ = (iγ ·∇)
2
ψ (5.113)

It is not possible to repeat the same thing for MAT because of (5.106), from which we see that
(
iγ̂ ·∇̂ψ

)
does not transform like ψ, and an expression like

(
iγ̂ ·∇̂

)2
ψ would break general covariance. Noting that

δξ̂

(
iγ̂ ·∇̂ψ

)
= ξ̂ ·∂

(
iγ̂ ·∇̂ψ

)
(5.114)
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when δ
ξ̂
ψ = ξ̂ ·∂ψ, we will consider instead the covariant quadratic operator

(
iγ̂ ·∇̂

) (
iγ̂ ·∇̂

)
ψ (5.115)

Let us quote next a few useful identities.

∇̂µγ̂ν − γ̂ν∇̂µ = γa
(
∂µ êaν − Γ̂λµν êaλ +

1

2
Ω̂µab ê

b
ν

)
= 0 (5.116)

because of metricity, and

∇̂µγ
a − γa∇̂µ = 0 (5.117)

The axial conjugate relation holds as well. Therefore

γ̂µ∇̂µ γ̂
ν∇̂ν = γaγbê

µ

a ê
ν

b ∇̂µ∇̂ν = ηabê
µ

a ê
ν

b ∇̂µ∇̂ν + Σabê
µ

a ê
ν

b [∇̂µ, ∇̂ν ] (5.118)

On the other hand, when acting on a (bi-)spinor quantity

Σabê
µ

a ê
ν

b [∇̂µ, ∇̂ν ] =
1

8
γaγbγcγdR̂abcd = −1

4
R̂µνλρĝ

µλĝνρ = −1

4
R̂ (5.119)

where use is made of

R̂abcd = êµa ê
ν
b ê
λ
c ê
ρ
dR̂µνλρ. (5.120)

Now replacing (5.111) into (5.110) and using the above we get

√
|ĝ|
(
∇̂µĝ

µν∇̂ν −
1

4
R̂

)
Ĝ(x̂, x̂′) = −1δ(x̂, x̂′) (5.121)

The differential operator acting on Ĝ will be denoted by F̂ĝ. In compact operator

notation

F̂ĝĜĝ = −1, (5.122)

with 〈x̂|Ĝĝ|x̂′〉 = Ĝĝ(x̂, x̂
′).
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As a consequence of (5.108) we have

[√
ĝ

(
∇̂µĝ

µν∇̂ν −
1

4
R̂

)]†
= η

[√
|ĝ|
(
∇̂µĝ

µν∇̂ν −
1

4
R̂

)]
η (5.123)

or

(
F̂ĝ

)†
= η F̂ĝ η (5.124)

We shall refer often to the related operator

F̂ =
1√
ĝ
F̂ĝ, F̂† = η F̂η (5.125)

and to its inverse Ĝ: F̂Ĝ = −1.

Remark 3. The operator F̂ is the main intermediate result of this chapter. It is

natural to assume that its inverse Ĝ exists. There is no reason to believe that it does

not, because, the differential operator F̂ (after a Wick rotation) can be defined as an

axial-elliptic operator, at least under reasonable conditions on the axial tensor fµν . In

fact its quadratic part can be cast in the form −∂iAij(x)∂j, where Aij is an invertible

matrix and its dominating part is symmetric and positive definite. However, no doubt, it

would be desirable to have a mathematical (possibly constructive) proof of the existence

of Ĝ . In Appendix C we discuss this issue and, following [13], we give some arguments

in this direction.

5.4 The Schwinger proper time method

From now on, for practical reasons, we drop the bar symbol of axial conjugation. At the

end we will axially-conjugate the result.

Let us define the point-to-point amplitude

〈x̂, ŝ|x̂′, 0〉 = 〈x̂|eiF̂ŝ|x̂′〉 (5.126)

which satisfies the (heat kernel) differential equation

i
∂

∂ŝ
〈x̂, ŝ|x̂′, 0〉 = −F̂x̂〈x̂, ŝ|x̂′, 0〉 ≡ K(x̂, x̂′, ŝ) (5.127)
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where F̂x̂ is the differential operator

F̂x̂ = ∇̂µĝ
µν∇̂ν −

1

4
R̂ (5.128)

Then we make the ansatz

〈x̂, ŝ|x̂′, 0〉 = − lim
m→0

i

16π2

√
D̂(x̂, x̂′)

ŝ2
e
i
(
σ̂(x̂,x̂′)

2ŝ
−m2ŝ

)
Φ̂(x̂, x̂′, ŝ) (5.129)

where D̂(x̂, x̂′) is the VVM determinant and σ̂ is the world function (see above). Φ̂(x̂, x̂′, ŝ)

is a function to be determined. It is useful to introduce also the mass parameter m, which

we will eventually set to zero. In the limit ŝ→ 0 the RHS of (5.129) becomes the definition

of a delta function multiplied by Φ̂. More precisely, since it must be 〈x̂, 0|x̂′, 0〉 = δ(x̂, x̂′),

and

lim
ŝ→0

i

4π2

√
D̂(x̂, x̂′)

ŝ2
e
i
(
σ̂(x̂,x̂′)

2ŝ
−m2ŝ

)
=
√
|ĝ(x̂)| δ(x̂, x̂′), (5.130)

we must have

lim
ŝ→0

Φ̂(x̂, x̂′, ŝ) = 1 (5.131)

Eq.(5.127) becomes an equation for Φ̂(x̂, x̂′, ŝ). Using (5.34) and (5.69), after some algebra

one gets

i
∂Φ̂

∂ŝ
+
i

ŝ
∇̂µΦ̂∇̂µσ̂ +

1√
D̂
∇̂µ∇̂µ

(√
D̂Φ̂
)
−
(

1

4
R̂−m2

)
Φ̂ = 0 (5.132)

Now we expand

Φ̂(x̂, x̂′, ŝ) =
∞∑
n=0

ân(x̂, x̂′)(iŝ)n (5.133)

with the boundary condition [â0] = 1. The ân must satisfy the recursive relations:

(n+ 1)ân+1 + ∇̂µân+1∇̂µσ̂ −
1√
D̂
∇̂µ∇̂µ

(√
D̂ân

)
+

(
1

4
R̂−m2

)
ân = 0 (5.134)

Using these relations and the coincidence results of section 3.3, 3.4 and 3.5, it is possible
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to compute each coefficient an at the coincidence limit.

5.4.1 Computing ân

In this subsection we wish to compute [â1] and [â2], which will be needed later on. We

start from (5.134) for n = −1.:

∇̂µâ0 σ;µ = 0, with [â0] = 1, (5.135)

which implies that

â0(x̂, x̂′) = Î(x̂, x̂′). (5.136)

Replacing this inside (5.134) for n = 0 one gets

â1(x̂, x̂′) + ∇̂µσ̂∇µâ1(x̂, x̂′)− 1√
∆̂
∇̂µ∇̂µ

(√
∆̂ Î(x̂, x̂′)

)
+

(
1

4
R̂−m2

)
Î(x̂, x̂′) = 0,

(5.137)

which implies

[â1] =

(
− 1

12
R̂ +m2

)
1 (5.138)

Moreover differentiating (5.137) with respect to ∇λ and taking the coincidence limit:

2[∇̂λâ1] =
1

4
R̂;λ1− [

√
∆̂;µ

µ
λÎ + ∇̂λ∇̂µ∇̂µÎ]

so

[∇̂λâ1] =

(
1

12
R̂λν;

ν − 1

24
R̂;λ

)
1. (5.139)

Next we have

[∇̂λ∇̂λ

(
â1 + ∇̂µσ̂ ∇̂µâ1

)
] = 3[∇̂λ∇̂λâ1]
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so that

[∇̂λ∇̂λâ1] =
1

3

[
∇̂λ∇̂λ

(
1√
∆̂
∇̂µ∇̂µ

(√
∆̂ Î
)
−
(

1

4
R̂−m2

)
Î

)]
(5.140)

=
1

3

(
− 1

20
R̂;µ

µ − 1

30
R̂µνR̂

µν +
1

30
R̂µνλρR̂

µνλρ +
1

8
R̂µνR̂µν

)
(5.141)

Finally

[â2] =
1

2

[
∇̂λ∇̂λâ1 −

(
1

12
R̂−m2

)
â1

]
(5.142)

=
1

2
m4 − 1

12
m2R̂ +

1

288
R̂2 − 1

120
R̂;µ

µ − 1

180
R̂µνR̂

µν +
1

180
R̂µνλρR̂

µνλρ +
1

48
R̂µνR̂µν

We recall that R̂µν = R̂µν
abΣab.

5.5 The odd trace anomaly

We are now ready to compute that odd parity trace anomaly. Beside the point-splitting,

which we have used above, we need a regulator to get rid of the infinities at coincident

point. We will use two regularizations: the dimensional and zeta function ones.

5.5.1 Schwinger-DeWitt and dimensional regularization

We start again from the Dirac operator (5.105). We have defined above the covariant

square

F̂ = −F̂ F̂ (5.143)

We identify the effective action for Dirac fermions with

Ŵ = − i
2

Tr
(

ln F̂
)

(5.144)

The trace Tr includes also the spacetime integration. The AE Weyl variation of (5.144)

is given by

δω̂Ŵ =
i

2
Tr
(
Ĝ δω̂F̂

)
(5.145)
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where

F̂Ĝ = −1 (5.146)

So we can write

δω̂Ŵ = δω̂

(
−1

2

ˆ ∞
0

dŝ

iŝ
eiF̂ ŝ

)
= −1

2
Tr

(ˆ ∞
0

dŝ eiF̂ ŝδω̂F̂

)
. (5.147)

It follows that, as far as the variation with respect to axial-Weyl transform is concerned,

the effective action can be represented as

Ŵ = −1

2

ˆ ∞
0

dŝ

iŝ
eiF̂ŝ + const ≡ L̂+ const (5.148)

where L̂ is the relevant effective action

L̂ =

ˆ
ddx̂ L̂(x̂) (5.149)

which can be written as

L̂(x̂) = −1

2
tr

ˆ ∞
0

d̂s

îs
K̂(x̂, x̂′, ŝ) (5.150)

where the kernel K̂ is defined by

K̂(x̂, x̂′, ŝ) = eiF̂ ŝδ(x̂, x̂′) (5.151)

Inserted in δω̂Ŵ , under the symbol Tr, it means integrating over x after taking the limit

x′ → x. So, looking at (5.129), in dimension d,

K̂(x̂, x̂, ŝ) =
i

(4πiŝ)
d
2

√
ĝ e−im

2ŝ[Φ̂(x̂, x̂, ŝ)] (5.152)

A specification is in order at this point. For the heat kernel method to work a Rie-

mannian metric is required. Therefore at this stage we Wick-rotate the metric, so that

the operator F̂ becomes axial-elliptic. This operation is understood from now on. After

calculating the anomaly we will return to the Lorentz signature.
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5.5.2 Analytic continuation in d

The purpose now is to analytically continue in d. But we can do this only for dimensionless

quantities. We therefore multiply L̂ by µ−d, where µ is a mass parameter. We have for a

Dirac fermion

L̂(x)

µd
= − i

2
(4πµ2)tr

ˆ ∞
0

d̂s (4πiµ2ŝ)−
d
2
−1
√

ĝe−im2ŝ[Φ̂(x̂, x̂, ŝ)] (5.153)

where tr denotes the trace over gamma matrices. Now we make the assumption that

lim
s→∞

e−im
2ŝ[Φ̂(x̂, x̂, ŝ)] = 0 (5.154)

As a consequence we can integrate by parts

L̂(x)

µd
=

i

d
tr

ˆ ∞
0

d̂s
∂

∂(îs)
(4πiµ2ŝ)−

d
2

√
ĝe−im2ŝ[Φ̂(x̂, x̂, ŝ)] (5.155)

= − i
d

tr

ˆ ∞
0

d̂s (4πiµ2ŝ)−
d
2

√
ĝ

∂

∂(îs)

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

)
=

2i

d(2− d)4πµ2
tr

ˆ ∞
0

d̂s (4πiµ2ŝ)1−d
2

√
ĝ

∂2

∂(îs)2

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

)
= − 4i

d(2− d)(4− d)

1

(4πµ2)2
tr

ˆ ∞
0

d̂s (4πiµ2ŝ)2−d
2

√
ĝ

∂3

∂(îs)3

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

)
Next we use

[Φ̂(x̂, x̂, ŝ)] = 1 + [â1]iŝ+ [â2](iŝ)2 + . . . (5.156)

and, around d = 2, we use 1
d(2−d)

= 1
2

(
1
d−2
− 1

d

)
and in the third line of (5.155) we use

(4πiµ2s)1− d
2 = 1− d− 2

2
ln(4πiµ2s) + . . .

Then we differentiate once [Φ̂(x̂, x̂, ŝ)], and the remaining derivation we get rid of by

integrating by parts. Finally one gets

L̂(x̂) =
1

4π

(
1

d− 2
− 1

2

)
tr
(

([â1]−m2)
√

ĝ
)

(5.157)

− i

8π
tr

ˆ ∞
0

d̂s ln(4πiµ2ŝ)
√

ĝ
∂2

∂(îs)2

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

)
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Around d = 4 we use 1
d(d−2)(d−4)

≈ 1
8

(
1
d−4
− 3

4

)
. With reference to the last line of (5.155),

we differentiate twice [Φ̂(x, x, s)] and integrate by parts the third derivative. The result

is

L̂(x̂) ≈ 1

32π2

(
1

d− 4
− 3

4

)
tr
(
m4 − 2m2[â1] + 2[â2]

)√
ĝ (5.158)

+
i

64π2
tr

ˆ ∞
0

d̂s ln(4πiµ2ŝ)
√

ĝ
∂3

∂(îs)3

(
e−im2ŝ[Φ̂(x̂, x̂, ŝ)]

)
The last line depends explicitly on the parameter µ and represent a nonlocal part.

5.5.3 The anomaly

Let us take the variation of (5.158) with respect to ω̂ = ω + γ5η. Recall that

δω̂
√
ĝ = d ω̂

√
ĝ (5.159)

δω̂R̂ = −2ω̂ R̂− 2(d− 1)�̂ω̂ (5.160)

δω̂R̂µνλ
ρ = −δρνD̂µD̂λω̂ + δρµD̂νD̂λω̂ + D̂µD̂σω̂ ĝ

ρσĝνλ − D̂νD̂σω̂ ĝ
ρσĝµλ (5.161)

From these follows, for instance,

δω̂

(√
ĝR̂2

)
= (d− 4)

√
ĝ ω̂ R̂2 − 4(d− 1)R̂

√
ĝ �̂ω̂ (5.162)

δω̂

(√
ĝR̂µνR̂

µν
)

= (d− 4)ω̂
√
ĝ R̂µνR̂

µν + 2(2− d)
√
ĝ R̂µνD̂µD̂νω̂ − 2

√
ĝ R̂�̂ω̂

= (d− 4)ω̂
√
ĝ R̂µνR̂

µν − d
√
ĝ R̂�̂ω̂ (5.163)

δω̂

(√
ĝR̂µνλρR̂

µνλρ
)

= (d− 4)ω̂
√
ĝ R̂µνλρR̂

µνλρ − 8
√
ĝ R̂µνD̂µD̂νω̂

= (d− 4)ω̂
√
ĝ R̂µνλρR̂

µνλρ − 4
√
ĝ R̂�̂ω̂ (5.164)

δω̂

(√
ĝ�̂R̂

)
= (d− 4)ω̂

√
ĝ �̂R̂ + (d− 6)

√
ĝ ∂µω̂ ∂

µR̂− 2
√
ĝ R̂ �̂ ω̂

−2(d− 1)
√
ĝ �̂2 ω̂

= 0 (5.165)

δω̂tr
(√

ĝ R̂µνR̂µν
)

= (d− 4)tr
(
ω̂
√

ĝ R̂µνR̂µν
)

+ 4 tr
(√

ĝ R̂µνD̂µD̂νω̂
)

= (d− 4)tr
(
ω̂
√

ĝ R̂µνR̂µν
)

+ 2 tr
(√

ĝ R̂�̂ω̂
)

(5.166)

In the first line of (5.158) one can ignore m2 or m4 terms (either one sets m = 0 or

they can be subtracted because they are trivial). The second line (5.158) does not contain
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singularities when d→ 4: it contains either vanishing or finite terms in this limit. Let us

denote the second line by L̂R.

L̂ =
1

16π2

(
1

d− 4
− 3

4

) ˆ
ddx̂ tr

(
[â2]|m=0

√
ĝ
)

+ L̂R (5.167)

We now act with δω̂ =
´
ddx̂ 2tr

(
ω̂ ĝµν

δ
δĝµν

)
2. From (5.159)-(5.163) it follows that

δω̂tr
(√

ĝ [â2]|m=0

)
= (d− 4)tr

(√
ĝ ω̂ [â2]|m=0

)
− d− 4

120
tr
(√

ĝ R̂�̂ω̂
)

(5.168)

The second piece can be canceled e.g. by a counterterm proportional to tr
(√

ĝR̂2
)

.

Using the fact that the bare part of the action is Weyl invariant δω̂L̂ = 0 and that the

renormalised part L̂R defines the (quantum) energy momentum tensor 2√
ĝ

δ
δĝµν

L̂R = Θ̂µν

we get

ˆ
ddx̂ tr

(
ω̂
√

ĝ ĝµνΘ̂
µν
)

= − 1

16π2

ˆ
ddx̂tr

(√
ĝ ω̂ [â2]|m=0

)
(5.169)

where the d− 4 factor in (5.168) canceled the pole 1
d−4

in (5.167).

Clearly, the odd parity anomaly can come only from the term R̂µνR̂µν contained in

[â2] , with a coefficient of 1
32π2 (for Majorana fermions, ×2 for Dirac fermions). For the

odd part we have

ˆ
ddx̂ tr

√
ĝ ω̂ T̂ = − 1

768π2

ˆ
d4x tr

√
ĝ ω̂ R̂µνR̂µν

∣∣∣
odd

(5.170)

where we denoted T̂ = ĝµνΘ̂
µν = ĝµν〈〈T̂ µν〉〉. The (odd parity) coefficient of ω defines T

and the (odd parity) coefficient of η defines T5. Setting T̂ = T + γ5T5 one obtains in this

way3

T = −1

4

1

768π2
tr
(
R̂µνR̂µν

) ∣∣∣
odd

=
1

4

2i

768π2
εµνλρR

(1)
µναβR

(2)
λρ

αβ (5.171)

T5 = −1

4

1

768π2
tr
(
γ5R̂µνR̂µν

) ∣∣∣
odd

=
1

4

i

768π2
εµνλρ

(
R

(1)
µναβR

(1)
λρ

αβ + R
(2)
µναβR

(2)
λρ

αβ
)

(5.172)

In the last step we have Wick-rotated back the result: this is the origin of the i in the

2In MAT case, ĝµν also has two spinor indices, so that ω gµν
δ

δgµν
→ ω̂AB ĝµνBC

δ
δĝµνAC

. Since in our

case γ5 is symmetric, we have âAB = âBA and we can write δω̂ as
´
ddx̂ 2tr

(
ω̂ ĝµν

δ
δĝµν

)
.

3Here we changed the convention for Levi-Civita tensor with respect to [20], that is, we use ε0123 = 1.
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anomaly coefficient. At this point we can safely set xµ2 = 0 everywhere.

5.5.4 ζ-function regularization

Given a differential operator A in analogy with the Riemann ζ function, the expression

A−z, for complex z, is called ζ function regularization of A:

ζ(z, A) = A−z =
1

Γ(z)

ˆ ∞
0

dt tz−1 e−tA (5.173)

We will apply this representation to the operator F̂(x̂, x̂):

(F̂(x̂))−z =
1

Γ(z)

ˆ ∞
0

dt tz−1 〈x̂|e−tF̂|x̂〉 (5.174)

where 〈x̂|e−tF̂|x̂〉 means the coincidence limit of 〈x̂|e−tF̂|x̂′〉. Eq.(5.174) is not quite correct

because only dimensionless quantities can be raised to an arbitrary power. Moreover the

object of interest will be Ĝ, rather than F̂. Thus we introduce again the mass parameter

µ and shift from t to iŝµ.

ζ(x̂, z) ≡ (µ2Ĝ(x̂, x̂))z =
1

Γ(z)

ˆ ∞
0

(iµ2)dŝ (iŝµ2)z−1 〈x|eiŝF̂|x̂〉 (5.175)

Finally we replace 〈x̂|eiŝF̂|x̂〉 with K̂(x̂, x̂, ŝ) in eq.(5.152). The result is

ζ(x̂, z) = (µ2Ĝ(x̂, x̂))z =
i

Γ(z)

µd

(4π)
d
2

√
ĝ

ˆ ∞
0

(iµ2)dŝ (iŝµ2)z−1− d
2 e−im

2ŝ[Φ̂(x̂, x̂, ŝ)](5.176)

which can be rewritten as

ζ(x̂, z) = (µ2Ĝ(x̂, x̂))z = − i

Γ(z)

µd−4

(4π)
d
2

√
ĝ

(z − d
2
)(z − d

2
+ 1)(z − d

2
+ 2)

×
ˆ ∞

0

d(iŝ) (iŝµ2)z−
d
2

+2 ∂3

∂(iŝ)3

(
e−im

2ŝ[Φ̂(x̂, x̂, ŝ)]
)

(5.177)

This is well defined for d = 4 at z = 0

ζ(x̂, 0) =
i
√
ĝ

2(4π)2

[
∂2

∂(iŝ)2

(
e−im

2ŝ[Φ̂(x̂, x̂, ŝ)]
)]

ŝ=0

(5.178)
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Now, differentiating (5.173) with respect to z and evaluating at z = 0, we get formally

d

dz
ζ(z, A)|z=0 = −Tr lnA (5.179)

This suggest the procedure to regularize Ŵ (which is the trace of a log). More precisely

Ŵ → Ŵζ = − i
2
ζ ′(0), where ζ(z) =

ˆ
tr ζ(x̂, z)ddx̂ (5.180)

As a consequence for d = 4:

L̂ζ(x) =
1

64π2
(γ +

3

2
− ln(4π))

√
ĝ tr

(
2[â2(̂x)]− 2m2[â1(x̂)] + m4

)
(5.181)

− i

64π2

√
ĝ

ˆ ∞
0

dŝ ln(4πiµ2ŝ)
∂3

∂(iŝ)3

(
e−im

2ŝ[Φ̂(x̂, x̂, ŝ)]
)

Now, suppose that the operator A, under a symmetry transformation with parameter

ε, transforms as

δεA = {A, ε}. (5.182)

Then

δεTrA−z = −2zTr
(
A−zε

)
= −2zTr (ζ(z, A)ε) (5.183)

Since the relevant result is obtained by differentiating with respect to z and setting z = 0,

once the functional is regularized, the anomalous part of the effective action is extremely

easy to derive:

L̂A = −2Tr (ζ(0, A)ε) (5.184)

Let us return to the our problem. The operator to be regulated is F̂ = F̂x̂. Its AE

Weyl transformation is

δω̂F̂ = −2ω̂ F̂ +
(
γ̂µγ̂ν + ĝµν

)
∂νω̂∇̂µ +

3

2
�̂ω̂

= −2ω̂ F̂ + F̂

[
1

F̂

((
γ̂µγ̂ν + ĝµν

)
∂νω̂∇̂µ +

3

2
�̂ω̂

)]

101



Ĝ(x̂, x̂) is the inverse of F̂ and its transformation is similar:

δω̂Ĝ = 2 Ĝ ω̂ + Ĝ

[((
γ̂µγ̂ν + ĝµν

)
∂νω̂∇̂µ +

3

2
�̂ω̂

)
Ĝ

]

The first piece in the RHS reproduces exactly the mechanism in (5.183). The second is

a nonlocal term of the effective action; it does not concern us here and we drop it. As

noticed above this procedure does not lead directly to the anomaly. It rather gives the

anomalous part of the effective action, i.e. the anomaly integrated with the insertion of√
ĝ:

L̂A(ω̂) = −iTr (ω̂ ζ(x̂, 0)) (5.185)

= iTr

( √
ĝ

2(4π)2

[
∂2

∂(iŝ)2

(
e−im

2ŝ[Φ̂(x̂, x̂, ŝ)]
)]

s=0

ω̂

)

= iTr

( √
ĝ

2(4π)2

(
2[â2(x̂)]− 2m2[â1(x̂)] +m4

)
ω̂

)

Now, proceeding as before, we differentiate with respect to ω̂ and strip off
√
ĝ, multiply

back ω̂ and obtain the true integrated anomaly. This leads to the same results as above.

5.5.5 The collapsing limit

After computing the trace anomalies (5.171) and (5.172) of a Dirac fermion coupled to a

metric and an axial symmetric tensor, we are now interested in returning to the original

problem, that is the trace anomaly of a Weyl tensor in an chiral fermion theory coupled to

ordinary gravity. To this end we take the collapsing limit. In [19] the latter was defined

as hµν → hµν
2
, kµν → hµν

2
, with hµν and kµν both infinitesimal. Here we do not put such a

limitation. The collapsing limit is defined by making the replacements

gµν → ηµν +
hµν
2

, fµν →
hµν
2

(5.186)

in the previous formulas, with finite hµν . With this choice one has

ĝµν =
1

2
(1− γ5) ηµν +

1

2
(1 + γ5)Gµν , Gµν ≡ ηµν + hµν (5.187)
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From this we see that the right-handed part couples to the flat metric, while the left-

handed part couples to the (generic) metric Gµν . As a consequence we have also

êam → δam
1− γ5

2
+ eam

1 + γ5

2
, êma → δma

1− γ5

2
+ ema

1 + γ5

2
, (5.188)

as well as

√
ĝ → 1− γ5

2
+

1 + γ5

2

√
G, (5.189)

Similarly for the Christoffel symbols

Γ(1)λ
µν →

1

2
Γλµν , Γ(2)λ

µν →
1

2
Γλµν , (5.190)

for the spin connections

Ω(1)ab
µ → 1

2
ωabµ , Ω(2)ab

µ → 1

2
ωabµ , (5.191)

and for the curvatures

R
(1)
µνλ

ρ → 1

2
Rµνλ

ρ, R
(2)
µνλ

ρ → 1

2
Rµνλ

ρ, (5.192)

where all the quantities on the RHS of these limits are built with the metric Gµν .

As a consequence, the action (5.94) becomes

Ŝ −→ S ′ =

ˆ
d4x

[
iψγa

1− γ5

2
∂aψ +

ˆ
d4x
√
G iψγaeµa

(
∂µ +

1

2
ωµ

)
1 + γ5

2
ψ

]
(5.193)

where γa is the flat (non-dynamical) gamma matrix while the vierbein eµa and the connec-

tion ωµ are compatible with the metric Gµν . Up to the term that represents a decoupled

right-handed fermion in the flat spacetime, the action S ′ is the action of a left-handed

Weyl fermion coupled to the ordinary gravity.

In the collapsing limit we have

T(x) = T5(x) =
1

16

2i

768π2
εµνλρRµναβRλρ

αβ (5.194)
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The integrated anomaly (5.170) corresponding to Ŝ thus becomes

ˆ
ddx̂ tr

√
ĝ ω̂ T̂ =

ˆ
ddx
√
G (ω + η) (T + T5) trP+ +

ˆ
ddx (ω − η) (T − T5) trP−

= 4

ˆ
ddx
√
Gω+ T (5.195)

where we used trP+ = 2, T − T5 = 0 and set ω+ = ω + η. Notice that due to (5.187)

the transformation property of Gµν is Gµν → e2ω+Gµν . To extract an anomaly of the left

fermion of the effective action corresponding to (5.193) we take its Weyl variation with

respect to the metric Gµν

ˆ
ddx
√
Gω+ T′ (5.196)

where we denoted T′ = GµνΘ
′µν = Gµν〈〈T

′µν〉〉. Comparing (5.195) and (5.196) we get

T′(x) =
i

1536π2
εµνλρRµναβRλρ

αβ (5.197)

If we instead of (5.186) take the following collapsing limit

gµν → ηµν +
hµν
2

, fµν → −
hµν
2

(5.198)

then one obtains

ĝµν =
1

2
(1− γ5)Gµν +

1

2
(1 + γ5) ηµν , Gµν ≡ ηµν + hµν (5.199)

Now the left handed part is coupled to the flat metric and right handed part to generic

curved metric. We can now repeat the arguments from above and obtain the Pontryagin

Weyl anomaly for right-handed Weyl fermion

T′(x) = − i

1536π2
εµνλρRµναβRλρ

αβ. (5.200)

The relative minus sign with respect to left-handed case is because of the opposite sign

in front of γ5 matrix in the defining relation for projectors P±.
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Appendices

5.A Green’s functions

In the text we have assumed the existence of the propagator Ĝ, the inverse of F̂. In this

Appendix we discuss this question by comparing it with the ordinary case, as discussed in

[13]. First we review the approach of [13] in the ordinary gravity case. Then we explain

the modifications required in the MAT case. We consider the case of a stationary metric

and axial-metric background. We will assume eventually that the results hold also for

nonstationary case, provided the background varies mildly in time.

In this Appendix the flat gamma matrices are understood to be the Majorana ones,

that is, they are purely imaginary, together with γ5: γ0 ≡ η and γ5 are antisymmetric,

while γi, i = 1, 2, 3 are symmetric.

5.A.1 A summary of Green’s functions

Let us give first a short review of ordinary fermionic propagators, see [13, 14, 66, 67]. We

start from

G(x, x′) = 〈0|T ψ(x)ψ†(x′)|0〉 (5.201)

This is not the standard Feynman Green function

SF (x, x′) = 〈0|T ψ(x)ψ̄(x′)|0〉 (5.202)

The two are related by SF (x, x′) = G(x, x′)η

Other Green functions are the advanced, G+(x, x′), and retarded, G−(x, x′); the posi-

tive and negative frequency Green functions, G(+)(x, x′) and G(−)(x, x′), respectively; and
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the principal value Green function Ḡ(x, x′) = 1
2

(G+(x, x′) +G−(x, x′)). The definitions

depends only on the contour of integration of p0 in the momentum space representation,

while for the rest they are the same. The important relation in this context is

G(x, x′) = Ḡ(x, x′) +
i

2
G(1)(x, x′), G(1) = i

(
G(+) −G(−)

)
(5.203)

For real fermions Ḡ(x, x′) and G(1)(x, x′) are real. So they represent the real and imaginary

part of G(x, x′). G(1)(x, x′) can be represented as

G(1)(x, x′) = 〈0|[ψ(x), ψ†(x′)]|0〉 ≡ S(1)(x, x′) (5.204)

The Feynman propagator satisfies the equation

i
√
gη (γµ∇µ +m)G(x, x′) = −1δ(x, x′) (5.205)

and 1 is the identity matrix in the spinor space. Both sides of (5.205) transform as a

bispinor density, i.e. like
√
gγ0ψ(x) at x and as ψ†(x′) at x′. Instead

i
√
gη (γµ∇µ +m)G(1)(x, x′) = 0 (5.206)

The approach of [66, 67] is based essentially on G(1).

Now let us make the ansatz

G(x, x′) = −i (γµ∇µ −m)G(x, x′)η−1 (5.207)

Inserting this into (5.205) one gets

√
g

(
∇µg

µν∇ν −
(
m2 +

1

4
R

))
G(x, x′) = −1δ(x, x′) (5.208)

Now we represent (5.208) as

ˆ
dx′′F(x, x′′)G(x′′, x′) = −1δ(x, x′) (5.209)
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or, in operator form,

F G = −1 (5.210)

(understanding 〈x|G|x′〉 = G(x, x′), etc.), where

F(x, x′) =
√
g

(
∇µg

µν∇ν −
(
m2 +

1

4
R

))
1δ(x, x′) (5.211)

and the function and derivatives in the RHS are understood to be evaluated at x. Alter-

natively we represent (5.208) as

Fx G(x, x′) = −1δ(x, x′) (5.212)

where Fx is the differential operator acting on 1δ(x, x′) in the RHS of (5.211).

5.A.2 Properties of F

The operator F in (5.208) is not selfadjoint. In fact

F† = γ0Fγ0 (5.213)

This implies that the construction of a Green’s function is not straightforward. In a

stationary background a propagator is constructed out of modes which are stationary

eigenfunctions (plane waves, at least asymptotically) with real frequencies. Given the

Dirac equation

i(γµ∇µ +m)u = 0 (5.214)

by suitably fixing the gauge for diffeomorphisms, one can always define a complete set

of eigenfunctions with real frequencies, symbolically u+ = χe−iωt, u− = λeiωt, so that

(understanding the indices and integration over the space momenta)

ψ = u+a+ u−a
† (5.215)

where a, a† are annihilation, creation operators (see chapter 19 of [14]).
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In the same way one can infer the existence of an analogous complete set of solutions,

say v+, v− of

i(γµ∇µ −m)v = 0 (5.216)

Now, even if F is not self-adjoint, we can construct the following operator

F =

 0 F

F† 0

 (5.217)

which is self-adjoint, and whose inverse is

G =

0 G†

G 0

 (5.218)

The mode solutions of F are 0

u+

 ,

 0

u−

 ,

γ0v+

0

 ,

γ0v−

0

 (5.219)

which have all real frequencies. It follows that we can construct the Feynman propagator

of F . Following the argument of [14], end of chapter 20, it has the form

F−1 =

 0 − i
F†+iε

− 1
F+iε

0

 (5.220)

Comparing with (5.218) we get

G = − 1

F + iε
(5.221)

5.A.3 Existence of mode functions

The existence of mode functions, i.e. solutions of the Dirac equation (5.214) of the type

u = χeiωt with real ω, in a stationary background, is the basis for the existence of

propagators. In [14] the problem is discussed as follows. One shows that one can cast
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(5.214) in the form

Fu = 0, F =
1

2

{
Bµ,

∂

∂xµ

}
− C (5.222)

where

Bµ = iηγµ, C = − i
4
η{γµ, ωµ} (5.223)

The important thing is that, in the Majorana representation of the γ matrices, Bµ is a

symmetric matrix, while C is antisymmetric, and they are both purely imaginary. By

choosing the gauge e0
0 = 1, ei0 = 0 for the vierbein e, the operator F becomes

F =
1

2

{
B,

∂

∂t

}
− C (5.224)

where

B = i, C = C − 1

2

{
Bi,

∂

∂xi

}
(5.225)

Again while B is symmetric imaginary with −iB being positive definite, C is antisymmet-

ric imaginary. Plugging the ansatz uA = χAe
−iωAt into Fu = 0 one gets the eigenvalue

equation

(C + iωAB)χA = 0 (5.226)

Due to the abovementioned propertis of B and C, one can find eigenvalues and eigenvec-

tors. The eigenvalues ωA can be taken real and positive.

5.A.4 What changes when the background is MAT

In this case the analogue of (5.213) is

F̂† = η F̂ η (5.227)
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But as above we can proceed to construct the operator

F̂ =

 0 F̂

F̂† 0

 (5.228)

which is self-adjoint, and whose inverse is

Ĝ =

0 Ĝ†

Ĝ 0

 . (5.229)

Using the same argument as above we can conclude that

Ĝ = − 1

F̂ + iε
(5.230)

The only delicate point in reaching this conclusion is the solutions of

i γ̂µ∇̂µ u = 0 (5.231)

Eq.(5.214) is real, since the gamma matrices are purely imaginary. But, in (5.231), the

presence of γ5 poses a problem. In a representation in which the gamma matrices are

purely imaginary, the γ5 is also imaginary, thus eq.(5.231) is complex, and, based on the

analogy with the previous subsection, one cannot be sure a priori that there are real

frequency solutions. However we notice that the operator ηF̂ is self-adjoint. This remark

lends us a way out.

Another crucial point is the gauge fixing, so that one can end up with something

analogue to (5.225), in which −iB is positive definite. As we saw above, this is obtained

by choosing in particular e0
0 = 1, ei0 = 0. In MAT the coefficient of γ0 is êµ0 , which contains

also γ5c
µ
0 . We shall choose cµ0 = 0. As a consequence the analogue of Fu = 0 is F̂ û = 0

where

F̂ =
1

2

{
B̂,

∂

∂t

}
− Ĉ (5.232)

where B̂ = B, i.e. symmetric and such that −iB is positive definite. As for Ĉ, it can be
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written as

Ĉ = Ĉa + Ĉs (5.233)

where Ĉa is imaginary antisymmetric and does not contain γ5, while Ĉs is real, linear in

γ5 and symmetric. However altogether it is self-adjoint.

Plugging the ansatz ûA = χ̂Ae
−iωAt into ηF̂ û = 0 one gets the equation

(Ĉ − ωA)χ̂A = 0 (5.234)

which is an eigenvalue equation for Ĉ. Since the latter is self-adjoint we know there exists

a complete set of eigenfunctions. This is what we need.

So the remaining question is: is the choice cµ0 = 0 permitted? In order to see this one

has to check that the defining equations (4.15,4.16) for the axial-complex vierbein and

the like in Appendix B are still valid. Now, suppose the ordinary gauge fixed vierbein

satisfies such defining equation (which they do in [13]). Then we can set the axial-

imaginary vierbein c and c−1 to 0, while preserving the defining relations. In other words,

there is a large gauge freedom, and in particular we can choose cµ0 = 0.
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Chapter 6

Higher spin theories

One interesting problem in quantum field theory is the construction of interacting quan-

tum field theories with massless higher spin (s > 2) fields in flat spacetime. Reasons

to study higher spins are diverse. First, while free HS theories are fine, once we try to

turn on the interactions we find various inconsistencies in the form of ”no-go” theorems

[154]-[157], see [158]-[160] for a review. We review some of the possible obstacles which

one could stumble upon: Weinberg, Aragone-Desser and Weinberg-Witten theorem. On

the other hand, consistent theory of interacting higher spin fields (involving an infinite

tower of higher spin fields) has been constructed by Vasiliev [24]-[27] in the framework of

4d AdS background.

Moreover, in open string theory we have an infinite tower of massive higher spin

excitations where the mass is given by

M2 ∼ T (s+ 1) ∼ 1

α′
(s+ 1)

In the above formula T ∼ 1
α′

is the tension of the string and s is the spin. In the tensionless

limit of the theory, α′ →∞ the mass of the higher spin fields goes to zero. The dynamics

of higher spin excitations is very important for better understanding of the quantum

properties of string theory. Furthermore, there is a conjecture which states that string

theory describes a broken phase of higher spin gauge theory [161]-[169]. Similar to Higgs

mechanism that provides fundamental particles with mass, there is a possibility that a

similar mechanism could generate massive states in string theory. For this reason, it is

important to get a better understanding of higher spin gauge theory.
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For motivational purposes, we will finish this chapter with a quick tour through the

higher spin history.

6.1 No-go theorems

There are different ”no-go” theorems putting serious constraints interacting higher spin

theories, especially in flat space-time (see e.g. [158]-[160] and references within). We

will review Weinberg theorem [154], Aragone-Desser theorem [156] and Weinberg-Witten

theorem [157].

6.1.1 Weinberg theorem

Weinberg in 1964 showed, using S-matrix approach, that there are no consistent long-

range interactions mediated by massless bosons with s > 2, see [154]. Let us consider

S-matrix element with N external fields of momenta pi, i = 1, . . . , N and one massless

spin-s field with momentum q and polarization vector εµ1...µs(q). We will assume soft limit

q → 0. The structure of the diagram for emission of soft spin-s field from the particle line

with momentum pi is

S(p1, . . . , pN , q, ε) =
gi

pi · q
piµ1 . . . p

i
µsε

µ1...µs(q)Shard(p1, . . . , pN) (6.1)

where gi is the coupling constant and Shard describes the hard process. We used q → 0

and the fact that both field i and spin-s field are on-shell. We get similar contribution

from diagrams in which the spin-s field is attached to a different field. We still have to

perform summation over all N fields since the full amplitude consists of contributions

from all N fields. The total matrix element factorizes in the soft limit:

S(p1, . . . , pN , q, ε) =
N∑
i=1

gi

pi · q
piµ1 . . . p

i
µsε

µ1...µs(q)Shard(p1, . . . , pN) (6.2)

The polarization tensor εµ1...µs is transverse and traceless:

qµ1ε
µ1...µs(q) = 0, ηµ1µ2ε

µ1...µs(q) = 0 (6.3)
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It has more components than the physical polarizations of the massless field. We can

eliminate this redundancy by demanding that the S-matrix element is independent of

spurious polarizations. That is, we demand that the S-matrix element vanishes for

εµ1...µs(spur) (q) = q(µ1ηµ2...µs)(q) (6.4)

where ηµ1...µs−1(q) is transverse and traceless

qµ1η
µ1...µs−1(q) = 0, ηµµ3...µs−1

µ = 0 (6.5)

Spurious states decouple for any piµ if

N∑
i=1

qipiµ1 . . . p
i
µs−1

= 0 (6.6)

For generic momenta pi this equation has solution only in two cases:

• For s = 1 (photon) the above equation becomes

N∑
i=1

qi = 0 (6.7)

This is the conservation of charge.

• For s = 2 (graviton) we have

N∑
i=1

qipiµ = 0 (6.8)

which is satisfied only if gi = κ. This gives us the equivalence principle which says

that all particles interact with gravitons with equal strength κ. We are left with

N∑
i=1

piµ = 0 (6.9)

which represents energy-momentum conservation.

For s > 2 there is no solution for the above equation. Only s ≤ 2 fields can give rise

to long-distance interactions. Note that this argument does not rule out massless bosons
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with s > 2, it just says that there are no long-range interactions. There is still possibility

for s > 2 massless fields to mediate short-range interactions. Massless higher spin fields

can exist, but their coupling gi in low energy limit q → 0 vanishes. In [170, 171] the

authors showed that long-range interactions with fermionic higher spin exist up to s < 5
2
.

6.1.2 Aragone-Desser theorem

Aragone and Desser in 1979 showed that higher spin fields cannot consistently interact

with gravity, see [156]. They proved this by attempting to explicitly couple spin 5
2

field

to gravity.

Let us consider interaction of spin-5
2

with gravity up to quadratic order. Spin-5
2

is

described by tensor-spinor ψab an we couple it minimally to vielbein eµa

S =

ˆ
d4xe

(
−1

2
ψ̄ab /Dψab − ψ̄abγb /Dγcψca + 2ψ̄abγbDcψca +

1

4
ψ̄aa /Dψbb − ψ̄aaDbγcψbc

)

where e is square root of metric determinant e =
√
g. The field ψab gives a redundant

description of spin-5
2

field. The redundancy is removed by gauge invariance

δψab = ∂aεb + ∂bεa, γaεa = 0 (6.10)

To covariantize, we replace partial derivatives with covariant derivatives

δψab = Daεb +Dbεa, γaεa = 0 (6.11)

The action transforms under this gauge transformation as

δS = −4

ˆ
d4xeε̄aγbψcdR

abcd (6.12)

We conclude that the action is invariant only in flat spacetime where Riemann tensor

vanishes Rabcd = 0. This means that gauge modes decouple only in the free theory.

This theorem rests on the Lagrangian formalism. This means that there is one major

implicit assumption: locality. Consequently, introducing non-locality in the Lagrangian

could avoid the difficulties.
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6.1.3 Weinberg-Witten theorem

Finally, let us mention one more ”no-go” theorem. Weinberg and Witten, using S-matrix

approach, proved that a theory which allows a construction of a conserved Lorentz co-

variant energy-momentum tensor cannot contain massless particles of spin s > 1, see

[157] (for a review see [172]). It states that no massless higher spin field can consistently

interact with gravity in flat spacetime. The statement of the theorem goes as follows: ”A

theory that allows the construction of a conserved Lorentz covariant energy-momentum

tensor Tµν for which
´
d3xT 0ν is the energy-momentum 4-vector cannot contain massless

particles of spin s > 2.”

Let us analyze the scattering of massless fields off soft gravitons. We assume that p is

the initial momentum of the spin-s field, and that the final momentum is p′ = p+ q. The

graviton is off-shell with momentum q. The S-matrix element we are interested in is:

〈±s, p′|Tµν | ± s, p〉 (6.13)

where ±s denotes the polarization of the spin-s field. In the soft limit q → 0 the S-matrix

element is determined by the equivalence principle

〈±s, p′|Tµν | ± s, p〉 = pµpν (6.14)

where we used the normalization 〈p|p′〉 = 2p0(2π)3δ(~p− ~p′).

On the other hand, to show that the matrix element vanishes for s > 1 we choose a

Lorentz frame in which

p = (|~p|, ~p), p′ = (~p,−~p) (6.15)

this is always possible for q2 = 0 because in that case p + p′ is timelike and by Poincaré

covariance we can choose a Lorentz frame in which p+ p′ has no spatial component. Let

us now consider rotation R(θ) by an angle θ around the ~p direction. The one-particle

states under this transformation become

| ± s, p〉 → e±iθs| ± s, p〉

| ± s, p′〉 → e∓iθs| ± s, p′〉 (6.16)
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where the difference in sign comes from the fact that R(θ) is a rotation for +θ around ~p

but −θ around ~p′. Matrix element becomes:

e±2iθs〈±s, p′|Tµν | ± s, p〉 = R(θ)µρR(θ)νσ〈±s, p′|Tρσ| ± s, p〉 (6.17)

Rotation matrix R(θ) has eigenvalues eiθ, 1 and e−iθ. Therefore, the above equation

requires the matrix element to vanish unless 2s = 0, 1, 2. Now, since we assumed that

the energy-momentum tensor is Lorentz covariant, the matrix element has to vanish in

all frames and for all p and p′ for which (p′ − p)2 = q2 = 0.

Note that this theorem does not apply to theories which do not have a Lorentz covari-

ant energy-momentum tensor (like gravity). In other words if we want gauge invariance

we must sacrifice Lorentz covariance.

Regardless of the ”no-go” theorems, there are significant higher spin results: free fields

can be constructed in the same manner as in lower spin cases (see, e.g. [173]). A few

cubic interaction terms have been constructed in the literature (see [99]-[106]). And most

notably, a fully consistent covariant higher spin theory, which includes an infinite tower of

higher spin fields, in AdS background has been constructed by Vasiliev and collaborators

[24]-[27]. Note that ”no-go” theorems are mostly based on the S-matrix approach. In

Vasiliev theory such ”no-go” theorems are evaded because in AdS there is no genuine

S-matrix.

6.2 History of higher spins

In this section we will make a quick review of higher spin theory throughout history, see

[159, 161, 174, 175] and references therein. It is often stated that the theory of higher

spins dates back to 1936 when Dirac tried to generalize his spin-1
2

equation [95]. In 1939

Fierz and Pauli [96] systematized the study of massive higher spin fields through Lorentz

covariance and energy positivity. It took a long time before Singh and Hagen in 1974

in [97, 98] constructed the Lagrangian formulation of Fierz and Pauli equations. A few

years later, Fronsdal [37, 38] investigated the massless limit of Singh-Hagen Lagrangian

and found that, for the equation of motion to be invariant under gauge transformation,

the gauge parameter must be constrained. Later on, Francia and Sagnotti found the

unconstrained Fronsdal equations. We will restrict our historical tour to bosonic higher
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spin fields since they are the focus of this thesis.

6.2.1 Fierz-Pauli-Dirac

As already mentioned, Fierz and Pauli in their study of higher spins [96] required Lorentz

invariance and energy positivity. Due to Wigner’s work [176] on representations of

Poincaré group and Bergman’s and Wigner’s work [177] on relativistic field equations, the

positivity requirement was replaced by the condition that the one-particle states carry a

unitary representation of Poincaré group. The symmetric rank-s tensor then satisfies

(2−m2)φµ1...µs = 0 (6.18)

∂µ1φµ1...µs = 0 (6.19)

ηµ1µ2φµ1...µs = 0 (6.20)

Total symmetry of the higher spin field φµ1...µs ensures that the field transforms in a desired

representation. The first equation says that the Klein-Gordon equation must be satisfied,

which we can see from the first Casimir invariant C1. The transversality condition ensures

that we are propagating the appropriate number of degrees of freedom. Casimir invariant

C2 requires that all lower spin values are eliminated and this is achieved by imposing

the transversality condition. This condition is necessary for the energy to be positive

definite. The third condition above, the tracelessness condition ensures that massive field

representations are irreducible. Number of independent components of symmetric rank-s

tensor φµ1...µs is

(
d+ s− 1

s

)
(6.21)

Tracelessness condition removes
(
d+s−3
s−2

)
components while the transversality condition

eliminates
(
d+s−2
s−1

)
. However, we must be careful, because its trace part has already been

included in the tracelessness condition. So we must add
(
d+s−4
s−3

)
to avoid double counting.

The total number of degrees of freedom is

(
d+ s− 1

s

)
−

(
d+ s− 3

s− 2

)
−
(
d+ s− 2

s− 1

)
+

(
d+ s− 4

s− 3

)
=

(
d+ s− 4

s

)
+ 2

(
d+ s− 4

s− 1

)
(6.22)
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6.2.2 Singh-Hagen

Singh and Hagen in [97] constructed a Lagrangian formulation for spin-s fields that gave

the correct Fierz-Pauli conditions. The Singh-Hagen Lagrangian for integer spin can be

written in terms of symmetric traceless tensor fields of rank s, s-2, s-3,... 0. Let us start

with a simple example of spin-1:

Lspin−1 = −1

2
(∂µφν)

2 − 1

2
(∂ · φ)2 − m2

2
(φµ)2 (6.23)

where ∂φ, ∂ · φ and φ′ (φ[p]) denote gradient, divergence and trace (p-th trace) of the

higher spin field. The corresponding equation of motion is the Proca equation

2φµ − ∂µ(∂ · φ)−m2φµ = 0 (6.24)

Taking the divergence of this equation we get the Fierz-Pauli transversality condition

∂ · φ = 0 (6.25)

together with Klein-Gordon equation for φµ

2φµ −m2φµ = 0 (6.26)

Let us now turn to the generalization of the above result for spin-2 field. The La-

grangian for traceless field φµν is

Lspin−2 = −1

2
(∂µφνρ)

2 +
α

2
(∂ · φµ)2 − m2

2
(φµν)

2 (6.27)

where we introduced constant α instead of 1. The equation of motion is

2φµν −
α

2

(
∂µ∂ · φν + ∂ν∂ · φµ −

2

d
ηµν∂ · ∂ · φ

)
−m2φµν = 0 (6.28)

Taking the divergence of this equation gives

(
1− α

2

)
2∂ · φν + α

(
1

d
− 1

2

)
∂ν∂ · ∂ · φ−m2∂ · φν = 0 (6.29)
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In the above equation we used the fact that the field φµν is traceless. Note that in spin-2

case it is not possible to immediately get the transversality condition like for spin-1. We

can get rid of some terms in the above equation by setting α = 2, however we would still

have to require ∂ · ∂ · φ = 0 to obtain the Fierz-Pauli constraint. Because of that, let

us proceed in the following way. Introduce an auxiliary field π so that the the condition

∂ · ∂ · φ = 0 becomes a consequence of the field equations. To the original Lagrangian we

add the Lagrangian Lπ for the auxiliary field π

Lπ = π∂ · ∂ · φ+ c1(∂µπ)2 + c2π
2 (6.30)

where c1 and c2 are constants which we still have to determine. The equations of motion

for field φµν and π are

φµν : 2φµν −
(
∂µ∂ · φν + ∂ν∂ · φµ −

2

d
ηµν∂ · ∂ · φ

)
−m2φµν + ∂µ∂νπ −

1

d
ηµν2π = 0

π : ∂ · ∂ · φ+ 2(c2 − c12)π = 0 (6.31)

where α = 2 is already used. Taking the divergence of the first equation twice

[
(2− d)2− dm2

]
∂ · ∂ · φ+ (d− 1)22π = 0 (6.32)

The last equation together with the equation of motion for π can be regarded as a linear

homogeneous system of equations in variables ∂ · ∂ ·φ and π. The associated determinant

is

∆ = −2dm2c2 + 2((2− d)c2 + dm2c1)2− (2(2− d)c1 − (D − 1))22 (6.33)

This system of equation has a solution if the determinant does not vanish. We also require

that the determinant does not depend on the D’Alambertian 2. The determinant will be

proportional to m2. Due to these requirements we get constraints on constants c1 and c2

c1 =
d− 1

d(d− 2)
, c2 =

m2d(d− 1)

2(d− 2)2
, d > 2 (6.34)

The obtained solution is exactly the transversality condition together with the condition
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that the auxiliary field vanishes. Altogether we have

π = 0 ∂ · ∂ · φ = 0 (6.35)

∂ · φν = 0 (2−m2)φµν = 0 (6.36)

One can follow a similar procedure for fields with spin s > 2. In that case (s−1) auxiliary

fields is needed to obtain Fierz-Pauli conditions.

6.2.3 Fronsdal

Let us now follow Fronsdal’s approach [37, 38] and take m → 0 limit of Sing-Hagen

Lagrangian. We will see that in this particular limit, only the spin-s and the spin-(s-2)

auxiliary fields remain and the rest of auxiliary fields decouple.

For s = 2, the limit m→ 0 of Singh-Hagen Lagrangian reads

Lspin−2 = −1

2
(∂µφνρ)

2 + (∂ · φµ)2 + π∂ · ∂ · φ+
d− 1

2(d− 2)
(∂µπ)2 (6.37)

The corresponding equations of motion are

φµν : 2φµν −
(
∂µ∂ · φν + ∂ν∂ · φµ −

2

d
ηµν∂ · ∂ · φ

)
+ ∂µ∂νπ −

1

d
ηµν2π = 0

π : ∂ · ∂ · φ− d− 1

d− 2
2π = 0 (6.38)

Next, let us introduce ϕµν , a new field which is a combination of φµν and π

ϕµν = φµν +
1

d− 2
ηµνπ (6.39)

and the equation of motion then becomes

Fµν = 2ϕµν − (∂µ∂ · ϕν + ∂ν∂ · ϕµ) + ∂µ∂νϕ
′ = 0 (6.40)

This is the linearized Einstein equation where the Fronsdal tensor Fµν is just linearized

Ricci tensor Rµν . The Lagrangian is now

Lspin−2 = −1

2
(∂µϕνρ)

2 + (∂ · ϕµ)2 +
1

2
(∂µϕ

′)2 + ϕ′∂ · ∂ · φ (6.41)
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and it is invariant under gauge transformation

δϕµν = ∂µΛν + ∂νΛµ (6.42)

This Lagrangian would give the Einstein equation

Fµν −
1

2
ηµνF ′ = 0 (6.43)

which, when combined with its trace F ′ = 0 implies

Fµν = 0 (6.44)

Let us now try to generalize Fronsdal equation to spin-3 fields

Fµνρ = 2ϕµνρ − (∂µ∂ · ϕνρ + perms) + (∂µ∂νϕ
′
ρ + perms) = 0 (6.45)

with gauge transformation

δϕµνρ = ∂µΛνρ + ∂νΛρµ + ∂ρΛµν (6.46)

where Λ is a rank-2 tensor. Note that Fronsdal tensor is not immediately invariant under

this transformation

δFµνρ = 3∂µ∂ν∂ρΛ
′ (6.47)

Fronsdal tensor is invariant if the gauge parameter is constrained

Λ′ = 0 (6.48)

This condition on gauge parameter is quite strange and unnatural and we would like to

avoid it. One approach to rewrite the Fronsdal equation in an unconstrained form is by

introducing a rank-(s− 3) compensator field α which compensates for the non-vanishing

term in (6.47). Second way to avoid constrained gauge parameter is to construct non-local

equation of motion and Lagrangian.

But before we continue with the study of unconstrained Fronsdal equation, let us first
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describe general Fronsdal formulation for any spin. We can write

Fµ1...µs = 2ϕµ1...µs − (∂µ1∂ · ϕµ2...µs + perms) + (∂µ1∂µ2ϕ
′
µ1...µs

+ perms) = 0 (6.49)

To simplify the notation we will omit the indices so that we will write for completely

symmetric rank-s tensor field ϕ ≡ ϕµ1···µs . We also write ∂pϕ for p-th gradient, ∂p · ϕ for

p-th divergence and ϕ[p] for p-th trace. Now Fronsdal equation can be written as

F = 2ϕ− ∂ ∂ · ϕ+ ∂2ϕ′ = 0 (6.50)

In this expression standard higher spin conventions from [39, 107, 108] are assumed.1

The Fronsdal equation (6.50) is invariant under local transformations parametrized by

traceless completely symmetric rank-(s− 1) tensor fields Λ ≡ Λµ1···µs−1

δϕ = ∂Λ (6.51)

with

Λ′ = 0 (6.52)

We call this constraint on gauge parameter first Fronsdal constraint.

However, there is one more condition needed for the Lagrangian

L = ϕ ·
(
F − 1

2
ηF ′
)

(6.53)

to be invariant. The variation of the Lagrangian is, up to total derivative,

δL = δϕ ·
(
F − 1

2
ηF ′
)

= −sΛ
(
∂ · F − 1

2
∂F ′

)
+
s

2
Λ′∂ · F ′ (6.54)

The third term vanishes because of first Fronsdal condition and we are left with

δL = −sΛ
(
∂ · F − 1

2
∂F ′

)
(6.55)

1Conventions assume symmetrization over free indices with minimal number of terms and without
any symmetry factors. Also, a prime denotes contraction of a pair of indices, so, e.g., ϕ′ ≡ ϕµ1···µs−2 =
ηµs−1µsϕµ1···µs is a completely symmetric rank-(s− 2) tensor field.
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To calculate
(
∂ · F − 1

2
∂F ′

)
we use

∂ · F = 2∂ϕ′ − ∂∂ · ∂ · ϕ+ ∂2∂ · ϕ (6.56)

∂F ′ = 22∂ϕ′ − 2∂∂ · ∂ · ϕ+ 3∂3ϕ′′ + 2∂2∂ · ϕ (6.57)

As it tuns out, Fronsdal operator satisfies the anomalous Bianchi identity

∂ · F − 1

2
∂F ′ = −3

2
∂3ϕ′′ (6.58)

For s ≥4 the Lagrangian is gauge invariant only if the field ϕ is subjected to the Fronsdal

second condition

ϕ′′ = 0 (6.59)

From the Lagrangian (6.53) together with the two Frondal conditions (6.52) and (6.59)

we get the equation of motion

F − 1

2
ηF ′ = 0 (6.60)

We can also introduce the Fronsdal-Einstein tensor

G = F − 1

2
ηF ′ (6.61)

and write the Lagrangian as L = ϕG.

Let us now determine number of degrees of freedom for the constrained Fronsdal

theory. A symmetric rank-s tensor which is double traceless has
(
d+s−1
s

)
−
(
d+s−5
s−4

)
in-

dependent components. Furthermore, Fronsdal tensor F is gauge invariant under the

condition Λ′ = 0 and hence we can remove
(
d+s−2
s−1

)
−
(
d+s−4
s−3

)
by imposing the de Donder

gauge

∂ · ϕ− 1

2
∂ϕ′ = 0 (6.62)
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which reduces the Fronsdal equation to

2ϕ = 0 (6.63)

Now we see that ϕ really describes massless field. However, de Donder gauge does not

completely fix the gauge since

δ

(
∂ · ϕ− 1

2
∂ϕ′
)

= 2Λ (6.64)

Because of that, we still have freedom to gauge away
(
d+s−2
s−1

)
−
(
d+s−4
s−3

)
. Altogether, we

have

(
d+ s− 3

s

)
−
(
d+ s− 5

s− 2

)
(6.65)

degrees of freedom.

6.3 Unconstrained Fronsdal equation

Let us now give a brief overview of work done by Francia and Sagnotti on unconstrained

Fronsdal equations [39, 40, 41]. The fact that we need to impose the conditions

Λ′ = 0 and ϕ′′ = 0 (6.66)

for Fronsdal theory to be invariant under gauge transformation δϕ = ∂Λ is a sign that

the theory is incomplete. For that reason let us rewrite the Fronsdal equation in an

unconstrained form by introducing a rank-(s − 3) compensator field α transforming on

(unconstrained) gauge transformations (6.51) as δα = Λ′, in the following way

F = ∂3α (6.67)

This equation is invariant under the unconstrained gauge transformations (6.51) because

the variation of α exactly cancels the variation of the Fronsdal tensor.

Let us now present the second way to construct free higher spin gauge theory with

unconstrained gauge parameters and fields. Let us start with spin-3 case where δFµνρ =
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3∂µ∂ν∂ρΛ
′, the idea is to build a non-local operator FNL that transforms like Fronsdal

operator F . The combination F − FNL will then be gauge invariant without imposing

any additional constraints. The candidates for FNL are

1

32

(
∂µ∂νF ′ρ + ∂ν∂ρF ′µ + ∂ρ∂µF ′ν

)
1

32

(
∂µ∂ · Fνρ + ∂ν∂ · F ′ρµ + ∂ρ∂ · F ′µν

)
1

22
∂µ∂ν∂ρ∂ · F ′ (6.68)

The first two candidates actually coincide by means of Bianchi identity. Now it seems

that we are left with two possibilities for gauge invariant equations

Fµνρ −
1

32

(
∂µ∂νF ′ρ + ∂ν∂ρF ′µ + ∂ρ∂µF ′ν

)
= 0

Fµνρ −
1

22
∂µ∂ν∂ρ∂ · F ′ = 0 (6.69)

but these two equations can be turned one into another using their traces.

Generalizing to higher spins, we can write the analogue F(n) of the Fronsdal differential

operator in terms of the recursive equation

F(n+1) = F(n) +
1

(n+ 1)(2n+ 1)

∂2

�
F(n)′ − 1

n+ 1

∂

�
∂ · F(n) (6.70)

with F(0) = �ϕ. So, in particular, F(1) ≡ F = �ϕ− ∂∂ · ϕ+ ∂2ϕ′ is the original Fronsdal

operator. Gauge transformation of F(n) is

δF(n) = (2n+ 1)
∂2n+1

2n−1
Λ[n] (6.71)

the n-th trace of gauge parameter vanishes for n > s−1
2

and the operator F(n) with n that

satisfies this condition is gauge invariant without any constraints. The corresponding

Bianchi identity is anomalous

∂ · F(n) − 1

2n
∂F(n)′ = −

(
1 +

1

2n

)
∂2n+1

2n−1
ϕ[n+1] (6.72)

unless the (n + 1)-th trace of the gauge field vanishes, which happens for n > s
2
− 1.
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Taking successive traces of the above relation gives us

∂ · F(n)[p] − 1

2(n− p)
∂F(n)[p+1] = 0, for p ≤ n− 1 (6.73)

However, the connection with our results cannot be in terms of the tensor F(n), because

the latter does not satisfy a conservation law, while our results will be conserved two-point

functions (see bellow). To make the connection one constructs the Einstein-like tensor

G(n) =
n∑
p=0

(−1)p
(n− p)!

2pn!
ηp F(n)[p] (6.74)

where the superscript in square bracket denotes the number of time F(n) has been traced,

and η is the Minkowski metric. The association of n with the spin s is as follows: s = 2n s even

s = 2n− 1 s odd

The G(n) tensor is divergenceless

∂ · G(n) = 0 (6.75)

The free (unconstrained) linearized equations of motion for ϕ are

G(n) = 0 (6.76)

It can be shown that such an equation can be cast in local Lagrangian form, provided one

introduces auxiliary fields (compensators).
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Chapter 7

One loop effective actions and higher

spins

We will approach higher spin theories with the induced gravity method [110]. In this

chapter, we introduce the necessary ingredients to study the effective actions of a scalar

and fermion theory coupled to classical sources using symmetric conserved currents. It is

important to note that there is an infinite choice for conserved currents, here we will use

two types: simple currents and a particular linear combination of them which becomes

traceless in the massless limit. Since we will mainly focus on the quadratic part of the

effective action, the main object we will be dealing with is the 2-point correlator of

currents. To give a motivation for what is following, we summarise the results in 3d

case obtained in [28].

We expect that the 2-pt functions of symmetric conserved currents are conserved

and we exclude the presence of anomalies. As a consequence, the 2-pt functions can

be expressed in terms of projectors [29]. Expressions in terms of a projection operator

are very convenient because they make the conservation obvious. But, in this way, the

geometrical content of the resulting equations of motion or the effective action remains

implicit. For this reason, we rewrite general expressions in terms of generalized Jacobi

tensors, see [30].

Finally, we describe our method to compute 2-point functions and give some general

directions for their calculation.
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7.1 Free field theory models

Here we limit ourselves to two type of models, the free scalar and free fermion, although

it is possible to extend the analysis to other models. By the first we mean the complex

scalar theory defined by the Lagrangian

L = ∂µφ
†∂µφ−m2φ†φ (7.1)

in any dimension. On shell the current

jµ = i
(
φ†∂µφ− ∂µφ†φ

)
(7.2)

is conserved. We can couple it to a gauge field via the action term
´
ddxAµ(x)jµ(x). In

the case s = 2 the conserved current is the energy-momentum tensor and the external

source is the metric fluctuation hµν , where gµν = ηµν + hµν . In this case the action is the

integral of (7.1) multiplied by
√
g.

But, of course we can define infinitely many completely symmetric (on shell) conserved

currents, of which (7.2) is only the simplest example:

js
µ1...µs

= isφ†
↔
∂µ1 . . .

↔
∂µs φ (7.3)

They couple minimally to external spin s fields, ϕµ1...µs . The on-shell current conservation

implies (to the lowest order) invariance under the gauge transformations (2.25)

δϕµ1...µs = ∂(µ1Λµ2...µs) (7.4)

where round brackets stand for symmetrization.

The free fermion model is represented by a Dirac fermion coupled to a gauge field.

The action is

S[A] =

ˆ
ddx

[
iψ̄γµDµψ −mψ̄ψ

]
, Dµ = ∂µ + Aµ (7.5)

whereAµ = Aaµ(x)T a and T a are the generators of a gauge algebra in a given representation

determined by ψ. We will use the antihermitean convention, so that [T a, T b] = fabcT c,
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and the normalization tr(T aT b) = −δab. The current

jaµ(x) = iψ̄γµT
aψ (7.6)

is (classically) covariantly conserved on shell as a consequence of the gauge invariance of

the action (7.5)

(Dj)a = (∂µδac + fabcAbµ)jcµ = 0 (7.7)

The next example involves the coupling to gravity

S[h] =

ˆ
ddx e

[
iψ̄Eµ

aγ
a∇µψ −mψ̄ψ

]
, ∇µ = ∂µ +

1

2
ωµbcΣ

bc, Σbc =
1

4

[
γb, γc

]
. (7.8)

The corresponding energy momentum tensor

T (g)
µν =

i

4
ψ̄
(
γµ
↔
∇ν +γν

↔
∇µ

)
ψ. (7.9)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance of

the action. In the massless limit, the action is invariant under Weyl transformations and

because of that the energy momentum tensor becomes traceless. If we expand the metric

around the flat spacetime, gµν(x) = ηµν+hµν(x), then, contrary to spin-1 case, interaction

is not linear in the gauge field hµν . If we limit our analysis only to the linear term, it is

given by coupling the flat space energy-momentum tensor

Tµν =
i

4
ψ̄
(
γµ
↔
∂ ν +γν

↔
∂µ

)
ψ. (7.10)

to the metric fluctuation hµν .

Similarly to the gauge field and the metric, we can couple the fermion ψ to a new

external spin-3 source bµνλ by adding to (7.15) the term

ˆ
ddxjµνλb

µνλ (7.11)

with the choice of current

jµ1µ2µ3 = i2ψ̄γµ1
↔
∂µ2

↔
∂µ3 ψ (7.12)
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Due to the (on shell) current conservation this coupling is invariant (to lowest order)

under the infinitesimal gauge transformations

δbµνλ = ∂(µΛνλ) (7.13)

In the limit m→ 0, if we also have invariance under the generalized Weyl transformations

δbµνλ = Λ(µηνλ) (7.14)

we can induce tracelessness of the current jµνλ in any couple of indices. In that case the

form of the current is more complicated than (7.12). We will come back to this point

shortly.

We notice that to lowest order in the external sources the relevant action, in all cases

above, takes the form of the free action + a linear interaction term such as (7.11). We

make the identification ϕµ = Aµ, ϕµν∼hµν , ϕµνλ∼bµνλ, with the obvious exception of the

non-Abelian field in (7.5). However, for simplicity, we will often consider just the Abelian

case.1

In general, we can couple the fermions to more general fields. Consider the free action

S0 =

ˆ
d3x

[
iψ̄γµ∂µψ −mψ̄ψ

]
, (7.15)

and the spin-s conserved current

jf
µ1...µs

= is−1ψ̄γµ1
↔
∂µ2 . . .

↔
∂µs ψ (7.16)

Our goal is to compute the effective action for the external source fields at the quadratic

order. Inspired by [22]-[27], we will introduce an infinite set of higher spin fields so that

the generic linearized interaction we consider is:

Sint =
∑
s

ˆ
ddxjµ1...µsϕ

µ1...µs (7.17)

1Also note that the nonlinearity present in spin-2 case, which is forced by the consistency requirements,
is a signal that we should expect the same for higher-spin fields.
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In both scalar and fermion cases, let us repeat that the effective action is given by (2.11)

W [ϕ, s] = W [0] +
∞∑
n=1

∑
s1,...,sn

in−1

n!

ˆ n∏
i=1

ddxiϕ
µ11...µ1s1 (x1) . . . ϕµn1...µnsn (xn)

× 〈0|T jµ11...µ1s1 (x1) . . . jµn1...µnsn (xn)|0〉. (7.18)

In particular ϕµ = Aµ, ϕµν = 1
4
hµν and jµν = 2Tµν with ϕµνλ = bµνλ. The full one-loop

1-pt correlator for jµ1...µs is given by (2.12)

〈〈jµ1...µs(x)〉〉 =
δW [ϕ, s]

δϕµ1...µs(x)
=
∞∑
n=0

∑
s2,...,sn

in

n!

ˆ n∏
i=2

ddxiϕ
µ21...µ2s2 (x2) . . . ϕµn1...µnsn (xn)

× 〈0|T jµ1...µs(x)jµ21...µ2s2 (x2) . . . jµn1...µnsn (xn)|0〉. (7.19)

To compute the effective action up to quadratic order we need the two-point functions

〈0|T jµ1...µs1 (x) jν1...νs2 (y)|0〉 (7.20)

or their Fourier transforms

T̃µ1...µs1ν1...νs2 (k) = 〈0|T j̃µ1...µs1 (k) j̃ν1...νs2 (−k)|0〉 (7.21)

In the sequel we compute them by using the Feynman diagram technique. For all two-

point functions the only relevant diagram is the bubble diagram with one spin s line

of ingoing momentum k and one with the same outgoing momentum and one scalar or

fermion circulating in the internal loop.

Warning. One must be careful when applying the previous formulas for generating functions. If

the correlator 〈0|T jµ11...µ1s
(x1) · · · jµn1...µns(xn)|0〉 in (2.11) is meant to denote the n-th point-function

calculated by using Feynman diagrams, a factor in is already included in the diagram themselves and so it

should be dropped in (2.11). When the current is the energy-momentum tensor an additional precaution

is necessary: the factor in−1

n! must be replaced by in−1

2nn! . The factor 1
2n is motivated by the fact that when

we expand the action

S[η + h] = S[η] +

ˆ
ddx

δS

δgµν

∣∣∣
g=η

hµν + · · · ,

the factor δS
δgµν

∣∣∣
g=η

= 1
2Tµν . Another consequence of this fact will be that the presence of vertices with

one graviton in Feynman diagrams will correspond to insertions of the operator 1
2Tµν in correlation

functions.
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Recall that scalar and fermion currents are given by

js
µ1...µs

= isϕ†
(↔
∂µ

)s
ϕ , jf

µ1...µs
= is−1ψ̄γµ

(↔
∂µ

)s−1

ψ (7.22)

(For fermions in case s = 0 we use jf
s=0 = ψ̄ψ.) These currents will be henceforth referred

to as simple currents. In the fermionic case the two point correlator is

T̃ f
µ1...µs1ν1...νs2

(k) = −
ˆ

ddp

(2π)d
Tr

(
i

/p−m
γσ

i

/p− /k −m
γτ

)
V σ
µ1...µs1

V τ
ν1...νs2

(7.23)

whereas in the scalar case it is

T̃ s
µ1...µs1ν1...νs2

(k) =

ˆ
ddp

(2π)d
1

(p2 −m2)((p− k)2 −m2)
Vµ1...µs1Vν1...νs2 (7.24)

with the Feynman vertices for fermions and scalars respectively

V σ
µ1...µs

= i δσµ (2pµ − kµ)s−1 , Vµ1...µs = i (2pµ − kµ)s (7.25)

In addition, some general formulas are easy to write in terms of particular linear com-

bination of the previous currents which become traceless in the massless case (case of

generalized Weyl invariance). Traceless currents can be defined in the following way:

jst
µ1...µs

=

b s
2
c∑

l=0

as
s,l (2πµµ)l J̃ s

µ1...µs−2l
, jft

µ1...µs
=

b s−1
2
c∑

l=0

af
s,l (2πµµ)l J̃ f

µ1...µs−2l
(7.26)

where

as
s,l =

(−1)ls! Γ
(
s+ d−3

2
− l
)

22ll!(s− 2l)! Γ
(
s+ d−3

2

) , af
s,l =

(−1)l(s− 1)! Γ
(
s+ d−3

2
− l
)

22ll!(s− 2l − 1)! Γ
(
s+ d−3

2

) (7.27)

It is easy to see that amplitudes for two general spins s1 and s2 for the traceless currents

can be written as linear combinations of the amplitudes (7.24) and (7.25) of the simple
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currents (7.22)

T̃ st
µ1...µs1ν1...νs2

=

b s1
2
c∑

l=0

b s2
2
c∑

k=0

as
s1,l
as
s2,k

(
k2ηµµ − k2

µ

)l (
k2ηνν − k2

ν

)k
T̃ s
µ1...µs1−2lν1...νs2−2k

T̃ ft
µ1...µs1ν1...νs2

=

b s1−1
2
c∑

l=0

b s2−1
2
c∑

k=0

af
s1,l
af
s2,k

(
k2ηµµ − k2

µ

)l (
k2ηνν − k2

ν

)k
T̃ f
µ1...µs1−2lν1...νs2−2k

Before we start with the analysis of the results for 2pt correlators coming from Feyn-

man diagrams, we should prepare the ground with a general analysis of their expected

structure. We argued in chapter 2 that the full one-loop conservation law for the spin s

current is

∂µ1〈〈jµ1...µs(x)〉〉 = 0 (7.28)

From the spin-2 example we know that a covariant conservation law should be written

also for the higher spin currents, but for s > 2 we will satisfy ourselves with the lowest

nontrivial order given by the above equation. Using this conservation law, in the next

section, we will determine a general form of our 2-pt correlators.

7.2 Universal equations of motion and conserved struc-

tures for spin s

Our starting point is the 2-pt functions of symmetric conserved currents. We expect

them to be conserved, i.e. we expect to find 0 if we contract any index with the external

momentum k. We exclude the presence of anomalies. In fact we will come across also

some non-conservations, but they can be fixed by subtracting local counterterms. This

aspect of our analysis is interesting in itself, but we will illustrate it later on in detail. For

the time being we ignore this fact and suppose that all 2-pt functions we deal with are

conserved. We will also write a general form of the traceless 2-pt function.
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7.2.1 Conserved even-parity structures

The form of the conserved structures is universal, in a sense that is does not depend on

the dimension d of spacetime. They can be easily constructed by means of the projector

πµν = ηµν −
kµkν
k2

(7.29)

Conservation is a consequence of the transversality property

kµπµν = 0 (7.30)

The name for the projector is justified by the property

πµνπ
ν
λ = πµλ (7.31)

For equal spin s, the 2pt correlator can be written in terms of the following structures:

Ã
(s)
0,µ1...µsν1...νs

(k) = πsµν (7.32)

Ã
(s)
1,µ1...µsν1...νs

(k) = πs−2
µν πµµπνν (7.33)

. . . . . . . . .

Ã
(s)
l,µ1...µsν1...νs

(k) = πs−2l
µν πlµµπ

l
νν (7.34)

. . . . . . . . .

There are bs/2c independent such terms. Let us set

Ẽµ1...µsν1...νs(k) =

bs/2c∑
l=0

alÃl,µ1...µs,ν1...νs(k) (7.35)

where al are arbitrary constants and Ẽ
(s)
µ1...µsν1...νs(k) are conserved tensors. This is the

most general conserved structure for spin s.

Let us give a proof by induction that a conserved structure can be written in terms

of products of π alone. In the lowest case (spin 1), the most general Lorentz covariant

(dimensionless) conserved even structure can be written in terms of ηµν and kµkν
k2

. Imposing

conservation the result is ∼ ηµν− kµkν
k2

= πµν . In the same way one can prove the property

for the case s = 2. Now we suppose that the proposition is true for s. So it is true for
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the combination T
(s)
µ1...µsν1...νs(k) = Ẽ

(s)
µ1...µsν1...νs(k) =

∑[s/2]
l=0 alÃ

(s)
l,µ1...µsν1...νs

, meaning that

kµiT
(s)
µ1...µsν1...νs = 0 for any i, i = 1, . . . s. In order to construct T

(s+1)
µ1...µs+1ν1...νs+1 we can

multiply T
(s)
µ1...µsν1...νs by ηµν or kµkν

k2
or multiplying T (s−1) by ηµµηνν ,

kµkµ
k2
ηνν , ηµµ

kνkν
k2

or by

kµkµ
k2

kνkν
k2

, because the construction is in steps of 2. So we can have only

T (s+1)
µ1...µs+1ν1...νs+1

= a1ηµνT
(s)
µ1...µsν1...νs

+ a2ηµµηννT
(s−1)
µ1...µs−1ν1...νs−1

+ b1
kµkν
k2

T (s)

+b2
kµkµ
k2

ηννT
(s−1)
µ1...µs−1ν1...νs−1

+ b3ηµµ
kνkν
k2

T (s−1)
µ1...µs−1ν1...νs−1

+b4
kµkµ
k2

kνkν
k2

T (s−1)
µ1...µs−1ν1...νs−1

(7.36)

Now applying kµ to this expression we find that conservation requires a1 = −b1, a2 =

−b2 = −b3 = b4. So that (7.36) becomes

T (s+1)
µ1...µs+1ν1...νs+1

= a πµνT
(s)
µ1...µsν1...νs

+ b πµµπννT
(s−1)
µ1...µs−1ν1...νs−1

(7.37)

with arbitrary a and b.

By Fourier anti-transforming and inserting into (2.11), one can construct the effective

action corresponding to (7.35) multiplied by k2 for the spin s field ϕµ1...µs as follows

SE ∼
ˆ
ddxϕµ1...µs�E(∂)µ1...µs,ν1...νsϕ

ν1...νs (7.38)

where E(∂) is the formal Fourier transform of Ẽ(k), i.e. the same expression with kµ

replaced by −i∂µ. The equation of motion is of course

�E(∂)µ1...µs,ν1...νsϕ
ν1...νs = 0 (7.39)

After canonical normalization, it depends on bs/2c − 1 arbitrary constants. This is the

most general linearized equation of motion for a completely symmetric spin s field.

For correlators of currents with two different spins s1 and s2, s2 > s1 the general

structure is

π
s2−s1

2
νν

b s1
2
c∑

l=0

alÃl,µ1...µs1 ,ν1...νs1 (k) (7.40)

provided that both s1 and s2 are either even or odd.
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From Ẽ(s)(k) we can obtain the most general traceless combination, by taking the trace

of (7.35) and imposing it to vanish. The resulting equation is the recurrence relation

al = − (s− 2l + 2)(s− 2l + 1)

2l(2(s− l − 1) + d− 1)
al−1 (7.41)

Setting a0 = 1 the solution is

al =
(−1)l

22ll!

s!

(s− 2l)!

Γ
(
s+ d−3

2
− l
)

Γ
(
s+ d−3

2

) (7.42)

Replacing this in (7.35) we obtain a traceless conserved structure. In turn this gives rise

to a traceless equation of motion.

7.2.2 Conserved odd parity structures

It is easy to obtain also all the odd parity structures. The spin 1 odd parity conserved

Lorentz structure (linear in k) can only be

C̃
(1)
0,µν(k) = εµνλk

λ (7.43)

It is easy to realize that, for higher spin, the ε tensor can only appear in the form εµνλk
λ in

every single term, thus it can be factored out. What remains is an even spin structure of

one order less. So the most general odd conserved Lorentz structure will be a combination

of

C̃
(s)
0,µ1...µs,ν1...νs

(k) = εµνλk
λÃ

(s−1)
0,µ1...µs−1,ν1...νs−1

(k)

C̃
(s)
1,µ1...µs,ν1...νs

(k) = εµνλk
λÃ

(s−1)
1,µ1...µs−1,ν1...νs−1

(k)

. . . . . .

C̃
(s)
l,µ1...µs,ν1...νs

(k) = εµνλk
λÃ

(s−1)
l,µ1...µs−1,ν1...νs−1

(k)

. . . . . . (7.44)

where A
(0)
0 = 1, by definition. Let us define

Õµ1...µsν1...νs(∂) =

bs/2c∑
l=0

clC̃l,µ1...µsν1...νs(∂) (7.45)
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The odd parity action is supposed to be local (and higher derivative)

SO =

ˆ
ddxϕµ1...µs�s−1O(∂)µ1...µsν1...νsϕ

ν1...νs (7.46)

Therefore the odd equation of motion is

�s−1Oµ1...µsν1...νs(∂)ϕν1...νs = 0 (7.47)

For correlators of currents with two different spins s1 and s2, s2 > s1 the general structure

is

π
s2−s1

2
νν

b s1
2
c∑

l=0

clC̃l,µ1...µs1 ,ν1...νs1 (k) (7.48)

under the condition that both s1 and s2 are either even or odd.

The tracelessness condition (for spin s > 1) implies a recursion relation for the coeffi-

cients cl:

cl = − (s− 2l + 1)(s− 2l)

2l(2(s− l − 2) + d+ 1)
cl−1 (7.49)

Setting c0 = 1 the solution is:

cl =
(−1)l

22ll!

(s− 1)!

(s− 2l − 1)!

Γ
(
s+ d−3

2
− l
)

Γ
(
s+ d−3

2

) (7.50)

7.3 Geometry in effective actions

The most important point of our approach will be the connection between the on-shell

conservation of the initial free field theory current and the gauge invariance of the minimal

coupling term with the higher spin field. This, in turn, induces a gauge invariance of the

linearized higher spin effective action (or covariance of the corresponding equation of

motion). This invariance is left implicit if we write our results in terms of projectors.

To make it explicit, we can express our results in terms of covariant ‘geometric’ tensors

constructed out of the symmetric higher spin fields. In this section we would like to make

connection with such a geometrization program.

Eq.(7.35) can be easily translated into a corresponding differential operator by Fourier
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anti-transforming

E(s)
µ1...µsν1...νs

(∂) =

bs/2c∑
l=0

alA
(s)
l,µ1...µsν1...νs

(∂) (7.51)

These are the types of differential operators that appear in the EA’s acting on the spin s

field ϕµ1...µs . The corresponding equation of motion will take the following form

E(s)
µ1...µsν1...νs

(∂)ϕν1...νs = 0 (7.52)

multiplied by a function of � and m2.

The purpose of this section is to rewrite the equations such as (7.52) in the geometrical

form of [39, 40, 41]. For this purpose, let us introduce the symbol of G
(n)
µ1...µs , G̃

(n)
µ1...µsν1...νs(k),

as follows. We Fourier transform it and replace the Fourier transform of ϕ, ϕ̃, with s

symmetric indices ν1 . . . νs. Finally we define

G(n)
µ1...µs

≡ G(n)
µ1...µsν1...νs

(∂)ϕν1...νs (7.53)

Then the connection between (6.76) and (7.52) is given by

1

k2
G̃(n)
µ1...µsν1...νs

(k) =

bs/2c∑
l=0

(−1)l

bs/2c
l

 Ã
(s)
l,µ1...µsν1...νs

(k), (7.54)

which corresponds to a particular choice of the coefficients al in (7.35). In index notation,

and using formalism of π-projectors, generalized Einstein tensor reads

1

k2
G̃µ1...µs = πs mod 2

µν

(
π2
µν − πµµπνν

)b s
2
c
ϕν1...νs (7.55)

Of course we are interested not only in the relation (7.54), but in expressing all the

Ã
(s)
l,µ1...µsν1...νs

(k) in terms of the G̃(n)
µ1...µsν1...νs(k). To do so we have to take the successive

traces of (7.54). We have, for instance

G̃(n)′

µ1...µs−2ν1...νs
= −2bs/2c(2bs/2c+D − 4)G̃(n−1)

µ1...µs−2ν1...νs−2
πνν (7.56)
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In general

G̃(n)[p]
µ1...µs−2pν1...νs

= (−2)p
(2bs/2c+D − 4)!!(bs/2c)!

(2bs/2c+D − 2p− 4)!!(bs/2c − p)!
G̃(n−p)
µ1...µs−2pν1...νs−2p

πpνν (7.57)

and

G̃(n)[n]
ν1...νs

= (−2)n
(2bs/2c+D − 4)!!(bs/2c)!

(D − 4)!!
G̃(0)
ν1...νs

πnνν (7.58)

for s even, with G̃(0) = k2, and

G̃(n)[n−1]
µν1...νs

= (−2)n−1 (2bs/2c+D − 4)!!(bs/2c)!
(D − 4)!!

G̃(1)
µν π

n−1
νν (7.59)

for s odd, with G̃(1)
µν = k2πµν .

Now, using (7.54), one can write

πsµν ≡ Ã
(s)
0,µ1...µsν1...νs

(k) =
1

k2
G̃(n)
µ1...µsν1...νs

(k) +

bs/2c−1∑
l=0

(−1)l

bs/2c
l + 1

 πl+1
µµ π

s−2l−2
µν πl+1

νν (7.60)

for even s, and a similar expression for odd s. Now the strategy consists in repeating the

same step for the second line in (7.60), by using (7.56) and successively (7.58). The end

result is

k2πsµν =

bs/2c∑
p=0

(
−1

2

)p
(2bs/2c+D − 2p− 4)!!

p!(2bs/2c+D − 4)!!
πpµµ G̃(n)[p]

µ1...µs−2pν1...νs
(k) (7.61)

In a similar way one can obtain

k2πs−2l
µν πlµµπ

l
νν (7.62)

=

bs/2c
l

−1
bs/2c∑
p=l

(
−1

2

)pp
l

 (2bs/2c+D − 2p− 4)!!

p!(2bs/2c+D − 4)!!
πpµµ G̃(n)[p]

µ1...µs−2pν1...νs
(k)

In conclusion, any expression of the type (7.35), i.e. any conserved structure, can be

expressed in terms of the generalized Einstein symbols G̃(n)(k, n1, n2) and its traces. Thus

any effective action (or any equation of motion) we obtain from our models, by integrating

out matter, can be expressed in terms of the generalized Einstein tensor G(n) and its traces
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preceded by a function of � and the mass m2 of the model, with suitable multiples of

the projector operator acting on the traces. Using (6.74) one can replace the dependence

on G(n) of such expressions with the dependence on F(n). The geometrization program

can be completed by introducing the generalized Jacobi tensors Rµ1,...µsν1...νs (one of the

possible generalizations of the 4d Riemann tensor, [43, 178]) by means of

R(s)
µ1...µsν1...νs

=
s∑
l=0

(−1)l∂s−lµ ∂lν ϕµ1...µlνl+1...νs−l (7.63)

The tensors R(s) are connected to the F(n) as follows:

F(n) =


1

�n−1R
(s)[n] s = 2n

1
�n−1∂ ·R(s)[n−1] s = 2n− 1

(7.64)

where the traces in square brackets refer to the first set of indices. In this way we can

express any effective action or any equation of motion in terms of R(s) and traces (in the

second set of indices) thereof. Further formulations of equations of motion that are local

and include mixed symmetry cases can be found in [179, 180].

Since above we have referred to [39]-[41], let us clarify the context in which our results

are derived and point out the differences with the spirit of [39]-[41],[107, 108]. In these

papers the initial purpose was to write down a generalization of the Fronsdal equations for

higher spin in such a way as to avoid the constraints needed in the original formulation of

[37, 38]. The authors of [39]-[41] chose to sacrifice locality in favour of an unconstrained

gauge symmetry. The typical (linearized) non-local equation of motion one obtains in

this way is (6.76). It can be shown that such an equation can be cast in Lagrangian

form, provided one introduces auxiliary fields (compensators). Therefore one can say

that the nonlocality of (6.76) is a gauge artifact, with no physical implication. However

equations of motion invariant under unrestricted gauge symmetry are far from unique.

There actually exist several families of them depending on arbitrary parameters (by the

way, this is evident by reversing the argument above and starting from the generic operator

(7.52), instead of the completely fixed one (7.54). These are all equally valid as long as

the field ϕ is considered in isolation and the linearized equation of motion is the free one,

(6.76). However, if the spin s system is minimally coupled to a conserved current the

question arises as to whether the propagating degrees of freedom are the truly physical
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ones, i.e. those corresponding to the appropriate little group representation for massless

fields. The authors of [107, 108] were able to prove that there exist only one choice for

the Einstein-like tensor which is Lagrangian and satisfies such a physicality condition.

Such ‘physical’ Einstein tensors do not correspond, in general, to the kinetic operators

we will find in our effective actions below. This is not surprising, as our main goal is

covariance: our purpose is to arrive at a covariant effective action with respect to a

completely unfolded gauge symmetry. In a logical development the next step will be

to introduce auxiliary fields to eliminate nonlocalities. Following this we would need to

gauge-fix the action and introduce appropriate ghosts to produce the physical propagators.

At that point would the problem handled by [107, 108] come to the surface. However, we

would like to recall that our immediate prospect is to construct the linearized covariant

effective action in preparation for the analysis of the three-point function.

7.4 The general method

In this section we illustrate the method to compute the 2-pt functions with Feynman

diagrams. The method to obtain the results below is largely based on the approach of

Davydychev and collaborators, [34]-[36]. To compute the diagrams explicitly we use a

Mathematica code [181]. The integrals we have to compute are of the general form

J̃µ1...µp(d;α, β; q1, q2,m) =

ˆ
ddp

(2π)d
pµ1 . . . pµp

((p+ q1)2 −m2)α ((p+ q2)2 −m2)β
(7.65)

where, eventually, q1 = 0, q2 = −k. We will use the method invented by [34]-[36] to reduce

the tensor integral to a sum of scalar ones

J̃µ1...µp (d;α, β, γ; q1, q2,m) =
∑
λ,κ1,κ2

2λ+
∑
κi=p

(
−1

2

)λ
(4π)p−λ

{
[η]λ [q1]κ1 [q2]κ2

}
µ1...µp

× (α)κ1 (β)κ2 Ĩ
(2)(d+ 2(p− λ);α + κ1, β + κ2; q1, q2,m), (7.66)

where the symbol
{

[η]λ [q1]κ1 . . . [qN ]κN
}
µ1...µM

stands for the complete symmetrization of

the objects inside the curly brackets, for example

{ηq1}µ1µ2µ3 = ηµ1µ2q1µ3 + ηµ1µ3q1µ2 + ηµ2µ3q1µ1 .
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The basic integral is now the scalar one

Ĩ(2)(d;α, β; q1, q2,m) =

ˆ
ddp

(2π)d
1

((p+ q1)2 −m2)α ((p+ q2)2 −m2)β
(7.67)

For instance, the bubble integral for the s = 1 current in the scalar model

J̃µν(k) =

ˆ
ddp

(2π)d
(2p− k)µ(2p− k)ν

(p2 −m2)((p− k)2 −m2)
(7.68)

reduces to

J̃µν(m, k) = − 8π

(2π)d+2
ηµν Ĩ

(2)(d+ 2; 1, 1) + 8
(4π)2

(2π)d+4
kµkν Ĩ

(2)(d+ 4; 1, 3) (7.69)

+
16π

(2π)d+2
kµkν Ĩ

(2)(d+ 2; 1, 2) +
1

(2π)d
kµkν Ĩ

(2)(d; 1, 1)

The integral Ĩ(2)(d;α, β; k,m) can be cast into the form of a hypergeometric series

Ĩ
(2)
IR (d;α, β; k,m) = 2−dπ−d/2i1−d

(
−m2

)−α−β+ d
2

Γ
(
−d

2
+ α + β

)
Γ(α + β)

× 3F2

α, β,−d
2

+ α + β

α+β
2
, α+β+1

2

∣∣∣ k2

4m2

 (7.70)

This representation is valid for large m compared to k. When m is small compared to k

another representation is available

Ĩ
(2)
UV (d;α, β; k,m) = 2−dπ−d/2i1−d

(
k2
)−α−β+ d

2

{(
Γ
(
d
2
− α

)
Γ
(
d
2
− β

)
Γ
(
−d

2
+ α + β

))
Γ(α)Γ(β)Γ(d− α− β)

× 3F2

−d
2

+ α + β, −d+α+β+1
2

, −d+α+β+2
2

−d
2

+ α + 1,−d
2

+ β + 1

∣∣∣4m2

k2

 (7.71)

+

(
−m

2

k2

) d
2
−α Γ

(
α− d

2

)
Γ(α)

3F2

 β, −α+β+1
2

, −α+β+2
2

d
2
− α + 1,−α + β + 1

∣∣∣4m2

k2


+

(
−m

2

k2

) d
2
−β Γ

(
β − d

2

)
Γ(β)

3F2

 α, α−β+1
2

, α−β+2
2

−β + d
2

+ 1, α− β + 1

∣∣∣4m2

k2

}

In the sequel we consider also massless models. The relevant results can be obtained

from the massive models by taking the m → 0 limit. But they can also be obtained by
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setting m = 0 from the very beginning. In such a case the basic integral is

Ĩ(2)(d;α, β; q1, q2, 0) =

ˆ
ddp

(2π)d
1

((p+ q1)2)α ((p+ q2)2)β
(7.72)

= 2−dπ−d/2i1−d(k2)
d
2
−α−βΓ

(
d
2
− α

)
Γ
(
d
2
− β

)
Γ
(
α + β − d

2

)
Γ(α)Γ(β)Γ(d− α− β)

7.5 An appetizer in 3d

Let us start with a motivational example. In [28] it was calculated, in particular, the two-

point function of the current ja in the fermion model as well as its IR and UV limits. In

the parity violating part it was found a well-known result: when Fourier antitransformed

and inserted in the generating function of the effective action (2.11) it gives rise to the

linearized version of the gauge Chern-Simons action in 3d (which is in fact conformal

invariant). For the two-point correlator of the energy-momentum tensor for the fermion

model, and proceeding the same way, the linearized version of the gravity Chern-Simons

action was found. Something that was also known before, [121]. Repeating the same thing

for the spin 3 traceless current above it was found a previously unknown result: the UV

limit in particular leads to a linearized action that corresponds to a spin 3 Chern-Simons

generalization postulated long ago by Pope and Townsend, see [43, 44, 178, 182].

These were the results found in the parity odd part ([28] is mostly interested in the

latter). But the even parity parts of the two-point correlators have perhaps even more in-

teresting interpretations, so let us briefly analyze the parity even parts of the linearized ef-

fective actions obtained from 2-point current correlators in the free massive Dirac fermion

quantum field theory in 3d in [28].

7.5.1 Spin one and two - parity even sectors

The UV limit of the two-point function of the ja currents are nonlocal conformal corre-

lators, according to expectations, see [114]. The same is true for the energy-momentum

tensor two-point function. But now let us focus on the IR limits. According to [28], for

the ja current two-point function, for large m we have

T̃ ab(even)
µν (k) = − i

12π

1

|m|
δabk2πµν (7.73)
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This term is local. Fourier anti-transforming it and inserting it into (2.11) it gives rise to

the action

S ∼ 1

|m|

ˆ
d3x

(
Aaµ∂

µ∂νAaν − Aaν�Aaν
)

(7.74)

which is the lowest term in the expansion of the YM action

SYM = − 1

gYM

ˆ
d3xTr (FµνF

µν) (7.75)

where gYM ∼ |m|.

Now let us go to the IR limit of the even part of the 2pt energy-momentum tensor

correlator. Eq.(3.36) of [28] says

〈Tµ1µ2(k)Tν1ν2 (−k)〉IReven = −i|m|
96π

k2 (πµ1ν1πµ2ν2 − πµ1µ2πν1ν2) (7.76)

This is a local expression multiplied by |m|. In fact Fourier anti-transforming it and

inserting it into (2.19) it gives rise to the action

S ∼ |m|
ˆ
d3x

(
−2∂µh

µλ∂νh
ν
λ − 2h ∂µ∂νh

µν − hµν�hµν + h�h
)

(7.77)

which is the linearized Einstein-Hilbert action:

SEH =
1

2κ

ˆ
d3x
√
g R (7.78)

where κ ∼ 1
|m| .

These results for spin-1 and -2 are known have been known for a long time, see for

instance [110]. Now, we ask the same question for the 2pt correlator of the 3-current.

What action, if any, does it represent for the external source field?

7.5.2 Linearized equations for spin 3 in parity even sector

Before presenting results in 3d, let us briefly recall chapter 6 and the status of the linearized

equations for the massless spin 3 field described by the completely symmetric field ϕµνλ.

Historically the first formulation of equations for the unconstrained free massless spin 3
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field was given by Fronsdal [37, 38]

Fµνλ ≡ �ϕµνλ − (∂µ∂ ·ϕνλ + perm.) + (∂µ∂νϕ
′
λ + perm.) = 0 (7.79)

Under the gauge variation (7.13), δϕµνλ = ∂µΛνλ + perm., the Fronsdal kinetic tensor

transforms as δFµνλ = 3∂µ∂ν∂λΛ
′. It follows that the Fronsdal equation is invariant only

on restricted gauge transformations satisfying Λ′ = 0 (this requirement holds for all higher

spins). Also, the Fronsdal tensor is not divergence-free, ∂ · F 6= 0, so one cannot directly

couple the spin 3 field to a conserved (i.e., divergence-free) current using the Fronsdal

equation. As we construct effective actions and corresponding equations for the higher

spin fields by (minimally) coupling to conserved currents, it is obvious that Fronsdal’s

formalism is not suited for our purposes.

The formulation appropriate for our purposes was proposed in [39, 40, 41], and ana-

lyzed in more detail in [107] (for a review, see [108]). It was shown that there is a one

parameter class of equations for unconstrained spin 3 field, which are order 2 in deriva-

tives, fully gauge invariant, and ready to be coupled to the external conserved current.

These equations are most elegantly expressed by using gauge invariant linearized spin 3

Riemann tensor defined by

Rµ1ν1µ2ν2µ3ν3 = ∂µ1∂µ2∂µ3 ϕν1ν2ν3 ( antisymmetrised in all (µj, νj) ) (7.80)

The spin 3 equations are parametrized by real number a and given by

G(a)µνλ ≡ A(a)µνλ − ηλν A(a)′µ = 0 (7.81)

A(a)µνλ ≡
1

2
∂ ·R′µνλ + a

∂ν∂λ
22

∂ ·R′′µ (7.82)

where spin 3 Ricci tensors are defined by

R′µνρσ ≡ ηαβ Rµνρασβ = 2∂[µFν]ρσ

R′′µν ≡ ηρσ R′µνρσ = 2∂[µF ′ν] (7.83)
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while their divergences are defined by2

∂ ·R′µνλ = ∂αR
′α
µνλ , ∂ ·R′′µ = ∂αR

′′α
µ (7.84)

What is the difference between equations with different a? First of all, it can be shown

that regardless the value of a, the free field equation (7.81)-(7.82) is equivalent to Frons-

dal equation (7.79). They start to differ when interactions are introduced. Note that

equations (for any a) are non-local. From the purely mathematical side, the equation

for a = 0 plays a special role because it is the least singular on-shell3, and because of

this it was originally promoted in [39, 40, 41]. However, it was later shown in [107] that

equations with different parameters a propagate different set of excitations when coupled

to a conserved external current jµνλ,

G(a) = j , ∂ · j = 0 (7.85)

In particular, it was shown that only equation with a = 1/2 propagates spin 3 massless

excitations and nothing else, if one does not introduce additional constraints on ϕ or j.

For a = 1/2 the tensor A can be also written as

A(1/2) = F − ∂3

22
∂ · F ′ (7.86)

Let us emphasize that this by itself does not mean that the equation with a = 1/2 is the

”right one” to be used for the consistent coupling to the dynamical matter.

The non-locality of equations (7.81)-(7.81) can be ’cured’ by multiplying with 2r with

r large enough. It is obvious that the equation with a = 0 is special in that r = 1 already

does the job, while for a 6= 0 one needs r = 2. In this way one cures non-locality, but

the price paid is that equations become higher-derivative (order 4 for a = 0 and order

6 for a 6= 0). This opens up an additional question when one considers coupling to the

conserved current j: should we do this as in (7.85), or should we couple the current in

2The Riemann tensor symmetries guarantee that the definitions for Ricci’s and corresponding diver-
gences (after symmetrization is taken into account) are essentially unique, in the sense that different
choices for contracting indexes can differ only by a sign, or are vanishing [43].

3In momentum space the on-shell condition is k2 = 0.
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the local way,

2rG(a) = j , ∂ · j = 0 (7.87)

with r large enough?

The moral of the above analysis is that, due to several reasons, there is a large degen-

eracy in formulating equations of motion for the free massless spin 3 field, and it is not

obvious that all formulations can be used as a basis for constructing consistent interact-

ing quantized theories. It would be advantageous to know which formulation(s) are more

promising, before embarking into such enterprise. We shall now argue that the induced

action method may give us a hint.

In section 3.2.4 of [28] it was shown that the parity even part of the spin 3 two-point

traceless current correlator for a massive Dirac fermion in 3d is given by

T̃ (even)
µ1µ2µ3ν1ν2ν3

(k) = τb

(
k2

m2

)
|k|5πµ1µ2πµ3ν1πν2ν3 + τ ′b

(
k2

m2

)
|k|5πµ1ν1πµ2ν2πµ3ν3 (7.88)

where τb and τ ′b are form factors presented in [28]. From (2.12) it follows that the linearized

effective equation in momentum space for the background spin 3 field minimally coupled

to a conserved current in free QFT with massive Dirac field in 3d, is given by

T̃µ1µ2µ3ν1ν2ν3(k) ϕ̃ν1ν2ν3(k) = 〈〈j̃(3)
µ1µ2µ3

(k)〉〉 , k · j̃(3)(k) = 0 (7.89)

The form factors contain branch-cuts, which means that this equation is strongly non-

local. There are two independent conserved structures present in (7.88), and consequently

in (7.89), which is directly connected with the one-parameter degeneracy introduced in

(7.82).

In the IR region (|k2|/m2 < 4) the form factors are analytic, as expected, and the

equation is weakly nonlocal (infinite sum of local terms) when expanded around |k|/m = 0.

Using the expansions of form factors from [28], we obtain that the leading term in the IR

is given by

T̃ (even)
µ1µ2µ3ν1ν2ν3

(k) ∼ |m| k4 (πµ1µ2πµ3ν1πν2ν3 − πµ1ν1πµ2ν2πµ3ν3) (7.90)

Observe that this is the lowest derivative conserved local expression, which is unique.
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Now, putting (7.90) into (7.89) and Fourier antitransforming, we obtain for the linearized

induced equation in the coordinate space

|m|Gµνρ(x) ∼ 〈〈j(3)
µ1µ2µ3

(x)〉〉 , ∂ · j(3) = 0 (7.91)

where G is the conserved symmetric local tensor linear in ϕ, which is 4th-order in deriva-

tives. As there is a unique such tensor, we can conclude (without doing any calculations)

that it must be proportional to 2G(0), with G(0) defined in (7.81)-(7.82). Explicitly

written,

Gµνλ = ∂αF
α

(µνλ) (7.92)

where

Fαµνλ ≡ R′αµνλ −
1

2
R′′αµηνλ = 2∂[α

(
Fµ]νλ −

1

2
F ′µ]ηνλ

)
(7.93)

The result (7.91)-(7.93) is, in some sense, natural. First of all, it is the lowest deriva-

tive linear local parity invariant equation satisfying unrestricted gauge invariance and

conservation condition. Also, the equation is of the same form as in spin 1 case, and

we can identify the tensor F as spin 3 Maxwell tensor, while G appears to be spin 3

Riemann tensor (it is the lowest derivative local conserved gauge invariant parity even

rank-3 tensor).4

Let us connect these result with the known constructions, reviewed above. It is obvious

that our result (7.91)-(7.93) is the same as (7.87) with a = 0 and r = 1, i.e., the obtained

expression is a local version of the equation proposed in [39, 40, 41]. As we already

mentioned, this equation does not propagate only spin 3 massless excitations, unless the

conserved spin 3 current of the Dirac theory has some special properties which takes care

of the redundant modes.

Let us now briefly comment the UV limit (m/|k| → 0). After subtracting IR divergent

terms (for a full explanation of this issue, see below), form factors in the UV limit tend

to constants, which gives rise to a non-local correlator. However one of the subleading

4Conventions for naming objects in higher-spin metric-like formalism is notorious for its inconsistency.
In the literature different objects are called Ricci tensor and Riemann tensor. We believe that our
conventions are natural generalizations of spin 1 and 2 cases.
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terms gives a combination of the two conserved quantities

A : k2πµ1ν1πµ2ν2πµ3ν3 and B : k2πµ1µ2πµ3ν1πν2ν3 (7.94)

which is not the same combination as the one present in IR limit (7.90). So, the corre-

sponding induced linearized equation is also different. Expanding (7.88) in the UV we

obtain the traceless combination A − 3
4
B, with coefficients corresponding to (7.42) for

d = 3 and s = 3, for which the equation of motion is

�ϕµνλ − 3∂µ∂ ·ϕνλ +
3

4
∂µ∂νϕ

′
λ −

3

4

1

�
∂µ∂ν∂λ∂ ·ϕ′ −

1

4

1

�2
∂µ∂ν∂λ∂ ·∂ ·∂ ·ϕ (7.95)

+
9

4

1

�
∂µ∂ν∂ ·ϕλ −

3

4
ηµν�ϕ

′
λ +

3

4
ηµν∂λ∂ ·ϕ′ +

3

4
ηµν∂ ·∂ ·ϕλ −

3

4
ηµν

1

�2
∂λ∂ ·∂ ·∂ ·ϕ = 0

In conclusion, we see that our simple analysis, based solely on the classification of

possible conserved structures, recovers the Francia-Sagnotti analysis and gives an efficient

method for analyzing higher spin actions. But, we emphasize that the induced action

method, out of many possibilities, picks particular equations which are already coupled

to particular external currents.

Comment. The previous results are limited to 3d and to the lowest spins. They

are nevertheless enough to stir our interest and motivate a more in depth analysis. It is

also clear enough that equations in the coordinate space are not always the best fit to

generalizations to higher spins. Writing down the actions and equations of motion in the

explicit form used so far becomes rapidly unwieldy with increasing spins and dimensions.

Because of that, we simply use the projector (7.29).

7.6 Guidelines for the calculations

In the next two chapters we do explicit calculations and mostly focus on results for two-

point functions (bubble diagrams formed by two internal scalar or fermion lines and two

vertices) in the scalar and fermion model in different dimensions.

We will start with spin-1 and spin-2 fields coupled to scalar and fermion model. In

contrast to higher spin (s > 2) fields, for s ≤ 2 we know the full covariant action (beyond

linear order). As a consequence, in the initial action we have additional terms, additional

with respect to the minimal couplings (symbolically
´
jϕ), which are on-shell covariant,
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but off-shell non-covariant. One of the crucial steps in our program is clearly implementing

off-shell gauge covariance of the initial models, that is adding to the minimal couplings in

the relevant actions the terms that render them off-shell covariant, at least to the lowest

order in a perturbative approach to the gauge symmetry. We know such additional terms

exactly in the case of spin 1 and spin 2 and in these cases, perturbative field theory

formalism already automatically takes care of satisfied Ward identities provided one takes

into account not only the two-point bubble diagrams but also other diagrams such as

tadpole and seagull ones, [120, 153]. Although this is a rather well-known fact, we would

like to show it in detail here for spin 1 and 2 as a guide for the more challenging higher

spin cases. We will show the role of tadpole and seagull terms in the Ward identities for

two-point functions of spin 1 and 2 respectively, and their origin in the various terms of the

initial actions. For completeness, we analyze the full structure of the relevant two-point

functions and, in particular, their IR and UV expansions, as well as their contributions

to the effective actions.

The same is not as easy for higher spin currents. In generic spin current correlators we

will find violation of Ward identities. Such violations come in a form of local terms and

we can recover conservation by subtracting local counterterms from the effective action.

Besides the non-conserved (or better said non-transverse) terms for higher spins, for any

spin we also find terms that diverge in the IR limit m→∞. Fortunately these terms are

finite in number and easy to identify by expanding the amplitude near the IR and the

UV. All the IR divergent terms are also local.

The Feynman diagram method is the most convenient for our purposes, but it is

nevertheless one out of many. In fact, even within it there are different possibilities or

schemes. We expect that our results may depend on such schemes, but also to find a

criterion to extract the scheme independent part. In most cases this is conservation and

finiteness. In particular, by suitably choosing the scheme we will be able, for instance, to

obtain both finiteness and conservation in our models.

It is possible to subtract all the terms that diverge in the IR, which include, in par-

ticular, all the nonconserved ones and recover both conservation and finiteness in the IR.

In this process a particular attention has to be paid to the terms of order 0 in m, in even

dimensions. In some cases they are local and conserved, and appear both in the IR and

the UV. Even in this case we follow the attitude of subtracting the IR term from the
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corresponding UV one, on the assumption that physical information is contained in the

difference between the UV and the IR, not in their absolute values. Finally it should be

added that the resulting IR and UV expansions are both convergent.

Even dimensional models present an additional problem concerning their regulariza-

tion. For odd d works by itself as a complete regulator in carrying out the integrals

generated by the Feynman diagrams. This is not true for even d. The way out is well-

known, we will set d = 4+ε. Another difference we will come across with, which is related

to this, is the appearance of log terms in the form factors. We will again expand the two-

point functions in powers of m near the IR and UV limits. In almost all the two-point

correlators and, therefore, in all the one-loop effective actions, we will find non-conserved

terms and terms that diverge in the IR m→∞, like in the odd dimensional case, but we

will find also ε-divergent terms. Our general attitude is to recover both conservation and

finiteness in the IR. This is possible because all the nonconserved and all divergent terms

in the IR, as well as all ε-divergent terms, are local. We will therefore subtract all the

terms that diverge in the IR and in ε. They include, in particular, all the nonconserved

ones.

There remains however an ambiguity. Beside divergent and/or nonconserved terms,

in the case of m0 we meet also finite contributions, both in the IR and in the UV. Also

for these terms we subtract the IR from the UV contribution, on the assumption that it

is this difference that contains the physical information.

A few more remarks regarding the notation. For conciseness, we use a simplified

notation, taken from the literature on higher spin fields: the same repeated subscript, say

µ . . . µ repeated s times, stand for s completely symmetrized labels. Sometimes we will

instead of µ . . . µ repeated s times use simply µs. To somewhat abbreviate the following

formulas, at times we use the compact notation

Π
(2)

a, µ2ν2(k) = π2
µν + aπµµπνν , (7.96)

Π
(3)

a, µ3ν3(k) = π3
µν + aπµµπµνπνν , (7.97)

where a is some constant. Finally, contrary to ([28]), the latter is k ≡ |k| =
√
k2. The

calculations in the sequel are mainly carried out using a Mathematica code [181].
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Chapter 8

Scalar models

In this chapter we consider a scalar theory coupled to spin-s fields via conserved currents,

and we closely follow [29] and [30]. The method we use is the perturbative approach based

on Feynman diagrams and dimensional regularization.

We start by considering the massless case for the scalar model, i.e. we set m = 0 in

the action, and derive the relevant two-point functions for simple and traceless currents

in any dimension. These results are based on the scalar integral (7.72). For traceless

currents the amplitude is itself traceless, and this amplitude vanishes for currents with

two different spins. We also compute 1-point functions (tadpoles) for general spin s and

general dimension d. Tadpole diagrams vanish in the massless case.

Next we present results for a scalar theory coupled to spin 1, 2 and 3 fields. In

general, results for our correlators will be given in terms of hypergeometric functions.

Since it is quite hard to extract information from these general expressions, we turn to

their IR and UV expansions for d = 3, 4 (for expansions in d = 5, 6 see [29]). In the UV

OUV (m0)−OIR(m0)−OIR(log(m)) terms exactly coincide with the massless results.

For spin 1 and 2 we know full form of the interaction and because of that, beside the

2-point function (bubble diagram formed by two internal scalar lines and two vertices)

we include seagull and tadpole diagrams as well. By explicit computation we show that

Ward identities are satisfied. For spin 3 the situation is not so simple because in this

case we know only the linear coupling and the linear form of gauge transformation. As a

consequence we will find several violations of Ward identities in a form of finite number

of local non-conserved (non-transverse) terms. In all of these cases, besides the non-

conserved terms, we also find terms that diverge in the IR limit m → ∞. These terms
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are also finite in number and local. We easily identify them by expanding the amplitude

near the IR and the UV for specific dimension. Our prescription to extract physical

information is such that we subtract all the terms that diverge in the IR (these terms

include all the nonconserved ones) by subtracting a finite number of counterterms from

the effective action. In this way we recover both conservation and finiteness in the IR.

We demonstrate how this particular scheme works, not just in the higher spin case, but

also for spin 1 and 2.

In this model we also give a general expression for the conserved part of the 2-point

function for general spin s and general dimension d.

The final part of the chapter is devoted to diagonalization of our results, that is, the

possibility of vanishing off-diagonal correlators for appropriate choice of currents. It turns

out that there is an infinite number of non-conserved terms in the off-diagonal correlators

one should cancel, and hence the diagonalization is not possible when we choose the

currents of the form (7.26). One more example we consider is the case of traceless local

currents where we are able to diagonalize our results by appropriate choice of coefficients

in the currents and by subtraction of finite number of counterterms.

8.1 Massless model

Here we will present some general results for massless case. Let us start with mixed

correlators of scalar simple currents (7.2). General expression for spin s1 × s2, s2 > s1

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2

(
2b s2+1

2
c − 1

)
!!
(
2b s2+1

2
c
)
!!24−2d− s1+s2

2 π
3
2
− d

2 (k2)
d/2+

s1+s2
2
−2(

2b s2
2
c − 2b s1

2
c
)
!! (−1 + eiπd) Γ

(
d+s1+s2−1

2

)
×π

s2−s1
2

νν

b s1
2
c∑

l=0

s1!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l)!(s2 − s1 + 2l)!!
πlµµπ

l
ννπ

s1−2l
µν (8.1)
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Next, we use traceless currents (traceless in the limit m → 0), that is (7.26) with coeffi-

cients (7.27). General expression for spin s× s

T̃µ1...µsν1...νs = (−1)s
24−2d−sπ

3
2
− d

2 s! (k2)
d/2+s−2

(−1 + eiπd) Γ
(
d+2s−1

2

) b s
2
c∑

l=0

(−1)lalπ
l
µµπ

l
ννπ

s−2l
µν

= (−1)s
24−2d−sπ

3
2
− d

2 s! (k2)
d/2+s−2

(−1 + eiπd) Γ
(
d+2s−1

2

) πsµν

×2F1

(
1− s

2
,−s

2
,
5− d− 2s

2
,
πµµπνν
π2
µν

)
(8.2)

Traceless currents give traceless amplitude in the massless limit, that is, coefficient al

corresponds to (7.42), the coefficient appearing in the traceless amplitude. In this case

mixed spin correlators vanish.

8.2 Tadpoles

Let us also write down the tadpole diagram contributions for any dimension and any spin.

In this chapter we will need only spin 1 and 2 tadpoles. The tadpole contribution actually

vanishes for odd spins, as we will shortly see. Tadpoles (1-point function) are defined with

Θµ1...µs(x) ≡ Θµs =
δ (iW [ϕ])

δϕµ1...µs(x)

∣∣∣
ϕ=0

(8.3)

Tadpoles with scalar current for any spin s and any dimension d are given by

Θ̃s
µs =

ˆ
ddp

(2π)d
V (s)
µ...µ

i

p2 −m2
= −
ˆ

ddp

(2π)d
(2p)sµ

1

p2 −m2

(8.4)

Next we use

psµ =


(s−1)!!∏ s
2−1

i=0 (d+2i)
(p2)

s
2η

s
2
µµ s even

0, s odd

(8.5)

so that for even spin s we get

Θ̃s
µs = − 2s(s− 1)!!∏ s

2
−1

i=0 (d+ 2i)
η
s
2
µµ

ˆ
ddp

(2π)d
ps

p2 −m2
(8.6)
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To evaluate the integral we use

ˆ
ddp

(2π)d
(p2)n

(p2 −∆2)m
= (−1)n−mi

Γ
(
d
2

+ n
)

Γ
(
m− n− d

2

)
(4π)

d
2 Γ
(
d
2

)
Γ (m)

∆
d
2

+n−m (8.7)

Altogether we have

Θ̃s
µs =

i(−1)
s
2 2

s
2
−d(s− 1)!! π−

d
2md+s−2Γ

(
1− d

2
− s

2

)
η
s
2
µµ, s even

0, s odd

(8.8)

8.3 Spin 1

This case is well known and simple, but it is excellent for pedagogical purposes. Let us

start by writing the action for the scalar QED model

S =

ˆ
ddx

[
Dµϕ

†Dµϕ−m2ϕ†ϕ
]

(8.9)

where Dµ = ∂µ − i Aµ. The full covariant action is

S =

ˆ
dx
[
∂µϕ

†∂µϕ+ i Aµ
(
ϕ†∂µϕ− ∂µϕ†ϕ

)
+ AµA

µϕ†ϕ−m2ϕ†ϕ
]

(8.10)

In the scalar model the scalar-scalar-photon vertex is (7.25) and we also have scalar-

scalar-photon-photon vertex (coming from
´
ddxAµAµϕ

†ϕ term in Lagrangian)

V µν
sspp(p, p

′) : 2iηµν (8.11)

One-loop conservation which for spin 1 is (2.30), so that the Ward identity for the two-

point function in momentum space can be written as

kµT̃
µν(k) = 0 (8.12)

The two-point function for the massive scalar in any dimension d for spin s = 1 is

T̃ µν(k) = −21−d i π−d/2md−2Γ

(
1− d

2

)(
2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

]
πµν +

kµkν

k2

)
(8.13)
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The theory is quadratic in the external photon field A we also have a seagull diagram

(which is obtained by joining with a unique a fermion line the two fermion legs of the

vertex (8.11) for which we obtain

T̃ µν(s) (k) = 21−diπ−
d
2md−2Γ

(
1− d

2

)
ηµν (8.14)

After combining (8.13) and (8.14) we can write down the full 2-point function

T̃ µν(k) = 21−diπ−
d
2md−2Γ

(
1− d

2

)(
1− 2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

])
πµν , (8.15)

which is conserved. Expanding the two-point function (8.15) in the IR gives

T̃ µν(k) = −2−dimd−4π−
d
2

∞∑
n=0

m−2nΓ
(
2 + n− d

2

)
2n(2n+ 3)!!

k2n+2πµν (8.16)

Using the IR expansion together with (2.12), the one-loop 1-point function now reads

〈〈Jµ〉〉 = −2−dmd−4π−
d
2

∞∑
n=0

(−1)nm−2nΓ
(
2 + n− d

2

)
2n(2n+ 3)!!

2n∂νF
µν (8.17)

The dominating term in the IR corresponds to the Maxwell equation. The dominating

term for the effective action in the IR region

W
IR
= −2−d

3
md−4π−

d
2 Γ

(
2− d

2

) ˆ
ddxFµνF

µν (8.18)

gives Maxwell action.

The leading order term in the UV (term m0 corresponds to (B.13) from [29])

T̃ µν(k)
UV
= − 23−2d π

3
2
− d

2 (k2)
d
2
−1

(−1 + eiπd) Γ
(
d+1

2

)πµν (8.19)

Hence, the effective action in the UV is

W
UV
= −i (−1)

d
2 23−2d π

3
2
− d

2

(−1 + eiπd) Γ
(
d+1

2

) ˆ ddxF µν2
d
2
−2Fµν (8.20)
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8.3.1 3d msm; spin 1 tomography

Even though we just showed that for spin-1 current in the scalar model Ward identities

are satisfied, we will also show what happens if we know the interaction only up to the

linear order. In this case we only have the bubble diagram. We demonstrate our scheme

to extract physical information from the amplitude by expanding it in the IR and UV and

subtracting the divergent and nonconserved terms from the effective action. The exact

2-pt correlator for s = 1 in 3d is obtained by putting d = 3 in (8.13)

T̃ (k)µν =
i

8πk3

(
−4m2 coth−1

(
2m

k

)
+ 2km+ k2 coth−1

(
2m

k

))
kµkν

+
i

8πk

(
4m2 coth−1

(
2m

k

)
+ 2km− k2 coth−1

(
2m

k

))
ηµν (8.21)

We can expand (8.21) in power of k
m

(IR) or of m
k

(UV). In the sequel we will consider

only the minimal model with a linear coupling and because of that we will find viola-

tion of Ward identities. We remove the non-conserved terms by subtracting appropriate

countertems from the effective action. In the IR case we find

O(m) :
im

2π
ηµν (8.22)

O(m−1) : − ik2

24πm
πµν (8.23)

.... ....

while the even powers of m vanish. The first is a (non-conserved and divergent in the IR

limit) local term ∼ ηµν , which must be subtracted away. The other terms are all conserved

and proportional to the conserved structure πµν .

The UV expansion is instead

O(m0) : − k

16
πµν (8.24)

O(m) :
im

2πk2
kµkν (8.25)

O(m2) : −m
2

4k
πµν (8.26)

.... ....

In fact we have O(m2n) = 0 for n ≥ 2. The only nonvanishing terms with even powers of
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m are O(m0),O(m2). For these terms see the comment below.

Except (8.25) the other terms are conserved and proportional to the projector πµν .

The terms proportional to πµν are all non-local in the UV, and local in the IR, in particular

(8.23) is local and corresponds to the Maxwell action in 3d.

The two nonconserved terms are (8.22) in the IR and (8.25) in the UV. The first is

local and the second is nonlocal, but their divergence is the same and local:

− i

2π
kν

This means that we can cancel it by subtracting a local term, ∼ m
´
d3xA2. This amounts

to subtracting the IR contribution (which is local) from the UV one. Indeed we get

OUV (m)−OIR(m) = −im
2π

πµν (8.27)

So the term of order m in the UV and IR conjure up to reform again the same conserved

structure as all the other terms. Taking the UV and IR limits splits apart this conserved

structure. The conclusion is that, up to a local term we can view the effective action

as a sum of infinite many terms, all proportional to πµν with coefficients proportional to

various monomials of m and k. In compact form:

i

8πk

(
4m2 coth−1

(
2m

k

)
− 2km− k2 coth−1

(
2m

k

))
πµν (8.28)

8.3.2 4d msm: spin 1 tomography

Let us repeat the same procedure as above for d = 4. We will focus on the power of m

expansions again. However, as previously mentioned, we have to consider also log(m) and

1
ε

factors. In the IR the nonvanishing terms are

O(m2) : −im
2

8π2

(
γ − 1− log(4π) + 2 log(m) +

2

ε

)
ηµν (8.29)

O(log(m)) :
i log(m)

24π2
k2πµν (8.30)

O(m0) :
ik2

48π2

(
γ − log(4π) +

2

ε

)
πµν (8.31)

O(m−2) : − ik4

480π2m2
πµν (8.32)

.... ....
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These coefficients are conserved except O(m2). All the odd powers of m vanish.

In the UV we find the following nonvanishing terms:

O(m0) : −i k2

144π2

(
8− 3γ − log

(
1

64π3

)
− 3 log

(
−k2

)
− 6

ε

)
πµν (8.33)

O(m2) : − im2

24π2k2

((
−3 log

(
− k

2

m2

)
+ 3

)
kµkν

+k2

(
3(−2 + γ − log(4π)) + 3 log

(
−k2

)
+

6

ε

)
ηµν

)
(8.34)

O(m4) : −i m4

16π2k2

(
− 2 log

(
− k

2

m2

)
− 3
)
πµν (8.35)

.... ....

All odd powers of m vanish. The even powers are conserved except (8.34). Subtracting

from the latter the analogous (local) non-conserved term in the IR we find a conserved

term

OUV (m2)−OIR(m2) = −im
2

8π2

(
2 log

(
− k

2

m2

)
− 1
)
πµν (8.36)

The O(log(m)) term is divergent in the IR, and the O(m0) is divergent in the ε→ 0 limit.

Luckily they are local and can be subtracted with the following result:

OUV (m0)−OIR(m0)−OIR(log(m)) = − ik2

144π2

(
−3 log

(
− k

2

m2

)
+ 8

)
πµν (8.37)

This term corresponds to the Maxwell action.

8.4 Spin 2

Let us now consider the action of a scalar field ϕ in a curved space (gµν = ηµν +hµν) with

a scalar curvature coupling

S =

ˆ
ddx
√
g
(
gµν∂µϕ

†∂νϕ−m2ϕ†ϕ+ ξRϕ†ϕ
)

(8.38)
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Let us redefine φ = g
1
4ϕ. The expansion of the action in the external field h is

S =

ˆ
ddx

[
ηµν∂µφ

†∂νφ−m2φ†φ+ hµν
(

1

4
φ†
↔
∂µ
↔
∂ ν φ+

(
ξ − 1

4

)
(∂µ∂ν −2ηµν)φ

†φ

)
+hµσhνσ∂µφ

†∂νφ+
1

16
h2hφ†φ+

(
−ξ

4
+

1

8

)
∂µh∂

µhφ†φ− 2ξhµν∂ν∂λh
λ
µφ
†φ

+ξhµν2hµνφ
†φ− ξ∂νhµν∂λhλµφ†φ+

3

4
ξ∂λhµν∂

λhµνφ†φ− 1

2
ξ∂λh

µν∂νh
λ
µφ
†φ(

ξ − 1

4

)
hµν∂µ∂νhφ

†φ+

(
ξ − 1

4

)
∂µh∂νh

µνφ†φ

]
(8.39)

The scalar-scalar-graviton vertex is:

V µµ
ssh(p, p′) : − i

4
(pµ + p′µ)2 − i

(
ξ − 1

4

)(
(p′µ − pµ)2 − ηµµ(p′ − p)2

)
(8.40)

which reduces to (7.25) for ξ = 1
4

and there is a vertex with two scalars and two gravitons:

V µµνν
sshh (p, p′, k, k′) : iηµν (p′µpν + pµp′ν)− i

[(
ξ − 1

4

)
(ηµµkνkν + ηννkµkµ)

+2

(
ξηµνηµν +

1

16
ηµµηνν

)
k2 − 4ξηµνkµkν

]
−i
[((1

4
− ξ

2

)
ηµµηνν +

3

2
ξηµνηµν

)
k · k′ (8.41)

+

(
ξ − 1

4

)
(ηµµkνk′ν + ηννkµk′µ)− 2ξηµνkµk′ν − ξηµνkνk′µ

]
The full conservation law of the energy-momentum tensor is (2.31), and hence, the

Ward identity for one-point function is

∂µΘµµ(x) = 0 (8.42)

while for two-point correlator we have

∂µT
µµνν(x, y) =

1

2
ηννδ(x− y)∂µΘµµ(x) +

1

2
Θνν(x)∂µδ(x− y)

−∂µ (δ (x− y) Θµν (x)) ηµν (8.43)

From (8.8), it follows that the tadpole contribution is Θ̃µµ(k) = Θ̃ ηµµ where Θ̃ is a
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constant. The Ward identity in momentum space is now

kµT̃
µµνν(k) =

[
−kνηµν +

1

2
kµηνν

]
Θ̃ (8.44)

Taking the result for the tadpole diagram (8.8) for s = 2 we have

Θ̃µµ = 2−d−1 i π−d/2mdΓ

(
−d

2

)
ηµµ (8.45)

while the contribution from the seagull term is

T̃ µµνν(s) (k) = −2−4−d iπ−d/2md−2Γ

(
−d

2

)
×
(
dk2(1− 4ξ)ηµµηνν + 4ηµνηµν

(
4m2 − dk2ξ

)
+ 8dξηµνkµkν

)
(8.46)

Furthermore, the transverse part of the bubble diagram reads

T̃ µµννt (k) = − 1

3d (d2 − 1) k4
i2−d−2e−

1
2
iπdπ−d/2(−m2)d/2m−2Γ

(
1− d

2

)
[(

12
(
d2 − 1

)
k4m2

(
8ξ2 − 8ξ + 1

)
+ d

(
d2 − 1

)
k6
(
24ξ2 − 1

)
+24dk2m4(3− 8ξ)− 192k2m4ξ + 96m6

+
(
−6k4m2

(
d2(1− 4ξ)2 + d(8ξ − 2)− 2

(
8ξ2 − 8ξ + 1

))
+24k2m4(d(8ξ − 2) + 8ξ)− 96m6

)
2F1

[
1,−d

2
;−1

2
;
k2

4m2

])
πµµπνν

+
(
−12d2k4m2 + d

(
d2 − 1

)
k6 + 48dk2m4 − 96k2m4 + 12k4m2 + 192m6

−12m2
(
k2 − 4m2

)2
2F1

[
1,−d

2
;−1

2
;
k2

4m2

])
πµνπµν

]
(8.47)

The expansion of the transverse part T̃ µµννt (k) in the IR is

T̃ µµννt (k) = 2−3−dimd−4π−
d
2k4

∞∑
n=0

m−2nΓ
(
2 + n− d

2

)
2n (2n+ 5)!!

k2n

×
(
πµνπµν +

a(n, ξ)

2
πµµπνν

)
(8.48)

where a(n, ξ) is a constant

a(n, ξ) = (2n+ 5)(2n+ 3)(4ξ − 1)2 + 2(2n+ 5)(4ξ − 1) + 1 (8.49)
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The non-transverse part of the bubble diagram is

T̃ µµννnt (k) =
2−4−d

3
i π−d/2md−2Γ

(
−d

2

)
(
ηµνηµν

(
24m2 − 2dk2

)
+ 4 d ηµνkµkν + 2d (6ξ − 1)ηµµkνkν

+ηνν
(
ηµµ
(
dk2(5− 24ξ) + 12m2

)
+ 2d(6ξ − 1)kµkµ

))
(8.50)

The seagull diagram and the non-transverse part of 2-pt function together give

T̃ µµνν(s) (k) + T̃ µµννnt (k) = −2−d−2iπ−d/2mdΓ

(
−d

2

)
(2ηµνηµν − ηµµηνν) (8.51)

+2−d−1iπ−d/2md−2

(
ξ − 1

6

)
Γ

(
1− d

2

)
k2 (πµνπµν − πµµπνν)

Taking formulas (8.45), (8.46), (8.47) and (8.50) and substituting them in (8.44) we can

see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point correlator of the energy-momentum tensor

〈〈T µµ(x)〉〉 = −2−dmdπ−
d
2

[
Γ

(
−d

2

)
gµµ −

2Γ
(
1− d

2

)
m2

(
ξ − 1

6

)
Gµµ

+
∞∑
n=2

(−1)nm−2nΓ
(
n− d

2

)
2n(2n+ 1)!!

2n−2

×
(
−22Gµµ +

(
1− a(n, ξ)

2

)
(ηµµ2− ∂µ∂µ)R

)]
+O(h2) (8.52)

is covariantly conserved. For the effective action in the IR we obtain

W [h]
IR
= 2−dmdπ−

d
2

ˆ
ddx
√
g

[
Γ

(
−d

2

)
−

Γ
(
1− d

2

)
2m2

(
ξ − 1

6

)
R

+
Γ
(
2− d

2

)
120m4

(
RµνλρR

µνλρ +
a(0, ξ)

2
R2

)
+ . . .

]
+O(h3) (8.53)

For ξ = 1
6

(the conformal case) the third term in the expansion is proportional to

W [h] ∝ md−4

ˆ
ddx
√
g

(
RµνλρR

µνλρ − 1

3
R2

)
(8.54)

We can use the Gauss-Bonnet theorem

RµνλρR
µνλρ − 4RµνR

µν +R2 = total derivative (8.55)
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to write the divergent part of the effective action in d = 4 as a Weyl square density

W [h]
IR
= − 1

16π2ε

ˆ
d4x
√
g

(
m4 +

1

30
W2

)
+O(h3) (8.56)

In the massless case (m0 is the dominating term in the UV) we have

T̃ µµνν(k)
UV
=

2−1−2d π
3
2
− d

2 (k2)
d
2

(−1 + eiπd) Γ
(
d+3

2

) (πµνπµν +
b(d, ξ)

2
πµµπνν

)
(8.57)

where

b(d, ξ) = (d2 − 1)(4ξ − 1)2 + 2(d+ 1)(4ξ − 1) + 1 (8.58)

The effective action in the UV now becomes

W [h]
UV
= (−1)

d
2

2−2−2d+b d
2
cπ

3
2
− d

2

(−1 + eiπd)Γ
(
d+3

2

) ˆ ddx

(
Rµνλρ2

d
2
−2Rµνλρ +

b(d, ξ)

2
R2

d
2
−2R

)

After we use (8.55) and put ξ = 1
6

in 4d we will again get the Weyl square density

W [h]
UV
=

ˆ
ddxW2 (8.59)

8.4.1 3d msm: spin 2 tomography

Just as for spin-1, we showed that for spin-2 in the scalar model Ward identities are

satisfied. However, we will also show what happens if we knew the interaction only up

to the linear order. We demonstrate our scheme to extract physical information from the

two-point function by expanding it in the IR and UV and subtracting the divergent and

nonconserved terms from the effective action. We consider the 2-point correlator with the

currents (7.22). The result is given as a sum of (8.47) and (8.50) with ξ = 1
4
. Expanding

in the IR we find that all the even powers vanish. Moreover, the O(m3) and O(m) terms

are non-conserved, while the other terms are all conserved and proportional to the same

structure Π
(2)
1
2
,µ2ν2

(k).

In the UV, we have O(m2m) = 0 for m ≥ 3. The only nonvanishing terms with

even powers of m are O(m0),O(m2),O(m4) (again, about these terms, see the comment

below). All the terms are conserved except O(m) and O(m3). But putting together the
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analogous non-conserved terms in the UV and IR (that is, subtracting the local IR terms

from the (nonlocal) UV ones) we recover conservation.

OUV (m)−OIR(m) =
imk2

3π
Π

(2)
1
2
µ2ν2

(k) (8.60)

OUV (m3)−OIR(m3) = −4im3

3π
Π

(2)
1
2
µ2ν2

(k) (8.61)

Up to local terms, the effective action is a sum of infinite many terms, all proportional to

the same conserved structure (8.61) with coefficients proportional to various monomials

of m and k. They form a convergent series both in the IR and in the UV. In compact

form:

i

48πk

(
48m4 coth−1

(
2m

k

)
+ 2km

(
5k2 − 12m2

)
− 24k2m2 coth−1

(
2m

k

)

+3k4 coth−1

(
2m

k

))
Π

(2)
1
2
, µ2ν2

(k) (8.62)

It should be noticed that the massless model case gives the result:

T̃ (k)µµνν = −k
3

32
Π

(2)
1
2
µ2ν2

(k) (8.63)

This is conserved but not traceless, which is not surprising because a scalar massless model

in d ≥ 3 is not conformally invariant in this case.

Eq.(8.60) is conserved. It does not coincide with the linearized Einstein-Hilbert action

(in particular it is nonlocal), but this is simply a nonlocal version of the same, in the same

sense as we have already seen for spin 3 and higher in section 7.5.

8.4.2 4d msm: spin 2 tomography

Let us repeat the above procedure for d = 4. We again consider the 2-point correlator

with the currents (7.22). The result is given as a sum of (8.47) and (8.50) with ξ = 1
4

and d = 4. In the IR the odd powers of m vanish. The terms O(m4) and O(m2) are

not conserved, the logarithmic term is conserved but divergent in the IR, the m0 term

is divergent in the limit ε → 0. They all must be subtracted. The remaining terms are

conserved and proportional to Π
(2)
1
2
, µ2ν2

(k).

In the UV all the odd powers of m vanish. Term O(m0) and all terms with even m
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power larger than 4 are conserved, while O(m2) and O(m4) are not. According to our

prescription we have to subtract not only OIR(m2) and OIR(m4), but also OIR(m0) and

OIR(log(m)). We obtain

OUV (m4)−OIR(m4) = −im
4

8π2

(
2 log

(
− k

2

m2

)
− 1

)
Π

(2)
1
2
, µ2ν2

(k) (8.64)

OUV (m2)−OIR(m2) =
im2

36π2
k2

(
3 log

(
− k

2

m2

)
−5

)
Π

(2)
1
2
, µ2ν2

(k) (8.65)

and

OUV (m0)−OIR(m0)−OIR(log(m)) =
i

1800π2
k4

(
−15 log

(
− k

2

m2

)
+46

)
Π

(2)
1
2
, µ2ν2

(k)(8.66)

They are all conserved. (8.65) contains a nonlocal linearized version of the EH eom.

8.5 Spin 3

In this case we do not know the full covariant theory and we must satisfy ourselves with

only linear coupling of spin-3 to the current (7.22). Two-point function is

T̃µ3ν3(k) = − 1

35
i2−dπ−d/2k6md−4Γ

(
2− d

2

)
2F1

(
1, 2− d

2
;
9

2
;
k2

4m2

)
×πµν

(
2π2

µν + 3πµµπνν
)

−3i23−dπ−d/2md+2Γ

(
−d

2
− 1

)
ηµν
(
2ηµν

2 + 3ηµµηνν
)

+i22−dπ−d/2mdΓ

(
−d

2

)(
3ηµµηµνkν

2 + 3
(
2ηµν

2 + ηµµηνν
)
kµkν

+ ηµν
(
3ηννkµ

2 − k2
(
2ηµν

2 + 3ηµµηνν
)))

−1

5
i21−dπ−d/2md−2Γ

(
1− d

2

)(
3ηννkνkµ

3 + 3ηµν
(
3kν

2 − k2ηνν
)
kµ

2

+3kν
(
ηµµkν

2 − k2
(
2ηµν

2 + ηµµηνν
))
kµ

+k2ηµν
(
k2
(
2ηµν

2 + 3ηµµηνν
)
− 3ηµµkν

2
) )

(8.67)

Let us now demonstrate how to draw out information from the two-point function by

expanding it in the IR and UV and subtracting the divergent and nonconserved terms

from the effective action.
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8.5.1 3d msm: spin 3 tomography

For the 3-spin current, in the IR, the coefficients of even powers in m vanish, while the

negative odd powers are all proportional to the conserved structure Π
(3)
3
2
, µ3ν3

(k). The terms

O(m5),O(m3),O(m) are local and non-conserved.

In the UV, the terms O(m2n) with n ≥ 4 vanish. All terms are conserved, except

O(m),O(m3),O(m5). Proceeding as above we subtract from the non-conserved terms in

the UV the homogeneous local non-conserved terms in the IR and obtain conserved terms:

OUV (m)−OIR(m) = −imk
4

5π
Π

(3)
3
2
, µ3ν3

(k) (8.68)

OUV (m3)−OIR(m3) =
4im3

3π
k2Π

(3)
3
2
, µ3ν3

(k) (8.69)

OUV (m5)−OIR(m5) = −16im5

5π
Π

(3)
3
2
, µ3ν3

(k) (8.70)

In compact form, after subtractions, the 2-pt correlator is:

i

480πk

(
960m6 coth−1

(
2m

k

)
− 480km5 − 720k2m4 coth−1

(
2m

k

)
+ 320

(
k2
)

3/2m3

+180k4m2 coth−1

(
2m

k

)
− 66k4km− 15k6 coth−1

(
2m

k

))
Π

(3)
3
2
, µ3ν3

(k) (8.71)

The term (8.69) gives rise to an equation of motion, which is the nonlocal version of the

Fronsdal spin 3 equation of motion.

8.5.2 4d msm: spin 3 tomography

The scheme is the same as above. In the IR the odd powers of m vanish. The even powers

m2n with n ≤ 0 are conserved together with the term proportional to log(m). The terms

OIR(m2),OIR(m6),OIR(m6) are not conserved. Of course O(log(m)) diverges in the IR,

while the term OIR(m0) diverges for ε→ 0. According to our prescription all these terms,

which are local, have to be subtracted from the effective action.

In the UV the odd m power terms vanish. The even powers of order 2, 4, 6 are not
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conserved, but

OUV (m0)−OIR(m0) − OIR(log(m)) (8.72)

= − ik6

29400π2

(
−105 log

(
− k

2

m2

)
+ 352

)
Π

(3)
3
2
, µ3ν3

(k)

and

OUV (m2)−OIR(m2) =
im2k4

300π2
Π

(3)
3
2
, µ3ν3

(k)

(
(31− 15 log

(
− k

2

m2

))
(8.73)

OUV (m4)−OIR(m4) = −im
4k2

24π2
Π

(3)
3
2
, µ3ν3

(k)

(
(7− 6 log

(
k2

m2

))
(8.74)

OUV (m6)−OIR(m6) =
im6

12π2
Π

(3)
3
2
, µ3ν3

(k)

(
(1− 6 log

(
− k

2

m2

))
(8.75)

.... ....

are all conserved. Eq.(8.74) is related to a nonlocal version of the spin 3 Fronsdal equation.

8.6 msm: higher spin currents

This scheme repeats itself for higher spin currents. For spin 4 there are 4 non-conserved

terms in the IR and 4 in the UV, while the others are conserved or 0. Subtracting the IR

non-conserved terms from the corresponding UV ones all the non-vanishing terms turn

out to be proportional to the conserved structure:

1

3
π4
µν +

1

8
π2
µµπ

2
νν + πµµπ

2
µνπνν (8.76)

For example, in 3d all terms with even powers of m vanish, except m0,m2,m4,m6,m8.

For spin 5 there are 5 non-conserved terms in the IR and 5 in the UV, while the others

are conserved or 0. Subtracting the IR non-conserved terms from the corresponding UV

ones all the nonvanishing terms turn out to be proportional to the conserved structure:

π5
µν +

15

8
π2
µµπµνπ

2
νν + 5πµµπ

3
µνπνν (8.77)

For example, in 3d all terms with even powers of m vanish, except m0,m2,m4,m6,m8,m10.

Comment 1. As we have seen above, any conserved structure is connected to a
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(non-local) higher spin field equation of motion. In particular eqs.(8.23) and (8.60) are

conserved structures which represent the linearized Maxwell and Einstein-Hilbert actions,

respectively, the second one in a nonlocal version. Eq.(8.69) is non-local and gives rise

to a variant of the non-local Fronsdal equation discussed in sec.7.5. It is clear that any

two-point correlator structure can be uniquely related to a given (linearized) equation of

motion. The structure of the 2pt-functions conform to the general discussion in sec.7.2.

It is remarkable that the conserved structures that appear in the above expansions are

always the same for any fixed 2pt correlator. As we will see this is not the case for the

effective field action originating from a fermion model.

Comment 2.

It is interesting to compare the O(m0) results with the massless model case, obtained

via (7.72). In particular, in the massless case for spin 1 in 3d we get

− 1

16
kπµν (8.78)

for spin 2

k3

32
Π

(2)
1
2
, µ2ν2

(k) (8.79)

and for spin 3

−k
5

64
Π

(3)
3
2
, µ3ν3

(k) (8.80)

These correlators are non-local and coincide with the OUV (m0) terms evaluated above.

Similarly, all other OUV (m0) terms coincide with the expressions obtained in the massless

limit in section 8.1 for simple currents for appropriate spin s and dimension d.

8.6.1 Scalar model - simple currents - general

In the scalar model it is particularly simple to find a general expression for the conserved

2-point correlators. Omitting the non-conserved terms, we find: General expression for
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spin s1 × s2, s2 > s1

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2 i
2b

s1
2
c−dmd−4π−

d
2 s1!(s2 − s1)!!

(
2b s2+1

2
c − 1

)
!!
(
b s2

2
c
)
!(

2b s1+s2
2
c+ 1

)
!!
(
b s2

2
c − b s1

2
c
)
!

×Γ

(
2− d

2

)
2F1

(
1, 2− d

2
,
s1 + s2 + 3

2
,
k2

4m2

)

×π
s2−s1

2
νν

b s1
2
c∑

l=0

1

2
l(l+1)

2 (s1 − 2l)!(s2 − s1 + 2l)!!
πlµµπ

l
ννπ

s1−2l
µν (8.81)

8.7 Diagonalization

We demonstrated in this chapter that different choices of currents lead to different effective

actions. In particular, now we wonder whether is possible to make a choice of currents

for which the mixed correlators vanish which may simplify our analysis.

8.7.1 ”Local” currents

One can start with a general form of spin-s current

j(s)
µ1...µs

= is
b s
2
c∑

l=0

a
(s)
l (2πµµ)l φ†

(↔
∂µ

)s−2l

φ (8.82)

where a
(s)
l are some numerical coefficients and we can choose a

(s)
0 = 1. Now, is there

a choice of coefficients a
(s)
l for which the 2-point correlators with mixed scalar currents

vanish?

Amplitude 0x2. In fact, we can use a more general current

j
(2)

µ2 = i2
(
φ†
(↔
∂µ

)2

φ+ a
(2)
1 2πµµ

(
φ†φ
)

+a
′(2)
1 ηµµ(2 +m2)φ†φ+ b

(2)
2 ηµµφ

†(2 +m2)φ
)

(8.83)

where we added terms such as (2 + m2) (vanishes on-shell). Due to hermiticity of the

currents we have a
′(2)
2 = a

′(2)
1 . The conserved part of 0x2 amplitude is

T̃ t
ν2 =

i2−dπ−d/2md−4Γ
(
2− d

2

)
3

k2πνν (8.84)

×
((
−1 + a

(2)
1

)
2F1

(
1, 2− d

2
;
5

2
;
k2

4m2

)
+ 2a

(2)
1 2F1

(
2, 2− d

2
;
5

2
;
k2

4m2

))
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The conserved part of the correlator with mixed spins 0x2 vanishes for

a
(2)
1 =

2F1

(
1, 2− d

2
; 5

2
; k2

4m2

)
2F1

(
1, 2− d

2
; 5

2
; k2

4m2

)
+ 2 2F1

(
2, 2− d

2
; 5

2
; k2

4m2

) (8.85)

Values of a
(2)
1 in specific dimensions:

d = 3

m

(
k

coth−1( 2m
k )
− 2m

)
k2

+
1

2

d = 4 + ε
1

3
+ ε

4m2

(
k −m

√
4− k2

m2 csc−1
(

2m
k

))
3k3

− 1

9

+ . . .

The coefficient a
(2)
1 is a function of momenta and mass. Since this coefficient enters the

definition of the current, it defines the coupling to the source. If we write the coefficient

a
(2)
1 in powers of the momentum k2, we get an interaction with infinite number of higher

derivative terms.

The non-conserved (non-transverse) part

T nt
ν2

= −i21−d(1 + a
′(2)
1 )π−d/2md−2Γ

(
1− d

2

)
ηνν (8.86)

vanishes for a
′(2)
1 = −1. Terms such as (2 + m2) in the current contribute only to the

non-conserved part and behave as counterterms.

Amplitude 1x3 Again we can add to the spin-3 current terms such as (2+m2) which

vanish on-shell

j
(3)

µ3 = i3
(
φ†
(↔
∂µ

)3

φ+ a
(3)
1 2πµµ

(
φ†
(↔
∂µ

)
φ
)

+ a
′(3)
1 ηµµ(2 +m2)∂µφ

†φ (8.87)

+a
′(3)
2 ηµµ(2 +m2)φ†∂µφ+ a

′(3)
3 ηµµφ

†(2 +m2)∂µφ+ a
′(3)
4 ηµµ∂µφ

†(2 +m2)φ
)

Due to hermiticity of the currents we have a
′(3)
3 = −a′(3)

1 and a
′(3)
4 = −a′(3)

2 . The conserved
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part of 1x3 amplitude is

T̃ t
µν3 = − 1

15
i2−dπ−d/2md−4Γ

(
2− d

2

)
k4πµνπνν (8.88)

×
(

3(a
(3)
1 − 1) 2F1

(
1, 2− d

2
;
7

2
;
k2

4m2

)
+ 2a

(3)
1 2F1

(
2, 2− d

2
;
7

2
;
k2

4m2

))

The conserved part of the correlator with mixed spins 1x3 vanishes for

a
(3)
1 =

3 2F1

(
1, 2− d

2
; 7

2
; k2

4m2

)
3 2F1

(
1, 2− d

2
; 7

2
; k2

4m2

)
+ 2 2F1

(
2, 2− d

2
; 7

2
; k2

4m2

) (8.89)

The non-conserved part is

T̃ nt
µν3 = −i21−dπ−d/2mdΓ

(
−d

2

)
ηµνηνν(a

′(3)
1 − a′(3)

2 − 6) (8.90)

+i21−dπ−d/2md−2Γ

(
1− d

2

)(
(1− a(3)

1 )ηµνk
2πνν + (a

′(3)
1 − 1)kµkνηνν

)
The md term vanishes for a

′(3)
2 = a

′(3)
1 −6 and we can choose a

′(3)
1 = 1 to cancel the second

term in md−2 term. Then we have a
′(3)
2 = −5. However, note that md−2 non-conserved

term depends on a
(3)
1 . This coefficient, once expanded in powers of momenta, brings

infinite number of non-conserved terms. The number of counterterms which cancel non-

conserved terms should be finite, and we conclude that it is not possible to diagonalize

the 2-pt correlators within this simple model. A similar conclusion follows for all other

higher spin off-diagonal correlators.

In the massless limit all non-diagonal terms vanish for (7.27), that is for the choice of

coefficient for traceless scalar currents given in (7.27). In this case only the correlators

for currents of equal spins are non-vanishing an they are given by (8.2).

8.7.2 Traceless non-local currents

One more idea is to construct currents which are traceless even in the massive case. It is

enough to use simple currents to write down a general form of current is now

j̄s
µs =

b s
2
c∑

l=0

b
(s)
l πlµµj

s[l]

µs−2l (8.91)
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where js
µs is a simple scalar current (7.22) and its l-th trace reads

j
s[l]

µs−2l = is
s!

(s− 2l)!
φ†
(↔
∂µ

)s−2l (↔
∂
)2l

φ (8.92)

and b
(s)
l are numerical coefficients. These currents are nonlocal (we have appearance of

terms such as ∂2

2
and their powers). If we impose tracelessness of the currents (on-shell)

we get a recurrence relation for the coefficients:

b
(s)
l = − 1

2l(d− 3 + 2s− 2l)
bl−1 (8.93)

We can choose b
(s)
0 = 1 so that the coefficient b

(s)
l reads:

b
(s)
l =

(−1)l
(
s− k − 1 + d−3

2

)
!

22kk!
(
s− 1 + d−3

2

)
!

(8.94)

It turns out that the conserved parts of all mixed-spin correlators vanish for this exact

choice of coefficients. The conserved part of the amplitude with equal spin currents (8.91)

and coefficients (8.94) for general spin s and general dimension is

T̃µsνs =
i(−1)s2−dπ−d/2s!md−4

(2s+ 1)!!
Γ

(
2− d

2

)
2F1

(
1, 2− d

2
; s+

3

2
;
k2

4m2

)
k2s

b s
2
c∑

l=0

alπ
l
µµπ

l
ννπ

s−2l
µν

where the coefficient al is

al =
(−1)ls! Γ

(
s+ d−3

2
− l
)

22ll!(s− 2l)! Γ
(
s+ d−3

2

) (8.95)

corresponds to the coefficient for the traceless amplitude (7.42). This amplitude is more

compactly written as

T t
µsνs =

i(−1)s2−dπ−d/2s!md−4

(2s+ 1)!!
Γ

(
2− d

2

)
2F1

(
1, 2− d

2
; s+

3

2
;
k2

4m2

)
×k2sπsµν 2F1

(
1− s

2
,−s

2
;
1

2
(−d− 2s+ 5);

πµµπνν
π2
µν

)
(8.96)

However, we are still left with the non-conserved part.
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Amplitude 0x2. The non-conserved part of the amplitude is

T̃ nt
ν2 =

i2−ddπ−d/2md−2Γ
(
−d

2

)
k2

(
k2(2b

(2)
1 d+ 1)ηνν − 2b

(2)
1 dk2

ν

)
(8.97)

Notice that it is non-local, and hence it cannot be canceled by a counterterm. Similarly, all

non-conserved parts of higher mixed-spin correlators are non-local and cannot be canceled.

The nonconserved parts of the correlators with equal spin currents are also non-local and

cannot be canceled.

Notice that there is one way to avoid nonlocality. We can, instead of

Sint ∼
∑
s

ˆ
ddxjµ1...µsϕ

µ1...µs (8.98)

use a higher derivative coupling

Sint ∼
∑
s

ˆ
ddxjµ1...µs2

nϕµ1...µs ∼
∑
s

ˆ
ddx2njµ1...µsϕ

µ1...µs (8.99)

To get rid of nonlocality it is enough to put n = b s
2
c. In that case all amplitudes should

be multiplied by (k2)b
s1
2
c+b s2

2
c. In that case the nonconserved part becomes local and we

can subtract it by a finite number of counterterms.
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Chapter 9

Fermion models

In this chapter we consider a fermion theory coupled to spin-s fields via conserved currents.

Here we closely follow [29] and [30]. The analysis is similar to the scalar case given in

the previous chapter. We will again use the perturbative approach based on Feynman

diagrams and dimensional regularization.

First, we consider the massless case for the fermion model and compute the relevant

two-point functions for simple and traceless currents in any dimension. For traceless

currents the amplitude is again traceless, and the contribution for mixed-spins correlators

vanishes. We also compute 1-point functions (tadpoles) for general spin s and general

dimension d and we find that the latter vanishes in the massless case.

Next we show results for a fermion theory coupled to spin 1, 2 and 3 fields. In

the fermion case, the results for correlators are again given in terms of hypergeometric

functions, and because of that, we turn to their IR and UV expansions for d = 3, 4 (for

expansions in d = 5, 6 see [29]). In the UV OUV (m0) − OIR(m0) − OIR(log(m)) terms

exactly coincide with the massless results.

For spin 1 and 2, just as in the scalar case, we know full form of the interaction and

so, beside the bubble diagram we also include seagull and tadpole diagrams. We show

that Ward identities are satisfied in this case. For spin 3, instead, we know only the linear

coupling and the linear form of gauge transformation. As a consequence we find several

violations of Ward identities which come in a form of finite number of local terms. Beside

the non-conserved terms, we also find terms that diverge in the IR. These terms are also

finite in number and local and they include all the nonconserved ones. Our prescription

to extract physical information is such that we subtract all the terms that diverge in the
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IR by subtracting a finite number of counterterms from the effective action. In this way

we recover both conservation and finiteness in the IR. We demonstrate how this scheme

works for both higher spin case and for spin 1 and 2.

We also give an example of mixed spin correlator with spins 3 and 5: the full amplitude

and its expansions in UV and IR in d = 3, 4 (for expansions in d = 5, 6 see [30]). In the

odd parity sector, for traceless currents, we find a generalization of the linearized action

proposed by Pope and Townsend, [44], for conformal higher spin fields.

The final part of the chapter is devoted to diagonalization of our results, that is, the

possibility of vanishing off-diagonal correlators for appropriate choice of coefficients in the

currents. It turns out that the diagonalization is not possible with the choice of currents

(7.26). One more example we consider is the case of traceless local currents where we are

able to diagonalize our results by appropriate choice of coefficients in the currents and by

subtraction of finite number of counterterms.

9.1 Massless model

In the massless case for simple currents (7.16) we do not have a general expression. Here

are some examples of the amplitudes:

Spin 0× 0 : T̃ =
23−2d+b d

2
cπ

3
2
− d

2 (k2)
d/2−2

(−1 + eiπd) Γ
(
d−1

2

) (9.1)

Spin 0× 2 : T̃ν2 = 0 (9.2)

Spin 1× 1 : T̃µν = −22−2d+b d
2
cπ

3
2
− d

2 (k2)
d/2−1

(−1 + eiπd) Γ
(
d+1

2

) (d− 2)πµν (9.3)

Spin 1× 3 : T̃µν3 =
21−2d+b d

2
cπ

3
2
− d

2 (k2)
d/2

(−1 + eiπd) Γ
(
d+3

2

) (d− 2)πµνπνν (9.4)

Spin 2× 2 : T̃µ2ν2 =
21−2d+b d

2
c(d− 1)π

3
2
− d

2 (k2)
d/2

(−1 + eiπd) Γ
(
d+3

2

) (
(d− 1)π2

µν − πµµπνν
)

(9.5)

Spin 2× 4 : T̃µ2ν4 = −3 · 2−2d+b d
2
cπ

3
2
− d

2 (k2)
d/2+1

(−1 + eiπd) Γ
(
d+5

2

) πνν
(
(d− 1)π2

µν − πµµπνν
)

(9.6)

Spin 3× 3 : T̃µ3ν3 = −2−2d+b d
2
cπ

3
2
− d

2 (k2)
d/2+1

(−1 + eiπd) Γ
(
d+5

2

) πµν
(
2dπ2

µν + (d− 6)πµµπνν
)

(9.7)

Spin 3× 5 : T̃µ3ν5 =
3 · 2−1−2d+b d

2
cπ

3
2
− d

2 (k2)
d/2+2

(−1 + eiπd) Γ
(
d+7

2

)
×πµνπνν

(
4dπ2

µν + (d− 10)πµµπνν
)

(9.8)
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Spin 4× 4 : T̃µ4ν4 =
3 · 2−1−2d+b d

2
cπ

3
2
− d

2 (k2)
d/2+2

(−1 + eiπd) Γ
(
d+7

2

)
×
(
2(d+ 1)π4

µν + 3(d− 3)π2
µνπµµπνν − 3π2

µµπ
2
νν

)
(9.9)

Spin 4× 6 : T̃µ4ν6 = −5 · 3 · 2−2−2d+b d
2
cπ

3
2
− d

2 (k2)
d/2+3

(−1 + eiπd) Γ
(
d+9

2

)
×πνν

(
4(d+ 1)π4

µν + 3(d− 5)π2
µνπµµπνν − 3π2

µµπ
2
νν

)
(9.10)

Next, we use traceless currents (traceless in the limit m → 0), that is (7.26) with

coefficients (7.27). General expression for spin s× s, s > 0

T̃µ1...µsν1...νs = (−1)s
23−2d−s+b d

2
cπ

3
2
− d

2 (s− 1)!(d− 3 + s) (k2)
d/2+s−2

(−1 + eiπd) Γ
(
d+2s−1

2

)
×
b s
2
c∑

l=0

(−1)lalπ
l
µµπ

l
ννπ

s−2l
µν (9.11)

= (−1)s
23−2d−s+b d

2
cπ

3
2
− d

2 (s− 1)!(d− 3 + s) (k2)
d/2+s−2

(−1 + eiπd) Γ
(
d+2s−1

2

) πsµν

×2F1

(
1− s

2
,−s

2
,
5− d− 2s

2
,
πµµπνν
π2
µν

)

where the coefficient al corresponds to (7.42), the coefficient appearing in the traceless

amplitude. In this case mixed spin correlators vanish.

9.2 Tadpoles

For convenience let us write down the tadpole diagram contributions for any dimension

and any spin. In this chapter we will need only spin 1 and 2 tadpoles. The tadpole

contribution actually vanishes for odd spins, as we will shortly see.

Tadpoles with fermion current for any spin and any dimension

Θ̃f
µs = −

ˆ
ddp

(2π)d
tr

(
V f
µs

i

/p−m

)
= 2b

d
2
c+s−1

ˆ
ddp

(2π)d
psµ

p2 −m2
(9.12)

Next we use (8.5) together with (8.7) to obtain the tadpole

Θ̃µ1...µs =

i(−1)
s
2
−12

s
2

+b d
2
c−d−1(s− 1)!! π−

d
2md+s−2Γ

(
1− d

2
− s

2

)
η
s
2
µµ, s even, s > 0

0, s odd

(9.13)
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and spin 0

J̃ = −i2b
d
2
c−d π−

d
2md−1Γ

(
1− d

2

)
(9.14)

9.3 Spin 1

The action for the theory of fermions interacting with gauge field can be written as

S =

ˆ
dx
[
ψ̄ (iγµDµ −m)ψ

]
(9.15)

where Dµ = ∂µ − i Aµ. There is one fermion-fermion-photon vertex

V µ
ffp : iγµ (9.16)

From the one-loop conservation law (2.30), we get the Ward identity for the two-point

function in momentum space

kµT̃
µν(k) = 0 (9.17)

9.3.1 Even parity part

In the case of fermions coupled to gauge field the tadpole diagram vanishes, while the

seagull is zero because the theory is linear in the gauge field. The only contribution we

get from the 2-pt correlator ((11.7) from [29]) which in the momentum space reads

T̃ µν(k) =
2−d+b d

2
c i π−

d
2md−2

4m2 − k2
Γ

(
1− d

2

)
×
(
−4m2 + 2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

]
(4m2 + (d− 2)k2)

)
πµν (9.18)

Since the 2-point correlator can be expressed in terms of the projector, it satisfies Ward

identity (9.17). We can expand the two-point correlator in the IR region

T̃ µν(k) = −21−d+b d
2
cimd−2π−

d
2

∞∑
n=1

nm−2nΓ
(
1 + n− d

2

)
2n(2n+ 1)!!

k2nπµν (9.19)
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Using the Fourier transform of (9.19) in the one-loop 1-point function (2.12) we get

〈〈jµ(x)〉〉 = 21−d+b d
2
cmd−2π−

d
2

∞∑
n=1

(−1)nnm−2nΓ
(
1 + n− d

2

)
2n(2n+ 1)!!

2n−1∂νF
µν (9.20)

The one-loop 1-point correlator satisfies (2.30). Using the same expansion in the IR (9.19)

for the effective action (2.11) we obtain

W = 2−1−d+b d
2
cmd−2π−

d
2

∞∑
n=1

(−1)nnm−2nΓ
(
1 + n− d

2

)
2n(2n+ 1)!!

ˆ
ddxFµν2

n−1F µν

IR
= −2−2−d+b d

2
c

3
md−4π−

d
2 Γ

(
2− d

2

)ˆ
ddxFµνF

µν (9.21)

So, in the IR region (large m) we get the Maxwell action.

Furthermore, the dominating term in the UV (O(m0)) of (9.18) corresponds to the

massless case (B.2) from [29]

T̃ µν(k)
UV
= −22−2d+b d

2
c π

3
2
− d

2 (d− 2)

(−1 + eiπd) Γ
(
d+1

2

) (k2)
d
2
−1πµν (9.22)

The effective action in the UV is then

W
UV
=

(−1)
d
2 21−2d+b d

2
c π

3
2
− d

2 (d− 2)

(−1 + eiπd) Γ
(
d+1

2

) F µν2
d
2
−2Fµν (9.23)

9.3.2 Odd parity part

For the analysis of the odd parity correlators we will restrict ourselves to d = 3. The odd

part of the two-point correlator is non-vanishing only in 3d and it is given by

T̃ µνo (k) =
m

2πk
ArcCoth

(
2m

k

)
εµνλkλ (9.24)

The expansion of (9.24) in the IR reads

T̃ µνo (k) =
1

π

∞∑
n=0

k2nm−2n

22(n+1)(2n+ 1)
εµνλkλ (9.25)
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Using the IR expansion in (2.12), the odd part of the one-loop 1-point correlator is now

〈〈jµ(x)〉〉 =
1

π

∞∑
n=0

(−1)nm−2n

22n+3(2n+ 1)
εµνλ2nFλν (9.26)

and just like the even parity part satisfies (9.17). The effective action in the IR (the

dominating term)

W
IR
=

1

8π
εµνλ
ˆ
d3xAµ∂νAλ + . . . (9.27)

corresponds to Chern-Simons term in 3d

SCS =
1

8π

ˆ
d3xTr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(9.28)

9.3.3 3d mfm: spin 1 tomography

The case of a gauge field interacting with fermions is a textbook example, but it is perfect

to show how to extract the relevant information from the correlators. In 3d the amplitude

is

Tµν(k) =
i

8πk

(
−
(

4m2 coth−1

(
2m

k

)
− 2km+ k2 coth−1

(
2m

k

))
πµν

+4im coth−1

(
2m

k

)
ελµνk

λ

)
(9.29)

and is conserved without any subtraction. Expanding, the term

O(m0) :
1

4π
ελµνk

λ (9.30)

corresponds to the linearized Chern-Simons action, and the term

O(m−1) : − i

12πm
k2 πµν (9.31)

in the IR corresponds to the Maxwell action.
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9.3.4 4d mfm: spin 1 tomography

Here we repeat the same procedure as above in the case of d = 4. In even dimensions

we must be careful and use d = 4 + ε. Similarly to the scalar case, we demonstrate how

our scheme to extract physical information from the amplitude works. Again we expand

the amplitude in the IR and UV. In fermion model, spin-1 example is particularly simple

because the full amplitude is conserved and consequently there is no need for subtraction

of nonconserved terms. However, we will find divergent terms in the IR and subtract

them from the effective action.

The m-power expansion in the IR is as follows

O(log(m)) :
i log(m)

6π2
k2πµν (9.32)

O(m0) :
i

12π2
(γ − log(4π) +

2

ε
)k2πµν (9.33)

O(m−2) : − ik4

60π2m2
πµν (9.34)

.... ....

All odd powers of m vanish. The above terms are all conserved. The term O(log(m)) is

divergent in the IR and O(m0) is divergent in ε.

In the UV all odd powers of m vanish, while

O(m0) :
ik2

36π2

(6

ε
− 5 + 3γ + 3iπ − log

(
16π2

) )
πµν (9.35)

O(m2) : −im
2

2π2
πµν (9.36)

O(m4) : −i m4

4π2k2

(
2 log

(
− k

2

m2

)
+ 1
)
πµν (9.37)

.... ....

All the terms are conserved. But, subtracting from them the corresponding local terms

in the IR we get

OUV (m0)−OIR(m0)−OIR(log(m)) =
i

36π2

(
3 log

(
− k

2

m2

)
− 5

)
k2 πµν (9.38)

Clearly (9.38) reproduces the Maxwell action.
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9.4 Spin 2

Let us consider the free fermion theory in a generic dimension d

S =

ˆ
ddx

√
|g|
[
iψEm

a γ
a

(
∂m +

1

2
Ωm

)
ψ −mψ̄ψ

]
(9.39)

where Em
a is the inverse vierbein. From now on we will set gµν = ηµν + hµν , where hµν is

a small perturbation around flat background. Using the following expansions

gµν = ηµν − hµν + (h2)µν + . . . ,
√
|g| = 1 +

1

2
h+

1

8
h2 − 1

4
hµνhµν + . . . ,

eµa = δµa −
1

2
hµa +

3

8
(h2)µa + . . . , eaµ = δaµ +

1

2
haµ −

1

8
(h2)aµ + . . . (9.40)

we can expand the parity even part of the action (9.39) in powers of h:

Se =

ˆ
ddx

[ i
2
ψγµ

↔
∂µψ −mψ̄ψ +

1

2
h

(
i

2
ψγµ

↔
∂µψ −mψ̄ψ

)
− i

4
ψhµaγ

a
↔
∂µψ

+
1

8

(
h2 − 2hαβhαβ

)( i
2
ψγµ

↔
∂µψ −mψ̄ψ

)
− i

8
hψhµaγ

a
↔
∂µψ +

3i

16
ψ(h2)µaγ

a
↔
∂µψ + . . .

]
(9.41)

There is one fermion-fermion-graviton vertex

V µµ
ffh(p, p

′) : − i
4

(p+ p′)µγµ +
i

4
ηµµ(/p+ /p′ − 2m) (9.42)

and one vertex with two fermions and two gravitons:

V µµνν
ffhh (p, p′) :

3i

16
((p+ p′)µγνηµν + (p+ p′)νγµηµν)

+
i

8
(/p+ /p′ − 2m) (ηµµηνν − 2ηµνηµν)

− i
8

((p+ p′)µγµηνν + (p+ p′)νγνηµµ) (9.43)

We can also expand the odd parity part of the action in 3d(the latter contains a part

proportional to the completely antisymmetric symbol). We restrict ourselves to 3d because

only in this case can we get a non-vanishing contribution to the effective action and 1-point
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correlator.

So =
1

16

ˆ
d3x εabc∂ahbσh

σ
cψψ (9.44)

The relevant vertex with two fermions and two gravitons is

V µµνν
ε,ffhh :

1

16
ηµνεµνλ (k − k′)λ (9.45)

Furthermore, for spin 2, the energy-momentum tensor is defined with 〈〈T µν(x)〉〉 = 2√
g

δW
δhµν(x)

.

The full conservation law of the energy-momentum tensor is (2.31). Hence, the Ward

identity for one-point function is

∂µΘµµ(x) = 0 (9.46)

while for two-point correlator we have

∂µT
µµνν(x, y) =

1

2
ηννδ(x− y)∂µΘµµ(x) +

1

2
Θνν(x)∂µδ(x− y)

−∂µ (δ (x− y) Θµν (x)) ηµν (9.47)

The tadpole contribution is Θ̃µµ(k) = Θ̃ ηµµ where Θ̃ is a constant. The Ward identity in

momentum space is then

kµT̃
µµνν(k) =

[
−kνηµν +

1

2
kµηνν

]
Θ̃ (9.48)

9.4.1 Even parity part

The tadpole contribution is now

Θ̃µµ(k) = −2−2−d+b d
2
c imdπ

d
2 Γ

(
−d

2

)
ηµµ = Θ̃ ηµµ (9.49)

where Θ̃ is a constant. Since the theory of gravity is non-linear we have a contribution

from the seagull term, which can be written as

T̃ µµνν(s) (k) = 2−3−d+b d
2
c imdπ

d
2 Γ

(
−d

2

)
(3ηµνηµν − 2ηµµηνν) (9.50)
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The bubble diagram contributes two parts, the transverse (conserved) part,

T̃ µµννt (k) = − 1

d(d+ 1)k2
2−2−d+b d

2
c imdπ

d
2 Γ

(
1− d

2

)
[(
−8m2 + (d+ 1)k2 + 2F1

[
1,−d

2
,
1

2
,
k2

4m2

]
(8m2 + (d− 1)k2)

)
πµνπµν

+

(
−4m2 + (d+ 1)k2 + 2F1

[
1,−d

2
,
1

2
,
k2

4m2

]
(4m2 − k2)

)
πµµπνν

]
(9.51)

whose expansion in the IR is

T̃ µµννt (k) = −2−3−d+b d
2
cimdπ−

d
2

∞∑
n=1

m−2nΓ
(
n− d

2

)
2n(2n+ 1)!!

k2n ((2n− 1)πµνπµν − πµµπνν) ,(9.52)

and the non-transverse (non-conserved) part

T̃ µµννnt (k) = −2−3−d+b d
2
c imdπ

d
2 Γ

(
−d

2

)
(ηµνηµν − ηµµηνν) . (9.53)

Taking formulas (9.49), (9.50), (9.51) and (9.53) and substituting them in (9.48) we can

see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point function (energy-momentum tensor) now becomes

〈〈T µµ(x)〉〉 = −2−1−d+b d
2
cmdπ−

d
2

[
Γ

(
−d

2

)
gµµ +

∞∑
n=1

(−1)nm−2nΓ
(
n− d

2

)
2n+1(2n+ 1)!!

×
(
(2n− 1)2n−1Gµµ + (n− 1)2n−2(ηµµ2− ∂µ∂µ)R

) ]
+O(h2) (9.54)

where Gµµ = Rµµ− 1
2
ηµµR is the Einstein tensor. The energy-momentum tensor is clearly

divergence free. For the effective action in the IR we obtain (in the even parity sector)

W
IR
= −2−1−d+b d

2
cmdπ−

d
2

ˆ
ddx
√
g ×

[
Γ

(
−d

2

)
−

Γ
(
1− d

2

)
24m2

R

−
Γ
(
2− d

2

)
80m4

(
RµνλρR

µνλρ − 2RµνR
µν +

1

3
R2

)
+ . . .

]
+O(h3) (9.55)

The first term is a cosmological constant term and the second is the linearized Einstein-

Hilbert action. The third term (m0 term in d = 4) is the Weyl densityW2 = RµνλρR
µνλρ−

2RµνR
µν + 1

3
R2 (conformal invariant in 4d).

The dominating term in the UV (O(m0) term corresponds to (B.3) from [29]) of the
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transverse part T̃ µµννt (k) is

T̃ µµννt (k)
UV
=

2−3−2d+b d
2
c π

3
2
− d

2 (k2)
d
2

(−1 + eiπd) Γ
(
d+3

2

) ((d− 1)πµνπµν − πµµπνν) (9.56)

The effective action in the UV is then

W
UV
= (−1)

d
2

2−4−2d+b d
2
cπ

3
2
− d

2

(−1 + eiπd)Γ
(
d+3

2

) ˆ ddx
√
g
[
(d− 4)Rµνλρ2

d
2
−2Rµνλρ (9.57)

+6

(
Rµνλρ2

d
2
−2Rµνλρ − 2Rµν2

d
2
−2Rµν +

1

3
R2

d
2
−2R

)
+ . . .

]
+O(h3)

which for d = 4 reproduces Weyl density as expected.

9.4.2 Odd parity part

In 3d the contribution from the seagull diagram with vertex (9.45) becomes

T̃ µµνν(s,o) (k) = − m
2

16π
ηµνεµνλkλ (9.58)

The odd part of the two-point correlator is non-vanishing only in 3d (the vertex is (9.42)).

The transverse part can be written as

T̃ µµννt,o (k) = − m

64πk

(
(k2 − 4m2)ArcCoth

(
2m

k

)
+ 2mk

)
πµνεµνλkλ (9.59)

and the expansion of T̃ µµννt,o (k) in the IR is

T̃ µµννt,o (k) = − 1

64π

∞∑
n=0

k2(n+1)m−2n

42n(4(n+ 1)2 − 1)
πµνεµνλkλ (9.60)

The odd non-transverse part reads

T̃ µµννnt,o (k) =
m2

16π
ηµνεµνλkλ (9.61)

and can be canceled by the seagull contribution (9.58). So, only the transverse odd part

remains. The odd part of the one-loop 1-pt function (energy-momentum tensor)

〈〈T µµ(x)〉〉 =
1

32π

∞∑
n=0

(−1)nm−2n

42n(4(n+ 1)2 − 1)
2nCµµ (9.62)
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where Cµµ is the linearized Cotton tensor for d = 3

Cµν = εµ
τρ∂τ

(
Rρν −

1

d− 1
gνρR

)
=

1

2
εµ
ρτ∂τ

(
2hνρ − ∂λ∂νhλρ

)
+O(h2) (9.63)

The effective action in the IR (the dominating term)

W
IR
= − 1

384π
εµνλ
ˆ
d3xhνν

(
∂λ∂

µ∂νhµµ − ∂λ2hνµ
)

+O(h3) (9.64)

corresponds to gravitational Chern-Simons term in 3d

SgCS =
1

192π
εµνλ
ˆ
d3x

(
∂µων

abωλba +
2

3
ωµa

bωνb
cωλc

a

)
(9.65)

9.4.3 3d mfm: spin 2 even part tomography

Just as for spin-1, we showed that for spin-2 in the fermion model Ward identities are

satisfied. However, similarly to the scalar case, we will also show what happens if we

knew the interaction only up to the linear order. We demonstrate our scheme to draw

out physical information from the amplitude by expanding it in the IR and UV and

subtracting the divergent and nonconserved terms from the effective action. We consider

the correlator of two spin 2 currents (7.22). For the spin 2 current, in the IR (all formulas

below have to be multiplied by the factor 1
16

if we use the energy-momentum tensor instead

of the current jµµ). All even powers of m vanish. The O(m3) term is not conserved, while

the other terms are all conserved and proportional to different combinations of the two

conserved structures.

In the UV all terms are conserved except O(m3). But putting together the analogous

non-conserved term in the UV and IR (that is subtracting the local IR term from the

(nonlocal) UV one) we recover conservation. Moreover, according to our general prescrip-

tion the term O(m) in the IR is divergent and it should be subtracted. Altogether we

have

OUV (m)−OIR(m) =
imk2

6π
Π

(2)

−1, µ2ν2(k) (9.66)

OUV (m3)−OIR(m3) =
2im3

3π
Π

(2)

1, µ2ν2(k) (9.67)

Eq. (9.66) is the linearized and local version of the EH equation of motion (see sec.7.5).
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Once again, up to local terms, the effective action is a sum of infinite many terms,

which form a convergent series both in the IR and in the UV, all of them proportional to

various combinations of the conserved structures with coefficients proportional to various

monomials of m and k.

9.4.4 3d mfm: spin 2 odd part tomography

In the IR (all formulas below have to be multiplied by the factor 1
16

for the correlator

of two energy-momentum tensors) all odd powers of m vanish. The O(m2) term is not

conserved, while the other terms are all conserved and proportional to the unique odd

conserved structure ελµνk
λπµν .

In the UV the only nonconserved tem is O(m2), but

OUV (m2)−OIR(m2) =
m2

π
ελµνk

λπµν (9.68)

is. In summary, after subtracting OIR(m2) the odd 2-pt correlator is:

− m

4πk

(
4m2 coth−1

(
2m

k

)
− 2km− k2 coth−1

(
2m

k

))
ελµνk

λπµν (9.69)

The term

O(m0) : − k2

12π
ελµνk

λπµν (9.70)

give rise to the linearized Chern-Simons action as discussed in [28].

9.4.5 4d mfm: spin 2 tomography

Let us repeat the same procedure in d = 4. In the IR the odd powers of m vanish. The

O(m4) term is not conserved, while terms m0, m2 are conserved but are divergent in the

limit ε→ 0.The logarithmic term is conserved but it is divergent in the IR. They all must

be subtracted. The remaining terms are conserved.

In the UV all the odd powers of m vanish. All terms with even m power larger than 4,

as well as O(log(m)), are conserved, while O(m0),O(m2) and O(m4) are not. According

to our prescription we have to subtract not only OIR(m0),OIR(m2) and OIR(m4), but
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also OIR(log(m)). We obtain

OUV (m4)−OIR(m4) =
im4

8π2

(
2 log

(
− k

2

m2

)
− 5

)
πµν

2 (9.71)

+
im4

8π2

(
2 log

(
− k

2

m2

)
− 1

)
πµµπνν

OUV (m2)−OIR(m2) =
im2k2

36π2

(
3 log

(
− k

2

m2

)
+1

)
πµν

2 (9.72)

−im
2k2

36π2

(
3 log

(
− k

2

m2

)
− 5

)
πµµπνν

OUV (m0)−OIR(m0) − OIR(log(m)) =
i

1800π2
k4 (9.73)

×

(
9

(
−5 log

(
− k

2

m2

)
+ 12

)
πµν

2 −
(
−15 log

(
− k

2

m2

)
+ 46

)
πµµπνν

)

They are all conserved. Eq. (9.72) contains a nonlocal linearized version of the Einstein-

Hilbert equation of motion.

9.5 Spin 3

For spin-3 fermion current we use (7.22) (instead, in [29], we used traceless current (7.27)

in d = 3 ). The two-point function reads

T̃µ3ν3(k) = −2b
d
2
c+2−d i

15
π−d/2k4md−2Γ

(
1− d

2

)
2F1

(
2, 1− d

2
;
7

2
;
k2

4m2

)
π3
µν

−2b
d
2
c−di

3
π−d/2k2md−2Γ

(
1− d

2

)
πµνπµµπνν

×
(

2F1

(
1, 1− d

2
;
5

2
;
k2

4m2

)
− 2 2F1

(
2, 1− d

2
;
5

2
;
k2

4m2

))
+i2b

d
2
c+4−dπ−d/2md+2Γ

(
−d

2
− 1

)
ηµν
(
ηµν

2 + 2ηµµηνν
)

−i2b
d
2
c+4−dπ−d/2mdΓ

(
−d

2

)(
−ηµνηννπµµk2 + ηµµηµνkν

2 + ηµµηννkµkν
)

+
m

48πk

(
10k3m+ 3

(
k2 − 4m2

)2
coth−1

(
2m

k

)
− 24km3

)
×
(
2πµν

2 + πµµπνν
)
ελµνk

λδd,3

+
4m4

3π

(
2ηµν

2 + ηµµηνν
)
ελµνk

λδd,3 (9.74)

+
m2

3π

(
−2k2ηµν

2 − ηννπµµk2 + ηµµkν
2 + 4ηµνkµkν

)
ελµνk

λδd,3
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Expansion of the even conserved part in the IR

T̃µ3ν3(k) = −
∞∑
n=0

i

(2n+ 5)!!
2b

d
2
c+3−d−nmd−4−2nπ−

d
2 Γ

(
1 + n− d

2

)
k2n+4

×πµν
(
(n− 2)π2

µν + 2(n+ 1)πµµπνν
)

(9.75)

The leading order is proportional to

T̃µ3ν3(k) ∼ md−4Γ

(
1− d

2

)
k4πµν

(
π2
µν − πµµπνν

)
(9.76)

and we get

〈〈jµ1µ2µ3(x)〉〉 ∼ md−4Γ

(
1− d

2

)
2Gµ1µ2µ3(x) (9.77)

where G̃µ1...µ3 is the generalized Einstein tensor (7.55).

In what follows we show how to draw out information from the two-point function

by expanding it in the IR and UV. We again use the scheme in which we subtract the

divergent and nonconserved terms from the effective action.

9.5.1 3d mfm: spin 3 even part tomography

Here the procedure is analogous to the scalar case. In this case one must subtract the

local terms O(m5),O(m3) in the IR, because they are not conserved. Moreover, we also

must subtract O(m1) because it diverges in the IR.

OUV (m5)−OIR(m5) :
32im5

15π
Π

(3)

2, µ3ν3 (k) (9.78)

OUV (m3)−OIR(m3) : −4im3k2

3π
πµµπµνπνν (9.79)

OUV (m1)−OIR(m1) : −2imk4

15π
Π

(3)

−1, µ3ν3 (k) (9.80)
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After that the effective action becomes

− i

480πk

(
960m6 coth−1

(
2m

k

)
− 480km5 − 240k2m4 coth−1

(
2m

k

)
(9.81)

+80k3m3 − 60k4m2 coth−1

(
2m

k

)
− 34k5m+ 15k6 coth−1

(
2m

k

))
πµν

3

− i

960πk

(
2880m6 coth−1

(
2m

k

)
− 1440km5 − 1680k2m4 coth−1

(
2m

k

)
+ 720k3m3

+300k4m2 coth−1

(
2m

k

)
− 98k5m− 15k6 coth−1

(
2m

k

))
πµµπµνπνν

Eq.(9.79) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.5.2 3d mfm: spin 3 odd part tomography

One must subtract the local terms O(m4),O(m2) in the IR, which are not conserved.

OUV (m4)−OIR(m4) : −8m4

3π
Π

(2)
1
2
, µ2ν2

(k) ελµνk
λ (9.82)

OUV (m2)−OIR(m2) :
2m2k2

3π
Π

(2)
1
2
, µ2ν2

(k) ελµνk
λ (9.83)

After that the effective action becomes:

− m

24πk

(
(48m4 − 24m2k2 + 3k4) coth−1

(
2m

k

)
− 24km3 + 10k3m

)
ελµνk

λ Π
(2)
1
2
, µ2ν2

(k)

9.5.3 4d mfm: spin 3 tomography

The scheme is the same as above. In the IR the odd power of m vanish. The even pow-

ers m2n with n < 0 are conserved together with the term proportional to log(m). The

terms OIR(m0),OIR(m2),OIR(m6) and OIR(m6) are not conserved. Of course O(log(m))

diverges in the IR, while the term OIR(m0) diverges for ε→ 0. According to our prescrip-

tion all these terms, which are local, have to be subtracted from the effective action. In

the UV the odd m power terms vanish. The even power of order 2, 4, 6 are not conserved,

190



but again

OUV (m0)−OIR(m0)−OIR(log(m)) = − ik6

22050π2

(
−210 log

(
− k

2

m2

)
+ 599

)
πµν

3

+
ik6

44100π2

(
−105 log

(
− k

2

m2

)
+ 457

)
πµνπµµπνν

and

OUV (m2)−OIR(m2) = − im
2k4

225π2

(
15 log

(
− k

2

m2

)
− 16

)
πµν

3 (9.84)

+
im2k4

450π2

(
30 log

(
− k

2

m2

)
− 77

)
πµνπµµπνν

OUV (m4)−OIR(m4) =
im4k2

3π2
πµν

3 − im4k2

12π2

(
2 log

(
− k

2

m2

)
−3

)
πµνπµµπνν (9.85)

OUV (m6)−OIR(m6) =
im6

9π2

(
6 log

(
− k

2

m2

)
− 7

)
πµν

3 (9.86)

+
im6

9π2

(
12 log

(
− k

2

m2

)
− 5

)
πµνπµµπνν

.... ....

are all conserved. Eq.(9.85) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.6 Correlators

We also made a systematic collection of results for the massive case concerning all types

of two-point correlators, including the mixed ones, for symmetric currents of spin up to 5

and in dimension 3 ≤ d ≤ 6. Since the volume of these formulas is rather big it is moved

to the ancillary file [30]. A part of this material is nevertheless kept here in the main text:

sections 9.6.1 and 9.6.2 contain some representative calculations.

For even d, we use d → d + ε and expand around ε. For odd d this is not necessary.

It is convenient to use the following shorthand notation

Ln =
2

ε
+ log

(
m2

4π

)
+ γ −

n∑
k=1

1

k
(9.87)

as well as

K = log

(
− k

2

m2

)
, P =

2

ε
+ log

(
− k

2

4π

)
+ γ (9.88)
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We see that there is a relationship P = K + L0. Furthermore we define

T = −
2i coth−1

(
2m
k

)
π

, S =
√

4m2 − k2 csc−1

(
2m

k

)
(9.89)

It turns out that T is useful in even dimensions d and S is useful in odd. The branches

of the functions T and S are chosen such that the IR and UV expansions are

T
IR
= − ik

πm
− ik3

12πm3
− ik5

80πm5
+ . . . (9.90)

S
IR
= k − k3

12m2
− k5

120m4
+ . . . (9.91)

T
UV
= 1− 4im

πk
− 16im3

3πk3
− 64im5

5πk5
+ . . . (9.92)

S
UV
=

kK

2
− m2 (1 +K)

k
+
m4 (1− 2K)

2k3
+
m6 (5− 6K)

3k5
+ . . . (9.93)

In the following two sections we list the results for fermions for mixed spin 3 - spin

5 amplitudes for dimensions 3 and 4. Section 4.1 contains the full transverse analytic

expressions of the correlators. Section 4.2 contains the UV and IR expansions of the

latter.

9.6.1 Fermion amplitudes for spins 3x5

Fermions, spin 3 x 5, dimension 3:

T̃ f,t
µ3ν5;3D = k8π3

µνπνν

(
i

4π

(
− 3

16

m

k2
+

3

4

m3

k4
− 31

3

m5

k6
+ 20

m7

k8

)
+

+T

(
− 3

256

1

k
+

1

16

m2

k3
+

3

8

m4

k5
− 3

m6

k7
+ 5

m8

k9

))
+

+ k8πµµπµνπ
2
νν

(
i

4π

(
7

64

m

k2
+

155

48

m3

k4
− 47

4

m5

k6
+ 15

m7

k8

)
+

+T

(
7

1024

1

k
− 9

64

m2

k3
+

33

32

m4

k5
− 13

4

m6

k7
+

15

4

m8

k9

))
+

+ k6(k · ε)µνπ2
µνπνν

(
1

π

(
3

4

m2

k2
− 8

3

m4

k4
+ 4

m6

k6

)
+

+iT

(
1

16

m

k
− 3

4

m3

k3
+ 3

m5

k5
− 4

m7

k7

))
+

+ k6(k · ε)µνπµµπ2
νν

(
1

π

(
− 1

16

m2

k2
− 2

3

m4

k4
+
m6

k6

)
+

+iT

(
1

64

m

k
− 3

16

m3

k3
+

3

4

m5

k5
− m7

k7

))
(9.94)
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T̃ f,nt
µ3ν5;3D =

(
kµk

3
νηµµηνν + k2

µk
2
νηµνηνν

)(
− 8i

3π
m3

)
+
(
k4
νηµµηµν + k3

µkνη
2
νν

)(
− 4i

3π
m3

)
+

+
(
kµkνηµµη

2
νν + k2

µηµνη
2
νν

)( i
π

(
4

3
k2m3 − 32

5
m5

))
+

+ k2
νηµµηµνηνν

(
i

π

(
8

3
k2m3 − 64

5
m5

))
+ kµkνη

2
µνηνν

(
−64i

5π
m5

)
+

+ k2
νη

3
µν

(
− 64i

15π
m5

)
+ ηµµηµνη

2
νν

(
i

π

(
−4

3
k4m3 +

32

5
k2m5 − 64

5
m7

))
+

+ η3
µνηνν

(
i

5π

(
64

3
k2m5 − 512

7
m7

))
+ k2

µk
2
ν(k · ε)µνηνν

(
− 1

π
m2

)
+

+ kµk
3
ν(k · ε)µνηµν

(
− 2

π
m2

)
+ k2

ν(k · ε)µνηµµηνν
(
− 8

3π
m4

)
+

+ k2
µ(k · ε)µνη2

νν

(
− 4

3π
m4

)
+ kµkν(k · ε)µνηµνηνν

(
1

3π

(
6k2m2 − 32m4

))
+

+ k2
ν(k · ε)µνη2

µν

(
1

3π

(
3k2m2 − 16m4

))
+

+ (k · ε)µνηµµη2
νν

(
1

π

(
4

3
k2m4 − 16

5
m6

))
+

+ (k · ε)µνη2
µνηνν

(
1

π

(
−k4m2 +

16

3
k2m4 − 64

5
m6

))
(9.95)

Fermions, spin 3 x 5, dimension 4:

T̃ f,t
µ3ν5;4D = k8π3

µνπνν

(
i

7π2

((
1937

14175
− 2L0

45

)
+

(
−1622

1575
+

2L0

5

)
m2

k2
− 32

15

m4

k4
+

+
2432

135

m6

k6
− 256

9

m8

k8

)
+

+
iS

3π2

(
− 4

105

1

k
+

4

15

m2

k3
+

16

35

m4

k5
− 704

105

m6

k7
+

256

21

m8

k9

))
+

+ k8πµµπµνπ
2
νν

(
i

π2

((
− 1231

132300
+

L0

420

)
+

(
258

1225
− 2L0

35

)
m2

k2
− 104

105

m4

k4
+

+
128

45

m6

k6
− 64

21

m8

k8

)
+

+
iS

π2

(
1

210

1

k
− 11

105

m2

k3
+

4

5

m4

k5
− 272

105

m6

k7
+

64

21

m8

k9

))
(9.96)
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T̃ f,nt
µ3ν5;4D =

(
kµk

3
νηµµηνν + k2

µk
2
νηµνηνν

)(iL2

π2
m4

)
+
(
k4
νηµµηµν + k3

µkνη
2
νν

)( iL2

2π2
m4

)
+

+
(
kµkνηµµη

2
νν + k2

µηµνη
2
νν

)( i

2π2

(
−L2k

2m4 + 4L3m
6
))

+

+ k2
νηµµηµνηνν

(
i

π2

(
−L2k

2m4 + 4L3m
6
))

+ kµkνη
2
µνηνν

(
4iL3

π2
m6

)
+

+ k2
νη

3
µν

(
4iL3

3π2
m6

)
+ ηµµηµνη

2
νν

(
i

2π2

(
L2k

4m4 − 4L3k
2m6 + 7L4m

8
))

+

+ η3
µνηνν

(
i

3π2

(
−4L3k

2m6 + 12L4m
8
))

(9.97)

9.6.2 Expansions in UV and IR for fermions for spins 3x5

Fermions, spin 3 x 5, dimension 3:

T̃ f,t,UV
µ3ν5;3D = k8π3

µνπνν

(
− 3

256

1

k
+

1

16

m2

k3
+

3

8

m4

k5
− 64i

15π

m5

k6
− 3

m6

k7
+ . . .

)
+ k8πµµπµνπ

2
νν

(
7

1024

1

k
− 9

64

m2

k3
+

4i

3π

m3

k4
+

33

32

m4

k5
− 32i

5π

m5

k6
− 13

4

m6

k7
+ . . .

)
+ k6(k · ε)µνπ2

µνπνν

(
i

16

m

k
+

1

π

m2

k2
− 3i

4

m3

k3
− 16

3π

m4

k4
+ 3i

m5

k5
+

64

5π

m6

k6
+ . . .

)
+ k6(k · ε)µνπµµπ2

νν

(
i

64

m

k
− 3i

16

m3

k3
− 4

3π

m4

k4
+

3i

4

m5

k5
+

16

5π

m6

k6
+ . . .

)
(9.98)

T̃ f,t,IR
µ3ν5;3D = k8π3

µνπνν

(
i

π

(
− 4

35

m

k2
+

2

315

1

m
+

1

4620

k2

m3
+

1

60060

k4

m5
+ . . .

))
+ k8πµµπµνπ

2
νν

(
i

5π

(
4

7

m

k2
− 1

84

1

m
− 1

5544

k2

m3
− 1

192192

k4

m5
+ . . .

))
(9.99)

+ k6(k · ε)µνπ2
µνπνν

(
1

π

(
1

5

m2

k2
+

1

35
+

1

1260

k2

m2
+

1

18480

k4

m4
+ . . .

))
+ k6(k · ε)µνπµµπ2

νν

(
1

π

(
−1

5

m2

k2
+

1

140
+

1

5040

k2

m2
+

1

73920

k4

m4
+ . . .

))

194



Fermions, spin 3 x 5, dimension 4:

T̃ f,t,UV
µ3ν5;4D = k8π3

µνπνν

(
i

π2

((
1937

99225
− 2P

315

)
+

(
− 494

3675
+

2P

35

)
m2

k2
− 2

5

m4

k4

+

(
22

9
− 4K

3

)
m6

k6
+ . . .

))
+ k8πµµπµνπ

2
νν

(
i

π2

((
− 1231

132300
+

P

420

)
+

(
1513

7350
− 2P

35

)
m2

k2
+

+

(
−53

60
+
K

2

)
m4

k4
+ (2− 2K)

m6

k6
+ . . .

))
(9.100)

T̃ f,t,IR
µ3ν5;4D = k8π3

µνπνν

(
i

5π2

((
−2

7
+

2L0

7

)
m2

k2
− 2L0

63
+

1

462

k2

m2
+

1

9009

k4

m4
+ . . .

))
+ k8πµµπµνπ

2
νν

(
i

35π2

(
(2− 2L0)

m2

k2
+
L0

12
− 1

396

k2

m2
− 1

20592

k4

m4
+ . . .

))
(9.101)

9.7 Parity-odd part

In this section we focus on the parity-odd part streaming from the mixed 2-point correla-

tors in 3d. We will look at UV an IR leading terms in the expansion of the full correlator

and find generalized expressions for dimension d and two higher spin fields s1 and s2. The

general expression for dominating term in the correlator of two simple fermion currents

for spin s1 × s2, s2 > s1 (7.16) in the UV is

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2

(
2b s2−1

2
c
)
!!
(
s1 + s2 − 2b s1−1

2
c − 3

)
!!mks1+s2−3

22(s1 + s2 − 2)!!
(
2b s2−1

2
c − 2b s1−1

2
c
)
!!

(9.102)

×π
s2−s1

2
νν εσµνk

σ

b s1
2
c−1∑

l=0

(s1 − 1)!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l − 1)!(s2 − s1 + 2l)!!
πlµµπ

l
ννπ

s−2l−1
µν

In the IR instead we have a general expression for spin s1 × s2, s2 > s1

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2
−1

(
2b s2−1

2
c
)
!!
(
s1 + s2 − 2b s1−1

2
c − 3

)
!!ks1+s2−2

22π(s1 + s2 − 1)!!
(
2b s2−1

2
c − 2b s1−1

2
c
)
!!

(9.103)

×π
s2−s1

2
νν εσµνk

σ

b s1
2
c−1∑

l=0

(s1 − 1)!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l − 1)!(s2 − s1 + 2l)!!
πlµµπ

l
ννπ

s−2l−1
µν

For traceless currents (traceless in the limit m → 0) we use (7.26) with coefficients
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(7.27). General expression for dominating term in the UV of 2-point correlators with

traceless currents for spin s1 × s2, s2 > s1 is

T̃µ1...µs1ν1...νs2 = (−1)
s1+s2

2
imks1+s2−3

2s2+1
π
s2−s1

2
νν

b s1
2
c∑

l=0

(−1)lΓ (s1 − l)
22ll!Γ (s1 − 2l)

πlµµπ
l
ννπ

s1−2l−1
µν εσµνk

σ(9.104)

= (−1)
s1+s2

2
imks1+s2−3

2s2+1
π
s2−s1

2
νν πs1−1

µν 2F1

(
1− s1

2
,−s1

2
, 1− s1,

πµµπνν
π2
µν

)
εσµνk

σ

This formula is a straightforward generalization of the linearized action proposed long ago

by Pope and Townsend, [44], for conformal higher spin fields.

For completeness let us give also some examples of the expressions for the correlators

with traceless currents ((7.26) with coefficients (7.27)) in the IR, even though we are

not able to write a general expression. Also, for spin 0 × 2n full amplitudes are zero.

Dominating terms in the IR:

Spin 1× 1 : T̃µν =
1

4π
εσµνk

σ (9.105)

Spin 1× 3 : T̃µν3 = − ik
2

48π
πννεσµνk

σ (9.106)

Spin 2× 2 : T̃µ2ν2 = − k2

12π
πµνεσµνk

σ (9.107)

Spin 2× 4 : T̃µ2ν4 =
k4

120π
πννπµνεσµνk

σ (9.108)

Spin 3× 3 : T̃µ3ν3 =
k4

960π

(
32π2

µν − 9πµµπνν
)
εσµνk

σ (9.109)

Spin 3× 5 : T̃µ3ν5 = − k6

26880π
πνν
(
96π2

µν − 25πµµπνν
)
εσµνk

σ (9.110)

Spin 4× 4 : T̃µ4ν4 = − k6

1680π
πµν
(
24π2

µν − 3πµµπνν
)
εσµνk

σ (9.111)

Spin 4× 6 : T̃µ4ν6 =
k8

40320π
πµνπνν

(
64π2

µν − 33πµµπνν
)
εσµνk

σ (9.112)

Spin 5× 5 : T̃µ5ν5 =
k8

322560π

(
2048π4

µν − 1632π2
µνπµµπνν + 147π2

µµπ
2
νν

)
εσµνk

σ(9.113)

9.8 Diagonalization

Just like for scalars in the previous chapter, in this chapter we again showed that different

choices of currents lead to different effective actions. Let us now see if we can choose

currents so that the mixed correlators vanish.
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9.8.1 ”Local” currents

We can write a general form of spin - s current

jf
µ1...µs

= is−1

b s
2
c∑

l=0

a
(s)
l (2πµµ)l

(
ψ̄γµ

(↔
∂µ

)s−2l−1

ψ

)
(9.114)

where a
(s)
l are numerical coefficients with a

(s)
0 = 1. For s 6= 0 and we can introduce also

spin-0 current jf
µ0 = ψ̄ψ.

Amplitude 0x2. We use the current

jf
µ2 = i

(
ψ̄γµ

(↔
∂µ

)2

ψ + a
(2)
1 2πµµ

(
ψ̄ψ
))

(9.115)

where in this case, contrary to scalar case (see chapter 8.7.1), we neglected the terms such

as (2 + m2). These terms vanish on-shell, contribute only to the nonconserved part and

they effectively behave like counterterms. The conserved part of 0x2 amplitude is

T̃ t
ν2 =

i2−d+b d
2
cπ−d/2md−3Γ

(
1− d

2

)
3

k2πνν (9.116)

×
(
−1

2
(d− 2) 2F1

(
1, 2− d

2
;
5

2
;
k2

4m2

)
+ 3(d− 1)ma

(2)
1 2F1

(
1, 1− d

2
;
3

2
;
k2

4m2

))

and the conserved part of the correlator with mixed spins 0x2 vanishes for

a
(2)
1 =

(d− 2)2F1

(
1, 2− d

2
; 5

2
; k2

4m2

)
6(d− 1)2F1

(
1, 1− d

2
; 3

2
; k2

4m2

) (9.117)

Just like in the scalar case, the coefficient a
(2)
1 is a function of momenta and mass. If we

expand it in powers of the momentum k2 , we get an interaction with infinite number of

higher derivative terms. The non-conserved part

T̃ nt
ν2 = −i2−d+b d

2
cdπ−d/2md−1Γ

(
−d

2

)
ηνν (9.118)

is local and can be canceled by a counterterm. Similar conclusions can be drawn for spin

1x3 amplitude. For spin 4 (and higher), the non-conserved part of the correlator again

depends on the coefficients a
(4)
l . This coefficient, once expanded in powers of momenta,

brings infinite number of non-conserved terms. Moreover, for spin 4 (and higher) there is
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no choice of coefficients a
(4)
1 and a

(4)
2 for which the conserved part of the correlators with

mixed spins 0x4 and 2x4 vanishes. We again conclude that it is not possible to diagonalize

the 2-pt correlators.

In the massless limit all non-diagonal terms vanish for (7.27), that is for the choice of

coefficient for traceless scalar currents given in (7.27). In this case only the correlators

for currents of equal spins are non-vanishing and they are given by (9.11).

9.8.2 Traceless non-local currents

Just like in the scalar case, we construct on-shell traceless currents. We write down a

general form of current

j̄f
µs =

b s
2
c∑

l=0

b
(s)
l πlµµj

f [l]
µs−2l

(9.119)

where jf
µs is a simple fermion current (7.22). The l-th trace of the simple current reads

j(s)[l]
µs−2l

= is−1 2k(s− 1)!

(s− 2l)!
ψ̄γν

↔
∂
ν (↔

∂µ

)s−2l (↔
∂
)2(l−1)

ψ

+is−1 (s− 1)!

(s− 2l − 1)!
ψ̄γµ

(↔
∂µ

)s−2l−1 (↔
∂
)2l

ψ (9.120)

and b
(s)
l are numerical coefficients. We also use spin zero current J

(s)
µ0 = ψ̄ψ. If we impose

tracelessness (on-shell) we get a recurrence relation:

b
(s)
l = − 1

2l(d− 3 + 2s− 2l)
b

(s)
l−1 (9.121)

We choose b
s)
0 = 1, so that the coefficient b

(s)
l reads:

b
(s)
l =

(−1)l
(
s− l − 1 + d−3

2

)
!

22ll!
(
s− 1 + d−3

2

)
!

(9.122)

For this exact choice of coefficients, the conserved parts of all mixed-spin correlators van-

ish. The conserved part of the amplitude with equal spin currents (9.119) and coefficients
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(9.122) for general spin s is proportional to

T̃µsνs ∼ k2s

b s
2
c∑

l=0

alπ
l
µµπ

l
ννπ

s−2l
µν (9.123)

where the coefficient al, just like in the scalar case, corresponds to the coefficient for the

traceless amplitude (7.42). Let us give some examples:

Spin 2× 2 : T̃µ2ν2 = −
i2−d+b d

2
cπ−d/2k2md−2Γ

(
1− d

2

)
3

(
π2
µν −

1

(d− 1)
πµµπνν

)
×
(

2F1

(
1, 1− d

2
;
5

2
;
k2

4m2

)
− 2 2F1

(
2, 1− d

2
;
5

2
;
k2

4m2

))
Spin 3× 3 : T̃µ3ν3 = − i

15
22−d+b d

2
cπ−d/2k4πµνm

d−4

(
π2
µν −

3

(d+ 1)
πµµπνν

)
×2F1

(
2, 1− d

2
;
7

2
;
k2

4m2

)

Again, similarly to scalars, the non-conserved parts of the amplitudes does not vanish.

These terms are non-local, and because of that they cannot be canceled by a counterterm.

To avoid nonlocality, we can, instead of

Sint ∼
∑
s

ˆ
ddxJµ1...µsϕ

µ1...µs (9.124)

use a higher derivative coupling

Sint ∼
∑
s

ˆ
ddxJµ1...µs2

nϕµ1...µs ∼
∑
s

ˆ
ddx2nJµ1...µsϕ

µ1...µs (9.125)

It is enough to put n = b s
2
c. Then, all amplitudes should be multiplied by (k2)b

s1
2
c+b s2

2
c.

In that case the nonconserved parts become local and we can subtract them by a finite

number of counterterms.
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Chapter 10

Worldline quantization of a fermion

model

In this chapter we will turn our attention to another quantization method, the worldline

quantization method and apply it to a free Dirac fermion coupled to external sources

[33]. Similar computation for the scalar model has already been worked out in [128].

The advantage of this method is that it gives the exact form of the higher spin gauge

symmetry.

In particular, we will determine the expression for the effective action, by expanding it

in a perturbative series, and determine the generalized equations of motion. This proce-

dure will allow us, in the next chapter, to show that this setup of the theory accommodates

an L∞ algebra. In this chapter we closely follow [33].

10.1 Fermion linearly coupled to higher spin fields

Let us consider a free fermion theory

S0 =

ˆ
ddxψ(iγ ·∂ −m)ψ, (10.1)

coupled to external sources. We second-quantize it using the Weyl quantization method

for a particle worldline. The full action is expressed as an expectation value of operators

as follows

S = 〈ψ| − γ ·(P̂ − Ĥ)−m|ψ〉 (10.2)
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Here P̂µ is the momentum operator whose symbol is the classical momentum pµ. Ĥ is an

operator whose symbol is h(x, p), where

hµ(x, p) =
∞∑
n=0

1

n!
hµµ1...µn(s) (x) pµ1 . . . pµn (10.3)

s = n + 1 is the spin and the tensors are assumed to be symmetric. We recall that a

quantum operator Ô can be represented with a symbol O(x, p) through the Weyl map

Ô =

ˆ
ddx ddy

ddk

(2π)d
ddp

(2π)d
O(x, p) eik·(x−X̂)−iy·(p−P̂ ) (10.4)

where X̂ is the position operator. Next we insert this into the RHS of (10.2), where we

also insert two completenesses
´
ddx|x〉〈x|, and make the identification ψ(x) = 〈x|ψ〉.

Expressing S in terms of symbols we find

S = S0 +

ˆ
ddq

(2π)d
ddx ddz eiq·z ψ

(
x+

z

2

)
γ ·h(x, q)ψ

(
x− z

2

)
(10.5)

= S0 +
∞∑
n=0

ˆ
ddx

in

n!

∂

∂zµ1
. . .

∂

∂zµn
ψ
(
x+

z

2

)
γµh

µµ1...µn(x)ψ
(
x− z

2

) ∣∣∣
z=0

= S0 +
∞∑
s=1

ˆ
ddx jµ1...µs(x)hµ1...µs(s) (x)

The symmetric tensor field hµµ1...µn is linearly coupled to the HS (higher spin) current

jµµ1...µs−1(x) =
is−1

(s− 1)!

∂

∂z(µ1
. . .

∂

∂zµs−1
ψ
(
x+

z

2

)
γµ)ψ

(
x− z

2

) ∣∣∣
z=0

. (10.6)

For instance, for s = 1 and s = 2 one obtains

jµ = ψγµψ (10.7)

jµµ1 =
i

2

(
∂(µ1ψγµ)ψ − ψγ(µ∂µ1)ψ

)
(10.8)

and we see that these currents correspond to simple fermion currents given in (7.22). The

HS currents are on-shell conserved in the free theory (10.1)

∂µj
µµ1···µs−1 = 0 (10.9)
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which is a consequence of invariance of S0[ψ] on global (rigid) transformations

δnψ(x) = −(−i)n+1

n!
εµ1···µn(n) ∂µ1 . . . ∂µnψ(x) (10.10)

We shall next show that for the full action (10.5) this extends to the local symmetry.

The consequence is that the currents are still conserved, with the HS covariant derivative

substituting ordinary derivative in (10.9).

Notice that these currents are conserved even without symmetrizing µ with the other

indices. But in the sequel we will suppose that they are symmetric.

10.2 Symmetries

The action (10.2) is trivially invariant under the operation

S = 〈ψ|ÔÔ−1ĜÔÔ−1|ψ〉 (10.11)

where Ĝ = −γ ·(P̂ − Ĥ)−m. So it is invariant under

Ĝ −→ Ô−1ĜÔ, |ψ〉 −→ Ô−1|ψ〉 (10.12)

Writing Ô = e−iÊ we easily find the infinitesimal version.

δ|ψ〉 = iÊ|ψ〉, δ〈ψ| = −i〈ψ|Ê, (10.13)

and

δĜ = i[Ê , Ĝ] = i[γ ·(P̂ − Ĥ) , Ê] = γ ·δĤ (10.14)

Let the symbol of Ê be ε(x, p), then the symbol of [iγ ·P̂ , Ê] is

ˆ
ddy〈x− y

2
|[iγ ·P̂ , Ê]|x+

y

2
〉 eiy·p (10.15)

202



An easy way to make this explicit is to use the fact that the symbol of the product of two

operators is given by the Moyal product of the symbols. Thus

Symb
(
[γ ·P̂ , Ê]

)
= [γ ·p ∗, ε(x, p)] = γ ·p e−

i
2

→
∂x·
←
∂pε(x, p)− ε(x, p) e

i
2

←
∂x·
→
∂pγ ·p

= −iγ ·∂xε(x, p) (10.16)

Similarly

Symb
(
[Ĥµ, Ê]

)
= [hµ(x, p) ∗, ε(x, p)] (10.17)

where [a ∗, b] ≡ a ∗ b− b ∗ a. Therefore, in terms of symbols,

δεh
µ(x, p) = ∂µxε(x, p)− i[hµ(x, p) ∗, ε(x, p)] ≡ D∗µx ε(x, p) (10.18)

where we introduced the covariant derivative defined by

D∗µx = ∂µx − i[hµ(x, p) ∗, ] (10.19)

This will be referred to hereafter as HS transformation, and the corresponding symmetry

HS symmetry.

The transformations of ψ are somewhat different. They can also be expressed as Moyal

product of symbols

δεψ̃(x, p) = iε(x, p) ∗ ψ̃(x, p) (10.20)

provided we use the partial Fourier transform

ψ̃(x, p) =

ˆ
ddy ψ

(
x− y

2

)
eiy·p. (10.21)

and finally we antitransform back the result. Alternatively we can proceed as follows. We

compute

〈x|Ê|ψ〉 =

ˆ
ddk

(2π)d
ddp

(2π)d
ddx′ddy′ ε(x′, p) 〈x|eik·(x′−X̂)−iy′·(p−P̂ )|ψ〉 (10.22)

=

ˆ
ddk

(2π)d
ddp

(2π)d
ddx′ddy′ ε(x′, p′) eik·(x

′−x)−iy′·p〈x|eiy′P̂ |ψ〉e−
i
2
y′·k
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Next we insert a momentum completeness
´
ddq|q〉〈q| to evaluate 〈x|eiy′P̂ |ψ〉 and subse-

quently a coordinate completeness to evaluate 〈q|ψ〉 using the standard relation 〈x|p〉 =

eip·x. Then we produce two delta functions by integrating over k and q. In this way we

get rid of two coordinate integrations. Finally we arrive at

δεψ(x) = i〈x|Ê|ψ〉 = i

ˆ
ddp

(2π)d
ddz ε

(
x+

z

2
, p
)
e−ip·z ψ(x+ z) (10.23)

= i
∞∑
n=0

ˆ
ddp

(2π)d
ddz

e−ip·z

n!
(−i∂z)n ·

(
ε(n)

(
x+

z

2

)
ψ(x+ z)

)
=

∞∑
n=0

i

n!
(−i∂z)n ·

(
ε(n)

(
x+

z

2

)
ψ(x+ z)

) ∣∣∣
z=0

= iε(0)(x)ψ(x) + εµ(1)(x) ∂µψ(x) +
1

2
∂µε

µ
(1)(x)ψ(x)

− i
2

(
εµν(2) ∂µ∂νψ + ∂µε

µν
(2) ∂νψ +

1

4
∂µ∂νε

µν
(2) ψ

)
(x) + . . .

where a dot denotes the contraction of upper and lower indices. The first method leads

to the same result.

Now we want to understand the conservation law ensuing from the HS symmetry of

the interacting classical action (10.5)

0 = δεS[ψ, h] =

ˆ
ddx

(
δS

δψ(x)
δεψ(x) + δεψ(x)

δS

δψ(x)
+

ˆ
ddp

δS

δhµ(x, p)
δεh

µ(x, p)

)

Now we evaluate this expression on the classical solution, in which case the first two terms

vanish (remember that h is the background field). We are left with

0 =

ˆ
ddx

ˆ
ddp Jµ(x, p) δεh

µ(x, p) (on− shell) (10.24)

where

Jµ(x, p) ≡
ˆ
ddz eip·z ψ

(
x+

z

2

)
γµ ψ

(
x− z

2

)
(10.25)

Using (10.18), partially integrating and using the following property of the Moyal product

ˆ
ddx

ˆ
ddp a(x, p)[b(x, p) ∗, c(x, p)] =

ˆ
ddx

ˆ
ddp [a(x, p) ∗, b(x, p)] c(x, p) (10.26)
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we obtain

0 =

ˆ
ddx

ˆ
ddp ε(x, p)D∗µx Jµ(x, p) (on− shell) (10.27)

From this follows the conservation law in the classical interacting theory

D∗µx Jµ(x, p) = 0 (on− shell) (10.28)

Using the ∗-Jacobi identity (it holds also for the Moyal product, because it is associa-

tive) one can easily get

(δε2δε1 − δε1δε2)hµ(x, p) = i (∂x[ε1
∗, ε2](x, p)− i[hµ(x, p) ∗, [ε1

∗, ε2](x, p)]])

= iD∗µx [ε1
∗, ε2](x, p) (10.29)

We see that the HS ε-transform is of the Lie algebra type.

10.3 Perturbative expansion of the effective action

In this subsection we work out (heuristic) rules, similar to the Feynman ones, to compute

n-point amplitudes in the above fermion model. The purpose is to reproduce formulas

similar to those of [128] for the scalar case. We would like to point out, however, that

this is not strictly necessary: the good old Feynman rules are anyhow a valid alternative.

We start from the representation of the effective action as trace-logarithm of a differ-

ential operator:

W [h] = N Tr[ln Ĝ] (10.30)

and use a well-known mathematical formula to regularize it

Wreg[h, ε] = −N
ˆ ∞
ε

dt

t
Tr
[
e−tĜ

]
(10.31)

where ε is an infrared regulator. The crucial factor is therefore

K[g|t] ≡ Tr
[
e−tĜ

]
= Tr

[
et(γ·(P̂−Ĥ)+m)

]
, (10.32)
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known as the heat kernel, where g is the symbol of Ĝ. The trace Tr includes both an

integration over the momenta and tr, the trace over the gamma matrices,

K[g|t] = emt
ˆ

ddp

(2π)d
tr〈p|etγ·(P̂−Ĥ)|p〉 (10.33)

Next we expand

etγ·(P̂−Ĥ) = et γ·P̂
∞∑
n=0

(−1)n
ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn γ ·Ĥ(τ1) γ ·Ĥ(τ2) . . . γ ·Ĥ(τn)

where γ ·Ĥ(τ) = e−τ γ·P̂γ ·Ĥ eτ γ·P̂ . We have

〈p|γ ·Ĥ(τ)|q〉 = e−τ γ·p〈p|γ ·Ĥ|q〉 eτ γ·q (10.34)

Using a formula analogous to (10.22) for Ĥ and inserting completenesses one finds

〈p|γ ·Ĥ|q〉 =

ˆ
ddx

ˆ
ddy

ddk

(2π)d
ddp′

(2π)d
γ ·h(x, p′)〈p|eik·(x−X̂)−iy·(p′−P̂ )|q〉 (10.35)

=

ˆ
ddx γ ·h(x, ∂u)e

i(q−p)·x+u· p+q
2

∣∣∣
u=0

Therefore

〈p|γ ·Ĥ(τ)|q〉 =

ˆ
ddx e−τ γ·p γ ·h(x, ∂u) e

τ γ·q ei(q−p)·x+u· p+q
2

∣∣∣
u=0

(10.36)

Using this we can write

Tr
[
e−tĜ

]
= emt

∞∑
n=0

(−1)n
ˆ n∏

i=1

ddpi
(2π)d

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn

× tr
(
et γ·pn〈pn|γ ·Ĥ(τ1)|p1〉〈p1|γ ·Ĥ(τ2)|p2〉 . . . 〈pn−1|γ ·Ĥ(τn)|pn〉

)
= emt

∞∑
n=0

(−1)n
ˆ n∏

i=1

ddxi
ddpi

(2π)d

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn

× tr
(
e(t−τ1) γ·pnγµ1e(τ1−τ2) γ·p1γµ2 . . . γµn−1e(τn−1−τn) γ·pn−1γµneτnγ·pn

)
×

n∏
j=1

e
ipj ·
(
xj−xj+1−i

uj+1+uj
2

)
hµ1

(
x1,

←
∂u1

)
. . . hµn

(
xn,

←
∂un

) ∣∣∣
uj=0

(10.37)

where xn+1 = x1. Now we can factor out inK[g, t] the terms hµ1

(
x1,

←
∂u1

)
. . . hµn

(
xn,

←
∂un

)
,
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and write

K[g|t] =
∞∑
n=0

〈〈K(n)µ...µ(t)|h⊗nµ 〉〉 (10.38)

where the double brackets means integration of the xi and derivation with respect to the

ui. In turn K(n)µ...µ(t) can be written more explicitly as

Kµ1...µn(x1, u1, . . . , xn, un|t) = etm
ˆ n∏

j=1

ddpj
(2π)d

e
ipj ·
(
xj−xj+1−i

uj+1+uj
2

)
K̃µ1...µn(p1, . . . , pn|t) (10.39)

where we symmetrized

K̃µ1...µn(p1, . . . , pn|t) =
(−1)n

n

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn (10.40)

× tr
(
γµ1e(τ1−τ2) γ·p1γµ2 . . . γµn−1e(τn−1−τn) γ·pn−1γµne(τn−τ1) γ·pnetγ·pn

+ γµ2e(τ1−τ2) γ·p2γµ3 . . . γµne(τn−1−τn) γ·pnγµ1e(τn−τ1) γ·p1etγ·p1

...

+ γµne(τ1−τ2) γ·pnγµ1 . . . γµn−2e(τn−1−τn) γ·pn−2γµn−1e(τn−τ1) γ·pn−1etγ·pn−1

)
Note that in the above equation, for n = 0, there is no need for symmetrization and hence

there is no 1
n

term.

Now, the nested integral can be rewritten in the following way

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn =

ˆ t

0

dσ1

ˆ t−σ1

0

dσ2

ˆ t−σ1−σ2

0

dσ3 . . .

ˆ t−σ1−...−σn−1

0

dσn

=

ˆ ∞
0

dσ1

ˆ ∞
0

dσ2 . . .

ˆ ∞
0

dσn θ(t− σ1 − . . .− σn)(10.41)

where σi = τi−1 − τi, with τ0 = t. Notice that defining σ0 = t − σ1 − . . . − σn we can

identify σ0 = τn. Next one uses the following representation of the Heaviside function

θ(t) = lim
ε→0+

ˆ ∞
−∞

dω

2πi

eiωt

ω − iε
= lim

ε→0+

ˆ ∞
−∞

dω

2π
eiωt
ˆ ∞

0

dσ0 e
−iσ0(ω−iε) (10.42)

The ω integration has to be understood as a contour integration. Using this in (10.41)
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we obtain

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn =

ˆ ∞
−∞

dω

2π
eiωt
ˆ ∞

0

dσ0

ˆ ∞
0

dσ1 . . .

ˆ ∞
0

dσn e
−i(σ0+...+σn)(ω−iε)

Replacing this inside (10.40) we get

K̃µ1...µn(p1, . . . , pn|t) =
(−1)n

n

ˆ ∞
−∞

dω

2π
eiωt
ˆ ∞

0

dσ0

ˆ ∞
0

dσ1 . . .

ˆ ∞
0

dσn (10.43)

×tr
[
γµ1eσ2(γ·p1−iω′)γµ2 . . . γµn−1eσn(γ·pn−1−iω′)γµne(σ0+σ1)(γ·pn−iω′)

. . .

+ γµneσ2(γ·pn−iω′)γµ1 . . . γµn−2eσn(γ·pn−2−iω′)γµn−1e(σ0+σ1)(γ·pn−1−iω′)
]

where ω′ = ω − iε and ε in the exponents allows us to perform the integrals1, the result

being

K̃µ1...µn(p1, . . . , pn|t) =
(−1)n

n

ˆ ∞
−∞

dω

2π
eiωt (10.44)

× tr
[
γµ1

−1

/p1
− iω′

γµ2 . . . γµn−1
−1

/pn−1
− iω′

γµn
1

(/pn − iω
′)2

. . .

+ γµn
−1

/pn − iω
′γ
µ1 . . . γµn−2

−1

/pn−2
− iω′

γµn−1
1

(/pn−1
− iω′)2

]

We remark that 1
(/p−iω′)2 = ∂

∂(iω)
1

/p−iω′ . Integrating by parts we can simplify (10.44)

K̃µ1...µn(p1, . . . , pn|t) =
t

n

ˆ ∞
−∞

dω

2π
eiωt tr

[
γµ1

1

/p1
− iω′

γµ2 . . .
1

/pn−1
− iω′

γµn
1

/pn− iω
′

]
(10.45)

We can also include the factor etm in (10.39) in a new kernel K̃µ1...µn(p1, . . . , pn|m, t) which

has the same form as K̃µ1...µn(p1, . . . , pn|t) with all the /pi replaced by /pi +m:

Kµ1...µn(x1, u1, . . . , xn, un|t) =
n∏
j=1

e
ipj ·
(
xj−xj+1−i

uj+1+uj
2

)
K̃µ1...µn(p1, . . . , pn|m, t) (10.46)

1This is evident with the Majorana representation of the gamma matrices, because in such a case the
term γ·p in the exponent is purely imaginary, the gamma matrices being imaginary. This term therefore
gives rise to oscillatory contributions, much like the iω term.
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where

K̃µ1...µn(p1, . . . , pn|m, t) =
(−1)n

n

ˆ ∞
−∞

dω

2π
eiωt (10.47)

× tr
[
γµ1

−1

/p1
+m− iω′

γµ2 . . . γµn−1
−1

/pn−1
+m− iω′

γµn
1

(/pn +m− iω′)2

+ γµn
−1

/pn +m− iω′
γµ1 . . . γµn−2

−1

/pn−2
+m− iω′

γµn−1
1

(/pn−1
+m− iω′)2

]
=

t

n

ˆ ∞
−∞

dω

2π
eiωt tr

[
γµ1

1

/p1
+m− iω′

γµ2 . . .
1

/pn−1
+m− iω′

γµn
1

/pn +m− iω′
]

Integrating further as in the scalar model case, [128], is not possible at this stage because

of the gamma matrices. One has to proceed first to evaluate the trace over the latter.

Using (10.37) we can write the regularized effective action as

Wreg[h, ε] = −N
ˆ ∞
ε

dt

t
emt

∞∑
n=0

ˆ n∏
i=1

ddxi
ddpi

(2π)d

ˆ t

0

dτ1

ˆ τ1

0

dτ2 . . .

ˆ τn−1

0

dτn

× tr
(
e(t−τ1)·pnγµ1e(τ1−τ2)·p1γµ2 . . . γµn−1e(τn−1−τn)·pn−1γµneτnγ·pn

)
×

n∏
j=1

eipj ·(xj−xj+1) hµ1

(
x1,

p1 + pn
2

)
. . . hµn

(
xn,

pn−1 + pn
2

)

= −N
ˆ ∞
ε

dt
∞∑
n=0

1

n

ˆ n∏
i=1

ddxi
ddpi

(2π)d

ˆ ∞
−∞

dω

2π
eiωt

× tr
[
γµ1

1

/p1
+m− iω′

γµ2 . . . γµn−1
1

/pn−1
+m− iω′

γµn
1

/pn +m− iω′
]

×
n∏
j=1

eipj ·(xj−xj+1) hµ1

(
x1,

p1 + pn
2

)
. . . hµn

(
xn,

pn−1 + pn
2

)
(10.48)

10.4 Ward identities and generalized EoM

The general formula for the effective action is

W [h] =
∞∑
n=1

1

n!

ˆ n∏
i=1

ddxi
ddpi

(2π)d
W(n)

µ1,...,µn
(x1, p1, . . . , xn, pn, ε)h

µ1(x1, p1) . . . hµn(xn, pn)

(10.49)

where we have discarded the constant 0-point contribution, as we will do hereafter. The

effective action can be calculated by various methods, of which (10.48) is a particular
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example. In the latter case the amplitudes are given by

W(n)
µ1,...,µn

(x1, p1, . . . , xn, pn, ε) = −Nn!

n

ˆ ∞
ε

dt

ˆ n∏
i=1

ddqi
(2π)d

ˆ ∞
−∞

dω

2π
eiωt

× tr
[
γµ1

1

/q1
+m− iω′

γµ2 . . . γµn−1
1

/qn−1
+m− iω′

γµn
1

/qn +m− iω′
]

×
n∏
j=1

eiqj ·(xj−xj+1) δ

(
p1 −

q1 + qn
2

)
. . . δ

(
pn −

qn−1 + qn
2

)
(10.50)

We stress once more, however, that the regularized effective action (10.49) may not be

derived only via (10.50), that is via the procedure of section 2.2. It could as well be

obtained by means of the ordinary Feynman diagrams.

This amplitude has cyclic symmetry. When saturated with the corresponding h’s,

as in (10.49), it gives the level n effective action. Here we would like to investigate

some general consequences of the invariance of the general effective action under the HS

symmetry, codified by eq. (10.18), assuming for the W(n) the same cyclic symmetry as

(10.50). The invariance of the effective action under (10.18) is expressed as

0 = δεW [h] (10.51)

=
∞∑
n=1

1

(n− 1)!

ˆ n∏
i=1

ddxi
ddpi

(2π)d

×W(n)
µ1,...,µn

(x1, p1, . . . , xn, pn, ε) δεh
µ1(x1, p1) . . . hµn(xn, pn)

=
∞∑
n=1

1

(n− 1)!

ˆ n∏
i=1

ddxi
ddpi

(2π)d

×W(n)
µ1,...,µn

(x1, p1, . . . , xn, pn)D∗µ1x ε(x1, p1)hµ2(x2, p2) . . . hµn(xn, pn)

Hereafter we assume that the HS symmetry is not anomalous and that there is a regu-

larization procedure leading to a HS invariant effective action. The question of whether

the particular effective action (10.48) satisfies (10.51) requires an explicit calculation of

(10.50) and is left to future work.

In order to expose the L∞ structure we need the equations of motion (EoM). Here we

can talk of generalized equations of motion. They are obtained by varying W [h, ε] with

respect to hµ(x, p):

δ

δhµ(x, p)
W [h] = 0 (10.52)
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Then, expanding in p, we obtain the generalized EoM’s for the components hµ1...µn(x).

The most general EoM is therefore

Fµ(x, p) = 0 (10.53)

where

Fµ(x, p) ≡
∞∑
n=0

1

n!

ˆ n∏
i=1

ddxi
ddpi

(2π)d
W(n+1)

µ,µ1...,µn
(x, p, x1, p1, . . . , xn, pn, ε)

×hµ1(x1, p1) . . . hµn(xn, pn)

Integrating by parts (10.51) and using (10.26) we obtain the off-shell equation

D∗µx Fµ(x, p) ≡ ∂µxFµ(x, p)− i[hµ(x, p) ∗, Fµ(x, p)] = 0 (10.54)

Taking the variation of this equation with respect to (10.18) we get

0 = δε(D∗µx Fµ(x, p)) = D∗µx (δεFµ(x, p))− i[D∗µx ε ∗, Fµ(x, p)] (10.55)

From (10.54) and (10.55) one can deduce

δεFµ(x, p) = i[ε(x, p) ∗, Fµ(x, p)] (10.56)

Now that we have determined the formula for the effective action and the generalized

equations of motion, in the next chapter, we will show that this theory has L∞ symmetry.
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Chapter 11

L∞ structure of higher spins

The procedure described in the previous chapter comes with a bonus, the precise form of

the gauge symmetry. This has a outstanding consequence: it enables us to demonstrate

L∞ symmetry of the full effective action W [h] obtained by integrating out a fermion field

coupled to the higher spin fields. In this chapter we closely follow [33].

Let us mention that in the first part of this chapter we introduce a simplification: we

neglect the generalized cosmological constant term W(1). In the final part of this chapter,

we complete the analysis of L∞ symmetry of the fermion model with the presence of

generalized cosmological constant term, that is, we show that such effective action admits

curved L∞ symmetry, see [184].

11.1 L∞ symmetry of higher spin effective actions

In this section we will uncover the L∞ symmetry of the W [h]. To this end we use

the general transformation properties derived in the previous subsection, notably eqs.

(10.53), (10.56), beside (10.18). We will also introduce a simplification, we will neglect

the generalized cosmological term W(1). The expansion of the effective action (10.49) is

in essence an expansion around a flat background. Using standard regularizations we

get that, in general, the effective action contains term linear in HS fields, which gives

constant contribution to EoM’s of even-spin HS fields of the form c(s, ε) (ηµµ)s/2, where

c(s, ε) are scheme dependent coefficients which need to be renormalized. As this term is a

generalization of the lowest-order contribution of the cosmological constant term expanded

around flat spacetime, we shall call the part of the effective action that contains the full
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linear term and is invariant on HS transformations, generalized cosmological constant term.

As a flat background is not a solution when the generalized cosmological constant term

is present, consistency requires that we take this term out of an effective action (or, in

other words, renormalize the cosmological constant to zero). This will be assumed from

now on. Technically, this means that we now assume that the sum in (10.49) starts from

n = 2, and the sum in (10.54) starts from n = 1, while all other relations from subsection

10.4 are the same.

To start with let us recall that an L∞ structure characterizes closed string field theory1.

This fact first appeared in [139], see also [141], as a particular case of a general mathemat-

ical structure called strongly homotopic algebras (or SH algebras), see the introduction

for physicists [142, 143]. It became later evident that this kind of structure characterizes

not only closed string field, but other field theories as well [144], in particular gauge field

theories [145], Chern-Simons theories [138], Einstein gravity and double field theory [53].

For other, more recent applications, see [148, 149].

For the L∞-algebra we closely follow the notation and definitions of [53]. L∞-algebras

(also referred to as strong homotopy Lie algebras) are generalization of Lie algebras. In

L∞-algebra we have a graded vector space

X =
⊕
i

Xi (11.1)

where Xi, i = . . . , 1, 0,−1, . . . is a set of vector spaces, with degree i and multilinear maps

(products) among them Lj, j = 1, 2, . . ., with degree dj = j− 2. It follows deg(L1) = −1,

deg(L2) = 0, deg(L3) = 1. To denote vectors in X we use notation x1, x2, . . .. Each of

these vectors has a definite degree xi = deg(xi). The degree of a map Lj acting on a

collection of entries

deg(Lj(x1, x2, ..., xj)) = j − 2 +

j∑
i=1

deg(xi) (11.2)

The properties of the mappings Li under permutation are defined in [53]. The map-

pings Lj are defined to be graded commutative. For instance

L2(x1, x2) = −(−1)x1x2L2(x2, x1) (11.3)

1Open string field theory is instead characterized by an A∞ structure, see [53] and references therein.
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In general

Ln(xσ(1), xσ(2), . . . , xσ(n)) = (−1)σε(σ;x)Ln(x1, x2, . . . , xn) (11.4)

where σ denotes a permutation of the entries so that (−1)σ gives a positive sign if the

permutation is even and a negative sign if the permutation is odd, and ε(σ;x) is the

Koszul sign. To define it consider an algebra with product xi ∧xj = (−1)xixjxj ∧ xi, then

ε(σ;x) is defined by the relation

x1 ∧ x2 ∧ . . . ∧ xn = ε(σ;x)xσ(1) ∧ xσ(2) ∧ . . . ∧ xσ(n) (11.5)

It is worth noting that if all the xi’s are odd (−1)σε(σ;x) = 1.

Multilinear maps Lj satisfy the following quadratic identities:

∑
i+j=n+1

(−1)i(j−1)
∑
σ

(−1)σε(σ;x)Lj(Li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0 (11.6)

In this formula n ≤ 1 denotes a number of input vectors. The sum over permutations

σ is a sum over ”unshuffles” so that the entries are partially ordered σ(1) < . . . < σ(i),

σ(i+ 1) < . . . < σ(n) We will schematically write this relation as

∑
i+j=n+1

(−1)i(j−1)Lilj (11.7)

In our case, due to the structure of the effective action and the equation of motion, we

will need only three spaces X0, X−1, X−2 and the complex

X0
L1−→ X−1

L1−→ X−2
L1−→ 0 (11.8)

The degree assignment is as follows: ε ∈ X0, hµ ∈ X−1 and Fµ ∈ X−2.

The product Li are defined as follows. We first define the maps `i

δεh = `1(ε) + `2(ε, h)− 1

2
`3(ε, h, h)− 1

3!
`4(ε, h, h, h) + . . . (11.9)
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Therefore, in our case,

`1(ε)µ = ∂µxε(x, p) (11.10)

`2(ε, h)µ = −i[hµ(x, p) ∗, ε(x, p)] = −`2(h, ε)µ

`j(ε, h, ..., h)µ = 0 , j ≥ 3

For these entries, i.e. ε, (ε, h), (ε, h, h), . . . we set Li = `i. From the above we can extract

L2(ε, ε) ≡ `2(ε, ε). We have

(δε1δε2 − δε2δε1)hµ = δε1 (`1(ε2) + `2(ε2, h))− δε2 (`1(ε1) + `2(ε1, h)) (11.11)

= δε1 (`2(ε2, h))− δε2 (`2(ε1, h))

= `2(ε2, δε1h)− `2(ε1, δε2h) = `2(ε2, `1(ε1))− `2(ε1, `1(ε2)) +O(h)

Now, the L∞ relation (11.6) involving L1 and L2 is

L1(L2(x1, x2)) = L2(L1(x1), x2)− (−1)x1x2L2(L1(x2), x1) (11.12)

for two generic elements of x1, x2 of degree x1, x2, respectively. If we wish to satisfy it we

have to identify

(δε1δε2 − δε2δε1)h = −`1(`2(ε1, ε2)) +O(h) (11.13)

By comparing this with (10.29) we obtain

`2(ε1, ε2) = i [ε1
∗, ε2] (11.14)

The next step is to determine L3. It must satisfy, in particular, the L∞ relation

0 = L1(L3(x1, x2, x3)) (11.15)

+ L3(L1(x1), x2, x3) + (−1)x1L3(x1, L1(x2), x3) + (−1)x1+x2L3(x1, x2, L1(x3))

+ L2(L2(x1, x2), x3) + (−1)(x1+x2)x3L2(L2(x3, x1), x2) + (−1)(x2+x3)x1L2(L2(x2, x3), x1)
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We define first the `i with only h entries. They are given by the generalized EoM:

F = `1(h)− 1

2
`2(h, h)− 1

3!
`3(h, h, h) + . . . (11.16)

Let us write Fµ, (10.53) in compact form as

Fµ =
∞∑
n=1

1

n!
〈〈W(n+1)

µ , h⊗n〉〉 (11.17)

then

`n(h, . . . , h) = (−1)
n(n−1)

2 〈〈W(n+1)
µ , h⊗n〉〉 (11.18)

= (−1)
n(n−1)

2

ˆ n∏
i=1

ddxi
ddpi

(2π)d
W(n+1)

µ,µ1...,µn
(x, p, x1, p1, . . . , xn, pn)

×hµ1(x1, p1) . . . hµn(xn, pn)

in particular,

`1(h) = 〈〈W(2)
µ , h〉〉 =

ˆ
ddxi

ddpi
(2π)d

W(2)
µ,µ1

(x, p, x1, p1)hµ1(x1, p1) (11.19)

Notice that W
(n+1)
µ,µ1...,µn is not symmetric in the exchange of its indices. In fact it has only

a cyclic symmetry.

Furthermore, let us unfold (10.56). On one side we have

δεFµ =
∞∑
n=1

1

n!

( n∑
i=1

〈〈W(n+1)
µµ1...µi...µn

, hµ1 . . . ∂µix ε . . . h
µn〉〉 (11.20)

−i
n∑
i=1

〈〈W(n+1)
µµ1...µi...µn

, hµ1 . . . [hµi ∗, ε] . . . hµn〉〉
)

On the other side

i[ε ∗, Fµ] = i

∞∑
n=1

1

n!
[ε ∗, 〈〈W(n+1)

µ , h⊗n〉〉] (11.21)
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The two must be equal order by order in h. Thus we have

i[ε ∗, 〈〈W(n+1)
µ , h⊗n〉〉] =

1

n+ 1

n+1∑
i=1

〈〈W(n+2)
µµ1...µi...µn+1

, hµ1 . . . ∂µix ε . . . h
µn+1〉〉 (11.22)

−i
n∑
i=1

〈〈W(n+1)
µµ1...µi...µn

, hµ1 . . . [hµi ∗, ε] . . . hµn〉〉

This is the Ward identity for the symmetry (10.18).

In order to verify the L∞ relations we have to know products li for different entries.

Following [53] we define, for instance,

2L2(h1, h2) = `2(h1 + h2, h1 + h2)− `2(h1, h1)− `2(h2, h2) (11.23)

which is equivalent to

L2(h1, h2) =
1

2
(`2(h1, h2) + `2(h2, h1)) (11.24)

Similarly

L3(h1, h2, h3) =
1

6
(`3(h1, h2, h3) + perm(h1, h2, h3)) (11.25)

In general, when we have a non-symmetric n-linear function fn of the variable h we can

generate a symmetric function Fn linearly dependent on each of n variables h1, . . . , hn

through the following process

Fn(h1, . . . , hn)

=
1

n!

(
fn(h1 + . . .+ hn)−

[
fn(h1 + . . .+ hn−1) + fn(h1 + . . .+ hn−2 + hn)

+ . . .+ fn(h2 + . . .+ hn)
]

+
[
fn(h1 + . . .+ hn−2) + · · ·+ fn(h3 + . . .+ hn)

]
+ . . .

+(−1)n−k
[
fn(h1 + . . .+ hk) + · · ·+ fn(hn−k+1 + . . .+ hn)

]
+ . . .

+(−1)n−1
[
fn(h1) + . . .+ fn(hn)

]
(11.26)

We shall define Ln(h1, . . . , hn) by using this formula: replace Fn with Ln and fn with `n,

the latter being given by (11.18). We shall see that beside Ln(h1, . . . , hn), (11.10) and

(11.14) the only nonvanishing objects defining the L∞ algebra of the HS effective action
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are

L2(ε, E) = i[ε ∗, E] (11.27)

where E represents Fµ or any of its homogeneous pieces.

In the rest of this section we shall prove that Ln defined in this way generate an L∞

algebra.

Note that in the previous chapter we assumed that higher spin symmetry is not anoma-

lous and that the higher spin effective action is invariant under gauge transformations.

To confirm that the effective action is indeed invariant under higher spin transformation

one should explicitly compute (10.50).

11.2 Proof of the L∞ relations

11.2.1 Relation L2
1 = 0, degree -2

Now let us verify the remaining L∞ relations. The first is L2
1 ≡ `2

1 = 0. 2

Let us start from `1(`1(ε)). We recall that `1(ε) = ∂xε(x, p) and belongs to X−1. Now

`1(h) = 〈〈W(2)
µ , h〉〉 (11.28)

Replacing h with ∂xε(x, p) corresponds to taking the variation of the lowest order in h

of Fµ with respect to h, i.e. with respect to (10.18). On the other hand the variation of

Fµ is given by (10.56) and is linear in Fµ. Therefore, since `1(∂xε(x, p)) is order 0 in h

it must vanish. In fact it does, which corresponds to the gauge invariance of the EoM to

the lowest order in h. This case corresponds to setting n = 0 in (11.22).

Next let us consider `1(`1(h)). It has degree -3, so it is necessarily 0 since X−3 = 0.

2We remark that if the generalized cosmological constant term (see end of sec. 10.4) is non-vanishing,
then `21 6= 0. In this case an enlarged version of L∞, called curved L∞, is necessary.
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11.2.2 Relation L1L2 = L2L1, degree -1

Next, we know `2(ε1, ε2), `2(ε, h) and `2(h1, h2), and we have to verify L1L2 = L2L1. The

latter is written explicitly in (11.12) and takes the form

`1(`2(ε, h)) = L2(`1(ε), h)+L2(ε, `1(h)) (11.29)

=
1

2

(
`2(`1(ε), h) + `2(h, `1(ε))

)
+L2(ε, `1(h))

where we used (11.24). More explicitly (11.29) writes

−i`1([h ∗, ε])µ =
1

2

(
`2(∂xε, h) + `2(h, ∂xε)

)
µ

+ L2(ε, 〈〈W(2)
µ , h〉〉) (11.30)

i.e.

i〈〈W(2)
µν , [hν ∗, ε])〉〉 =

1

2

(
〈〈W(3)

µνλ , ∂
ν
xε h

λ〉〉+ 〈〈W(3)
µνλ , h

ν ∂λxε〉〉
)
− L2(ε, 〈〈W(2)

µ , h〉〉) (11.31)

Setting n = 1 in (11.22) gives precisely (11.31) provided

L2(ε, 〈〈W(2)
µ , h〉〉) = i[ε ∗, 〈〈W(2)

µ , h〉〉] (11.32)

The quantity F (1) = 〈〈W(2)
µ , h〉〉 is the lowest order piece of the EoM (of degree -2), see

(11.17). So we can say

L2(ε,F (1)) ≡ `2(ε,F (1)) = i[ε ∗, F (1)] (11.33)

In general,

`2(ε,F) = i[ε ∗, F ] (11.34)

The next relation to be verified is

L1(L2(h1, h2)) = L2(L1(h1), h2)− L2(h1, L1(h2)) (11.35)

The entries of L2 on the rhs have degree -3, so they must vanish. On the other hand

L2(h1, h2) on the lhs has degree -2, and is mapped to degree -3 by L1. So it is consistent
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to equate both sides to 0. In particular we can set L2(F (1), h) = 0 (and, more generally,

L2(X−2, h) = 0).

11.2.3 Relation L3L1 + L2L2 + L1L3 = 0, degree 0

First we should evaluate L3(ε1, ε2, ε3). Its degree is 1, therefore it exits the complex. Is

it consistent to set it to 0? The relevant L∞ relation is

0 = `1(L3(x1, x2, x3)) (11.36)

+ L3(`1(x1), x2, x3) + (−1)x1L3(x1, `1(x2), x3) + (−1)x1+x2L3(x1, x2, `1(x3))

+ L2(L2(x1, x2), x3) + (−1)(x1+x2)x3L2(L2(x3, x1), x2) + (−1)(x2+x3)x1L2(L2(x2, x3), x1)

In our case the second line equals ∂xL3(ε1, ε2, ε3). Thus if we set L3(ε1, ε2, ε3) = 0, the

first two lines vanish. Using (11.14), we see that the third line is nothing but the ∗-Jacobi

identity:

[ε1
∗, [ε2

∗, ε3]] + [ε2
∗, [ε3

∗, ε1]] + [ε3
∗, [ε1

∗, ε2]] = 0 (11.37)

From (11.10) we also know that L3(ε, h1, h2) ≡ `3(ε, h1, h2) = 0. Following [53] we will

set also L3(ε1, ε2, h) = 0, L3(ε1, ε2,F (1)) = 0. Therefore

L3(ε1, ε2, ε3) = 0, L3(ε, h1, h2) = 0, L3(ε1, ε2, h) = 0, L3(ε1, ε2,F (1)) = 0 (11.38)

Let us consider next the entries ε1, ε2, h. The terms of the first two lines in (11.15)

vanish due to (11.38). The last line is

`2(`2(ε1, ε2), h) + `2(`2(h, ε1), ε2) + `2(`2(ε2, h), ε1)

= [hµ ∗, [ε1
∗, ε2]]− [[hµ ∗, ε1] ∗, ε2] + [[hµ ∗, ε2] ∗, ε1] (11.39)

which vanishes due to ∗-Jacobi identity.

Now we consider the entries ε, h1, h2. Plugging them into (11.15), the first line vanishes
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because of (11.38). The rest is

0 =
1

6

(
`3(`1(ε), h1, h2) + perm3

)
+L3(ε, `1(h1), h2)− L3(ε, h1, `1(h2))

+
1

2

(
`2(`2(ε, h1), h2) + `2(h2, `2(ε, h1))− `2(`2(h2, ε), h1)

−`2(h1, `(h2, ε)) + `2(`2(h1, h2), ε) + `2(`2(h2, h1), ε)
)

(11.40)

where perm3 means the permutation of the three entries of `3. Writing down explicitly

the first line, it takes the form

1

6
(`3(`1(ε), h1, h2) + perm3) = −1

6

(
〈〈W(4)

µνλρ , ∂
ν
xε h

λ
1 h

ρ
2〉〉+ perm3

)
(11.41)

The last two lines of (11.40) give

`2(`2(ε, h1), h2) + `2(h2, `2(ε, h1))− `2(`2(h2, ε), h1)− `2(h1, `2(h2, ε)) + `2(`2(h1, h2), ε)

+`2(`2(h2, h1), ε) = +i
(
〈〈W(3)

µνλ , [hν1
∗, ε]hλ2〉〉+ 〈〈W(3)

µνλ , h
λ
2 [hν1

∗, ε]〉〉+ 〈〈W(3)
µνλ , [hν2

∗, ε]hλ1〉〉

+〈〈W(3)
µνλ , h

λ
1 [hν2

∗, ε]〉〉+[ε ∗, 〈〈W(3)
µνλ , h

ν
1 h

λ
2〉〉] + [ε ∗, 〈〈W(3)

µνλ , h
λ
2 h

ν
1〉〉]
)

(11.42)

Summing the rhs’s of (11.41) and (11.42) one gets, apart from the second line, (11.40)

expressed in terms of the expressions appearing in the rhs of (11.22) with entries h1, h2,

instead of one single h. Now let us consider (11.22) for n = 2, i.e.

i[ε ∗, 〈〈W(3)
µνλ , h

ν hλ〉〉] =
1

3
〈〈W(4)

µνλρ , ∂
ν
xεh

λhρ + hν∂λxεh
ρ + hν hλ∂ρxε〉〉 (11.43)

−i 〈〈W(3)
µνλ , [hν ∗, ε]hλ + hν [hλ ∗, ε]〉〉.

This can be read as

−i[ε ∗, `2(h, h)] = −1

3

(
`3(∂xε, h, h) + `3(h, ∂xε, h) + `3(h, h, ∂xε)

)
+i`2(h, [h ∗, ε]) + i`2([h ∗, ε], h) (11.44)

Now we consider the same equation obtained by replacing h with h1 +h2 according to the
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symmetrization procedure in (11.23). We get in this way the symmetrized equation

−i[ε ∗, `2(h1, h2)]− i[ε ∗, `2(h2, h1)]

= −1

3

(
`3(∂xε, h1, h2) + `3(∂xε, h2, h1) + `3(h1, ∂xε, h2)

+`3(h2, ∂xε, h1) + `3(h1, h2, ∂xε) + `3(h2, h1, ∂xε)
)

+i`2(h1, [h2
∗, ε]) + i`2(h2, [h1

∗, ε]) + i`2([h1
∗, ε], h2) + i`2([h2

∗, ε], h1) (11.45)

This is the same as the sum of the first, third and fourth lines of (11.40), or, alternatively,

the sum of the rhs’s of (11.41) and (11.42). Thus (11.40) is satisfied if the two remaining

terms in the second line vanish. They are all of the type L3(ε, h,F (1)) and we can assume

that such types of terms vanish. So, beside (11.38) we have

L3(ε, h, E) = −L3(ε, E, h) = 0 (11.46)

where E represent Fµ or anything in X−2.

The relation with entries ε1, ε2 and E is nontrivial and has to be verified. Consider

again (11.15) with entries ε1, ε2 and E. Due to (11.38), (11.46) the relation (11.15) reduces

to the last line:

`2(`2(ε1, ε2), E) + `2(`2(E, ε1), ε2) + `2(`2(ε2, E), ε1) (11.47)

= i`2([ε1
∗, ε2], E) + i`2([E ∗, ε1], ε2) + i`2([ε2

∗, E], ε1)

= +[E ∗, [ε1
∗, ε2]]−[[E ∗, ε1] ∗, ε2]−[[ε2

∗, E] ∗, ε1]

which vanishes because of the ∗-Jacobi identity.
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11.2.4 Relation L1L4 − L2L3 + L3L2 − L4L1 = 0, degree 1

The L∞ relation to be proved at degree 1 is

L1(L4(x1, x2, x3, x4)) (11.48)

−L2(L3(x1, x2, x3), x4) + (−1)x3x4L2(L3(x1, x2, x4), x3)

+(−1)(1+x1)x2L2(x2, L3(x1, x3, x4))− (−1)x1L2(x1, L3(x2, x3, x4))

+L3(L2(x1, x2), x3, x4) + (−1)1+x2x3L3(L2(x1, x3), x2, x4)

+(−1)x4(x2+x3)L3(L2(x1, x4), x2, x3)

−L3(x1, L2(x2, x3), x4) + (−1)x3x4L3(x1, L2(x2, x4), x3) + L3(x1, x2, L2(x3, x4))

−L4(L1(x1), x2, x3, x4)− (−1)x1L4(x1, L1(x2), x3, x4)

−(−1)x1+x2L4(x1, x2, L1(x3), x4)− (−1)x1+x2+x4L4(x1, x2, x3, L1(x4)) = 0

We have

L4(ε1, ε2, ε3, ε4) = 0, L4(ε1, ε2, ε3, h) = 0, L4(ε1, ε2, h1, h2) = 0, L4(ε, h1, h2, h3) = 0

(11.49)

Arguing the same way as for L3(ε1, ε2, ε3) = 0, L4(ε1, ε2, ε3, ε4) has a positive degree and

so the first equality vanishes. The second equality also has positive degree and hence it

must vanish. The fourth has been proven above, see (11.10). The other is an ansatz to

be checked by consistency.

The relation (11.48) with three ε entries and one h is trivial as a consequence of (11.38)

and (11.49). The same happens in the case of two ε entries and two h, as a consequence

again of (11.38) and (11.49).

Now let us consider the case of one ε and three h’s. Plugging them into (11.48) here

is what we get in terms of `i’s (only the nonzero terms are written down)

0 = −1

6

(
`2(ε, `3(h1, h2, h3)) + perm3

)
(11.50)

+
1

6

(
`3(`2(ε, h1), h2, h3) + `3(`2(ε, h2), h1, h3) + `3(`2(ε, h3), h1, h2) + perm3

)
− 1

4!

(
`4(`1(ε), h1, h2, h3) + perm4

)
−L4(ε, `1(h1), h2, h3) + L4(ε, h1, `1(h2), h3)−L4(ε, h1, h2, `1(h3))
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where perm3, perm4 refer to the permutations of the `3, `4 entries, respectively. Disregard-

ing for the moment the last line, which is of type L4(ε, E, h, h), this equation becomes

0 =
i

6

(
[ε ∗, 〈〈W(4)

µνλρ , h
ν
1h

λ
2h

ρ
3〉〉] + perm(h1, h2, h3) (11.51)

+〈〈W(4)
µνλρ , [hν1

∗, ε]hλ2h
ρ
3〉〉+ perm([h1

∗, ε], h2, h3)

+〈〈W(4)
µνλρ , [hν2

∗, ε]hλ1h
ρ
3〉〉+ perm([h2

∗, ε], h1, h3)

+〈〈W(4)
µνλρ , [hν3

∗, ε]hλ1h
ρ
2〉〉+ perm([h3

∗, ε], h1, h2)
)

− 1

4!

(
〈〈W(5)

µνλρσ , ∂
ν
xε h

λ
1h

ρ
2h

σ
3〉〉+ perm(∂xε, h1, h2, h3)

)
For comparison let us go back to (11.22) with n = 3. It writes

i[ε ∗, 〈〈W(4)
µνλρ , h

νhλhρ〉〉]

=
1

4
〈〈W(5)

µνλρσ , ∂
ν
xεh

λhρhσ + hν∂λxεh
ρhσ + hνhλ∂ρxεh

σ + hνhλhρ∂σxε〉〉

− i〈〈W(4)
µνλρ , [hν ∗, ε]hλhρ + hν [hλ ∗, ε]hρ + hνhλ[hρ ∗, ε]〉〉 (11.52)

If now we transform the LHS of this equation to a trilinear function of h1, h2, h3 according

to the recipe (11.26), we obtain precisely eq. (11.51). As a consequence we are forced to

set

L4(ε, E, h, h) = L4(ε, h, E, h) = L4(ε, h, h, E) = 0 (11.53)

Considering the entries ε, ε, E, h in (11.48) one can show that

L4(ε, ε, E, h) = 0 (11.54)

for consistency. Using this and evaluating (11.48) with entries ε, ε, h, h, one can see that

the third ansatz in (11.49) is justified.

11.2.5 Relation L1Ln + . . .± LnL1 = 0, degree n− 3

The general L∞ relation is (11.6). As the n = 4 example shows, for n ≥ 4 it is consistent

to set the values of Ln to zero except when all the entries have degree -1. Schematically,
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out of (11.6), the only nontrivial relation is

−Ln(ε, Ln−1(h, . . . , h)) + Ln−1(L2(ε, h), h, . . . , h) + (−1)n−1Ln(L1(ε), h, . . . , h) = 0

(11.55)

Written in explicit form in terms of `n, it is

− 1

(n− 1)!

(
`2(ε, `n−1(h1, . . . , hn−1)) + permn−1

)
(11.56)

+
1

(n− 1)!

(
`n−1(`2(ε, h1), h2, . . . , hn−1) + `n−1(`2(ε, h2), h1, . . . , hn−1) + . . .

+`n−1(`2(ε, hn−1), h1, . . . , hn−2) + permn−1

)
+

(−1)n−1

n!

(
`n(`1(ε), h1, . . . , hn−1) + permn

)
= 0

In order to obtain this it is essential to remark that, for entries of degree -1, the factor

(−1)σε(σ;x) in (11.6) is 1.

Using now the definition (11.18) and simplifying, (11.56) becomes

−i
(

[ε ∗, 〈〈W(n)
µν1...νn−1

, hν11 . . . h
νn−1

n−1 〉〉] + permn−1

)
(11.57)

+i
(
〈〈W(n)

µν1...νn−1
, [ε ∗, hν11 ]hν22 . . . h

νn−1

n−1 〉〉+ W(n)
µν1...νn−1

, [ε ∗, hν12 ]hν21 . . . h
νn−1

n−1 〉〉

+ . . .+ W(n)
µν1...νn−1

, [ε ∗, hν1n−1]hν21 . . . h
νn−1

n−2 〉〉+ permn−1

)
+

1

n

(
〈〈W(n+1)

µν1...νn
, ∂ν1x ε h

ν2
1 h

ν3
2 . . . hνnn−1〉〉+ permn

)
= 0

where permn−1 means the permutations of h1, . . . , hn−1, and permn means the permuta-

tions of h1, . . . , hn−1 and ∂xε.

Now, from (11.22) we get

i[ε ∗, 〈〈W(n)
µν1...νn−1

, hµ1 . . . hµn−1〉〉]− i
n−1∑
i=1

〈〈W(n)
µµ1...µi...µn−1

, hµ1 . . . [ε ∗, hµi ] . . . hµn−1〉〉

− 1

n

n∑
i=1

〈〈W(n+1)
µµ1...µi...µn

, hµ1 . . . ∂µix ε . . . h
µn〉〉 = 0 (11.58)

If now we transform the LHS of this equation to a multilinear function of h1, . . . , hn−1

according to the recipe (11.26), we obtain precisely (11.57). This completes the proof of

the n-th L∞ relation.
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11.3 Curved L∞ algebra

So far, in this chapter, we assumed that W
(1)
µ = 0. In many cases, however this is not

true and we have a cosmological constant term. Here we extend the L∞ structure of

the fermion model to curved L∞ algebra, see [184]. When cosmological constant term is

present W
(1)
µ 6= 0, we have to introduce an additional ‘product’ L0, besides the Ln of [33]

and in the previous sections. The algebra in this case is called curved L∞. We define L0

by setting

L0 = W(1)
µ (11.59)

Both sides of this equation have degree -2, because of the fact that the degree of products

Ln is n − 2. Now L1 is not nilpotent. In this case, the defining property L2
1 = 0 of the

L∞ algebra is modified as follows

L1 (L1(v)) + L2 (L0, v) = 0 (11.60)

where v ∈ X = X0 ⊕X−1 ⊕X−2. This relation is nontrivial only when v ∈ X0, i.e. when

v is ε. We can see that by degree counting. Now using eq.(11.34), and recalling that

L1(ε)µ(x, u) = ∂µxε(x, u) and L1(h)µ = 〈〈W(2)
µ , h〉〉, this equation becomes

i[W(1)
µ , ε] + 〈〈W(2)

µν h
ν〉〉 = 0 (11.61)

This corresponds to the case n = 0 of (11.22). All the other L∞ relations remain un-

changed. For instance, the relation

L3L0 − L2L1 + L1L2 = 0 (11.62)

is not a priori excluded by the degree counting, however we have proved that L3(E, ∗, ∗) =

0 is consistent for E of degree -2.

L0 is called the curvature of the curved L∞ algebra.
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Chapter 12

Conclusion

In this chapter we will discuss our results, give final concluding remarks and give guidelines

for future research.

12.1 Comments on the Pontryagin anomaly

We were dealing with odd part of the trace anomaly of a Weyl fermion coupled to curved

background. To confirm the result of [15] we used several methods. First, we reconsidered

the calculation of [15] and gave a more complete analysis of the latter by including the

tadpole and seagull diagrams and came to a conclusion that they do not change the final

result, see [19]. We checked trace and diff-Ward identities and we conclude that the

parity-odd part of the trace anomaly is given by Pontryagin density which comes from

the triangle diagram. In this way we obtain only the lowest order term of the anomaly.

To obtain the full anomaly we covariantize the result.

The problem with Weyl fermions lies in the definition of the path integral measure,

or better said, a lack of a well defined path integral measure. Let us recall that the path

integral measure of a free Dirac fermion can be interpreted as a determinant of the Dirac

operator /D, that is, the product of its eigenvalues. We come to a similar deduction for

a Majorana fermion. However, for Weyl fermion the situation is a bit more complicated.

If we choose for the Dirac operator /DL = /DPL, since Dirac operator anticommutes with

γ5, it maps left-handed fermion to right-handed one, and as a consequence the eigenvalue

problem is not well defined in this case. Another idea is to replace /DL with /D
†
L
/DL , but

in this case we face a problem of undetermined overall phase factor.
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Bearing this in mind, and inspired by Bardeen’s method, we propose a solution to this

problem following [19]. The main idea is to embed our system in a larger setup: metric-

axial-tensor (MAT) gravity. Beside the usual metric gµν we introduced an additional

axial metric fµν and let them interact with Dirac fermions. Since in this framework we

are allowed to use Dirac instead of Weyl fermions, we are able to bypass the problem of

the integral measure. Again, using Feynman diagram approach together with dimensional

regularization we were able to confirm that the theory of chiral fermions coupled to curved

background indeed contains a nonvanishing parity-odd part of the trace anomaly. We

obtain the result by taking the collapsing limit hµν → hµν
2
, fµν → hµν

2
(or hµν → hµν

2
, fµν →

−hµν
2

for the opposite handedness) in the final result. This limit is smooth and we have

not found any singularities. Along the way, by taking the suitable collapsing limit (hµν →

hµν , fµν → 0) we proved that for Majorana and Dirac fermions the parity-odd part of

the trace anomaly vanishes. Let us mention one more time that with Feynman diagram

method we obtain only the lowest order contribution to the anomaly, and the full anomaly

is then reconstructed by covariantization. This is correct only if the diffeomorphisms are

not broken by the regularization procedure, however, we did not check Ward identities

for diffeomorphisms in MAT background. The computation of the latter is extremely

complicated in this case.

Instead, we choose to use another method - DeWitt point-splitting method. In this

method covariance under diffeomorphisms is guaranteed because the point-splitting is

along a geodesic. We showed that the heat kernel method can be extended to MAT

gravity. Finally, by taking the appropriate collapsing limits, we again confirm the previous

results.

We can conclude that all mentioned methods give the same result: The left-handed

Weyl fermion coupled to curved background admits a parity-odd part of the trace anomaly

given in terms of Pontyagin density, while the parity-odd part for Majorana and Dirac

fermion vanishes, as expected. For right-handed fermion the overall sign of the anomaly

is switched.

Let us also mention that a negative result was obtained in [85]. The authors found a

vanishing parity-odd contribution to the trace anomaly using Fujikawa method and Pauli-

Villars regularization. However, with this method one introduces both chiralities through

the path integral measure, even though the action is describing a Weyl fermion. In the
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anomaly calculation it is essential to avoid mixing of chiralities during the computation.

It necessary to keep only one chirality throughout every step of the calculation. That

being said, the result of [85] applies to Dirac and Majorana fermions and it is consistent

with our results.

Let us mention some characteristics and consequences of the Pontryagin anomaly. Note

that in Lorentzian metric, the Pontryagin density comes with an imaginary coefficient.

This means that the trace of the energy momentum tensor becomes purely imaginary and

as a consequence the Hamiltonian density becomes complex. As long as we are in the

effective field theory regime, this is not a problem. On the other hand, if we quantize

gravity, in this case unitarity would be broken. This suggests that we should use this

anomaly as a selective criterion for theories, because the Pontryagin trace anomaly is

present only in theories with chiral imbalance. Let us point out that Pontryagin density

vanishes in some particular geometries such as FRW or Schwarzschild.

One important outcome of our computation is the MAT gravity itself, which can be

studied on its own as a new bimetric model.

12.2 Comments on effective actions in higher spin

theories

Let us give some concluding remarks about the effective action approach to higher spin

theories. Our idea was to extract information about the dynamics of the higher spin fields

from the quadratic part of the effective action. We coupled a free massive fermion and

scalar theory to various external sources using conserved currents and subsequently we

used these currents to compute the 2-point correlator. Since we focus on 2-point functions

the effective action is quadratic and the equations of motion are linear in the external

field. Let us just mention that the choice of currents is not unique, however, we used two

particular forms: the simplest symmetric conserved current and a current which becomes

traceless in the massless limit.

We expressed our results in terms of conserved structures which turn out to be ex-

tremely practical because they make the conservation of the correlators obvious. Our

currents are conserved on-shell and as a consequence, the effective action inherits off-shell

gauge invariance. Our gauge transformation is linear and the associated parameters are
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unconstrained as in [39]-[41], [107]-[109]. This motivated us to express our results in the

geometric language of [43, 178].

We analysed several examples. To warm up, we started with a massless scalar and

fermion model coupled to higher spin fields using simple and traceless currents. In the

case of traceless currents, in the parity even sector, we found traceless correlators which

in turn give conformal theories.

Next, we coupled massive scalar and fermion model to spin s = 1, 2, 3 external fields.

One important issue we stumbled upon are the non-conserved and divergent terms in

the IR expansion of the 2-point correlators. We found that these terms are local and

their number is finite. To extract physical information from the amplitudes, we choose a

particular scheme: we subtract all divergent terms (which include non-conserved terms)

in the IR from the UV. That is, we subtract a finite number of local counterterms from the

action to recover finiteness and conservation. We showed that, for spin 1 and 2, in general

subtractions are not necessary, provided we know the full form of minimal coupling and

gauge transformation above linear level. For spin 3 or higher we do not know the full

gauge transformation and the full interaction of scalar and fermion fields with higher spin

fields, and hence, the subtractions are unavoidable. To be precise, for spin 1 and 2, we

introduced additional local terms to the interaction so that the effective action is gauge

invariant without any subtractions. In this case, the additional terms enter Ward identity

in a form of tadpole and seagull terms. Of course, this is not a surprise, because the fully

off-shell covariant theories are well known for QED and gravity coupled to scalars and

fermions.

Expanding our results in IR and UV for d = 3, 4 (for d = 5, 6 see [29]) we found

that the effective action of any background field is based on the corresponding linearized

Fronsdal kinetic operator given in [37, 38], in the nonlocal form introduced by Francia

and Sagnotti in [39, 40, 41]. In particular, for the scalar model in both 3d and 4d we find

• for spin 1, Maxwell equation (8.27, 8.37),

• for spin 2, nonlocal version of Einstein-Hilbert (8.60, 8.65)

• and for spin 3, nonlocal Fronsdal operator (8.69, 8.74).

Moreover, for the fermion model

• for spin 1 we found Maxwell equation (8.23, 9.38),
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• for spin 2 in 3d we obtained local version of Einstein-Hilbert (9.66) while in 4d we

got nonlocal version of Einstein-Hilbert (9.72)

• and for spin 3 we got nonlocal version of the Fronsdal equation (9.79, 9.85).

Besides the correlators of equal spin currents, we also presented some examples of

mixed spin correlators. We expect that presence of these terms is necessary in higher spin

theories, main motivation for this being the argument that for a consistent higher spin

theory we need infinitely many higher spin fields. All of these fields interact with our

fermion or scalar model and in turn give a contribution to the mixed spin correlators.

Let us point out one more result. In 3d, upon integrating out the fermion field, we

find also parity-odd kinetic terms. In particular, for the traceless currents, in the UV

limit mixed spin generalization of a conformal higher spin action (9.104) found in [43, 44].

Recently, in [50]-[52] have been discussed supersymmetric generalizations pointing out

dualities and extension to massive higher spin fields.

We also discuss diagonalization of our 2-point correlators, that is, the possibility of

vanishing off-diagonal correlators for a particular choice of coefficients in the currents. It

turns out that the diagonalization is not possible with the currents (7.26) neither in scalar

nor in the fermion case the reason being an infinite number of non-conserved terms, see

eq. (8.90). One more example we consider is the case of traceless local currents (traceless

even in the massive case) where we are able to diagonalize our results by appropriate

choice of coefficients in the currents and by subtraction of finite number of counterterms.

Note that throughout the thesis we have been dealing only with 2-point correlators of

higher spin currents. The next logical step would be to compute higher-point correlators

which could give us some insight on the non-linear structure of the higher spin fields or

we could find obstacles which forbid higher spin couplings.

As we previously mentioned, we do not know the form of gauge transformation beyond

the linear order for higher spin fields. Because of that, we turned to the the worldline

quantization of a Dirac fermion field coupled to higher spin external sources (scalar case

is already worked out in [128]). The advantage of this procedure is that it comes with

the exact form of gauge transformation. In this new framework, we gave the perturba-

tive expansion of the effective action (very similar to Feynman diagram approach) and

determined the generalized equations of motion.

This allowed us to show that our full one-loop effective action possess a L∞ symmetry.
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We also showed how to realize curved L∞ algebra in this model. Although we do not give

here an explicit proof, the same holds also for the effective action obtained by integrating

out a scalar field coupled to higher spin fields. The proof in the scalar case is actually

easier, because the corresponding W(n)’s are automatically symmetric, see [128].

In L∞ symmetry the equation of motion plays the fundamental role, which means that

symmetry is dynamical (for an early formulation in this sense, see [183]). of perturbative

field theories [53]. For our purposes, we give L∞ a try to construct higher spin theories

by integrating out matter fields.

Our interpretation of L∞ relations between correlators is that they play a role of Ward

identities. To expose L∞ symmetry we assumed there is no generalized diff-anomalies,

however, one has to check that there is no anomalies by explicit calculation. Breakdown

of these relations at the quantum level would suggest the presence of anomalies, in other

words, possible obstructions in construction of the higher spin theories may appear in the

form of anomalies in our approach.

If there is no generalized diff-anomalies, L∞ algebra could be used to find theories

which automatically satisfy L∞ relations and higher spin gauge invariance. This opens

up a new approach to analyze higher spin models.

12.3 Summary

Let us sumarize our main results. First, in [19]-[21] we recalculated the parity odd trace

anomaly in 4d in three ways: with Weyl fermions without field redefinition ψ → |g|
1
4ψ,

using MAT gravity with Dirac fermions and using Schwinger-DeWitt proper-time method

where we extended the heat kernel method to MAT gravity. We find that parity-odd part

of the trace anomaly is given by Pontryagin density in 4D which supports the statement

that Weyl and massless Majorana are not the same beyond classical level. Pontryagin

anomaly appears with imaginary coefficient e = ± i
768π2 which could break unitarity. This

suggests that this anomaly could be used as a selective criterion for theories.

Second, starting from free quantum theory coupled to external higher spin sources

via conserved currents, we find that the effective action, obtained by integrating out the

microscopic field, contains information about classical dynamics of sources, see [29]-[32].

We were dealing with 1-pt and 2-pt correlators and consequently the one-loop effective
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action is quadratic while the equations of motion are linearized. For higher spin fields,

after subtraction of finite number of local non-conserved terms, we find gauge invariant

effective actions. Next, we used worldline quantization of fermion field coupled to higher

spin sources, see [33]. This method comes with the exact form of gauge transformation

which enables us to show that the full one-loop effective action has L∞ symmetry provided

there are no generalized diff-anomalies.
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T. Štemberga, Axial gravity, massless fermions and trace anomalies, Eur. Phys. J.

C 77 (2017) no.8, 511 [arXiv:1703.10473 [hep-th]].

[20] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, M. Paulǐsić and T. Štemberga,
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Massive fermion model in 3d and higher spin currents, JHEP 1605 (2016) 072

[arXiv:1602.07178 [hep-th]].

[29] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, B. Lima de Souza and
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Massive Dirac field in 3D and induced equations for higher spin fields, Physical and

Mathematical Aspects of Symmetries, 293-298.

[32] P. D. Prester, L. Bonora, M. Cvitan, S. Giaccari and T. Štemberga, Induced actions
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