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Trace anomalies from matter models in curved
spacetime

Abstract

Using the effective action approach we deal with two main topics: the trace anomaly
in chiral theory and higher spin effective actions.

First, we recalculate the odd-parity trace anomaly for Weyl fermion and consider
possible contributions from tadpole and seagull terms in the Feynman diagram approach
with dimensional regularization. Introduction of an axial symmetric tensor, in addition to
the usual gravitational metric, allows us to use Dirac fermions which are coupled not only
to the usual metric but also to the additional axial tensor. We obtain the trace anomaly for
Majorana and Weyl fermions in two suitable limits of such a general configuration. We also
compute non-perturbatively the odd-parity trace anomaly in a theory of a Dirac fermion
field coupled to a metric-axial-tensor background, using Schwinger-DeWitt heat kernel
technique with two different regularizations: dimensional and {-function regularization.
We find that in theories with chiral fermions coupled to curved background the trace of
the energy-momentum tensor at one-loop gets a contribution from the Pontryagin density
with an imaginary coefficient. We also find that for Majorana and Dirac fermions the
odd-parity part of the trace anomaly vanishes as expected.

Second, we analyze the effective actions obtained in both massless and massive scalar
and fermion model coupled to higher spin sources (external fields) via conserved currents.
We are focused on two-point correlators so that the constructed one-loop effective action
contains only the quadratic terms and the relevant equations of motion for the sources we
obtain are the linearized ones. We show that our results can be expressed in a geometric
form, that is, in terms of covariant generalized Jacobi tensors. In 3d we also consider the
odd-parity sector where we find a generalization of Pope-Townsend Chern-Simons-like
action. Moreover, we formulate the worldline quantization of a massive fermion model
coupled to external higher spin sources. We find that the regularized effective action
obtained in this way is endowed with an L., symmetry.

Keywords: effective actions, trace anomalies, Pontryagin density, higher spins, L., sym-

metry



Anomalije traga iz modela materije u zakrivljenom
prostoru

Prosireni sazetak

Kada opisujemo fundamentalne interakcije u fizici, simetrije i pridruzeni zakoni o¢uvanja
igraju glavnu ulogu. Moze se dogoditi da, nakon sto kvantiziramo teoriju, zakon ocuvanja
koji je vrijedio na klasicnom nivou, na kvantnom nivou vise ne vrijedi. Tada kazemo
da je teorija anomalna. Kvantne anomalije mogu biti bezopasne ili Stetne. Bezopasne
anomalije (na primjer kiralna anomalija koja objasnjava raspad piona na dva fotona)
imaju fzikalne posljedice, dok Stetne anomalije (na primjer kiralna bazdarna anomalija)
narusSavaju konzistentnost teorije pa se stoga koriste za iskljucenje teorija.

Koriste¢i metodu efektivne akcije bavit ¢emo se neparnom anomalijom traga tenzora-
energije impulsa u 4d u teoriji s kiralnim fermionima u zakrivljenom prostoru te Diracovim
fermionima u MAT gravitaciji. Pokazat ¢emo da je neparni dio anomalije traga dan s
Pontryaginovom gusto¢om s imaginarnim koeficijentom $to ukazuje na lom unitarnosti
i narusenje konzistencije teorije (jer tenzor energije-impulsa postaje imaginaran). To
sugerira da se ova anomalija moze koristiti kao selektivni kriterij za razne teorije.

Zanimaju nas i modeli materije vezani na polja viSeg spina. Dok je teorija slobodnih
bezmasenih polja viSeg spina veéeg od dva konzistentna, postoje ozbiljna ograni¢enja u
obliku "no-go” teorema za opis njihovih interakcija, osobito u ravnom prostor-vremenu.

Kao prvi korak prema nasem cilju da analiziramo anomalije u modelima materije koji
interagiraju s poljima viSeg spina, potrebno je vidjeti koji je oblik efektivne akcije dobivene
integriraju¢i mikroskopsko polje materije (fermionsko ili skalarno) u teoriji u kojoj je
mikroskopsko polje vezano na polja viseg spina putem ocuvanih struja. Usredotoc¢it ¢emo
se na kvadratni dio efektivne akcije te doznati da su dobivene akcije nelokalne. Nakon
oduzimanja konac¢nog broja kontraclanova iz efektivne akcije, pokazuje se da ova metoda
predstavlja alat za dobivanje informacije o dinamici visih spinova. To ukazuje da bismo u
ovom pristupu, racunanjem korelatora viseg reda mogli doznati vise o nelinearnoj strukturi
visih spinova. Na ovaj na¢in mozemo dobiti i uvid u to kako su "no-go” teoremi povezani
s nasim slucajem, tj. predstavljaju li ogranicenja ili ih zaobilazimo.

Nas drugi pristup temelji se na kvantizaciji svjetske linije fermionskog modela vezanog
na polja viseg spina. U ovom pristupu dobivamo egzaktnu bazdarnu transformaciju pa
postoji moguénost da dobivena efektivna akcija bude bazdarno invarijantna bez dodavanja
kontraclanova. U slucaju da nema generaliziranih anomalija difeomorfizama, pronalaz-
imo da efektivna akcija posjeduje L., simetriju. To sugerira da integriranje L., algebre
mozemo Koristiti za pronalazenje moguc¢ih kandidata za teorije visih spinova.

Efektivne akcije i simetrije

Fundamentalni objekt u kvantnoj teoriji polja je particijska funkcija koja je generator
svih korelacijskih funkcija. Definiramo je sa

Zl) = [ Dociies g

gdje je ¢ vanjsko klasi¢no polje kao na primjer spin 1 polje A,,, spin 2 polje h,,, ili opéenito
polje viseg spina-s ¢, ... Pretpostavljamo da je klasi¢na akcija S[¢, ¢] suma slobodne



akcije Sy[¢] za neko polje materije ¢ te interakcije Sin [0, pl: S[d, ] = Sol@]+ Sint[@, ]. Za
danu particijsku funkciju Z[p| uvodimo efektivnu akciju Wip] = —ilnZ[p] koja generira
sve povezane korelacijske funkcije. Pretpostavimo li da je interakcija oblika

Snlo =3 R ) )

gdje su jH#1Fs(x) oéuvane struje (na ljusci mase) minimalno vezane na vanjsko polje spina
5 Qpu..us» tada efektivna akcija postaje:

WCECED YD OE )] Hddas P () g (2,

n=1 si,.. ,sn
X <O|T]u11..-u1sl (@1) - Jpnr i, (@) |0} (3)

W]

Jednopetljeni korelator na jednu tocku za j,, . definira se kao (j,. .. (2)) = S )

Simetrije klasi¢ne teorije. Ako je klasicna akcija S, koja opisuje polje materije
¢(z) vezano na baZdarno polje A,, invarijantna na bazdarnu transformaciju dA4, = 0,A,
struja jt(x) = M 5 biti ¢e ocuvana 95" (x) = 0.

Slicno, za polje materlje ¢(x) vezano na gravitaciju, klasicna akcija invarijantna je
na difeomorfizme d¢g,,(z) = V,& + V&, pa je tenzor energije-impulsa kovarijantno
ocuvan V*T),,(z) = 0. Osim toga, akcija je invarijantna i na Weylove transformacije
0w (x) = 2w(z)g,.(x) u bezmasenom slucaju sto implicira da trag tenzora energije-
impulsa iscezava T} = 0.

Nadalje, za polje materije ¢(z) vezano na polje viSeg spina ¢,,, .., s > 2, ako je akcija
invarijantna na bazdarnu transformaciju u najnizem redu 6w, ., = O Aps.. ), tada
je struja j,, .. (x) = &pmé—is(@ o¢uvana na ljusci mase 0" j,, .. (x) = 0. Povrh toga,
u limesu m — 0, ako je teorija invarijantna na generalizirane Weylove transformacije
0P ooppe = N psWyss..ps) trag struje gy, . iS¢ezava nt1#25, . (x) = 0.

Simetrije kvantne teorije. Ako kvantna teorija posjeduje iste simetrije kao i
klasi¢na teorija, kvantna efektivna akcija W biti ¢e invarijantna na iste bazdarne trans-
formacije kao i klasi¢na akcija. Za polje spina 1 korelator na jednu tocku struje (j*(z))
postuje Wardov identitet za bazdarnu invarijantnost

Ou(3"(2))) =0 (4)

Nadalje, za polje spina 2 imamo Wardov identitet za invarijantnost na difeomorfizme te
Wardov identitet za Weylovu invarijantnost:

V(T () =0, (T (=) =0 (5)

Slican kovarijantan zakon ocuvanja trebao bi biti zapisan i za s > 2 struje, ali ¢esto ¢emo
se zadovoljiti i s najnizim netrivijalnim redom za koji se zakon o¢uvanja reducira na

O (s (2))) = 0 (6)

vi



Konaéno, Wardov identitet za generalizirane Weylove transformacije je

1 (o (2))) = 0 (7)

U slucaju kada kvantna teorija ne postuje iste simetrije kao i klasicna teorija, Wardovi
identiteti su naruseni i tada kazemo da je teorija posjeduje anomaliju.

Anomalija traga

Pri opisu fundamentalnih interakcija u fizici, simetrije i pripadni zakoni o¢uvanja igraju
vaznu ulogu. Moze se dogoditi da simetrija klasicne teorije nije simetrija efektivne akcije
u kvantnoj teoriji i tada teorija posjeduje anomaliju [1]-[3]. U ovom radu fokusiramo se na
anomaliju traga za Weylove fermione vezane na gravitaciju. Ovu anomaliju joS nazivamo
i Weylova anomalija ili konformna anomalija. Oblik anomalije traga ovisi o dimenziji
prostorvremena i uvjetima konzistencije (Wess-Zumino). U 4 dimenzije anomalija traga
sadrzi Weylovu, Eulerovu (Gauss-Bonnet) i Pontryaginovu gustoéu [4]-[12]:

((T[j(x)}}zaE—i—CWz—i-eP (8)
gdje je posebno
1 wvpo af
P = 5 € R, Rypap (9)

Dok Weylova i Eulerova gustoéa ¢uvaju CP (nabojna konjugacija i paritet), Pontryaginova
gustoca narusava CP. Koeficijenti a, ¢ and e ovise o teoriji [7, 13, 14] . Mi ¢emo se fokusirati
na koeficijent e uz neparni dio anomalije.

Jedan slucaj gdje se Pontryaginova gustoca moze javiti je u teoriji s kiralnim fermion-
ima koji interagiraju s gravitacijom [15]-[21] u 4d. Akcija je

5= [[ato Vi Tt (9 + gon) v (10)

dok je metrika g,, = 7., + h, gdje je hy,, mala preturbacija oko ravnog prostora. U
originalnom rac¢unu [15] polje ¢ je redefinirano ¢ — | g|izp. Ra¢un anomalije traga bazi-
ran je na Feynmanovim dijagramima i dimenzionalnoj regularizaciji. Slijedec¢i [19], u
ovom radu predstaviti ¢emo detaljniji racun neparnog djela anomalije traga. Prije svega,
ne redefiniramo polje 1 te razmatramo postojanje dodatnih neiscezavajuc¢ih dijagrama.
Ispostavlja se da samo korelator na 3 tocke (trokutni dijagram) doprinosi. Eksplicitan
racun trokutnog dijagrama daje h? ¢lan u razvoju Pontryaginove gustoce

37
76872

(7)) =

Moramo jos provjeriti i ocuvanje tenzora energije-impulsa. Pokazuje se da anomalija na
difeomorfizme ne isc¢ezava. Da bismo je pokratili uvodimo kontraclan C = —% fw ht, Ao
gdje je Ag =

—méwg P. Na taj nacin anomalija traga postaje
7

= P
76872

(7D (11)

vil



Time se potkrepljuje rezultat iz [15]. Za desne fermione koeficijent e ima suprotan predz-
nak egp = —=-—.

Neparni dio anomalije traga za Weylove fermione Cesto je prihvacen sa sumnjom, a
razlog tome je tvrdnja da su bezmaseni Majoranini i Weylovi fermioni isti jer njihove
klasicne akcije izgledaju isto u dvokomponentnoj notaciji. Ako je ova tvrdnja istinita i
na kvantnom nivou, anomalija traga za Weylove fermione ne postoji. S druge strane, ne
smijemo zaboraviti da je centralni objekt u kvantnoj teoriji, kada razgovaramo o anoma-
lijama, integralna mjera koja nije ista za Majoranine i Weyove fermione. Jedan nacin
na koji mozemo pokazati da one nisu iste je eksplicitni ra¢un anomalije traga. Neparni
dio anomalije traga za Majorana fermione iS¢ezava dok je za Weylove fermione zadan
Pontyaginovom gustocom.

Da bismo uc¢vrstili nas rezultat i izbjegli probleme s integralnom mjerom, uvodimo
MAT gravitaciju gdje povrh obiéne metrike g,,,, uvodimo i aksijalni metricki tenzor f,,:
G = Guw + V5. Ideja je ugraditi nas sustav u Sire okruzenje te na taj nacin omoguciti
formulaciju problema pomoc¢u Diracovih fermiona. Akcija je tada

— = . 1
S = /d%iz/z |G|y E* <8# + 59#) Y (12)
Akcija je invarijantna na difeomorfizme 0=G,, = D,=, + D,E, s parametrom =/ =
&" 4+ v5¢* 1 na Weylove transformacije 6,G,, = 2wG,, s parametrom w te aksijalne

Weylove transformacije 6,G,, = 271G, s parametrom 7. Sada postoje dva ocuvana
tenzora energije-impulsa T%(z) i T5,*(x). Racun anomalije traga pomocu Feynamovih
dijagrama i dimenzionalne regularizacije daje

¢ 17 oT
(TH@) = g RUTRE,,
i v oT 1 oT 2
(o) = fegem @ (RWTRG, + RETRS,,) (13

gdje su Rsu)p/\ i Rfy)p)\ redom, obi¢ni i aksijalni dio Riemannovog tenzora.
v
PER

Neparni dio anomalije traga za lijevi Weylov fermion dobiva se u limesu h,, —

fu — hg” glasi

l

(T = 7oz

(14)

h

S druge strane, za desni Weylov fermion koristimo limes b, — h%, K — —=5% te u ovom
slucaju anomalija mijenja predznak. Nadalje, neparni dio anomalije traga za Diracov
fermion (ili Majorana ako 1 zadovoljava uvjet realnosti) dobiva se u limesu h,, — h
fuw — 0. Anomalija u ovom slucaju iscezava.

Isti rezultat moze se dobiti i neperturbativno koriste¢i Schwinger-DeWittovu metodu
zajedno s dvije razlicite regularizacije: dimenzionalnom i regularizacijom pomocu (-
funkcije, kao sto je pokazano u [20]. Definiramo amplitudu

2

(@517, 0) = (@77 (15)

viil



gdje je F = 6,5‘“/6” — }1}7% i koja zadovoljava sljedecu diferencijalnu jednadzbu
. a ~ ~/ T~ N
Za—,\<l’,§lx,0> = —?j(x,s]x,@ (16)
5
Koristeci anstatz
; B(f Z/E\’) .(a(a,a’) QA) N
7 ) glz.x )
A~ N —_ _ . 2 23 m=s AN AN AN
(z,s|2’,0) rInILDO 62 = e o(z,7',3) (17)

gdje je B(Z,7,3) = > oo 0 Gn(Z,2')(25)" s rubnim uvjetom [ao] = 1, dobiva se rekurzivna

relacija za koeficijente @,,:

~ ~ 1 ~ ~ = 1~
(0 + Danst + V4601 V6 — —= V"V, (\/Ban) + <ZR - m2) G, =0  (18)

VD

Uz ovu relaciju mozemo odrediti koeficijente @, u limesu ¥ — 2’ §to oznacavamo s [a,].
Za neparni dio anomalije traga u 4d relevantan je koeficijent [ay]

_ L5
[a2]|odd = 4—873,“”72,“

Da bismo izracunali anomaliju traga potreban nam je i regulator da bismo eliminirali
divergencije u koincidentnim tockama. Kao sto smo ve¢ spomenuli koristimo dimenzion-
alnu i regularizaciju pomocu (-funkcije. U dimenzionalnoj regularizaciji, d =4izam =0
efektivna akcija glasi

L= L (ﬁ—%)/d%tr([ﬁgﬂmo\/@)JriR (19)

1672

gdje je
3

~ i < oy 5 0 -m%H 2 %8
Lr= g™ /0 ds In(4mip s)@a(ﬁ):a (e [PE%, S>]> ’mﬁo 20)

~

Goli dio akcije je invarijantan na Weylove transformacije o5 L = 0 dok renormalizirani dio

L definira tenzor energije-impulsa %%E r = ((T")).U prikladnom limesu, za neparni
g 09m

dio anomalije traga opet dobivamo (14), ¢ime potkrepljujemo rezultat iz [15, 19]. Isto
mozemo potvrditi i koristenjem regularizacije pomocu (-funkcije. Povrh toga, pokazujemo
da se opisana metoda moze progiriti na MAT gravitaciju.

Vazno je primijetiti da je koeficijent uz Pontryaginovu gusto¢u imaginaran. Imaginarni
tenzor energije-impulsa moze slomiti unitarnost te narusiti konzistentnost teorije. To
sugerira da ovu anomaliju koristimo kao selektivni kriterij za razne modele. Naime, ako
u nekoj teoriji postoji balans lijevih i desnih kiralnih fermiona neparni dio anomalije se
pokrati te problem anomalije tada ne postoji. Napomenimo i da Pontryaginova gustoca
iStezava u nekim slucajevima kao sto su FRW ili Schwarzschildova geometrija.

Jedan od vaznih ishoda ovog pristupa je i sama MAT gravitacija koja se moze samostalno
proucavati kao novi bimetricki model.

1X



Efektivne akcije i polja viSeg spina

Da bismo konstruirali konzistentnu kvantnu teoriju gravitacije i materije, ideja je koristiti
beskonacan broj polja viseg spina. Jedan primjer te ideje je teorija (super)struna gdje se
u spektru javlja beskonacan toranj polja viseg spina [22, 23]. Jos jedan primjer teorije s
beskona¢no mnogo polja visih spina je i Vasilievljeva teorija [24]-[27] . Moguce je da ovo
nisu jedini primjeri, ali tada se postavlja pitanje: koji zahtjevi moraju biti zadovoljeni da
bi teorija visih spinova imala smisla?

U ovom radu predstaviti ¢emo ideju zapocetu u [28] te u [29]-[33] gdje koristimo pristup
efektivne akcije da bismo odredili linearnu klasi¢nu dinamiku polja viseg spina. Interakcija
masivnog skalarnog ili fermionskog polje s poljima viSeg spina @#'*s dana je putem
ocuvanih j,, ., Sint ~ D, f ddxgo“l"‘“Sjul,,,us. Da bismo analizirali dinamiku polja viseg
spina potreban nam je kvadratni dio efektivne akcije Sto zna¢i da su jednadzbe gibanja
linearizirane. Efektivnu akciju dobivamo ra¢unanjem korelatora na 2 tocke ocuvanih struja
pomoc¢u Feynmanovih dijagrama i metode koju su uveli Davydychev i suradnici, [34]-[36].
Kao sto smo prethodno spomenuli, ideja je uvesti beskonacno polja visih spinova u teoriju.
Zato razmatramo i korelatore dvije struje za bilo koji spin vezane na polja koji mogu
doprinositi efektivnoj akciji. Ove korelatore zovemo mjesoviti ili ne-dijagonalni.

Vazno je napomenuti i da o¢uvane struje nisu jedinstvene te da njihov oblik utjece
na oblik efektivne akcije. Uglavnom ¢emo se usredotociti na dva specificna izbora koje
nazivamo jednostavne struje i struje ¢iji trag iS¢ezava. Jednostavne struje su

-S .S H S . cS— 0 H 871
‘7“1---“5 =1 SOT (au> ()07 j;l---ﬂs =1 1’@07}1 <8M> QZ} <21)

dok su struje bez traga dane kao posebna linearna kombinacija prethodnih struja. Njihov
trag iS¢ezava u limesu kada masa ide u nulu (slucaj generalizirane Weylove invarijantnosti).
Definirane su sa:

13] L*5*)

. [~ . [~
lemMS = ai,l (DT‘-UN) ]21...u3_21 ) j/it1...us = Z ag,l (Dﬂ-,u'//') ]}51...#3_2[ (22)
=0 =0

oo CEDSIT (4520 o (D - DT (s+ 52 1)
S5 — 2T (s + 52) T 0T 22)l(s — 20 — DIT (s + 42)

(23)

Amplituda za struje dva razlicita spina s i s9 za struje Ciji trag iSCezava moze biti zapisana
kao linearna kombinacija amplituda za jednostavne struje.
Analizom opcenitog oblika o¢uvanog korelatora na 2 tocke doznajemo da se isti mogu

_y , . B 0,0, C 1 g
zapisti pomocu projektora m,, = 1,, — 5, na sljedeci nacin
ls/2]
s—2 1 _I
E Ty T T (24)
1=0

gdje su koeficijenti a; funkcije impulsa k i mase m. Iako je zapis pomocu projektora jako
prikladan, informacija o geometriji nasih rezultata zadana je implicitno na ovaj nacin.
Najjednostavniji nac¢in za formulaciju slobodne bezmasene teorije visih spinova je



pomocu Fronsdalovog tenzora [37, 3§]
F=0p—00 ¢+ 0% =0 (25)

Fronsdalova jednadzba invarijantna je na lokalne bazdarne transformacije dp = OA s
parametrom A = A, ..., ,, samo ako je parametar A ogranicen A’ = 0. Ovo ogranicenje
mozemo izbjeéi ako uvedemo generalizaciju 5™ Fronsdalovog diferencijalnog operatora
[39]-[41], koji je bazdarno invarijantan za n dovoljno velik. Operator F™ zadan je
rekurzivno

(n) 1 0? Fm) 1 0

gt — g a-Fm (26)

TN e D n+10

sa FO =Op i FW = F =Op — 90 - ¢ + 0%¢’. Obzirom na to da rezultate izrazavamo
pomocu projektora, operatori ™ nisu prikladni za nagu analizu jer su nelokalni i neo¢uvani
(njihova divergencija ne iS¢ezava). Za nase svrhe vazan je generalizirani Einsteinov tenzor

n

(n) _1\P (n—p)! , (n)[p] . s=2n s even
5 = ZO( P T djeje ¢ Z0 T T g (27)
p:

Divergencija G je nula te su neogranic¢ene jednadzbe gibanja za ¢
5™ =0 (28)

U [30] pokazujemo da se bilo koja jednadzba gibanja moze izraziti pomo¢u generaliziranog
Einsteinovog tenzora i njegovih tragova.
Da bismo izrazili efektivnu akciju u geometrijskom obliku, uvodimo generalizirani

Jacobijev tenzor R,  uwi.ve = Ou - Ou,Poy..v,|antisimetriziran u svim (4;,;) (generalizacija
Riemannovog tenzora), koji je povezan sa F™ na sljedeéi nacin:
L (s)lnl _ 9
(n) — On-—-1 S n 2
J {Dg_la.azwnu s—2m—1 (29)

Bilo koju akciju ili jednadzbu gibanja mozemo izraziti pomocu generaliziranih Jacobijevih
tenzora tako da ovisnost o generaliziranim Einsteinovim tenzorima zamijenimo s ovisnoséu
0 T te ovisnost 0 F™ zamijenimo s ovisnoiéu o Jacobijevim tenzorima.

Da bi nasa op¢a zapazanja bila konkretnija promatramo sljedece eksplicitne primjere.
Najjednostavni primjeri su bezmaseni skalarni i fermionski model s jednostavnim i stru-
jama bez traga. Posebno, eksplicitnim racunom korelatora s dvije struje doznajemo da,
za struje Ciji je trag nula, i sam korelator ima svojstvo da je njegov trag nula. Doznajemo
i da, u ovom slucaju, ne-dijagonalni korelatori iScezavaju.

Opcenito, bezmaseni slucaj ne sadrzava potpunu informaciju pa stoga koristimo ma-
sivni skalarni i fermionski model. Tako mozemo izracunati izraze za korelatore dvije struje
u opcenitoj dimenziji, rezultati su izrazeni pomocu hipergeometrijskih funkcija iz kojih
je tesko iscitati efektivnu akciju. Stoga ih ¢esto razvijamo u red oko infracrvenog (IR)
(% — O) i ultraljubicastog (UV) (% — 0) podrucja. Ovaj razvoj dopusta nam da izdvo-
jimo informaciju o dinamici izvora.

U IR sektoru, za viSe spinove nalazimo clanove koji nisu o¢uvani te narusavaju War-
dove identitete. Spomenuti ¢lanovi su lokalni te ih mozemo eliminirati tako da od akcije

x1



oduzmemo konacan broj prikladnih kontraclanova. Postoji jedno vazno opazanje vezano
uz oduzimanje lokalnih kontraclanova. Naime, za spin-1 i spin-2 znamo kovarijantni oblik
minimalnog vezanja pa u tim slu¢ajevima nije potrebno oduzimati kontraclanove, jer for-
malizam perturbativne teorije polja se automatski brine za kovarijantnost, pod uvjetom
da u obzir uzmemo i korelator na jednu tocku povrh korelatora na dvije tocke. Ovaj prim-
jer pokazuje i da dimenzionalna regularizacija daje kovarijantne izraze (bez oduzimanja
rukom) kao §to je npr. pokazano u [42] za skalarnu teoriju koja interagira s gravitacijom.

Spomenimo neke od rezultata. Na primjer, vodeci ¢lan u IR u fermionskom modelu
je univerzalan

s

= s d s =4
Tiscpanr, i H2EIT (2 T3 Ls/2J> RSB pomed2 (n2 o m,)

pv p
pa pripadna jednadzba gibanja glasi
. 49| d so1
()~ w2 (22 = 15/2] ) DUPIG . (30)
Posebno, za spin 1, dominantni ¢lan efektivne akcije u IR je uobicajena Maxwellova akcija
med_4 / dz FHVF#V

Za spin 2, efektivna akcija je suma kozmoloske konstante, Einstein-Hilbertove akcije i
Weylove gustoée W? = R\, R — 2R, R* + 3 R? (konformna invarijanta u 4d).

W~ md/ddx g><[F(—C—i)—F(l_%)R—F(Q_g)VWJr... (31)

2 24m? 80m*

Za spin 3 efektivna akcija dana je kao generalizacija Maxwellove akcije
Wde_Q/dm (Fun)? = (FL)?) + ...

Povrh toga, treba provjeriti da su IR i UV limesi efektivne akcije dobro definirani. U
IR sektoru nalazimo clanove koji su divergentni za m — co. Spomenuti ¢lanovi su lokalni
i obuhva¢aju neoc¢uvane ¢lanove pa biramo shemu u kojoj ih eliminiramo tako da od
akcije oduzmemo konacan broj prikladnih kontraclanova. Opcenito, efektivna akcija tada
je dana pomocu Fronsdalovog kinetickog operatora, [37, 38], u nelokalnoj formi uvedenoj
u [39]-41].

Nadalje, u 3d fermionskom modelu postoji i neparni sektor gdje za ne-dijagonalne
korelatore struja ¢iji trag iSCezava opceniti izraz za spinove s; X So, So > §1 glasi

@
=

1%

v

. sitsp imkS1To273 sama Z1(=1)IT (81 — 1) o120
Ty vy = (=1)"> S—HWWQ 2071 me zlwﬁu}/ o
252 22T (81 — 2[)

=0

€k’ (32)

Za jednake spinove, ova akcija promatrana je u [43, 44] te nedavno u [45]-[52].

Dakle, pocevsi od slobodne kvantne teorije polja vezane na vanjska polja viSeg spina
putem ocuvanih struja, nalazimo da efektivna akcija, dobivena integriranjem mikroskop-
skog polja, sadrzi informaciju o klasi¢noj dinamici visih spinova. Kako se zadrzavamo

x1i



na korelatorima na dvije tocke, efektivna akcija je kvadratna, dok su jednadzbe gibanja
linearne u polju.

Napomenimo ponovno da za viSe spinove znamo samo lineariziranu verziju interakcije i
bazdarne transformacije i stoga nalazimo narusenje Wardovog identiteta. Da bismo zado-
voljili Wardove identitete dovoljno je od efektivne akcije oduzeti konacan broj lokalnih
kontraclanova. Oc¢ekujemo da bismo za o¢uvanje (bez oduzimanja kontraclanova) trebali
znati potpuni oblik kovarijantnog minimalnog vezanja i bazdarne transformacije. U tu
svrhu, u [33] promatrali smo kvantizaciju svjetske linije koja se temelji na Weylovoj kvan-
tizaciji ¢estice u kvantnoj mehanici. Pocetna tocka je slobodna fermionska teorija vezana
na vanjske izvore. Zatim koristimo Weylovu kvantizaciju. Potpuna akcija izrazena je kao
ocekivana vrijednost operatora

= (0| —v-(P — H) — m|y) (33)

Opceniti kvantni operator O moze se uz Weylovo preslikavanje predstaviti pomocu
simbola O(z, p)

A ddk ddp R (T— -P
O:/ddl’dd’yww()(l’,p)ek( X) v (p—F) (34)

tako da operator H ima simbol h(z,p)

o0

Z Wl (@) Dy - - - P (35)

0

gdje je s =n + 1 spin i h“‘“ #m je simetri¢ni tenzor. Simetricno tenzorsko polje h##1-Hn
je linearno vezano na ocuvanu struju viseg spina

rs—1
(3 _ ¢ 0 O Z(ps? _z
‘]/1,/11,.,‘“,571 (I) (S . 1)' 82’(“1 toe az,us_ldj <ZL’ + 2) ’Yu)rw (I 2) z:O' (36)
Akcija (33) invarijantna je na transformaciju
0:h"(x,p) = Ofe(x, p) — il (x,p) ; e(x,p)] = Dyf'e(w, p) (37)

gdje x oznacava Moyalov produkt. Sljedece, promatramo regulariziranu efektivnu akciju:
mwhe:—N/ —ﬂr%G (38)

gdje je G = —y-(P — ﬁ) — m. Ideja je razviti efektivnu akciju perturbativno

>~ 1 n ddpl .
h] = Z m / H dd‘ri (27T)d WELl),m,,LLn (xhph -~y Lns Pn, 6) hHt (x17p1> S b (xnypn>
i=1

n=1

te na taj nacin dobivamo izraze za amplitude Wfﬁ)un (T1,P1y - » Tny Py €) (slicne Feyn-
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manovim dijagramima). Jednadzba gibanja je

Stu(xvp) = Z E / Hddxl W W;(L,;Zl.-)-,un(x>pv L1,P1y - -5 Tns Pns 6)
n=0 i=1
X h*Y (zq,p1) ... h* (2, pn) = 0

Vazna prednost gore opisane procedure je da daje potpuni oblik bazdarne transformacije
Sto ima dalekosezne posljedice: mozemo pokazati da cijela akcija ima L., simetriju [53].

U Ly-algebri imamo graduirani vektorski prostor X = €, X; gdje je X; vektorski
prostor, 7 = ...,1,0,—1,... , sa stupnjem ¢ te multilinearnim preslikavanjima L;, j =
1,2,..., sa stupnjem d; = j — 2. Vektore iz X oznacavamo s x1, Za, ... a njihov stupanj
je x; = deg(z;). Preslikavanja L; zadovoljavaju sljedeée kvadratne identitete:

> (1)U (—1)7€(0;2) Li(Li(To(1); - - To@)s To(is1)s - - Tatm) =0 (39)

i+j=n+1 o

gdje o oznacava permutaciju dok je €(o;z) Koszulov predznak.
U nasem slucaju, zbog strukture efektivne akcije i jednadzbe gibanja, biti ¢e nam
potrebna samo tri vektorska prostora Xy, X_1, X_5 te kompleks

Xo 2 xS x o, B0 (40)

Stupnjevi su sljedeci: € € X, h* € X_; te F, € X_,. Eksplicitnom provjerom L, relacija
(39) moze se pokazati da je na ovaj na¢in generirana L, algebra.

L., relacije mogu se interpretirati kao Wardovi identiteti. U dokazu L., simetrije
pretpostavili smo da nema anomalija, ali tu pretpostavku treba provjeriti eksplicitnim
racunom amplituda. Lom Wardovih identiteta na kvantnom nivou indicirao bi da je
teorija anomalna sto ukazuje na moguce prepreke u konstrukciji teorije visih spinova. S
druge strane, ako nema anomalija, L., algebra moze se koristiti za pronalazenje teorija
koje automatski zadovoljavaju L., relacije i bazdarnu invarijantnost za vise spinova, sto
otvara novi pristup za istrazivanje modela visih spinova.

Kljucne rijeci: efektivne akcije, anomlije traga, Pontryaginova gustoca, visi spinovi, L.,

simetrija
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Chapter 1

Introduction

When describing the fundamental interactions in physics, symmetries and related conser-
vation laws play a crucial role. A symmetry is a transformation of the fields that leaves
the classical action invariant. However, it may happen that, once we quantize the theory,
a classically valid conservation law is violated. We call such a theory anomalous. Anoma-
lies can be harmful or harmless. Harmful anomalies, such as chiral gauge anomalies, spoil
the consistency of the theory and can be used as a selective criterion for theories. On the
other hand, harmless anomalies have physical consequences, such as Adler-Bell-Jackiw
anomaly which explains the pion decay to two photons.

Using the effective action approach, we will deal with odd parity trace anomalies in
4d in chiral fermion theory coupled to curved background and Dirac fermion in metric-
axial-tensor (MAT) gravity . We will show in several ways that the odd parity part of the
trace anomaly is given with Pontryagin density with imaginary coefficient, which indicates
breakdown of unitarity and hence spoils the consistency of the theory. This suggests that
we can use this anomaly as an exclusion criterion.

We are also interested in matter models coupled to higher spin fields. However, while
the theory of free massless fields of spin higher than two is consistent, their interactions
pose a challenge, that is, there exist several "no-go” theorems which impose serious re-
strictions on interacting theories, particularly in flat spacetime.

As the first step toward our goal to analyze anomalies in matter models coupled to
higher spin fields, it is important to see what is the form of effective actions obtained
by integrating out microscopic matter fields (scalar or fermion) in a theory in which a

microscopic field is coupled to higher spin fields via conserved currents. We will focus



on the quadratic part of the effective action and find that they are nonlocal. In this
approach, after subtraction of finite number of local counterterms, we gain information
about dynamics of higher spins. This indicates that, using this approach to compute
higher-point correlators, we could acquire information about non-linear structure of higher
spin theory. In this way we could also gain insight on how the "no-go” theorems are
connected with our case, whether they pose restrictions or they are circumvented.

Our second approach is based on worldline quantization of the fermion field coupled
to higher spin fields. In this way we obtain the exact gauge transformation and hence the
effective action has prospective to be gauge invariant without subtraction of counterterms.
If there are no generalized diff-anomalies, the effective action admits L., symmetry. This
indicates that integrating L, algebra could be used to determine possible candidates for

higher spin theories.

1.1 Trace anomaly

If a symmetry of a classical action is not a symmetry of an effective action in quantum
field theory, we say that such a theory is anomalous. An introduction to anomalies can
be found in the following textbooks [1]-[3].

In general, in fermionic field theory, we can divide the anomalies into two groups:
split and non-split anomalies. Aspects of split and non-split anomalies are discussed in
[54, 55]. Split anomalies have an opposite sign for opposite fermion chiralities, while the
non-split anomalies have the same sign for opposite chiralities. As an example of the
split anomalies let us mention the consistent chiral gauge or gravity anomalies. They
occur only in theories with chiral imbalance. These anomalies are harmful and spoil the
consistency of theory. As a consequence, they have been used as an exclusion criterion.
On the other hand, as an example of non-split anomalies let us mention the covariant
gauge or gravity anomalies, such as the anomaly that explains the decay of a 7 into two
+’s or the Kimura-Delbourgo-Salam anomaly [56]-[58]. In this thesis we will focus on the
trace anomalies, also referred to as Weyl anomaly or conformal anomaly. Regarding the
trace anomalies, the even-parity part falls into the non-split category, while the odd-parity
part of the trace anomaly is split.

The appearance of even parity part of the trace anomaly was first discussed in [4], see



also [5] for a general form of trace anomaly in various dimensions and [6] for arbitrary spin.
One can follow general algorithm for the construction of gravitational axial and conformal
anomalies for arbitrary spin [7]. Even trace anomaly can be applied to Hawking effect,
gravitational instantons, asymptotic freedom and Weinberg asymptotic safety, see [8].
There exists a vast literature on even trace anomalies in 4d, mostly old [59]-[78], but also
recent, such as [79, 80] related to renormalization of 3-pt correlators of energy-momentum
tensor and conserved currents, and [81] where the Feynamn diagram approach was used
to compute the conformal anomaly for spin—% fermions, denoting a renewed interest in
the subject.

The form of trace anomaly is determined by the dimension of spacetime and the
consistency conditions. In particular, the most general form of the trace anomaly in four
dimensions contains squares of the curvature and d’Alambertian of Ricci scalar. Using
cohomological analysis, it was found that the trace anomaly can be written in terms of
Weyl density, Euler (Gauss-Bonnet) density, d’Alambertian of Ricci scalar and also the
Pontryagin density, see [9]-[12]. The d’Alambertian of the Ricci scalar is trivial in the
sense that it can be removed by adding local counterterm to the action. Also Weyl and
Euler density preserve CP (charge conjugation and parity) and hence belong to even parity
part of the trace anomaly, while the Pontryagin density violates CP and belongs to the
odd parity part. Recently, trace anomalies gained on popularity due to conformal field
theories and their relation to the AdS/CFT correspondence. In [82, 83] the appearence
of the Pontryagin anomaly was discussed in context of AdS/CFT correspondence.

We will focus our attention to the parity-odd part of the trace anomaly in 4d, see
[15]-[21], [84, 85]. One model where the Pontryagin density can appear in the trace of the
energy-momentum tensor is the theory of chiral fermions. In fact, the coupling between
gravity and matter is given by the metric and energy-momentum tensor and it is important
to note that the energy-momentum tensor for two fermions with two different chiralities
is different. This difference can emerge in the form of an anomaly, in particular the trace
anomaly.

In this thesis we will present a continuation of work done in [15]-[17], namely [19, 20]
(see also [21]) where we revisit the computation of the odd part of the trace anomaly in
the theory of chiral fermions. Following [19] we will present a more detailed derivation of

parity odd trace anomaly using Feynman diagrams approach together with dimensional



regularization. First, contrary to [15], we will not redefine the fermion field. Secondly, we
will take into account possible contributions from the tadpole and seagull terms. In this
way we confirm the result of [15].

Furthermore, motivated by Bardeen’s method for computation of chiral gauge anoma-
lies [86], we will introduce metric-axial-tensor gravity (for short MAT). The main idea
is to embed our system in a larger framework and to formulate our problem in terms of
Dirac fermions instead of Weyl fermions. We will couple Dirac fermion to the usual metric
g and an axial symmetric tensor f,, .

Let us briefly explain the main problem with chiral fermions and the reason behind
the introduction of MAT. In anomaly calculations the most important part is played
by the integral measure. However, in the case of chiral fermions the definition of the
measure presents a problem because the Dirac operator for a Weyl fermion contains
a chiral projector. We introduce MAT to avoid problems related to fermion integral
measure, and instead we are allowed to work with Dirac fermions for which the integral
measure is well defined. Note that, throughout the calculation, it is necessary to preserve
the information about the definite chirality of the fermion field. We repeat the calculation
of parity-odd trace anomaly in this new setup and we derive the anomaly for Dirac,
Majorana and Weyl fermion in specific limits (which we call collapsing limits) and confirm
our previous result.

The limitation of this derivation is that it is perturbative, that is, we compute only
the lowest order of the odd trace anomaly and we then covariantize it. This is of course
permitted provided we are convinced that there are no diff-anomalies. With a MAT back-
ground this verification is exceedingly complex and in this thesis and in [19] we content
ourselves with an analogous but simpler verification carried out in [17]. Instead, there
is a method that guarantees that diffeomorphisms are respected throughout the deriva-
tion: DeWitt’s method, [13, 14]. Our aim here is to combine DeWitt’s with Bardeen’s
method. This will require a introduction on the so-called hypercomplex calculus, which is
the appropriate framework for MAT gravity. Hypercomplex analysis in physical problems
was introduced and used in [87]-[93]. Following [20], we show that the same result for
parity odd trace can be obtained non-perturbatively by means of heat kernel and using
two different regularizations: dimensional regularization and (-function regularization.

Finally, although we do not use it here, we should mention the method recently devised



in [94], where a fifth dimension is introduced as a regulator.

It turns out that the odd-parity part of the trace anomaly comes with an imaginary
coefficient. It was pointed already in [15] that imaginary energy-momentum tensor might
break unitarity and thus spoil the consistency of the theory. This observation suggests

that we could use this anomaly as a selective criterion for the theories.

1.2 Effective actions in higher spin theories

It is a common belief that, to construct a consistent quantum theory of gravity and
matter, we need an infinite number of fields. One example which supports this idea is
(super)string theory, where an infinite tower of higher-spin excitations appears [22, 23].
One more example of higher spin theory with an infinitely many higher spin fields is the
Vasiliev theory [24]-[27] which exist in a four-dimensional and lower space-time. Very
likely these are not the only possibilities. But then a question arises: what are the
requirements to be satisfied in order for these theories to make sense?

The theory of higher spins dates back to 1936 when Dirac tried to generalize his Spin-%
equation [95]. In 1939 Fierz and Pauli [96] systematized the study of massive higher spin
fields through Lorentz covariance and energy positivity and in 1974 Singh and Hagen in
[97, 98] constructed the Lagrangian formulation of Fierz and Pauli equations. A few years
later, Fronsdal in [37, 38| considered the massless limit of Singh-Hagen Lagrangian and
found that the equation of motion is invariant under gauge transformations only if the
gauge parameter is traceless. In [39]-[41] Francia and Sagnotti constructed the free field
equations which are unconstrained and nonlocal for spin larger than two.

Here we will present a program started in [28] and continued in [29, 30] (see also
[31, 32]) where we used the effective action approach to determine the classical dynamics
of the higher spin fields. Higher spin fields appear naturally in the one-loop effective action
of the simplest free theories in any dimension and it is possible to make contact with the
literature on classical higher spin theories, [39]-[41], [99]-[109]. Sources of inspiration for
our approach has been Sakharov method of induced gravity [110], higher spin theories in
3d [111]-[116] and also [117]-[119]. The idea of exploring the one-loop effective action is
far from new: the list of works which may have some overlap with our program includes

[119]-[128].



We start by coupling a massive scalar and fermion theory to higher spin fields via
conserved currents. Next, to analyze the dynamics of higher spin fields we need the
quadratic part of the effective action (linearized equations of motion). We obtain the latter
by computing the 2-point correlator of our conserved currents using Feynman diagrams
and a method introduced by Davydychev and collaborators, [34]-[36]. Even though we
will often consider only 2-point correlators of currents with equal spins, as we previously
mentioned, in higher spin theory an infinite tower of spins appears. This suggests that
we should also consider the correlator of any two currents coupled to fields that can enter
the action. We refer to these correlators as mixed or non-diagonal. One more important
thing to note is that the conserved currents are not unique and their form affects the
form of the effective action. We will mostly focus on two specific choices, we call them
"simple” and "traceless”. We will demonstrate several examples for scalar and fermion
field theories with different choices of currents.

To prepare the ground, we will start with a consideration of the general form of
conserved 2-point correlators and learn that they can be represented in terms of projectors
which make the conservation obvious. We also consider a form of traceless correlators.
Now, even though the projectors are extremely convenient, the geometrical content of the
results remains hidden in this way. For this reason we turn to the formulation of our
results in terms of geometrical objects - Jacobi tensors.

To make our general observations more concrete, we have to turn to explicit examples.
The easiest examples are the massless scalar and fermion model where we are able to derive
some very general results. In particular, we compute the 2-point correlator for simple
and traceless currents. We find that the correlators for traceless currents are themselves
traceless. In general, in the massless case we do not get all the information we can extract
from the massive theory and to make sure we get a complete information we must use
massive models.

Using massive scalar and fermion models we derive general expressions for 2-pt corre-
lators in a general dimension, however, these results are given in terms of hypergeometric
functions and are not particularly "readable”. Because of that we often expand the re-
sults around IR (% — 0) and around UV (% — 0) in a specific dimension: d = 3,4. The
expansion in powers of mass allows us to single out the dynamics of the sources and we

will refer to it as tomography.



There is another reason why we use UV and IR expansions: we have to check that
the IR and UV limits of the one-loop effective action are well defined. In the IR sector
we find terms which are divergent in the limit m — oo. There are also terms which are
non-conserved and violate Ward identity. These terms are local and can be subtracted
by adding a finite number of local counterterms to the action. In this way, for spin-1 we
find the Maxwell action, for spin-2 Einstein-Hilbert and for spin-3 the effective action is
based on the corresponding linearized Fronsdal kinetic operator, [37, 38], in the nonlocal
form introduced by Francia and Sagnotti, [39]-[41]. In view of constructing a covariant
action for higher spins, this result is promising. It suggests that integrating out scalar
or fermion fields (or any other field by which one can form conserved currents) can be a
prospective way to analyze the dynamics of higher spin fields.

Also, in 3d in fermion model we can consider the odd parity sector which emerges
from the parity-breaking fermion mass term, and we find a generalization of Pope and
Townsend’s Chern-Simons-like action in the case when mixed higher-spin fields are taken
into consideration. In the case of equal spins, this is the action considered in [43, 44] and
recently discussed by a number of authors, see e.g. [45]-[52].

We previously mentioned that different choices of currents lead to different effective
actions. In particular, we discuss diagonalization of our 2-point correlators, that is, the
possibility of vanishing off-diagonal correlators for appropriate choice of coefficients in the
currents.

There is one more important point related to local subtractions. We already men-
tioned that we find several violations of Ward identities, but since the terms which vio-
late conservation are local, we can recover conservation by subtracting appropriate local
counterterms from the action. We recall that for spin-1 and spin-2 we know the covariant
form of minimal coupling. In these cases we show that we do not have to subtract lo-
cal counterterms, because the perturbative field theory formalism already automatically
takes care of covariance, provided one takes into account not only the two-point bubble
diagrams but also tadpole and seagulls. This exercise also shows that dimensional reg-
ularization gives manifestly covariant expressions (without subtractions by hand) as was
e.g. done in [42] for scalar matter coupled to gravity.

The example of spin-2 shows that the gauge transformation is not linear, in fact, it is

crucial to consider the complete gauge transformation to show that the theory respects



Ward identities. In contrast, for spin 3 and higher we have only the linearized version
of gauge transformation and as a consequence our Ward identity is not satisfied. The
reason is that seagull diagrams are related to the additional terms in the initial action,
beyond the minimal model we start with (a scalar or fermion field minimally coupled
to a background field). Conservation (without subtractions) requires the presence of
such additional terms and constraints their form and their coefficients. Hence, when we
consider higher spin backgrounds, this observation may be used in order to determine the
form of the additional action terms. This goes in the direction of constructing an off-shell
covariant model.

So, to avoid subtractions, we should know the full form of gauge transformation and
covariant minimal coupling. In this regard, in [33] we considered the worldline quanti-
zation method of a fermion model which is based on the Weyl quantization of a particle
in quantum mechanics. The literature on the worldline quantization is large. Here we
refer in particular to the calculation of effective actions via the worldline quantization in
relation to higher spin theories, [117, 118, 128]. The first elaboration of this method is
given in [129], to which many others followed, see for instance [130]-[138].

The main idea in worldline quantization is to replace the field dependence on the po-
sition and the field derivatives by the corresponding position and momentum operators,
respectively, and we rely on the Weyl quantization for the latter. We define the effec-
tive action and expand it perturbatively. In this way we obtain the expressions for the
amplitudes, which are similar to Feynman diagram approach.

A peculiar thing about this procedure it that it comes with the precise form of the
gauge symmetry. This has a outstanding consequence: it is possible show that the full
(not only the local part of) effective action in the fermion model accommodates (curved)
L, symmetry. The latter is a symmetry that characterizes many (classical) field theories,
including closed string field theory. This fact first appeared in [139, 140], see also [141],
as a particular case of strongly homotopic algebras [142, 143]. L., describes other field
theories as well [144], such as gauge field theories [145]-[147], Chern-Simons theories,
Einstein gravity and double field theory [53]. For other, more recent applications, see
[148]-[150].

We interpret L., relations as Ward identities. Breakdown of these relations at the

quantum level would suggest the presence of anomalies. Possible obstructions in construc-



tion of the higher spin theories may appear in the form of anomalies in this approach.
If there are no generalized diff-anomalies, integrating L., algebra, that is determining
theories which satisfy L., relations and higher spin gauge invariance, is a prospective way

to investigate higher spin models.

1.3 Organization of the thesis

The thesis is organized as follows.

In chapter 2 we introduce the notion of the effective action and discuss its symmetries.
We also discuss the general form of the trace anomaly and we review the properties of
massless Weyl and Majorana fermions in 4d.

Chapter 3 follows [19]. We reconsider the computation of the anomaly given in [15]. We
calculate the trace anomaly, but here we do not redefine the fermion field and we consider
possible tadpole and seagull terms. We complete this chapter with the discussion of Ward
identity for diffeomorphisms and some final remarks on the the odd trace anomaly.

Chapter 4 is based on [19]. We introduce the MAT (metric-axial-tensor) gravity, and
we couple it to Dirac fermions. Afterwards, we give a derivation of the trace anomalies
in this formalism and we compute the collapsing limits for Dirac, Weyl and Majorana
fermions.

Chapter 5 is based on [20]. We give a brief introduction to axial-complex numbers
and axial-complex analysis. We also present the axial-complex analysis of geodesics in an
axial-complex space: we define normal coordinates, the world function and the coincidence
limit, the VVM determinant and the parallel displacement matrix for tensors and for
spinors. Even though the (pseudo)Riemannian geometry of an axial-complex space is
already introduced in the previous chapter, for this chapter is practical to partially change
the notation. We formulate the theory of Dirac fermions in a MAT background, define the
ordinary energy-momentum tensor and its axial partner and analyze their classical Ward
identities with respect to ordinary and axial diffeormorphisms and Weyl transformations.
We also define the ‘square’ of the Dirac operator, a central object for the application of
the Schwinger-DeWitt method. Next we describe this method and derive the relevant
heat kernel coefficients. We use these results to the non-perturbative computation of the

odd part of the trace anomalies tor the two energy-momentum tensors with two different



regularizations: the dimensional and (-function regularization. Finally, we compute the
collapsing limit for Weyl fermion and show that the two anomalies collapse to a single
one and, as expected, correspond to the odd trace anomaly already calculated in [15, 17]
and [19].

In chapter 6 we give a short introduction to higher spin theories and related "no-go”
theorems.

In chapter 7 we introduce the massive scalar and fermion model. This chapter is based
general observations related to 2-point functions given in [29, 30]. We discuss universal
form of equations of motion and show how to geometrize our results, that is how to express
them in terms of Jacobi tensors. Next, we give a short summary of Davydychev’s method
to compute one-loop Feynman diagramsand summarize the results in 3d worked out in
[28]. Finally, we give general guidelines for calculations. Next we turn to calculations of
2-pt functions.

Chapters 8 and 9 follow main results from [29, 30]. We analyze massless scalar and
fermion models for simple and traceless currents and we find some general expressions for
any spin and any dimension. We also consider the one-loop scalar and fermion massive
model two-point functions of simple currents and their IR and UV expansion (tomogra-
phy) in 3 and 4 dimensions. We also produce the expressions for two-point correlators of
spin 1, 2, 3 currents in any dimensions. Next we show some examples of mixed correlators
in fermion model in various dimensions and give their UV and IR expansions. We also
discuss the issue of tadpole and seagull terms and how they guarantee covariance without
subtractions in the case of spin 1 and 2. Furthermore, we try to diagonalize our results,
that is, we try to find the form of currents for which the mixed spins correlators vanish.

Last two chapters are based on [33]. In chapter 10 we carry out the worldline quan-
tization for free Dirac fermions coupled to external sources (the case of a scalar field is
given in [128]) and give expressions for the amplitudes. In chapter 11 we reveal the Lo,
structure of the related effective action.

Section 12 is devoted to the conclusion and discussion of our results.
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Chapter 2

Effective actions, symmetries and

anomalies

To analyze our matter models and the existence of anomalies within them we use the
effective action approach. In this chapter we introduce main definitions which we will
use throughout this thesis, such as the partition function and quantum effective action.
Moreover, we will discuss symmetries and associated conservation laws for both classical
and quantum actions in gauge theory, gravity and a general spin-s theory. We conclude
that, if the emergent Ward identities are violated, the theory is anomalous.

Next we focus on a specific type of anomalies, the trace anomalies in matter models.
We first discuss a general form of the trace anomaly given by Wess-Zumino consistency
conditions. It turns out that there are three possible terms which can contribute to the
anomaly: Weyl, Euler and Pontryagin density. The coefficients of these terms depend
on the theory in question. Our focus will be on the coefficient of the parity-odd part -
Pontryagin density. One possible model in which such a term does not vanish is a theory
of a chiral fermion (for example left-handed Weyl fermion) coupled to curved background.
Let us mention that there is a common misconception that a Weyl fermion is the same
as massless Majorana fermion at both classical and quantum level. While the odd-parity
part of the trace anomaly for massless Majorana certainly vanishes, this is not the case
for Weyl fermion [15]. Because of this, to prepare the ground for the calculation of the
parity-odd trace anomaly, we first discuss fermions in 4d, in particular, we focus on the

similarities and differences between massless Majorana and Weyl fermions.

11



2.1 Effective action

Let us start with the main definitions, see [1]. Fundamental object in quantum field
theory is the partition function. The partition function Z[p] is the generating function of

all correlation functions. It can be written as

Z[p] = / Depe' 517 (2.1)

where ¢ is some external (classical) field such as spin 1 field A,,, spin 2 field h,, or higher
spin fields ¢, ... We assume that the classical action S[¢, ¢| is a sum of the free action

So[@] for some field ¢ and the interaction Si,:[¢, ¢]:

S[¢, ¢l = Sol@] + Sine[@, ] (2.2)

Next we expand the partition function

Z[SO] - Z Z %/Qdd%gpmlmmsi (IZ)(S 5nZ[90] (2.3)

n=0 s1,..., s (pllanlf«lsl ('CE]-) ct 5g0/$n1~~~/insn (.Tn) (70:0

3" Z[¢]

= 5 is the correlation function. Given the partition func-
80#11...;1.151 (xl) Prni-bnsp (xn)

=0
tion Z[p] we can introduce the effective action W/y]

where

Zlp] = e Wlel = iWlp] = InZ[p] (2.4)

The effective action is the generating function for all connected correlation functions. The

expansion of the effective action for the external source ¢, ., is

CE S % / [L 456 ) 5 (W) (25)

n=0 s1,...,8n 590}/411---11‘131 (wl) Tt 5(pl1/n1---l1/nsn <:L'n) @:0

8" (iWe])
5410#114-4#151 (351)~~-54Pun1 e Mnsy (zn)

is the connected correlation function.

where
©=0
Let us now assume that we constructed on-shell conserved currents j#~#(z) and let

us couple them minimally to spin-s external fields ¢, ,. . We can write interaction as

S’L’nt[¢7 90] = Z/ddxgoul...usjulmus (IE) (26)
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The n-point correlation function then reads

0" Z[p]
5()0/1«11“414151 (xl) st 690/15111-“#11571 ("L‘n)

= OIT I ) e (@,)|0)(2.7)
o

while the n-point connected correlation function becomes

0" (W)
6(10N11-~H131 (x1> ttt (5()0/14711"‘#77,5” (xn)

) — in<0|7‘j#11.../ﬁ1sl (-Tl) . 'jﬂnl..-ﬂ’nsn ($n)|0>c (28)
o=

For example, 1-point correlator is the same as 1-point connected correlator

YAl seWlel

m‘wo  0Ppnrepns (1) =0
SiWIE) i o
= —el = O H11---H1s T O . 29

o[ (20)[0) =

while for the 2-point correlator we get

5*Z]y]

7 <0|7'jli11 Hisq (%)j’m H2so ($2)|0> —
5901111-”/1151 (xl)(SSOuzl...usz ($2)

=0
§52eiWlgl
590Mll~-~u1s1 (‘Tl)(SSOMleMsz (xQ) =0
_ < *(iW1e]) L _O@Wle])  oGWle]) > W]
5§0u11~~u151 (x1)590#21-~msz (z2) &pulrnmsl (1) 590#21-~#252 (z2) =0
5 0} 02 (20

_ i2<0|7~jm1...u151 (xl)j,ummuzsz ($2)|0>c + i2<0

— 2'2 (O’Tj‘u”'””lsl (331)]'#21'“”252 (xZ) |0>C + Z'2<0U,ul1~--#1sl (1'1) |0> <O|j#21~-u252 (xQ) ‘0)

Altogether, the connected 2-point correlator can be expressed as

(O] T gHrr-tron () 121 H222 (22)|0).

= (O[T grttiten () g1t 1202 () |0) — (O[7#1 21 (1) ]0) (0] 5214202 () |0)  (2.10)

Finally, we can write the effective action as:

. . - " T
iW[p] =iW|[0] + Z Z ] / H Al () Lttt ()
no i=1

n=1 s1,...,8

X <O|Tju11---u1sl (z1) .. < Jttnt tinsn (zn)[0)e. (2.11)
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where we separated the constant term. The full one-loop 1-pt correlator for j,, ., is given

as a variation of the effective action with respect to the source and it reads

(@) = WI = DY / Hdda: P () g (1)

n=0 s1,..., sn

X (O[T G (T) iy . uul(xl) Tyt oopimsn (Tn)[0)er (2.12)

2.2 Symmetries of a classical theory

Let us start with a simple example of the classical action S that describes some matter

field ¢(x) coupled to gauge field A,,. If the action is invariant under gauge transformation
0A, = O\ (2.13)
where A is the parameter,

9S8 = /dd:c—éA = /dda:j“(x)ﬁu)\ = —/ddxaﬂj“(:c))\zo (2.14)

the current j#(z) = 5 A‘is(x) will be conserved since the above equation holds for any A

0,5"(z) =0 (2.15)

Next, consider classical action S that describes matter field ¢(z) coupled to curved back-
ground. The classical action is invariant under diffeomorphisms (general coordinate trans-
formations) and Weyl transformations (for massless theory). For coordinate transforma-
tions x* — z*(x) the metric transforms as

. 0z 0z
glﬂ/('r) — g,ul/(':v) = ax/u wgaﬁ(x) (216)

For infinitesimal transformations x# — z/* = x* — £# the variation of the metric is given

as Lie derivative of the metric in the direction of &

6§gMV(x) = V,ugu + Vugu (217)
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If the action is invariant under diff-transformations

0e5 = [ s s =~ [ o ituavie = [ a5V L@ =0 (215

since the above equation holds for any parameter &, the energy-momentum tensor must

be covariantly conserved
VA, (z) =0 (2.19)

The energy momentum tensor is defined as

uy = 15_57 T = —i 05 (220)
VG 09" V9 0Ypuw

Furthermore, let us consider Weyl transformations

G (@) = g () = €@ g, (2) (2.21)

which in the infinitesimal form read

by () = 20(x) g () (2:22)
Weyl invariance of the action
d oS v d
0,9 = [ d xé—uéwg” = [ d®z\/gw(x)T}(z) =0 (2.23)
g 17

implies tracelesness of the energy-momentum tensor

TH =0 (2.24)

I

Finally, consider classical action S which describes matter field ¢(z) coupled to some
higher spin field ¢,, ., s > 2. If the action is invariant under gauge transformation (to

the lowest order)

0Pu.pis = O M. i) (2.25)
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then the current j,, . (7) = =25 & s conserved on-shell:

" Jpiyops () = 0 (2.26)

In the limit m — 0, we can also have invariance under the local transformations

590M1~-~Ms = Mp1paWps...ps) (2-27)

which are usually referred to as (generalized) Weyl transformations. These transforma-

tions induce tracelessness of the currents j,, ., in any couple of indices:

77#1“2]#1 Ms (I) =0 (228)

2.3 Symmetries of a quantum theory

Let us now consider the quantum theory. If the quantum theory possesses the same
symmetries as a classical theory the quantum effective action will be invariant under
infinitesimal transformations. We start with the effective action W[A], where A is the
spin-1 field. If the action is invariant under gauge transformation 64, = d,A with A

parameter,

SW = /ddx—éA = /ddx«j“(x)»@#)\ = —/ddxﬁu((j“(w))))\ =0 (2.29)

the 1-point correlator of the current ((j*(x))) = % will be conserved since the above

equation holds for any parameter A

Ou{(i"(@)) =0 (2.30)

The above equation represents the Ward identity for gauge invariance.
Next, we treat the effective action Wg] where g is the metric (spin-2). If this action

is invariant under diff-transformations 5§guy(m) =V,& +V.,.E,

OV = / A g = / A2 /G (T (2) ) VI = / d'2\/G €V (T (2))) = 0
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the 1-point correlator of the energy-momentum tensor must be covariantly conserved

V(T (@) = 0 (2.31)

Furthermore, Weyl invariance of the effective action

= dy oW H = Aoy /qw(x)(TH(x)) =
v = [ e Clssg = [ et (1) =0 (2.32)

implies tracelesness of the 1-point correlator of the energy-momentum tensor
(T () =0 (2.33)

Expressions (2.31) and (2.33) correspond to Ward identities for diff- and Weyl invariance.
A similar covariant conservation as (2.31) should be written also for the s > 2 cur-
rents, but we will often content ourselves with the lowest non-trivial order in which the

conservation law reduces to

" (s (2))) = 0 (2.34)

For 1-point correlator we can also write the tracelessness condition in the limit m — 0

1 (e (1)) = 0 (2.35)

In case it is not possible to retain classical symmetries at the quantum level we say that
the theory is anomalous. The next section we devote to the discussion of the anomalies

and their general form.

2.4 Wess-Zumino consistency conditions

To determine a general form of an anomaly we can use cohomological analysis. It turns
out that potential candidates for the anomaly satisfy Wess-Zumino consistency conditions.
Here we will mostly discuss the Weyl anomaly, based on [10]-[12].

Let us consider a classical theory invariant under some symmetry group G with gauge

parameters A*. Let us denote generic fields of the theory with ¢;, i = 1,..., N and let
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the local transformation law be

pi(r) = wi(z) + orpilx) (2.36)

As we already mentioned, the classical action S is invariant under (2.36)

5,8 =0 (2.37)

where

5y = / ddx Zé)\goi(x) 5sof(x) (2.38)

The variation of the 1-loop effective action gives Ward identity
W = A, (2.39)

where A, is a local functional of the fields linear in parameter \. If we can eliminate A,

by subtracting a local counter-term C from the effective action so that
Ay =0,C (2.40)
then
LW —=C)=0 (2.41)

we obtain the classical Ward identity. On the other hand, if we cannot find such a counter-
term then the classical conservation law is broken at 1-loop and A, is an anomaly.

Let us now turn the anomaly problem to the cohomology problem. Inspired by the

BRST formalism we:
e promote gauge parameters \* to anticommuting fields (Fadeev Popov ghosts)

o for \® assume the transformation law

A (2) = A(z) + 6\ (x) (2.42)
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with a particular choice of d\\*

e modify the operator

Oy = / ddxz&\xi(x) 5;@) (2.43)

where y; now represents all fields in the theory including ghosts.

There is a particular choice of 6, A%(z) for which the operator 0, defined in (2.43) becomes

nilpotent
55=0 (2.44)

we call this operator the coboundary operator corresponding to the symmetry G. The

Ward identity now becomes

W = A, (2.45)
with 0, defined in (2.43). Now A, satisfies the Wess-Zumino consistency condition

Ay =0 (2.46)
We call Ay a cocycle. Furthermore, if there exists a term C so that we can write

Ay =0,C (2.47)

then we call Ay a coboundary. If this is not true for any C then A is a non-trivial cocycle
- anomaly. Cocycles split into classes and each class is defined by a cocycle modulo all
coboundaries. These classes form cohomology groups.

From now on we will focus on an example where a symmetry group G consists of
diffemorphisms and Weyl symmetry. We will see that the anomaly in this case satisfies
also a cross-consistency condition which gives further restrictions on the form of the
anomaly. Moreover, we will see that it is possible to completely eliminate diff-anomaly
(or Weyl-anomaly) by subtracting a suitable counterterm from the action. In this case

only Weyl anomaly remains.
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Let us start with diffeomorphisms. Let us denote with ,(x) the parameter of infinites-

imal diff-transformations which act on the metric as
5& Guv = vugu + vué,u (248)

Next we promote the gauge parameter £ to anticommuting field with the transformation

law
oe8t = €70,8" (2.49)

The variational operator is

dXi

where y; stands for all the fields in the theory including ghosts. We choose the transfor-

mation law of the ghost £ so that the operator d¢ is nilpotent
5 =0 (2.51)

Let us now consider Weyl transformations. Let w(z) parametrise infinitesimal Weyl

transformations which act on the metric as

50.; Guv = 2(")(37)9#1/ (252)

where w(z) is some generic positive function. Now we promote the gauge parameter w(x)

to an anticommuting field with the transformation law
dow(z) =0 (2.53)

Next we define

Op = /ddx25WXi5iX (2.54)

7
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where the transformation law for w(x) is such that ¢, is nilpotent

§2=0 (2.55)

w

If a classical theory is invariant under Weyl or diff-transformations we can write a corre-
sponding Ward identity and check if we get an anomaly at the quantum level.
We can also simultaneously include both Weyl and diff-invariance in the theory at the

classical level. We need two more transformation laws
dew(x) = {HOyw, 0,6 =0 (2.56)

Furthermore, we assume that w and &* are anticommuting with each other. Nilpotent

coboundary operator
(60 +30¢)* =0 (2.57)
now defines a coupled cohomological problem. Altogether we have
62 =0, 5 =0, 0.u0¢ + 0¢0, = 0 (2.58)
For a classical theory which is invariant under Weyl and diff- transformations we have
0¢8 =0, 0,5 =0 (2.59)

On the other hand, in quantum theory, the Ward identity for 1-loop effective action is

W = Ag=— / Az V1T,

LW = A, = / d*x2w T} (2.60)
The anomaly satisfies the consistency conditions
0uA, =0, deAe =0 (2.61)

A¢ is a cocycle of d¢, while A, is a cocycle of ¢,,. Since the classical theory is invariant
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under both Weyl and diff- transformations the generic cocycle of the coboundary operator

0w + 0¢ is A, + Ae. We also get a cross-consistency condition
0w Ae +0c A, =0 (2.62)
If a pair A, and A is such that there exists a local term C satisfying
A, =6,C and A =0:C (2.63)

then such anomaly pair is considered to be trivial as it can be cancelled by adding the
local term C' to the quantum action. The condition which identifies the anomaly is that

for any C
A, + ./45 =+ (5w + 55)6 (2.64)

Note that in general both 4, and A, are nonvanishing, however, by subtraction of an

appropriate counter-term we can restore covariance of the quantum theory.

Ag — Ag — (5{0 =0 (265)
Ay = AL +8,C= (T") #0 (2.66)

In this case the theory has only Weyl anomaly.

2.5 General form of trace anomaly

In this section we will discuss a general form of the trace anomaly [6]-[12]. For a review
see [151].

Let us assume that the theory is covariant at the quantum level
A =0 (2.67)

It follows from consistency conditions that the trace anomaly must be invariant under
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both diffeomorphisms and Weyl transformations
0eA, =0, 0w Ay =0 (2.68)

Possible terms in the anomaly, by dimensional analysis, must have dimension four in 4d.
Moreover, because of diff-invariance, the anomaly must be constructed from diff-invariant
objects such as Riemann tensor, Ricci tensor and Ricci scalar. Mentioned objects have
dimension 2, which means that in 4d we can construct the trace anomaly from squares
of Riemann tensor or d’Alambertian of Ricci scalar. Recall that the trace of energy-

momentum tensor at the quantum level in general is not vanishing. Possible terms are:
(TH(x)) = aRuwrpR*™™ + bR R + cR* + dOR + " Ry*” Rppap  (2.69)

The d’Alambertian of Ricci scalar can be subtracted by a local counterterm (Weyl varia-

tion of R?) and hence it is not a true anomaly. From consistency conditions we get
a+b+3c=0 (2.70)

that only two of the three constants a, b, ¢ are independent. Usually, we write the trace

anomaly in terms of
e Euler density: F = Ruy,\pR’“”\p — 4R, R" + R?
o Weyl density: W? = Ry, R — 2R, R* + + R?
e Pontryagin density: P = %8”“”” R Rpvap

General form of the trace of energy-momentum tensor therefore is

(TH(x)) =aE+cW? +eP (2.71)

I

Coefficients a, ¢ and e depend on the theory and are well known for various matter

types [7, 13]. The coefficient e is the one we would like to study in detail for chiral models.
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2.6 Dirac, Majorana and Weyl fermions in 4d.

We would like to devote this section to fermions in 4d. In particular, we will focus on
a discussion of the statement that a massless Majorana fermion is the same as a Weyl
fermion. If this is true at both classical and quantum level, there is no chance for an odd
parity trace anomaly to exist. On the other hand this statement is not undisputed. Our
aim here is to examine classical and quantum differences between the two types of fermions
and show that there is no a priori uncontroversial evidence that the relevant statement
is true. Therefore it is necessary to leave the last word to explicit computations, such as
the one for odd parity trace anomaly. We will start with a review on the properties of

Dirac, Majorana and Weyl fermions, based on [152].

2.6.1 Majorana fermions

We start with a few basic facts about fermions in 4d. We call a fermion field ¢(x) any

solution of the Dirac equation:
(10, — m)(x) = 0 (2.72)

where 7# denotes a set of 4 x 4 matrices which we call Dirac matrices (or ~-matrices).

Dirac matrices satisfy

{97} = 29" (2.73)

where metric g,,, has mostly - signature, and

v = Y077

One possible solution to Dirac equation is the real solution. Majorana found a rep-
resentation of ~-matrices for which the Dirac equation is real. In this representation
~v-matrices are real, and we will denote them with 4. Let us write down Majorana repre-

sentation of

3 3 3 3 ' 0
30 = , A= , 7= , 7= (2.74)
o 0 0 0 -0 0 0 10
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where ¢! are Pauli matrices
ol = , ot = e (2.75)

With this choice of y-matrices, as a solution of the Dirac equation we get a Majorana

field ) which satisfies a reality condition:

=9 (2.76)

Note that Majorana representation is not unique. If we have two choices of Dirac matrices
they are related by an unitary transformation. This means that a general solution for

~v-matrices can be obtained using Majorana representation so that
M = UAFUT (2.77)

where U is a unitary matrix. It follows that, if 7 is a solution of Dirac equation in

Majorana representation, then v is a solution to Dirac equation in a general representation

W= Ui (2.78)

Let us now see how does the Majorana reality condition look in this other representation.

We can rewrite
Ul = (U'y)* (2.79)
so that
o =UU"yY* (2.80)
Usually, instead of matrix U, we use another unitary matrix C' defined by

UUT = ~C (2.81)
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with properties
W=-C'yC  CcCr=-1  CcCl=1 (2.82)

Now we can introduce the notion of Lorentz-covariant conjugate zﬂ

~

¥ =7CY" (2.83)

The reality condition (2.80) now becomes

~

V=1 (2.84)

Above we introduced Lorentz-covariant conjugate zZAJ Let us now explain the reason for
that name. We start from a 4-component Dirac fermion ¢. Under Lorentz it transforms

as

U(x) = YP'(2") = exp {—%)\WZW} U(x), (2.85)

for a/* = (e*)*, 2”, where ¥, = [7,, 7] are the Lorentz generators. Now, the Majorana
reality condition makes sense only if it holds in any reference frame. To prove that this is
true we must show that @ and 1 transform in the same way under Lorentz transformations.
We take a complex conjugate of (2.85) and multiply with 79C. It turns out that if ¢
transforms like (2.85), then

~ ~

o) - ) = exp | =305 Do), (250

The fact that zﬁ transforms in the same way as 1) is the reason why we call @/A) Lorentz-

covariant conjugate.

2.6.2 Helicity and chirality

Let us now introduce two concepts: helicity and chirality. Helicity of a particle is defined

as a projection of the spin along the direction of motion of the particle. For a particle
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with momentum p helicity is:
h=— (2.87)

where ¥ denotes the spin

l

N = QEijkzjk (2.88)
where 7, 7, k = 1,2, 3. Eigenvalues of helicity h are £1. An eigenstate with helicity —1 we
call right-handed, while an eigenstate with helicity +1 we call left-handed.

Since helicity commutes with the Dirac Hamiltonian, it follows that helicity is a con-
served quantity for a free Dirac particle. However, helicity is not Lorentz invariant for
massive particles. If we imagine a fermion with spin and momentum in the same direction,
its helicity will be +1. On the other hand, let us now imagine a second observer, which is
moving faster than the particle in the first reference frame. For this observer the particle
is moving in the other direction, and since the spin does not change, its helicity is —1.
For massless particles, since they are traveling at the speed of light, helicity is Lorentz
invariant. All observers agree on the value of helicity for a massless particle.

Let us now discuss chirality (handedness) of a particle. Chirality of a particle is

associated to the matrix 5 defined as:

v =iy (2.89)
which anticommutes with y-matrices:
{75,7:} =0 (2.90)

Properties of 5 are

%=, (75)* =1, C'yC =17

which ensure that the matrices




behave like projection matrices on fermion field. We are now in position to write a generic

fermion field as a sum
Y =1L+ YR (2.91)
where ¢, and ¥ are left-handed and right-handed projections of ¢ defined by
Y =Py,  Yr= Pry (2.92)
The eigenvalues of 5 are £1

Vs = +Yr, V5sVr = —UR (2.93)

Note that chirality is a Lorentz invariant quantity, but it is not conserved since 75 does not
commute with the Hamiltonian. To be precise, v5 does not commute with the mass term

in the Hamiltonian. For a massless fermion both helicity and chirality are well defined.

2.6.3 Weyl fermions

Previously we were searching for real solutions of the Dirac equation. Let us now focus

on the search for the solutions of the Dirac equation which satisfy a chirality constraint:

st = +1pp,  for left-handed fermion

vstr = —1pgp  for right-handed fermion (2.94)

A solution which is eigenvector of the chirality matrix 5 is called a Weyl fermion. Here

we use chiral (Weyl) representation of Dirac matrices

v = ) ’Y = . 0 ) 5/5 - ’ (295)

P = . Pp= , (2.96)
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It follows that, in chiral representation, a generic Dirac field ¢ (4-component) can be

written as

Wt
Y= , (2.97)

Wh

where w; and w;, are 2-component spinors. Right-handed field has only the top two

components w;, while the left-handed field has only the bottom 2-components wy:

YR = ;Y= , (2.98)

The Lagrangian for left-handed field can now be written as
Ly, = iw] o"d,wy (2.99)
where o = (1, 7). The left-handed Weyl fermion is a solution of
i,y = 0 (2.100)
For right-handed Weyl fields we have
Lp = iw]a"d,w, (2.101)
where 6 = (1, —0). The right-handed Weyl fermion is a solution of

iy = 0 (2.102)

2.6.4 Dirac fermions from Weyl fermions

Here we want to show how to represent Dirac fermion using Weyl fermions. Since Dirac
fermion is in general massive we must include both left and right chirality. Dirac field can

be constructed from two independent (say left) Weyl fields 7, and o,

¥ =g, + Yar (2.103)
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Note that the Dirac field is, in contrast to Majorana and Weyl, completely unconstrained
solution to Dirac equation. Let us see if it is possible to impose both chirality and reality
conditions in the same time. In other words we want to see if it is possible for a fermion
field to be Weyl and Majorana in the same time. To see that this is not possible, let use
Majorana representation of Dirac matrices where Majorana field is real. Weyl fermion,

on the other side, satisfies

Ys¥r,r = £VL.R (2.104)

now, in Majorana representation, 75 is purely imaginary and hence the above equation
cannot be satisfied by a real field 11, . We conclude that Majorana cannot be Weyl at

the same time.

2.6.5 Majorana fermions from Weyl fermions

Just like Dirac fermion, Majorana fermion can be massive. To represent a Majorana
fermion using Weyl fermions we must include both chiralities. In addition, the combina-
tion of left and right Weyl fermion now must satisfy Majorana reality condition. A left

chiral fermion satisfies

(1=75)¢ =0 (2.105)
Let us now take complex conjugate and multiply with ~,C
%C (L —=5)r =0 (2.106)
Since 75 is hermitian v = I and
C 0 =~F (2.107)
we conclude

Y0C(1 = )W; = (1475907, = (1+75)0r (2.108)
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that ;ﬁz is a right-handed Weyl fermion. We can write Majorana fermion in terms of Weyl

fermion as

b =y + UL

(2.109)

We can also rewrite Majorana fermion in terms of Weyl fermions using 2-component

notation. Majorana condition is

’ w io?w; J
Wy —io’w;
where we used
0 io?
YC = Ly
—i0 0

in chiral representation. This means that we can write Majorana field as

Wy io’w; .

- 2, %
—10" Wy Wy

In terms of 2-component spinors massive Dirac equation splits into:

10" 0wy = mwy

10" 0wy = muwy
which means that Majorana field satisfies

0wy = —mo w;

o _ 2
" 0,wp = mo“w,

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

Let us now focus on the statement that there is a one-to-one correspondence between

the components of a Weyl spinor and those of a Majorana spinor in such a way that the

Lagrangians in two-component notation look the same. We start with the analysis of the
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Majorana Lagrangian in 2-component notation:

Ly =

N = DN —

&(i’Yuau —m)y
|

w0y — auwjﬁ“wt -m (w?ath — wZoQquﬂ (2.115)

where we used the right-handed field to express the Lagrangian. Now let us take a look

at the Lagrangian for right-handed Weyl fermion. We can split it

Ly = in&“@uwt

= %wj&“@uwt — % uwf&“wt + %au (wi&“wt) (2.116)
ignoring the total derivative, we get

Ly = wj&“@uwt - 8ng6“wt} (2.117)

1
2
By comparison we see that the Lagrangians L), and Ly are the same in the massless
case. Even though in the massless case these two Lagrangians are indistinguishable, we
must keep in mind that representations of Lorentz group for Majorana and Weyl fermion
are different. Weyl field is a part of chiral representation (%, O) or (0, %) while Majorana
is a part of (%, O) ® (O 1) constrained with reality condition.

2

2.6.6 Charge conjugation, parity and CP

Charge conjugation € is an operation on the fields that replaces all fields with complex
conjugates. For a fermion field, charge conjugation must must be Lorentz covariant,

otherwise the action would not be Lorentz invariant. Charge conjugation operation on

the field 1) reads
CYC™ = nea) (2.118)

where 7¢ is a phase which, for simplicity, we set equal to 1. Let us recall the properties

of a Weyl fermion ¢);, = Ppi under charge conjugation. Since P, is a constant matrix the
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operation of charge conjugation acts only on fields

CYLC™ = Pty = Pri =1y (2.119)
Let us now consider Lorentz-covariant conjugate @/ZJ;
Yr =%C )" = 0P (2.120)
Now use the fact that 75 is hermitian and CP! = P;C to write
U = WPLCY" = PpyoC* = Pri) = (2.121)

It follows that Lorentz-covariant conjugate of 1, is a right-handed fermion and its charge
conjugate is left-handed.

The parity operation is a spacetime transformation that maps (¢, ) to (¢, —#). Under
a parity transformation momentum changes sign, and spin remains the same so that the
helicity of a particle changes. Since helicity and chirality coincide for massless particles,

chirality changes as well. The parity operation is defined by
P (t, 7)P7! = nprotir(t, — T) (2.122)

where 7p is a phase.
If we consider CP, the action of a Majorana fermion is obviously invariant under it.

For a Weyl fermion we have
CPYr(t, T)(CP) ! = ot (t, — ) = WPrib(t, — %) = yoyr(t, — T) (2.123)

Applying CP to the Weyl action one gets

o ([ o) ) = [idnt.— Dproubnt. - 7)

— / ir(t, TV 0,0r(t, T) (2.124)
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But one can easily prove that

/ iVn(t, D)y O, bRt T) = / iy ()78, (2) (2.125)

Therefore the action for a Weyl fermion is CP invariant. It is also, separately, T invariant,
and, so, CPT invariant.
Now let us go to the quantum interpretation of the field ¢;. It’s plane wave expansion

bo() = / dp (a(p)uz(p)e™ 7 + b (p)ur(p)e™) (2.126)

where uy, v, are fixed and independent left-handed spinors. The interpretation is: b'(p)
creates a left-handed particle while a(p) destroys a left-handed particle with negative
helicity (because of the opposite momentum). However egs.(2.123, 2.124) force us to
identify the latter with a right-handed antiparticle: C maps particles to antiparticles,
while P invert helicities, so CP maps left-handed particles to right-handed antiparticles.

2.6.7 Comments on massless Majorana and Weyl fermions

The evident difference between massless Majorana and Weyl fermions is that they belong
to two different representations of the Lorentz group, irreducible to each other (in 4d
there cannot exist a spinor that is simultaneously Majorana and Weyl).

Next, the reason why they are sometimes considered as a unique object is due to the
fact that we can establish a one-to-one correspondence between the components of a Weyl
spinor and of a Majorana spinor so that the Lagrangian in two-component notation looks
the same. But, if the action is the same for both Weyl and Majorana, how can there be
any differences?

In general, the action does not contain the complete information. In the quantum
theory a crucial role is played by the functional measure, which is very likely to be different
for Weyl and Majorana fermions. This is the decisive point for the anomalies. The path
integral of a free Dirac fermion is interpreted as the determinant of the massless Dirac
operator ) = i@+ V (where V denotes any potential), i.e. the (suitably regularized)
product of its eigenvalues. A similar interpretation holds also for a massless Majorana

fermion.
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For a Weyl fermion the matter is not so straightforward. The Dirac operator anticom-
mutes with 75 and hence it maps a left-handed spinor to a right-handed one. Therefore,
the eigenvalue problem is not well defined for Ip; = PPy, so tlllat the determinant is ill-
defined. Another idea is to replace detp;, with (det (ﬁiﬂ%)) 5, but in this case we have
an undetermined overall phase factor. This problem has been known for a long time!.
There is a few ways to overcome this problem. One way is to use a perturbative approach
(Feynman diagram technique) in a chiral fermion theory. This is the method used in
[15, 17]. We will revisit it below. The second way is based on Dirac fermions, [54, 55, 86,
(i.e. with the ordinary Dirac path integral measure), where we recover the chiral fermion
theory as a special limit. Finally, let us mention [94], where a fifth dimension is introduced
as a regulator, although we do not use it here.

The above arguments lead toward the conclusion that massless Majorana and Weyl
fermions, notwithstanding some similarities, may really be different objects. It is impor-
tant to avoid a priori conclusions, but rather develop both hypotheses and compare the
final results. This said, we should find properties that differentiate Weyl and massless
Majorana fermions. For this reason, in the next chapter we show that one such property
is the parity odd Weyl anomaly, which is zero for a massless Majorana fermion, while it
equals the Pontryagin density for a Weyl fermion. On the other hand, the even parity

trace anomaly is the same for both.

Tn particular, since Fujikawa method holds when we have both chiralities present in the theory one
cannot use it for chiral theories. This problem has been discussed in detail in [55] where it is shown that
the original Fujikawa method cannot reproduce the non-Abelian consistent chiral anomalies, but only the
covariant ones in chirally symmetric theories. We cannot expect to be able to reproduce the odd parity
trace anomaly in a left-handed theory, because the latter belongs to the same class as the non-Abelian
consistent chiral anomalies (split anomalies). This observation applies to [85], where, using Fujikawa
method and Pauli-Villars regularization, the authors obtain a vanishing odd trace anomaly which seems
to contradict our result below. Using a Dirac fermion path integral measure introduces both chiralities,
even though formally the action itself is declared to be the Weyl one. For this particular anomaly what
matters is that only one chirality is involved through all the steps, including the path integral measure.
Bearing this in mind, the result of [85] applies to Dirac and Majorana fermions and is in fact consistent
with ours.
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Chapter 3

Odd parity trace anomaly in chiral

theories

In this chapter we reconsider the calculation of the odd trace anomaly in chiral fermion
theories in a 4d curved background given in [15]. The motivation for this is to give a more
complete and detailed calculation of the trace anomaly. In particular, in [15, 16], as well
as in [17], tadpoles and seagull diagrams were neglected. In ordinary (non-chiral) theories
coupled to gravity such diagrams can contribute in a form of local terms to the effective
action, and they help to restore conservation, which otherwise would be violated by local
terms, see [153]. Instead, we find in [19], that these diagrams do not contribute for the
parity odd diagrams in a chiral theory, and do not change the final result of [15]. However,
they should be taken into account and evaluated. Moreover, in contrast to [15], here we
do not redefine the fermion field!. As a consequence, the energy-momentum tensor is
different from the energy-momentum tensor in [15], that is, it contains an additional term
from the \/m in the action. This additional term gives a contribution to both the trace
anomaly and the diff-anomaly. However, subtraction of the appropriate counterterm from
the effective action cancels the diff-anomaly and in the same time produces the same trace

anomaly as in [15]. In this chapter we closely follow [19].

UIn [15] the fermion field was redefined ¢ — (|g|) 5.
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3.1 0Odd parity trace anomaly in chiral theories

The model considered in [15] was a left-handed Weyl spinor coupled to external gravity

in 4d. The action is

S = /d% gl iy (VM + %wu) (073 (3.1)

where y* = el'v* (u,v, ... are world indices, a,b,... are flat indices), V is the covariant

derivative with respect to the world indices and w,, is the spin connection:
_ ab
Wy = w, g
Finally ¢ = HT’YI/} Classically the energy-momentum tensor
i e
T = —ZQ/JL’YMVVwL + (,u < l/) (32)

is both conserved on shell and traceless.
From (3.1) we can extract the (simplified) Feynman rules as follows. The action (3.1)

can be written as

4 I ,u<—> 1 pabe s
S= [ dz+/lg| §¢L7 3M¢L—Z€ Wuab¥LYeVsYPL (3.3)

where it is understood that the derivative applies to 1 and v only, and we used the

relation {72, ¥%¢} = i €%d v5. Expanding
GZ:5Z+XZ+“" el =0+ xh+ .., and g = Nw + A (3.4)
and inserting these expansions in the defining relations eZe{f =0y, Qv = eZely’nab, one finds
Xh=—x4 and Py = 2 X - (3.5)

Expanding accordingly the spin connection

1
Wyab = €va(Ouey + €757 ,), L, = 577”’\(80h,\u + Ouhae — Oahoy) + ...
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after some algebra one gets
pabe __ 1 pabe a h A
Wyab € = —16 lax hb + ... (36)

Therefore, up to second order the action, by incorporating (| g|)i in the v field, can be

written as

1 1 -
S ~ /d4x {5(5(1 — —h“)wL”Y (9wa + EE“abca hax by YLyeys L

The free action is

4 I —— a3
Sfree = d'x §wL7 aawL (37)
and the lowest interaction terms are

1 _
Sint = /d4 {——h” pry” 8M¢L + 1—6€”abca hax hy VLYY (3.8)

Retaining only the above terms of the action of (3.8), the Feynman rules are as follows
(momenta are ingoing and the external gravitational field is assumed to be hy,). The

fermion propagator is

P Ftic (3.9)
The two-fermion-one-graviton vertex is
Vi =g [0+ 9+ o+ 9 = (3.10)
The two-fermion-two-graviton vertex (V) is
Vi : 6i4tw/u’v%>\(k - k")W‘% (3.11)
where
buvpv e = Mg €vv'wx + Now €ppten F v €vprn + Nopt € iex (3.12)
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3.1.1 Complete expansion

The previous action (3.1) is a simplified one. It disregards the measure \/m , which is
incorporated in the fermion field ¢. In a more complete approach one should take into
account tadpole and seagull terms and reinsert \/@ in the action. Some of these, in
principle, might be relevant for the trace anomaly. To this end we need the complete

expansion in h,, up to order three of the action, more precisely,

Guv = N + hp,v (313)
g = = B (R
1 3 )
B SR ZRE L SR (R
ea a a + 8< )a 16( )a +
a a 1 a 1 2\a 1 3\a
€ = 5u+§hu_§<h )u+E(h )u_"

Vigl = 1+%(trh)+%(trh)2—i(tth)—é(trh)(trh2)+%(trh)3+é(trhg)—i-

1
F/);V = (auh;)/\ + &,hl/) B a)\h/“’) N §(h - h2>/\p (auhlw + thPH - aphl“’) (3'14)

N | —

In this approximation the spin connection is

1
Wit = 5 (@hy—0"h) + 5 (h”“&,hi — h0shf, + W9 hgy — W7 hy,)
1 ao o} a
-3 (h*8,hl — h*9,hg) (3.15)
]' a a 3 a a
35 (()P0,h5 = (W)0,05) + 10 ((R) 0y = (B*)0"hn)
3

_16 ((hQ)a)\a hb (h2)b)\8 ha) (haphb)\ o hbpha)\) a/\hup N
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Up to third order in h the action is

T— 7 — < 31— o 51 — <
S = /d4$ b%’ym@m% — Z¢Lh?7aame + E¢L(h2)?7aam¢L - @%(h?’)?’ya@m%

1 — 1
—1—6€mabc¢L%%¢L (hfnaahba + (hQ)?nabhaa - hgmhgaahpb - §hfnaahpahg) (316)

1 1— m i— N 31— o\m_ a2
+§(tfh) 5%7 Om¥Yr — Z%hzﬂ Om¥r, + 1_6¢L(h )2 Omtr

1 _
16 €™ YLy hG, Oahie )

(g = 301} (50007 S — Jog G

+ (—é(tr h)(trh?) + %(trh)3 + é(trh?’)) %%vmgme + .. ]

The propagator (3.9) comes from the first term of the first line in the RHS of (3.16). The
vertex Vi, comes from the second term, while Vi, originates from the first term in the
second line of (3.16). There are many other vertices of the type Visn, Virnn, Vignnn. It is
important to single out which may be relevant to trace anomalies.

The Ward identity for Weyl invariance, in absence of anomalies, is:

T(2) = gy () (T (2))) = (T () + Py (2) (T (2))) = O (3.17)
Writing
(T(z)) = (O]T{5()[0) (3.18)
+ Z 2”1n! /H dxl hl‘l'/l ($1) s hunlfn (xn)']'uvml/l.--unl/n ([K, L1, 7xn)7

order by order in h, eq.(3.17) breaks down to

TO(z) = (0|T{e)"()|0) = 0 (3.19)
TH(z) = Tt (@, 20) + 26(x — 1) (0| TG ™ (2)[0) = 0 (3.20)
7(2)(x) = 7;##11/1#21/2 (I, T, x2) + 25($ _ xl)Tﬂlvlml’z (l’, I'Q)

+20(x — xo) TH22H (2, 21) = 0 (3.21)
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where

08

THY _

0 = 2511#1/(3:) = _Z_l (wL’Y’U’a wL + [V g I/) + 517/“/ wL7 8me7 (322)

T (@) = 0T TG ()T (@1)]0) — 11" 6(x — 21){0|T () (x)[0)
528

5h/w<x)5huw1 (:131)

+4(0] 10) (3.23)

and

7‘#1/#11/1#21/2 (l‘ 1 Ig)
) Y

v 1V1 2V2 ) v 523
= _<O|TT(%) (‘x)T(%) (xl)T(%) (1’2) |0> 4 <O’TT(%) ($) 5h,u11/1 (xl)éhuzm (1?2) ‘

=i 6 (2 — 21 ){0| T T (g () Ty (22)[0) — in**"*0(x — 22) (O[T Ty (2)T (5" (21)]0)

525 , . 525
0) + 40 T T (2)

0)

+4i (0| T Tl (1) 10)

6h/“/(x)6hu2'/2 ($2) 5hM1V1 (ml)éhlﬂ/(l')
+ (T R g2 6z — 21)0 (2 — 22)(0[T () (2)]0)
528 528
—ApH1i1 _ _ 22 _
B o T S e L e A R AL b T e T P
55
+8(0| 10) (3.24)

Py (%) Sy (1) Py (22)

The functional derivatives of S with respect to h are understood to be evaluated at h = 0.
In the sequel we will need the explicit expressions of vertices, up to order two in h (for

a derivation of Feynman rules see [19]). Beside (3.10) and (3.11) we have:

1
Vi ZUW(? + )P (3.25)
31
Vipm © & [ ((p+ 2w + (0 +0) Yo + {1 < v})

+ (P + 2wt + (0 + D)o + {1 < V'}) ] P, (3.26)

i
T [Wu ((p+ 10wy + {1 < v'})
+77u’1/ ((p +p/)u7y + {M e V}) PL (327)
i
Vit g+ P)0wmws = M T = T o) P (3.28)

So far we have been completely general. From now on we consider only the odd part
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of the correlators, that is only correlators linear in €,,,.

To start with, consider (0|T{),"(x)|0), to which only a tadpole can contribute, but
its odd part vanishes because we cannot construct a scalar using € and n. For the same
reason also (0|T{;)(2)[0) vanishes.

The two-point function (0|7 Ty (2)T (" (21)|0) also must vanish, because in momen-
tum space it must be a 4-tensor linear in € and formed with » and the momentum &k:
there is no such tensor, symmetric in p <> v, uy <> vy and (p, v) <> (u1, v1).

As for the terms ( 25 e |0) they might also produce nonvanishing contribu-
1

0| by (2)0hyy v
tion from tadpoles diagram, but like in the previous case it is impossible to satisfy the

combinatorics.

In conclusion (3.19) and (3.20) are identically satisfied, while (3.21) becomes

T (z) = A G 2y
d Hivi H2av2 . uv 525
= 77/w< - <O|TT(0) (x)T(O) ($1)T(o) (22)|0) + 4Z<0‘TT(0) <x>5huw1 (€1)0 R0, (2)
528 528
4y Th22
ST @0z )+ T ) G o )

5S
81 (2) 01,y (21) By (2 ‘0>) (3.29)

10)

(O[T T (1) 10)

+8(0|

To proceed further, we focus now on the terms containing the second derivative of S.
Looking at (3.16) we see that there are several such terms. We argue now that those among
them that do not contain the € tensor, although the gamma trace algebra may generate
an € tensor, cannot contribute to the odd trace anomaly. The vertices corresponding to
such terms have two fermion and two graviton legs, that is, they are of the type Vygus.
By Fourier transform, we associate an incoming e* plane wave to one fermion and an

ikox

iklm’ e

outgoing e~ one to the other, while we associate two incoming plane waves e
to the two gravitons. Since none of them contain derivatives of h, the vertex will depend
at most on ¢ = ki + ks, not on k; — ks, see for instance the vertex coming from the third
term in the first line of (3.16), i.e. V;fhh. This being so, the contributions from the terms
related to the second derivative of S in (3.29) via such vertices, and linear in €, must
vanish, because it is impossible to form a 4-tensor symmetric in pu, <> 4, o <> v and
(1, 1) € (p2v2) with €,m and g,

It follows that only the contribution with the vertex Vi, might contribute non triv-
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ially to the odd trace anomaly. Looking at the form of Vi, it is clear that the two terms
in the third line of (3.29) give vanishing contribution because the contraction of y with v
becomes a (vanishing) contraction of the ¢ tensor, (3.12). The second term in the second
line vanishes as well, an to prove that, we have to introduce a dimensional regulator and
use Feynman parametrization (for details see [19]).

Next, let us consider the fourth line of (3.29). These are seagull terms, with three
external graviton lines attached to the same point of a fermion loop. The gamma trace
algebra cannot generate an € tensor from all such terms, except of course the second term
in the second line and the one in the fourth line. Therefore we can exclude all the former
from our consideration. As for the latter the relevant vertex has two fermion legs, with
the usual momenta p and p/, and three graviton legs, with incoming momenta ki, ko, k3
and labels py,v1, o, Vo and us, 13, respectively. Its expression for the second term in the

second line of (3.29) is

~ 6#2#3APk§7pn#1V3nV1V2 (3-30)

symmetrized in pq <> vy, pg <> Vo, i3 <> v3, and with respect to the exchange of any two

couples (u;, ;). The seagull term is therefore proportional to

pP
[t

which vanishes. As for the term in the fourth line of (3.29), one comes to similar conclu-
sions.

In summary, the odd trace anomaly receives contributions only from

:J-(Q) (l’) _ 7;##11/1#21/2 (&3, x1, 1;2) (331)
528
0})
5hN1V1 (ml)éh/ml/? (xQ)

_ W( — OV T ()T () TI (02)[0) + 4i (O T T ()

This result looks very much like the starting point of [15], i.e. it seems to reduce to
the same contributions, i.e. the triangle diagram and bubble diagram (which turned out
to vanish), but there is an important modification: the T (z) is different from the free
energy-momentum tensor in [15], the definition (3.22) contains an additional piece (the

second). It is not hard to show that the second term in the RHS of (3.31) vanishes also
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when taking account of this modification. As for the three point function in the first term

of (3.31)

e we obtain of course the same result as in [15] when the calculation is made with

three vertices Vipy: P — Vipp-P-Vipp-P-Vipy (this calculation is repeated in [19]);
e it is 0 when the second or third vertices are replaced by V]ﬁ ho

e and it is -4 times the result of [15] if the first vertex is replaced by Vi, i.e. P-Vj,-
P-Vin-P-Vig .

e When we replace more than one vertex Vi, with Vi, we get 0.

So the overall result of (3.31) is (1 — 4 = —3) times the end result for the trace anomaly
in [15].

We will see below that this modification of the anomaly must be canceled in order to
guarantee conservation. Let us call the lowest order integrated anomaly, obtained in [15],
A, = — [wAp. Then the new addition equals —4.A,,. By adding to the effective action
the term C = — [ %trhﬂo we exactly cancel this additional unwanted piece. We will
verify that this counterterm cancels an analogous anomalous term in the Ward identity
of the diffeomorphisms, anomalous term which is generated by the same diagram P—Vf’ s
P-V}1-P-V; g, which is the cause of the additional term in question in the trace anomaly.

In conclusion, the only relevant term for the odd trace anomaly is the P-Vyp-P-Vi -
P-Vis, one. This is the term computed first in [15], which gives rise to the Pontryagin
anomaly. It should be remarked that in the odd trace anomaly calculation there are no

contributions from tadpole and seagull terms.

3.1.2 0Odd trace anomaly for Dirac and Majorana fermions

The action for a Dirac fermion is the same as in (3.16) with ¢, everywhere replaced by
the Dirac fermion 1. In order to evaluate the odd trace anomaly we remark that an odd
contribution in (3.24) can come only from the terms in (3.16) that contain the € tensor.
Since these terms contain 7s;, upon tracing the gamma matrix part, either they give 0
or another e tensor. In the latter case they produce an even contribution to the trace
anomaly, which does not concern us here. In conclusion the odd trace anomaly, in the

case of a Dirac fermion, vanishes.
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When the fermion are Majorana the conclusion does not change. The simplest way
to see it is to use the Majorana representation for the gamma matrices. Then v has four
real components, and the only change with respect to the Dirac case is that in the path
integral we integrate over real fermion fields instead of complex ones, while all the rest

remains unchanged.

3.2 Conservation of the energy-momentum tensor

As already anticipated above, trace anomalies are strictly connected with diffeomorphism
anomalies. In 4d the so-called Einstein-Lorentz anomalies are absent, but there may
appear other anomalous terms in the Ward identity of the diffeomorphisms. The latter
together with a Weyl anomaly partner form a cocycle of the joint diff+Weyl cohomology;,
see [10, 11]. Usually, by adding a local counterterm to the effective action, one can restore
diffeomorphism invariance. In the present case, odd parity trace anomaly, the analysis of
such possible anomalies was carried out in a simplified form in [17]. In this section we
wish to complete that analysis by considering also tadpoles and seagull terms.

If we take into account the tadpole and seagull terms in the conservation law one has

to take into account also the VEV of the energy-momentum tensor. Let us set

(0[T{gy ()|0) = (O[T{G (0)[0) = O = An” (3.32)
The Ward identity is
V(T (2))) = 0T (@) + Tin (T (@) + Tin (T (2)) = 0 (3.33)
because (T4 (x))) = A= 52". To first order in f,, we have

[(z) =~ (QLhK + Orhy, — ayh;m)

Q

N~ DN~

[ (2) O\h!, (3.34)
Now we use (3.18, 3.22, 3.23, 3.24). To the 0-th order in A (3.33) implies

8,07 ()]0) = 0 (3.35)
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To get the WI to first order one must differentiate (3.33) with respect to h,,. One has

Shu(z)

1 AP ASP _
Shaly) 2 (my +5V5M)5(m Y) (3.36)

Differentiating the first term on the RHS of (3.33) one gets the ordinary divergence of the

two-point function. Then

T () 1

AV gt s (e — 3.37
() 2 A=) (3.37)
5FZ)\(:£)

]. V1 1v 1,1V 1. v V1 v
() 1 Ol —y) (R ™)+ O — ) (O™ o™

— 86(x —y) (556 4 a1 en)) (3.38)

Putting everything together one finds

1
OuT ™ (. y) + 51" 056 (x — )™ (3.39)
1
+5 (050(x =y O + OF8(x — y)n O — 973w — y)O)
K (0) (0) ° 5hm/ (x)éhﬂl 148 (y)

FE8 (2 — YO + 058(w — ) OM — 96 (x — y)Or = 0.

We have already noted that, for what concerns the odd part, all the terms in the RHS
vanish. Therefore conservation is guaranteed up to second order in h.

The order three Ward identity has a rather cumbersome expression, in particular
it contains various terms linear in ©", see equation (62) in [19]. Since they do not
contribute to the odd part of the identity we drop them altogether. Furthermore, the
two point functions (0|77 (5 (x)T; (?)’; (y)]0) cannot contribute to the odd part because the
combinatorics of the € and 7 tensor plus an external momentum does not allow it. Next
the VEV’s of second and third derivative of S with respect to A cannot contribute with a
tadpole term: if we look at (3.16) and focus on the vertices that can give an odd parity
contribution, i.e. those containing the € tensor, we notice that they depend linearly on

the external momenta (not on the fermion momenta); therefore, in a tadpole term, the

momentum integrand can only be linear in the internal momentum p#, and thus vanishes.
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Therefore, as far as the odd part is concerned, the remaining terms are:

x v 1v1 2V2 Yo v 625
R (O|T T () T (1) T2 (xz>\0>+420M<O|TT<’6>(”3>5hmm(x1>ahm(x2>

OS5 o) i 0T () O
011y ()P (1) RO Y S ()R (2)
= 0. (3.40)

10)

40 (0| TTLR" () 10)

The last three terms on the LHS can be shown to vanish. The proof is not as simple as the
previous ones. One has to push the calculations one step further, introduce a dimensional
regulator and use Feynman parametrization (see [19] for details). The integration over
the relevant parameter can easily be shown to vanish. What remains to be verified is
therefore

O (0| T Tl ()Tl (1) 12 (2)[0) = 0. (3.41)

Let us consider the term generated by the diagram P — VJﬁfh — P = Vi — P — Vigy.
We have already calculated it above, it equals —0ZA(x), where A(z) is the unintegrated
Weyl anomaly calculated in [15]. So conservation is violated by this term. Adding to the

action the term C = — [ %trhwﬂo, as we have anticipated above, we get the diff variation

5eC = — / 0,6" A = / £0,A (3.42)

which exactly cancels this anomaly?.

Next we have to consider the diagram P —Vyy, — P — Vi — P — Vi and P — Vg —
P — Vi — P — Vi, In the on-shell case, k¥ = 0 = k2, these contributions can be shown
to vanish. It is enough to take formula (3.18) of [15]. The first diagram corresponds to
contracting this formula with k{' or k7. Tt is easy to see that such a contraction vanishes.
The second diagram corresponds to contracting the same formula with k5 "or /4:‘2’/, which
again vanishes. Therefore, at least in the on-shell case these diagrams do not contribute.

In conclusion we have to verify (3.41) for the triangle diagram P — Vi, — P — Vg, —

P — Vi, (and the crossed one). This is what was already done in [15, 17].

2Concerning the signs remember that there is a relative - sign between the unintegrated Diff and trace
anomalies
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3.2.1 On-shell, off-shell and locality

In [15, 17] the following integrals were used in order to compute the relevant Feynman

diagram
d'p d’( P’ 1 2
/ (2m)* / (2m) (P2 + 2+ A)3  (4m)2 (—g — 7 + log(4m) — log A)
d'p [ dt p* A 2
/ (2m)* / @) (P + 2+ AP 2(4n)? (_5 — 7 + 4+ log(4m) —log A>3-43)
and

[ —
@m)t) 2r) (P + 2 +A)3 24w

d*p Aoy 2p? 1
/(2%)4 /(27T)5 (p? + 2+ A3 - (47T)2A (3.44)

where A = u(1 —u)k} 4+ v(1 —v)k3 4 2uv ki ko, u,v are Feynman parameters, and 4 is the

dimensional regulator: d =4 + 4.

The odd trace anomaly comes from the term

L [ dlp [ d% p+/f
_38 (27r)4 / (27T)5 tr <p2 — /2 (2p - kl))\'yp

]ﬁ—i‘[—kl
X (p— k)2 — 2

p+l_g 75
2p — 2k1 — ko)ayp———— f — 3.45
see also [15, 17]. This requires the two integrals (3.44), which must be further integrated
on v from 0 to 1 —u and on u from 0 to 1. The integrations over the Feynman parameters
are elementary and lead to the result

1 o 21
Traprp (ks k2) = Wkl k3 (Waﬂm(k% + k3 + kiky) — tgpciﬂa*r) (3.46)

We report this result here to stress the fact that the terms contained in it are contact
terms and thus lead to a local anomaly. In [17] we remarked that the piece proportional
to (k? 4+ k2) disappears on shell, and off-shell corresponds to a trivial anomaly.

To compute the conservation law (3.41) we need also the integrals (3.43). It is evident
from the form of their RHS’s that integrating on u and v will lead to non-contact terms,

and non-local expressions for the odd diff anomaly. However if we put k; and ks on shell
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things change. The contact terms have been discussed in [17]. They can be eliminated by
subtracting local counterterms without spoiling the trace anomaly. As for the noncontact
terms they are polynomials of k1 and ko multiplied by log k;-ks. All such terms are listed

in Appendix E of [17]. They look non-local. However, using the Fourier transform

= —%5(4)(55 — ), (( ! log (z _42)2) : (3.47)

one can show that they give a vanishing contribution when inserted into the effective
action, because of the on shell condition [Jh,, = 0 (De Donder gauge, see Appendix 3.A).
On the other hand, when k; and ks are off shell, the anomaly looks nonlocal. This is
a surprise because we are used to think of anomalies as local expressions. But we have
learned from [29] and from the higher spins analysis that when higher spins are involved
(including the metric) covariance generally requires to sacrifice locality. However the
ensuing non-locality is a gauge artifact. By imposing a suitable gauge choice, locality can

be restored. As an example see eq.(8.21) and others in [29].

3.3 Comments on the Pontryagin trace anomaly

Let us add some comments on the Pontryagin trace anomaly. A non-trivial property is that
it belongs to the family of chiral anomalies characterized by having opposite coefficients
for opposite chiralities - split anomalies. This anomaly did not appear for the first time
in [15]. The possibility of its existence due to its Wess-Zumino consistency was pointed
out in [12] and, although somewhat implicitly, its existence was implied by [7]. A similar
anomaly was found in a different contest (originating from an antisymmetric tensor field)
in the framework of an AdS/CFT in [82, 83|, where a possible conflict with unitarity was
pointed out. The same risk has been pointed out, from a different viewpoint, in [15].
In general it seems that its presence signals some kind of difficulty in properly defining
the theory. Very likely for this reason the existence of the Pontryagin trace anomaly for
chiral fermions is still considered controversial and objections have been raised against it.
Such objections are often reducible to the credence that Weyl fermions are equivalent to

massless Majorana fermions.
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One more important observation is that in conformal field theory in 4d the three-
point functions of the energy-momentum tensor cannot have an odd part, so how can an
anomaly arise from the regularization of a vanishing bare correlator? The answer to this
question is given in [17]: an anomaly can arise as a simple quantum effect; we have shown
other examples of correlators which do not arise from the regularization of nonvanishing
bare correlators, [18]. The crucial criterion is consistency.

Finally, we have stressed above that the crucial ingredient in the anomalies computa-
tion is the functional integral measure and we have also pointed out the issues connected
with the latter for chiral fermions. Here we used a Feynman diagram technique, assuming
that it reproduces the correct path integral measure. Although this must be the case,
because the relevant Feynman diagrams (with chiral propagators and chiral vertices) are
different from those for Dirac or Majorana fermions, it is fair to say that we do not have
a direct proof of it. However, there is a way to avoid any residual doubts concerning the
path integral measure. It relies in the analogue of the method used by Bardeen, [86],
for chiral gauge anomalies, see also [54]. In such an approach one uses Dirac fermions
(and, consequently, the ordinary Dirac measure) and recovers the chiral fermion theory

by taking a specific limit. To this approach is devoted the next chapter.
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Appendices

3.A de Donder gauge

To simplify the anomaly calculation, in the section above (and in [15]) we used
k2 =ki=0 (3.48)

This means that we are putting the external lines on-shell. In other words, the above
equation is telling us that the external fields satisfy the EOM of gravity R,, = 0 which

in linearized form reads
Oh,, = 0,00k + c%@AhIi — 0,0, 1 (3.49)
where h' denotes the trace of h,,. Now, we can choose the de Donder gauge
9Ty, =0 (3.50)
which at the linearized level can be written as
0, — SOAH =0 (3.51)
Using the de Donder gauge, the EOM of gravity at linearized level is
Ohy,, =0 (3.52)

In momentum space this becomes kf = k3 = 0.
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Chapter 4

Metric-Axial tensor gravity

In previous chapters we mentioned problems related to the path integral measure with
Weyl fermions. To avoid these issues, we will rely on the method inspired by Bardeen,
[86] for chiral gauge anomalies, see also [54]. In this approach the idea is to construct a
model where one uses Dirac fermions (and, consequently, the ordinary Dirac measure).
Transferring this technique in the context of trace anomalies for chiral fermions, requires,
in addition to the usual metric g,,, the introduction of an axial tensor f,,. This second
tensor couples axially to Dirac fermions. We call this model metric-axial gravity, or for
short MAT. In this way, we are able to derive the trace anomalies for Dirac, Majorana

and Weyl fermions as particular limits of the general case. This chapter is based on [19].

4.1 Bardeen’s method

This section is a short review of Bardeen’s method to derive gauge anomalies, [86]. This
method enables us to calculate covariant and consistent anomalies in a unique model by
coupling Dirac fermions to an axial potential A, in addition to the usual vector potential
V. The anomalies one obtains in this way satisfy the Wess-Zumino consistency conditions,
but depend on two potentials.

We consider a theory of Dirac fermions coupled to two non-Abelian (vector V), and
axial A,) gauge potentials, both valued in a Lie algebra with anti-hermitean generators

Te, with [T, T%] = f®T°. The action is

SV, A] =i / DT (F+V + ) (4.1)
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It is invariant under two sets of gauge transformations

V, — V,+ Dy, V, — V,+[A, ]
Ay, — A+ [A;u al, A, — A, + Dy, (4.2)
Y — (1—a)y Y — (1+8)0

where Dy, = 0, + [V, - | and o = a*(x)T*, B = f*(x)T*. As a consequence there are

two covariantly conserved currents, j, = j; 1 and j5, = jg, T, where

Jp =T, je, = 0T (4.3)

In the one-loop quantum theory it is impossible to preserve both conservations. The most

one can do is to preserve, for instance, the vector one
[D{ g + [AY, jsu]® =0 (4.4)
while the axial conservation becomes anomalous:

1 — RN — 1

ZFHYAAAP
12 6 v

o . 1 1,
[DXu/ju"w] + [Aﬂaju] = At 28uu)\ptr |:T (4FM F)\p + —
2

. EA#A”FQP — AP A - §A“ A AN AP)} (4.5)

where F{)" = O'VY — 9"VF + [VE VY] + [AF, AY], and Fi" = OFAY — OV AF + [VF, AY] +
[A# V"]. From this expression we can derive two results in particular. Setting A, = 0 we

get the covariant anomaly
©sola 1 AUV AL
D jsul" = te—sEmnty (T PR ) (4.6)

Taking the collapsing limit V' — ¥, A — ¥ and adding (4.4) to (4.5) we get the consistent

non-Abelian gauge anomaly
1
[Dy,ujrl* = YPoToYA {Taaﬂ <V”8AV” 2\/”\/*\/'“)] (4.7)

Where jL,u — EL’)/M'QDL, Wlth wL — 1+2'Y5.w.
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4.2 Metric-Axial-Tensor Gravity

4.2.1 Axial metric

We use the symbols g,,,, g"” and €], e} in the usual sense of metric and vierbein and their

inverses. Then we introduce the formal writing?

G/j,l/ = 9w + 75f,u11

(4.8)

where f is a symmetric tensor. Their background values are 7, and 0, respectively, so

that

G = Naw + Py frw = Ky
In matrix notation the inverse of G, G~!, is defined by

Gl=g+~f, G'G=1, GG, ="

which implies

af+fg=0 g9+ ff=1
That is

f==atg,  a=(9—rtg'))"

So

g=00—g'fg'Hgt,  f=-Q-g'fg'H g fg

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

1'We use at times the suggestive terminology axial-complex for an expression like G uv, axial-real for g,
and axial-imaginary for f,,. This alludes to a geometrical interpretation, which is however not necessary

to expand on in this context.
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Keeping up to second order terms:

g = = W RERY
J = — B RARN A RGEN

o= k" BARY A+ RARY 4

4.2.2 MAT vierbein

Likewise for the vierbein one writes

a_ a a [ Al
Eu = e, T V¢, vo=ey + V50,
This implies
a b a b\ __ a b a b\ __
Nab (eyeu + C/J,Cl/) = Guv, Tab (GMCV + eucp,) - fMV

Moreover, from E¥E? = 6%,
SH O |l — Sl | ol — S
ete, + chey, =0, éles + clie, = o,

one gets

1 " 1 ’
el = ﬁe_l , ch=— e_lcﬁe_lce_l
1—e"lcelc " 1—e"lcelc

In accord with (4.9) we have

a a 1 a 1 a 1 3 2 271\a
= 0 iy — o (hh 4 k) 4 2 (B + Kbk 4 E? + R2h); .

1
égzéﬂ——hﬂ+§(hh+kk)g—3(h3+khk+hk2+k2h)g+...

© 278 16
a 1 a 1 a 1 3 2 2\a
cuzﬁku—g(hk+kh)u+1—6(k + hkh + W’k + kh?)0 4 ...

1 1
ég‘:—§k5+E(hk:+kh)Z—%(k3+hkh+h2k+kh2)’;+...

95

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)



or

. P S | a 1., 1 a
B = (5u+§hu—§(hh+k:k:)ﬂ+75(ﬁku—g(hkzjtkh)#)+... (4.20)

1 1
Er = 5g—§hg+§(hh+kk)g—% <§k5—§(hk+kh)g)+...

4.2.3 Christoffel and Riemann

['he Oldillaly Christoffel SytllbO]S are
}/W 29 ( nYpv v9pu pgul/) (421>

The MAT Christoffel symbols are defined in a similar way

1
r,, = §GAP (0,G oy + 0,Gpp — 0,G ) (4.22)
1 ~\p £FAp
= 3 <9 (Ougpr + OuGpu — OpGyuw) + F (Oufor + O fop — apfuv))
1 . ~
+§’75 <g>\p (a,ufpz/ + al/fpu - apf;w) + f)\p (augpu + al/gpu - apQ,uzl))
= DM+l

Up to order two in h and k these become

1
DA A A A
A — §<8Mh,, + 00 — Py,
1 (Bl + Oyhsy — Dph) — K (Db + Oy — Dyl ) 4o (4.23)
1
2N A A A
ex — §<aﬂky + Ok, — 0%k

_h)\p (aukw) + avkup - apkw) - k/\p (auhl/p + avhup - aphw) ) T (4-24)
Proceeding the same way one can define the MAT Riemann tensor via R ,,,":

R’ = =00, + d,FZ)\ o P BN o B B (4.25)

I G W G L D N R R i s U el e

2) 2) 2)o 2)o Do 1o
(= B+ B, EP T E” T Ty 4 rerr)

P+ '75RLQV)AP

R(l)

(023
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The MAT spin connection is introduced in analogy
Qab Ea <a Eub+EabFV > _ QLl)ab +PY5QL2)ab (426)
where

QP = e (0,8 + e TOY + & TEY) + ¢4 (9,8 + e TEY + & TLY)  (4.27)

Qg)ab _ ez (auéub+éabrgizu+éborglﬁzu) (8 ~vb Ub]:‘(()'llzy—l—ébo—rg?gu) (428)

4.2.4 Transformations. Diffeomorphisms

Under diffeomorphisms, dx* = £#, the Christoffel symbols transform as tensors except for

one non-covariant piece

50, = 0,0,6 (4.29)

The same happens for the MAT Christoffel symbols

50Ty, = 0,0,6* (4.30)

This means in particular that FLZ,,)’\ is a tensor.
It is more convenient to introduce also axial diffeomorphisms and use the following

compact notation. The axially-extended (AE) diffeomorphisms are defined by
ot — ot + =ZH ==+ st (4.31)

Since operationally these transformations act the same way as the usual diffeomorphisms,

it is easy to obtain for the non-covariant part
s, = 0,0,= (4.32)
We can also write

=G = D2, + D5, (4.33)
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—=v

where 5, = G,,=".

In components one easily finds

5gguu = an,\gW + a,uf/\g)\u + aqugA,u (4'34)
5£f;w = SAaAf;u/ + auf/\f)\u + ayf/\f)\u
6@‘9/“/ = CAa/\f/w + 8uCAfAV + auc/\fku (435)

Ocfuw = C)\akg;w + auc)\gkl/ + 81,@9@

Summarizing

6§”‘C')FS}A = 9,0, 5§”-C~)F£L2V)/\ =0 (4.36)

(ne)p(x _ (ne)p(2)n _ A
(5< FW =0, 54 FW = 0,0,¢

and the overall Riemann and Ricci tensors are tensor, and the Ricci scalar R is a scalar.

But also R and R®), separately, have the same tensorial properties.

4.2.5 Transformations. Weyl transformations
There are two types of Weyl transformations. The first is the obvious one
G — €2G,,,  G" — e G (4.37)
and
ES — e“ES, BN — e @R (4.38)

This leads to the usual relations

I, — I, + 0,06 + 0w i) — dpw GGy, (4.39)

ju2

and

ab ab a 7ob b foa
O — Q4 (BB — ELE™) Qo (4.40)
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For infinitesimal w this implies

d.ug;u/ = 2w Guv, 5wf;w = 2w f;u/

6£;O)huu = 2(*”7/“/; 54,(.;1)hul/ = QWhl“’? o

00k, =0, Wk, = 2wk, ...

w

The second type of Weyl transformation is the axial one
G — €291G,,, G — e=2nGH
and
e E(/f N €—W577EZL

This leads to

DY, — T+ (98 + 0 &) — 0,0 GG

and
ab ab a 10b b 1oa
O — b 35 (BLE™ — BLE™) 9,1

Eq.(4.42) implies

G — cosh(2n) g, + sinh(2n) fo., fuw — cosh(2n) fu., + sinh(29) g,

which, for infinitesimal 1 becomes

OnGur = 20 fus 60, =0, 0y = 20k,

Sofuwr =20 G 0k =201, 0k = 20 by,

29

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)



4.2.6 Volume density

The ordinary density \/|g| is replaced with

V]G] = /det(G) = v/det(g + 5f) (4.48)

The expression in the RHS has to be understood as a formal Taylor expansion in terms

of the axial-complex variable g + v5f. This means

trin(g +v5f) = trlng+trin (1 —|—75(g_1f))
1
= trlng+ 3 trin (1 — (g7'f)?) + 45 trarcth(g—'f) (4.49)

1475

1—
= 5 trin(g+f) + 75

trin(g — f)

It follows that

1 1(1+vs 1=75 _
/‘G’ _ eitrln(g—i—'ysf) 262( 5> trin(g+f)+ 5> trin(g f))

_ % <\/det(g f) + /det(g — f)> + % <\/det(g +f) — y/det(g — f))4.50)

/|G| has the basic property that, under diffeomorphisms,

3eV/|G] = £0\V/1G] + V|Gl 9x¢* (4.51)

This is a volume density, and has the following properties

VIG| = V|G, V|G| — e*™1/|G], (4.52)

under Weyl and axial-Weyl transformations, respectively. Moreover

1

VIG]

1 -
o,\/|G| = 5G/“@VGM =T, (4.53)
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4.3 Axial fermion theories

From the above it is evident that the action for a fermion field in interaction with MAT
cannot be written in the classical form [ d*x \/E O, as in the case of ordinary gravity,
where O is the usual operatorial kinetic operator in the presence of gravity, because in the
MAT case /|G| contains the 75 matrix. Instead, \/|G| must be inserted between ¢ and
1. Moreover we have to take into account that the kinetic operator contains a v matrix
that anticommutes with ~5. Thus, for instance, using DG, = 0 and (D, + %Q,\)E =0,
where D = 0 + I, one gets

VB (a + Q)w B(Du+ 50" Bl (4.54)

where a bar denotes axial-complex conjugation, i.e. a sign reversal in front of each ~;
contained in the expression, for instance Q,, = QE) — 75922). The reader should be aware
that, in particular, a concise notation like Du'y)‘ is ambiguous. The MAT fermion action

1S now

— [ = . 1
S = /d‘*mw |G|y B (au + 5@) ) (4.55)
— [ A asn ) 1
= / d'zip\[|Gly" (€l + 5¢s) (éu +5 (@ + %szg?’)) v
d4 A " i a3 i a O) a
= P/ |G(el — ys¢h) 37 8u+1(7 Q4+ Q") | ¥
_ i © 1
= /d4$1/1 |G|( —75C4) {57(18# - Zeade (Qub07d75 T Qub)c’y‘i)} Y
where it is understood that d, applies only to ¢ or 1, as indicated, and G denotes the

axial-complex conjugate. To obtain this one must use (4.53) and (4.54).

4.3.1 Classical Ward identities

Let us consider AE diffeomorphisms first, (4.31). It is not hard to prove that the ac-
tion (4.55) is invariant under these transformations. Now, define the full MAT energy-

momentum tensor by means of

(4.56)



This formula needs a comment, since /|G| contains 5. To give a meaning to it we

understand that the operator 25 in the RHS acts on the operatorial expression,

VGl 8
say O+/|G], which is inside the scalar product, i.e. 1 O+/|G[i). Moreover the functional
derivative acts from the right of the action. Now the conservation law under diffeorphisms
is

(5(9
= = - DE D, =
0= 625 /%GW‘SGW‘D /dew \Zy+ DyE,)

= -2 = 4.57
/wCSGW DI»L 77Z) ( )
where D acts (from the right) on everything except the parameter =,. Differentiating with

respect to the arbitrary parameters £# and (¥ we obtain two conservation laws involving

the two tensors

50
(-
T 20 wa (4.58)
50
pyo
o= 29 5GW75¢ (4.59)

At the lowest order the latter are given by egs. (4.81),(4.82) below.
Repeating the same derivation for the axial complex Weyl transformation one can

prove that, assuming for the fermion field the transformation rule
W — e 2Ty, (4.60)
(4.55) is invariant and obtain the Ward identity
50
0= /J—GW (W~ v5m) (4.61)
0G
We obtain in this way two WI’s

TH Gy + T2 fry = 0, (4.62)

T fu + T g = 0, (4.63)
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4.3.2 A simplified version

A simplified approach to the trace anomaly calculation consists first in absorbing /|G|
in Y by setting U = |G|%¢ and thereby assuming the transformation properties

1
o0=¥ =="0,V + §DME“\I/ (4.64)
for AE diffeomorphisms, and
By U = €251 (4.65)

for axial-complex Weyl transformations.

To arrive at an expanded action one uses (4.9,4.19), up to second order, and finds

Qa 1 a oa g a g Na ao
Qe = 3 (0°ns, — 0°R) + (h Oohl, — h7°0shs% + h* 0" hgy — h*°0hyy,)
1 aoc [ a 1 aoc o} a
-3 (h*9,hl — h*9,h%) — 3 (k*8,k" — k> 0,k2)
L1
Z (ko'aa kb . ko’ba k,a kbaaakau _ kagabkgu) + ... (466)
and
a 1 a a 1 aga g a g Ha aoc
QP = 5 (@K, —0"k) + 7 ( agkz — W70kl + W0k — W70k,
1
-3 (h* .kl — "7 0,k%) — 3 (k“”@uh’; — k"0,h%)
Ll
+7 (k7“0shl — k705 b, + k" 0%hoy — k% 0%hoy) + . .. (4.67)
In particular
1
erateql) - = _Ze“abc (hOhyue + kS Bokpor) + . .. (4.68)
1
erateq)?) — € (WO + K Ouhe) + - (4.69)
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Up to order two in h and k& we have

WAVl T A i o 1 abc 1
5 = [ dTIGR e~ ) |55, -y (s + 9a)| 16140

4 T pe T M AT
— [ d'% [5\117 0¥ — T (et —15kL)1" 0, (4.70)
3=/ 2 a3
+16 ¥ ()5 + () — s (hk + kh)) 70,0

1 _
+Eeuabc‘ll ((hgabh,ua' + kgabkud) Ye Vs + (h’gabk,ua' + kgabh,utf)")/c) v

1 __
e PRl = 5kt) (Ochouvas + Ookia) xy] v
= / d*z [iwg U — i@(h“—y kwg’ U
2 © 4 a 5hg ©
3i_

2 2 <
+Exp (%)t + (R — 5 (hk + kh)E) 0,0

1 _
_Eeuabcqj ((hgabhuo + kgabkucr) Y5 + (hgabkuo + kgabhua)’)/c) \I[] +.

Here we do not report explicitly the terms cubic in h and k: they contains three powers
of h and/or k multiplied by @”yullf or E’y,/yg,\lf and possibly by the € tensor. They contain
one single derivative, applied to either A,k or W. These cubic terms will not affect our

results.

4.3.3 Feynman rules

For a derivation of the Feynman rules in this case see [19]. The fermion propagator is

?

Pt (4.71)
The two-fermion-h-graviton vertex is (Vs ):
—é [(p+ ) + (2 + )] (4.72)
The axial two-fermion-k-graviton vertex is (Vysx):
2 [+ + 0+ Pl (4.73)

8

(p incoming, p’ outgoing).

There are 6 2-fermion-2-graviton vertices:
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Vithe :

Vitnn :
2)e
Vf(f;fk :

Vi

p+p Y Mo +(p+p)/1%/nuu +{,U<_>V}

=k

+

P+ 0w uthw + 0+ 1)t + {1 < vV'})

=k

((
{ (0 + ) vwtw + @+ 0) v + {p < v}
((

+

{ (0 + 2wy + @+ 0) e +{p < v}

=k

)
|
)
P+ D) Yo + (0 + P v + {1 < v'}) ]
)
J

( p+p )u Vo' + (p +p/)u"71177u1/ + {/L, >V

1 K
o e (k= K P35
1
64
1

a tul/,u’l/fc)\ (k - k,)A/y

tul/,u’l/’/i/\ (k - /f/))‘”yﬁ V5

where ¢ is the tensor (3.12). The graviton momenta k, k¥’ are incoming.

(4.74)

(4.75)

(4.76)

(4.77)
(4.78)

(4.79)

As anticipated above, we dispense from writing down the vertices with three h,k

legs. For the purposes of this calculation it is possible to dispose of them with a general

argument, without entering detailed calculations.

4.3.4 Trace anomalies - a simplified derivation

We will now derive the odd parity trace anomalies in the model (4.70), by considering

only the triangle diagram contributions and disregarding tadpoles and seagull terms. We

will justify later on this simplified procedure.

The overall effective action is

Wh, k|

W[O]+ Z 2n+mnlm|

> m+n 1

n,m=0

/ dez o (1) degkm ()

(0| T T (2) ... THe¥m (xn)Tg\lpl(yl) . .T;mpm(ym)\m

(4.80)

where, in the simplified version of this section, the 7" operator in the time-ordered ampli-
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tudes refer to the classical ones, i.e.

v v L= <_,>/
™ = T(% 0 = T3 (Wy“@ (TR I/) : (4.81)
WY v i (- <_1>/
15" =T500 = 4 (wwa Y4 p e u) , (4.82)
The quantum Ward identities for the Weyl and axial Weyl symmetry are obtained by

replacing the classical energy-momentum tensor expressions with the one-loop one-point

functions in (4.62) and (4.63)

T(x) = (TN + (TN =0, G (T +...=0 (4.83)

T5(x) (TN fuw + (T DG =0, he. (Tg) +...=0  (4.84)

In the present simplified setup the relevant one-loop one-point functions are

(r*(z)y = Z 2n+mn,m,/ndx% pivi i)dejk)\jpj(yj>

-<0!TT“”( )T‘“”l( ) At )TA”“( 1) T3 (ym)[0) (4.85)

(@) = 3 st f ] dez e dejkm )

n,m=0

{O[TTE" ()T (1) - -T“"”"(ﬂfn)T?lm(yl) T (yn)|0) (4.86)

In particular for the trace anomalies, at level O(h?, hk, k%), we have

(Th()® = /d$1dx2hu1l/1(xl)hu2u2 (@2) O T Ty ()T (1) T2 (22)]0)
A1 dyhy (20 kg () O T T () T (20) T3 (9)[0) - (4.87)
dyrdyzkn o, (1) knapa (92) (O T TS () T3 (1) T3 (2)[0)
<<T5M“($))>(2) dxvdzohy, v (1) Ppgu, (22) (O T Ts, ! () THY (221) T2 (22)]0)

daedyhy,, (21)k (9) (O1 T T, ()T (21) T3 (y)|0) - (4.88)

oo|»—~ q;|+—x oo!»—toolr—t )-lklr—k

dyrdyzkn o, (41)kapa (y2) (O T T (2) T3 (1) T3 (112)10)

It is clear that only the terms containing an odd number of T5 will contribute to the odd

parity trace anomaly.

66



The three-point functions (4.87,4.88) are given by the ordinary triangle diagrams. All

such diagrams give the same contribution

~ <k1 'kQ t'uz/u/y/)\p - tf,?yl;z/l//)\p) ki\kg (489)
where
t;(i/l;z"/ﬁ/\ = kQHkl,u’euz/ﬁ)\ -+ kgykly/ﬁuuln/\ + kguklylﬂju%)\ -+ ]{:21/]{;1#/6“1//”)\ (490)

Upon Fourier-anti-transforming and replacing in (4.87) and in (4.88) we get:

(TH@))D = —2Ne™ (3,0,h] rD,kS — 0,0,hT 06D kry) (4.91)
1
(Ts, (2))® = —2N[§6’“’)"’ (040,17 0\D-hT — D, 0,07 3 hry)  (4.92)

+%e“”p (Oua kT ONOKG = D, Dok D30 Ky |

where N = == is the constant that appears in front of the Pontryagin anomaly in [15].

Covariantizing these expressions we get

o = / w(TH(z)) = N / we M ROTRE (4.93)
N v oT oT
Ot = [l =5 [ne (RUTRY, + RETRE, ) (@490

The important remark is now that the odd parity trace anomaly, in an ordinary theory

of Weyl fermions, can be calculated using the above theory of Dirac fermions coupled to

huv
2

MAT gravity and setting at the end h,, — h2ﬂ, ku — and w = 7, for left-handed
Weyl fermions, and h,, — h2ﬂ, K — .

£~ for right-handed ones. We will refer to these

as collapsing limits.

h

4.3.5 What happens when h,, — %, Ky — =5
Let us show that in the collapsing limit h,, — h%, ku, — hQﬂ we have the following
results:
WA L a @xr 1A
F,ul/ - 57;11/7 FMV - é’yuy (495)
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This is evident in the approximate expressions (4.23,4.24), but it can be proved in general.

To order n in the expansion of h and k of F,(},,)’\ we are going to have a first term of order

n n
n in h alone, then of order n — 2 in h and order 2 in k, then of order n — 4

2 4
in h and order 4 in k, and so on, up to order [n/2] in h. In the collapsing limit, all these

terms collapse to the first term of order n in h divided by 2". In total they are

[n/2]

n n—1
> ] = 2 (4.96)
k=0

Therefore they give the order n term in A of %’)y divided by 2. A similar proof holds for
@2

p o -

Looking at the definition (4.25) of the curvatures RSV)/\” and RLZV)/\” one easily sees that

in the collapsing limit

1 1
R;(}u))\p - §Ruu>\pv RL2V)AP — §Ruu>\p, (4.97)

where R,,,\” is the curvature of g,,. In a similar way, using (4.66, 4.67), one can show

that
b (4.98)
Notice also that in the collapsing limit

gm/ + f/ﬂ/ = 77;w + huu + k,uu — g;u/

G — Juwr = v + P — Ky — M (4.99)
so that
VG| — 1_275+1+275\/E, (4.100)
and
Joy 2”5+e;1+275, E;né(s;”%wg@lz%. (4.101)
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From the above follows that the action (4.70) tends to

— 1
S = / d*z iUy E" (0, + 5V (4.102)
— 1- — 1 1
s / s {ixw” 00,0 + Ty (am + §wm> +2% \p}
As for the opposite handedness one notices that, if h,, — %, ky, — —hg”, we have
Q(l)ab N 1 ab Q(2)ab — 1 ab (4 103)
o Ewu ) J §wu :

and in (4.101) the sign in front of 5 is reversed. Therefore the limiting action is

1 _ 1 \1-
5 — / d'z {i@ya%d}\l’ + Ty (am + Ewm> 275 \I!} (4.104)

We recall that v* is the flat (non-dynamical) gamma matrix.
Concerning the energy-momentum tensor, from the definitions (4.58,4.59), in the col-

lapsing limit both 7% and T become

05’

T (z) = 4 4.105
) =4 @) (4.105)
As a consequence (4.83) and (4.84) collapse to the same expression
T(zx) = (T"Nguw =T'(x) (4.106)
Ts(x) = (T )guw = T'(x) (4.107)

that is, there is only one trace Ward identity.

4.3.6 The Pontryagin anomaly

As pointed out above the odd parity trace anomaly in an ordinary theory of Weyl fermions
can be calculated, to first order, using the above theory of Dirac fermions coupled to MAT
gravity and calculating the collapsing limit of the Weyl anomaly for a Dirac fermion

coupled to MAT gravity. The collapsing limit of the relevant action reproduces the action
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for Weyl fermions

/ 4 i my i uabe
St = [ d'z/|g] [;@Zm Omtpr = W hryes L (4.108)

up to a right-handed kinetic term, which is however harmless due to the presence of the
Py, projector in the vertices. Inserting the replacements into either (4.93) or (4.94) we

find

N
T (z) = T "R Rypor (4.109)

This is not yet the correct result for one must take into account the different combinatorics

in (4.80) and in

in=

o0 1 n
Wilh] = WI[0] + 2% S /Hd:pihmw(xi)(OU’T’””l (x1)...TH"(z,)|0)(4.110)
which is appropriate for (4.108)?. This amounts to multiplying (4.109) by a factor of 2.

Therefore, finally the anomaly is

N
T(z) = 5 " R Rpor (4.111)

which is the already found Pontrygin anomaly, [15].
In the case of right-handed fermions the anomaly is the same, but with reversed
sign. Thus the odd trace anomaly for Dirac fermions vanishes. This is confirmed by the

following subsection.

4.3.7 0Odd trace anomaly in the Dirac and Majorana case

From the results (4.93,4.94) we can draw other conclusions. The action (4.55) reduces to
the usual Dirac action if we set f,, = 0, and to the Majorana action if 1 satisfies the

Majorana condition. From (4.93) we have the confirmation that the odd trace anomaly

2The factor 2% in the RHS must be properly interpreted. When inserting the results for the n-point

functions in (4.110), one should recall that the vertex (4.72) contains already a % factor in it with
respect to the energy-momentum tensor: symbolically we could write Vygp, = %T, where T is the Fourier
transform of the energy-momentum tensor with fields replaced by corresponding plane waves. A simple
practical recipe is to just forget factor o in (4.110), as was done, in [15]. The same holds also for the

271,
formula (4.80).
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of these theories vanishes. But we also see that in both cases there is an anomaly in the

axial energy-momentum tensor.
N
G5t = / N R Rypor (4.112)

for the Dirac case, and % of it in the Majorana case. This is a new result and it is the

analog in the trace case of the Kimura-Delbourgo-Salam anomaly for the axial current.

4.4 Odd trace anomalies (the complete calculation)

Let us now justify the assumption made above, that only triangle diagrams provide a
nonvanishing contribution to the odd trace anomaly. The complete calculation requires

taking into account all the tadpoles and seagull terms that arise from the action (4.55).

4.4.1 Trace Ward indentity

We need to expand Ward identity (4.83, 4.84) in series of h and k. (expanded version is
written down in [19]). Since we are interested only in the odd terms, we will drop all the
terms that are even or vanish (the vev of T{j; () and T§( (), the two-point functions
of the energy-momentum tensors, as well as the vev of the second and third derivatives

of S). In this way the WI's get simplified as follows

Ton(@,z,m) = 7{1,1)5’“'/1)‘1p1 (z,71,91) =0 (4.113)
Teo(r,21,22) = Tooh (1, 11,72) =0 (4.114)
7(072)(% Y1, y2) = ﬁo,z)ﬁhpl&m (:Ev Y1, 92) =0 (4'115)
and
Ty (T, 21, 11) = 75(1,1)5“1'/1/\”)1 (,21,91) =0 (4.116)
Ts2,0) (T, 21, 2) = Ts(2,0) 112" (x,21,29) =0 (4.117)
75(0,2) (l‘, Y1, ?J2) = 7?)(0,2)MM>\1'01)\QP2 ($a Y1, y2) =0 (4118)
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These are the Ward identities in the absence of anomalies, but we expect the rhs’s of all
these identities to be different from zero at one-loop. The odd parity anomaly can be
present only in the rhs of (4.113, 4.117) and (4.118): the remaining two cannot contain
the e tensor linearly. After such a repeated trimming, the relevant WI for our purposes

are (4.113, 4.117) and (4.118), and the terms that need to be closely scrutinized are

,7?5’1/1;;11/1)\1p1 ($, T, y1> — _<0|’7'T(‘61’/ ( )T(lél(’)’;( )T;(H)é)(yl>’0>
525 525

40| T 0) + 4i(0|TTie's) 0
< | 5(0’0) (yl) 5huu($)5hu11/1 (.1'1) | > < | (0 O ( )5k>\1,01 (yl)éh/w( ) | >
528
+4i(0| T T}y, 07, 119
< | ( )51{7)\101 (y1>5k,ull/1 (.2?1) | > ( )
oty " (2,00, w2) = — (0| T T30 0 (2) Ty (20) T (22)[0)

528 - 528
0+ 4T T ) s 0

4 T’“V1
T o) ) S 2)

528
oh nivy (xl)ah/u’/?(x?)
E?ggl)mkzpz (z,y1,12) = <0|TT5)\(f)0 (x )Tg,)\(l(fé)(yl)T/\Q 0 (12)]0)

+4i (0| T T2 o (%) 10) (4.120)

625 (525
1P1 ) 2p2
4O T3 (v 1)5k)\p($)5k)\gp2(y2)|0>+42<O|7—T 00)(92)5@1,01(3;1)5%@( )‘O>
528

. A
AT TS0 () S o (2]

10) (4.121)

The terms above that contain the second derivative of S are bubble diagrams where one
vertex has two external h and/or k graviton lines. These diagrams are similar to those
already met above and in [15], and can be shown to similarly vanish, see [19] for details.

Therefore we are left with

Tan(@ z,m) = =0T Toou @) T (21) Toe (41)]0) (4.122)
‘:T5(270) (l‘, xq, (L’g) = —<0|TT5(0 () ((L’)T(/glg)l( )T&?gf (.%'2) |0> (4123)
Ts02)(T,y1,12) = — (01T Ts00x (@) Tas) (v1) Toele (42)]0) (4.124)

which are the intermediate results already obtained above. From this point on the calcu-

lation proceeds as in section 4.3.4.
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Chapter 5

A non-perturbative approach to split

anomalies

In the previous chapter we introduced a new model of modified gravity, metric-axial-tensor
gravity, where beside the usual metric, we introduced an additional symmetric tensor to
interact axially with fermions. Recall that in the previous chapter, the approach was
perturbative, we calculated the Feynman diagrams at the lowest significant order and
then covariantized the result. This is of course permitted, provided we are sure that there
are no diff-anomalies. Unfortunately, this verification is extremely complicated with a
MAT background, and so we limited to an analogous but simpler verification carried out
in [17]. However, we have to guarantee that diffeomorphism invariance is not broken
throughout the derivation. This can be done with DeWitt’s method, [13, 14], which is
based on point-splitting. Since the point-splitting is along a geodesic, this guarantees
covariance under diffeomorphisms. We will need a regularization in order to get rid of
divergences. Note that this method requires a formulation of MAT more accurate than in
[19] and in previous chapter. For this reason we introduce an appropriate framework for
MAT gravity, the so-called hypercomplex calculus [20]. We define all necessary ingredients
so that they are compatible with MAT gravity. In particular, we define a ‘square’ Dirac
operator, which respects the axially extended diffeomorphisms. The result for a fermion
of specific handedness is obtained by taking the appropriate smooth collapsing limit.
We will use two different regularization methods: the dimensional and the (-function
regularization, which give identical results. The latter agree with the perturbative results

previously obtained in [15, 17, 19]. In this chapter we closely follow [20].
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5.1 Axial-complex analysis

Axial-complex numbers are defined by
a= a + Y52 (51)

where a; and ay are real numbers. Arithmetic is defined in the obvious way. We can

define a conjugation operator

o

= a; — Y502 (52)

We will denote by AC the set axial-complex numbers, by AR the set of axial-complex
numbers with a; = 0 (the axial-real numbers) and by AZ the set of axial-complex numbers

with a; = 0 (the axial-imaginary numbers). We can define a (pseudo)norm

(a,a) = aa = ai — a; (5.3)

This determines an axial-light-cone with all the related problems. In general, whenever

possible, we will keep away from it by considering the case |ai| > |as|. Alternatively

we will use an axial-Wick-rotation (analogous to the Wick rotation for the Minkowski

spacetime light-cone) as — ias. Whenever we resort to it explicit mention will be made.
1+

Introducing the chiral projectors Py = =5, we can also write

a=a, Py +a_P._, ar = a; + as (5.4)
We will consider functions f (%) of the axial-complex variable
/ZE\ = + V52 (55)

from AC to AC, which are axial-analytic, i.e. admit a Taylor expansion, and actually
identify the functions with their expansions. Using the property of the projectors it is

easy to see that
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In the same way we will consider functions from AC* to AC, with analogous properties.
(fa)+ fan) + 3 (fah) - fan) 6
with ©=0,1,2,3, and

" = o 4 sk (5.8)

are the axial-complex coordinates. Axial-complex numbers and analysis are a particular
case of pseudo-complex or hyper-complex numbers and analysis, [92, 93].

Derivatives are defined in the obvious way:

o _1(o oy o 1
ozr 2 \ Oxff %Gxg ’ o' 2

Notice that for axial-analytic functions

0 0
(ot~ a2) i

9 _0
dz N al‘l ({9{%7

(5.10)

8 Fra
whereas 2= f(%) = 0.
As for integrals, since we will always have to do with rapidly decreasing functions at

infinity, we define

~

as the rapidly decreasing primitive g(z) of f(z). Therefore the property

o .
/dj: =l (@) =0 (5.11)

follows immediately. As a consequence of (5.10) it follows that, for an axial-analytic

function,

/ di f (&) = / dzy f(2) (5.12)
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and we can define definite integrals such as

l; o~ A~
/ ai J(#) = 5(b) - 3(a) (5.13)

In this axial-spacetime we introduce an axial-Riemannian geometry as follows. The
main formulas have already appeared in 4.2, although in a somewhat different notation.
An important difference with 4.2 is that, there, all the quantities where functions of xz*.
Here, and throughout this chapter they are functions of z* unless otherwise specified.

Consequently, the main changes in notation are

Gw — 9w, G —9",  §g—9 [—F
B, — e, Et — et el — et chh— el

A A A A ab Qab —u i
’ylu,l/ F;Ll/’ F/J,I/ F;Ll/? Qp, Qp, ) = 6

R— Rk, ROY — R

Starting from a metric g, = g + V5[, the Christoffel symbols are defined by

~ 1 0 0 0
N Y M A
F/,u/ - 2g <8§:\Mgpl/ + a/x\V g,up a/x\pgﬂl/> (514)
They split as follows
Do =T sl (5.15)
and are such that the metricity condition is satisfied
0 . Sp o~ Sp o~
%gu)\ = Fp,z/ 9px + PM)\ Gup, (516)
which, in AR?, takes the form
9 (W)p (1)p )0 (2)p
a9 = D 9on + Ti" gup + Ti? for + T\ fup (5.17)
0
ai‘u flj)\ - F/gly)p fp)\ + FLI)?P fz/p + I‘ELQV)P gp)\ + F}(i\)p gyp (518)
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5.2 MAT geodesics

Let us set
NN NP (5.19)
The equation for MAT geodesics is
+TZ T =0 (5.20)

where a dot denotes derivative with respect to an axial-affine parameter t = t; + y5t5. For

axial-real and axial-imaginary components this means

W+ F( U (a:lzvl + 932$2) + F,(j/\) (:leZ + mgzrl) 0 (5.21)

b+ F( o H(zy x2 + :L‘Qllfl) + F,(/Q)? (xlarl + x2x2) 0 (5.22)

These geodesic equations can be obtained as equations of motion from the action

S = /dfx/ﬁuﬁ”?y = S + 759, (5.23)

where /g\m/ = Guv + 75f;w~

The action takes values in AC. For instance, setting the proper time 7 = 11 + 572,
. e
S[a] = / di (@Wfﬁ‘fﬁ ) (5.24)

But unlike [92, 93] we require the action principle to be specified by 58 [z] =
Taking the variation of S[Z] with respect to 0z = dx; + Y5022, with

5 G
5g;w - 8?/; 0z A (525)

1 (09 | Ofw A | 09 99, O fuw
) L, = = H M ) A M H ) A 14 ) A M ) A
In 2 (83:1 0x3 ) n (8;1:1\ * x3 & oz at oxy =

o 1 agwf 0f;w A af/ux ag,ul/ A ag,uu A af/w A
O = 2 ( 3%\ oz + oxy * 0x3 om = oxy oz + oxy on
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we get the equation of motion
VA

z =0, ie zT +IM7Z7 =0 (5.26)

Let us rewrite

])
I

Gl T A+ 5B, (5.27)
A = gu (V2] + 525) + 2 f, ) 1Y,
B

_ ./J‘.l/ .!L.l/ .LL.V
= fu (Y27 + dydy) + 29,7 T3,

so that we have

S = / A7/ G T
1
2
g

{/dﬁ(\/A+B+\/A—B>+/d72(\/A+B—\/A—B)]

+ 2 Udn <\/A+B—\/A—B>+/drg <\/A+B+\/A—B>} (5.28)

Varying this action with respect to d2* we obtain the same equation of motion (5.26).
This is due to (5.12) and to the fact that, the action is an analytic function of Z, so that
the variation with respect to 07* is the same as the variation of dz7.

Eventually we will set x5 = 0 everywhere, but it is very convenient to keep the axial-

analytic notation as far as possible.

5.2.1 Geodetic interval and distance

The quantity

PV

. 1.
E =FE +vE, = S0 T (5.29)

. . P~ . ~ ANV . :
is conserved as a function of ¢. Since g,, ¥ T is constant for geodesics, we can write for

the arc length parameter 5

d§ o~ SV
— = W T, 5.30
di Iu ( )
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and
i
§—§:/ d# V2FE = V2E (t — 1), (5.31)
f/

s — &' is the axial arc length along the geodesic between Z and 2. The half square of it is

called the world function and it is denoted
1 . R N
o(z,7') = §(§— SY=Et—-1)?= (- t')/ Edr (5.32)
t
The main properties are

a?ll = é\ﬂ/o-\ = (t - 'E/)/g\,uui\y = _/g\uy/y\y (533)

y* are the normal coordinates based at z. Using (5.32,5.33) one can see that

N
N
=

I
Q)

(5.34)

| —

The subscript ., means the covariant derivative with respect to z*, while ., means the
covariant derivative with respect to Z'*.

Remark 1. 7 = 0, + 509, but notice that, even when we set o = 0, we cannot infer
that oo = 0. This descends from eq.(5.30). Looking at (5.28), we see that B does not
vanish even when x5 = 0. As a consequence the axial-imaginary part of (5.27) does not

vanish, so the axial-imaginary part of eq.(5.30) will not automatically vanish either.

5.2.2 Normal coordinates

Normal coordinates can be defined based at z or at ':

dzv

e = G- (535)
PPN VPN
@A) = (D (5.36)
The tangent vector d;”;; to the geodesic at & satifies
Ddz+  d*7* -, dz¥dz?
———=——+4I—— =0 5.37
di di — diz2 " di di (5.37)
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and an analogous equation at Z’. Now we can write

: g e dz (t
PTG = (@D
0 ad o dTH (! :
= - o = - = s Gy

It is useful to determine the coincidence limit 77 — Z. We use the notation:

[.]=lim(...) (5.39)

/=T

Dividing by ¢ — ¢’ the second and fourth terms and taking the coincidence limit, one gets

- dTY dz* o
[y“ ;V] dai = % — [yu ;l/] = 55 (5‘40)

where [X] denotes the result of the coincidence limit of the quantity X. In a similar way

one can prove

R g dz* /
[gn ] (Z S ;i = [gu ] — _gn (5.41)
_, L dxV dzt .
V"] di = BT - "] = =4y (5.42)
., ,dz” dx+ .
[yu;l//] dt = E - [yu;l/] = 55 (543)
From (5.38) we get
7L +7 =0 (5.44)
In a similar way one derives also
7wy 7 =0 (5.45)
P 7 =0 (5.46)
VLYY= (5.47)

For instance, differentiating (5.45) with respect to V', one gets
:/y\#l;u’)\’ /y\yl + /y\”l;V’ :/y\y/;X + /y\”l;)\’ =0
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taking the coincidence limit, and using (5.41), one finds an identity, because [g*] = 0.

Differentiating another time with respect to z¥ one gets

[Z//\u/;)\’p’] =0 (548)

Differentiating again with respect to Z” and using the Bianchi identity for ﬁ“xm =

RWH, - + R, one finds

Ny, 1/~ ~
7 o) = 5 (R + By (5.49)
and, in a similar way,
! Lo D
[y §>\PT] = § (R ror + R p)w') (5.50)
1/~ .
[V o] 3 (R“TA,D + R“w) (5.51)
5.2.3 Coincidence limits of &
Covariantly differentiating (5.34) we get
0., = 0,,0" (5.52)
In the coincidence limit [0,] = 0. Therefore (5.52) is trivial in the coincidence limit.

Differentiating the first and last member of (5.33) we get

Tyr = =G T (5.53)
Using (5.42) one gets
[0A] = G (5.54)
Similarly
[Oun] = =G (5.55)
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Differentiating (5.52) once more one gets

~

_ ~ ~ ~ /\u
Twx = Oyun 0" + 0 O\

which, in the coincidence limit, using the previous results, yields an identity. Differenti-

ating it again

A~ o A~ A~ A~ A~ A~ /\u A~ ~
Twrp = Oy 0 + Tpun 01y + Ty Oty + Oy a;”/\p (5.56)
In the coincidence limit this becomes

@3] = [0l + [Twp] + [Tl (5.57)

Since & is a biscalar we have

~

[U;Vkp] = [8;1/;))\] + Rp)\l/T[b-\;T] = [8;p1//\] (5.58)
Therefore
[a;pl/)\] = [8;)\141] = [8;1/)\;)] =0 (5.59)

Differentiating (5.56) once more and taking the coincidence limit one gets

~ ~

. 1 ~
[Tarer] = =3 (Rmp + Ru,m) = Suror (5.60)

where R, = G, *;5,. Differentiating once more

-~

~ 3 ~ ~
[O-;VAPUT] = Z (SV)\UT;p + Sl/)\ap;T + Sy)\‘rp;a) (561)

We will need also the coincidence limits of tensors covariantly differentiated with respect

to a primed index /. In general

[tul---ukw’] - [tm---uk];u - [tm---uk;l/] (5-62)
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So

[alﬂ/'] = [8§M];y - [a—;ul/] = _:q\/w (563)
[0 u2] = [Oyn] = [/O-\W/\];V — 0] =0 (5.64)
[3;#1/,\,)] - [aw\m/] - [@MP]W - [5;u>\p1/] - = [a;uApu] - _S;Mpv (5'65)
[0 2p0) = [Ourpor] = [U;ux\pa];u — [Curpor] = ZS/MPU;V T (Sukl/p;o + S/MUV;p)(5-66)
Similarly, one obtains
o~ v 8 4 oy o v 4 ~ ~ v
[U;uuv pp] = _gR;uu + 1_5RLWRH - 1_5RMV>\PRM A
A~ v o~ / v 2 1 fay ~ v 4 ~ o~ v
0.’ = — [J?MM v pp] = gR;uu - 1_5R/WRM - ERWMRM o

5.2.4 Van Vleck-Morette determinant

The Van Vleck-Morette determinant in MAT is defined by

D(Z,7) = det(—5 ) (5.67)

~

D(z,7") is a bidensity of weight 1 both at = and z’. Later on we will need a bidensity of

weight 0:
~ 1~ 1
AZ,7) = ——D(7,7) —— (5.68)
9(z) 9(z)
The VVM determinant also satisfies (for 4 dimensions)
(D(Z,7)6"),, = AD(Z,7') (5.69)
In the coincidence limit
/\% o~ 1 [P ~ 1 A—l,uV,A ~ Ly 1 o~
B3 =@V D@ )5 (57 5o ) 5 H@)] = 5] = (5.70)
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We need to compute the covariant derivatives of 5~ 1# = {E;ly,}. The latter is defined

as
A,l‘u,//\

g O';,,/)\:(Séf

Differentiating this relation once, twice and thrice one gets

G5 =0,
[/U\_luk’;pa} = - [a;u’ktm] = [3;/\p0u] = §>\p0u
[U lu/\’;pUT} = - [U;Au’pw] = ZSMPUT§>\ - Z (SMW\U;T + SuﬂTNU)

Differentiating once more one gets

B3, = 57 (Rung + Runwy) = 100 R0y = ¢ (B +255)
and
[ﬁipg] = % (EMJ;U + R\pa;)\ + fAfa,\;p)
Finally
BE) = 45 Rl 4 T = R B s R R

5.2.5 The geodetic parallel displacement matrix

(5.71)

(5.72)
(5.73)
(5.74)

(5.75)

(5.76)

(5.77)

The geodetic parallel displacement matrix GH,, (Z,2") is needed in order to parallel displace

vectors from one end to the other of the geodetic interval. It is defined by

[Gryl =64 GFuno =0
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The second condition means that the covariant derivative of G*,, vanishes in directions

parallel to the geodesic. Since tangents to the geodesics are self-parallel, it follows that

o //\ ~ o ~
G, 0,y =—0y,, 0,G'y =—0, (5.79)
G =G NGy = 0
pw' — G, g, v\ =
A UVAA A
G,V Gt =)

The analogous parallel displacement for spinors is I(x,2"): the object I(x,z')(2’) is

the spinor ¢ (x) obtained by parallel displacement of ¥ () along the geodesic from z’ to

x. It is a bispinor quantity satisfying

6, =0, [I]=1 (5.80)

and 1 is the identity matrix in the spinor space. Differentiating (5.80) once we get [fu] = 0.

Differentiating twice we get

[I;(MV)] 0, (5.81)
while
T / T / 1 s aay 7 / 15 /
Iz,2"), — I(z,2'),, = _§<dQ + Q)1 (z,2") = —572,“,]@7 z') (5.82)
where 7%,“, = EW‘”’ZM,. So
T / T / 15
(2, 2" )] = (@, 2)0] = _ZRMV (5.83)
Proceeding with the differentiations of (5.80) we find
[Zw\p} + [ZAVP] + [f;p/\l/] =0 (5.84)
Now
. ~ 1~ -
[I;Mp] - [];Vp/\] = éRpA[IV] 0 (5.85)
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and

~ 1~ ~ 1~ ~
3[Lvxp) §VpR/\V + §VARpV (5.86)
In particular
T v 1 o)
1"l = GV R (5.87)

Differentiating (5.80) once more with respect to z7, using (5.60) and then contracting

with §¥*g°? we find, after simplifying,
(L") + L] =0 (5.88)

A contraction with g*°g’* gives:

1,0 + 2[L0 ") + [1","] = 0 (5.89)

Using (5.82), we get

~ 1~

- PN 1~ -~ -
[I;UPW] = [Vvvu([;crp)] = _§R0p;uv + gRUpRW + [[;poul/] (590)
Contracting with g"7g”? gives
1~ ~ ~
LM =0+ gRWR“” + 1., (5.91)
since by Walker’s identity
V,VARA =0 (5.92)
Finally, by using (5.88), (5.89), one gets
Tvop 15 5 pA
[1," "] = ng/\R (5.93)
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5.3 Fermions in MAT background

The action of a fermion interacting with a metric and an axial tensor is

5 = / d'z (m\/éyaa; (au + 1@,,) ¢) (@) (5.94)
- [z (w\f o) [ B+ vdedabcszubc%} w) @)

It must be noticed that this action takes axial-real values'. The field 1 (Z) can be under-
stood, classically, as a series of powers of Z applied to constant spinors on their right and
the symmetry transformations act on it from the left. The analogous definitions for T
are obtained via hermitean conjugation. In the second line it is stressed that the action
contains also an axial part. It is understood that 0, = % applies only to 9 or ¥, as

indicated, and § denotes, as usual, the axial-complex conjugate of §.

5.3.1 A more precise formula for the energy-momentum tensor

In our calculation a more explicit formula of the energy-momentum tensor is needed than

in the previous chapter. The energy-momentum tensor is defined by

— o~
2 65 1
TH = — (TFe™ + T e 5.95
=5, = 5 T+ T (5.95)
where
%§
T — 5 (5.96)

mg}‘

Let us prove first that the functional derivative of ﬁm does not contribute to the energy-

momentum tensor. Consider the general variational formula

S0 = Lo (002 - D00)) - Lo (9,02) - V. 20))

e A(%(aeﬁ;)—ﬁy(%ﬁ))aﬂ (5.97)

LOne could consider also an axial complex action, but for our purposes this is a useless complication.
That is why we use the notation v instead of 1.
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where V denotes the covariant derivative such that @,{e\i = 0. After some algebra one

gets
g €4be e 6?2“1,0 = g el ererv p0€cy (5.98)
Now use this and
5et (z)
14 — 5a5u(5
(Yéb (y) b¥u (TE, y)

<

and insert them into the definition (5.95). The relevant contribution is

]' -a
TY = (TWP+TP Mo (5.99)

[ (B i)

S A CLA @;;aﬁwu, ) 350 =0

Therefore the only contribution to the energy-momentum tensor comes from the variation

of the first e factor in (5.94). The result is
— [P — S
™ = L (0438, + (e ) = LT O e ) (5100

where 3 = %)

It is useful to write it as a trace
TV(x) = str (V00T 0) = 1o (V00 6100))  (5.101)
where 1 = 7, the flat gamma matrix. The commutator is interpreted as

90, 01]() = 2 lim ([976(2), 61 ()] + [V7("), v (2)]) (5.102)

l\DI»—

Inserting (5.101) in the path integral it becomes

(T (2)) = % lim tr (W(A (gﬂm (x,x) — 8 (x, x'))) (5.103)

' —x
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where §(1) is the Hadamard function

8W(z,2") = (([w(x), T (2)]) (5.104)

This leads to Christensen’s method, [66, 67], to compute the energy-momentum tensor
and related quantities, such as trace anomalies. We will not pursue this point of view here
although it could be done. It is in fact strictly connected with the main approach we will
follow later on, which we consider simpler. They are both based on fermion propagators
such as g(l)(x, x'). A discussion of fermion propagators and their properties in a MAT

background is presented in Appendix 5.A.

5.3.2 The Dirac operator and its inverse
In the action (5.94) the Dirac operator is

~

F =&V =i7"V, = iy%¢"V, =" F, (5.105)

where the V operator is, schematically, D+ %ﬁ and satisfies ﬁué\z = 0.

Under AE diffeomorphisms 1 transforms as: 0y = E -0, while
b (ﬁ-@w) —£.0 (ﬁ-%) (5.106)
Under AE Weyl transformation F transform as
N 1~
0o F = —§fya{Fa,w} (5.107)
and it has the following hermiticity property
Ft=nFyp (5.108)

where 7 = vy and 7 is the nondynamical (flat) gamma matrix. To obtain (5.108) use
Qf = —176*77, etc.

Integrating out the fermion field in (5.94) means, roughly speaking, evaluating the
determinant of the Dirac operator F. This is however not what we need. First, because

the log of the determinant is formally the trace of the log of F ; taking this trace means
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integrating over spacetime and tracing over the gamma matrices: this would suppress
any explicit 75 dependence and, thus, any axial splitting. Second, because Fis local,
while, in order to exploit a coincidence limit (in order to guarantee covariance), we need
a bilocal quantity. This quantity exists, it is the inverse of F: the fermion propagator.
The Schwinger-DeWitt method is based on it. Let us explain this approach, adapting it
to MAT.

One starts from the propagator
G(@,7) = (0| T (@) (@)[0) (5.109)
which satisfies
iV, G@, ) = —18(2,7) (5.110)

where 1 is the unit matrix in the spinor space. G is not yet what we need. The Schwinger-
DeWitt method requires a quadratic operator and, in addition, we must get rid of the ~

matrices, except 5. This is achieved with the ansatz
Gz, ') = —7"'V,G(z, 2" )" (5.111)

Remark 2. Why the ansatz (5.111). In ordinary gravity, from the diff invariance of the fermion action,

we can extract the transformation rule
8¢ (iv"V ) = €0 (in- V) (5.112)

while 6¢1p = £-01. Therefore it makes sense to apply v-V to v-V1), because the latter transforms as 1.

This allows us to define the square of the Dirac operator:
F2) = (iy-V)* (5.113)

It is not possible to repeat the same thing for MAT because of (5.106), from which we see that (ﬁ%z/))

N\ 2
does not transform like v, and an expression like (ﬁV) 1 would break general covariance. Noting that

2

3¢

ﬁ/z) (5.114)

)|

ﬁzj) —£0 (z

=)l
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when 5?¢ = E -0, we will consider instead the covariant quadratic operator

Let us quote next a few useful identities.

—_

@MAV — /")71,6“ = 7a <8p é\au - f)\yé\a)\ + §Quab /e\l;) =0

because of metricity, and

Vo' =V, =0

The axial conjugate relation holds as well. Therefore

~

FV,5V, = 1NV, = eV, Y, + DU [V, Vo

On the other hand, when acting on a (bi-)spinor quantity

S S 1 a c. dp D AV 1
Zabw [V#, V,] = g’Y ’Yb’Y ’YdRabcd = _4Ruu)\pgu)\g P= _ZLR

where use is made of

Now replacing (5.111) into (5.110) and using the above we get

Vil (3,3°%, - {7)5@.7) = -16.2)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

The differential operator acting on § will be denoted by 5"9. In compact operator

notation
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As a consequence of (5.108) we have
(& wo _1p T = (o mo _1p
Vi V,gv, - B = | VIE (Vg Ve = SR (5.123)
or
PN ~
(%) =135 (5.124)

We shall refer often to the related operator

F= .;7\"@, Ft=n3y (5.125)

~

Sl-

and to its inverse §: 5’/9\ =—1.

Remark 3. The operator F is the main intermediate result of this chapter. It is
natural to assume that its inverse § exists. There is no reason to believe that it does
not, because, the differential operator F (after a Wick rotation) can be defined as an
axial-elliptic operator, at least under reasonable conditions on the axial tensor f,,. In
fact its quadratic part can be cast in the form —0;A4;;(x)0;, where A;; is an invertible
matrix and its dominating part is symmetric and positive definite. However, no doubt, it
would be desirable to have a mathematical (possibly constructive) proof of the existence
of G . In Appendix C we discuss this issue and, following [13], we give some arguments

in this direction.

5.4 The Schwinger proper time method

From now on, for practical reasons, we drop the bar symbol of axial conjugation. At the
end we will axially-conjugate the result.

Let us define the point-to-point amplitude
(,317,0) = (7]e™|7) (5.126)
which satisfies the (heat kernel) differential equation

(SN 2 oy~
ia—A(x,s|a:',0) = —-F:(z,5|7',0) = K(z,7',5) (5.127)
S
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where ?x is the differential operator
F:=V,0"V, — -R (5.128)

Then we make the ansatz

(7,317,0) = — lim ) 32,7, 9) (5.129)

m—0 1672 §2

where ZA)(f, 7') is the VVM determinant and & is the world function (see above). ®(Z, 7, 3)

is a function to be determined. It is useful to introduce also the mass parameter m, which
we will eventually set to zero. In the limit § — 0 the RHS of (5.129) becomes the definition
of a delta function multiplied by ®. More precisely, since it must be (z,07",0) = 6(x,2"),

and

; D T,7) . (sGs
lim — (0 7) (252 ms) VIE®) 8z, 7") (5.130)
we must have

hm<I>(x 7,5 =1 (5.131)

5—0

Eq.(5.127) becomes an equation for ®(Z, 7', 3). Using (5.34) and (5.69), after some algebra

one gets

za—q) + 2@@@ VY, (\/_cb) ( R- m2> =0 (5.132)

Js \/B
Now we expand
O(F,7,5) =) _6.(3,7)(i5)" (5.133)
with the boundary condition [ag] = 1. The @, must satisfy the recursive relations:

. 1 en = P
(0 + Danst + VG0V ,6 — 7v“vﬂ (\/Ban) + <ZR - m2> G, =0 (5.134)
D

Using these relations and the coincidence results of section 3.3, 3.4 and 3.5, it is possible
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to compute each coefficient a,, at the coincidence limit.

5.4.1 Computing a,

In this subsection we wish to compute [a;] and [as], which will be needed later on. We

start from (5.134) for n = —1.:
Viago, =0,  with  [ag]) =1, (5.135)
which implies that

a(z,7) = 13,7). (5.136)

N 1 o~ —~ 1 ~ -
(3.7 + V'V, (3,7) — 7wv# (\/Z @) + (ZR - m2> [(7,7) =0,
A
(5.137)
which implies
~ 1 = 2

Moreover differentiating (5.137) with respect to V and taking the coincidence limit:

~ 1~ — o
o[Vya] = Z—LR;Al—[\/Z;M“AI+VAV“VM]
SO
~ 1~ o 1=+
[V}ﬂl] = (ERAV% — ﬂR;)\) 1. (5139)

Next we have
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so that

PN 1 N
AT S - A iz
V] = g lv A (\/_v v (\/_[> ( ) )] (5.140)
1/ 1 1~ 1~ s g
= - |-= — R, R" R BV + R, R 5.141
3(20 T T3 e gk )( )
Finally
@ = |9 - (SR-m?)a (5.142)
as = 5 A1 12 m aq .
= 1m4—im21§+i§2—iﬁ ——R R LR B R SR
2 12 288 120 180 180" A 48

We recall that ﬁ,,w = ﬁuyabzab.

5.5 The odd trace anomaly

We are now ready to compute that odd parity trace anomaly. Beside the point-splitting,
which we have used above, we need a regulator to get rid of the infinities at coincident

point. We will use two regularizations: the dimensional and zeta function ones.

5.5.1 Schwinger-DeWitt and dimensional regularization

We start again from the Dirac operator (5.105). We have defined above the covariant

square
F=—FF (5.143)

We identify the effective action for Dirac fermions with
W= —%Tr (1n ?) (5.144)

The trace Tr includes also the spacetime integration. The AE Weyl variation of (5.144)

is given by

oW = %Tr (§ 5@§f> (5.145)
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where

A~

FG=—1 (5.146)

So we can write

= 1 [*ds 5+ 1 o G A
oW = o3 (——/ _—feﬁS) =—=TTr </ dfs\e’%d@rf) . (5.147)
2 Jy s 2 0

It follows that, as far as the variation with respect to axial-Weyl transform is concerned,

the effective action can be represented as

— 1 o0 dA PN ~
W = ——/ £ 675 4 const = L + const (5.148)
o 1S

where L is the relevant effective action

L= / 4% L(%) (5.149)
which can be written as
L(®) = —%tr /OOO ?—ER@ S 0) (5.150)
where the kernel K is defined by
R@,7,3) = 7%5(3,7) (5.151)

Inserted in (5@/1/17, under the symbol Tr, it means integrating over = after taking the limit
' — x. So, looking at (5.129), in dimension d,
~ i

K(7,7,3) = —— V3 ™[0(7,7,3)] (5.152)
(47i5)2

A specification is in order at this point. For the heat kernel method to work a Rie-
mannian metric is required. Therefore at this stage we Wick-rotate the metric, so that
the operator F becomes axial-elliptic. This operation is understood from now on. After

calculating the anomaly we will return to the Lorentz signature.
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5.5.2 Analytic continuation in d

The purpose now is to analytically continue in d. But we can do this only for dimensionless
quantities. We therefore multiply L by p~¢, where p is a mass parameter. We have for a
Dirac fermion

z .
(:;C) = —%(47w2)tr/ ds (4mip?s) -2 1\/_e_1m [9(%,X,5)] (5.153)
H 0

where tr denotes the trace over gamma matrices. Now we make the assumption that

lim e~ "*[®(%,7,3)] = 0 (5.154)

S5—00

As a consequence we can integrate by parts

i 0

= —tr ds: (47ip“s) o im? 5] X,EEA 5.155
= [T amies) VR ) (5159
_ _1' ~ c2nN—9 /= 0 —im%[Re o D
= dtr/o ds (4mip”s) \/g—a(ig) <e [D(X, X, s)])
o 21 o ~ PN 1_% = 82 —im28[F /AN A~ N
= o d)47r,u2tr/0 ds (47ip’s) \/§6(1§)2 (e [D(X, X, s)]>

3

4 1 N s 22—9 /= 0 Lim2Er s~
T T d2—d)(d—ad) (4wz)2tf/0 dS (47ip’s) \/éa(l,s\)3 (e [@(%.%,9)])

Next we use
[©(Z,7,9)] =1+ [a1]i5 + [a2)(i8)* + . .. (5.156)
and, around d = 2, we use ﬁ = 1 (755 — %) and in the third line of (5.155) we use

d—2
In(4mip’s) + . ..

(47m',u23)1_% =1-

Then we differentiate once [®(%,7,3)], and the remaining derivation we get rid of by
integrating by parts. Finally one gets

IG) = % (%2 - %) i (@] - w?)v/2) (5.157)

L / " 0 In(amip®) /A2 <e—im2§[$(§§§)])
s, ()2 %
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Around d = 4 we use m ~ 1 (75 — 2). With reference to the last line of (5.155),

we differentiate twice [®(z, z, s)] and integrate by parts the third derivative. The result

18

. 1 1 3 _ N
L(Z) ~ 53 (m - Z) tr (m* — 2m?[a;] + 2[3]) V8 (5.158)
bt [ TV s (¢ . 9)
612 r ; S In mu S g8(1§)3 e X,X,s

The last line depends explicitly on the parameter p and represent a nonlocal part.

5.5.3 The anomaly

Let us take the variation of (5.158) with respect to & = w + 7571. Recall that

557G = do/g (5.159)
oR = —20R—2(d—1)0% (5.160)
SoRyun = —0D,D\& + 62D, D\& + D, D@3 Gor — DD 3 Gpn (5.161)

From these follows, for instance,

0 (ViR?) = (d-4)V5e R —4(d- DR V500 (5.162)
o (ViRwR™) = (4= 45 VGRuR” +22 - )G RV DD, — 215 RO
— (d— 4B GRR" — d\/GROG (5.163)
5 (VERuns) = (d =457 Rurg P — 8/5 D, D,5
= (d = 9B VG Ry, R — 44/5 RO (5.164)
0o (\/_@i@ = (d—4)3/gOR+ (d—6)y/30,00"R —2¢/gROG
—2(d—1)/30%%
=0 (5.165)

5@tr(¢§7€w7€ﬂ”> — (d— 4t ( NG RWR“”>—|—4tr<\/:f{“”ﬁ f),,@)
— ( NG RWRW>+2tr<\/_ me) (5.166)

In the first line of (5.158) one can ignore m? or m* terms (either one sets m = 0 or

they can be subtracted because they are trivial). The second line (5.158) does not contain
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singularities when d — 4: it contains either vanishing or finite terms in this limit. Let us

denote the second line by L R-

_ ! (Lf) /ddsgtr (182l lneo V/B) + (5.167)

bl

1672 \d—4 4

We now act with d5 = [ d?7 2tr (@g,wﬁy. From (5.159)-(5.163) it follows that

Jstr (@ [azumzo) — (d — 4)tr (@@ [aznmzo) - d1;04tr (\/éﬁﬁ@) (5.168)

The second piece can be canceled e.g. by a counterterm proportional to tr (@ﬁﬂ
Using the fact that the bare part of the action is Weyl invariant 5@2 = 0 and that the
renormalised part Ly defines the (quantum) energy momentum tensor \L/-A %ER — Om
g v

we get

/ 7 (0VE8.0") = Sy (VEo o) (5169

167

where the d — 4 factor in (5.168) canceled the pole -+ in (5.167).
Clearly, the odd parity anomaly can come only from the term ﬁwﬁ’“’ contained in
[@,] , with a coefficient of 55— (for Majorana fermions, x2 for Dirac fermions). For the

odd part we have

(5.170)

d SAT 4 R RH
/d xtr\/éw’f— 687 2/d Xtr\/_ WRLR

odd

where we denoted T = /g\W@“” = G (T*)). The (odd parity) coefficient of w defines T
and the (odd parity) coefficient of n defines T5. Setting T = T + 7575 one obtains in this

3

way
1 1 ~ -~ 1 2
A t (R VR“”) e R(D REs 5.171
476872 \'*# oad 176872 pvaf (5.171)
1 1 =~ S I A (Vas 2)af
T =~ prgerat (9 RwRY) || = Jrgera (RiasRi ™ + RELRE™Y) (5.172)

In the last step we have Wick-rotated back the result: this is the origin of the i in the

2In MAT case, g, also has two spinor indices, so that wg,w5 — WaR ngcﬁ Since in our

case 7° is symmetric, we have d4p = dpa and we can write d5 as fddx 2tr (w S 5§5W>.

3Here we changed the convention for Levi-Civita tensor with respect to [20], that is, we use €123 = 1.
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anomaly coefficient. At this point we can safely set 24, = 0 everywhere.

5.5.4 (-function regularization

Given a differential operator A in analogy with the Riemann ( function, the expression

A~* for complex z, is called ¢ function regularization of A:

C(z,A) = A" = F(lz) /Ooo dtt*=1e 4 (5.173)

We will apply this representation to the operator F (Z,7):

~ 1 00 .

F@E)~ = / dt -1 (3le~7|3) (5.174)
I'(z) Jo

where <fc\]e_t§]§:\) means the coincidence limit of @]e_t?@’ ). Eq.(5.174) is not quite correct

because only dimensionless quantities can be raised to an arbitrary power. Moreover the

object of interest will be §, rather than F. Thus we introduce again the mass parameter

p and shift from ¢ to iSu.

((3,2) = (125(3,7))" = % / " (i42)d5 (5 (2l ) (5.175)

Finally we replace (Z]e™™ |Z) with K (Z,7,3) in eq.(5.152). The result is

((@,2) = (£*5(3,7)" = F(iz) ( 4/;)3 V3 /0 ()5 (i3t B @, 7, 5))(5.176)

which can be rewritten as

20 i opt V7

((@,2) = (W5 7)) = — ] a d

This is well defined for d =4 at z =0

C(F,0) = 2%?)2 [ : 8,;2 (e B(@.7, 3)])1 (5.178)
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Now, differentiating (5.173) with respect to z and evaluating at z = 0, we get formally

d
EC(Z7A)‘Z=0 =—-TrlnA (5.179)

This suggest the procedure to regularize W (which is the trace of a log). More precisely

W= W, = —%C’(O), where  ((z2) = / tr (R, 2)d% (5.180)

As a consequence for d = 4:

L) = - 41%2 (v + ; — In(4m)\/Gtr (2[32&)] — o[ (R)] + m4> (5.181)
- 64;2 NG /0 " 45 In(4mips) . 5§>3 (e—im2§[6<f, 3 g)])

Now, suppose that the operator A, under a symmetry transformation with parameter

e, transforms as
A ={A e} (5.182)
Then
0 TrA™* = —22Tr (A™%€) = —22Tr (((2, A)e) (5.183)

Since the relevant result is obtained by differentiating with respect to z and setting z = 0,
once the functional is regularized, the anomalous part of the effective action is extremely

easy to derive:
L= —2Tr (C(0, A)e) (5.184)

Let us return to the our problem. The operator to be regulated is F = §fm Its AE

Weyl transformation is

=~ —~ o~ 3/\/\
+ (7“7” + g’“’) 0,wV,, + §Dw

~

0F = —2w

@)

~ ~J1 _ ~ ~
= 20F+7F L;J? <(?W’ + ﬁ’“’) 0,0V, + ;D@H
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§(f, ) is the inverse of F and its transformation is similar:
A S NP DU PN
05=230+G [<(’y“7 +g" ) 0,V + §Dw> 9}

The first piece in the RHS reproduces exactly the mechanism in (5.183). The second is
a nonlocal term of the effective action; it does not concern us here and we drop it. As
noticed above this procedure does not lead directly to the anomaly. It rather gives the

anomalous part of the effective action, i.e. the anomaly integrated with the insertion of

Tu(@) = —iTr@(7,0) (5.185)
— T (2 (ﬁ)? [ > gg)Q (e*im%@(t 7, g)])} B @)

Now, proceeding as before, we differentiate with respect to @ and strip off \/E, multiply

back W and obtain the true integrated anomaly. This leads to the same results as above.

5.5.5 The collapsing limit

After computing the trace anomalies (5.171) and (5.172) of a Dirac fermion coupled to a
metric and an axial symmetric tensor, we are now interested in returning to the original
problem, that is the trace anomaly of a Weyl tensor in an chiral fermion theory coupled to

ordinary gravity. To this end we take the collapsing limit. In [19] the latter was defined

P
2

as hy, — hzﬂ, ku — , with h,, and k,, both infinitesimal. Here we do not put such a

limitation. The collapsing limit is defined by making the replacements

Py

G = Ty + S (5.186)
2 2
in the previous formulas, with finite h,,,. With this choice one has
. 1 5 1 5
G = —<1 - )nuy+_(1+,y )GMV ) GMV Enlﬂ’+hl“/ (5187)

2 2
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From this we see that the right-handed part couples to the flat metric, while the left-

handed part couples to the (generic) metric G,,. As a consequence we have also

L= 1+ 1—v 147

er — o 5 tem—5 ey — o 5 te —5 (5.188)
as well as
Vio e G, (5.189)
Similarly for the Christoffel symbols
MO = STh TR T, (5.190)
for the spin connections
Qe — %wgb, Q)b — %wﬁb, (5.191)
and for the curvatures
R — %Rum”, R — %RW”, (5.192)

where all the quantities on the RHS of these limits are built with the metric G,

As a consequence, the action (5.94) becomes

~ - 1- — 1
S— S5 = /d4a: {WWQ 2753a¢+/d4x Gipytel (@L + §wu>

L+
2

w] (5.193)

where 7% is the flat (non-dynamical) gamma matrix while the vierbein e and the connec-
tion w,, are compatible with the metric G,. Up to the term that represents a decoupled
right-handed fermion in the flat spacetime, the action S’ is the action of a left-handed
Weyl fermion coupled to the ordinary gravity.

In the collapsing limit we have

1 2

T(2) = Ts(x) = TGWEMM’)RMVQBRM&’B (5.194)
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The integrated anomaly (5.170) corresponding to S thus becomes

/ddftr\@@f? = /dd:v VG (w+n) (T+Ts) trPy + /ddx (w—n) (T —Ts) trP_
- 4/dd:1:\/§w+7 (5.195)
where we used trPy = 2, T — J5 = 0 and set wy = w + 7. Notice that due to (5.187)
the transformation property of G, is G, — 2w+ (G w- 1o extract an anomaly of the left

fermion of the effective action corresponding to (5.193) we take its Weyl variation with

respect to the metric G,
/ Az VG w, T (5.196)
where we denoted T’ = G,,0" = G, (T"*)). Comparing (5.195) and (5.196) we get

T’(x) - 153672 EWApRuWﬁRApaB (5.197)

If we instead of (5.186) take the following collapsing limit

Py

Py

guu — 77#1/ + 7 ) f;w — — 2 (5198)
then one obtains
. 1 5 1 5 _
Juv = 5(1—’7 )Gyu+§(1+7 ) Myaw ’ Guv = N + by (5.199)

Now the left handed part is coupled to the flat metric and right handed part to generic
curved metric. We can now repeat the arguments from above and obtain the Pontryagin
Weyl anomaly for right-handed Weyl fermion

?

T'(z) = —WEWAPRWQ,BRM&@ (5.200)

The relative minus sign with respect to left-handed case is because of the opposite sign

in front of 75 matrix in the defining relation for projectors Px.
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Appendices

5.A Green’s functions

In the text we have assumed the existence of the propagator /9\, the inverse of F. In this
Appendix we discuss this question by comparing it with the ordinary case, as discussed in
[13]. First we review the approach of [13] in the ordinary gravity case. Then we explain
the modifications required in the MAT case. We consider the case of a stationary metric
and axial-metric background. We will assume eventually that the results hold also for
nonstationary case, provided the background varies mildly in time.

In this Appendix the flat gamma matrices are understood to be the Majorana ones,
that is, they are purely imaginary, together with v5: 79 = 1 and 75 are antisymmetric,

while ~v;, = 1, 2, 3 are symmetric.

5.A.1 A summary of Green’s functions

Let us give first a short review of ordinary fermionic propagators, see [13, 14, 66, 67]. We

start from
G(x, ") = (0| Ty(x)t(2')[0) (5.201)

This is not the standard Feynman Green function

Sp(x,2') = (0T ()¢ (2")|0) (5.202)

The two are related by Sr(z,2') = G(x,2")n
Other Green functions are the advanced, G*(z, '), and retarded, G~ (z, z'); the posi-

tive and negative frequency Green functions, G (z, 2') and G (x, '), respectively; and
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the principal value Green function G(z,2') = 1 (G (z,2') + G~ (z,2')). The definitions
depends only on the contour of integration of p” in the momentum space representation,

while for the rest they are the same. The important relation in this context is
N — Gle )+ LaD (x o W (G0 — )
G(z,z") —G(x,x)—l—éG (x,2"), GV =i(GH -G (5.203)

For real fermions G(z, 2') and GY)(z, 2’) are real. So they represent the real and imaginary

part of G(z,2'). GM(x,2') can be represented as
GO (z,2') = (O] (), ¥ ()]0} = 8V (z, 2" (5.204)
The Feynman propagator satisfies the equation
i/ gn (V'V, +m) Gz, ") = —16(z, 2") (5.205)

and 1 is the identity matrix in the spinor space. Both sides of (5.205) transform as a

bispinor density, i.e. like \/gy0¢(z) at 2 and as ¢f(2') at 2’. Instead
i/gn (*Vu+m) GO(z,2') = 0 (5.206)

The approach of [66, 67] is based essentially on G,

Now let us make the ansatz
G(x,2') = —i (V"V,, —m) G(x,2")n~! (5.207)
Inserting this into (5.205) one gets
NG (vug“”vy - <m2 + %R)) S(z,2") = —16(z, 2') (5.208)
Now we represent (5.208) as

/dx”ff(x, z")G(2", 2") = —16(z, 2) (5.209)
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or, in operator form,
FG=—1 (5.210)
(understanding (z|G|2") = G(x,2’), etc.), where
Flz,2") =g (Vug””vy - <m2 + ER)) 16(x, 2') (5.211)

and the function and derivatives in the RHS are understood to be evaluated at z. Alter-

natively we represent (5.208) as
F.G(x,2") = —16(z, 2") (5.212)

where F, is the differential operator acting on 16(z, 2’) in the RHS of (5.211).

5.A.2 Properties of F

The operator F in (5.208) is not selfadjoint. In fact

This implies that the construction of a Green’s function is not straightforward. In a
stationary background a propagator is constructed out of modes which are stationary
eigenfunctions (plane waves, at least asymptotically) with real frequencies. Given the

Dirac equation
iV, +m)u=0 (5.214)

by suitably fixing the gauge for diffeomorphisms, one can always define a complete set

of eigenfunctions with real frequencies, symbolically u, = ye ! u_ = Xe™!, so that

(understanding the indices and integration over the space momenta)
Y =ura+u_a (5.215)
where a,a' are annihilation, creation operators (see chapter 19 of [14]).
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In the same way one can infer the existence of an analogous complete set of solutions,

say vy, v_ of

iV, —m)v=0 (5.216)

Now, even if F is not self-adjoint, we can construct the following operator

0 F
F= (5.217)
FT 0

which is self-adjoint, and whose inverse is

0 gf
G= (5.218)
G 0
The mode solutions of F are
0 0 v v_
’ ’ YoU+ 7 7o (5.219)
Uy U_ 0 0

which have all real frequencies. It follows that we can construct the Feynman propagator

of F. Following the argument of [14], end of chapter 20, it has the form

0 —
e (5.220)
“7e
Comparing with (5.218) we get
1
§=—5— (5.221)

5.A.3 Existence of mode functions

The existence of mode functions, i.e. solutions of the Dirac equation (5.214) of the type
u = xe®! with real w, in a stationary background, is the basis for the existence of

propagators. In [14] the problem is discussed as follows. One shows that one can cast
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(5.214) in the form

1 0
Fu=20 F=-<{Bt — - (C 5.222
Y ’ 2 { ’ 81““} ( )
where
Br =i, C=—7n{v,w,} (5.223)

The important thing is that, in the Majorana representation of the v matrices, B* is a
symmetric matrix, while C' is antisymmetric, and they are both purely imaginary. By

choosing the gauge e) = 1, ¢} = 0 for the vierbein e, the operator F' becomes

1 0
F—Q{B,a} —C (5.224)
where
) 1 ;0
B =1, C_O_ﬁ{B’le} (5.225)

Again while B is symmetric imaginary with —iB being positive definite, C is antisymmet-
ric imaginary. Plugging the ansatz uy = y4e 4! into F'u = 0 one gets the eigenvalue

equation
(C+iwaB)xa =0 (5.226)

Due to the abovementioned propertis of B and C, one can find eigenvalues and eigenvec-

tors. The eigenvalues w4 can be taken real and positive.

5.A.4 What changes when the background is MAT

In this case the analogue of (5.213) is

Ft=nTn (5.227)
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But as above we can proceed to construct the operator

N 0 7
F=1_ (5.228)
Ft 0

which is self-adjoint, and whose inverse is

(o g
G=1|= (5.229)
g 0
Using the same argument as above we can conclude that
~ 1
§=—= (5.230)
T +ie
The only delicate point in reaching this conclusion is the solutions of
iV, u =0 (5.231)

Eq.(5.214) is real, since the gamma matrices are purely imaginary. But, in (5.231), the
presence of 75 poses a problem. In a representation in which the gamma matrices are
purely imaginary, the 75 is also imaginary, thus eq.(5.231) is complex, and, based on the
analogy with the previous subsection, one cannot be sure a priori that there are real
frequency solutions. However we notice that the operator nﬁ is self-adjoint. This remark
lends us a way out.

Another crucial point is the gauge fixing, so that one can end up with something
analogue to (5.225), in which —iB is positive definite. As we saw above, this is obtained
by choosing in particular e = 1, ef = 0. In MAT the coefficient of 4 is €}, which contains
also y5c¢f. We shall choose ¢ = 0. As a consequence the analogue of Fu = 0 is Fi=0

where
. 1(~ 8 .
F=-¢(B —} — 232
(5.3} ¢

where B = B, i.e. symmetric and such that —iB is positive definite. As for CA, it can be
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written as

~ ~

C=C,+C, (5.233)

where CAa is imaginary antisymmetric and does not contain 75, while (?5 is real, linear in
~v5 and symmetric. However altogether it is self-adjoint.

Plugging the ansatz U4 = Yae~“4! into nﬁﬂ = 0 one gets the equation

~

(C—wa)Xa=0 (5.234)

which is an eigenvalue equation for C. Since the latter is self-adjoint we know there exists
a complete set of eigenfunctions. This is what we need.

So the remaining question is: is the choice ¢y = 0 permitted? In order to see this one
has to check that the defining equations (4.15,4.16) for the axial-complex vierbein and
the like in Appendix B are still valid. Now, suppose the ordinary gauge fixed vierbein
satisfies such defining equation (which they do in [13]). Then we can set the axial-
imaginary vierbein ¢ and ¢! to 0, while preserving the defining relations. In other words,

there is a large gauge freedom, and in particular we can choose ¢ = 0.
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Chapter 6

Higher spin theories

One interesting problem in quantum field theory is the construction of interacting quan-
tum field theories with massless higher spin (s > 2) fields in flat spacetime. Reasons
to study higher spins are diverse. First, while free HS theories are fine, once we try to
turn on the interactions we find various inconsistencies in the form of "no-go” theorems
[154]-[157], see [158]-[160] for a review. We review some of the possible obstacles which
one could stumble upon: Weinberg, Aragone-Desser and Weinberg-Witten theorem. On
the other hand, consistent theory of interacting higher spin fields (involving an infinite
tower of higher spin fields) has been constructed by Vasiliev [24]-[27] in the framework of
4d AdS background.

Moreover, in open string theory we have an infinite tower of massive higher spin
excitations where the mass is given by

1(5—|—1)

~ —
Oé/

M? ~T(s+1)

In the above formula T ~ é is the tension of the string and s is the spin. In the tensionless
limit of the theory, o/ — oo the mass of the higher spin fields goes to zero. The dynamics
of higher spin excitations is very important for better understanding of the quantum
properties of string theory. Furthermore, there is a conjecture which states that string
theory describes a broken phase of higher spin gauge theory [161]-[169]. Similar to Higgs
mechanism that provides fundamental particles with mass, there is a possibility that a
similar mechanism could generate massive states in string theory. For this reason, it is

important to get a better understanding of higher spin gauge theory.
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For motivational purposes, we will finish this chapter with a quick tour through the

higher spin history.

6.1 No-go theorems

There are different "no-go” theorems putting serious constraints interacting higher spin
theories, especially in flat space-time (see e.g. [158]-[160] and references within). We
will review Weinberg theorem [154], Aragone-Desser theorem [156] and Weinberg-Witten
theorem [157].

6.1.1 Weinberg theorem

Weinberg in 1964 showed, using S-matrix approach, that there are no consistent long-
range interactions mediated by massless bosons with s > 2, see [154]. Let us consider
S-matrix element with N external fields of momenta p;, ¢ = 1,..., N and one massless
spin-s field with momentum ¢ and polarization vector e#1#+(q). We will assume soft limit
q — 0. The structure of the diagram for emission of soft spin-s field from the particle line
with momentum p; is

)

g i ceofbs
S(p1,-- PN, G €) = ﬂpul o py (¢)Shara(p1, - -, PN) (6.1)

where ¢* is the coupling constant and Sj4.q describes the hard process. We used ¢ — 0
and the fact that both field ¢ and spin-s field are on-shell. We get similar contribution
from diagrams in which the spin-s field is attached to a different field. We still have to
perform summation over all N fields since the full amplitude consists of contributions

from all NV fields. The total matrix element factorizes in the soft limit:

N i

}: 9 i i e
S(p17"'apN7q)€) = pz ] qp'ul “'puseﬂl a (Q)Sha'r‘d(p17"'7pN) (62)
i=1

The polarization tensor e**#s is transverse and traceless:

G, € (q) = 0, N €71 (q) = 0 (6.3)
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It has more components than the physical polarizations of the massless field. We can
eliminate this redundancy by demanding that the S-matrix element is independent of

spurious polarizations. That is, we demand that the S-matrix element vanishes for
el (q) = qwipet) (g) (6.4)
where nt1-#s=1(q) is transverse and traceless
GatP P g) =0, gt =0 (65

Spurious states decouple for any pi, if

N
Z qPyy P, =0 (6.6)
i=1

For generic momenta p* this equation has solution only in two cases:

e For s =1 (photon) the above equation becomes

Zqi =0 (6.7)

This is the conservation of charge.

e For s =2 (graviton) we have
N
> d'p, =0 (6.8)
i=1

which is satisfied only if ¢' = k. This gives us the equivalence principle which says

that all particles interact with gravitons with equal strength x. We are left with

N
Y p,=0 (6.9)
=1

which represents energy-momentum conservation.

For s > 2 there is no solution for the above equation. Only s < 2 fields can give rise

to long-distance interactions. Note that this argument does not rule out massless bosons
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with s > 2, it just says that there are no long-range interactions. There is still possibility
for s > 2 massless fields to mediate short-range interactions. Massless higher spin fields
can exist, but their coupling ¢* in low energy limit ¢ — 0 vanishes. In [170, 171] the

authors showed that long-range interactions with fermionic higher spin exist up to s < g

6.1.2 Aragone-Desser theorem

Aragone and Desser in 1979 showed that higher spin fields cannot consistently interact
with gravity, see [156]. They proved this by attempting to explicitly couple spin g field
to gravity.

Let us consider interaction of spin—g with gravity up to quadratic order. Spin—g is

described by tensor-spinor v¢,, an we couple it minimally to vielbein e#

S= /d4l'€ (_%&abmwab - &ab’}/bw'ycwca + QQZab’Ychwca + id_}aalpwbb - &aan’)/cwbc>

where e is square root of metric determinant e = ,/g. The field 14 gives a redundant

description of spin—g field. The redundancy is removed by gauge invariance
Yoy = Og€p + Opeq, Ve, =0 (6.10)
To covariantize, we replace partial derivatives with covariant derivatives
0Py, = Dy€p + Dyéq, Y =0 (6.11)
The action transforms under this gauge transformation as
0S = —4/d4x66a%1/)cdR“de (6.12)

We conclude that the action is invariant only in flat spacetime where Riemann tensor
vanishes R%“ = (). This means that gauge modes decouple only in the free theory.

This theorem rests on the Lagrangian formalism. This means that there is one major
implicit assumption: locality. Consequently, introducing non-locality in the Lagrangian

could avoid the difficulties.
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6.1.3 Weinberg-Witten theorem

Finally, let us mention one more "no-go” theorem. Weinberg and Witten, using S-matrix
approach, proved that a theory which allows a construction of a conserved Lorentz co-
variant energy-momentum tensor cannot contain massless particles of spin s > 1, see
[157] (for a review see [172]). It states that no massless higher spin field can consistently
interact with gravity in flat spacetime. The statement of the theorem goes as follows: ” A
theory that allows the construction of a conserved Lorentz covariant energy-momentum
tensor Ty, for which [ d*xT is the energy-momentum 4-vector cannot contain massless
particles of spin s > 2.7

Let us analyze the scattering of massless fields off soft gravitons. We assume that p is
the initial momentum of the spin-s field, and that the final momentum is p’ = p+¢. The

graviton is off-shell with momentum ¢. The S-matrix element we are interested in is:
(£, 0|l £ 5,p) (6.13)

where +s denotes the polarization of the spin-s field. In the soft limit ¢ — 0 the S-matrix

element is determined by the equivalence principle

<j:87p,|T;w| + S7p> = PuPv (614)

where we used the normalization (p|p’) = 2po(27)%6(p — p').
On the other hand, to show that the matrix element vanishes for s > 1 we choose a

Lorentz frame in which

p=plp), P =0 -p) (6.15)

this is always possible for ¢> = 0 because in that case p + p’ is timelike and by Poincaré
covariance we can choose a Lorentz frame in which p 4+ p’ has no spatial component. Let
us now consider rotation R(#) by an angle § around the p direction. The one-particle

states under this transformation become

| +s,p) = | £5,p)

| +s,p) — e¢i05| +5,p') (6.16)
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where the difference in sign comes from the fact that R(#) is a rotation for +6 around p’

but —# around p’. Matrix element becomes:

eﬂws(is,p'lTwJ +s,p) = R(G)’;R(@)Z(is,p'lTpgl +s,p) (6.17)

Rotation matrix R(#) has eigenvalues e, 1 and e~®. Therefore, the above equation
requires the matrix element to vanish unless 2s = 0,1,2. Now, since we assumed that
the energy-momentum tensor is Lorentz covariant, the matrix element has to vanish in
all frames and for all p and p’ for which (p' — p)? = ¢* = 0.

Note that this theorem does not apply to theories which do not have a Lorentz covari-
ant energy-momentum tensor (like gravity). In other words if we want gauge invariance
we must sacrifice Lorentz covariance.

Regardless of the "no-go” theorems, there are significant higher spin results: free fields
can be constructed in the same manner as in lower spin cases (see, e.g. [173]). A few
cubic interaction terms have been constructed in the literature (see [99]-[106]). And most
notably, a fully consistent covariant higher spin theory, which includes an infinite tower of
higher spin fields, in AdS background has been constructed by Vasiliev and collaborators
[24]-[27]. Note that "no-go” theorems are mostly based on the S-matrix approach. In

Vasiliev theory such "no-go” theorems are evaded because in AdS there is no genuine

S-matrix.

6.2 History of higher spins

In this section we will make a quick review of higher spin theory throughout history, see
[159, 161, 174, 175] and references therein. It is often stated that the theory of higher
spins dates back to 1936 when Dirac tried to generalize his spin—% equation [95]. In 1939
Fierz and Pauli [96] systematized the study of massive higher spin fields through Lorentz
covariance and energy positivity. It took a long time before Singh and Hagen in 1974
in [97, 98] constructed the Lagrangian formulation of Fierz and Pauli equations. A few
years later, Fronsdal [37, 38] investigated the massless limit of Singh-Hagen Lagrangian
and found that, for the equation of motion to be invariant under gauge transformation,
the gauge parameter must be constrained. Later on, Francia and Sagnotti found the

unconstrained Fronsdal equations. We will restrict our historical tour to bosonic higher
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spin fields since they are the focus of this thesis.

6.2.1 Fierz-Pauli-Dirac

As already mentioned, Fierz and Pauli in their study of higher spins [96] required Lorentz
invariance and energy positivity. Due to Wigner’s work [176] on representations of
Poincaré group and Bergman’s and Wigner’s work [177] on relativistic field equations, the
positivity requirement was replaced by the condition that the one-particle states carry a

unitary representation of Poincaré group. The symmetric rank-s tensor then satisfies

(O—m*)up, = 0 (6.18)
0" by = 0 (6.19)
" oup. = 0 (6.20)

Total symmetry of the higher spin field ¢,,, . ., ensures that the field transforms in a desired
representation. The first equation says that the Klein-Gordon equation must be satisfied,
which we can see from the first Casimir invariant C';. The transversality condition ensures
that we are propagating the appropriate number of degrees of freedom. Casimir invariant
C5 requires that all lower spin values are eliminated and this is achieved by imposing
the transversality condition. This condition is necessary for the energy to be positive
definite. The third condition above, the tracelessness condition ensures that massive field
representations are irreducible. Number of independent components of symmetric rank-s

tensor ¢, ., is

(d+2_1) (6.21)

d+s—3

s ) components while the transversality condition

Tracelessness condition removes (

d+s—2

i1 ) However, we must be careful, because its trace part has already been

eliminates (

d+s—4
s—

included in the tracelessness condition. So we must add ( 3

) to avoid double counting.

The total number of degrees of freedom is

<d+z—1) B <d-£:3>_<d-s+-:2>+<d-;:4>
_ <d+z—4>+2(d—;—iz4> (6.22)
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6.2.2 Singh-Hagen

Singh and Hagen in [97] constructed a Lagrangian formulation for spin-s fields that gave
the correct Fierz-Pauli conditions. The Singh-Hagen Lagrangian for integer spin can be
written in terms of symmetric traceless tensor fields of rank s, s-2, s-3,... 0. Let us start

with a simple example of spin-1:

2
Lapin-1 = =5(0u00)° = 50+ 6 = "0, (6:25)

where 0¢, 0 - ¢ and ¢ (¢/!!) denote gradient, divergence and trace (p-th trace) of the

higher spin field. The corresponding equation of motion is the Proca equation
06, — 9,(9 - ¢) —m*¢, =0 (6.24)
Taking the divergence of this equation we get the Fierz-Pauli transversality condition
0-¢=0 (6.25)
together with Klein-Gordon equation for ¢,
O¢, — m>¢, =0 (6.26)

Let us now turn to the generalization of the above result for spin-2 field. The La-

grangian for traceless field ¢,,, is
1 2 @ . m? 2
Lsm'n—Q = _§(au¢w> + 5(8 : ¢u) - 7(¢MV) (6-27)
where we introduced constant « instead of 1. The equation of motion is
a 2 2
quuV_E aua'¢u+aua'¢u_;lnuua'a'¢ _m¢uV:O (628)
Taking the divergence of this equation gives

1 1
(1—%)D8~¢,,+a(3—§)8V3-8-¢—m23-¢V:0 (6.29)
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In the above equation we used the fact that the field ¢, is traceless. Note that in spin-2
case it is not possible to immediately get the transversality condition like for spin-1. We
can get rid of some terms in the above equation by setting o = 2, however we would still
have to require 0 - 0 - ¢ = 0 to obtain the Fierz-Pauli constraint. Because of that, let
us proceed in the following way. Introduce an auxiliary field 7 so that the the condition
0-0-¢ =0 becomes a consequence of the field equations. To the original Lagrangian we

add the Lagrangian L, for the auxiliary field 7
Ly=70-0 ¢+ c1(0,7)*+ com® (6.30)

where ¢; and ¢y are constants which we still have to determine. The equations of motion

for field ¢,, and 7 are

2 1
G+ O — (@8 “ ¢y + 0,0 ¢, — ;lmwa <0 - ¢) —m*¢, + 0,0, — Emuﬂﬂ =0
T 0:-0-0+2ca—c0)r=0 (6.31)

where o = 2 is already used. Taking the divergence of the first equation twice
[(2—d)D—dm*|0-0- ¢+ (d—1)DP*1 =0 (6.32)

The last equation together with the equation of motion for 7 can be regarded as a linear
homogeneous system of equations in variables 9 -0 - ¢ and w. The associated determinant

A = —2dm*cy + 2((2 — d)cg + dm?c;)0 — (2(2 — d)e; — (D — 1))0? (6.33)

This system of equation has a solution if the determinant does not vanish. We also require
that the determinant does not depend on the D’Alambertian O. The determinant will be

proportional to m?. Due to these requirements we get constraints on constants ¢; and ¢,

-1 m2d(d — 1)

=S d>2 (6.34)

The obtained solution is exactly the transversality condition together with the condition
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that the auxiliary field vanishes. Altogether we have

=0 0-0-¢9=0 (6.35)
d-¢,=0 (O —m?)p,, =0 (6.36)

One can follow a similar procedure for fields with spin s > 2. In that case (s —1) auxiliary

fields is needed to obtain Fierz-Pauli conditions.

6.2.3 Fronsdal

Let us now follow Fronsdal’s approach [37, 38] and take m — 0 limit of Sing-Hagen
Lagrangian. We will see that in this particular limit, only the spin-s and the spin-(s-2)
auxiliary fields remain and the rest of auxiliary fields decouple.

For s = 2, the limit m — 0 of Singh-Hagen Lagrangian reads

d—1

1

Lapin—2 = —é(am,,p)2 + (0 +7m0-0- ¢+ m(aﬂf (6.37)

The corresponding equations of motion are
2 1
G+ O — (@8 ¢y + 0,0 - ¢, — Enm,@ -0 - ¢) +0,0,m — C—lnul/Dﬂ' =0

d—1

S 0-0-b— —0Onr = .

s 0-0-¢ T 0 (6.38)

Next, let us introduce ¢,,,, a new field which is a combination of ¢,, and 7

1
P = G + mmﬂ (6.39)
and the equation of motion then becomes
Fuw =00u — (0,0 0, + 0,0 - ¢,) + 0,0, =0 (6.40)

This is the linearized Einstein equation where the Fronsdal tensor F,, is just linearized

Ricci tensor R,,,. The Lagrangian is now
1 1
Lspin—2 = _5(8M90Vp)2 + (8 : @M)Q + 5((%(,0/)2 + cp'(? 0 ¢ (6'41)
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and it is invariant under gauge transformation
0 = Oul\y + O A, (6.42)
This Lagrangian would give the Einstein equation
Fup — %n,wf’ =0 (6.43)
which, when combined with its trace 7' = 0 implies
Fuw =0 (6.44)
Let us now try to generalize Fronsdal equation to spin-3 fields
Fuvp = O@uup — (0,0 - @y, + perms) + (0,0, + perms) = 0 (6.45)
with gauge transformation
0Pup = Oy + Oy Ny + OpA (6.46)

where A is a rank-2 tensor. Note that Fronsdal tensor is not immediately invariant under

this transformation
6F up = 30,0,0,\ (6.47)
Fronsdal tensor is invariant if the gauge parameter is constrained
N =0 (6.48)

This condition on gauge parameter is quite strange and unnatural and we would like to
avoid it. One approach to rewrite the Fronsdal equation in an unconstrained form is by
introducing a rank-(s — 3) compensator field o which compensates for the non-vanishing
term in (6.47). Second way to avoid constrained gauge parameter is to construct non-local
equation of motion and Lagrangian.

But before we continue with the study of unconstrained Fronsdal equation, let us first
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describe general Fronsdal formulation for any spin. We can write
Frone = 00p1 e — (0,00 - Qpuy. s + pETMS) + (8,118“2@;1”#5 + perms) =0 (6.49)

To simplify the notation we will omit the indices so that we will write for completely
symmetric rank-s tensor field ¢ = ¢,,,...,,. We also write 0¢ for p-th gradient, 07 - ¢ for

p-th divergence and ! for p-th trace. Now Fronsdal equation can be written as
F=0p—-00 -9+ =0 (6.50)

In this expression standard higher spin conventions from [39, 107, 108] are assumed.!
The Fronsdal equation (6.50) is invariant under local transformations parametrized by

traceless completely symmetric rank-(s — 1) tensor fields A=A, ..., ,
do = 0A (6.51)
with

AN=0 (6.52)

We call this constraint on gauge parameter first Fronsdal constraint.

However, there is one more condition needed for the Lagrangian
]‘ /
to be invariant. The variation of the Lagrangian is, up to total derivative,
]‘ / 1 / S / !
The third term vanishes because of first Fronsdal condition and we are left with

SL = —sA (a F - %aﬁ) (6.55)

!Conventions assume symmetrization over free indices with minimal number of terms and without
any symmetry factors. Also, a prime denotes contraction of a pair of indices, so, e.g., ¢’ = @u,.p,_, =
nts=thsp, ., is a completely symmetric rank-(s — 2) tensor field.
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To calculate (8 - F = %8}"’) we use

0-F = 009 —00-0-p+0%0-¢ (6.56)
OF = 200y —200-0-¢+30°0" +20%0 - ¢ (6.57)

As it tuns out, Fronsdal operator satisfies the anomalous Bianchi identity
1 / 3 3, N

For s >4 the Lagrangian is gauge invariant only if the field ¢ is subjected to the Fronsdal

second condition
o"'=0 (6.59)

From the Lagrangian (6.53) together with the two Frondal conditions (6.52) and (6.59)

we get the equation of motion
]‘ !
F— 57).7-" =0 (6.60)
We can also introduce the Fronsdal-Einstein tensor
1 !

and write the Lagrangian as L = ¢gG.

Let us now determine number of degrees of freedom for the constrained Fronsdal

(d+sf5

theory. A symmetric rank-s tensor which is double traceless has (dffl) — ("0

) in-
dependent components. Furthermore, Fronsdal tensor F is gauge invariant under the

d+s—2) _ (d+8—4

condition A’ = 0 and hence we can remove ( 1 s_3

) by imposing the de Donder
gauge

J-p— %8@' =0 (6.62)
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which reduces the Fronsdal equation to
Op=0 (6.63)

Now we see that ¢ really describes massless field. However, de Donder gauge does not

completely fix the gauge since
L

Because of that, we still have freedom to gauge away (djiz) — (d;rf;l). Altogether, we

() (5 "

have

degrees of freedom.

6.3 Unconstrained Fronsdal equation

Let us now give a brief overview of work done by Francia and Sagnotti on unconstrained

Fronsdal equations [39, 40, 41]. The fact that we need to impose the conditions
N=0 and ¢" =0 (6.66)

for Fronsdal theory to be invariant under gauge transformation d¢p = JA is a sign that
the theory is incomplete. For that reason let us rewrite the Fronsdal equation in an
unconstrained form by introducing a rank-(s — 3) compensator field « transforming on

(unconstrained) gauge transformations (6.51) as o = A’ in the following way
F =0« (6.67)

This equation is invariant under the unconstrained gauge transformations (6.51) because
the variation of a exactly cancels the variation of the Fronsdal tensor.
Let us now present the second way to construct free higher spin gauge theory with

unconstrained gauge parameters and fields. Let us start with spin-3 case where 0.F,, =
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30,,0,0,\’, the idea is to build a non-local operator Fy; that transforms like Fronsdal
operator F. The combination F — Fy will then be gauge invariant without imposing

any additional constraints. The candidates for Fy, are

1
o5 (0u0.F, + 0,0,F, + 0,0,F,)
1

=5
250,0,0,0- F (6.68)

00 - Fup+ 0,0 - F,, + 0,0 - F,’w)

The first two candidates actually coincide by means of Bianchi identity. Now it seems

that we are left with two possibilities for gauge invariant equations

1
Fuvo = 55 (Ou0.F} + 0,0,F,+ 0,0,F,) = 0

1
Frvp — ﬁauayc‘)pa - F'=0 (6.69)

but these two equations can be turned one into another using their traces.
Generalizing to higher spins, we can write the analogue F of the Fronsdal differential
operator in terms of the recursive equation
2

=0 g™ (6.70)

(n+1):
7 R R nt 10

with F© = Oyp. So, in particular, TV = F = Oy — 09 - p + 0%¢’ is the original Fronsdal

operator. Gauge transformation of F™ is

2n+1

6F™ = (2n +1) Al (6.71)

n—1

the n-th trace of gauge parameter vanishes for n > % and the operator F™ with n that
satisfies this condition is gauge invariant without any constraints. The corresponding
Bianchi identity is anomalous

m) _ L oy L\ &
0? —%8? = — 1+% ﬁ@ (672)

unless the (n + 1)-th trace of the gauge field vanishes, which happens for n > 5 — 1.
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Taking successive traces of the above relation gives us

1

o.gmw _ L
2(n —p)

oFWPHl — o forp<n-—1 (6.73)

However, the connection with our results cannot be in terms of the tensor ™, because
the latter does not satisfy a conservation law, while our results will be conserved two-point

functions (see bellow). To make the connection one constructs the Einstein-like tensor

G —-:E:<'—1)p£—§;g72'”pir()@] (6.74)
p=0 ’

where the superscript in square bracket denotes the number of time ™ has been traced,

and n is the Minkowski metric. The association of n with the spin s is as follows:

s=2n s even

s=2n—1 s odd

The G tensor is divergenceless
9-9™ = (6.75)
The free (unconstrained) linearized equations of motion for ¢ are
g = (6.76)

It can be shown that such an equation can be cast in local Lagrangian form, provided one

introduces auxiliary fields (compensators).
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Chapter 7

One loop effective actions and higher

spins

We will approach higher spin theories with the induced gravity method [110]. In this
chapter, we introduce the necessary ingredients to study the effective actions of a scalar
and fermion theory coupled to classical sources using symmetric conserved currents. It is
important to note that there is an infinite choice for conserved currents, here we will use
two types: simple currents and a particular linear combination of them which becomes
traceless in the massless limit. Since we will mainly focus on the quadratic part of the
effective action, the main object we will be dealing with is the 2-point correlator of
currents. To give a motivation for what is following, we summarise the results in 3d
case obtained in [28].

We expect that the 2-pt functions of symmetric conserved currents are conserved
and we exclude the presence of anomalies. As a consequence, the 2-pt functions can
be expressed in terms of projectors [29]. Expressions in terms of a projection operator
are very convenient because they make the conservation obvious. But, in this way, the
geometrical content of the resulting equations of motion or the effective action remains
implicit. For this reason, we rewrite general expressions in terms of generalized Jacobi
tensors, see [30].

Finally, we describe our method to compute 2-point functions and give some general

directions for their calculation.
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7.1 Free field theory models

Here we limit ourselves to two type of models, the free scalar and free fermion, although
it is possible to extend the analysis to other models. By the first we mean the complex

scalar theory defined by the Lagrangian

L = 8,806 — m*6'o (7.1)
in any dimension. On shell the current

Ju=1(0'0u0 — 0u0'0) (7:2)

is conserved. We can couple it to a gauge field via the action term [ d%z A*(z)j,(z). In
the case s = 2 the conserved current is the energy-momentum tensor and the external
source is the metric fluctuation h,,,, where g,, = 1,, + h,,. In this case the action is the
integral of (7.1) multiplied by ,/g.

But, of course we can define infinitely many completely symmetric (on shell) conserved

currents, of which (7.2) is only the simplest example:

Tonope =00 Oy o Oy, @ (7.3)

They couple minimally to external spin s fields, @#1#s. The on-shell current conservation

implies (to the lowest order) invariance under the gauge transformations (2.25)

0Ppsopie = O sy (7.4)

where round brackets stand for symmetrization.
The free fermion model is represented by a Dirac fermion coupled to a gauge field.

The action is
ﬂﬂ:/wxwwm¢ﬂww,zhzq+@ (7.5)

where A, = Aﬁ(w)T“ and T'* are the generators of a gauge algebra in a given representation

determined by 1. We will use the antihermitean convention, so that [T¢,T%] = faebTe,
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and the normalization tr(7°7") = —§®. The current
Ja(x) = iy, T (7.6)

is (classically) covariantly conserved on shell as a consequence of the gauge invariance of

the action (7.5)
Na ac abc Ab co_
(Dj)* = (0" + f*A™)j =0 (7.7)
The next example involves the coupling to gravity

ol a s 1 c c 1 c
S[h] = /ddﬂie [(WWEEY'N b —my] . V=0, + Qwubczb . oxbe = 1 (/" 7<) . (7.8)

The corresponding energy momentum tensor

7 - “r “

is covariantly conserved on shell as a consequence of the diffeomorphism invariance of
the action. In the massless limit, the action is invariant under Weyl transformations and
because of that the energy momentum tensor becomes traceless. If we expand the metric
around the flat spacetime, g, (x) = 1, +h, (), then, contrary to spin-1 case, interaction
is not linear in the gauge field h,,. If we limit our analysis only to the linear term, it is

given by coupling the flat space energy-momentum tensor

T =~ (% By + 5}) . (7.10)

|

to the metric fluctuation A, .
Similarly to the gauge field and the metric, we can couple the fermion ¢ to a new

external spin-3 source b, by adding to (7.15) the term

/ A%z, 20" (7.11)

with the choice of current

. 9T o 9
Jprpops = 2 1?%1 O o O s (0 (7~12)
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Due to the (on shell) current conservation this coupling is invariant (to lowest order)

under the infinitesimal gauge transformations
0byun = Ol (7.13)
In the limit m — 0, if we also have invariance under the generalized Weyl transformations
Obun = N (7.14)

we can induce tracelessness of the current j,, in any couple of indices. In that case the
form of the current is more complicated than (7.12). We will come back to this point
shortly.

We notice that to lowest order in the external sources the relevant action, in all cases
above, takes the form of the free action + a linear interaction term such as (7.11). We
make the identification ¢, = A,, ©uw~hu, ©uwr~bua, with the obvious exception of the
non-Abelian field in (7.5). However, for simplicity, we will often consider just the Abelian
case.!

In general, we can couple the fermions to more general fields. Consider the free action
Sy = / &Pz [ipy" 00 — mi)] (7.15)
and the spin-s conserved current
-f -s—1 .7 Pa¢ Pa¢
Jpgops = 0 VYur Ops -+ Ops ¥ (7.16)

Our goal is to compute the effective action for the external source fields at the quadratic
order. Inspired by [22]-[27], we will introduce an infinite set of higher spin fields so that

the generic linearized interaction we consider is:

St =Y [ A (7.17)

! Also note that the nonlinearity present in spin-2 case, which is forced by the consistency requirements,
is a signal that we should expect the same for higher-spin fields.
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In both scalar and fermion cases, let us repeat that the effective action is given by (2.11)

Wiesd =W+ Y ¥ T o/ Hddx P (@) P (2,

n=1 s1,...,8n

X AOIT G cgrray (1) - T i, (£0)[0). - (7.18)

In particular ¢, = A, ¢ = lhuu and j,, = 2T}, with ¢,,» = byx. The full one-loop
1-pt correlator for j,, ,. is given by (2.12)

Gproope (@) = (5?0“1 o Z Z nl/Hdd$ QH2LP2s () | pHntebnsn (g )

n=0 s3,...,8n

X <0’7—ju1~.us(x)jyzlmmsz (2) - Jpnr i, (T0)[0). (7.19)

To compute the effective action up to quadratic order we need the two-point functions

O Juscoioy (%) Jon.vy, (1)]0) (7.20)

or their Fourier transforms

Tm...uslm...usQ (k) = <O|Tju1...usl (k) }Vl...VSQ (_k) |O> (7-21)

In the sequel we compute them by using the Feynman diagram technique. For all two-
point functions the only relevant diagram is the bubble diagram with one spin s line
of ingoing momentum k& and one with the same outgoing momentum and one scalar or

fermion circulating in the internal loop.

Warning. One must be careful when applying the previous formulas for generating functions. If
the correlator (0|7 Juyy...pas (1) - Fpun1..pins (€n)]0) in (2.11) is meant to denote the n-th point-function
calculated by using Feynman diagrams, a factor i” is already included in the diagram themselves and so it
should be dropped in (2.11). When the current is the energy-momentum tensor an additional precaution

in

is necessary: the factor T_,l must be replaced by £ S The factor 57 is motivated by the fact that when

we expand the action

58
S[n+h]:S[n]+/dda: L

dghvlg

the factor 57 = %T uv- Another consequence of this fact will be that the presence of vertices with
g=n
one graviton in Feynman diagrams will correspond to insertions of the operator %T;w in correlation

functions.

132



Recall that scalar and fermion currents are given by

s—1

G =6 (00) 00 Gl =70 (80) @ (7.22)

(For fermions in case s = 0 we use ji_, = 11).) These currents will be henceforth referred

to as simple currents. In the fermionic case the two point correlator is

Tt k) = — / I gy (2 ! Ve VT (7.23)
[0 fsy V1o Vs - (2r)d p— m%f%_ I _m%' f1.psy CV1evsy W

whereas in the scalar case it is

T (k) = / &' ! Vion V. (7.24)

HLfhsy V1V (2m)d (p2 — m2)((p — k)2 — m2)  Froton Ve

with the Feynman vertices for fermions and scalars respectively

Vugu-us - “55 <2p# - ku>871 ) Vﬂ1~~~ﬂs =1 <2pu - ku>s (725)

In addition, some general formulas are easy to write in terms of particular linear com-
bination of the previous currents which become traceless in the massless case (case of

generalized Weyl invariance). Traceless currents can be defined in the following way:

J 1=z

-st . S l Ts -t - f L Ff
jm-uus - s, (DTFW‘) Jul-uus—zl ) ju1--~us - 2 : As,1 (Dﬂ.l‘“) Jm--#s—zz (7'26)
=0 1=0

,_
lw

where

S 2

ol T (s — 2T (s+%52)7 o0 = (s — 20— 1)IT (s +52)

CDWIl (o452 =] DD+ 52 =) o

It is easy to see that amplitudes for two general spins s; and s, for the traceless currents

can be written as linear combinations of the amplitudes (7.24) and (7.25) of the simple
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currents (7.22)

Tist - s s 2 2\! 2 2\ k s
Tm---uslm---ng - ashla@,k (k Nup ku) (k T kV) TMI---Msl—QlVl---VSQ—Qk
=0 k=0
-1 -1
[H5—1 1225 l i
ft _ f f 2 1.2 2 1.2 f
TM1-~~M51V1--~V52 - asl,la52,k (k 77## ku) (k Nvv ku) Tul...usl_glul...VSZ_gk

=0 k=

[en]

Before we start with the analysis of the results for 2pt correlators coming from Feyn-
man diagrams, we should prepare the ground with a general analysis of their expected
structure. We argued in chapter 2 that the full one-loop conservation law for the spin s

current is

0 (s () = 0 (7.28)

From the spin-2 example we know that a covariant conservation law should be written
also for the higher spin currents, but for s > 2 we will satisfy ourselves with the lowest
nontrivial order given by the above equation. Using this conservation law, in the next

section, we will determine a general form of our 2-pt correlators.

7.2 Universal equations of motion and conserved struc-
tures for spin s

Our starting point is the 2-pt functions of symmetric conserved currents. We expect
them to be conserved, i.e. we expect to find 0 if we contract any index with the external
momentum k. We exclude the presence of anomalies. In fact we will come across also
some non-conservations, but they can be fixed by subtracting local counterterms. This
aspect of our analysis is interesting in itself, but we will illustrate it later on in detail. For
the time being we ignore this fact and suppose that all 2-pt functions we deal with are

conserved. We will also write a general form of the traceless 2-pt function.
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7.2.1 Conserved even-parity structures

The form of the conserved structures is universal, in a sense that is does not depend on

the dimension d of spacetime. They can be easily constructed by means of the projector
Ty = T = =15 (7.29)
Conservation is a consequence of the transversality property
ktm,, =0 (7.30)
The name for the projector is justified by the property
T Ty = Ty (7.31)

For equal spin s, the 2pt correlator can be written in terms of the following structures:

A k) = T, (7.32)
Agit)tl...,usul...ljs (k) = 7T,LSL;27T,U4,LL7TVV (733)
AP k) = mal Al (7.34)

There are |s/2] independent such terms. Let us set

[s/2]
Em..-usl/l..-us (k) = Z alAl,m--.us,m...us(k) (7'35)
=0

where a; are arbitrary constants and E,S‘?_.,Msyl..,ys(k) are conserved tensors. This is the
most general conserved structure for spin s.
Let us give a proof by induction that a conserved structure can be written in terms

of products of 7 alone. In the lowest case (spin 1), the most general Lorentz covariant
Kk

(dimensionless) conserved even structure can be written in terms of 7, and ~z*. Imposing
. . k.ky
conservation the result is ~ 7, — =" = 7,,. In the same way one can prove the property

for the case s = 2. Now we suppose that the proposition is true for s. So it is true for
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the combination T3 o s (k) = B v n (k) = S, AP) meaning that

Lyt ...ppsvy ...V
.o s+1
k’“Tm usnvs = 0 for any 7,7 = 1,...s. In order to construct Tél u)s+1u1 vsp1 WE can

by Nupvv, k2 Ny M 1];12611 or by

kuky
k2

multiply T,El?_.ﬂsul...us

k‘;ﬂf" k;ﬁ“, because the construction is in steps of 2. So we can have only
k. k
s+1 _ s—1 154 S
T/El.../,L)s+1V1...Vs+1 - allnl“’T,lgl) HsV1...Vs + azn““nnylsl ;Uf)s 1V1...Vs—1 + bl k-? T( )
kuk, 1 k,k,
+bs kj2 TISL"IL)sflVlmVs 1 —1-1)377#“ k2 Tul u)s 1V1..Vs—1
kuky kvky s
o= = T (7.36)
Now applying k* to this expression we find that conservation requires a; = —by,as =
—by = —b3 = by. So that (7.36) becomes
s+1 o S s—1
T/51---/25+1V1---Vs+1 - a/?TMVTIS»I?--,U‘sVl---Vs + bﬂMMWVVT/S1 M)s 1V1...Vs—1 (737)

with arbitrary a and b.
By Fourier anti-transforming and inserting into (2.11), one can construct the effective

action corresponding to (7.35) multiplied by &2 for the spin s field ¢, ,. as follows

S ~ / B S TIE(D) 1y 1 (7.38)

where E(9) is the formal Fourier transform of E(k), i.e. the same expression with &,

replaced by —i0,. The equation of motion is of course
DE(a)Ml---Ms,m...uscpylmys =0 (739)

After canonical normalization, it depends on |s/2] — 1 arbitrary constants. This is the
most general linearized equation of motion for a completely symmetric spin s field.
For correlators of currents with two different spins s; and ss, so > s; the general

structure is

,_
®

rol®

[

7.(”1/2 alAlvuln'uslyyln-V\sl (k) (740)

=0

provided that both s; and sy are either even or odd.
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From E® (k) we can obtain the most general traceless combination, by taking the trace

of (7.35) and imposing it to vanish. The resulting equation is the recurrence relation

(s—2l+2)(s—20+1)
202(s—1—1)+d—1)

a; = — a;—1 (741)

Setting ag = 1 the solution is

(-1} sl D(s+%52-1)
220 (s —2D)! T (s+42)

a; = (7.42)
Replacing this in (7.35) we obtain a traceless conserved structure. In turn this gives rise

to a traceless equation of motion.

7.2.2 Conserved odd parity structures

It is easy to obtain also all the odd parity structures. The spin 1 odd parity conserved
Lorentz structure (linear in k) can only be

) (k) = €k (7.43)

0,uv

It is easy to realize that, for higher spin, the € tensor can only appear in the form €,,,\k* in
every single term, thus it can be factored out. What remains is an even spin structure of

one order less. So the most general odd conserved Lorentz structure will be a combination

of

~(s) _ A J(s=1)
CO,;Ll...;LS,lll...l/S (k) - El“/)‘k AO,,ul...,u,s,l,lllu.stl (k:)
~(s) - A f(s—1)
Cl,ul...us,ulu.us<k) - E,UJ/)\k Al,,ul...,us,l,ul...us,l (k)
~(s) _ A J(s=1)
Cl,ul...us,ul..ys(k) - €MV)\k Al,,u,l...p,sfl,ul...ysfl (k)
(7.44)
where A(()O) = 1, by definition. Let us define
R ls/2] R
Opy.pparn..vs (0) = Z ACh . pamn..vs (9) (7.45)
=0

137



The odd parity action is supposed to be local (and higher derivative)

So = / A%z " 05 O(0) P (7.46)
Therefore the odd equation of motion is
Ds_loﬂlmusm---l/s (6)901/1...1/5 =0 (747)

For correlators of currents with two different spins s; and s», s, > s; the general structure

18

,_
w‘,_‘?
o

7rl/l/2 ClCN’l,ul...,usl,Vl...VSl (k) (748)

=

o

under the condition that both s; and sy are either even or odd.
The tracelessness condition (for spin s > 1) implies a recursion relation for the coeffi-

cients ¢;:

(s =20+ 1)(s —21l)
20(2(s —1—-2)+d+1

Cp = —

)Cl—l (749)

Setting ¢y = 1 the solution is:

(-1)! (s—1)! T (s+ %51
220 (s =20 —1)! T (s+%2)

(7.50)

=

7.3 Geometry in effective actions

The most important point of our approach will be the connection between the on-shell
conservation of the initial free field theory current and the gauge invariance of the minimal
coupling term with the higher spin field. This, in turn, induces a gauge invariance of the
linearized higher spin effective action (or covariance of the corresponding equation of
motion). This invariance is left implicit if we write our results in terms of projectors.
To make it explicit, we can express our results in terms of covariant ‘geometric’ tensors
constructed out of the symmetric higher spin fields. In this section we would like to make
connection with such a geometrization program.

Eq.(7.35) can be easily translated into a corresponding differential operator by Fourier
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anti-transforming

[s/2]
ES @)= aAl L (0) (7.51)
=0

These are the types of differential operators that appear in the EA’s acting on the spin s
field ¢, .. 4, The corresponding equation of motion will take the following form

E(s) (a)gpm...us =0 (752)

Pl fsV1...Vs

multiplied by a function of [J and m?.

The purpose of this section is to rewrite the equations such as (7.52) in the geometrical
form of [39, 40, 41]. For this purpose, let us introduce the symbol of SEZ),,.”S, 1&??,#5,,1,,,,,5(/43),
as follows. We Fourier transform it and replace the Fourier transform of ¢, ¢, with s

symmetric indices v ... vs. Finally we define

Gt e = G (D) (7.53)

Then the connection between (6.76) and (7.52) is given by

5/2]

1 s [s/2]\ 76

8 O (8 = DL D A s, (B), (7.54)
1=0

which corresponds to a particular choice of the coefficients a; in (7.35). In index notation,

and using formalism of m-projectors, generalized Einstein tensor reads
Lz smod2 (2 EIR
ﬁgm---us = T (ﬂ—/u/ - T‘-MHWVV) ' (755)

Of course we are interested not only in the relation (7.54), but in expressing all the

i@

Lo parn..s(K) I terms of the G\ sionvn(K). To do so we have to take the successive

traces of (7.54). We have, for instance

Gt s = —208/2)(2]8/2) + D = H)G0 ) n (7.56)

M1 fls—2V1 ... Vg—g " VV
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In general

(2ls/2) +D = HU([/2))! )

> (n)[p] - (—
gul...us_gpul...us - ( )p (2 LS/QJ 4 D - 2p o 4)”(L5/2J o p)' M1 fhs—2pV1.--Vs—2p Wgy (757)
and
gt = (-op PRSP g0, (7.58)

for s even, with G = k2, and

Gy = (- B D= SR g oy (759

for s odd, with G = k27,

Now, using (7.54), one can write

s i(s) L 50 L [ Ls/2] I+1_s—21—2 _I+1
T = onﬂlml‘fs’/lm’/s(k) - @gﬂl-uﬂsljl-nlfs(k) + Z <_1) 141 Top Tpw Ty (760>
1=0

for even s, and a similar expression for odd s. Now the strategy consists in repeating the

same step for the second line in (7.60), by using (7.56) and successively (7.58). The end

result is
o L1\ @ls/2l +D—2p— ), Gl (k) (7.61)
7Tul/ - p=0 2 p!(2 LS/QJ + D — 4)” WNM B1---ps—2pV1..-Vs '

In a similar way one can obtain

k2ms- gl rl (7.62)

we Nuplvv

-1
s/ f I\ (P} Cls/2l+ D=2, s, k)
] 92 I p'(QLS/QJ +D_4)|| M~ 1 s —2p VT - Vs

p=l

In conclusion, any expression of the type (7.35), i.e. any conserved structure, can be
expressed in terms of the generalized Einstein symbols G (k,n1,n2) and its traces. Thus
any effective action (or any equation of motion) we obtain from our models, by integrating

out matter, can be expressed in terms of the generalized Einstein tensor G and its traces
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preceded by a function of OJ and the mass m? of the model, with suitable multiples of
the projector operator acting on the traces. Using (6.74) one can replace the dependence
on G of such expressions with the dependence on ™. The geometrization program
can be completed by introducing the generalized Jacobi tensors Ry, ..., (one of the

possible generalizations of the 4d Riemann tensor, [43, 178]) by means of
Rl(j/sl)---ﬂ/sVl---Vs = Z(_l)laz_l aly 90/,1/1...},6[1/[_,.1...1/3_[ (7-63)
1=0

The tensors R®) are connected to the F™ as follows:

%IR(S)[”] s = 2n
CARIE (7.64)
Dila.y(s)[n%] s=92n —1

where the traces in square brackets refer to the first set of indices. In this way we can
express any effective action or any equation of motion in terms of R(*) and traces (in the
second set of indices) thereof. Further formulations of equations of motion that are local
and include mixed symmetry cases can be found in [179, 180].

Since above we have referred to [39]-[41], let us clarify the context in which our results
are derived and point out the differences with the spirit of [39]-[41],[107, 108]. In these
papers the initial purpose was to write down a generalization of the Fronsdal equations for
higher spin in such a way as to avoid the constraints needed in the original formulation of
[37, 38]. The authors of [39]-[41] chose to sacrifice locality in favour of an unconstrained
gauge symmetry. The typical (linearized) non-local equation of motion one obtains in
this way is (6.76). It can be shown that such an equation can be cast in Lagrangian
form, provided one introduces auxiliary fields (compensators). Therefore one can say
that the nonlocality of (6.76) is a gauge artifact, with no physical implication. However
equations of motion invariant under unrestricted gauge symmetry are far from unique.
There actually exist several families of them depending on arbitrary parameters (by the
way, this is evident by reversing the argument above and starting from the generic operator
(7.52), instead of the completely fixed one (7.54). These are all equally valid as long as
the field ¢ is considered in isolation and the linearized equation of motion is the free one,
(6.76). However, if the spin s system is minimally coupled to a conserved current the

question arises as to whether the propagating degrees of freedom are the truly physical
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ones, i.e. those corresponding to the appropriate little group representation for massless
fields. The authors of [107, 108] were able to prove that there exist only one choice for
the Einstein-like tensor which is Lagrangian and satisfies such a physicality condition.
Such ‘physical’” Einstein tensors do not correspond, in general, to the kinetic operators
we will find in our effective actions below. This is not surprising, as our main goal is
covariance: our purpose is to arrive at a covariant effective action with respect to a
completely unfolded gauge symmetry. In a logical development the next step will be
to introduce auxiliary fields to eliminate nonlocalities. Following this we would need to
gauge-fix the action and introduce appropriate ghosts to produce the physical propagators.
At that point would the problem handled by [107, 108] come to the surface. However, we
would like to recall that our immediate prospect is to construct the linearized covariant

effective action in preparation for the analysis of the three-point function.

7.4 The general method

In this section we illustrate the method to compute the 2-pt functions with Feynman
diagrams. The method to obtain the results below is largely based on the approach of
Davydychev and collaborators, [34]-[36]. To compute the diagrams explicitly we use a

Mathematica code [181]. The integrals we have to compute are of the general form

o ' Pun P
‘]Hl...up<da «, Ba q1, 492, m) - / (27T)d ((p + q1)2 — mQ)a ((p + QQ)2 — mQ)B (765)

where, eventually, ¢; = 0, go = —k. We will use the method invented by [34]-[36] to reduce

the tensor integral to a sum of scalar ones

jm...up (d§ a, 3,7 q1, G2, m) = Z (‘%) /\ (47T)p_)\ {[77])\ [91]’{1 [%]w}
K12

22+ ki=p

X (Oé)/il (ﬁ)ng I~(2)(d + 2(p - )\)7 o+ K1, B + R2; 41, qQ7m)7 (766)

H1..-Hp

where the symbol { 1 @)™ . g™ } , stands for the complete symmetrization of

fi1 .
the objects inside the curly brackets, for example

{nql}ulugug = Mpapa Qs + M ps Q.+ Mpzpps Qpnn -
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The basic integral is now the scalar one

d%p 1
M) ((p+ q1)2 — m2)* (p+ g2)? — m2)”

[P(d; a, B; q1, g2, m) = / (7.67)

For instance, the bubble integral for the s = 1 current in the scalar model

ooy [ 4 (2p—k)u(2p— k),
o) = | e o (0%

reduces to
Juw(m, k) = e I'(d+2;1,1) + 8(27r)d+4 kuky I'9(d + 4;1,3) (7.69)
167 ~ 1 -
+Wk;ﬂky I®(d+2;1,2) + Wk“k” I?(d;1,1)

The integral [ 2)(d; o, B; k, m) can be cast into the form of a hypergeometric series

e B e Litath)

Cla+p)
«, ﬁ? _g + o+ B l{?2
X 3F2 0t atBtl 4—7%2 (770)
2 ) 2

This representation is valid for large m compared to k. When m is small compared to k

another representation is available

K 0 gy ged—apaea gay-e-srd | L(E=a)T(5 - AT (=5 +a+5))
st = . { T (BTd—a— )

d —d 1 —d 2
—2 +a+p, +a2+,8+ 7 +042+ﬁ+ Am?

X 3l — (7.71)
a1, 44841 k2
m2 4 _q T (a . %l) 3, fa+2,8+1, fa4r25+2 A2
Hom) T s =R
k I'(a) d_a+l,—at+p+1Fk

m?\$OT (8- 9) O e U
\w) T P : 2
—5—1—5—1—1,04—6—1—1

In the sequel we consider also massless models. The relevant results can be obtained

from the massive models by taking the m — 0 limit. But they can also be obtained by
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setting m = 0 from the very beginning. In such a case the basic integral is

dp 1
2T ((p+ ¢1)2) ((p + 32)2)°
I'(¢—a)l(

2

(7.72)

;AT (atp—3)
P(@T(B)T(d —a =)

j(z)(d;aaB;QMQ%O) = /

_ zfdﬂ_fd/%lfd(kQ)%fafB

7.5 An appetizer in 3d

Let us start with a motivational example. In [28] it was calculated, in particular, the two-
point function of the current j* in the fermion model as well as its IR and UV limits. In
the parity violating part it was found a well-known result: when Fourier antitransformed
and inserted in the generating function of the effective action (2.11) it gives rise to the
linearized version of the gauge Chern-Simons action in 3d (which is in fact conformal
invariant). For the two-point correlator of the energy-momentum tensor for the fermion
model, and proceeding the same way, the linearized version of the gravity Chern-Simons
action was found. Something that was also known before, [121]. Repeating the same thing
for the spin 3 traceless current above it was found a previously unknown result: the UV
limit in particular leads to a linearized action that corresponds to a spin 3 Chern-Simons
generalization postulated long ago by Pope and Townsend, see [43, 44, 178, 182].

These were the results found in the parity odd part ([28] is mostly interested in the
latter). But the even parity parts of the two-point correlators have perhaps even more in-
teresting interpretations, so let us briefly analyze the parity even parts of the linearized ef-
fective actions obtained from 2-point current correlators in the free massive Dirac fermion

quantum field theory in 3d in [28].

7.5.1 Spin one and two - parity even sectors

The UV limit of the two-point function of the j* currents are nonlocal conformal corre-
lators, according to expectations, see [114]. The same is true for the energy-momentum
tensor two-point function. But now let us focus on the IR limits. According to [28], for
the 7 current two-point function, for large m we have

~ 1

ng(even)<k) — ——5abk‘27'rw, (773)

127 [m
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This term is local. Fourier anti-transforming it and inserting it into (2.11) it gives rise to

the action

S~ [ & (A% " AL — AZDIA™) (7.74)

ml
which is the lowest term in the expansion of the YM action

1
Syy =——— | &xTr (F,,F") (7.75)
9y M

where gy ~ |m].
Now let us go to the IR limit of the even part of the 2pt energy-momentum tensor
correlator. Eq.(3.36) of [28] says

i|m|

967T k,Q (71-/111/171-;12112 - 7TM1M27TV11/2) (776)

<T,u1u2 (k)Tsz (_k)>£111%6n =

This is a local expression multiplied by |m|. In fact Fourier anti-transforming it and

inserting it into (2.19) it gives rise to the action
S ~ |ml / d*x (—20,h"0,hY — 2h 0,0, — K*Oh,, + hh) (7.77)
which is the linearized Einstein-Hilbert action:

Spy = %/d% VIR (7.78)

where k ~ —.
|m|

These results for spin-1 and -2 are known have been known for a long time, see for
instance [110]. Now, we ask the same question for the 2pt correlator of the 3-current.

What action, if any, does it represent for the external source field?

7.5.2 Linearized equations for spin 3 in parity even sector

Before presenting results in 3d, let us briefly recall chapter 6 and the status of the linearized
equations for the massless spin 3 field described by the completely symmetric field ¢,,z.

Historically the first formulation of equations for the unconstrained free massless spin 3
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field was given by Fronsdal [37, 3§]

Fuon = 0@n — (0,0 pun + perm.) + (9,0,¢% + perm.) = 0 (7.79)

Under the gauge variation (7.13), dpn = 0,A,\ + perm., the Fronsdal kinetic tensor
transforms as d.F,,\ = 30,0,0,\A\". 1t follows that the Fronsdal equation is invariant only
on restricted gauge transformations satisfying A’ = 0 (this requirement holds for all higher
spins). Also, the Fronsdal tensor is not divergence-free, 0 - F # 0, so one cannot directly
couple the spin 3 field to a conserved (i.e., divergence-free) current using the Fronsdal
equation. As we construct effective actions and corresponding equations for the higher
spin fields by (minimally) coupling to conserved currents, it is obvious that Fronsdal’s
formalism is not suited for our purposes.

The formulation appropriate for our purposes was proposed in [39, 40, 41], and ana-
lyzed in more detail in [107] (for a review, see [108]). It was shown that there is a one
parameter class of equations for unconstrained spin 3 field, which are order 2 in deriva-
tives, fully gauge invariant, and ready to be coupled to the external conserved current.
These equations are most elegantly expressed by using gauge invariant linearized spin 3

Riemann tensor defined by

Ry pisvapsvs = Oy 01z O Puyins (antisymmetrised in all (:uj> Vj) ) (7.80)

The spin 3 equations are parametrized by real number a and given by

G(a)wr = A(a)ux — M Ala), =0 (7.81)
1 8,0 .
Al@)unr =50 Ry +a 5—5 0- Ry, (7.82)

where spin 3 Ricci tensors are defined by

R:wpo = Uaﬁ Rul/pcwﬂ - Za[ufl/]po'
Ry = 17 Rupe = 2007, (7.83)
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while their divergences are defined by?

0 Ry =0.R% . 0-R.=0,R", (7.84)

U

What is the difference between equations with different a? First of all, it can be shown
that regardless the value of a, the free field equation (7.81)-(7.82) is equivalent to Frons-
dal equation (7.79). They start to differ when interactions are introduced. Note that
equations (for any a) are non-local. From the purely mathematical side, the equation
for a = 0 plays a special role because it is the least singular on-shell®, and because of
this it was originally promoted in [39, 40, 41]. However, it was later shown in [107] that
equations with different parameters a propagate different set of excitations when coupled

to a conserved external current j,,.»,
Gla) =7 , 0-7=0 (7.85)

In particular, it was shown that only equation with a = 1/2 propagates spin 3 massless

excitations and nothing else, if one does not introduce additional constraints on ¢ or j.
For a = 1/2 the tensor A can be also written as
93

A(1/2) :]-"—50-]:’ (7.86)

Let us emphasize that this by itself does not mean that the equation with a = 1/2 is the

"right one” to be used for the consistent coupling to the dynamical matter.

The non-locality of equations (7.81)-(7.81) can be 'cured’ by multiplying with O" with

r large enough. It is obvious that the equation with a = 0 is special in that » = 1 already

does the job, while for a # 0 one needs r = 2. In this way one cures non-locality, but

the price paid is that equations become higher-derivative (order 4 for a = 0 and order

6 for a # 0). This opens up an additional question when one considers coupling to the

conserved current j: should we do this as in (7.85), or should we couple the current in

2The Riemann tensor symmetries guarantee that the definitions for Ricci’s and corresponding diver-
gences (after symmetrization is taken into account) are essentially unique, in the sense that different
choices for contracting indexes can differ only by a sign, or are vanishing [43].

3In momentum space the on-shell condition is k% = 0.
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the local way,
oG@)=j . 9-j=0 (7.87)

with r large enough?

The moral of the above analysis is that, due to several reasons, there is a large degen-
eracy in formulating equations of motion for the free massless spin 3 field, and it is not
obvious that all formulations can be used as a basis for constructing consistent interact-
ing quantized theories. It would be advantageous to know which formulation(s) are more
promising, before embarking into such enterprise. We shall now argue that the induced
action method may give us a hint.

In section 3.2.4 of [28] it was shown that the parity even part of the spin 3 two-point

traceless current correlator for a massive Dirac fermion in 3d is given by

o even k2 k2
7;(1#2Mgu1u2u3<k) =Ty (ﬁ) |k|57ru1u27ru3V17rV2V3 + Tl: (ﬁ) |k|57ru1V17ru2V27ru3V3 (7'88)

where 7, and 7, are form factors presented in [28]. From (2.12) it follows that the linearized
effective equation in momentum space for the background spin 3 field minimally coupled

to a conserved current in free QFT with massive Dirac field in 3d, is given by

Topapsmivons (K) @2 (k) = (G0 R)) 0 kP (k) =0 (7.89)

The form factors contain branch-cuts, which means that this equation is strongly non-
local. There are two independent conserved structures present in (7.88), and consequently
in (7.89), which is directly connected with the one-parameter degeneracy introduced in
(7.82).

In the IR region (|k?|/m? < 4) the form factors are analytic, as expected, and the
equation is weakly nonlocal (infinite sum of local terms) when expanded around |k|/m = 0.
Using the expansions of form factors from [28], we obtain that the leading term in the IR
is given by

T;gfzegz)gylllgug,(k:) ~ |ml| Kt (7TM1u27Tu3V17TV2V3 - 7Tu11/17r,uzuz7ru31/3) (7.90)

Observe that this is the lowest derivative conserved local expression, which is unique.
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Now, putting (7.90) into (7.89) and Fourier antitransforming, we obtain for the linearized

induced equation in the coordinate space

M) Grup(2) ~ (G @) 05 =0 (7.91)

where G is the conserved symmetric local tensor linear in ¢, which is 4th-order in deriva-
tives. As there is a unique such tensor, we can conclude (without doing any calculations)
that it must be proportional to OG(0), with G(0) defined in (7.81)-(7.82). Explicitly

written,
G,uu)\ = aaFa(;w)\) (792)
where
Y] 1 1 1 /
Fa,uw\ = Rauy)\ - §Ra,ﬂ7uA = 26[0{ JT_:u]z/)\ - éfu]nl//\ (793)

The result (7.91)-(7.93) is, in some sense, natural. First of all, it is the lowest deriva-
tive linear local parity invariant equation satisfying unrestricted gauge invariance and
conservation condition. Also, the equation is of the same form as in spin 1 case, and
we can identify the tensor F' as spin 3 Maxwell tensor, while G appears to be spin 3
Riemann tensor (it is the lowest derivative local conserved gauge invariant parity even
rank-3 tensor).*

Let us connect these result with the known constructions, reviewed above. It is obvious
that our result (7.91)-(7.93) is the same as (7.87) with @ = 0 and r = 1, i.e., the obtained
expression is a local version of the equation proposed in [39, 40, 41]. As we already
mentioned, this equation does not propagate only spin 3 massless excitations, unless the
conserved spin 3 current of the Dirac theory has some special properties which takes care
of the redundant modes.

Let us now briefly comment the UV limit (m/|k| — 0). After subtracting IR divergent

terms (for a full explanation of this issue, see below), form factors in the UV limit tend

to constants, which gives rise to a non-local correlator. However one of the subleading

4Conventions for naming objects in higher-spin metric-like formalism is notorious for its inconsistency.
In the literature different objects are called Ricci tensor and Riemann tensor. We believe that our
conventions are natural generalizations of spin 1 and 2 cases.
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terms gives a combination of the two conserved quantities
.12 .12
Ak T Tpove T pzvs and B : k T pio T pzvn Trows (794)

which is not the same combination as the one present in IR limit (7.90). So, the corre-
sponding induced linearized equation is also different. Expanding (7.88) in the UV we
obtain the traceless combination A — %B, with coefficients corresponding to (7.42) for

d = 3 and s = 3, for which the equation of motion is

3 31 11
D(puy)\ — 3(9”8'901/)\ + Zauay@,)\ - Z—Laﬁu&,@ﬁw’ — Zﬁﬁu&,&\@@@@ (795)
91 3 3 3 31
3150000 0x = 11BN+ 0w0r0- @+ 100003 = il 3030-0-0-0 = 0

In conclusion, we see that our simple analysis, based solely on the classification of
possible conserved structures, recovers the Francia-Sagnotti analysis and gives an efficient
method for analyzing higher spin actions. But, we emphasize that the induced action
method, out of many possibilities, picks particular equations which are already coupled
to particular external currents.

Comment. The previous results are limited to 3d and to the lowest spins. They
are nevertheless enough to stir our interest and motivate a more in depth analysis. It is
also clear enough that equations in the coordinate space are not always the best fit to
generalizations to higher spins. Writing down the actions and equations of motion in the
explicit form used so far becomes rapidly unwieldy with increasing spins and dimensions.

Because of that, we simply use the projector (7.29).

7.6 Guidelines for the calculations

In the next two chapters we do explicit calculations and mostly focus on results for two-
point functions (bubble diagrams formed by two internal scalar or fermion lines and two
vertices) in the scalar and fermion model in different dimensions.

We will start with spin-1 and spin-2 fields coupled to scalar and fermion model. In
contrast to higher spin (s > 2) fields, for s < 2 we know the full covariant action (beyond
linear order). As a consequence, in the initial action we have additional terms, additional

with respect to the minimal couplings (symbolically [ jp), which are on-shell covariant,
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but off-shell non-covariant. One of the crucial steps in our program is clearly implementing
off-shell gauge covariance of the initial models, that is adding to the minimal couplings in
the relevant actions the terms that render them off-shell covariant, at least to the lowest
order in a perturbative approach to the gauge symmetry. We know such additional terms
exactly in the case of spin 1 and spin 2 and in these cases, perturbative field theory
formalism already automatically takes care of satisfied Ward identities provided one takes
into account not only the two-point bubble diagrams but also other diagrams such as
tadpole and seagull ones, [120, 153]. Although this is a rather well-known fact, we would
like to show it in detail here for spin 1 and 2 as a guide for the more challenging higher
spin cases. We will show the role of tadpole and seagull terms in the Ward identities for
two-point functions of spin 1 and 2 respectively, and their origin in the various terms of the
initial actions. For completeness, we analyze the full structure of the relevant two-point
functions and, in particular, their IR and UV expansions, as well as their contributions
to the effective actions.

The same is not as easy for higher spin currents. In generic spin current correlators we
will find violation of Ward identities. Such violations come in a form of local terms and
we can recover conservation by subtracting local counterterms from the effective action.
Besides the non-conserved (or better said non-transverse) terms for higher spins, for any
spin we also find terms that diverge in the IR limit m — oco. Fortunately these terms are
finite in number and easy to identify by expanding the amplitude near the IR and the
UV. All the IR divergent terms are also local.

The Feynman diagram method is the most convenient for our purposes, but it is
nevertheless one out of many. In fact, even within it there are different possibilities or
schemes. We expect that our results may depend on such schemes, but also to find a
criterion to extract the scheme independent part. In most cases this is conservation and
finiteness. In particular, by suitably choosing the scheme we will be able, for instance, to
obtain both finiteness and conservation in our models.

It is possible to subtract all the terms that diverge in the IR, which include, in par-
ticular, all the nonconserved ones and recover both conservation and finiteness in the IR.
In this process a particular attention has to be paid to the terms of order 0 in m, in even
dimensions. In some cases they are local and conserved, and appear both in the IR and

the UV. Even in this case we follow the attitude of subtracting the IR term from the
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corresponding UV one, on the assumption that physical information is contained in the
difference between the UV and the IR, not in their absolute values. Finally it should be
added that the resulting IR and UV expansions are both convergent.

Even dimensional models present an additional problem concerning their regulariza-
tion. For odd d works by itself as a complete regulator in carrying out the integrals
generated by the Feynman diagrams. This is not true for even d. The way out is well-
known, we will set d = 4+¢. Another difference we will come across with, which is related
to this, is the appearance of log terms in the form factors. We will again expand the two-
point functions in powers of m near the IR and UV limits. In almost all the two-point
correlators and, therefore, in all the one-loop effective actions, we will find non-conserved
terms and terms that diverge in the IR m — oo, like in the odd dimensional case, but we
will find also e-divergent terms. Our general attitude is to recover both conservation and
finiteness in the IR. This is possible because all the nonconserved and all divergent terms
in the IR, as well as all e-divergent terms, are local. We will therefore subtract all the
terms that diverge in the IR and in €. They include, in particular, all the nonconserved
ones.

There remains however an ambiguity. Beside divergent and/or nonconserved terms,
in the case of m" we meet also finite contributions, both in the IR and in the UV. Also
for these terms we subtract the IR from the UV contribution, on the assumption that it
is this difference that contains the physical information.

A few more remarks regarding the notation. For conciseness, we use a simplified
notation, taken from the literature on higher spin fields: the same repeated subscript, say
(... repeated s times, stand for s completely symmetrized labels. Sometimes we will
instead of y ... u repeated s times use simply p°. To somewhat abbreviate the following

formulas, at times we use the compact notation

Hf3ﬂy2<k) = ﬂiy + aﬂ-,uuﬂ-uua (796)
HEL?L31/3<I€) - 7T/,3Ll/ + AT T T (797)

where a is some constant. Finally, contrary to ([28]), the latter is k = |k| = VA2, The

calculations in the sequel are mainly carried out using a Mathematica code [181].
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Chapter 8

Scalar models

In this chapter we consider a scalar theory coupled to spin-s fields via conserved currents,
and we closely follow [29] and [30]. The method we use is the perturbative approach based
on Feynman diagrams and dimensional regularization.

We start by considering the massless case for the scalar model, i.e. we set m = 0 in
the action, and derive the relevant two-point functions for simple and traceless currents
in any dimension. These results are based on the scalar integral (7.72). For traceless
currents the amplitude is itself traceless, and this amplitude vanishes for currents with
two different spins. We also compute 1-point functions (tadpoles) for general spin s and
general dimension d. Tadpole diagrams vanish in the massless case.

Next we present results for a scalar theory coupled to spin 1, 2 and 3 fields. In
general, results for our correlators will be given in terms of hypergeometric functions.
Since it is quite hard to extract information from these general expressions, we turn to
their IR and UV expansions for d = 3,4 (for expansions in d = 5,6 see [29]). In the UV
Opyv(m®) — O1p(m®) — Orr(log(m)) terms exactly coincide with the massless results.

For spin 1 and 2 we know full form of the interaction and because of that, beside the
2-point function (bubble diagram formed by two internal scalar lines and two vertices)
we include seagull and tadpole diagrams as well. By explicit computation we show that
Ward identities are satisfied. For spin 3 the situation is not so simple because in this
case we know only the linear coupling and the linear form of gauge transformation. As a
consequence we will find several violations of Ward identities in a form of finite number
of local non-conserved (non-transverse) terms. In all of these cases, besides the non-

conserved terms, we also find terms that diverge in the IR limit m — oo. These terms
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are also finite in number and local. We easily identify them by expanding the amplitude
near the IR and the UV for specific dimension. Our prescription to extract physical
information is such that we subtract all the terms that diverge in the IR (these terms
include all the nonconserved ones) by subtracting a finite number of counterterms from
the effective action. In this way we recover both conservation and finiteness in the IR.
We demonstrate how this particular scheme works, not just in the higher spin case, but
also for spin 1 and 2.

In this model we also give a general expression for the conserved part of the 2-point
function for general spin s and general dimension d.

The final part of the chapter is devoted to diagonalization of our results, that is, the
possibility of vanishing off-diagonal correlators for appropriate choice of currents. It turns
out that there is an infinite number of non-conserved terms in the off-diagonal correlators
one should cancel, and hence the diagonalization is not possible when we choose the
currents of the form (7.26). One more example we consider is the case of traceless local
currents where we are able to diagonalize our results by appropriate choice of coefficients

in the currents and by subtraction of finite number of counterterms.

8.1 Massless model

Here we will present some general results for massless case. Let us start with mixed

correlators of scalar simple currents (7.2). General expression for spin s X sg, s > $1

] e (2155 ) — 1)1 (2] ) gt () 2
— 2

T, V1.V, = :
M1 flsq V1..-Vsg ( (2L832J . QL%J)” (_1 + €Z7Td) T (d—f—sl—;—sg—l)
15
s2—5] 51!<32 — 51)!! §1—
><7T1/1/2 Z 1+1) L,u'ﬂ—lw/ﬂ_uly 2z (81)

l202 2 (51—21)'(82—81+2l)"
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Next, we use traceless currents (traceless in the limit m — 0), that is (7.26) with coeffi-

cients (7.27). General expression for spin s X s

. 24,2d,5ﬂ_%_g8! (kg)d/Q—i-s—Q L3]

T - (_ a1 _s—2l
Lo = (21) (=1 + em) T (T2=1) l0< D
(—1)* 94-2d—s 55 4| (k‘2)d/2+572 s
(_1 + 6Mrd) r (d+228—1) M
1—-s s b—d—2s m,,«
F -5 e 8.2
X2 1 ( 2 9 27 2 ) ﬂ_ZV ) ( )

Traceless currents give traceless amplitude in the massless limit, that is, coefficient a,
corresponds to (7.42), the coefficient appearing in the traceless amplitude. In this case

mixed spin correlators vanish.

8.2 Tadpoles

Let us also write down the tadpole diagram contributions for any dimension and any spin.
In this chapter we will need only spin 1 and 2 tadpoles. The tadpole contribution actually

vanishes for odd spins, as we will shortly see. Tadpoles (1-point function) are defined with

s 0w
Or-hs () = O = (i W) ‘ (8.3)
0Ppy...us () p=0
Tadpoles with scalar current for any spin s and any dimension d are given by
~ dp 1 d?p 1
. = V) =— | m—2p) 5=
p / (2m)d Bt 2 / (27r)d( p>up2 —m2
(8.4)
Next we use
(s—1)!! NS 5
———(p?)> s even
P, = TERT AN (8.5)
0, s odd
so that for even spin s we get
~ 25(s =1 s dip  p*
& = i [ SR (5.6)
g sl ) @r)dpr—m?
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To evaluate the integral we use

dp ()" - n_miF (44+n)T(m—n—19%) 4o
/ @m) (p2 — AZ)m (—1) (4m)iT ()T (m) A (8.7)

Altogether we have

. i(—1)32574(s — )l 7emdts2r (1 — 4 — ¢ Ni.. s even
0. = (=% - 3)mi (8.8)

0, s odd

8.3 Spin 1

This case is well known and simple, but it is excellent for pedagogical purposes. Let us

start by writing the action for the scalar QED model
S = /ddx [DugoTD“cp — mQQDTQO} (8.9)
where D,, = 0, — 1 A,. The full covariant action is
S = /dx [aMQOTaM(,O +iA, (@Tﬁ“gp - a“goTcp) + A AFQTp — ngOTgp} (8.10)

In the scalar model the scalar-scalar-photon vertex is (7.25) and we also have scalar-

scalar-photon-photon vertex (coming from [ dxA*A,¢'p term in Lagrangian)

Ve (p,p') @ 2t (8.11)

SSpp

One-loop conservation which for spin 1 is (2.30), so that the Ward identity for the two-

point function in momentum space can be written as
k,T" (k) =0 (8.12)

The two-point function for the massive scalar in any dimension d for spin s = 1 is

. d d 3 k? krkY
v 1-d - _—d/2. _d—2 Y. v
T (k) = =214 n=4/2pd=21 (1 — 5) (2F1 {1,1 — 5,5,—4m2} ™+ =5 ) (8.13)
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The theory is quadratic in the external photon field A we also have a seagull diagram
(which is obtained by joining with a unique a fermion line the two fermion legs of the

vertex (8.11) for which we obtain

N d
Tl (k) = 21 dir =2 a2 (1 - 5) n (8.14)

After combining (8.13) and (8.14) we can write down the full 2-point function

- 2
T (k) = 2" %= 22T (1 - g) (1 —oF [1, 1— g; g; %D e (8.15)

which is conserved. Expanding the two-point function (8.15) in the IR gives

M\@.

i ML 24— 5) v (8.16)

Y _ __o—d;
(k) = —27%m*n~ 5 2n+3)”

n=

Using the IR expansion together with (2.12), the one-loop 1-point function now reads

—2n1" (2 +n— _)
2n(2n + 3)!

() = 2ttt 3 0

n=0

ang, Fh (8.17)

The dominating term in the IR corresponds to the Maxwell equation. The dominating

term for the effective action in the IR region
R 2" - 1 -4 d d v

gives Maxwell action.
The leading order term in the UV (term m° corresponds to (B.13) from [29])
oy 23— W%_%(/{?2)%_1

™ (k) = “(Ciredr (L)W (8.19)

Hence, the effective action in the UV is

d 3_d
ov . (—1)223 2 gas d, v d—2
AT T A (5.20)
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8.3.1 3d msm; spin 1 tomography

Even though we just showed that for spin-1 current in the scalar model Ward identities
are satisfied, we will also show what happens if we know the interaction only up to the
linear order. In this case we only have the bubble diagram. We demonstrate our scheme
to extract physical information from the amplitude by expanding it in the IR and UV and
subtracting the divergent and nonconserved terms from the effective action. The exact

2-pt correlator for s = 1 in 3d is obtained by putting d = 3 in (8.13)

~ ) 2 2
Tk)w = 87:]63 (—4m2 coth™! (%n) + 2km + k% coth™! (Ym)) .k,
1 2m 2m
—— (4m?coth™ | == ) + 2km — k? coth™* | =— 21
+87rk<mCOt (k>+ km — k* cot (k))n’“’ (8.21)

We can expand (8.21) in power of £ (IR) or of 2 (UV). In the sequel we will consider
only the minimal model with a linear coupling and because of that we will find viola-
tion of Ward identities. We remove the non-conserved terms by subtracting appropriate

countertems from the effective action. In the IR case we find

m

O(m) o5 v (8.22)
_ ik?
(’)(m 1) : —mﬂ'wj (823)

while the even powers of m vanish. The first is a (non-conserved and divergent in the IR
limit) local term ~ 7),,,, which must be subtracted away. The other terms are all conserved
and proportional to the conserved structure 7.

The UV expansion is instead

k
O(m?) : BT (8.24)
m
2
m
O(m?) : T (8.26)

In fact we have O(m?") = 0 for n > 2. The only nonvanishing terms with even powers of
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m are O(m°), O(m?). For these terms see the comment below.

Except (8.25) the other terms are conserved and proportional to the projector .
The terms proportional to 7, are all non-local in the UV, and local in the IR, in particular
(8.23) is local and corresponds to the Maxwell action in 3d.

The two nonconserved terms are (8.22) in the IR and (8.25) in the UV. The first is
local and the second is nonlocal, but their divergence is the same and local:

iy
2
This means that we can cancel it by subtracting a local term, ~ m [ d®z A%. This amounts
to subtracting the IR contribution (which is local) from the UV one. Indeed we get
m

Ouv(m) — Orr(m) = oL T (8.27)
So the term of order m in the UV and IR conjure up to reform again the same conserved
structure as all the other terms. Taking the UV and IR limits splits apart this conserved
structure. The conclusion is that, up to a local term we can view the effective action

as a sum of infinite many terms, all proportional to m,, with coefficients proportional to

various monomials of m and k. In compact form:

' 2 2
ﬁ (4m2 coth™ (7771) — 2km — k* coth™ (%)) T (8.28)

8.3.2 4d msm: spin 1 tomography

Let us repeat the same procedure as above for d = 4. We will focus on the power of m
expansions again. However, as previously mentioned, we have to consider also log(m) and

% factors. In the IR the nonvanishing terms are

2
L 2
O(m?) : = (7 1 — log(4m) + 2log(m) + 6)77,“, (8.29)
1log(m
O(log(m)) %IQWW (8.30)
oy, K 2
om"): 1 (7 10g(47r)—|—8>7rw (8.31)
Om™):  — g0 5T (8.32)
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These coefficients are conserved except O(m?). All the odd powers of m vanish.

In the UV we find the following nonvanishing terms:

k? 1 6
—3y—1 )— log (—k?) — = ) 7 .
14472 (8 37~ log (647r3 3log (=K%) g> i (8:33)

T 2 2
o m k

om%): —i

+k? <3(—2 + v — log(4m)) + 3log (—k%) + g) 77/w> (8.34)
O(m?) : _i167;'rl—jl<:2< —2log <—:1—22) - 3) Ty (8.35)

All odd powers of m vanish. The even powers are conserved except (8.34). Subtracting
from the latter the analogous (local) non-conserved term in the IR we find a conserved

term
2

Ovv(m?) — Org(m?) = —i%(z log (-%) - 1)% (8.36)

The O(log(m)) term is divergent in the IR, and the O(m?) is divergent in the ¢ — 0 limit.

Luckily they are local and can be subtracted with the following result:

Ouv(1) — Orn(r) — Ornllontm) = o (~31og (~25 ) +8) mu (837

This term corresponds to the Maxwell action.

8.4 Spin 2

Let us now consider the action of a scalar field ¢ in a curved space (g, = My + b)) With

a scalar curvature coupling

S = /ddx\/§ (9" 0,700 — M*0Tp + ERYTY) (8.38)
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Let us redefine ¢ = g%gp. The expansion of the action in the external field h is

s = [ |pa000 - mido i (101 5,5, 04 (€ 1) @0, - Dnu)olo)

+h*7hY0,00,¢ + %hﬂhdﬂ ¢+ (—% + é) 0, hO*hep — 26hH D, 00hn ¢ ¢
1
+ERM DR ¢To — 0, O\hyT o + zéé‘xhwyh‘%% - §£8Ah“”8yh2¢*¢

({ _ }1) h“”é?ué,,hqb%b%— (f _ %) auh&,h“”qbfqzﬁ} (8.39)

The scalar-scalar-graviton vertex is:

Via(p.p) —%(p" + ") —i (S - }1) (™ =p")? =™ —p)?)  (8.40)

which reduces to (7.25) for ¢ = 1 and there is a vertex with two scalars and two gravitons:
1
Vi (o, kK)o ant (ptp” 4 ptp") — Z[ (6 — Z) (" EVEY 40" kMR
1
+2 (577’“’77”” + 7 677““77””) K — 4577’“%%”}
' LR 3w /
- 2 o S ) gk 8.41
Z[<(4 2)77 0"+ €0 (8.41)

1
+ <§ _ Z) (nuﬂkvkw + an#k’#) _ 2£nuuk#k/u _ fﬁ‘wjkl’k/‘“]

The full conservation law of the energy-momentum tensor is (2.31), and hence, the

Ward identity for one-point function is
0,0M(x) =0 (8.42)
while for two-point correlator we have

1 1
9, T (x,y) = 577””5@ —4)0,0"(z) + i@ul/(x)au(;@ )

=0, (6 (x —y) O (2)) ™ (8.43)

From (8.8), it follows that the tadpole contribution is ©#*(k) = ©n* where O is a
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constant. The Ward identity in momentum space is now
~ 1 ~
kT (k) = {—k”n’” + 51{:“17””] © (8.44)
Taking the result for the tadpole diagram (8.8) for s = 2 we have

. d
QM = 2711 p=d/2ypdp <—§) ntt (8.45)

while the contribution from the seagull term is

- d
T(’;’)WV(/C) = 274 g 2pdir <—§)

X (dk2(1 — A&ty 4 Antr gt (4m2 — dk;2§) + 8df77“”k“k:”) (8.46)
Furthermore, the transverse part of the bubble diagram reads

. 1 . d
thuuul/(k) _ Z~2—d—2€—%z7rdﬂ_—d/2(_m2)d/2m—21‘\ (1 o _)

S 3d(d2 - 1)k 2
(12 (a2 = 1) K'm? (82 = 8¢ +1) +d (¢ — 1) K (24¢* — 1)
+24dk*m* (3 — 8¢) — 192k*m*¢ + 96mS

+ (—6k"m® (d*(1 — 4€)* + d(8¢ —2) — 2 (8¢ — 8¢ + 1))

2
+24k*m* (d(8¢ — 2) + 8¢) — 96m°) o Fy {1,_25. 1k } >7TW7TW

272 dm?
+ (—12d°k*m® + d (d* — 1) k® + 48dk*m* — 96k*m* + 12k*m* + 192m°
2 (1.2 22 d 1 K’ v_pv
—12m (k? —4m ) 2F1 |:]_,—§, —5, m Vit i| (847)

The expansion of the transverse part T;**” (k) in the IR is

0 —2n d
T UV Y _ —3—d;, d—4_—2;4 m I (2 +n-— 5) 2n
TR = 2 im Tk ; > nton "
X (W“”W‘“’ + —a(T;,{ ﬁ““ﬂ””) (8.48)
where a(n,£) is a constant
a(n,&) = (2n+5)(2n +3)(46 —1)* +2(2n +5)(4€ — 1) + 1 (8.49)
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The non-transverse part of the bubble diagram is

- 24~ d
(k) = —3 imPmA=r (—5)

(77””77”" (24m2 — 2dk2) +4dnErE + 2d (6€ — 1)nt* kY kY

0 (" (dk>(5 — 24€) + 12m?) + 2d(6€ — 1)k"E")) (850)

The seagull diagram and the non-transverse part of 2-pt function together give

- - d
T (k) + T (k) = =27 2irPmT <_§) (20" —n'n") (8.51)
1 d
427 /2 d=2 <§ — 6) r (1 — 5) E? (mhV kv — gt

Taking formulas (8.45), (8.46), (8.47) and (8.50) and substituting them in (8.44) we can
see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point correlator of the energy-momentum tensor

(T (@) = —2-4mir4 [p (_El) gL (12—%) (5_ é) -

2 m

— (=1)"m~?"T (n_%l) n—2
3 > Enr )l

n=2

X (—2DGW + (1 - @) ("0 — aﬂaﬂ)}?)] +O(h*) (8.52)

is covariantly conserved. For the effective action in the IR we obtain

()10 (-2

re-4
+ ( 2) (RuuApRuV)\p+a(()27§>R2) 4.

Wi L 2-dmint / N

3
i +O(R?) (8.53)

For £ = % (the conformal case) the third term in the expansion is proportional to
1
Wlh] o mi? / d*z\/g (RM,,RHW — §R2) (8.54)
We can use the Gauss-Bonnet theorem

RWAPR“”)") — 4R, R" + R? = total derivative (8.55)
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to write the divergent part of the effective action in d = 4 as a Weyl square density

I / d'z\/g (m4+3—10W2> +O(h?) (8.56)

1672e
In the massless case (m° is the dominating term in the UV) we have

Tl %% (%% 2” - 2d7T2 5( )g v,y b(d7§) 2%
THY (k) = (14 o) T (229) o h —i—TWWW (8.57)

where
b(d,€) = (d* —1)(4€ —1)* +2(d+1)(4€ - 1) + 1 (8.58)

The effective action in the UV now becomes

—2-2d+|4) 34
2 w2 /ddI R,uu)\p[erR V)\p b(d7 5) RD%fZR
(=1 + eI (£2) 2

[SIfsH

Wi = (-1)

After we use (8.55) and put £ = ¢ in 4d we will again get the Weyl square density

W h] Q(/me (8.59)

8.4.1 3d msm: spin 2 tomography

Just as for spin-1, we showed that for spin-2 in the scalar model Ward identities are
satisfied. However, we will also show what happens if we knew the interaction only up
to the linear order. We demonstrate our scheme to extract physical information from the
two-point function by expanding it in the IR and UV and subtracting the divergent and
nonconserved terms from the effective action. We consider the 2-point correlator with the
currents (7.22). The result is given as a sum of (8.47) and (8.50) with { = 1. Expanding
in the IR we find that all the even powers vanish. Moreover, the O(m?) and O(m) terms
are non-conserved, while the other terms are all conserved and proportional to the same
structure H(;)uzyz(k;).

In the UV, we have O(m*™) = 0 for m > 3. The only nonvanishing terms with
even powers of m are O(m°), O(m?), O(m?) (again, about these terms, see the comment

below). All the terms are conserved except O(m) and O(m3). But putting together the
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analogous non-conserved terms in the UV and IR (that is, subtracting the local IR terms

from the (nonlocal) UV ones) we recover conservation.

imk’2 (2)

OUV(m)—O[R(m) = S—WH%H2V2(I€) (860)
U

Ouv(m®) ~ Opa(m®) = 22112, (1) (5.61)
™ g KV

Up to local terms, the effective action is a sum of infinite many terms, all proportional to
the same conserved structure (8.61) with coefficients proportional to various monomials
of m and k. They form a convergent series both in the IR and in the UV. In compact

form:

. 5 ,
48Z7rk (48m4 coth™! (%) + 2km (5]{;2 — 12m2) — 24k*m? coth™* (%n)

2
+3k% coth™ (Tm) )Hf’)ﬂw(k) (8.62)

It should be noticed that the massless model case gives the result:

; e

T(k)uuw = 2 2(k) (8-63)

32 e
This is conserved but not traceless, which is not surprising because a scalar massless model
in d > 3 is not conformally invariant in this case.

Eq.(8.60) is conserved. It does not coincide with the linearized Einstein-Hilbert action
(in particular it is nonlocal), but this is simply a nonlocal version of the same, in the same

sense as we have already seen for spin 3 and higher in section 7.5.

8.4.2 4d msm: spin 2 tomography

Let us repeat the above procedure for d = 4. We again consider the 2-point correlator
with the currents (7.22). The result is given as a sum of (8.47) and (8.50) with = 1
and d = 4. In the IR the odd powers of m vanish. The terms O(m?*) and O(m?) are
not conserved, the logarithmic term is conserved but divergent in the IR, the m° term
is divergent in the limit ¢ — 0. They all must be subtracted. The remaining terms are
conserved and proportional to H(2)“2V2(k‘).

1
27

In the UV all the odd powers of m vanish. Term O(m") and all terms with even m
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power larger than 4 are conserved, while O(m?) and O(m?*) are not. According to our
prescription we have to subtract not only Org(m?) and Orr(m?), but also Orr(m°) and

Orr(log(m)). We obtain

Ouvn) = Ormtn) =~ (2105 (~2) = 1) MPa0) (500

Opy(m?) — Orp(m?) = im k*(3lo ¥ —5) 0?, (k) (8.65)
uv IR = - g m2 12w .

and
2

i k
@Uv(mo)—OIR(mO)—OIR(log(m)) = Wk4 (—1510g (_W) +46) H(;)NQVQ(I{?)(S.GG)

They are all conserved. (8.65) contains a nonlocal linearized version of the EH eom.

8.5 Spin 3

In this case we do not know the full covariant theory and we must satisfy ourselves with

only linear coupling of spin-3 to the current (7.22). Two-point function is

- 1 d d9 k?
Tiss(k) = —%ﬂ_dﬁ_d/?kﬁmd_ﬁ <2 - 5) 2 F1 (1, 2 - 35 m)

X T (27T}2Ll/ + 37TW7T,,,,)

e d
—3i2% g~ d/2ma 2 (—5 - 1) N (20”4 30pu100)

d
i (_§> (377W77wk1/2 +3 (277;w2 + 77uu77w) kuky
+ N (30K — K (200° + 30um0) ))
—%iZl_dW_d/2md_2F (1 — g) (377””1{,,1@“3 + 30w (3k,% — K*n) k)2
+3k, (WukVQ — K’ (277#1/2 + 'fhmnw)) Ky

+ K1, (k2 (277,“,2 + 377uu77w) — 377Wkl,2) ) (8.67)

Let us now demonstrate how to draw out information from the two-point function by
expanding it in the IR and UV and subtracting the divergent and nonconserved terms

from the effective action.
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8.5.1 3d msm: spin 3 tomography

For the 3-spin current, in the IR, the coefficients of even powers in m vanish, while the
negative odd powers are all proportional to the conserved structure H(;)u?’l/?’ (k). The terms
O(m®), O(m?), O(m) are local and non-conserved.

In the UV, the terms O(m?") with n > 4 vanish. All terms are conserved, except

O(m), O(m3), O(m®). Proceeding as above we subtract from the non-conserved terms in

the UV the homogeneous local non-conserved terms in the IR and obtain conserved terms:

Ouv(m) = Opp(m) = =11 (k) (8.68)
4im?
Ouy(m*) = Opp(m?) = ——KIL (k) (8.69)
v 2 K7V
16im®
Ouy(m®) = Opp(m®) = ———T1" (k) (8.70)
7T 2 BV

In compact form, after subtractions, the 2-pt correlator is:

! 1 (2m _1{2m
4807k (960m6 coth™ <7) — 480km® — 720k*m* coth™* (7) + 320 (k2) 3/2,,3

2 2
+180k*m? coth ™ (%) — 66k*km — 15k% coth™! (%”) ) I 0 (k) (8.71)
The term (8.69) gives rise to an equation of motion, which is the nonlocal version of the

Fronsdal spin 3 equation of motion.

8.5.2 4d msm: spin 3 tomography

The scheme is the same as above. In the IR the odd powers of m vanish. The even powers
m?® with n < 0 are conserved together with the term proportional to log(m). The terms
O1r(m?), O1r(m®), Orr(m®) are not conserved. Of course O(log(m)) diverges in the IR,
while the term O;r(m°) diverges for e — 0. According to our prescription all these terms,
which are local, have to be subtracted from the effective action.

In the UV the odd m power terms vanish. The even powers of order 2,4,6 are not
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conserved, but

OUV(mO)—OIR(mO) — OIR(log(m)) (872)
S (T T +352 ) 1 |, (k)
2940072 B\ T2 3. udvs

and

Opy(m?) — O1r(m?) = g”;fin >“ (k) ((31—15log< —22)) (8.73)
Ovv (m) — Orp(m?) = —Z;j;’f 0§ (k) (7 6log (—22)) (8.74)
Ouv() — O = 211,09 (=10 (1)) (s79)

are all conserved. Eq.(8.74) is related to a nonlocal version of the spin 3 Fronsdal equation.

8.6 msm: higher spin currents

This scheme repeats itself for higher spin currents. For spin 4 there are 4 non-conserved
terms in the IR and 4 in the UV, while the others are conserved or 0. Subtracting the IR
non-conserved terms from the corresponding UV ones all the non-vanishing terms turn
out to be proportional to the conserved structure:

1 1 9

+3 " Ty + Wﬂﬂﬂ-uu

3 ;w 8 u Tyy (876)

For example, in 3d all terms with even powers of m vanish, except m®, m?, m*, m®%, m8.

For spin 5 there are 5 non-conserved terms in the IR and 5 in the UV, while the others
are conserved or (. Subtracting the IR non-conserved terms from the corresponding UV

ones all the nonvanishing terms turn out to be proportional to the conserved structure:

15

2 3
7r , = 3 WWWWW—F&TWWW

Ty (8.77)

For example, in 3d all terms with even powers of m vanish, except m®, m?, m*, m%, m® m!°.

Comment 1. As we have seen above, any conserved structure is connected to a
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(non-local) higher spin field equation of motion. In particular eqs.(8.23) and (8.60) are
conserved structures which represent the linearized Maxwell and Einstein-Hilbert actions,
respectively, the second one in a nonlocal version. Eq.(8.69) is non-local and gives rise
to a variant of the non-local Fronsdal equation discussed in sec.7.5. It is clear that any
two-point correlator structure can be uniquely related to a given (linearized) equation of
motion. The structure of the 2pt-functions conform to the general discussion in sec.7.2.

It is remarkable that the conserved structures that appear in the above expansions are
always the same for any fixed 2pt correlator. As we will see this is not the case for the
effective field action originating from a fermion model.

Comment 2.

It is interesting to compare the O(m?) results with the massless model case, obtained

via (7.72). In particular, in the massless case for spin 1 in 3d we get

—1—6/{77,“, (8.78)
for spin 2
l;_; ?mrﬂ(k) (8.79)
and for spin 3
—lg—zng)um(k) (8.80)

These correlators are non-local and coincide with the OUV(mO) terms evaluated above.
Similarly, all other Ogy-(m®) terms coincide with the expressions obtained in the massless

limit in section 8.1 for simple currents for appropriate spin s and dimension d.

8.6.1 Scalar model - simple currents - general

In the scalar model it is particularly simple to find a general expression for the conserved

2-point correlators. Omitting the non-conserved terms, we find: General expression for
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spin Ss; X Sg, 89 > S1

- ~ (4 StEy QL%J_dmd%W_gsl!(SQ —sp)l! QLSQJIJ — 1)!! (LSZJ)!
H1---sq V1..-Vsgy -

Cr=l+ ) (18] - 30!

d d s;+s,+3 k?
'f2—=1-F11,2——
X < 2)2 1(7 2a 9 74m2)

15

s9—sq 1
X Ty rt mwl mer (8.81)
22”?(31—2;)!(32—31%[)!! pee

8.7 Diagonalization

We demonstrated in this chapter that different choices of currents lead to different effective
actions. In particular, now we wonder whether is possible to make a choice of currents

for which the mixed correlators vanish which may simplify our analysis.

8.7.1 ”Local” currents

One can start with a general form of spin-s current

© 130 @) o (5.) 8.82
]Ml---ﬂs ? al ( W#l/«) d) 8# ¢ ( . )
1=0
where al(s) are some numerical coefficients and we can choose a(()s) = 1. Now, is there

a choice of coefficients al(s) for which the 2-point correlators with mixed scalar currents
vanish?

Amplitude 0x2. In fact, we can use a more general current

12 = (6(.) o+ om0

2,0+ m2)gT o + b6 (0 + m2)¢> (8.83)

where we added terms such as (O + m?) (vanishes on-shell). Due to hermiticity of the

2 2
@) _ 4@

currents we have a; . The conserved part of 0x2 amplitude is

B '2—d —d/2 d_4P 2_c_l
7, = =27 m3 (2-3%) k2., (8.84)

) d 5 K ) d 5 Kk
X((—l—l—al >2F1 (1,2—§,§,m +2(L1 2F1 2’2_§7§7W
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The conserved part of the correlator with mixed spins 0x2 vanishes for

Fi (12455
:2F1(1,2 d.5. k° )+22F1 (272_(1.5. k2)

T 202 4m? 2727 4m?2

af?

(8.85)

2) . . : :
Values of ag ) in specific dimensions:

k
m (coth_l(%”) o 2m)
d=3

2 *3
. 4m? (kz—m 4—7’7“1—2;(;50_1 (27"‘)) .
d=14 — - —
te gte 353 o |

The coefficient agz) is a function of momenta and mass. Since this coefficient enters the

definition of the current, it defines the coupling to the source. If we write the coefficient
af) in powers of the momentum k2, we get an interaction with infinite number of higher
derivative terms.

The non-conserved (non-transverse) part

d
T = —i2' (1 4 o) Y2md2r (1 - 5) Tow (8.86)
vanishes for all(Z) = —1. Terms such as (O + m?) in the current contribute only to the

non-conserved part and behave as counterterms.
Amplitude 1x3 Again we can add to the spin-3 current terms such as (0+m?) which

vanish on-shell
&\ 3 P ,
j}(j;) = (¢T <8H> ¢+ a§3)D7rW (¢T <8“> ¢> + al(g)n/m(m + mQ)QMng(;S (8'87)
‘{‘a/2(3)77uu(D + m2)¢Tau¢ + ag(S)WuﬁbT(D + m2)6u¢ + a;(3)nuu(3u¢T(D + m2)¢>

Due to hermiticity of the currents we have a}® = —all(g) and ail(g) = —a;(3). The conserved
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part of 1x3 amplitude is

15
3 4Tk 3) 4Tk
X (3(&1 1)2F1 (1,2 272’47712 +2G1 2F1 2,2 2’2747712

The conserved part of the correlator with mixed spins 1x3 vanishes for

i 1 d
Ti,s = ——i27r miT (2 — 5) KA T (8.88)

32F1 (1’2_d.7. k2>

2727 4m?2

(3)
a;’ = 5 > (8.89)
LR (L2 Sgin) 120 22 S50
The non-conserved part is
T col—d,_— d 3 3
Tuﬁg = ol dp—d/2pdp (—5) nw,nw,(a/l( ) _ a;( ) _ 6) (8.90)

d
4321442 =2 (1 — 5) ((1 — ag?’))nu,,k%rw + (a'l(?’) — 1)/@“1{,,7]1,,,)

— 6 and we can choose a;”’ = 1 to cancel the second

term in m? =2 term. Then we have a/2(3) = —5. However, note that m¢-

term depends on ag?’). This coefficient, once expanded in powers of momenta, brings

) _ O

The m¢ term vanishes for a. W

2 non-conserved

infinite number of non-conserved terms. The number of counterterms which cancel non-
conserved terms should be finite, and we conclude that it is not possible to diagonalize
the 2-pt correlators within this simple model. A similar conclusion follows for all other
higher spin off-diagonal correlators.

In the massless limit all non-diagonal terms vanish for (7.27), that is for the choice of
coefficient for traceless scalar currents given in (7.27). In this case only the correlators

for currents of equal spins are non-vanishing an they are given by (8.2).

8.7.2 Traceless non-local currents

One more idea is to construct currents which are traceless even in the massive case. It is

enough to use simple currents to write down a general form of current is now
15

—s s .sfl
T = b7xl, 5, (8.91)
=0
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where j;. is a simple scalar current (7.22) and its I-th trace reads

s]1] s s! i oo\ S—2l e\ 20
Jps—z =11 mfb <3u> (8) ¢ (8.92)
and bl(s) are numerical coefficients. These currents are nonlocal (we have appearance of

terms such as %2 and their powers). If we impose tracelessness of the currents (on-shell)

we get a recurrence relation for the coefficients:

1
20(d — 3+ 2s — 2)

b = by (8.93)

We can choose b\ = 1 so that the coefficient 5" reads:

(D' (s —k—1+%2)!

b(s) —
: 226k (s — 1 4 43)!

(8.94)

It turns out that the conserved parts of all mixed-spin correlators vanish for this exact
choice of coefficients. The conserved part of the amplitude with equal spin currents (8.91)

and coefficients (8.94) for general spin s and general dimension is

. 13]
S i(—1)%27dr =4/ 25lma—4 d d 3 K 0s I 1 e
TMSVS = (25+1)" r 2—5 2F1 1,2—§,8+§,m k lzgoalﬂuuﬂyyﬂuy

where the coeflicient q; is

(—1)'s!T (s + 452 — 1)

T 205 — 2)IT (s + 52)

a (8.95)

corresponds to the coefficient for the traceless amplitude (7.42). This amplitude is more

compactly written as

i(—1)%27 4=/ 25lma—4 d d 3 k?
T, . = H{2——=|.F(1,2——=; - —
wev (25 + 1! 2 ) 21 25T 2
1—-s s1 T T
x ks o F ——=(=d—2s+5); 4~ 8.96
Tr”lfg 1( 2 ) 2’2( 5+ )’ WELV ( )

However, we are still left with the non-conserved part.
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Amplitude 0x2. The non-conserved part of the amplitude is

B '2—dd —d/2 d=21 _d
yo— 2T ]:Z (=3) <k2(25§2)d+ 1)nw—2b§2)dk:3> (8.97)

Notice that it is non-local, and hence it cannot be canceled by a counterterm. Similarly, all
non-conserved parts of higher mixed-spin correlators are non-local and cannot be canceled.
The nonconserved parts of the correlators with equal spin currents are also non-local and
cannot be canceled.

Notice that there is one way to avoid nonlocality. We can, instead of

Sur 3 [ A (8.98)

use a higher derivative coupling

Sint ~ Y / A"y, TP~ / d'x0" ;P (8.99)

To get rid of nonlocality it is enough to put n = [5]. In that case all amplitudes should
be multiplied by (k?) 21+1%) . In that case the nonconserved part becomes local and we

can subtract it by a finite number of counterterms.
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Chapter 9

Fermion models

In this chapter we consider a fermion theory coupled to spin-s fields via conserved currents.
Here we closely follow [29] and [30]. The analysis is similar to the scalar case given in
the previous chapter. We will again use the perturbative approach based on Feynman
diagrams and dimensional regularization.

First, we consider the massless case for the fermion model and compute the relevant
two-point functions for simple and traceless currents in any dimension. For traceless
currents the amplitude is again traceless, and the contribution for mixed-spins correlators
vanishes. We also compute 1-point functions (tadpoles) for general spin s and general
dimension d and we find that the latter vanishes in the massless case.

Next we show results for a fermion theory coupled to spin 1, 2 and 3 fields. In
the fermion case, the results for correlators are again given in terms of hypergeometric
functions, and because of that, we turn to their IR and UV expansions for d = 3,4 (for
expansions in d = 5,6 see [29]). In the UV Oy (m°) — Orr(m®) — O;r(log(m)) terms
exactly coincide with the massless results.

For spin 1 and 2, just as in the scalar case, we know full form of the interaction and
so, beside the bubble diagram we also include seagull and tadpole diagrams. We show
that Ward identities are satisfied in this case. For spin 3, instead, we know only the linear
coupling and the linear form of gauge transformation. As a consequence we find several
violations of Ward identities which come in a form of finite number of local terms. Beside
the non-conserved terms, we also find terms that diverge in the IR. These terms are also
finite in number and local and they include all the nonconserved ones. Our prescription

to extract physical information is such that we subtract all the terms that diverge in the
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IR by subtracting a finite number of counterterms from the effective action. In this way
we recover both conservation and finiteness in the IR. We demonstrate how this scheme
works for both higher spin case and for spin 1 and 2.

We also give an example of mixed spin correlator with spins 3 and 5: the full amplitude
and its expansions in UV and IR in d = 3,4 (for expansions in d = 5,6 see [30]). In the
odd parity sector, for traceless currents, we find a generalization of the linearized action
proposed by Pope and Townsend, [44], for conformal higher spin fields.

The final part of the chapter is devoted to diagonalization of our results, that is, the
possibility of vanishing off-diagonal correlators for appropriate choice of coefficients in the
currents. It turns out that the diagonalization is not possible with the choice of currents
(7.26). One more example we consider is the case of traceless local currents where we are
able to diagonalize our results by appropriate choice of coefficients in the currents and by

subtraction of finite number of counterterms.

9.1 Massless model

In the massless case for simple currents (7.16) we do not have a general expression. Here

are some examples of the amplitudes:

93-2d+|5] 55 (k2 d/2—2

Spin0x 0 : T = : 9.1
pin (_1+emd)1“(%) (9.1)
Spin0x2 : T,.=0 (9.2)
~ 92-2d+|5] 55 (k2)d/2*1
Spin 1 x 1 T =— , y (d—2)m, (9.3)
e ()
‘ ~ ol-2d+|5| 59 (k2 d/2
Spin 1 x3 : T8 = (15 o) T (529) (d —2)mm (9.4)
2

. - 2120+ 15)(d — )33 (k)7
Spin 2 x2 : Ty2e = 1+ o7 T (252 ((d—1D)m, = mupmn)  (9.5)
2
‘ 5 3.9 2d+|_5jﬂ-%—g (kQ)d/2+1
Spln 2x4 Tu2u4 = — (_1 i 617rd> T (@) Tyy ((d - 1)77/2“, - 7T,u,u7Tl/1/) (96)
2
i g2+ 14 -4 (2) /21

Spin 3x3 Tusys = —

Spin 3XH Tusys =
2
X T T (4d7rfw + (d — 10)7TW7TW) (9.8)
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3. 2—1—2d+ % %
( 1+ez7rd)
x (2(d+ D,

+3(d -
5 53222d+LJ%
Spind x 6 : T = —
pm pAus (1+€17rd)r‘(d+)
L+

X1y, (4(d + D)7, + 3(d — 5), Ty — 3,m0,)  (9.10)

pptvr

Spin4><4 s T =

d d/2+2
3 (k)Y
wiv d

Fi)

)Trizxﬂ-uuﬂ—uu 371'##7'(12,1,) (99)

Next, we use traceless currents (traceless in the limit m — 0), that is (7.26) with

coefficients (7.27). General expression for spin s X s, s > 0

N L2t e - D =3+ 5) ()7
HlepsViebs (_1+eiwd)r(d+22s 1)
L5]
X (—1)lal7TLu7T,l/V7TZ;2l (9.11)
1=0
(2 I s - Dl =3+ ) ()T
= (= T
(—l—i—e”d)lj(%) nz
o I l—s s S—d—2s Ty
2 2 2

where the coefficient a; corresponds to (7.42), the coefficient appearing in the traceless

amplitude. In this case mixed spin correlators vanish.

9.2 Tadpoles

For convenience let us write down the tadpole diagram contributions for any dimension
and any spin. In this chapter we will need only spin 1 and 2 tadpoles. The tadpole
contribution actually vanishes for odd spins, as we will shortly see.

Tadpoles with fermion current for any spin and any dimension

- dd ) d ddp ps
f —_ f — 2L2J+8—1/ _ P 192
O / (2n) (V = m) @n) = 2 (9-12)

Next we use (8.5) together with (8.7) to obtain the tadpole

s

. i(—1)57125+lal=d=1 (g _ 1)1l g=Epdts—2p (1—%—%)n2, seven,s>0
@,ul...,us = (913)
0, s odd
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and spin 0

J = —iglal=d =g pd-1p (1 gl> (9.14)

9.3 Spin 1
The action for the theory of fermions interacting with gauge field can be written as
S = / dz [¢ (iv" D, — m) Y] (9.15)
where D, = 0, —i A,. There is one fermion-fermion-photon vertex
Vi, oo (9.16)

From the one-loop conservation law (2.30), we get the Ward identity for the two-point

function in momentum space

k,T" (k) =0 (9.17)

9.3.1 Even parity part

In the case of fermions coupled to gauge field the tadpole diagram vanishes, while the
seagull is zero because the theory is linear in the gauge field. The only contribution we
get from the 2-pt correlator ((11.7) from [29]) which in the momentum space reads

- -+l =i d
k) = r<1—§>

d 3 k?
X (—4m2 + o F {1, I-3; %; 4—77121 (4m?* + (d — 2)18)) ™ (9.18)

Since the 2-point correlator can be expressed in terms of the projector, it satisfies Ward

identity (9.17). We can expand the two-point correlator in the IR region

a4 _ 1- d+[ —d nm I 1+n 5) 2n,_uv
Tk = —2 25 3 2n+1)” k2 (9.19)

n=1
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Using the Fourier transform of (9.19) in the one-loop 1-point function (2.12) we get

i nm_Q”F(l—l—n—ﬂl

2n(2n + )N

M\B..

(G () = 2 -2 Jamig, v (9.20)

n=1

The one-loop 1-point correlator satisfies (2.30). Using the same expansion in the IR (9.19)

for the effective action (2.11) we obtain

nm*Q”F (1 +n— d)
27(2n 4+ D!

W o= 2 l-dtlilpd-2, %Z

n=1

/ A%z F,,On e

9—2-d+| %] d
B _de*‘*w o7 (2 — 5) /ddxFWFW (9.21)
So, in the IR region (large m) we get the Maxwell action.

Furthermore, the dominating term in the UV (O(mP)) of (9.18) corresponds to the

massless case (B.2) from [29]

oy 22245 255 (d — 2)

= - (-1 +em) T (2) (k)2 (9.22)

The effective action in the UV is then

d
2

gy (F1E R i d - 2)
(=14 em)T (L)

FrOs—2F,, (9.23)

9.3.2 0Odd parity part

For the analysis of the odd parity correlators we will restrict ourselves to d = 3. The odd

part of the two-point correlator is non-vanishing only in 3d and it is given by

TH (k) = ﬁArcCoth( p ) Ak (9.24)

The expansion of (9.24) in the IR reads

oo

) = 2 ok (9.25)
o W T L 22+ 1) '

n=
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Using the IR expansion in (2.12), the odd part of the one-loop 1-point correlator is now

—2

1 o0
- mAQrE, 9.26
7 Z% 2n+ 232+ 1) 4 (6-26)

and just like the even parity part satisfies (9.17). The effective action in the IR (the

dominating term)

1
w ¥ 8—7T€“”)‘ / d*r A0,AN + ... (9.27)

corresponds to Chern-Simons term in 3d

chz8i/d3:17TT (A/\dA—f—;A/\A/\A) (928)
™

9.3.3 3d mfm: spin 1 tomography

The case of a gauge field interacting with fermions is a textbook example, but it is perfect

to show how to extract the relevant information from the correlators. In 3d the amplitude

4 ) ,
Tulk) = 871r_k ( - (47”2 coth™ (%) — 2km + k2 coth™ (%)) T

2
+4im coth™ (%) WJ&) (9.29)

1s

and is conserved without any subtraction. Expanding, the term

1

O(m°) : yy

E)\,uuk)\ (930)

corresponds to the linearized Chern-Simons action, and the term

?

O(m™): —

- K2 T (9.31)

in the IR corresponds to the Maxwell action.
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9.3.4 4d mfm: spin 1 tomography

Here we repeat the same procedure as above in the case of d = 4. In even dimensions
we must be careful and use d = 4 + <. Similarly to the scalar case, we demonstrate how
our scheme to extract physical information from the amplitude works. Again we expand
the amplitude in the IR and UV. In fermion model, spin-1 example is particularly simple
because the full amplitude is conserved and consequently there is no need for subtraction
of nonconserved terms. However, we will find divergent terms in the IR and subtract
them from the effective action.

The m-power expansion in the IR is as follows

1log(m
O(log(m)) : 6g7r(2 )kQWW (9.32)
0 : _ 2 2
Oo(m”) 92 (7 — log(4m) + z—:)k Ty (9.33)
. ik
O(m ) - 607T2m2 my (934)

All odd powers of m vanish. The above terms are all conserved. The term O(log(m)) is
divergent in the IR and O(m°) is divergent in &.

In the UV all odd powers of m vanish, while

O(m°) : ik (9 — 5+ 37 + 3im — log (1677) )w (9.35)
 36n2\e " '
2
m
O(mg) 271'2 |14 (936)
4 2
4 .. m k
Om"):  —is(2log (‘E) 1) 937

All the terms are conserved. But, subtracting from them the corresponding local terms

in the IR we get
0 0 i kQ 2

Clearly (9.38) reproduces the Maxwell action.
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9.4 Spin 2
Let us consider the free fermion theory in a generic dimension d
— 1 -
S = / d'z \/Igl {wE;”va (am + §Qm) v — mw] (9.39)

where E7" is the inverse vierbein. From now on we will set ¢, = 1 + hy, where by, is

a small perturbation around flat background. Using the following expansions

1
g =" = B (Pt \/E_H Sht h2 T
1
65:55—5h5+§(h2)5+..., =05 + h“ —g(h?) - (9.40)
we can expand the parity even part of the action (9.39) in powers of h:
L= _ 1 7 — ”<—> _
S = [t [Sor B - miy+ 5 (55050 - miy ) — [ohn G0
1 1— _
+3 (W = 20°7hag) <§Wam — WW))
L hghe S (h)E S 9.41
—§¢ 78u¢+ 6w( )a'V au¢+--- ( )
There is one fermion-fermion-graviton vertex
1 1
ViR (pp) o =5+ p) i (p o - 2m) (9.42)
and one vertex with two fermions and two gravitons:
Vuum/ / 31 vV, UV IAYZNTIN117
Finn (0: D) 16 ((p+ )y 0" + (p+ )" "n")
g(zé +y = 2m) ("™ = 20" ")
1
=g (2" 0™ + (p + 7)) (9.43)

We can also expand the odd parity part of the action in 3d(the latter contains a part
proportional to the completely antisymmetric symbol). We restrict ourselves to 3d because

only in this case can we get a non-vanishing contribution to the effective action and 1-point
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correlator.

1 _
S, = o A3z €0, hpo hS ) (9.44)

The relevant vertex with two fermions and two gravitons is

vv 1 v 174
Virmn = g1 Mk — K (9.45)
Furthermore, for spin 2, the energy-momentum tensor is defined with (7" (x))) = \%%.

The full conservation law of the energy-momentum tensor is (2.31). Hence, the Ward

identity for one-point function is
0,0M(x) =0 (9.46)
while for two-point correlator we have

1 1
QI () = 10z —y)9,0" (z) + SO (1)0"0(x — y)

=0, (6 (x —y) O (2)) ™ (9.47)

The tadpole contribution is ©#*(k) = © n/# where O is a constant. The Ward identity in

momentum space is then
. 1 N
k,TH (k) = [—k”n“” + ék“n”’} © (9.48)

9.4.1 Even parity part

The tadpole contribution is now

d

T (_5) n = (Z)nuu (9.49)

[N]IsH

O (k) = —27 274 12) iy

where © is a constant. Since the theory of gravity is non-linear we have a contribution

from the seagull term, which can be written as

N d
7o) = 2 it (=5 ) @ - 2 (9.50)
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The bubble diagram contributes two parts, the transverse (conserved) part,

UV Y 1 _9_ dy . d d
k) = AT oE d“”@md””(l—ﬁ)
2 2 d 1 k2 2 v v
—8m” + (d+ 1)k* +oF |1, — 35 I S| 8m® 4+ (d — 1)k?) ) 77t

d1 Kk
—4m? Dk? 4+, F |1, ——. =, —— | (4m® — k? pups v 51
+( m* 4 (d+ 1)k* + 5 1[, 2,2,4”121(771 k)>7r m }(95)
whose expansion in the IR is

= m~"T (n — 4

Py _ 3— d+[ lind, —5 ) 2n v, o vv
T (k) = =27 imin2 ; 272+ D)1 E=" ((2n — D)m* ot — ot (9.52)

and the non-transverse (non-conserved) part

- d

T (k) = —27% el jpdrar ( 5) (" =) . (9.53)
Taking formulas (9.49), (9.50), (9.51) and (9.53) and substituting them in (9.48) we can
see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point function (energy-momentum tensor) now becomes

(@) = —2 it r ( ) ” +Z m =T (n — 9)

27’“rl 2n 4+ 1N

x ((2n—1)O" G + (n — 1O (0 — 9"0")R) } + O(h?) (9.54)

where G, = R, — %UWR is the Einstein tensor. The energy-momentum tensor is clearly

divergence free. For the effective action in the IR we obtain (in the even parity sector)

_d
w B —21d+L§de7r3/ddx g [F (—‘—l) -y 2)R

2 24m?

r2-4
_re-: (RW PR — 2R, R + 31—22)

SO +O(R*)  (9.55)

The first term is a cosmological constant term and the second is the linearized Einstein-
Hilbert action. The third term (m® term in d = 4) is the Weyl density W? = R, R"* —
2R, R* + 3 R* (conformal invariant in 4d).

The dominating term in the UV (O(m°) term corresponds to (B.3) from [29]) of the
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transverse part T/ (k) is

. 9-3-2d+3) 735 (k2)2
TMMVV(k,) A ((d i 1)7T”V7ij _ 71"“'“71'””) (956)
t (_1+ezwd>r(¥)
The effective action in the UV is then
9—4- 2d+( 4] g d
W U:V (_ )% -1+ elﬂd (i) /ddx\/g [(d o 4)R#VAPDg72R!WAp (9'57)
2

1
+6 (RMMpmz—QRuuAp — 2R, 0% 2R™ 4 ngg—QR) + .. } + O(h*)
which for d = 4 reproduces Weyl density as expected.

9.4.2 0Odd parity part

In 3d the contribution from the seagull diagram with vertex (9.45) becomes

2

LUy _ m_ vV _ v
T () = ey (9.58)

The odd part of the two-point correlator is non-vanishing only in 3d (the vertex is (9.42)).

The transverse part can be written as

~ 2
T (k) = _64% ((k2 — 4m?)ArcCoth (Tm) + 2mk> TNy (9.59)

and the expansion of T/ (k) in the IR is

TMWV o n+l)m 2n » uu)\k 060
The odd non-transverse part reads
m2
TS (k) = =" e k) (9.61)
167

and can be canceled by the seagull contribution (9.58). So, only the transverse odd part

remains. The odd part of the one-loop 1-pt function (energy-momentum tensor)

1 0 m—2n .
(T (= 327 Z 42n —1) nrer (9.62)

n=0
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where C** is the linearized Cotton tensor for d = 3

1 1
CMV = EqugT (Rp,/ — mngR) = 56,/0787— (Dhup — a/\ayh;\) + O(hQ) (963)

The effective action in the IR (the dominating term)

IR 1 17 14 v
W= o A / d*x huyy (060" 0"y — 030RL) 4 O(h®) (9.64)

corresponds to gravitational Chern-Simons term in 3d

1
1927

2
e’“’A/d% (auwl,abw,\ba%— §wuabwybcwxca) (9.65)

Sgcs =

9.4.3 3d mfm: spin 2 even part tomography

Just as for spin-1, we showed that for spin-2 in the fermion model Ward identities are
satisfied. However, similarly to the scalar case, we will also show what happens if we
knew the interaction only up to the linear order. We demonstrate our scheme to draw
out physical information from the amplitude by expanding it in the IR and UV and
subtracting the divergent and nonconserved terms from the effective action. We consider
the correlator of two spin 2 currents (7.22). For the spin 2 current, in the IR (all formulas
below have to be multiplied by the factor % if we use the energy-momentum tensor instead
of the current j,,,). All even powers of m vanish. The O(m?) term is not conserved, while
the other terms are all conserved and proportional to different combinations of the two
conserved structures.

In the UV all terms are conserved except O(m?). But putting together the analogous
non-conserved term in the UV and IR (that is subtracting the local IR term from the
(nonlocal) UV one) we recover conservation. Moreover, according to our general prescrip-

tion the term O(m) in the IR is divergent and it should be subtracted. Altogether we

have
ika (2)
Ouy(m) = Opp(m) = =118 ..(k) (9.66)
2im3
Ovy(m?) — Orp(m?) = - 1), (k) (9.67)

Eq. (9.66) is the linearized and local version of the EH equation of motion (see sec.7.5).
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Once again, up to local terms, the effective action is a sum of infinite many terms,
which form a convergent series both in the IR and in the UV, all of them proportional to
various combinations of the conserved structures with coefficients proportional to various

monomials of m and k.

9.4.4 3d mfm: spin 2 odd part tomography

In the IR (all formulas below have to be multiplied by the factor %6 for the correlator
of two energy-momentum tensors) all odd powers of m vanish. The O(m?) term is not
conserved, while the other terms are all conserved and proportional to the unique odd
conserved structure e )\Wk’\mw.

In the UV the only nonconserved tem is O(m?), but

2
m
OUv(mz)—O]R(WZ) = 76)\;;11]{/\7‘-#1/ (968)

is. In summary, after subtracting O;z(m?) the odd 2-pt correlator is:

2 2
S (4m2 coth! (77") ~ 2km — K coth™! (g)) xw kM (9.60)
The term
0 k2 A
O<m ) : _127T€)\uzzk m (970)

give rise to the linearized Chern-Simons action as discussed in [28].

9.4.5 4d mfm: spin 2 tomography

Let us repeat the same procedure in d = 4. In the IR the odd powers of m vanish. The
O(m*) term is not conserved, while terms m°, m? are conserved but are divergent in the
limit € — 0.The logarithmic term is conserved but it is divergent in the IR. They all must
be subtracted. The remaining terms are conserved.

In the UV all the odd powers of m vanish. All terms with even m power larger than 4,

as well as O(log(m)), are conserved, while O(m°), O(m?) and O(m?) are not. According

to our prescription we have to subtract not only O;g(m®), Org(m?) and Orr(m?), but
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also Oyg(log(m)). We obtain

4 k?
OUv(m4) — O[R(m4) = ? (2 log (_ﬁ) — 5) 7TN,/2 (971)
4 2

im?2k? k2
OUV(mQ) — O]R(m2) = 367T2 (3 lOg (_ﬁ) +1) 7TMV2 (972)
im?k? k>
_ 36 2 (3 log (—@> 5> Tpup Ty
1
OUv(mO) - O[R<m0) - (’)[R(log(m)) = —k}4 (973)

k2 k2
x[9 (—5log (—ﬁ) + 12) T’ — <—1510g (—ﬁ) - 46) L

They are all conserved. Eq. (9.72) contains a nonlocal linearized version of the Einstein-

Hilbert equation of motion.

9.5 Spin 3

For spin-3 fermion current we use (7.22) (instead, in [29], we used traceless current (7.27)

in d = 3 ). The two-point function reads

. olyl+2-d; d d 7 K
T#SVS(]{?) = —%ﬂ'_d/?k‘lmdﬁf <]_ - 5) 2F1 <2, 1-— 5, 5, W) 71—/3“/
olg)—d; d
_%ﬂ_—d/2k2md—2r‘ (1 _ §> W#V/Tru“ﬂ-l/l/

d 5 k? d 5 k?

Fil1,l—— = —— ) —25F 1 (2,1 — == —

X<2 1(7 27274m2) 2 1(7 27274m2)>
d
yigllHimdp—d/2di2p (_5 N 1) v (Mr® + 20
d
_Z'2|_%J+4—dﬂ_—d/2md1" (_5) (_nuynwjﬂ-uukz + nuunuukVQ + nuu’rluykuky>
2

TR (1Ok3m +3 (k2 — 4m?)” coth ™" (%”) - 24km3>

487k

X (271'#1,2 + 7T,u,u7rzzu) EANVkA5d73
4m*
+3— (200° + Mputon) Expk a3 (9.74)

2

m
+§ (_2k277uu2 - nyyﬂ-’uqu + nlmk‘VQ + 477,uukuku) Ex\uukxédyg
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Expansion of the even conserved part in the IR

5 [e.e] . ) d
Tpa(k) = — Z mQLgﬁs—d—nmd%—%ﬂ—gr <1 L 5) J2n+4
n=0 .

X ((n — z)wfw +2(n + 1)) (9.75)

The leading order is proportional to

~ d
Tozs(k) ~ mT (1 - 5) k7, (72, = M) (9.76)
and we get
. _ d
<<Ju1u2u3 (x)» ~ md 4F (1 - 5) a gu1u2ﬂ3 (l’) (977)

where QNM,“MS is the generalized Einstein tensor (7.55).
In what follows we show how to draw out information from the two-point function
by expanding it in the IR and UV. We again use the scheme in which we subtract the

divergent and nonconserved terms from the effective action.

9.5.1 3d mfm: spin 3 even part tomography

Here the procedure is analogous to the scalar case. In this case one must subtract the
local terms O(m?®), O(m?) in the IR, because they are not conserved. Moreover, we also

must subtract O(m!) because it diverges in the IR.

32im?
OU\/(m5) — O[R(m5) : W é?Lg,Vg (k‘) (978)
4im3k?
Opy (m?) — Orgp(m?) - —TWWWWWW (9.79)
2imk?*
Ovv(mb) — Orr(m?) : e ©) e (k) (9.80)
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After that the effective action becomes

: 2 2
—4857T - (96Om6 coth™ (%) — 480km® — 240k*m* coth™! (7) (9.81)

m
2 2
+80k*m?® — 60k*m? coth ™! (%‘) — 34k%m + 15k° coth™! (%”) >7TW3

?

2m
9607k

k

2
(2880m6 coth™! (%”) — 1440km® — 1680k2m* coth™! ( ) T 720k3m?

2m

2
+300k*m? coth™* (7) — 98k%m — 15k coth ™! (77”) )mwwrw
Eq.(9.79) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.5.2 3d mfm: spin 3 odd part tomography

One must subtract the local terms O(m?), O(m?) in the IR, which are not conserved.

_ 8m4 (2)

OUv(m4) — O]R(m4) . ? %7M2V2 (k’) E)\MV]{?A (982)
2m2k>
Ouv(m®) = Orp(m®) : ==Y, (k) epuh’ (9.83)
v 2 KV

After that the effective action becomes:

m _1(2m 9
ok ((48m"L — 24m2k* 4 3k*) coth™! <7) — 24km? + 10k53m) Exuk™ H;)M%Q (k)

9.5.3 4d mfm: spin 3 tomography

The scheme is the same as above. In the IR the odd power of m vanish. The even pow-
ers m?" with n < 0 are conserved together with the term proportional to log(m). The
terms Orr(mP°), Orr(m?), Orr(m®) and O;r(m®) are not conserved. Of course O(log(m))
diverges in the IR, while the term O;p(m") diverges for ¢ — 0. According to our prescrip-
tion all these terms, which are local, have to be subtracted from the effective action. In

the UV the odd m power terms vanish. The even power of order 2,4, 6 are not conserved,
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but again

Oy (m®) — Orr(m®) — Orr(log(m)) = —223];(6)7# (—21010g (—:;) + 599> T’
+ 44;.]({):;#2 <—105 log (—:;) + 457) T T Ty
and
Opv(m?) — Orr(m?) = —Zggg <1510g (—ZZ) - 16> T’ (9.84)
+ Zg;f;l (30 log (—:;22) - 77) T Ty Tow
Oupy(m*) — Orr(m?) = Z’T;Afﬂﬂlfg _ 7“'717;1:{22 (2 log (—:;) —3) T TupTow (9.85)
Ouy (m®) — Orr(m®) = Zn: (6 log (—5) - 7) T’ (9.86)

are all conserved. Eq.(9.85) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.6 Correlators

We also made a systematic collection of results for the massive case concerning all types

of two-point correlators, including the mixed ones, for symmetric currents of spin up to 5

and in dimension 3 < d < 6. Since the volume of these formulas is rather big it is moved

to the ancillary file [30]. A part of this material is nevertheless kept here in the main text:

sections 9.6.1 and 9.6.2 contain some representative calculations.

For even d, we use d — d + ¢ and expand around . For odd d this is not necessary.

It is convenient to use the following shorthand notation

2 m? "1
L,=2+log 22 L
2o () 41207

as well as
k2 2 k2
Kzlog(——g), P=—+log(——>+’y
m € 47
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We see that there is a relationship P = K + Ly. Furthermore we define

2i coth™ (2 2
T=— Lo ( k ), S = V4m?2 — k2 csc? (7m> (9.89)
T

It turns out that 7T is useful in even dimensions d and S is useful in odd. The branches

of the functions 7" and S are chosen such that the IR and UV expansions are

IR ik ik? ik?
T = ——— — .. 9.90
mm  12mm3  80mmb * ( )
IR k?) k‘5
S k-t (9.91)
43 16im? 4im®
pow o dm Mo G (9.92)

7k 3mk3 5mk5

vv kK m?(1+K) m*'(1—-2K) mf(5—6K)
S F T T e (9.93)

In the following two sections we list the results for fermions for mixed spin 3 - spin
5 amplitudes for dimensions 3 and 4. Section 4.1 contains the full transverse analytic
expressions of the correlators. Section 4.2 contains the UV and IR expansions of the

latter.

9.6.1 Fermion amplitudes for spins 3x5

Fermions, spin 3 x 5, dimension 3:

ot 8 3 1 3m 3m® 31m® m’
Tu3u5;3D =k W“Vﬂ'w, <E <_Eﬁ —+ Z_lﬁ - ?F + 20? +

AT 3 1+ 1m2+3m4 3m6+5m8 N
256k 16 k3 8 kb k7 k9
(T m 156m®  47Tmb m”
m g, (L (Tm 15t AT
T T T T (47r (64 R dw )T
T 71 9m2+33m4_13m6+15m8 N
1024k 64 k3 32 k° 4 k7 4 k9

1 3 2 8 4 6
+ kﬁ(k ’ e)ﬂvﬂiuﬂ-uu (; (_m_ - _ﬁ + 4m > +

1m 3md mb m”
(= 2 gy
+i (16k T 3 k7)>+

1 1 m?> 2m* mS
6 2
TR €Ty (; (‘T@ﬁ O k_) *
1m 3m?® 3m®> m’
A (A LT L 94
o (64k; 6% T2 k7)) (9:54)
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81 49
0
Tu Vt° ;3D T (k kvnﬂﬂnw +Fk kynu,,nw) <_§m3) + (’ffmww + k‘flkmzu) (—gm?’) +
(4 32
+ (kﬂkl’nﬂﬂnl/u + k277NV771/1/) (Z ( k2m - _m )) +
i 641
+ k277,uu77,uu771/u <; ( k*m® — —m )) +k k'ﬂ]mﬁ]w <—5—7Tm5> +
641 1 32 64
+ kz% fw (_Fm ) + UWTIWTIW <; (__k4 Ek2m5 — Em7>> +

1 64 512 1
+ Uiyﬁw (5_7'(' ( 3 5 - >) + k2k2 ;wnuu <_;m2) +

8
+ kukz?:(k : E)lwn;w (——m ) + kQ(k E)Wnulmw (—§m4) +

4 1
2 2 2 2 4
+ ku(k . E)IU/T/VV (—3 ) + k k., (k: . E)WWWW (—3 (6k m* — 32m )) +

1
+ K2 (k- €) (% (3k*m?* — 16m4)) +

1 /4 16
. 2 - 12,4 __ -, 6
+ (k 6)/—“/77/‘/1'771/1/ (7'(' <3k m 5 m ))

_'_
1 16 64
+ (k- €)oo <; (—k4m2 + §k2m4 - gmﬁ)) (9.95)

Fermions, spin 3 x 5, dimension 4:

_ : 1937 2L 1622 2L\ m®  32md
T A Y (O (e e et Wt i Bl
wvrap = T \ e N\ s ™ 5 ) T U s T s ) e T e

2432 m5 256 m®
135 k6 9 k8
iS ( 4 1 4m?> 16m* 704mb 256 m8>>

372\ 105k " 15 K% 35 k5 105 k7

105k 158 350 106k ol &

+ K37, 7 (L(<— 1231 +£)+(ﬁ—2—%>@—%m—4+
HETHETVY A 2 132300 = 420 1225 35 k2 105 k4
128mS 64 m?8
o)
iS ( 11 11m? 4m* 2712mb 64m8))

0k 1054 5B 105k "ok (9.96)
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~fn ZL2 ZLQ
T2§55;4D = (kukgnuunw + k‘iksmunw) (Fle) + (kﬁn;mn;w + k‘f}kuﬁzy) (2_7T2m4) +
i
(bt + Konunts) (o (- Lok + aLan) ) +

) 4114
+ kfﬂwmwnw (P (_L2k2m4 + 4L3m6)) + k#kyﬁi,,ﬁw <?m6> +

4l /
+ Ky ( - 3m6> + Mgy <L (Lok*m® — ALsk*m® + 7L4m8)> -

372 272

i
+ Uy Mo (ﬁ (—4Lsk*m® + 12L4m8)> (9.97)

9.6.2 Expansions in UV and IR for fermions for spins 3x5

Fermions, spin 3 x 5, dimension 3:

- 31 1m2 3m* 64im® mb
vatvUv — k,g 3 v —_ _— -_— ——— — )
§35:3D T T 56k 16k 8k 1n ke Sk

Lo ) 71 9 m? N 4 m? N 33m*  32im®  13m° N
TenlwTow \ 7004k~ 64 k3 | 3n k' ' 32 k5 5m k6 4 k7
, ; 1m?2 3im3 16m?* m°® 64 mb
@) w2y, (= 2 v B gm0
TRk QT (16 TEIR AR ke U Ths

+ Kk €y,

k
im  3im? 4 m* 3im® 16mS
(m 16 79 —37F+Zﬁ+57ﬁ+"-) (5-98)

~ 4m 21 1 k? 1k
pRR o ogsps o (U 2T 2 2 R o - 8 L
53D T T 35 k2 + 315 m + 4620 m3 + 60060 m? *

(4 m 11 1k I
]{38 1/2 L - —_— 9.99
T T (Em (7 R 8im  5odmd  192192mF | >) (99
1m2 1 1 & I
ES(k - €),, 72 7, ——t — 4+ —— — T
+ ( 6)# T T < (5 L2 + 35 T 1260 m?2 + 18480 m* * >)

1
m
1/ 1m? 1 1k 1K
ES(k . . 2 (= 4 — 4 -~ 4 - "
+ Rk Ty, (w( 572 T 140 T 5040m2 T 73920 mA ))
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Fermions, spin 3 x 5, dimension 4:

Uy i (1937 2P 494 2P\ m? 2mt
Tiian = KT (7? ((m - ﬁ) + (‘ﬁ + %) e
22 4K\ mS
+<§_?)F+)>
+ kST <L(<— 1251 —i—i)—i-(@—g) —+
HRTRYTvY \ 2 132300 420 7350 35 ) k2

L() m2 2L0 i 1 ]{72 4 1 k’4 4
7 ) k2 63 462m2 9009 mt

2,
7T

m? Ly 1 k? 1k
(2—2L0) o+ 2
( )% 12 T 396w 2050wt >)

9.7 Parity-odd part

In this section we focus on the parity-odd part streaming from the mixed 2-point correla-
tors in 3d. We will look at UV an IR leading terms in the expansion of the full correlator
and find generalized expressions for dimension d and two higher spin fields s; and s;. The
general expression for dominating term in the correlator of two simple fermion currents

for spin s X s9, s9 > s1 (7.16) in the UV is

T, = (_1)731332 ( SQ;lJ)” (81 + 52 — Lsrlj - )”mkj‘“*s?*z” (9.102)
H1---fsy V1e--Vsy 22(51 + 89 — 2)” ( LSQ 1J le 1J)” )
[3]-1
s9—s —1 — 1
X'/Tuiz 1 eo',uuka Z 1(1+1) (81 ) (82 81) WLMWLVWZ;W—l

1=0 272 (81 — 20 — 1).(82 — 81+ 2[)”
In the IR instead we have a general expression for spin s; X s9, $3 > §1

. _ (e (20227 ) (51 + 59 — 2| B2L] — 3) Nk Te2—2 (9103
2om(s: + 5, — DI @[ %2] — 2[5!
s2—51 L%J_l (S — 1) (S — )”
X Ty EU.quJ Z 1(1+1) 1 - - ﬂfwﬂllwﬂ;;%_l
=0 272 (s1—20—1)(s9 —s1+ 20N

For traceless currents (traceless in the limit m — 0) we use (7.26) with coefficients
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(7.27). General expression for dominating term in the UV of 2-point correlators with

traceless currents for spin s; X Sg, So > s7 iS

51

) +s2—-3 s1 2
j:' . (_1)31282 ka‘sl S2 . 2 ( ) (81 - l) 1 l 8172l716 k”(g 104)
BloofhsqV1oVsy 9s2+1 w’ 2 2T (81 — 2[) up o opv .
1)k imksrez—3 % aot g (L=s sy T T 1
—= — 2 B ———— _—— —_
( ) 9531 Tww™ T 2471 9 ' 9 51, ,/le“/ €ouv

This formula is a straightforward generalization of the linearized action proposed long ago
by Pope and Townsend, [44], for conformal higher spin fields.

For completeness let us give also some examples of the expressions for the correlators
with traceless currents ((7.26) with coefficients (7.27)) in the IR, even though we are
not able to write a general expression. Also, for spin 0 x 2n full amplitudes are zero.

Dominating terms in the IR:

Spin 1 x 1: T, = e (9.105)
. ik? .

Spin 1 x 3 :T),s = ~18n — T ok (9.106)
- k2

Spin 2 X 2 : T)2,2 = ~Tor — Mok’ (9.107)
- k;4

Spin 2 x 4 : T)2,0 = T30m —— T T ok’ (9.108)
- kA

Spin 3 x 31 Tyss = oo (3277, — 9muumn) €opk” (9.109)
- k;ﬁ

Spin 3 X 5 : Tys,5 = —mﬂ'w (96%51, — 257TW7TW) €ouk’ (9.110)
- L6

Spin 4 x 4 : Ty, = ~T650- " (2477, — 3muumon) €opk” (9.111)
- k8

Spin 4 X 6 : Tya6 = 10320, o (64%3,/ — 337TW7TW) €ouk’ (9.112)
- k8

Spin 5 x 5 : Tys,s = 339500 (20487, — 1632 7y, + 1477 72 ) €0, k7(9.113)

9.8 Diagonalization

Just like for scalars in the previous chapter, in this chapter we again showed that different
choices of currents lead to different effective actions. Let us now see if we can choose

currents so that the mixed correlators vanish.
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9.8.1 ”Local” currents
We can write a general form of spin - s current

f ~s—1tJ (s) - o\ s2-1
Jpops =2 a;” (Omu) | Yy (au> (0 (9.114)

=0

N|&

where al(s) are numerical coefficients with a(()s) = 1. For s # 0 and we can introduce also

spin-0 current j/io = ).
Amplitude 0x2. We use the current

j;ff" =1 (&% (3#>2 Y+ aPDWW (151#)) (9.115)

where in this case, contrary to scalar case (see chapter 8.7.1), we neglected the terms such
as (O + m?). These terms vanish on-shell, contribute only to the nonconserved part and
they effectively behave like counterterms. The conserved part of 0x2 amplitude is
N §2- s /2 d =37 (1 — d
b, = (1-3) k>, (9.116)
1 d 5 k? ) d 3 k?
——(d-=2) 1 (1,2— == — d—1 F{lLl-— - —
X( 2 @=2)2 1( ’ 2’2’4m2>+3( Jmar o B\ L1 = 5553 s

v 3
and the conserved part of the correlator with mixed spins 0x2 vanishes for

(d — 2)oFy (1, 2 d.5. ’f—>

42 22 A (9.117)
b6(d—1)oF (1,1 — 43, ) '

2727 4m2

Just like in the scalar case, the coefficient a?) is a function of momenta and mass. If we

expand it in powers of the momentum %2 , we get an interaction with infinite number of

higher derivative terms. The non-conserved part

- d
T = —j2dtlal grd/2pd-ip (—5) Nuw (9.118)
is local and can be canceled by a counterterm. Similar conclusions can be drawn for spin
1x3 amplitude. For spin 4 (and higher), the non-conserved part of the correlator again
(

depends on the coefficients al4). This coefficient, once expanded in powers of momenta,

brings infinite number of non-conserved terms. Moreover, for spin 4 (and higher) there is
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no choice of coefficients a(

) and a2 ) for which the conserved part of the correlators with
mixed spins 0x4 and 2x4 vanishes. We again conclude that it is not possible to diagonalize
the 2-pt correlators.

In the massless limit all non-diagonal terms vanish for (7.27), that is for the choice of

coefficient for traceless scalar currents given in (7.27). In this case only the correlators

for currents of equal spins are non-vanishing and they are given by (9.11).

9.8.2 Traceless non-local currents

Just like in the scalar case, we construct on-shell traceless currents. We write down a

general form of current

Z b ; ll#tj/fy 21 (9'119)
where j/is is a simple fermion current (7.22). The I-th trace of the simple current reads

o 12k(s =) = v ro 52 ron 20-1)
j,t(ts)[g]z = 1 lmiﬁ%é) ((‘h) (8) (0

gl B) @ o

and bl(s) are numerical coefficients. We also use spin zero current Jl(f)) = . If we impose

tracelessness (on-shell) we get a recurrence relation:

1
b = — by 9.121
l 20(d—3+2s—21) ! (6-121)
We choose bé) =1, so that the coefficient bl(s) reads:
—1) (s —1—14 E3)1
o _ V' (s 2) (9.122)

b =
: 22 (s — 1+ 452

For this exact choice of coefficients, the conserved parts of all mixed-spin correlators van-

ish. The conserved part of the amplitude with equal spin currents (9.119) and coefficients
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(9.122) for general spin s is proportional to
l5]

Tpove ~ k) amy,, mh,mh,” (9.123)
1=0

where the coefficient a;, just like in the scalar case, corresponds to the coefficient for the

traceless amplitude (7.42). Let us give some examples:

o—d+|2],_—d/27.2,,,d—2 _d
Spin 2 X 2 : T 2,2 = —22 o7 W L (1 2) - #ﬂ' Ty
1% 3 puv (d— 1) 22
d 5 k? d5 k?
X (2F1 (1, - 55 W) — 2,0 (27 I 55 4—mQ>)
. ~ oo guiid| _ 3
Spin 3 X 3 : Tys,s = —1—522 a3l d/2/£47rw,md 4 (wa — mﬂwﬂrw>

Again, similarly to scalars, the non-conserved parts of the amplitudes does not vanish.
These terms are non-local, and because of that they cannot be canceled by a counterterm.

To avoid nonlocality, we can, instead of
Sint ~ Z/dd‘r‘]ﬂl---uﬁpmmus (9.124)
use a higher derivative coupling

Sint ~ / s LELE RN / AT J,, ot (9.125)

It is enough to put n = |5|. Then, all amplitudes should be multiplied by (k:Z)L%JHSTQJ.
In that case the nonconserved parts become local and we can subtract them by a finite

number of counterterms.
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Chapter 10

Worldline quantization of a fermion

model

In this chapter we will turn our attention to another quantization method, the worldline
quantization method and apply it to a free Dirac fermion coupled to external sources
[33]. Similar computation for the scalar model has already been worked out in [128].
The advantage of this method is that it gives the exact form of the higher spin gauge
symmetry.

In particular, we will determine the expression for the effective action, by expanding it
in a perturbative series, and determine the generalized equations of motion. This proce-
dure will allow us, in the next chapter, to show that this setup of the theory accommodates

an L., algebra. In this chapter we closely follow [33].

10.1  Fermion linearly coupled to higher spin fields

Let us consider a free fermion theory

Sy = /dd:@(m.a —m), (10.1)

coupled to external sources. We second-quantize it using the Weyl quantization method
for a particle worldline. The full action is expressed as an expectation value of operators

as follows

S = (| — (P - H) — m|y) (10.2)
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Here ﬁu is the momentum operator whose symbol is the classical momentum p,,. H is an

operator whose symbol is h(z,p), where

(e e}

1
W (z,p) = Z nl hé‘;lm“n (@) Py - - Dy (10.3)

n=0

s = n + 1 is the spin and the tensors are assumed to be symmetric. We recall that a

quantum operator O can be represented with a symbol O(z, p) through the Weyl map

~ dk  dp 4 2\ —in- (0 P
0= dd dd 9] ik-(x—X)—iy-(p—P) 10.4
[ ety Oap)e (10.4)
where X is the position operator. Next we insert this into the RHS of (10.2), where we
also insert two completenesses [ dz|z)(z|, and make the identification ¢(z) = (z]t).

Expressing S in terms of symbols we find

S =S +/ (;id(id dlx d’z e“”@(x + g) v-h(zx,q) @b(m — g) (10.5)
= So+ Z/ddx 1 P afﬂﬂ@(ﬁ + g) Rt () ¢<I _ g)

= 54D [ @)
s=1

z=0

The symmetric tensor field h##1-#» ig linearly coupled to the HS (higher spin) current

. 351 0 0 — z z
T e () = = 1)1020m " Gams (x * 5) ¥ (””” N 5) =0 (106)
For instance, for s = 1 and s = 2 one obtains
Ju = VW (10.7)
. { — —
Jpp = 5 (a(u1w7u)w - 1#7(“3“1)1#) (10-8)

and we see that these currents correspond to simple fermion currents given in (7.22). The

HS currents are on-shell conserved in the free theory (10.1)

aﬂjﬂﬂl'”#s—l =0 (109)
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which is a consequence of invariance of Sy[t)] on global (rigid) transformations

(i)

n!

(Sndj(x) = =

€y Oy - O, U (2) (10.10)

n)

We shall next show that for the full action (10.5) this extends to the local symmetry.
The consequence is that the currents are still conserved, with the HS covariant derivative
substituting ordinary derivative in (10.9).

Notice that these currents are conserved even without symmetrizing p with the other

indices. But in the sequel we will suppose that they are symmetric.

10.2 Symmetries

The action (10.2) is trivially invariant under the operation

S = (|00 GO0 |y) (10.11)
where G = —7-(1B - }AI) — m. So it is invariant under
G— O0'GO, |¢)— O ') (10.12)

Writing O = e B we easily find the infinitesimal version.

Sy = iElw),  §(d| = —i(P|E, (10.13)

and

~ ~ ~ -~ ~

6G =i[E,G| =ily-(P— H),E] =~-6H (10.14)
Let the symbol of E be g(x,p), then the symbol of [i7y- ,E\] is

/ddy<g; - %Hmﬁ, E)|lz + %) e (10.15)
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An easy way to make this explicit is to use the fact that the symbol of the product of two
operators is given by the Moyal product of the symbols. Thus

Symb([y-P,E]) = [y-pie(e,p)] =ype 2% %e(x,p) —e(x,p) e y-p
= —17-0ue(x,p) (10.16)
Similarly
Symb([H*, E]) = [A*(x.p) t e(z,p)] (10.17)

where [a ¥ b] = a % b — b a. Therefore, in terms of symbols,
0ht(x, p) = Ope(w, p) — il (z,p) T e(z,p)] = Dy'e(z, p) (10.18)
where we introduced the covariant derivative defined by
D = 0 — W a,p) t ] (10.19)

This will be referred to hereafter as HS transformation, and the corresponding symmetry
HS symmetry.
The transformations of 1) are somewhat different. They can also be expressed as Moyal

product of symbols
0-0(x,p) = ie(w, p) * Yz, p) (10.20)
provided we use the partial Fourier transform
(w,p) = /ddyw (x - %) evr. (10.21)

and finally we antitransform back the result. Alternatively we can proceed as follows. We

compute

~ Ak dip d. 1 gd, 1 / ik-(2' — X)—iy'-(p—P)
B = | Gryagma® Y sl p) e ) (10.22)

d’k ddp ik (' —x)—iy’- iy' P —Liy
- /(27r)d (27r)dddxlddy/ e, ') eM DTV (] eV P e
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Next we insert a momentum completeness [ dq|q){g| to evaluate (z|e'P|1h) and subse-
quently a coordinate completeness to evaluate (¢q|¢)) using the standard relation (z|p) =
e*. Then we produce two delta functions by integrating over k and ¢. In this way we

get rid of two coordinate integrations. Finally we arrive at

Sab(x) = iz|El) =i / ddpdddz€<x+g,p) e~ ) (z + 2) (10.23)
_ ZZ /

.S o) (a(n)(x +2) bla+2)

n=0

= iefa) $(a) + elof) 0,(x) + SOuctaf) ¥()

: <€(2)8 O, + el O + 886’“’2/1)( )+

—ip-z

( i0;)" - (é(n)(iﬂ + g) (x+ z))

z=0

2

where a dot denotes the contraction of upper and lower indices. The first method leads
to the same result.
Now we want to understand the conservation law ensuing from the HS symmetry of

the interacting classical action (10.5)

o (55 sty 5500 55 [ty S s
— sl = [t (550 o) +ovt 2o [ at et

Now we evaluate this expression on the classical solution, in which case the first two terms

vanish (remember that h is the background field). We are left with

0= /ddx/ddp J.(x,p) 6h*(z, p) (on — shell) (10.24)

where

Ju(x,p) = /ddz e"p'za(x + %) ’)/#1/1(1‘ — %) (10.25)

Using (10.18), partially integrating and using the following property of the Moyal product

/ d' / dpalz, )b, p) * c(z,p)] = / dix / d'pla(z,p) * bz, p)] ez, p) (10.26)
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we obtain
0= /ddx / d'pe(x,p) D J,(x,p) (on — shell) (10.27)
From this follows the conservation law in the classical interacting theory
D}t J,(x,p) =0 (on — shell) (10.28)

Using the *-Jacobi identity (it holds also for the Moyal product, because it is associa-

tive) one can easily get

(0,02, = 0c,02,) W(2,p) = i (Oelen 7 o] (w, p) — i[hH(2, p) 5 [e1 7 &) (=, p)]])
= iDF ey ¥ eo)(z, p) (10.29)

We see that the HS e-transform is of the Lie algebra type.

10.3 Perturbative expansion of the effective action

In this subsection we work out (heuristic) rules, similar to the Feynman ones, to compute
n-point amplitudes in the above fermion model. The purpose is to reproduce formulas
similar to those of [128] for the scalar case. We would like to point out, however, that
this is not strictly necessary: the good old Feynman rules are anyhow a valid alternative.

We start from the representation of the effective action as trace-logarithm of a differ-

ential operator:
W[h] = N Tr[ln G] (10.30)
and use a well-known mathematical formula to regularize it
Wieglh, €] = —N/ —Tr (10.31)
where € is an infrared regulator. The crucial factor is therefore
Kg|t] = Tr [e*ta] =Tr [et(v'(ﬁ*‘q”m)] : (10.32)
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known as the heat kernel, where ¢ is the symbol of G. The trace Tr includes both an

integration over the momenta and tr, the trace over the gamma matrices,

me [ AP (-1
Ko = e [ G e ) (10.33)

Next we expand
et P oty / dﬁ/ dry .. / dTn’)/']E\I(Tl)’)/'E[(TQ)...’}/'H(Tn)
where v-H(7) = e~ Py H e P We have

(ply-H(7)|q) = e " ""(p|ly-H|g) e™ (10.34)

Using a formula analogous to (10.22) for H and inserting completenesses one finds

77 d d ddk dd ' ik-(z— X) iy-(p’ P
(plv-Hlg) = [ d% | d% 2 h(z,p'){ple ') (10.35)

- /lﬂxwhmx%kwlm%“p”

u=0
Therefore

p+q

W Bl = [ doe 7 b, 0,) et

(10.36)

u=0

Using this we can write

o

Tr [e*t@] = eth(—l)”/lj &

n=0

t
d7'1

T1 Tn—1
dTQ c. / dTn
0

X tr(e”'“(pnh- (11)|p1)(p1|y-H 7'2)|p2 o APn-1|7 (Tn)|pn>>

_ emti(—l)”/ndd dpl/dﬁ/ drs .. / o,

(t T1) V' Pn M1 ,\T1—T2) VP11 A M2 Mn— 1 Tn 1— Tn)’an 1 ~Mn ,TnY Pn
X tr( ) ¥ el ) YLy yre )

n

1p;j (x —z 1z]+1+u) = =
X He (AN Py, (xl,aul) . hy, (xn,aun)

j=1

(10.37)

uj =0

— —
where x,11 = 1. Now we can factor out in K[g, t] the terms h,,, (xl, &ul) . hy, <xn, 8un>,

206



and write

[e.o]

Klglt] = Y ((K™r#(t)|hg")) (10.38)

n=0

where the double brackets means integration of the x; and derivation with respect to the

u;. In turn K (”)““'”(t) can be written more explicitly as

J+1+“j

d z XTi—Til1—1 iy
Kﬂl i (371 Uy ..., Tn, UN|t tm/ H pj p] T )K,ul---un (p17 o 7pn|t) (1039)

where we symmetrized

~ —1
Kt (py o palt) = d7'1 dT2 / dr,, (10.40)

% tr(fy‘“e(ﬁ T2)’Yplfyll«2.. ,-yﬂn g (Th—1—Tn) V'Prn— 17une(m T1)’ypnet'ypn

+ ,yuze(ﬁ—fz) ¥-p2 ,7/13 o ,yune(‘rn_l—m) V-Pn ,ym 6(‘rn—7'1) TP1trPL

+ ,y/lne(Tl_TQ) ’Y~pn,y,u1 o /yﬂn72€(7—n71_7—n) 'Y'pn72,y/infle(7—n_7_1) 7’pn716t7'pn71>

Note that in the above equation, for n = 0, there is no need for symmetrization and hence
there is no % term.

Now, the nested integral can be rewritten in the following way

t T1 Tn—1 t t—o1 t—o1—0o2 t—o1—...—0Op—1
/ dmn / drmy ... / dr, = / doq / dos / dos . .. / do,
0 0 0 0 0 0 0
= / doy / doy . .. / do, 0(t — oy — ... — 0,010.41)
0 0 0

where 0; = 7,1 — 7;, with 79 = ¢t. Notice that defining 69 =t — 07y — ... — 0, We can

identify oy = 7,,. Next one uses the following representation of the Heaviside function

00 d twt o] d ] 00 ' '
o(t) = lim [ — - = lim [ ot / dorg e~ 100w i) (10.42)
0

=0t J_oo 2ML W — i€ e=0t J_ 2T

The w integration has to be understood as a contour integration. Using this in (10.41)
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we obtain

t T1 Tn—1 (o] dw ) ] [e%¢] [e%¢] ) )
/ dmy / dry ... / dr, = / — em/ dao/ doy ... / do,, e~ oot Fon)(w=ie)
0 0 0 Ceo 2T 0 0 0

Replacing this inside (10.40) we get

Ry pult) = O )/ i / dao/ doy .. /dan (10.43)

. —7 /
wtr 7#160’2('}’p1 iw )7u L ytn= 1eon('ypn 1—iw’ ,yune(ooer)(Vpn iw')

+ ,Yunew(v-pn—iw’)Wm N _7un72evn(vpnfz—iw’)vuna6(00+01)(7~pn71—iw’)]

where w’ = w — i€ and € in the exponents allows us to perform the integrals', the result

being
~ )" [ dw
Kﬂlmun(p17 Ce ,pn’t) = ( n) / % eth (1044)
—0o0
-1 -1 1
g -
-1 -1 1
Hn M1 Hn—2 Hn—1
i ! pn_iw,fy o pan_iW/ry (ﬁnl_iuﬂ)2j|
We remark that = )2 a(?w) =i . Integrating by parts we can simplify (10.44)
~ d 1 1 1
Kt (pr, oo pglt) = / Y gt [7 P2 plalat 410.45)
nJ_o or © P~ w P, W p,—w
We can also include the factor ™ in (10.39) in a new kernel K#--#»(py, ..., pn|m, t) which

has the same form as K#1-#n (p1,- .-, palt) with all the p, replaced by p. + m:

n
1..- pj- xj—x]Jrl—Z
KHtr (g ug, o o, up|t) = | Ie

Jj=1

1LJ+1+11.]

) Rmin(p, palmat)  (10.46)

I This is evident with the Majorana representation of the gamma matrices, because in such a case the
term ~y-p in the exponent is purely imaginary, the gamma matrices being imaginary. This term therefore
gives rise to oscillatory contributions, much like the iw term.
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where

7~ (=1)" /OO dw
Kul...un . n ’t — JE— w 1047
(p17 P |m ) n - o e ( )
—1 —1 1
N |: Ml—‘ M2 . Hn—1 . 12%0) .
gt ]Zil—i—m—zw’7 K ,';/ﬁn_14-7rz—zc<J’7 (p, +m —iw')?
—1 —1 1
Mn M1 Hn—2 Hn—1
T p tm—iw | ;;/ﬁn_Q—l—m—iw’7 (pn_1+m—iw’)2]

< dw it 1 1 1
= — tr |:’)/ —.’}/“2 e R fy#n . :|
nJ_ 27r P, +m—w P, tm—w P +m— i

Integrating further as in the scalar model case, [128], is not possible at this stage because
of the gamma matrices. One has to proceed first to evaluate the trace over the latter.

Using (10.37) we can write the regularized effective action as

Wieglh, €] = —N/ i th/Hdd e /dﬁ/ dry .. / dry

Xtr( (t Tl)pnfy/»lfle T1— T2)p1fy . ,-y.LL’rL 1 (Tn 1— Tn) Pn— lpyﬂneTn'}’pn)

X Hepj (zj—jt1) hlﬂ (Ilbe) hun (ZL’THT)
dp ®dw
= —N dt dd i v M iwt
/ Z /H i / 2w ¢

X tr [fy’“—l H2 L ypnt L yHm L }
P+ m—wf P, Tm—w P+ m— i
T vy, 1+ pn Po1 + Dn
X Hlepa (@j=ej+1) hm(wl,T) hu(an) (10.48)
J:

10.4 Ward identities and generalized EoM

The general formula for the effective action is

00 1 n ddpl .
- Z n! / H a (2m)d W/(A1)7-..,un (1,15 - - s Tpy Py €) W (21, p1) - P (20, i)
n=1 "7 i=l

(10.49)

where we have discarded the constant 0-point contribution, as we will do hereafter. The

effective action can be calculated by various methods, of which (10.48) is a particular
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example. In the latter case the amplitudes are given by

(n) o n_ qi T iwt
Wi i (TL DLy o3 Ty Py €) = Nn /E “ /H (2m)¢ /—oo 2
=1
X tr [7“1; B2 ’Y'un_l ! P)/#n : :|
+m — iw +m—w Tm =W
, <) - YR " !

igj-(zj—xjt1) § Gt ) _ it e 10.50
X ]1:[16 (p1 9 Pn 9 ( )

We stress once more, however, that the regularized effective action (10.49) may not be
derived only via (10.50), that is via the procedure of section 2.2. It could as well be
obtained by means of the ordinary Feynman diagrams.

This amplitude has cyclic symmetry. When saturated with the corresponding h'’s,
as in (10.49), it gives the level n effective action. Here we would like to investigate
some general consequences of the invariance of the general effective action under the HS
symmetry, codified by eq. (10.18), assuming for the W™ the same cyclic symmetry as

(10.50). The invariance of the effective action under (10.18) is expressed as

0 = 8.WI[h] (10.51)
LS [
- ;m—l)!/gd (2n)

X WELTL) (‘rlapla <oy Ly Py 6) 6€hlﬂ ($1,p1> Sk (xn?pn)

1y--sMn
= S dz, ’
; (n—1)! /11 Y oy

X W;(ﬁ)’_,‘ﬁn(xlaplu oy Ty, P) D e(xy, p1) R (29, p2) . .. K" (24, 1)

Hereafter we assume that the HS symmetry is not anomalous and that there is a regu-
larization procedure leading to a HS invariant effective action. The question of whether
the particular effective action (10.48) satisfies (10.51) requires an explicit calculation of
(10.50) and is left to future work.

In order to expose the L, structure we need the equations of motion (EoM). Here we
can talk of generalized equations of motion. They are obtained by varying W h, €] with

respect to h*(x, p):

Wh] =0 (10.52)
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Then, expanding in p, we obtain the generalized EoM’s for the components h##=(x).

The most general EoM is therefore

Fu(z,p) =0

where

de n
Z /Hdd Wl(,,;rll) Mn(x7p7x17p17"'7xnapn7€)

X h’“(azl,pl) ... htn (xmpn)

Integrating by parts (10.51) and using (10.26) we obtain the off-shell equation

D Fulw,p) = 07 Fu(w,p) — il (x,p) 3 Fulz,p)] = 0

Taking the variation of this equation with respect to (10.18) we get

0= 0.(D Fu(x, p)) = D (0Fulw,p)) —i[Dy"e 5 Fulw, p)]

From (10.54) and (10.55) one can deduce

559:M($’p) = Z[&(l’,p) H Stu(xap)]

(10.53)

(10.54)

(10.55)

(10.56)

Now that we have determined the formula for the effective action and the generalized

equations of motion, in the next chapter, we will show that this theory has L., symmetry.
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Chapter 11

Lo structure of higher spins

The procedure described in the previous chapter comes with a bonus, the precise form of
the gauge symmetry. This has a outstanding consequence: it enables us to demonstrate
L, symmetry of the full effective action Wh| obtained by integrating out a fermion field
coupled to the higher spin fields. In this chapter we closely follow [33].

Let us mention that in the first part of this chapter we introduce a simplification: we
neglect the generalized cosmological constant term W) . In the final part of this chapter,
we complete the analysis of L., symmetry of the fermion model with the presence of
generalized cosmological constant term, that is, we show that such effective action admits

curved L, symmetry, see [184].

11.1 L, symmetry of higher spin effective actions

In this section we will uncover the L., symmetry of the W/[h]. To this end we use
the general transformation properties derived in the previous subsection, notably egs.
(10.53), (10.56), beside (10.18). We will also introduce a simplification, we will neglect
the generalized cosmological term W), The expansion of the effective action (10.49) is
in essence an expansion around a flat background. Using standard regularizations we
get that, in general, the effective action contains term linear in HS fields, which gives

$/2 where

constant contribution to EoM’s of even-spin HS fields of the form c(s, €) (1,,)
(s, €) are scheme dependent coefficients which need to be renormalized. As this term is a
generalization of the lowest-order contribution of the cosmological constant term expanded

around flat spacetime, we shall call the part of the effective action that contains the full
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linear term and is invariant on HS transformations, generalized cosmological constant term.
As a flat background is not a solution when the generalized cosmological constant term
is present, consistency requires that we take this term out of an effective action (or, in
other words, renormalize the cosmological constant to zero). This will be assumed from
now on. Technically, this means that we now assume that the sum in (10.49) starts from
n = 2, and the sum in (10.54) starts from n = 1, while all other relations from subsection
10.4 are the same.

To start with let us recall that an L., structure characterizes closed string field theory?!.
This fact first appeared in [139], see also [141], as a particular case of a general mathemat-
ical structure called strongly homotopic algebras (or SH algebras), see the introduction
for physicists [142, 143]. It became later evident that this kind of structure characterizes
not only closed string field, but other field theories as well [144], in particular gauge field
theories [145], Chern-Simons theories [138], Einstein gravity and double field theory [53].
For other, more recent applications, see [148, 149].

For the L.-algebra we closely follow the notation and definitions of [53]. L.-algebras
(also referred to as strong homotopy Lie algebras) are generalization of Lie algebras. In

L..-algebra we have a graded vector space
X=X (11.1)

where X;, 7 =...,1,0,—1,...1s a set of vector spaces, with degree i and multilinear maps
(products) among them L;, j =1,2,..., with degree d; = j — 2. It follows deg(L;) = —1,
deg(Ls) = 0, deg(Ls) = 1. To denote vectors in X we use notation xy,zs,.... Each of
these vectors has a definite degree x; = deg(z;). The degree of a map L; acting on a

collection of entries

deg(L;(x1, xg, ..., z;)) :j—2+2deg($i) (11.2)

=1

The properties of the mappings L; under permutation are defined in [53]. The map-

pings L; are defined to be graded commutative. For instance

Lo(z1,29) = —(—1)2Lo(xg,x7) (11.3)

1Open string field theory is instead characterized by an A, structure, see [53] and references therein.
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In general
Ln(.il?g(l), xg(g), e ,xg(n)) = (—1)06(0; x)Ln(.itl, To, ... ,.In) (11.4)

where o denotes a permutation of the entries so that (—1)7 gives a positive sign if the
permutation is even and a negative sign if the permutation is odd, and €(o;x) is the
Koszul sign. To define it consider an algebra with product z; Az; = (—1)**z; A z;, then

¢(o; x) is defined by the relation
TINTa N N Ty = €(0;2) Tor) A To@) A - A Ton) (11.5)

It is worth noting that if all the x;’s are odd (—1)%¢(o;z) = 1.

Multilinear maps L; satisfy the following quadratic identities:

Z (—1)2071) Z(—1)06<U; l’) Lj(LZ-<:L‘U(1), ce 7$o(i))> To(it1)y - - - ,Jj'g(n)) =0 (11.6)

i+j=n-+1 o

In this formula n < 1 denotes a number of input vectors. The sum over permutations
o is a sum over "unshuffles” so that the entries are partially ordered o(1) < ... < (i),

o(i+1) <...<o(n) We will schematically write this relation as

Z (=) VL (11.7)

i+j=n+1

In our case, due to the structure of the effective action and the equation of motion, we

will need only three spaces Xy, X_1, X_5 and the complex
Xy 2 x M x o, o (11.8)

The degree assignment is as follows: € € Xy, hi* € X_; and F, € X_o.
The product L; are defined as follows. We first define the maps ¢;

1 1
8:h = 0(E) + ba(e, h) = Slale, b h) = ilale. by h) 4 (11.9)
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Therefore, in our case,

l(e) = Obe(x,p) (11.10)
(e, h) = —ilh*(z,p) § ez, p)] = —La(h, )"
Gieh,nh) = 0 j>3
For these entries, i.e. ¢, (e, h), (g, h,h),... we set L; = £;. From the above we can extract

Ly(e,e) = ly(e,e). We have

(551552 - 562551) h* = 551 (€1(52) + £2(527 h)) - 552 (ﬁl(gl) + €2<51, h)> (1111)
= (551 (KQ(EQ, h)) - 552 (62(517 h))
= ly(e2,0c,h) — la(e1,0:,h) = La(eg, li(e1)) — La(en, li(e2)) + O(h)

Now, the L, relation (11.6) involving Ly and L, is
L1<L2<.T1, 513'2)) = L2<L1<£C1), .’]}'2) — (—1)X1X2L2<L1($2), xl) (1112)

for two generic elements of x1, x5 of degree x1, xo, respectively. If we wish to satisfy it we

have to identify
(0c,0c, — 0c,06,) b = —l1(a(e1,2)) + O(h) (11.13)
By comparing this with (10.29) we obtain
Uy(e1,89) =ileq * & (11.14)
The next step is to determine Ls. It must satisfy, in particular, the L., relation

O = Ll(L3((L’1,[L‘27ZL’3)) (1115)
+  L3(Li(z1), w2, 23) + (—=1) La(x1, Ly(22), w3) + (=12 La(21, 2, L1 (x3))

+ Lo(La(m1,22), 23) 4+ (—1) 5128 Ly (Lo (23, 21), wa) + (—1) 5251 Ly (Ly(29, 33), 21)

215



We define first the ¢; with only h entries. They are given by the generalized EoM:
1 1
?:ﬁl(h)—562(h,h)—§€3(h,h,h)+... (11.16)

Let us write F,, (10.53) in compact form as

. 1 n n
Zn— (Wit pem) (11.17)
then
Ou(hy .. B) = (—1)"(" 2 (WEED peny (11.18)

n(n 1) dpz "
- /Hdd ;(L;j_ll..).,un<x7p7x1ap1a'--,.flfn,pn)

x W (z1,p1) - . . h“"(arn,pn)

in particular,

ti(h) = (WP, k) = /ddxi (QW)id WP (z,p, 21, p1)h" (21, p1) (11.19)

Notice that WEZZUM is not symmetric in the exchange of its indices. In fact it has only
a cyclic symmetry.

Furthermore, let us unfold (10.56). On one side we have

o0 n

1 .
589:“ - Z _ < Z«W/(J}jl_l)ﬂzun ) hﬂl cee 6515 e h“"» (1120)
n=1 i=1
— Z«WEZZI)#M N ] hun»)

On the other side

et T =03 St (WO peny) (11.21)
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The two must be equal order by order in h. Thus we have

, n n 1 ntl " |
il T QWD O] = S TGWEE, s B O ) (11.22)
=1
i D AW B )
=1

This is the Ward identity for the symmetry (10.18).
In order to verify the L., relations we have to know products [; for different entries.

Following [53] we define, for instance,
2Lo(hy,hy) = Lla(hy + ha, hy + he) — la(hy, hy) — Ca(ha, h) (11.23)
which is equivalent to
Lo(ha,he) = 5 (ol ha) + Lo, ) (11.24)
Similarly
Lo, ha, hs) = = (€s(0n, s, ) + permn(in, s, ) (11.25)

In general, when we have a non-symmetric n-linear function f,, of the variable A we can
generate a symmetric function F,, linearly dependent on each of n variables hq,..., A,

through the following process

Fu(ha, ... hy)

=%<fn(h1+...+hn)— [fn(hl+...+hn_1)+fn(h1+...+hn_2+hn)
ot falha o h)| [l Baa) b by )|
+(—1)”"“[fn(h1+...+hk)+-~-+fn(hn_k+1+...+hn) +...
D" fall) o Falh)] (11.26)

We shall define Ly, (hq, ..., h,) by using this formula: replace F,, with L,, and f,, with ¢,
the latter being given by (11.18). We shall see that beside L, (hy,...,hy), (11.10) and
(11.14) the only nonvanishing objects defining the L, algebra of the HS effective action
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Lo(e, E) = i[e * E] (11.27)

where I represents J, or any of its homogeneous pieces.

In the rest of this section we shall prove that L, defined in this way generate an L.,
algebra.

Note that in the previous chapter we assumed that higher spin symmetry is not anoma-
lous and that the higher spin effective action is invariant under gauge transformations.
To confirm that the effective action is indeed invariant under higher spin transformation

one should explicitly compute (10.50).

11.2 Proof of the L relations

11.2.1 Relation L? = 0, degree -2

Now let us verify the remaining L, relations. The first is L? = (3 = 0. ?

Let us start from ¢1(¢1(¢)). We recall that ¢ () = d,e(x, p) and belongs to X_;. Now
O(h) = (WD, h) (11.28)

Replacing h with 0,e(x,p) corresponds to taking the variation of the lowest order in h
of ¥, with respect to h, i.e. with respect to (10.18). On the other hand the variation of
F, is given by (10.56) and is linear in F,. Therefore, since ¢;(0,e(x,p)) is order 0 in h
it must vanish. In fact it does, which corresponds to the gauge invariance of the EoM to
the lowest order in h. This case corresponds to setting n = 0 in (11.22).

Next let us consider ¢1(¢1(h)). It has degree -3, so it is necessarily 0 since X_3 = 0.

2We remark that if the generalized cosmological constant term (see end of sec. 10.4) is non-vanishing,
then £2 # 0. In this case an enlarged version of L., called curved Lo, is necessary.
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11.2.2 Relation LiLs = LsL, degree -1

Next, we know 5(e1,€5), l2(¢, h) and l5(hy, hy), and we have to verify LiLs = LoLy. The
latter is written explicitly in (11.12) and takes the form

61(62(5,}0) = L2<€1(6)7h)+L2(€,€1(h)) (1129)
_ %(62(61 (€). ) + balh, (4(2)) ) + Lo, 4 (1)

where we used (11.24). More explicitly (11.29) writes

—ily([hte]), = %(52(3%, h) + Co(h, a%)) + Lo(e, (WD, 1) (11.30)

i.e.

OLe W) + (W)

2%

W, 5 2 = 5 (4w

B Oke)) = Lofe, (W, b)) (11.31)
Setting n = 1 in (11.22) gives precisely (11.31) provided
La(e, (W2, b)) = ile 5 (W2, h)] (11.32)

i

The quantity F) = ((WE?) , h)) is the lowest order piece of the EoM (of degree -2), see

(11.17). So we can say
Lo, FOY = by(e, FV) = i[e + FI)] (11.33)
In general,
ly(e, F) =i[e ¥ F] (11.34)
The next relation to be verified is
Li(La(hy, ho)) = Lo(L1(hy), ha) — La(hy, Li(h2)) (11.35)

The entries of Ly on the rhs have degree -3, so they must vanish. On the other hand
Lo(hy, he) on the lhs has degree -2, and is mapped to degree -3 by L;. So it is consistent
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to equate both sides to 0. In particular we can set Lo(F1), h) = 0 (and, more generally,

La(X_5,h) = 0).

11.2.3 Relation L3l + LoLs + L1L3 =0, degree 0

First we should evaluate Lz(e1,e9,e3). Its degree is 1, therefore it exits the complex. Is

it consistent to set it to 07 The relevant L., relation is

O = fl(Lg(ZEl,l‘Q,l’g)) (1136)
+ L3(€1(1‘1),ZL’2, 133) + (—1>X1L3($1,£1(.’E2), Ig) + (—1>X1+X2L3(I’1, xg,fl(x;),))

+  Lo(Lo(xy, x9), x3) + (—1)(X1+X2)X3L2(L2(l‘3, T1),T2) + (—1)(X2+X3)X1L2(L2($2,333),371)

In our case the second line equals 0, L3(e1,¢€2,€3). Thus if we set L3(e,e9,e3) = 0, the
first two lines vanish. Using (11.14), we see that the third line is nothing but the *-Jacobi
identity:

eiifeztes)] +leatlestall+lesslerten]] =0 (11.37)

From (11.10) we also know that Ls(e, hy, ha) = €3(g, hy, he) = 0. Following [53] we will
set also Ls(e1,€2,h) =0, Ls(e1, &9, F) = 0. Therefore

L3(€1,52,53) =0, L3(57 h1,h2) =0, L3(€1,52,h) =0, L3(€1,€27}—(1)) =0 (11'38)

Let us consider next the entries 1,5, h. The terms of the first two lines in (11.15)

vanish due to (11.38). The last line is

£2<€2(€1, &72), h) + gQ(ﬁQ(h, 61), 82) + 62(62(62, h), 81)
= [h* ¥ [e1 T ea]] — [[P* ¥ €1 T ea] + [[P* ¥ €] ¥ €] (11.39)

which vanishes due to *-Jacobi identity.

Now we consider the entries ¢, hy, he. Plugging them into (11.15), the first line vanishes
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because of (11.38). The rest is

1
0 = 6(63(61(5), hu, he) + perm3>
+L3(€, 61(h1)7 hg) — L3(€, hl, él(hQ))
+% (fQ(EQ(&‘, hl), h2) + gz(h% £2<€, hl)) — 62(62(]12, 6), h1>

lo(hy, £(ha, €)) + €a(la(ha, ha), ) + a(La(ho, hy), g)> (11.40)

where perm; means the permutation of the three entries of 3. Writing down explicitly

the first line, it takes the form

1 L@ avopr e

8 (U5(€1(g), hy, he) + permy) = ~ ((( g » On€ R hY)) + perm3> (11.41)
The last two lines of (11.40) give

ég(gg(é‘, hl), h2) + gQ(hQ, fg(&, hl)) — f2(£2<h2, 5) hl) — gz(hl, fg(hg, 8)) + gg(gg(hl, hg), E)
o (laha, h), €)= +i (WS (Y 5 el + (WL, B3TRE 5 el + WL (05 5 <l
Wi

b s PARS Tl HE T (Wi, YR + e T (Wi, b h”>>]> (11.42)

Summing the rhs’s of (11.41) and (11.42) one gets, apart from the second line, (11.40)
expressed in terms of the expressions appearing in the rhs of (11.22) with entries hq, ha,

instead of one single h. Now let us consider (11.22) for n = 2, i.e.

1
il (WD h )] = S (W s Ll WP 4 WY Neh? + B BAO%e)  (11.43)
<<w§j";>A L [hY e 4+ B[R e]).
This can be read as
) 1
—ile s fa(hh)] = =3 (GalOuz, 1y h) + Lol Dy, h) + Lol B, 0,5)
tily(h, [h* €]) + ibo([h % €], h) (11.44)

Now we consider the same equation obtained by replacing h with hy + hs according to the
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symmetrization procedure in (11.23). We get in this way the symmetrized equation

—ile 1 la(ha, ho)] — e % La(ho, hy)]

_ —é(gg(amg, hi o) + C3(One, oy hy) + Cs(hy, Bue, o)

la(ha, Doz, ) + Ca(ha, o, Due) + La(ha, o, axg))

Fily(ha, [ho = €]) + ila(ha, [ * €]) + ilo([hn * €], ha) + ila([ha * €], hn) (11.45)

This is the same as the sum of the first, third and fourth lines of (11.40), or, alternatively,
the sum of the rhs’s of (11.41) and (11.42). Thus (11.40) is satisfied if the two remaining
terms in the second line vanish. They are all of the type Ls(e, h, F (1)) and we can assume

that such types of terms vanish. So, beside (11.38) we have
Ls(e,h,E) = —Ls(e, E,h) =0 (11.46)

where E represent F, or anything in X_,.
The relation with entries 1,65 and F is nontrivial and has to be verified. Consider
again (11.15) with entries €1, 9 and E. Due to (11.38), (11.46) the relation (11.15) reduces

to the last line:

Uo(ly(e1,89), E) + lo(l2(E 1), e9) + la(la(e2, E), €1) (11.47)
= i€2([€1 f 82],E) + Zﬁg([E f 61],62) + 2[2([82 f E],€1)

=FE T a7 el]-[[E e o] —(le2 7 E] 7 2]

which vanishes because of the x-Jacobi identity.
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11.2.4 Relation 1Ly — LoL3+ L3Ls — LyL; =0, degree 1

The L., relation to be proved at degree 1 is

Li(Ly(x1, 29, 3, 24)) (11.48)
—Lo(L3(wy, w9, 23), 24) + (—1)*** Lo(L3(x1, T, 4), 23)

(=) Ixe Lo (2 La(zq, 23, 04)) — (—1) Lo(a1, Lg(9, 23, 74))

+L3(Lo(1, 22), w3, 24) + (—1)1728 Ly (Lo(21, 23), T2, 74)

(1) 62t Lo (Lo (2, 224), 0, T3)

—L3(xq, Lo(x2, w3), 4) + (—1)** Lg(21, La(x2, x4), x3) + L3(x1, x2, Lo(23, 24))
—Ly(Li(x1), 29, k3, 24) — (= 1) Ly(x1, L1 (22), T3, T4)

_(_1)X1+X2L4($1’ T, Ll (.ZU3), ZE4) - (_1)X1+X2+X4L4($1’ Zo, T3, Ll (1'4)) — 0
We have

L4(61a€27€3764> = 07 L4(61752763a h) - 07 L4(617527 hl; h?) - 07 L4(57 h17 h27h3) =0
(11.49)

Arguing the same way as for Ls(e1,e9,23) = 0, Ly(1,€9,€3,4) has a positive degree and
so the first equality vanishes. The second equality also has positive degree and hence it
must vanish. The fourth has been proven above, see (11.10). The other is an ansatz to
be checked by consistency.

The relation (11.48) with three ¢ entries and one h is trivial as a consequence of (11.38)
and (11.49). The same happens in the case of two ¢ entries and two h, as a consequence
again of (11.38) and (11.49).

Now let us consider the case of one € and three h’s. Plugging them into (11.48) here

is what we get in terms of ¢;’s (only the nonzero terms are written down)

1
0 = ottt ) ”»
1
2 (4a(6ae, ha), oy ha) + Co(a(e, 1), o, ) + Ea(Ca(e, ), B ) + permny )
1
4l <€4(£1(5), hyi, ha, h3) + perm4>

—Ly(e, l1(h1), ha, hs) + La(e, b, l1(h2), hg)—L4(e, ha, he, l1(h3))
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where perms, perm, refer to the permutations of the /3, /4 entries, respectively. Disregard-

ing for the moment the last line, which is of type Ly(e, E, h, h), this equation becomes

0 = o (lex WD, . EARREY] + perm(i, ho, ) (11.51)
+ (Wi [BF £ €lh3R8) + perm([hn t €], ha, hg)
+(Wioh,» (15 5 elhyhs) + perm([hs ¢ €], b, ho)
(W, [0 5 g + perm([hy t <], by, o))

1
i (((WW/\W , 0% hyh5hg) + perm(0,e, hy, ho, h3)>

For comparison let us go back to (11.22) with n = 3. It writes

ile T (Wiah, R 1R)]

OYeh P h? + B Oreh’h? + YR 0Peh” + bV hPOe))

2N

[ e]h*hP + WY [ 1 e]h? + hYRAAP * €]) (11.52)

i«w@
— (W

HvAp !

If now we transform the LHS of this equation to a trilinear function of hq, hs, h3 according
to the recipe (11.26), we obtain precisely eq. (11.51). As a consequence we are forced to

set
Ly(e, E h,h) = Ly(e,h, E,h) = Ly(e,h,h, E) =0 (11.53)
Considering the entries €, ¢, E/, h in (11.48) one can show that
Ly(e,e, E,h) =0 (11.54)

for consistency. Using this and evaluating (11.48) with entries ¢, ¢, h, h, one can see that

the third ansatz in (11.49) is justified.

11.2.5 Relation L., + ...+ L, =0, degree n — 3

The general L, relation is (11.6). As the n = 4 example shows, for n > 4 it is consistent

to set the values of L, to zero except when all the entries have degree -1. Schematically,
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out of (11.6), the only nontrivial relation is

—Ln(e,Ly_1(hy...,R)) + Lp_1(La(g,R), by ... h) + (=1)" ' L,(Ly(¢),h,...,h) =0

(11.55)
Written in explicit form in terms of ¢, it is
1
O] (52(5: bna(hn, oy b)) + permn_1> (11.56)
1
‘I'(n — 1)' (&1—1(62(57 h1)7 h2, ceey hn—l) + gn_l(gg(g, hg), hl, ey hn—l) + ...

1 (la(E, 1), s ) + perm, )

(~1
n!

+ (en@l(g), N T permn) ~0

In order to obtain this it is essential to remark that, for entries of degree -1, the factor
(—1)%¢(o;2) in (11.6) is 1.
Using now the definition (11.18) and simplifying, (11.56) becomes

([ WSy B D] + perm,, ) (11.57)
“’(<<W£z;1...y o TR ) W L [ RS )
W [ B B 4 perm, )
1
+ (<<W,JLT1V OB ) + perm, ) =0
n
where perm,_; means the permutations of hq, ..., h,_1, and perm, means the permuta-
tions of hy,...,h,_1 and O0,¢.
Now, from (11.22) we get
n—1
il s (W) R =i Y (W R [e s R k)
i=1
—= Z Wl RO L) =0 (11.58)
If now we transform the LHS of this equation to a multilinear function of hAqy,..., h,_1

according to the recipe (11.26), we obtain precisely (11.57). This completes the proof of
the n-th L., relation.
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11.3 Curved L, algebra

So far, in this chapter, we assumed that Wf}) = 0. In many cases, however this is not
true and we have a cosmological constant term. Here we extend the L., structure of
the fermion model to curved L, algebra, see [184]. When cosmological constant term is
present W,(}) # 0, we have to introduce an additional ‘product’ Ly, besides the L, of [33]
and in the previous sections. The algebra in this case is called curved L.,. We define L

by setting
Ly =W (11.59)

Both sides of this equation have degree -2, because of the fact that the degree of products
L, is n — 2. Now L, is not nilpotent. In this case, the defining property L? = 0 of the

L., algebra is modified as follows
L1 (Ll(U)) + L2 (Lo, U) =0 (1160)

where v € X = Xy ® X_; & X_5. This relation is nontrivial only when v € X, i.e. when
v is e. We can see that by degree counting. Now using eq.(11.34), and recalling that
Ly(e)*(z,u) = O%e(x,u) and Ly(h), = ((W,(f), h)), this equation becomes

iWD el + (W2R") =0 (11.61)

This corresponds to the case n = 0 of (11.22). All the other L., relations remain un-

changed. For instance, the relation
L3L0 - L2L1 + L1L2 - O (1162)

is not a priori excluded by the degree counting, however we have proved that L3(E, *, ) =
0 is consistent for E of degree -2.

Ly is called the curvature of the curved L., algebra.
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Chapter 12

Conclusion

In this chapter we will discuss our results, give final concluding remarks and give guidelines

for future research.

12.1 Comments on the Pontryagin anomaly

We were dealing with odd part of the trace anomaly of a Weyl fermion coupled to curved
background. To confirm the result of [15] we used several methods. First, we reconsidered
the calculation of [15] and gave a more complete analysis of the latter by including the
tadpole and seagull diagrams and came to a conclusion that they do not change the final
result, see [19]. We checked trace and diff-Ward identities and we conclude that the
parity-odd part of the trace anomaly is given by Pontryagin density which comes from
the triangle diagram. In this way we obtain only the lowest order term of the anomaly.
To obtain the full anomaly we covariantize the result.

The problem with Weyl fermions lies in the definition of the path integral measure,
or better said, a lack of a well defined path integral measure. Let us recall that the path
integral measure of a free Dirac fermion can be interpreted as a determinant of the Dirac
operator Ip, that is, the product of its eigenvalues. We come to a similar deduction for
a Majorana fermion. However, for Weyl fermion the situation is a bit more complicated.
If we choose for the Dirac operator [p; = IPP;, since Dirac operator anticommutes with
~s, it maps left-handed fermion to right-handed one, and as a consequence the eigenvalue
problem is not well defined in this case. Another idea is to replace I§; with lﬂzlﬂ ., but

in this case we face a problem of undetermined overall phase factor.
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Bearing this in mind, and inspired by Bardeen’s method, we propose a solution to this
problem following [19]. The main idea is to embed our system in a larger setup: metric-
axial-tensor (MAT) gravity. Beside the usual metric g,, we introduced an additional
axial metric f,, and let them interact with Dirac fermions. Since in this framework we
are allowed to use Dirac instead of Weyl fermions, we are able to bypass the problem of
the integral measure. Again, using Feynman diagram approach together with dimensional
regularization we were able to confirm that the theory of chiral fermions coupled to curved

background indeed contains a nonvanishing parity-odd part of the trace anomaly. We

huv
2

huv

obtain the result by taking the collapsing limit h,, — 5%, f., — hzﬂ (or by — 5%, fuw —

_ b

£~ for the opposite handedness) in the final result. This limit is smooth and we have

not found any singularities. Along the way, by taking the suitable collapsing limit (h,, —
hyw, fuy — 0) we proved that for Majorana and Dirac fermions the parity-odd part of
the trace anomaly vanishes. Let us mention one more time that with Feynman diagram
method we obtain only the lowest order contribution to the anomaly, and the full anomaly
is then reconstructed by covariantization. This is correct only if the diffeomorphisms are
not broken by the regularization procedure, however, we did not check Ward identities
for diffeomorphisms in MAT background. The computation of the latter is extremely
complicated in this case.

Instead, we choose to use another method - DeWitt point-splitting method. In this
method covariance under diffeomorphisms is guaranteed because the point-splitting is
along a geodesic. We showed that the heat kernel method can be extended to MAT
gravity. Finally, by taking the appropriate collapsing limits, we again confirm the previous
results.

We can conclude that all mentioned methods give the same result: The left-handed
Weyl fermion coupled to curved background admits a parity-odd part of the trace anomaly
given in terms of Pontyagin density, while the parity-odd part for Majorana and Dirac
fermion vanishes, as expected. For right-handed fermion the overall sign of the anomaly
is switched.

Let us also mention that a negative result was obtained in [85]. The authors found a
vanishing parity-odd contribution to the trace anomaly using Fujikawa method and Pauli-
Villars regularization. However, with this method one introduces both chiralities through

the path integral measure, even though the action is describing a Weyl fermion. In the
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anomaly calculation it is essential to avoid mixing of chiralities during the computation.
It necessary to keep only one chirality throughout every step of the calculation. That
being said, the result of [85] applies to Dirac and Majorana fermions and it is consistent
with our results.

Let us mention some characteristics and consequences of the Pontryagin anomaly. Note
that in Lorentzian metric, the Pontryagin density comes with an imaginary coefficient.
This means that the trace of the energy momentum tensor becomes purely imaginary and
as a consequence the Hamiltonian density becomes complex. As long as we are in the
effective field theory regime, this is not a problem. On the other hand, if we quantize
gravity, in this case unitarity would be broken. This suggests that we should use this
anomaly as a selective criterion for theories, because the Pontryagin trace anomaly is
present only in theories with chiral imbalance. Let us point out that Pontryagin density
vanishes in some particular geometries such as FRW or Schwarzschild.

One important outcome of our computation is the MAT gravity itself, which can be

studied on its own as a new bimetric model.

12.2 Comments on effective actions in higher spin
theories

Let us give some concluding remarks about the effective action approach to higher spin
theories. Our idea was to extract information about the dynamics of the higher spin fields
from the quadratic part of the effective action. We coupled a free massive fermion and
scalar theory to various external sources using conserved currents and subsequently we
used these currents to compute the 2-point correlator. Since we focus on 2-point functions
the effective action is quadratic and the equations of motion are linear in the external
field. Let us just mention that the choice of currents is not unique, however, we used two
particular forms: the simplest symmetric conserved current and a current which becomes
traceless in the massless limit.

We expressed our results in terms of conserved structures which turn out to be ex-
tremely practical because they make the conservation of the correlators obvious. Our
currents are conserved on-shell and as a consequence, the effective action inherits off-shell

gauge invariance. Our gauge transformation is linear and the associated parameters are
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unconstrained as in [39]-[41], [107]-[109]. This motivated us to express our results in the
geometric language of [43, 178].

We analysed several examples. To warm up, we started with a massless scalar and
fermion model coupled to higher spin fields using simple and traceless currents. In the
case of traceless currents, in the parity even sector, we found traceless correlators which
in turn give conformal theories.

Next, we coupled massive scalar and fermion model to spin s = 1,2, 3 external fields.
One important issue we stumbled upon are the non-conserved and divergent terms in
the IR expansion of the 2-point correlators. We found that these terms are local and
their number is finite. To extract physical information from the amplitudes, we choose a
particular scheme: we subtract all divergent terms (which include non-conserved terms)
in the IR from the UV. That is, we subtract a finite number of local counterterms from the
action to recover finiteness and conservation. We showed that, for spin 1 and 2, in general
subtractions are not necessary, provided we know the full form of minimal coupling and
gauge transformation above linear level. For spin 3 or higher we do not know the full
gauge transformation and the full interaction of scalar and fermion fields with higher spin
fields, and hence, the subtractions are unavoidable. To be precise, for spin 1 and 2, we
introduced additional local terms to the interaction so that the effective action is gauge
invariant without any subtractions. In this case, the additional terms enter Ward identity
in a form of tadpole and seagull terms. Of course, this is not a surprise, because the fully
off-shell covariant theories are well known for QED and gravity coupled to scalars and
fermions.

Expanding our results in IR and UV for d = 3,4 (for d = 5,6 see [29]) we found
that the effective action of any background field is based on the corresponding linearized
Fronsdal kinetic operator given in [37, 38], in the nonlocal form introduced by Francia

and Sagnotti in [39, 40, 41]. In particular, for the scalar model in both 3d and 4d we find
e for spin 1, Maxwell equation (8.27, 8.37),
e for spin 2, nonlocal version of Einstein-Hilbert (8.60, 8.65)
e and for spin 3, nonlocal Fronsdal operator (8.69, 8.74).
Moreover, for the fermion model
e for spin 1 we found Maxwell equation (8.23, 9.38),
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e for spin 2 in 3d we obtained local version of Einstein-Hilbert (9.66) while in 4d we

got nonlocal version of Einstein-Hilbert (9.72)

e and for spin 3 we got nonlocal version of the Fronsdal equation (9.79, 9.85).

Besides the correlators of equal spin currents, we also presented some examples of
mixed spin correlators. We expect that presence of these terms is necessary in higher spin
theories, main motivation for this being the argument that for a consistent higher spin
theory we need infinitely many higher spin fields. All of these fields interact with our
fermion or scalar model and in turn give a contribution to the mixed spin correlators.

Let us point out one more result. In 3d, upon integrating out the fermion field, we
find also parity-odd kinetic terms. In particular, for the traceless currents, in the UV
limit mixed spin generalization of a conformal higher spin action (9.104) found in [43, 44].
Recently, in [50]-[52] have been discussed supersymmetric generalizations pointing out
dualities and extension to massive higher spin fields.

We also discuss diagonalization of our 2-point correlators, that is, the possibility of
vanishing off-diagonal correlators for a particular choice of coefficients in the currents. It
turns out that the diagonalization is not possible with the currents (7.26) neither in scalar
nor in the fermion case the reason being an infinite number of non-conserved terms, see
eq. (8.90). One more example we consider is the case of traceless local currents (traceless
even in the massive case) where we are able to diagonalize our results by appropriate
choice of coefficients in the currents and by subtraction of finite number of counterterms.

Note that throughout the thesis we have been dealing only with 2-point correlators of
higher spin currents. The next logical step would be to compute higher-point correlators
which could give us some insight on the non-linear structure of the higher spin fields or
we could find obstacles which forbid higher spin couplings.

As we previously mentioned, we do not know the form of gauge transformation beyond
the linear order for higher spin fields. Because of that, we turned to the the worldline
quantization of a Dirac fermion field coupled to higher spin external sources (scalar case
is already worked out in [128]). The advantage of this procedure is that it comes with
the exact form of gauge transformation. In this new framework, we gave the perturba-
tive expansion of the effective action (very similar to Feynman diagram approach) and
determined the generalized equations of motion.

This allowed us to show that our full one-loop effective action possess a L., symmetry.
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We also showed how to realize curved L., algebra in this model. Although we do not give
here an explicit proof, the same holds also for the effective action obtained by integrating
out a scalar field coupled to higher spin fields. The proof in the scalar case is actually
casier, because the corresponding W(™’s are automatically symmetric, see [128].

In L., symmetry the equation of motion plays the fundamental role, which means that
symmetry is dynamical (for an early formulation in this sense, see [183]). of perturbative
field theories [53]. For our purposes, we give L., a try to construct higher spin theories
by integrating out matter fields.

Our interpretation of L., relations between correlators is that they play a role of Ward
identities. To expose L., symmetry we assumed there is no generalized diff-anomalies,
however, one has to check that there is no anomalies by explicit calculation. Breakdown
of these relations at the quantum level would suggest the presence of anomalies, in other
words, possible obstructions in construction of the higher spin theories may appear in the
form of anomalies in our approach.

If there is no generalized diff-anomalies, L., algebra could be used to find theories
which automatically satisfy L., relations and higher spin gauge invariance. This opens

up a new approach to analyze higher spin models.

12.3 Summary

Let us sumarize our main results. First, in [19]-[21] we recalculated the parity odd trace
anomaly in 4d in three ways: with Weyl fermions without field redefinition ¢ — | g|i¢,
using MAT gravity with Dirac fermions and using Schwinger-DeWitt proper-time method
where we extended the heat kernel method to MAT gravity. We find that parity-odd part
of the trace anomaly is given by Pontryagin density in 4D which supports the statement
that Weyl and massless Majorana are not the same beyond classical level. Pontryagin
anomaly appears with imaginary coefficient e = iﬁ}? which could break unitarity. This
suggests that this anomaly could be used as a selective criterion for theories.

Second, starting from free quantum theory coupled to external higher spin sources
via conserved currents, we find that the effective action, obtained by integrating out the

microscopic field, contains information about classical dynamics of sources, see [29]-[32].

We were dealing with 1-pt and 2-pt correlators and consequently the one-loop effective
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action is quadratic while the equations of motion are linearized. For higher spin fields,
after subtraction of finite number of local non-conserved terms, we find gauge invariant
effective actions. Next, we used worldline quantization of fermion field coupled to higher
spin sources, see [33]. This method comes with the exact form of gauge transformation
which enables us to show that the full one-loop effective action has L., symmetry provided

there are no generalized diff-anomalies.
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